Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * A fairly generic DMA-API to IOMMU-API glue layer.
   4 *
   5 * Copyright (C) 2014-2015 ARM Ltd.
   6 *
   7 * based in part on arch/arm/mm/dma-mapping.c:
   8 * Copyright (C) 2000-2004 Russell King
   9 */
  10
  11#include <linux/acpi_iort.h>
  12#include <linux/atomic.h>
  13#include <linux/crash_dump.h>
  14#include <linux/device.h>
  15#include <linux/dma-direct.h>
  16#include <linux/dma-map-ops.h>
 
  17#include <linux/gfp.h>
  18#include <linux/huge_mm.h>
  19#include <linux/iommu.h>
  20#include <linux/iommu-dma.h>
  21#include <linux/iova.h>
  22#include <linux/irq.h>
  23#include <linux/list_sort.h>
  24#include <linux/memremap.h>
  25#include <linux/mm.h>
  26#include <linux/mutex.h>
  27#include <linux/of_iommu.h>
  28#include <linux/pci.h>
  29#include <linux/scatterlist.h>
  30#include <linux/spinlock.h>
  31#include <linux/swiotlb.h>
 
  32#include <linux/vmalloc.h>
  33#include <trace/events/swiotlb.h>
  34
  35#include "dma-iommu.h"
  36#include "iommu-pages.h"
  37
  38struct iommu_dma_msi_page {
  39	struct list_head	list;
  40	dma_addr_t		iova;
  41	phys_addr_t		phys;
  42};
  43
  44enum iommu_dma_cookie_type {
  45	IOMMU_DMA_IOVA_COOKIE,
  46	IOMMU_DMA_MSI_COOKIE,
  47};
  48
  49enum iommu_dma_queue_type {
  50	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
  51	IOMMU_DMA_OPTS_SINGLE_QUEUE,
  52};
  53
  54struct iommu_dma_options {
  55	enum iommu_dma_queue_type qt;
  56	size_t		fq_size;
  57	unsigned int	fq_timeout;
  58};
  59
  60struct iommu_dma_cookie {
  61	enum iommu_dma_cookie_type	type;
  62	union {
  63		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
  64		struct {
  65			struct iova_domain	iovad;
  66			/* Flush queue */
  67			union {
  68				struct iova_fq	*single_fq;
  69				struct iova_fq	__percpu *percpu_fq;
  70			};
  71			/* Number of TLB flushes that have been started */
  72			atomic64_t		fq_flush_start_cnt;
  73			/* Number of TLB flushes that have been finished */
  74			atomic64_t		fq_flush_finish_cnt;
  75			/* Timer to regularily empty the flush queues */
  76			struct timer_list	fq_timer;
  77			/* 1 when timer is active, 0 when not */
  78			atomic_t		fq_timer_on;
  79		};
  80		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
  81		dma_addr_t		msi_iova;
  82	};
  83	struct list_head		msi_page_list;
  84
  85	/* Domain for flush queue callback; NULL if flush queue not in use */
  86	struct iommu_domain		*fq_domain;
  87	/* Options for dma-iommu use */
  88	struct iommu_dma_options	options;
  89	struct mutex			mutex;
  90};
  91
  92static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
  93bool iommu_dma_forcedac __read_mostly;
  94
  95static int __init iommu_dma_forcedac_setup(char *str)
  96{
  97	int ret = kstrtobool(str, &iommu_dma_forcedac);
  98
  99	if (!ret && iommu_dma_forcedac)
 100		pr_info("Forcing DAC for PCI devices\n");
 101	return ret;
 102}
 103early_param("iommu.forcedac", iommu_dma_forcedac_setup);
 104
 105/* Number of entries per flush queue */
 106#define IOVA_DEFAULT_FQ_SIZE	256
 107#define IOVA_SINGLE_FQ_SIZE	32768
 108
 109/* Timeout (in ms) after which entries are flushed from the queue */
 110#define IOVA_DEFAULT_FQ_TIMEOUT	10
 111#define IOVA_SINGLE_FQ_TIMEOUT	1000
 112
 113/* Flush queue entry for deferred flushing */
 114struct iova_fq_entry {
 115	unsigned long iova_pfn;
 116	unsigned long pages;
 117	struct list_head freelist;
 118	u64 counter; /* Flush counter when this entry was added */
 119};
 120
 121/* Per-CPU flush queue structure */
 122struct iova_fq {
 123	spinlock_t lock;
 124	unsigned int head, tail;
 125	unsigned int mod_mask;
 126	struct iova_fq_entry entries[];
 127};
 128
 129#define fq_ring_for_each(i, fq) \
 130	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
 131
 132static inline bool fq_full(struct iova_fq *fq)
 133{
 134	assert_spin_locked(&fq->lock);
 135	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
 136}
 137
 138static inline unsigned int fq_ring_add(struct iova_fq *fq)
 139{
 140	unsigned int idx = fq->tail;
 141
 142	assert_spin_locked(&fq->lock);
 143
 144	fq->tail = (idx + 1) & fq->mod_mask;
 145
 146	return idx;
 147}
 148
 149static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
 150{
 151	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
 152	unsigned int idx;
 153
 154	assert_spin_locked(&fq->lock);
 155
 156	fq_ring_for_each(idx, fq) {
 157
 158		if (fq->entries[idx].counter >= counter)
 159			break;
 160
 161		iommu_put_pages_list(&fq->entries[idx].freelist);
 162		free_iova_fast(&cookie->iovad,
 163			       fq->entries[idx].iova_pfn,
 164			       fq->entries[idx].pages);
 165
 166		fq->head = (fq->head + 1) & fq->mod_mask;
 167	}
 168}
 169
 170static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
 171{
 172	unsigned long flags;
 173
 174	spin_lock_irqsave(&fq->lock, flags);
 175	fq_ring_free_locked(cookie, fq);
 176	spin_unlock_irqrestore(&fq->lock, flags);
 177}
 178
 179static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
 180{
 181	atomic64_inc(&cookie->fq_flush_start_cnt);
 182	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
 183	atomic64_inc(&cookie->fq_flush_finish_cnt);
 184}
 185
 186static void fq_flush_timeout(struct timer_list *t)
 187{
 188	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
 189	int cpu;
 190
 191	atomic_set(&cookie->fq_timer_on, 0);
 192	fq_flush_iotlb(cookie);
 193
 194	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
 195		fq_ring_free(cookie, cookie->single_fq);
 196	} else {
 197		for_each_possible_cpu(cpu)
 198			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
 199	}
 200}
 201
 202static void queue_iova(struct iommu_dma_cookie *cookie,
 203		unsigned long pfn, unsigned long pages,
 204		struct list_head *freelist)
 205{
 206	struct iova_fq *fq;
 207	unsigned long flags;
 208	unsigned int idx;
 209
 210	/*
 211	 * Order against the IOMMU driver's pagetable update from unmapping
 212	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
 213	 * from a different CPU before we release the lock below. Full barrier
 214	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
 215	 * written fq state here.
 216	 */
 217	smp_mb();
 218
 219	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 220		fq = cookie->single_fq;
 221	else
 222		fq = raw_cpu_ptr(cookie->percpu_fq);
 223
 224	spin_lock_irqsave(&fq->lock, flags);
 225
 226	/*
 227	 * First remove all entries from the flush queue that have already been
 228	 * flushed out on another CPU. This makes the fq_full() check below less
 229	 * likely to be true.
 230	 */
 231	fq_ring_free_locked(cookie, fq);
 232
 233	if (fq_full(fq)) {
 234		fq_flush_iotlb(cookie);
 235		fq_ring_free_locked(cookie, fq);
 236	}
 237
 238	idx = fq_ring_add(fq);
 239
 240	fq->entries[idx].iova_pfn = pfn;
 241	fq->entries[idx].pages    = pages;
 242	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
 243	list_splice(freelist, &fq->entries[idx].freelist);
 244
 245	spin_unlock_irqrestore(&fq->lock, flags);
 246
 247	/* Avoid false sharing as much as possible. */
 248	if (!atomic_read(&cookie->fq_timer_on) &&
 249	    !atomic_xchg(&cookie->fq_timer_on, 1))
 250		mod_timer(&cookie->fq_timer,
 251			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
 252}
 253
 254static void iommu_dma_free_fq_single(struct iova_fq *fq)
 255{
 256	int idx;
 257
 258	fq_ring_for_each(idx, fq)
 259		iommu_put_pages_list(&fq->entries[idx].freelist);
 260	vfree(fq);
 261}
 262
 263static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
 264{
 265	int cpu, idx;
 266
 267	/* The IOVAs will be torn down separately, so just free our queued pages */
 268	for_each_possible_cpu(cpu) {
 269		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
 270
 271		fq_ring_for_each(idx, fq)
 272			iommu_put_pages_list(&fq->entries[idx].freelist);
 273	}
 274
 275	free_percpu(percpu_fq);
 276}
 277
 278static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
 279{
 280	if (!cookie->fq_domain)
 281		return;
 282
 283	del_timer_sync(&cookie->fq_timer);
 284	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 285		iommu_dma_free_fq_single(cookie->single_fq);
 286	else
 287		iommu_dma_free_fq_percpu(cookie->percpu_fq);
 288}
 289
 290static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
 291{
 292	int i;
 293
 294	fq->head = 0;
 295	fq->tail = 0;
 296	fq->mod_mask = fq_size - 1;
 297
 298	spin_lock_init(&fq->lock);
 299
 300	for (i = 0; i < fq_size; i++)
 301		INIT_LIST_HEAD(&fq->entries[i].freelist);
 302}
 303
 304static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
 305{
 306	size_t fq_size = cookie->options.fq_size;
 307	struct iova_fq *queue;
 308
 309	queue = vmalloc(struct_size(queue, entries, fq_size));
 310	if (!queue)
 311		return -ENOMEM;
 312	iommu_dma_init_one_fq(queue, fq_size);
 313	cookie->single_fq = queue;
 314
 315	return 0;
 316}
 317
 318static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
 319{
 320	size_t fq_size = cookie->options.fq_size;
 321	struct iova_fq __percpu *queue;
 322	int cpu;
 323
 324	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
 325			       __alignof__(*queue));
 326	if (!queue)
 327		return -ENOMEM;
 328
 329	for_each_possible_cpu(cpu)
 330		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
 331	cookie->percpu_fq = queue;
 332	return 0;
 333}
 334
 335/* sysfs updates are serialised by the mutex of the group owning @domain */
 336int iommu_dma_init_fq(struct iommu_domain *domain)
 337{
 338	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 339	int rc;
 340
 341	if (cookie->fq_domain)
 342		return 0;
 343
 344	atomic64_set(&cookie->fq_flush_start_cnt,  0);
 345	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
 346
 347	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 348		rc = iommu_dma_init_fq_single(cookie);
 349	else
 350		rc = iommu_dma_init_fq_percpu(cookie);
 351
 352	if (rc) {
 353		pr_warn("iova flush queue initialization failed\n");
 354		return -ENOMEM;
 355	}
 356
 357	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
 358	atomic_set(&cookie->fq_timer_on, 0);
 359	/*
 360	 * Prevent incomplete fq state being observable. Pairs with path from
 361	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
 362	 */
 363	smp_wmb();
 364	WRITE_ONCE(cookie->fq_domain, domain);
 365	return 0;
 366}
 367
 368static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
 369{
 370	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
 371		return cookie->iovad.granule;
 372	return PAGE_SIZE;
 373}
 374
 375static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
 376{
 377	struct iommu_dma_cookie *cookie;
 378
 379	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
 380	if (cookie) {
 381		INIT_LIST_HEAD(&cookie->msi_page_list);
 382		cookie->type = type;
 383	}
 384	return cookie;
 385}
 386
 387/**
 388 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 389 * @domain: IOMMU domain to prepare for DMA-API usage
 
 
 
 390 */
 391int iommu_get_dma_cookie(struct iommu_domain *domain)
 392{
 393	if (domain->iova_cookie)
 394		return -EEXIST;
 395
 396	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
 397	if (!domain->iova_cookie)
 398		return -ENOMEM;
 399
 400	mutex_init(&domain->iova_cookie->mutex);
 401	return 0;
 402}
 
