Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/pm.h>
  23#include <linux/poll.h>
  24#include <linux/device.h>
  25#include <linux/kstrtox.h>
  26#include <linux/mutex.h>
  27#include <linux/rcupdate.h>
  28#include "input-compat.h"
  29#include "input-core-private.h"
  30#include "input-poller.h"
  31
  32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  33MODULE_DESCRIPTION("Input core");
  34MODULE_LICENSE("GPL");
  35
  36#define INPUT_MAX_CHAR_DEVICES		1024
  37#define INPUT_FIRST_DYNAMIC_DEV		256
  38static DEFINE_IDA(input_ida);
  39
  40static LIST_HEAD(input_dev_list);
  41static LIST_HEAD(input_handler_list);
  42
  43/*
  44 * input_mutex protects access to both input_dev_list and input_handler_list.
  45 * This also causes input_[un]register_device and input_[un]register_handler
  46 * be mutually exclusive which simplifies locking in drivers implementing
  47 * input handlers.
  48 */
  49static DEFINE_MUTEX(input_mutex);
  50
  51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  52
  53static const unsigned int input_max_code[EV_CNT] = {
  54	[EV_KEY] = KEY_MAX,
  55	[EV_REL] = REL_MAX,
  56	[EV_ABS] = ABS_MAX,
  57	[EV_MSC] = MSC_MAX,
  58	[EV_SW] = SW_MAX,
  59	[EV_LED] = LED_MAX,
  60	[EV_SND] = SND_MAX,
  61	[EV_FF] = FF_MAX,
  62};
  63
  64static inline int is_event_supported(unsigned int code,
  65				     unsigned long *bm, unsigned int max)
  66{
  67	return code <= max && test_bit(code, bm);
  68}
  69
  70static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  71{
  72	if (fuzz) {
  73		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  74			return old_val;
  75
  76		if (value > old_val - fuzz && value < old_val + fuzz)
  77			return (old_val * 3 + value) / 4;
  78
  79		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  80			return (old_val + value) / 2;
  81	}
  82
  83	return value;
  84}
  85
  86static void input_start_autorepeat(struct input_dev *dev, int code)
  87{
  88	if (test_bit(EV_REP, dev->evbit) &&
  89	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  90	    dev->timer.function) {
  91		dev->repeat_key = code;
  92		mod_timer(&dev->timer,
  93			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  94	}
  95}
  96
  97static void input_stop_autorepeat(struct input_dev *dev)
  98{
  99	del_timer(&dev->timer);
 100}
 101
 102/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103 * Pass values first through all filters and then, if event has not been
 104 * filtered out, through all open handles. This order is achieved by placing
 105 * filters at the head of the list of handles attached to the device, and
 106 * placing regular handles at the tail of the list.
 107 *
 108 * This function is called with dev->event_lock held and interrupts disabled.
 109 */
 110static void input_pass_values(struct input_dev *dev,
 111			      struct input_value *vals, unsigned int count)
 112{
 113	struct input_handle *handle;
 114	struct input_value *v;
 115
 116	lockdep_assert_held(&dev->event_lock);
 
 117
 118	rcu_read_lock();
 119
 120	handle = rcu_dereference(dev->grab);
 121	if (handle) {
 122		count = handle->handle_events(handle, vals, count);
 123	} else {
 124		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 125			if (handle->open) {
 126				count = handle->handle_events(handle, vals,
 127							      count);
 128				if (!count)
 129					break;
 130			}
 131	}
 132
 133	rcu_read_unlock();
 134
 135	/* trigger auto repeat for key events */
 136	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 137		for (v = vals; v != vals + count; v++) {
 138			if (v->type == EV_KEY && v->value != 2) {
 139				if (v->value)
 140					input_start_autorepeat(dev, v->code);
 141				else
 142					input_stop_autorepeat(dev);
 143			}
 144		}
 145	}
 146}
 147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148#define INPUT_IGNORE_EVENT	0
 149#define INPUT_PASS_TO_HANDLERS	1
 150#define INPUT_PASS_TO_DEVICE	2
 151#define INPUT_SLOT		4
 152#define INPUT_FLUSH		8
 153#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 154
 155static int input_handle_abs_event(struct input_dev *dev,
 156				  unsigned int code, int *pval)
 157{
 158	struct input_mt *mt = dev->mt;
 159	bool is_new_slot = false;
 160	bool is_mt_event;
 161	int *pold;
 162
 163	if (code == ABS_MT_SLOT) {
 164		/*
 165		 * "Stage" the event; we'll flush it later, when we
 166		 * get actual touch data.
 167		 */
 168		if (mt && *pval >= 0 && *pval < mt->num_slots)
 169			mt->slot = *pval;
 170
 171		return INPUT_IGNORE_EVENT;
 172	}
 173
 174	is_mt_event = input_is_mt_value(code);
 175
 176	if (!is_mt_event) {
 177		pold = &dev->absinfo[code].value;
 178	} else if (mt) {
 179		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 180		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
 181	} else {
 182		/*
 183		 * Bypass filtering for multi-touch events when
 184		 * not employing slots.
 185		 */
 186		pold = NULL;
 187	}
 188
 189	if (pold) {
 190		*pval = input_defuzz_abs_event(*pval, *pold,
 191						dev->absinfo[code].fuzz);
 192		if (*pold == *pval)
 193			return INPUT_IGNORE_EVENT;
 194
 195		*pold = *pval;