 403
 404/**
 405 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 406 * @domain: IOMMU domain to prepare
 407 * @base: Start address of IOVA region for MSI mappings
 408 *
 409 * Users who manage their own IOVA allocation and do not want DMA API support,
 410 * but would still like to take advantage of automatic MSI remapping, can use
 411 * this to initialise their own domain appropriately. Users should reserve a
 412 * contiguous IOVA region, starting at @base, large enough to accommodate the
 413 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 414 * used by the devices attached to @domain.
 415 */
 416int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
 417{
 418	struct iommu_dma_cookie *cookie;
 419
 420	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
 421		return -EINVAL;
 422
 423	if (domain->iova_cookie)
 424		return -EEXIST;
 425
 426	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
 427	if (!cookie)
 428		return -ENOMEM;
 429
 430	cookie->msi_iova = base;
 431	domain->iova_cookie = cookie;
 432	return 0;
 433}
 434EXPORT_SYMBOL(iommu_get_msi_cookie);
 435
 436/**
 437 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 438 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 439 *          iommu_get_msi_cookie()
 
 
 440 */
 441void iommu_put_dma_cookie(struct iommu_domain *domain)
 442{
 443	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 444	struct iommu_dma_msi_page *msi, *tmp;
 445
 446	if (!cookie)
 447		return;
 448
 449	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
 450		iommu_dma_free_fq(cookie);
 451		put_iova_domain(&cookie->iovad);
 452	}
 453
 454	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 455		list_del(&msi->list);
 456		kfree(msi);
 457	}
 458	kfree(cookie);
 459	domain->iova_cookie = NULL;
 460}
 
 461
 462/**
 463 * iommu_dma_get_resv_regions - Reserved region driver helper
 464 * @dev: Device from iommu_get_resv_regions()
 465 * @list: Reserved region list from iommu_get_resv_regions()
 466 *
 467 * IOMMU drivers can use this to implement their .get_resv_regions callback
 468 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 469 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 470 * reservation.
 471 */
 472void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
 473{
 474
 475	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
 476		iort_iommu_get_resv_regions(dev, list);
 477
 478	if (dev->of_node)
 479		of_iommu_get_resv_regions(dev, list);
 480}
 481EXPORT_SYMBOL(iommu_dma_get_resv_regions);
 482
 483static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
 484		phys_addr_t start, phys_addr_t end)
 485{
 486	struct iova_domain *iovad = &cookie->iovad;
 487	struct iommu_dma_msi_page *msi_page;
 488	int i, num_pages;
 489
 490	start -= iova_offset(iovad, start);
 491	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
 492
 493	for (i = 0; i < num_pages; i++) {
 494		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
 495		if (!msi_page)
 496			return -ENOMEM;
 497
 498		msi_page->phys = start;
 499		msi_page->iova = start;
 500		INIT_LIST_HEAD(&msi_page->list);
 501		list_add(&msi_page->list, &cookie->msi_page_list);
 502		start += iovad->granule;
 503	}
 504
 505	return 0;
 506}
 507
 508static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
 509		const struct list_head *b)
 510{
 511	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
 512	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
 513
 514	return res_a->res->start > res_b->res->start;
 515}
 516
 517static int iova_reserve_pci_windows(struct pci_dev *dev,
 518		struct iova_domain *iovad)
 519{
 520	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
 521	struct resource_entry *window;
 522	unsigned long lo, hi;
 523	phys_addr_t start = 0, end;
 524
 525	resource_list_for_each_entry(window, &bridge->windows) {
 526		if (resource_type(window->res) != IORESOURCE_MEM)
 527			continue;
 528
 529		lo = iova_pfn(iovad, window->res->start - window->offset);
 530		hi = iova_pfn(iovad, window->res->end - window->offset);
 531		reserve_iova(iovad, lo, hi);
 532	}
 533
 534	/* Get reserved DMA windows from host bridge */
 535	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
 536	resource_list_for_each_entry(window, &bridge->dma_ranges) {
 537		end = window->res->start - window->offset;
 538resv_iova:
 539		if (end > start) {
 540			lo = iova_pfn(iovad, start);
 541			hi = iova_pfn(iovad, end);
 542			reserve_iova(iovad, lo, hi);
 543		} else if (end < start) {
 544			/* DMA ranges should be non-overlapping */
 545			dev_err(&dev->dev,
 546				"Failed to reserve IOVA [%pa-%pa]\n",
 547				&start, &end);
 548			return -EINVAL;
 549		}
 550
 551		start = window->res->end - window->offset + 1;
 552		/* If window is last entry */
 553		if (window->node.next == &bridge->dma_ranges &&
 554		    end != ~(phys_addr_t)0) {
 555			end = ~(phys_addr_t)0;
 556			goto resv_iova;
 557		}
 558	}
 559
 560	return 0;
 561}
 562
 563static int iova_reserve_iommu_regions(struct device *dev,
 564		struct iommu_domain *domain)
 565{
 566	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 567	struct iova_domain *iovad = &cookie->iovad;
 568	struct iommu_resv_region *region;
 569	LIST_HEAD(resv_regions);
 570	int ret = 0;
 571
 572	if (dev_is_pci(dev)) {
 573		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
 574		if (ret)
 575			return ret;
 576	}
 577
 578	iommu_get_resv_regions(dev, &resv_regions);
 579	list_for_each_entry(region, &resv_regions, list) {
 580		unsigned long lo, hi;
 581
 582		/* We ARE the software that manages these! */
 583		if (region->type == IOMMU_RESV_SW_MSI)
 584			continue;
 585
 586		lo = iova_pfn(iovad, region->start);
 587		hi = iova_pfn(iovad, region->start + region->length - 1);
 588		reserve_iova(iovad, lo, hi);
 589
 590		if (region->type == IOMMU_RESV_MSI)
 591			ret = cookie_init_hw_msi_region(cookie, region->start,
 592					region->start + region->length);
 593		if (ret)
 594			break;
 595	}
 596	iommu_put_resv_regions(dev, &resv_regions);
 597
 598	return ret;
 599}
 600
 601static bool dev_is_untrusted(struct device *dev)
 602{
 603	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
 604}
 605
 606static bool dev_use_swiotlb(struct device *dev, size_t size,
 607			    enum dma_data_direction dir)
 608{
 609	return IS_ENABLED(CONFIG_SWIOTLB) &&
 610		(dev_is_untrusted(dev) ||
 611		 dma_kmalloc_needs_bounce(dev, size, dir));
 612}
 613
 614static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 615			       int nents, enum dma_data_direction dir)
 616{
 617	struct scatterlist *s;
 618	int i;
 619
 620	if (!IS_ENABLED(CONFIG_SWIOTLB))
 621		return false;
 622
 623	if (dev_is_untrusted(dev))
 624		return true;
 625
 626	/*
 627	 * If kmalloc() buffers are not DMA-safe for this device and
 628	 * direction, check the individual lengths in the sg list. If any
 629	 * element is deemed unsafe, use the swiotlb for bouncing.
 630	 */
 631	if (!dma_kmalloc_safe(dev, dir)) {
 632		for_each_sg(sg, s, nents, i)
 633			if (!dma_kmalloc_size_aligned(s->length))
 634				return true;
 635	}
 636
 637	return false;
 638}
 639
 640/**
 641 * iommu_dma_init_options - Initialize dma-iommu options
 642 * @options: The options to be initialized
 643 * @dev: Device the options are set for
 644 *
 645 * This allows tuning dma-iommu specific to device properties
 646 */
 647static void iommu_dma_init_options(struct iommu_dma_options *options,
 648				   struct device *dev)
 649{
 650	/* Shadowing IOTLB flushes do better with a single large queue */
 651	if (dev->iommu->shadow_on_flush) {
 652		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
 653		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
 654		options->fq_size = IOVA_SINGLE_FQ_SIZE;
 655	} else {
 656		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
 657		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
 658		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
 659	}
 660}
 661
 662/**
 663 * iommu_dma_init_domain - Initialise a DMA mapping domain
 664 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 
 
 665 * @dev: Device the domain is being initialised for
 666 *
 667 * If the geometry and dma_range_map include address 0, we reserve that page
 
 668 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 669 * any change which could make prior IOVAs invalid will fail.
 670 */
 671static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
 
 672{
 673	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 674	const struct bus_dma_region *map = dev->dma_range_map;
 675	unsigned long order, base_pfn;
 676	struct iova_domain *iovad;
 677	int ret;
 678
 679	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
 680		return -EINVAL;
 681
 682	iovad = &cookie->iovad;
 683
 684	/* Use the smallest supported page size for IOVA granularity */
 685	order = __ffs(domain->pgsize_bitmap);
 686	base_pfn = 1;
 687
 688	/* Check the domain allows at least some access to the device... */
 689	if (map) {
 690		if (dma_range_map_min(map) > domain->geometry.aperture_end ||
 691		    dma_range_map_max(map) < domain->geometry.aperture_start) {
 692			pr_warn("specified DMA range outside IOMMU capability\n");
 693			return -EFAULT;
 694		}
 
 
 
 695	}
 696	/* ...then finally give it a kicking to make sure it fits */
 697	base_pfn = max_t(unsigned long, base_pfn,
 698			 domain->geometry.aperture_start >> order);
 699
 700	/* start_pfn is always nonzero for an already-initialised domain */
 701	mutex_lock(&cookie->mutex);
 702	if (iovad->start_pfn) {
 703		if (1UL << order != iovad->granule ||
 704		    base_pfn != iovad->start_pfn) {
 705			pr_warn("Incompatible range for DMA domain\n");
 706			ret = -EFAULT;
 707			goto done_unlock;
 708		}
 709
 710		ret = 0;
 711		goto done_unlock;
 712	}
 713
 714	init_iova_domain(iovad, 1UL << order, base_pfn);
 715	ret = iova_domain_init_rcaches(iovad);
 716	if (ret)
 717		goto done_unlock;
 718
 719	iommu_dma_init_options(&cookie->options, dev);
 720
 721	/* If the FQ fails we can simply fall back to strict mode */
 722	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
 723	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
 724		domain->type = IOMMU_DOMAIN_DMA;
 
 
 725
 726	ret = iova_reserve_iommu_regions(dev, domain);
 
 727
 728done_unlock:
 729	mutex_unlock(&cookie->mutex);
 730	return ret;
 731}
 732
 733/**
 734 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 735 *                    page flags.
 736 * @dir: Direction of DMA transfer
 737 * @coherent: Is the DMA master cache-coherent?
 738 * @attrs: DMA attributes for the mapping
 739 *
 740 * Return: corresponding IOMMU API page protection flags
 741 */
 742static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
 743		     unsigned long attrs)
 744{
 745	int prot = coherent ? IOMMU_CACHE : 0;
 746
 747	if (attrs & DMA_ATTR_PRIVILEGED)
 748		prot |= IOMMU_PRIV;
 749
 750	switch (dir) {
 751	case DMA_BIDIRECTIONAL:
 752		return prot | IOMMU_READ | IOMMU_WRITE;
 753	case DMA_TO_DEVICE:
 754		return prot | IOMMU_READ;
 755	case DMA_FROM_DEVICE:
 756		return prot | IOMMU_WRITE;
 757	default:
 758		return 0;
 759	}
 760}
 761
 762static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
 763		size_t size, u64 dma_limit, struct device *dev)
 764{
 765	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 766	struct iova_domain *iovad = &cookie->iovad;
 767	unsigned long shift, iova_len, iova;
 768
 769	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
 770		cookie->msi_iova += size;
 771		return cookie->msi_iova - size;
 772	}
 773
 774	shift = iova_shift(iovad);
 775	iova_len = size >> shift;
 
 
 
 
 
 
 
 
 776
 777	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
 778
 779	if (domain->geometry.force_aperture)
 780		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
 781
 782	/*
 783	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
 784	 * DAC reasoning loses relevance with PCIe, but enough hardware and
 785	 * firmware bugs are still lurking out there that it's safest not to
 786	 * venture into the 64-bit space until necessary.
 787	 *
 788	 * If your device goes wrong after seeing the notice then likely either
 789	 * its driver is not setting DMA masks accurately, the hardware has
 790	 * some inherent bug in handling >32-bit addresses, or not all the
 791	 * expected address bits are wired up between the device and the IOMMU.
 792	 */
 793	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
 794		iova = alloc_iova_fast(iovad, iova_len,
 795				       DMA_BIT_MASK(32) >> shift, false);
 796		if (iova)
 797			goto done;
 798
 799		dev->iommu->pci_32bit_workaround = false;
 800		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
 801	}
 802
 803	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
 804done:
 805	return (dma_addr_t)iova << shift;
 806}
 807
 808static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
 809		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
 810{
 811	struct iova_domain *iovad = &cookie->iovad;
 812
 813	/* The MSI case is only ever cleaning up its most recent allocation */
 814	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
 815		cookie->msi_iova -= size;
 816	else if (gather && gather->queued)
 817		queue_iova(cookie, iova_pfn(iovad, iova),
 818				size >> iova_shift(iovad),
 819				&gather->freelist);
 820	else
 821		free_iova_fast(iovad, iova_pfn(iovad, iova),
 822				size >> iova_shift(iovad));
 823}
 824
 825static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
 826		size_t size)
 827{
 828	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 829	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 830	struct iova_domain *iovad = &cookie->iovad;
 831	size_t iova_off = iova_offset(iovad, dma_addr);
 832	struct iommu_iotlb_gather iotlb_gather;
 833	size_t unmapped;
 834
 835	dma_addr -= iova_off;
 836	size = iova_align(iovad, size + iova_off);
 837	iommu_iotlb_gather_init(&iotlb_gather);
 838	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
 839
 840	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
 841	WARN_ON(unmapped != size);
 842
 843	if (!iotlb_gather.queued)
 844		iommu_iotlb_sync(domain, &iotlb_gather);
 845	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846}
 847
 848static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
 849		size_t size, int prot, u64 dma_mask)
 850{
 851	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 852	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 853	struct iova_domain *iovad = &cookie->iovad;
 854	size_t iova_off = iova_offset(iovad, phys);
 855	dma_addr_t iova;
 856
 857	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 858	    iommu_deferred_attach(dev, domain))
 859		return DMA_MAPPING_ERROR;
 860
 861	/* If anyone ever wants this we'd need support in the IOVA allocator */
 862	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
 863	    "Unsupported alignment constraint\n"))
 864		return DMA_MAPPING_ERROR;
 865
 866	size = iova_align(iovad, size + iova_off);
 867
 868	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
 869	if (!iova)
 870		return DMA_MAPPING_ERROR;
 871
 872	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
 873		iommu_dma_free_iova(cookie, iova, size, NULL);
 874		return DMA_MAPPING_ERROR;
 875	}
 876	return iova + iova_off;
 877}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879static void __iommu_dma_free_pages(struct page **pages, int count)
 880{
 881	while (count--)
 882		__free_page(pages[count]);
 883	kvfree(pages);
 884}
 885
 886static struct page **__iommu_dma_alloc_pages(struct device *dev,
 887		unsigned int count, unsigned long order_mask, gfp_t gfp)
 888{
 889	struct page **pages;
 890	unsigned int i = 0, nid = dev_to_node(dev);
 891
 892	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
 893	if (!order_mask)
 894		return NULL;
 895
 896	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
 897	if (!pages)
 898		return NULL;
 899
 900	/* IOMMU can map any pages, so himem can also be used here */
 901	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 902
 
 
 
 903	while (count) {
 904		struct page *page = NULL;
 905		unsigned int order_size;
 906
 907		/*
 908		 * Higher-order allocations are a convenience rather
 909		 * than a necessity, hence using __GFP_NORETRY until
 910		 * falling back to minimum-order allocations.
 911		 */
 912		for (order_mask &= GENMASK(__fls(count), 0);
 913		     order_mask; order_mask &= ~order_size) {
 914			unsigned int order = __fls(order_mask);
 915			gfp_t alloc_flags = gfp;
 916
 917			order_size = 1U << order;
 918			if (order_mask > order_size)
 919				alloc_flags |= __GFP_NORETRY;
 920			page = alloc_pages_node(nid, alloc_flags, order);
 921			if (!page)
 922				continue;
 923			if (order)
 924				split_page(page, order);
 925			break;
 926		}
 927		if (!page) {
 928			__iommu_dma_free_pages(pages, i);
 929			return NULL;
 930		}
 931		count -= order_size;
 932		while (order_size--)
 933			pages[i++] = page++;
 934	}
 935	return pages;
 936}
 937
 938/*
 939 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
 940 * but an IOMMU which supports smaller pages might not map the whole thing.
 941 */
 942static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
 943		size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
 
 944{
 945	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 946	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 947	struct iova_domain *iovad = &cookie->iovad;
 948	bool coherent = dev_is_dma_coherent(dev);
 949	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 950	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
 951	struct page **pages;
 952	dma_addr_t iova;
 953	ssize_t ret;
 954
 955	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 956	    iommu_deferred_attach(dev, domain))
 957		return NULL;
 958
 959	min_size = alloc_sizes & -alloc_sizes;
 960	if (min_size < PAGE_SIZE) {
 961		min_size = PAGE_SIZE;
 962		alloc_sizes |= PAGE_SIZE;
 963	} else {
 964		size = ALIGN(size, min_size);
 965	}
 966	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 967		alloc_sizes = min_size;
 968
 969	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 970	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
 971					gfp);
 972	if (!pages)
 973		return NULL;
 974
 975	size = iova_align(iovad, size);
 976	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
 977	if (!iova)
 978		goto out_free_pages;
 979
 980	/*
 981	 * Remove the zone/policy flags from the GFP - these are applied to the
 982	 * __iommu_dma_alloc_pages() but are not used for the supporting
 983	 * internal allocations that follow.
 984	 */
 985	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
 986
 987	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
 988		goto out_free_iova;
 989
 990	if (!(ioprot & IOMMU_CACHE)) {
 991		struct scatterlist *sg;
 992		int i;
 993
 994		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
 995			arch_dma_prep_coherent(sg_page(sg), sg->length);
 996	}
 997
 998	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
 999			   gfp);
1000	if (ret < 0 || ret < size)
1001		goto out_free_sg;
1002
1003	sgt->sgl->dma_address = iova;
1004	sgt->sgl->dma_length = size;
1005	return pages;
1006
1007out_free_sg:
1008	sg_free_table(sgt);
1009out_free_iova:
1010	iommu_dma_free_iova(cookie, iova, size, NULL);
1011out_free_pages:
1012	__iommu_dma_free_pages(pages, count);
1013	return NULL;
1014}
1015
1016static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1017		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 
1018{
1019	struct page **pages;
1020	struct sg_table sgt;
1021	void *vaddr;
1022	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1023
1024	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
 
1025	if (!pages)
1026		return NULL;
1027	*dma_handle = sgt.sgl->dma_address;
1028	sg_free_table(&sgt);
1029	vaddr = dma_common_pages_remap(pages, size, prot,
1030			__builtin_return_address(0));
1031	if (!vaddr)
1032		goto out_unmap;
1033	return vaddr;
1034
1035out_unmap:
1036	__iommu_dma_unmap(dev, *dma_handle, size);
1037	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1038	return NULL;
1039}
1040
1041/*
1042 * This is the actual return value from the iommu_dma_alloc_noncontiguous.
1043 *
1044 * The users of the DMA API should only care about the sg_table, but to make
1045 * the DMA-API internal vmaping and freeing easier we stash away the page
1046 * array as well (except for the fallback case).  This can go away any time,
1047 * e.g. when a vmap-variant that takes a scatterlist comes along.
1048 */
1049struct dma_sgt_handle {
1050	struct sg_table sgt;
1051	struct page **pages;
1052};
1053#define sgt_handle(sgt) \
1054	container_of((sgt), struct dma_sgt_handle, sgt)
1055
1056struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
1057	       enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
1058{
1059	struct dma_sgt_handle *sh;
1060
1061	sh = kmalloc(sizeof(*sh), gfp);
1062	if (!sh)
1063		return NULL;
1064
1065	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
 
1066	if (!sh->pages) {
1067		kfree(sh);
1068		return NULL;
1069	}
1070	return &sh->sgt;
1071}
1072
1073void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1074		struct sg_table *sgt, enum dma_data_direction dir)
1075{
1076	struct dma_sgt_handle *sh = sgt_handle(sgt);
1077
1078	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
1079	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1080	sg_free_table(&sh->sgt);
1081	kfree(sh);
1082}
 
1083
1084void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
1085		struct sg_table *sgt)
1086{
1087	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1088
1089	return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
1090}
1091
1092int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
1093		size_t size, struct sg_table *sgt)
1094{
1095	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1096
1097	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
1098		return -ENXIO;
1099	return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
1100}
1101
1102void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
1103		size_t size, enum dma_data_direction dir)
1104{
1105	phys_addr_t phys;
1106
1107	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1108		return;
1109
1110	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1111	if (!dev_is_dma_coherent(dev))
1112		arch_sync_dma_for_cpu(phys, size, dir);
1113
1114	swiotlb_sync_single_for_cpu(dev, phys, size, dir);
 
1115}
1116
1117void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
1118		size_t size, enum dma_data_direction dir)
1119{
1120	phys_addr_t phys;
1121
1122	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1123		return;
1124
1125	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
1126	swiotlb_sync_single_for_device(dev, phys, size, dir);
 
1127
1128	if (!dev_is_dma_coherent(dev))
1129		arch_sync_dma_for_device(phys, size, dir);
1130}
1131
1132void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
1133		int nelems, enum dma_data_direction dir)
 
1134{
1135	struct scatterlist *sg;
1136	int i;
1137
1138	if (sg_dma_is_swiotlb(sgl))
1139		for_each_sg(sgl, sg, nelems, i)
1140			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1141						      sg->length, dir);
1142	else if (!dev_is_dma_coherent(dev))
1143		for_each_sg(sgl, sg, nelems, i)
1144			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
 
 
 
 
 
1145}
1146
1147void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
1148		int nelems, enum dma_data_direction dir)
 
1149{
1150	struct scatterlist *sg;
1151	int i;
1152
1153	if (sg_dma_is_swiotlb(sgl))
1154		for_each_sg(sgl, sg, nelems, i)
1155			iommu_dma_sync_single_for_device(dev,
1156							 sg_dma_address(sg),
1157							 sg->length, dir);
1158	else if (!dev_is_dma_coherent(dev))
1159		for_each_sg(sgl, sg, nelems, i)
 
 
1160			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
 
1161}
1162
1163dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1164	      unsigned long offset, size_t size, enum dma_data_direction dir,
1165	      unsigned long attrs)
1166{
1167	phys_addr_t phys = page_to_phys(page) + offset;
1168	bool coherent = dev_is_dma_coherent(dev);
1169	int prot = dma_info_to_prot(dir, coherent, attrs);
1170	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1171	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1172	struct iova_domain *iovad = &cookie->iovad;
1173	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1174
1175	/*
1176	 * If both the physical buffer start address and size are
1177	 * page aligned, we don't need to use a bounce page.
1178	 */
1179	if (dev_use_swiotlb(dev, size, dir) &&
1180	    iova_offset(iovad, phys | size)) {
1181		if (!is_swiotlb_active(dev)) {
1182			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1183			return DMA_MAPPING_ERROR;
1184		}
1185
1186		trace_swiotlb_bounced(dev, phys, size);
1187
1188		phys = swiotlb_tbl_map_single(dev, phys, size,
1189					      iova_mask(iovad), dir, attrs);
1190
1191		if (phys == DMA_MAPPING_ERROR)
1192			return DMA_MAPPING_ERROR;
1193
1194		/*
1195		 * Untrusted devices should not see padding areas with random
1196		 * leftover kernel data, so zero the pre- and post-padding.
1197		 * swiotlb_tbl_map_single() has initialized the bounce buffer
1198		 * proper to the contents of the original memory buffer.
1199		 */
1200		if (dev_is_untrusted(dev)) {
1201			size_t start, virt = (size_t)phys_to_virt(phys);
1202
1203			/* Pre-padding */
1204			start = iova_align_down(iovad, virt);
1205			memset((void *)start, 0, virt - start);
1206
1207			/* Post-padding */
1208			start = virt + size;
1209			memset((void *)start, 0,
1210			       iova_align(iovad, start) - start);
1211		}
1212	}
1213
1214	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1215		arch_sync_dma_for_device(phys, size, dir);
1216
1217	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1218	if (iova == DMA_MAPPING_ERROR)
1219		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1220	return iova;
1221}
1222
1223void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1224		size_t size, enum dma_data_direction dir, unsigned long attrs)
1225{
1226	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1227	phys_addr_t phys;
1228
1229	phys = iommu_iova_to_phys(domain, dma_handle);
1230	if (WARN_ON(!phys))
1231		return;
1232
1233	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1234		arch_sync_dma_for_cpu(phys, size, dir);
1235
1236	__iommu_dma_unmap(dev, dma_handle, size);
1237
1238	swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1239}
1240
1241/*
1242 * Prepare a successfully-mapped scatterlist to give back to the caller.
1243 *
1244 * At this point the segments are already laid out by iommu_dma_map_sg() to
1245 * avoid individually crossing any boundaries, so we merely need to check a
1246 * segment's start address to avoid concatenating across one.
1247 */
1248static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1249		dma_addr_t dma_addr)
1250{
1251	struct scatterlist *s, *cur = sg;
1252	unsigned long seg_mask = dma_get_seg_boundary(dev);
1253	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1254	int i, count = 0;
1255
1256	for_each_sg(sg, s, nents, i) {
1257		/* Restore this segment's original unaligned fields first */
1258		dma_addr_t s_dma_addr = sg_dma_address(s);
1259		unsigned int s_iova_off = sg_dma_address(s);
1260		unsigned int s_length = sg_dma_len(s);
1261		unsigned int s_iova_len = s->length;
1262
1263		sg_dma_address(s) = DMA_MAPPING_ERROR;
1264		sg_dma_len(s) = 0;
1265
1266		if (sg_dma_is_bus_address(s)) {
1267			if (i > 0)
1268				cur = sg_next(cur);
1269
1270			sg_dma_unmark_bus_address(s);
1271			sg_dma_address(cur) = s_dma_addr;
1272			sg_dma_len(cur) = s_length;
1273			sg_dma_mark_bus_address(cur);
1274			count++;
1275			cur_len = 0;
1276			continue;
1277		}
1278
1279		s->offset += s_iova_off;
1280		s->length = s_length;
 
 
1281
1282		/*
1283		 * Now fill in the real DMA data. If...
1284		 * - there is a valid output segment to append to
1285		 * - and this segment starts on an IOVA page boundary
1286		 * - but doesn't fall at a segment boundary
1287		 * - and wouldn't make the resulting output segment too long
1288		 */
1289		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1290		    (max_len - cur_len >= s_length)) {
1291			/* ...then concatenate it with the previous one */
1292			cur_len += s_length;
1293		} else {
1294			/* Otherwise start the next output segment */
1295			if (i > 0)
1296				cur = sg_next(cur);
1297			cur_len = s_length;
1298			count++;
1299
1300			sg_dma_address(cur) = dma_addr + s_iova_off;
1301		}
1302
1303		sg_dma_len(cur) = cur_len;
1304		dma_addr += s_iova_len;
1305
1306		if (s_length + s_iova_off < s_iova_len)
1307			cur_len = 0;
1308	}
1309	return count;
1310}
1311
1312/*
1313 * If mapping failed, then just restore the original list,
1314 * but making sure the DMA fields are invalidated.
1315 */
1316static void __invalidate_sg(struct scatterlist *sg, int nents)
1317{
1318	struct scatterlist *s;
1319	int i;
1320
1321	for_each_sg(sg, s, nents, i) {
1322		if (sg_dma_is_bus_address(s)) {
1323			sg_dma_unmark_bus_address(s);
1324		} else {
1325			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1326				s->offset += sg_dma_address(s);
1327			if (sg_dma_len(s))
1328				s->length = sg_dma_len(s);
1329		}
1330		sg_dma_address(s) = DMA_MAPPING_ERROR;
1331		sg_dma_len(s) = 0;
1332	}
1333}
1334
1335static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1336		int nents, enum dma_data_direction dir, unsigned long attrs)
1337{
1338	struct scatterlist *s;
1339	int i;
1340
1341	for_each_sg(sg, s, nents, i)
1342		iommu_dma_unmap_page(dev, sg_dma_address(s),
1343				sg_dma_len(s), dir, attrs);
1344}
1345
1346static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1347		int nents, enum dma_data_direction dir, unsigned long attrs)
1348{
1349	struct scatterlist *s;
1350	int i;
1351
1352	sg_dma_mark_swiotlb(sg);
1353
1354	for_each_sg(sg, s, nents, i) {
1355		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1356				s->offset, s->length, dir, attrs);
 
1357		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1358			goto out_unmap;
1359		sg_dma_len(s) = s->length;
1360	}
1361
1362	return nents;
1363
1364out_unmap:
1365	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1366	return -EIO;
1367}
1368
1369/*
1370 * The DMA API client is passing in a scatterlist which could describe
1371 * any old buffer layout, but the IOMMU API requires everything to be
1372 * aligned to IOMMU pages. Hence the need for this complicated bit of
1373 * impedance-matching, to be able to hand off a suitably-aligned list,
1374 * but still preserve the original offsets and sizes for the caller.
1375 */
1376int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1377		enum dma_data_direction dir, unsigned long attrs)
1378{
1379	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1380	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1381	struct iova_domain *iovad = &cookie->iovad;
1382	struct scatterlist *s, *prev = NULL;
1383	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1384	struct pci_p2pdma_map_state p2pdma_state = {};
1385	enum pci_p2pdma_map_type map;
1386	dma_addr_t iova;
1387	size_t iova_len = 0;
1388	unsigned long mask = dma_get_seg_boundary(dev);
1389	ssize_t ret;
1390	int i;
1391
1392	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1393		ret = iommu_deferred_attach(dev, domain);
1394		if (ret)
1395			goto out;
1396	}
1397
1398	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1399		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1400
1401	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1402		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1403
 
 
 
1404	/*
1405	 * Work out how much IOVA space we need, and align the segments to
1406	 * IOVA granules for the IOMMU driver to handle. With some clever
1407	 * trickery we can modify the list in-place, but reversibly, by
1408	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1409	 */
1410	for_each_sg(sg, s, nents, i) {
1411		size_t s_iova_off = iova_offset(iovad, s->offset);
1412		size_t s_length = s->length;
1413		size_t pad_len = (mask - iova_len + 1) & mask;
1414
1415		if (is_pci_p2pdma_page(sg_page(s))) {
1416			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1417			switch (map) {
1418			case PCI_P2PDMA_MAP_BUS_ADDR:
1419				/*
1420				 * iommu_map_sg() will skip this segment as
1421				 * it is marked as a bus address,
1422				 * __finalise_sg() will copy the dma address
1423				 * into the output segment.
1424				 */
1425				continue;
1426			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1427				/*
1428				 * Mapping through host bridge should be
1429				 * mapped with regular IOVAs, thus we
1430				 * do nothing here and continue below.
1431				 */
1432				break;
1433			default:
1434				ret = -EREMOTEIO;
1435				goto out_restore_sg;
1436			}
1437		}
1438
1439		sg_dma_address(s) = s_iova_off;
1440		sg_dma_len(s) = s_length;
1441		s->offset -= s_iova_off;
1442		s_length = iova_align(iovad, s_length + s_iova_off);
1443		s->length = s_length;
1444
1445		/*
1446		 * Due to the alignment of our single IOVA allocation, we can
1447		 * depend on these assumptions about the segment boundary mask:
1448		 * - If mask size >= IOVA size, then the IOVA range cannot
1449		 *   possibly fall across a boundary, so we don't care.
1450		 * - If mask size < IOVA size, then the IOVA range must start
1451		 *   exactly on a boundary, therefore we can lay things out
1452		 *   based purely on segment lengths without needing to know
1453		 *   the actual addresses beforehand.
1454		 * - The mask must be a power of 2, so pad_len == 0 if
1455		 *   iova_len == 0, thus we cannot dereference prev the first
1456		 *   time through here (i.e. before it has a meaningful value).
1457		 */
1458		if (pad_len && pad_len < s_length - 1) {
1459			prev->length += pad_len;
1460			iova_len += pad_len;
1461		}
1462
1463		iova_len += s_length;
1464		prev = s;
1465	}
1466
1467	if (!iova_len)
1468		return __finalise_sg(dev, sg, nents, 0);
1469
1470	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1471	if (!iova) {
1472		ret = -ENOMEM;
1473		goto out_restore_sg;
1474	}
1475
1476	/*
1477	 * We'll leave any physical concatenation to the IOMMU driver's
1478	 * implementation - it knows better than we do.
1479	 */
1480	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1481	if (ret < 0 || ret < iova_len)
1482		goto out_free_iova;
1483
1484	return __finalise_sg(dev, sg, nents, iova);
1485
1486out_free_iova:
1487	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1488out_restore_sg:
1489	__invalidate_sg(sg, nents);
1490out:
1491	if (ret != -ENOMEM && ret != -EREMOTEIO)
1492		return -EINVAL;
1493	return ret;
1494}
1495
1496void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1497		enum dma_data_direction dir, unsigned long attrs)
1498{
1499	dma_addr_t end = 0, start;
1500	struct scatterlist *tmp;
1501	int i;
1502
1503	if (sg_dma_is_swiotlb(sg)) {
 
 
 
1504		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1505		return;
1506	}
1507
1508	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1509		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1510
1511	/*
1512	 * The scatterlist segments are mapped into a single
1513	 * contiguous IOVA allocation, the start and end points
1514	 * just have to be determined.
1515	 */
1516	for_each_sg(sg, tmp, nents, i) {
1517		if (sg_dma_is_bus_address(tmp)) {
1518			sg_dma_unmark_bus_address(tmp);
1519			continue;
1520		}
1521
1522		if (sg_dma_len(tmp) == 0)
1523			break;
1524
1525		start = sg_dma_address(tmp);
1526		break;
1527	}
1528
1529	nents -= i;
1530	for_each_sg(tmp, tmp, nents, i) {
1531		if (sg_dma_is_bus_address(tmp)) {
1532			sg_dma_unmark_bus_address(tmp);
1533			continue;
1534		}
1535
1536		if (sg_dma_len(tmp) == 0)
1537			break;
1538
1539		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1540	}
1541
1542	if (end)
1543		__iommu_dma_unmap(dev, start, end - start);
1544}
1545
1546dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1547		size_t size, enum dma_data_direction dir, unsigned long attrs)
1548{
1549	return __iommu_dma_map(dev, phys, size,
1550			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1551			dma_get_mask(dev));
1552}
1553
1554void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1555		size_t size, enum dma_data_direction dir, unsigned long attrs)
1556{
1557	__iommu_dma_unmap(dev, handle, size);
1558}
1559
1560static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1561{
1562	size_t alloc_size = PAGE_ALIGN(size);
1563	int count = alloc_size >> PAGE_SHIFT;
1564	struct page *page = NULL, **pages = NULL;
1565
1566	/* Non-coherent atomic allocation? Easy */
1567	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1568	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1569		return;
1570
1571	if (is_vmalloc_addr(cpu_addr)) {
1572		/*
1573		 * If it the address is remapped, then it's either non-coherent
1574		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1575		 */
1576		pages = dma_common_find_pages(cpu_addr);
1577		if (!pages)
1578			page = vmalloc_to_page(cpu_addr);
1579		dma_common_free_remap(cpu_addr, alloc_size);
1580	} else {
1581		/* Lowmem means a coherent atomic or CMA allocation */
1582		page = virt_to_page(cpu_addr);
1583	}
1584
1585	if (pages)
1586		__iommu_dma_free_pages(pages, count);
1587	if (page)
1588		dma_free_contiguous(dev, page, alloc_size);
1589}
1590
1591void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1592		dma_addr_t handle, unsigned long attrs)
1593{
1594	__iommu_dma_unmap(dev, handle, size);
1595	__iommu_dma_free(dev, size, cpu_addr);
1596}
1597
1598static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1599		struct page **pagep, gfp_t gfp, unsigned long attrs)
1600{
1601	bool coherent = dev_is_dma_coherent(dev);
1602	size_t alloc_size = PAGE_ALIGN(size);
1603	int node = dev_to_node(dev);
1604	struct page *page = NULL;
1605	void *cpu_addr;
1606
1607	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1608	if (!page)
1609		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1610	if (!page)
1611		return NULL;
1612
1613	if (!coherent || PageHighMem(page)) {
1614		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1615
1616		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1617				prot, __builtin_return_address(0));
1618		if (!cpu_addr)
1619			goto out_free_pages;
1620
1621		if (!coherent)
1622			arch_dma_prep_coherent(page, size);
1623	} else {
1624		cpu_addr = page_address(page);
1625	}
1626
1627	*pagep = page;
1628	memset(cpu_addr, 0, alloc_size);
1629	return cpu_addr;
1630out_free_pages:
1631	dma_free_contiguous(dev, page, alloc_size);
1632	return NULL;
1633}
1634
1635void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
1636		gfp_t gfp, unsigned long attrs)
1637{
1638	bool coherent = dev_is_dma_coherent(dev);
1639	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1640	struct page *page = NULL;
1641	void *cpu_addr;
1642
1643	gfp |= __GFP_ZERO;
1644
1645	if (gfpflags_allow_blocking(gfp) &&
1646	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1647		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
 
1648	}
1649
1650	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1651	    !gfpflags_allow_blocking(gfp) && !coherent)
1652		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1653					       gfp, NULL);
1654	else
1655		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1656	if (!cpu_addr)
1657		return NULL;
1658
1659	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1660			dev->coherent_dma_mask);
1661	if (*handle == DMA_MAPPING_ERROR) {
1662		__iommu_dma_free(dev, size, cpu_addr);
1663		return NULL;
1664	}
1665
1666	return cpu_addr;
1667}
1668
1669int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1670		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1671		unsigned long attrs)
1672{
1673	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1674	unsigned long pfn, off = vma->vm_pgoff;
1675	int ret;
1676
1677	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1678
1679	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1680		return ret;
1681
1682	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1683		return -ENXIO;
1684
1685	if (is_vmalloc_addr(cpu_addr)) {
1686		struct page **pages = dma_common_find_pages(cpu_addr);
1687
1688		if (pages)
1689			return vm_map_pages(vma, pages, nr_pages);
1690		pfn = vmalloc_to_pfn(cpu_addr);
1691	} else {
1692		pfn = page_to_pfn(virt_to_page(cpu_addr));
1693	}
1694
1695	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1696			       vma->vm_end - vma->vm_start,
1697			       vma->vm_page_prot);
1698}
1699
1700int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1701		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1702		unsigned long attrs)
1703{
1704	struct page *page;
1705	int ret;
1706
1707	if (is_vmalloc_addr(cpu_addr)) {
1708		struct page **pages = dma_common_find_pages(cpu_addr);
1709
1710		if (pages) {
1711			return sg_alloc_table_from_pages(sgt, pages,
1712					PAGE_ALIGN(size) >> PAGE_SHIFT,
1713					0, size, GFP_KERNEL);
1714		}
1715
1716		page = vmalloc_to_page(cpu_addr);
1717	} else {
1718		page = virt_to_page(cpu_addr);
1719	}
1720
1721	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1722	if (!ret)
1723		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1724	return ret;
1725}
1726
1727unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1728{
1729	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1730
1731	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1732}
1733
1734size_t iommu_dma_opt_mapping_size(void)
1735{
1736	return iova_rcache_range();
1737}
1738
1739size_t iommu_dma_max_mapping_size(struct device *dev)
1740{
1741	if (dev_is_untrusted(dev))
1742		return swiotlb_max_mapping_size(dev);
1743
1744	return SIZE_MAX;
1745}
 
 
 
 
 
 
 
 
 
 
 
1746
1747void iommu_setup_dma_ops(struct device *dev)
 
 
 
 
1748{
1749	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1750
1751	if (dev_is_pci(dev))
1752		dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
1753
1754	dev->dma_iommu = iommu_is_dma_domain(domain);
1755	if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
1756		goto out_err;
1757
 
 
 
 
 
 
 
 
 
 
1758	return;
1759out_err:
1760	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1761		dev_name(dev));
1762	dev->dma_iommu = false;
1763}
 
1764
1765static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1766		phys_addr_t msi_addr, struct iommu_domain *domain)
1767{
1768	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1769	struct iommu_dma_msi_page *msi_page;
1770	dma_addr_t iova;
1771	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1772	size_t size = cookie_msi_granule(cookie);
1773
1774	msi_addr &= ~(phys_addr_t)(size - 1);
1775	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1776		if (msi_page->phys == msi_addr)
1777			return msi_page;
1778
1779	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1780	if (!msi_page)
1781		return NULL;
1782
1783	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1784	if (!iova)
1785		goto out_free_page;
1786
1787	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
1788		goto out_free_iova;
1789
1790	INIT_LIST_HEAD(&msi_page->list);
1791	msi_page->phys = msi_addr;
1792	msi_page->iova = iova;
1793	list_add(&msi_page->list, &cookie->msi_page_list);
1794	return msi_page;
1795
1796out_free_iova:
1797	iommu_dma_free_iova(cookie, iova, size, NULL);
1798out_free_page:
1799	kfree(msi_page);
1800	return NULL;
1801}
1802
1803/**
1804 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1805 * @desc: MSI descriptor, will store the MSI page
1806 * @msi_addr: MSI target address to be mapped
1807 *
1808 * Return: 0 on success or negative error code if the mapping failed.
1809 */
1810int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1811{
1812	struct device *dev = msi_desc_to_dev(desc);
1813	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1814	struct iommu_dma_msi_page *msi_page;
1815	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1816
1817	if (!domain || !domain->iova_cookie) {
1818		desc->iommu_cookie = NULL;
1819		return 0;
1820	}
1821
1822	/*
1823	 * In fact the whole prepare operation should already be serialised by
1824	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1825	 * on its own, so consider this locking as failsafe documentation...
1826	 */
1827	mutex_lock(&msi_prepare_lock);
1828	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1829	mutex_unlock(&msi_prepare_lock);
1830
1831	msi_desc_set_iommu_cookie(desc, msi_page);
1832
1833	if (!msi_page)
1834		return -ENOMEM;
1835	return 0;
1836}
1837
1838/**
1839 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1840 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1841 * @msg: MSI message containing target physical address
1842 */
1843void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1844{
1845	struct device *dev = msi_desc_to_dev(desc);
1846	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1847	const struct iommu_dma_msi_page *msi_page;
1848
1849	msi_page = msi_desc_get_iommu_cookie(desc);
1850
1851	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1852		return;
1853
1854	msg->address_hi = upper_32_bits(msi_page->iova);
1855	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1856	msg->address_lo += lower_32_bits(msi_page->iova);
1857}
1858
1859static int iommu_dma_init(void)
1860{
1861	if (is_kdump_kernel())
1862		static_branch_enable(&iommu_deferred_attach_enabled);
1863
1864	return iova_cache_get();
1865}
1866arch_initcall(iommu_dma_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * A fairly generic DMA-API to IOMMU-API glue layer.
   4 *
   5 * Copyright (C) 2014-2015 ARM Ltd.
   6 *
   7 * based in part on arch/arm/mm/dma-mapping.c:
   8 * Copyright (C) 2000-2004 Russell King
   9 */
  10
  11#include <linux/acpi_iort.h>
 
 
  12#include <linux/device.h>
 
  13#include <linux/dma-map-ops.h>
  14#include <linux/dma-iommu.h>
  15#include <linux/gfp.h>
  16#include <linux/huge_mm.h>
  17#include <linux/iommu.h>
 
  18#include <linux/iova.h>
  19#include <linux/irq.h>
 
 
  20#include <linux/mm.h>
  21#include <linux/mutex.h>
 
  22#include <linux/pci.h>
 
 
  23#include <linux/swiotlb.h>
  24#include <linux/scatterlist.h>
  25#include <linux/vmalloc.h>
  26#include <linux/crash_dump.h>
  27#include <linux/dma-direct.h>
 
 
  28
  29struct iommu_dma_msi_page {
  30	struct list_head	list;
  31	dma_addr_t		iova;
  32	phys_addr_t		phys;
  33};
  34
  35enum iommu_dma_cookie_type {
  36	IOMMU_DMA_IOVA_COOKIE,
  37	IOMMU_DMA_MSI_COOKIE,
  38};
  39
 
 
 
 
 
 
 
 
 
 
 
  40struct iommu_dma_cookie {
  41	enum iommu_dma_cookie_type	type;
  42	union {
  43		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
  44		struct iova_domain	iovad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
  46		dma_addr_t		msi_iova;
  47	};
  48	struct list_head		msi_page_list;
  49
  50	/* Domain for flush queue callback; NULL if flush queue not in use */
  51	struct iommu_domain		*fq_domain;
 
 
 
  52};
  53
  54static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
  55bool iommu_dma_forcedac __read_mostly;
  56
  57static int __init iommu_dma_forcedac_setup(char *str)
  58{
  59	int ret = kstrtobool(str, &iommu_dma_forcedac);
  60
  61	if (!ret && iommu_dma_forcedac)
  62		pr_info("Forcing DAC for PCI devices\n");
  63	return ret;
  64}
  65early_param("iommu.forcedac", iommu_dma_forcedac_setup);
  66
  67static void iommu_dma_entry_dtor(unsigned long data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68{
  69	struct page *freelist = (struct page *)data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71	while (freelist) {
  72		unsigned long p = (unsigned long)page_address(freelist);
  73
  74		freelist = freelist->freelist;
  75		free_page(p);
 
 
 
 
 
 
  76	}
 
 
 
 
 
 
 
 
 
 
  77}
  78
  79static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
  80{
  81	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
  82		return cookie->iovad.granule;
  83	return PAGE_SIZE;
  84}
  85
  86static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
  87{
  88	struct iommu_dma_cookie *cookie;
  89
  90	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
  91	if (cookie) {
  92		INIT_LIST_HEAD(&cookie->msi_page_list);
  93		cookie->type = type;
  94	}
  95	return cookie;
  96}
  97
  98/**
  99 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 100 * @domain: IOMMU domain to prepare for DMA-API usage
 101 *
 102 * IOMMU drivers should normally call this from their domain_alloc
 103 * callback when domain->type == IOMMU_DOMAIN_DMA.
 104 */
 105int iommu_get_dma_cookie(struct iommu_domain *domain)
 106{
 107	if (domain->iova_cookie)
 108		return -EEXIST;
 109
 110	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
 111	if (!domain->iova_cookie)
 112		return -ENOMEM;
 113
 
 114	return 0;
 115}
 116EXPORT_SYMBOL(iommu_get_dma_cookie);
 117
 118/**
 119 * iommu_get_msi_cookie - Acquire just MSI remapping resources
 120 * @domain: IOMMU domain to prepare
 121 * @base: Start address of IOVA region for MSI mappings
 122 *
 123 * Users who manage their own IOVA allocation and do not want DMA API support,
 124 * but would still like to take advantage of automatic MSI remapping, can use
 125 * this to initialise their own domain appropriately. Users should reserve a
 126 * contiguous IOVA region, starting at @base, large enough to accommodate the
 127 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 128 * used by the devices attached to @domain.
 129 */
 130int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
 131{
 132	struct iommu_dma_cookie *cookie;
 133
 134	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
 135		return -EINVAL;
 136
 137	if (domain->iova_cookie)
 138		return -EEXIST;
 139
 140	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
 141	if (!cookie)
 142		return -ENOMEM;
 143
 144	cookie->msi_iova = base;
 145	domain->iova_cookie = cookie;
 146	return 0;
 147}
 148EXPORT_SYMBOL(iommu_get_msi_cookie);
 149
 150/**
 151 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 152 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 153 *          iommu_get_msi_cookie()
 154 *
 155 * IOMMU drivers should normally call this from their domain_free callback.
 156 */
 157void iommu_put_dma_cookie(struct iommu_domain *domain)
 158{
 159	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 160	struct iommu_dma_msi_page *msi, *tmp;
 161
 162	if (!cookie)
 163		return;
 164
 165	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
 
 166		put_iova_domain(&cookie->iovad);
 
 167
 168	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 169		list_del(&msi->list);
 170		kfree(msi);
 171	}
 172	kfree(cookie);
 173	domain->iova_cookie = NULL;
 174}
 175EXPORT_SYMBOL(iommu_put_dma_cookie);
 176
 177/**
 178 * iommu_dma_get_resv_regions - Reserved region driver helper
 179 * @dev: Device from iommu_get_resv_regions()
 180 * @list: Reserved region list from iommu_get_resv_regions()
 181 *
 182 * IOMMU drivers can use this to implement their .get_resv_regions callback
 183 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 184 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 185 * reservation.
 186 */
 187void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
 188{
 189
 190	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
 191		iort_iommu_msi_get_resv_regions(dev, list);
 192
 
 
 193}
 194EXPORT_SYMBOL(iommu_dma_get_resv_regions);
 195
 196static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
 197		phys_addr_t start, phys_addr_t end)
 198{
 199	struct iova_domain *iovad = &cookie->iovad;
 200	struct iommu_dma_msi_page *msi_page;
 201	int i, num_pages;
 202
 203	start -= iova_offset(iovad, start);
 204	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
 205
 206	for (i = 0; i < num_pages; i++) {
 207		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
 208		if (!msi_page)
 209			return -ENOMEM;
 210
 211		msi_page->phys = start;
 212		msi_page->iova = start;
 213		INIT_LIST_HEAD(&msi_page->list);
 214		list_add(&msi_page->list, &cookie->msi_page_list);
 215		start += iovad->granule;
 216	}
 217
 218	return 0;
 219}
 220
 
 
 
 
 
 
 
 
 
 221static int iova_reserve_pci_windows(struct pci_dev *dev,
 222		struct iova_domain *iovad)
 223{
 224	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
 225	struct resource_entry *window;
 226	unsigned long lo, hi;
 227	phys_addr_t start = 0, end;
 228
 229	resource_list_for_each_entry(window, &bridge->windows) {
 230		if (resource_type(window->res) != IORESOURCE_MEM)
 231			continue;
 232
 233		lo = iova_pfn(iovad, window->res->start - window->offset);
 234		hi = iova_pfn(iovad, window->res->end - window->offset);
 235		reserve_iova(iovad, lo, hi);
 236	}
 237
 238	/* Get reserved DMA windows from host bridge */
 
 239	resource_list_for_each_entry(window, &bridge->dma_ranges) {
 240		end = window->res->start - window->offset;
 241resv_iova:
 242		if (end > start) {
 243			lo = iova_pfn(iovad, start);
 244			hi = iova_pfn(iovad, end);
 245			reserve_iova(iovad, lo, hi);
 246		} else if (end < start) {
 247			/* dma_ranges list should be sorted */
 248			dev_err(&dev->dev,
 249				"Failed to reserve IOVA [%pa-%pa]\n",
 250				&start, &end);
 251			return -EINVAL;
 252		}
 253
 254		start = window->res->end - window->offset + 1;
 255		/* If window is last entry */
 256		if (window->node.next == &bridge->dma_ranges &&
 257		    end != ~(phys_addr_t)0) {
 258			end = ~(phys_addr_t)0;
 259			goto resv_iova;
 260		}
 261	}
 262
 263	return 0;
 264}
 265
 266static int iova_reserve_iommu_regions(struct device *dev,
 267		struct iommu_domain *domain)
 268{
 269	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 270	struct iova_domain *iovad = &cookie->iovad;
 271	struct iommu_resv_region *region;
 272	LIST_HEAD(resv_regions);
 273	int ret = 0;
 274
 275	if (dev_is_pci(dev)) {
 276		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
 277		if (ret)
 278			return ret;
 279	}
 280
 281	iommu_get_resv_regions(dev, &resv_regions);
 282	list_for_each_entry(region, &resv_regions, list) {
 283		unsigned long lo, hi;
 284
 285		/* We ARE the software that manages these! */
 286		if (region->type == IOMMU_RESV_SW_MSI)
 287			continue;
 288
 289		lo = iova_pfn(iovad, region->start);
 290		hi = iova_pfn(iovad, region->start + region->length - 1);
 291		reserve_iova(iovad, lo, hi);
 292
 293		if (region->type == IOMMU_RESV_MSI)
 294			ret = cookie_init_hw_msi_region(cookie, region->start,
 295					region->start + region->length);
 296		if (ret)
 297			break;
 298	}
 299	iommu_put_resv_regions(dev, &resv_regions);
 300
 301	return ret;
 302}
 303
 304static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305{
 306	struct iommu_dma_cookie *cookie;
 307	struct iommu_domain *domain;
 
 
 
 
 
 
 308
 309	cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
 310	domain = cookie->fq_domain;
 
 
 
 
 
 
 
 
 311
 312	domain->ops->flush_iotlb_all(domain);
 313}
 314
 315static bool dev_is_untrusted(struct device *dev)
 
 
 
 
 
 
 
 
 316{
 317	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
 
 
 
 
 
 
 
 
 
 318}
 319
 320/**
 321 * iommu_dma_init_domain - Initialise a DMA mapping domain
 322 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 323 * @base: IOVA at which the mappable address space starts
 324 * @limit: Last address of the IOVA space
 325 * @dev: Device the domain is being initialised for
 326 *
 327 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
 328 * avoid rounding surprises. If necessary, we reserve the page at address 0
 329 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 330 * any change which could make prior IOVAs invalid will fail.
 331 */
 332static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
 333				 dma_addr_t limit, struct device *dev)
 334{
 335	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 
 336	unsigned long order, base_pfn;
 337	struct iova_domain *iovad;
 
 338
 339	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
 340		return -EINVAL;
 341
 342	iovad = &cookie->iovad;
 343
 344	/* Use the smallest supported page size for IOVA granularity */
 345	order = __ffs(domain->pgsize_bitmap);
 346	base_pfn = max_t(unsigned long, 1, base >> order);
 347
 348	/* Check the domain allows at least some access to the device... */
 349	if (domain->geometry.force_aperture) {
 350		if (base > domain->geometry.aperture_end ||
 351		    limit < domain->geometry.aperture_start) {
 352			pr_warn("specified DMA range outside IOMMU capability\n");
 353			return -EFAULT;
 354		}
 355		/* ...then finally give it a kicking to make sure it fits */
 356		base_pfn = max_t(unsigned long, base_pfn,
 357				domain->geometry.aperture_start >> order);
 358	}
 
 
 
 359
 360	/* start_pfn is always nonzero for an already-initialised domain */
 
 361	if (iovad->start_pfn) {
 362		if (1UL << order != iovad->granule ||
 363		    base_pfn != iovad->start_pfn) {
 364			pr_warn("Incompatible range for DMA domain\n");
 365			return -EFAULT;
 
 366		}
 367
 368		return 0;
 
 369	}
 370
 371	init_iova_domain(iovad, 1UL << order, base_pfn);
 
 
 
 372
 373	if (!cookie->fq_domain && (!dev || !dev_is_untrusted(dev)) &&
 374	    domain->ops->flush_iotlb_all && !iommu_get_dma_strict(domain)) {
 375		if (init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all,
 376					  iommu_dma_entry_dtor))
 377			pr_warn("iova flush queue initialization failed\n");
 378		else
 379			cookie->fq_domain = domain;
 380	}
 381
 382	if (!dev)
 383		return 0;
 384
 385	return iova_reserve_iommu_regions(dev, domain);
 
 
 386}
 387
 388/**
 389 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 390 *                    page flags.
 391 * @dir: Direction of DMA transfer
 392 * @coherent: Is the DMA master cache-coherent?
 393 * @attrs: DMA attributes for the mapping
 394 *
 395 * Return: corresponding IOMMU API page protection flags
 396 */
 397static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
 398		     unsigned long attrs)
 399{
 400	int prot = coherent ? IOMMU_CACHE : 0;
 401
 402	if (attrs & DMA_ATTR_PRIVILEGED)
 403		prot |= IOMMU_PRIV;
 404
 405	switch (dir) {
 406	case DMA_BIDIRECTIONAL:
 407		return prot | IOMMU_READ | IOMMU_WRITE;
 408	case DMA_TO_DEVICE:
 409		return prot | IOMMU_READ;
 410	case DMA_FROM_DEVICE:
 411		return prot | IOMMU_WRITE;
 412	default:
 413		return 0;
 414	}
 415}
 416
 417static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
 418		size_t size, u64 dma_limit, struct device *dev)
 419{
 420	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 421	struct iova_domain *iovad = &cookie->iovad;
 422	unsigned long shift, iova_len, iova = 0;
 423
 424	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
 425		cookie->msi_iova += size;
 426		return cookie->msi_iova - size;
 427	}
 428
 429	shift = iova_shift(iovad);
 430	iova_len = size >> shift;
 431	/*
 432	 * Freeing non-power-of-two-sized allocations back into the IOVA caches
 433	 * will come back to bite us badly, so we have to waste a bit of space
 434	 * rounding up anything cacheable to make sure that can't happen. The
 435	 * order of the unadjusted size will still match upon freeing.
 436	 */
 437	if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
 438		iova_len = roundup_pow_of_two(iova_len);
 439
 440	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
 441
 442	if (domain->geometry.force_aperture)
 443		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
 444
 445	/* Try to get PCI devices a SAC address */
 446	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
 
 
 
 
 
 
 
 
 
 
 447		iova = alloc_iova_fast(iovad, iova_len,
 448				       DMA_BIT_MASK(32) >> shift, false);
 
 
 449
 450	if (!iova)
 451		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
 452				       true);
 453
 
 
 454	return (dma_addr_t)iova << shift;
 455}
 456
 457static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
 458		dma_addr_t iova, size_t size, struct page *freelist)
 459{
 460	struct iova_domain *iovad = &cookie->iovad;
 461
 462	/* The MSI case is only ever cleaning up its most recent allocation */
 463	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
 464		cookie->msi_iova -= size;
 465	else if (cookie->fq_domain)	/* non-strict mode */
 466		queue_iova(iovad, iova_pfn(iovad, iova),
 467				size >> iova_shift(iovad),
 468				(unsigned long)freelist);
 469	else
 470		free_iova_fast(iovad, iova_pfn(iovad, iova),
 471				size >> iova_shift(iovad));
 472}
 473
 474static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
 475		size_t size)
 476{
 477	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 478	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 479	struct iova_domain *iovad = &cookie->iovad;
 480	size_t iova_off = iova_offset(iovad, dma_addr);
 481	struct iommu_iotlb_gather iotlb_gather;
 482	size_t unmapped;
 483
 484	dma_addr -= iova_off;
 485	size = iova_align(iovad, size + iova_off);
 486	iommu_iotlb_gather_init(&iotlb_gather);
 
 487
 488	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
 489	WARN_ON(unmapped != size);
 490
 491	if (!cookie->fq_domain)
 492		iommu_iotlb_sync(domain, &iotlb_gather);
 493	iommu_dma_free_iova(cookie, dma_addr, size, iotlb_gather.freelist);
 494}
 495
 496static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
 497		size_t size, enum dma_data_direction dir,
 498		unsigned long attrs)
 499{
 500	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 501	phys_addr_t phys;
 502
 503	phys = iommu_iova_to_phys(domain, dma_addr);
 504	if (WARN_ON(!phys))
 505		return;
 506
 507	__iommu_dma_unmap(dev, dma_addr, size);
 508
 509	if (unlikely(is_swiotlb_buffer(phys)))
 510		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
 511}
 512
 513static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
 514		size_t size, int prot, u64 dma_mask)
 515{
 516	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 517	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 518	struct iova_domain *iovad = &cookie->iovad;
 519	size_t iova_off = iova_offset(iovad, phys);
 520	dma_addr_t iova;
 521
 522	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 523	    iommu_deferred_attach(dev, domain))
 524		return DMA_MAPPING_ERROR;
 525
 
 
 
 
 
 526	size = iova_align(iovad, size + iova_off);
 527
 528	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
 529	if (!iova)
 530		return DMA_MAPPING_ERROR;
 531
 532	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
 533		iommu_dma_free_iova(cookie, iova, size, NULL);
 534		return DMA_MAPPING_ERROR;
 535	}
 536	return iova + iova_off;
 537}
 538
 539static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
 540		size_t org_size, dma_addr_t dma_mask, bool coherent,
 541		enum dma_data_direction dir, unsigned long attrs)
 542{
 543	int prot = dma_info_to_prot(dir, coherent, attrs);
 544	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 545	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 546	struct iova_domain *iovad = &cookie->iovad;
 547	size_t aligned_size = org_size;
 548	void *padding_start;
 549	size_t padding_size;
 550	dma_addr_t iova;
 551
 552	/*
 553	 * If both the physical buffer start address and size are
 554	 * page aligned, we don't need to use a bounce page.
 555	 */
 556	if (IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev) &&
 557	    iova_offset(iovad, phys | org_size)) {
 558		aligned_size = iova_align(iovad, org_size);
 559		phys = swiotlb_tbl_map_single(dev, phys, org_size,
 560					      aligned_size, dir, attrs);
 561
 562		if (phys == DMA_MAPPING_ERROR)
 563			return DMA_MAPPING_ERROR;
 564
 565		/* Cleanup the padding area. */
 566		padding_start = phys_to_virt(phys);
 567		padding_size = aligned_size;
 568
 569		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 570		    (dir == DMA_TO_DEVICE ||
 571		     dir == DMA_BIDIRECTIONAL)) {
 572			padding_start += org_size;
 573			padding_size -= org_size;
 574		}
 575
 576		memset(padding_start, 0, padding_size);
 577	}
 578
 579	iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
 580	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
 581		swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
 582	return iova;
 583}
 584
 585static void __iommu_dma_free_pages(struct page **pages, int count)
 586{
 587	while (count--)
 588		__free_page(pages[count]);
 589	kvfree(pages);
 590}
 591
 592static struct page **__iommu_dma_alloc_pages(struct device *dev,
 593		unsigned int count, unsigned long order_mask, gfp_t gfp)
 594{
 595	struct page **pages;
 596	unsigned int i = 0, nid = dev_to_node(dev);
 597
 598	order_mask &= (2U << MAX_ORDER) - 1;
 599	if (!order_mask)
 600		return NULL;
 601
 602	pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
 603	if (!pages)
 604		return NULL;
 605
 606	/* IOMMU can map any pages, so himem can also be used here */
 607	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 608
 609	/* It makes no sense to muck about with huge pages */
 610	gfp &= ~__GFP_COMP;
 611
 612	while (count) {
 613		struct page *page = NULL;
 614		unsigned int order_size;
 615
 616		/*
 617		 * Higher-order allocations are a convenience rather
 618		 * than a necessity, hence using __GFP_NORETRY until
 619		 * falling back to minimum-order allocations.
 620		 */
 621		for (order_mask &= (2U << __fls(count)) - 1;
 622		     order_mask; order_mask &= ~order_size) {
 623			unsigned int order = __fls(order_mask);
 624			gfp_t alloc_flags = gfp;
 625
 626			order_size = 1U << order;
 627			if (order_mask > order_size)
 628				alloc_flags |= __GFP_NORETRY;
 629			page = alloc_pages_node(nid, alloc_flags, order);
 630			if (!page)
 631				continue;
 632			if (order)
 633				split_page(page, order);
 634			break;
 635		}
 636		if (!page) {
 637			__iommu_dma_free_pages(pages, i);
 638			return NULL;
 639		}
 640		count -= order_size;
 641		while (order_size--)
 642			pages[i++] = page++;
 643	}
 644	return pages;
 645}
 646
 647/*
 648 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
 649 * but an IOMMU which supports smaller pages might not map the whole thing.
 650 */
 651static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
 652		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
 653		unsigned long attrs)
 654{
 655	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 656	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 657	struct iova_domain *iovad = &cookie->iovad;
 658	bool coherent = dev_is_dma_coherent(dev);
 659	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 660	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
 661	struct page **pages;
 662	dma_addr_t iova;
 
 663
 664	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 665	    iommu_deferred_attach(dev, domain))
 666		return NULL;
 667
 668	min_size = alloc_sizes & -alloc_sizes;
 669	if (min_size < PAGE_SIZE) {
 670		min_size = PAGE_SIZE;
 671		alloc_sizes |= PAGE_SIZE;
 672	} else {
 673		size = ALIGN(size, min_size);
 674	}
 675	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 676		alloc_sizes = min_size;
 677
 678	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 679	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
 680					gfp);
 681	if (!pages)
 682		return NULL;
 683
 684	size = iova_align(iovad, size);
 685	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
 686	if (!iova)
 687		goto out_free_pages;
 688
 689	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
 
 
 
 
 
 
 
 690		goto out_free_iova;
 691
 692	if (!(ioprot & IOMMU_CACHE)) {
 693		struct scatterlist *sg;
 694		int i;
 695
 696		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
 697			arch_dma_prep_coherent(sg_page(sg), sg->length);
 698	}
 699
 700	if (iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot)
 701			< size)
 
 702		goto out_free_sg;
 703
 704	sgt->sgl->dma_address = iova;
 705	sgt->sgl->dma_length = size;
 706	return pages;
 707
 708out_free_sg:
 709	sg_free_table(sgt);
 710out_free_iova:
 711	iommu_dma_free_iova(cookie, iova, size, NULL);
 712out_free_pages:
 713	__iommu_dma_free_pages(pages, count);
 714	return NULL;
 715}
 716
 717static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
 718		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
 719		unsigned long attrs)
 720{
 721	struct page **pages;
 722	struct sg_table sgt;
 723	void *vaddr;
 
 724
 725	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
 726						attrs);
 727	if (!pages)
 728		return NULL;
 729	*dma_handle = sgt.sgl->dma_address;
 730	sg_free_table(&sgt);
 731	vaddr = dma_common_pages_remap(pages, size, prot,
 732			__builtin_return_address(0));
 733	if (!vaddr)
 734		goto out_unmap;
 735	return vaddr;
 736
 737out_unmap:
 738	__iommu_dma_unmap(dev, *dma_handle, size);
 739	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 740	return NULL;
 741}
 742
 743#ifdef CONFIG_DMA_REMAP
 744static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
 745		size_t size, enum dma_data_direction dir, gfp_t gfp,
 746		unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 747{
 748	struct dma_sgt_handle *sh;
 749
 750	sh = kmalloc(sizeof(*sh), gfp);
 751	if (!sh)
 752		return NULL;
 753
 754	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
 755						    PAGE_KERNEL, attrs);
 756	if (!sh->pages) {
 757		kfree(sh);
 758		return NULL;
 759	}
 760	return &sh->sgt;
 761}
 762
 763static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
 764		struct sg_table *sgt, enum dma_data_direction dir)
 765{
 766	struct dma_sgt_handle *sh = sgt_handle(sgt);
 767
 768	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
 769	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 770	sg_free_table(&sh->sgt);
 771	kfree(sh);
 772}
 773#endif /* CONFIG_DMA_REMAP */
 774
 775static void iommu_dma_sync_single_for_cpu(struct device *dev,
 776		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777{
 778	phys_addr_t phys;
 779
 780	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
 781		return;
 782
 783	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 784	if (!dev_is_dma_coherent(dev))
 785		arch_sync_dma_for_cpu(phys, size, dir);
 786
 787	if (is_swiotlb_buffer(phys))
 788		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
 789}
 790
 791static void iommu_dma_sync_single_for_device(struct device *dev,
 792		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
 793{
 794	phys_addr_t phys;
 795
 796	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
 797		return;
 798
 799	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 800	if (is_swiotlb_buffer(phys))
 801		swiotlb_sync_single_for_device(dev, phys, size, dir);
 802
 803	if (!dev_is_dma_coherent(dev))
 804		arch_sync_dma_for_device(phys, size, dir);
 805}
 806
 807static void iommu_dma_sync_sg_for_cpu(struct device *dev,
 808		struct scatterlist *sgl, int nelems,
 809		enum dma_data_direction dir)
 810{
 811	struct scatterlist *sg;
 812	int i;
 813
 814	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
 815		return;
 816
 817	for_each_sg(sgl, sg, nelems, i) {
 818		if (!dev_is_dma_coherent(dev))
 
 819			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
 820
 821		if (is_swiotlb_buffer(sg_phys(sg)))
 822			swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
 823						    sg->length, dir);
 824	}
 825}
 826
 827static void iommu_dma_sync_sg_for_device(struct device *dev,
 828		struct scatterlist *sgl, int nelems,
 829		enum dma_data_direction dir)
 830{
 831	struct scatterlist *sg;
 832	int i;
 833
 834	if (dev_is_dma_coherent(dev) && !dev_is_untrusted(dev))
 835		return;
 836
 837	for_each_sg(sgl, sg, nelems, i) {
 838		if (is_swiotlb_buffer(sg_phys(sg)))
 839			swiotlb_sync_single_for_device(dev, sg_phys(sg),
 840						       sg->length, dir);
 841
 842		if (!dev_is_dma_coherent(dev))
 843			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
 844	}
 845}
 846
 847static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
 848		unsigned long offset, size_t size, enum dma_data_direction dir,
 849		unsigned long attrs)
 850{
 851	phys_addr_t phys = page_to_phys(page) + offset;
 852	bool coherent = dev_is_dma_coherent(dev);
 853	dma_addr_t dma_handle;
 
 
 
 
 854
 855	dma_handle = __iommu_dma_map_swiotlb(dev, phys, size, dma_get_mask(dev),
 856			coherent, dir, attrs);
 857	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
 858	    dma_handle != DMA_MAPPING_ERROR)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859		arch_sync_dma_for_device(phys, size, dir);
 860	return dma_handle;
 
 
 
 
 861}
 862
 863static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
 864		size_t size, enum dma_data_direction dir, unsigned long attrs)
 865{
 866	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 867		iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
 868	__iommu_dma_unmap_swiotlb(dev, dma_handle, size, dir, attrs);
 
 
 
 
 
 
 
 
 
 
 869}
 870
 871/*
 872 * Prepare a successfully-mapped scatterlist to give back to the caller.
 873 *
 874 * At this point the segments are already laid out by iommu_dma_map_sg() to
 875 * avoid individually crossing any boundaries, so we merely need to check a
 876 * segment's start address to avoid concatenating across one.
 877 */
 878static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
 879		dma_addr_t dma_addr)
 880{
 881	struct scatterlist *s, *cur = sg;
 882	unsigned long seg_mask = dma_get_seg_boundary(dev);
 883	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
 884	int i, count = 0;
 885
 886	for_each_sg(sg, s, nents, i) {
 887		/* Restore this segment's original unaligned fields first */
 
 888		unsigned int s_iova_off = sg_dma_address(s);
 889		unsigned int s_length = sg_dma_len(s);
 890		unsigned int s_iova_len = s->length;
 891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 892		s->offset += s_iova_off;
 893		s->length = s_length;
 894		sg_dma_address(s) = DMA_MAPPING_ERROR;
 895		sg_dma_len(s) = 0;
 896
 897		/*
 898		 * Now fill in the real DMA data. If...
 899		 * - there is a valid output segment to append to
 900		 * - and this segment starts on an IOVA page boundary
 901		 * - but doesn't fall at a segment boundary
 902		 * - and wouldn't make the resulting output segment too long
 903		 */
 904		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
 905		    (max_len - cur_len >= s_length)) {
 906			/* ...then concatenate it with the previous one */
 907			cur_len += s_length;
 908		} else {
 909			/* Otherwise start the next output segment */
 910			if (i > 0)
 911				cur = sg_next(cur);
 912			cur_len = s_length;
 913			count++;
 914
 915			sg_dma_address(cur) = dma_addr + s_iova_off;
 916		}
 917
 918		sg_dma_len(cur) = cur_len;
 919		dma_addr += s_iova_len;
 920
 921		if (s_length + s_iova_off < s_iova_len)
 922			cur_len = 0;
 923	}
 924	return count;
 925}
 926
 927/*
 928 * If mapping failed, then just restore the original list,
 929 * but making sure the DMA fields are invalidated.
 930 */
 931static void __invalidate_sg(struct scatterlist *sg, int nents)
 932{
 933	struct scatterlist *s;
 934	int i;
 935
 936	for_each_sg(sg, s, nents, i) {
 937		if (sg_dma_address(s) != DMA_MAPPING_ERROR)
 938			s->offset += sg_dma_address(s);
 939		if (sg_dma_len(s))
 940			s->length = sg_dma_len(s);
 
 
 
 
 941		sg_dma_address(s) = DMA_MAPPING_ERROR;
 942		sg_dma_len(s) = 0;
 943	}
 944}
 945
 946static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 947		int nents, enum dma_data_direction dir, unsigned long attrs)
 948{
 949	struct scatterlist *s;
 950	int i;
 951
 952	for_each_sg(sg, s, nents, i)
 953		__iommu_dma_unmap_swiotlb(dev, sg_dma_address(s),
 954				sg_dma_len(s), dir, attrs);
 955}
 956
 957static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 958		int nents, enum dma_data_direction dir, unsigned long attrs)
 959{
 960	struct scatterlist *s;
 961	int i;
 962
 
 
 963	for_each_sg(sg, s, nents, i) {
 964		sg_dma_address(s) = __iommu_dma_map_swiotlb(dev, sg_phys(s),
 965				s->length, dma_get_mask(dev),
 966				dev_is_dma_coherent(dev), dir, attrs);
 967		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
 968			goto out_unmap;
 969		sg_dma_len(s) = s->length;
 970	}
 971
 972	return nents;
 973
 974out_unmap:
 975	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 976	return 0;
 977}
 978
 979/*
 980 * The DMA API client is passing in a scatterlist which could describe
 981 * any old buffer layout, but the IOMMU API requires everything to be
 982 * aligned to IOMMU pages. Hence the need for this complicated bit of
 983 * impedance-matching, to be able to hand off a suitably-aligned list,
 984 * but still preserve the original offsets and sizes for the caller.
 985 */
 986static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
 987		int nents, enum dma_data_direction dir, unsigned long attrs)
 988{
 989	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 990	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 991	struct iova_domain *iovad = &cookie->iovad;
 992	struct scatterlist *s, *prev = NULL;
 993	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
 
 
 994	dma_addr_t iova;
 995	size_t iova_len = 0;
 996	unsigned long mask = dma_get_seg_boundary(dev);
 
 997	int i;
 998
 999	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
1000	    iommu_deferred_attach(dev, domain))
1001		return 0;
 
 
 
 
 
1002
1003	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1004		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1005
1006	if (dev_is_untrusted(dev))
1007		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1008
1009	/*
1010	 * Work out how much IOVA space we need, and align the segments to
1011	 * IOVA granules for the IOMMU driver to handle. With some clever
1012	 * trickery we can modify the list in-place, but reversibly, by
1013	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1014	 */
1015	for_each_sg(sg, s, nents, i) {
1016		size_t s_iova_off = iova_offset(iovad, s->offset);
1017		size_t s_length = s->length;
1018		size_t pad_len = (mask - iova_len + 1) & mask;
1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020		sg_dma_address(s) = s_iova_off;
1021		sg_dma_len(s) = s_length;
1022		s->offset -= s_iova_off;
1023		s_length = iova_align(iovad, s_length + s_iova_off);
1024		s->length = s_length;
1025
1026		/*
1027		 * Due to the alignment of our single IOVA allocation, we can
1028		 * depend on these assumptions about the segment boundary mask:
1029		 * - If mask size >= IOVA size, then the IOVA range cannot
1030		 *   possibly fall across a boundary, so we don't care.
1031		 * - If mask size < IOVA size, then the IOVA range must start
1032		 *   exactly on a boundary, therefore we can lay things out
1033		 *   based purely on segment lengths without needing to know
1034		 *   the actual addresses beforehand.
1035		 * - The mask must be a power of 2, so pad_len == 0 if
1036		 *   iova_len == 0, thus we cannot dereference prev the first
1037		 *   time through here (i.e. before it has a meaningful value).
1038		 */
1039		if (pad_len && pad_len < s_length - 1) {
1040			prev->length += pad_len;
1041			iova_len += pad_len;
1042		}
1043
1044		iova_len += s_length;
1045		prev = s;
1046	}
1047
 
 
 
1048	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1049	if (!iova)
 
1050		goto out_restore_sg;
 
1051
1052	/*
1053	 * We'll leave any physical concatenation to the IOMMU driver's
1054	 * implementation - it knows better than we do.
1055	 */
1056	if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
 
1057		goto out_free_iova;
1058
1059	return __finalise_sg(dev, sg, nents, iova);
1060
1061out_free_iova:
1062	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1063out_restore_sg:
1064	__invalidate_sg(sg, nents);
1065	return 0;
 
 
 
1066}
1067
1068static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1069		int nents, enum dma_data_direction dir, unsigned long attrs)
1070{
1071	dma_addr_t start, end;
1072	struct scatterlist *tmp;
1073	int i;
1074
1075	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1076		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1077
1078	if (dev_is_untrusted(dev)) {
1079		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1080		return;
1081	}
1082
 
 
 
1083	/*
1084	 * The scatterlist segments are mapped into a single
1085	 * contiguous IOVA allocation, so this is incredibly easy.
 
1086	 */
1087	start = sg_dma_address(sg);
1088	for_each_sg(sg_next(sg), tmp, nents - 1, i) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089		if (sg_dma_len(tmp) == 0)
1090			break;
1091		sg = tmp;
 
1092	}
1093	end = sg_dma_address(sg) + sg_dma_len(sg);
1094	__iommu_dma_unmap(dev, start, end - start);
 
1095}
1096
1097static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1098		size_t size, enum dma_data_direction dir, unsigned long attrs)
1099{
1100	return __iommu_dma_map(dev, phys, size,
1101			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1102			dma_get_mask(dev));
1103}
1104
1105static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1106		size_t size, enum dma_data_direction dir, unsigned long attrs)
1107{
1108	__iommu_dma_unmap(dev, handle, size);
1109}
1110
1111static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1112{
1113	size_t alloc_size = PAGE_ALIGN(size);
1114	int count = alloc_size >> PAGE_SHIFT;
1115	struct page *page = NULL, **pages = NULL;
1116
1117	/* Non-coherent atomic allocation? Easy */
1118	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1119	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1120		return;
1121
1122	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1123		/*
1124		 * If it the address is remapped, then it's either non-coherent
1125		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1126		 */
1127		pages = dma_common_find_pages(cpu_addr);
1128		if (!pages)
1129			page = vmalloc_to_page(cpu_addr);
1130		dma_common_free_remap(cpu_addr, alloc_size);
1131	} else {
1132		/* Lowmem means a coherent atomic or CMA allocation */
1133		page = virt_to_page(cpu_addr);
1134	}
1135
1136	if (pages)
1137		__iommu_dma_free_pages(pages, count);
1138	if (page)
1139		dma_free_contiguous(dev, page, alloc_size);
1140}
1141
1142static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1143		dma_addr_t handle, unsigned long attrs)
1144{
1145	__iommu_dma_unmap(dev, handle, size);
1146	__iommu_dma_free(dev, size, cpu_addr);
1147}
1148
1149static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1150		struct page **pagep, gfp_t gfp, unsigned long attrs)
1151{
1152	bool coherent = dev_is_dma_coherent(dev);
1153	size_t alloc_size = PAGE_ALIGN(size);
1154	int node = dev_to_node(dev);
1155	struct page *page = NULL;
1156	void *cpu_addr;
1157
1158	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1159	if (!page)
1160		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1161	if (!page)
1162		return NULL;
1163
1164	if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
1165		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1166
1167		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1168				prot, __builtin_return_address(0));
1169		if (!cpu_addr)
1170			goto out_free_pages;
1171
1172		if (!coherent)
1173			arch_dma_prep_coherent(page, size);
1174	} else {
1175		cpu_addr = page_address(page);
1176	}
1177
1178	*pagep = page;
1179	memset(cpu_addr, 0, alloc_size);
1180	return cpu_addr;
1181out_free_pages:
1182	dma_free_contiguous(dev, page, alloc_size);
1183	return NULL;
1184}
1185
1186static void *iommu_dma_alloc(struct device *dev, size_t size,
1187		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1188{
1189	bool coherent = dev_is_dma_coherent(dev);
1190	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1191	struct page *page = NULL;
1192	void *cpu_addr;
1193
1194	gfp |= __GFP_ZERO;
1195
1196	if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
1197	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1198		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1199				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1200	}
1201
1202	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1203	    !gfpflags_allow_blocking(gfp) && !coherent)
1204		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1205					       gfp, NULL);
1206	else
1207		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1208	if (!cpu_addr)
1209		return NULL;
1210
1211	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1212			dev->coherent_dma_mask);
1213	if (*handle == DMA_MAPPING_ERROR) {
1214		__iommu_dma_free(dev, size, cpu_addr);
1215		return NULL;
1216	}
1217
1218	return cpu_addr;
1219}
1220
1221static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1222		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1223		unsigned long attrs)
1224{
1225	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1226	unsigned long pfn, off = vma->vm_pgoff;
1227	int ret;
1228
1229	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1230
1231	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1232		return ret;
1233
1234	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1235		return -ENXIO;
1236
1237	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1238		struct page **pages = dma_common_find_pages(cpu_addr);
1239
1240		if (pages)
1241			return vm_map_pages(vma, pages, nr_pages);
1242		pfn = vmalloc_to_pfn(cpu_addr);
1243	} else {
1244		pfn = page_to_pfn(virt_to_page(cpu_addr));
1245	}
1246
1247	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1248			       vma->vm_end - vma->vm_start,
1249			       vma->vm_page_prot);
1250}
1251
1252static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1253		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1254		unsigned long attrs)
1255{
1256	struct page *page;
1257	int ret;
1258
1259	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
1260		struct page **pages = dma_common_find_pages(cpu_addr);
1261
1262		if (pages) {
1263			return sg_alloc_table_from_pages(sgt, pages,
1264					PAGE_ALIGN(size) >> PAGE_SHIFT,
1265					0, size, GFP_KERNEL);
1266		}
1267
1268		page = vmalloc_to_page(cpu_addr);
1269	} else {
1270		page = virt_to_page(cpu_addr);
1271	}
1272
1273	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1274	if (!ret)
1275		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1276	return ret;
1277}
1278
1279static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1280{
1281	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1282
1283	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1284}
1285
1286static const struct dma_map_ops iommu_dma_ops = {
1287	.alloc			= iommu_dma_alloc,
1288	.free			= iommu_dma_free,
1289	.alloc_pages		= dma_common_alloc_pages,
1290	.free_pages		= dma_common_free_pages,
1291#ifdef CONFIG_DMA_REMAP
1292	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1293	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1294#endif
1295	.mmap			= iommu_dma_mmap,
1296	.get_sgtable		= iommu_dma_get_sgtable,
1297	.map_page		= iommu_dma_map_page,
1298	.unmap_page		= iommu_dma_unmap_page,
1299	.map_sg			= iommu_dma_map_sg,
1300	.unmap_sg		= iommu_dma_unmap_sg,
1301	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1302	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1303	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1304	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1305	.map_resource		= iommu_dma_map_resource,
1306	.unmap_resource		= iommu_dma_unmap_resource,
1307	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1308};
1309
1310/*
1311 * The IOMMU core code allocates the default DMA domain, which the underlying
1312 * IOMMU driver needs to support via the dma-iommu layer.
1313 */
1314void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1315{
1316	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1317
1318	if (!domain)
 
 
 
 
1319		goto out_err;
1320
1321	/*
1322	 * The IOMMU core code allocates the default DMA domain, which the
1323	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1324	 */
1325	if (domain->type == IOMMU_DOMAIN_DMA) {
1326		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1327			goto out_err;
1328		dev->dma_ops = &iommu_dma_ops;
1329	}
1330
1331	return;
1332out_err:
1333	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1334		 dev_name(dev));
 
1335}
1336EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1337
1338static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1339		phys_addr_t msi_addr, struct iommu_domain *domain)
1340{
1341	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1342	struct iommu_dma_msi_page *msi_page;
1343	dma_addr_t iova;
1344	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1345	size_t size = cookie_msi_granule(cookie);
1346
1347	msi_addr &= ~(phys_addr_t)(size - 1);
1348	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1349		if (msi_page->phys == msi_addr)
1350			return msi_page;
1351
1352	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1353	if (!msi_page)
1354		return NULL;
1355
1356	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1357	if (!iova)
1358		goto out_free_page;
1359
1360	if (iommu_map(domain, iova, msi_addr, size, prot))
1361		goto out_free_iova;
1362
1363	INIT_LIST_HEAD(&msi_page->list);
1364	msi_page->phys = msi_addr;
1365	msi_page->iova = iova;
1366	list_add(&msi_page->list, &cookie->msi_page_list);
1367	return msi_page;
1368
1369out_free_iova:
1370	iommu_dma_free_iova(cookie, iova, size, NULL);
1371out_free_page:
1372	kfree(msi_page);
1373	return NULL;
1374}
1375
 
 
 
 
 
 
 
1376int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1377{
1378	struct device *dev = msi_desc_to_dev(desc);
1379	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1380	struct iommu_dma_msi_page *msi_page;
1381	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1382
1383	if (!domain || !domain->iova_cookie) {
1384		desc->iommu_cookie = NULL;
1385		return 0;
1386	}
1387
1388	/*
1389	 * In fact the whole prepare operation should already be serialised by
1390	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1391	 * on its own, so consider this locking as failsafe documentation...
1392	 */
1393	mutex_lock(&msi_prepare_lock);
1394	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1395	mutex_unlock(&msi_prepare_lock);
1396
1397	msi_desc_set_iommu_cookie(desc, msi_page);
1398
1399	if (!msi_page)
1400		return -ENOMEM;
1401	return 0;
1402}
1403
1404void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1405			       struct msi_msg *msg)
 
 
 
 
1406{
1407	struct device *dev = msi_desc_to_dev(desc);
1408	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1409	const struct iommu_dma_msi_page *msi_page;
1410
1411	msi_page = msi_desc_get_iommu_cookie(desc);
1412
1413	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1414		return;
1415
1416	msg->address_hi = upper_32_bits(msi_page->iova);
1417	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1418	msg->address_lo += lower_32_bits(msi_page->iova);
1419}
1420
1421static int iommu_dma_init(void)
1422{
1423	if (is_kdump_kernel())
1424		static_branch_enable(&iommu_deferred_attach_enabled);
1425
1426	return iova_cache_get();
1427}
1428arch_initcall(iommu_dma_init);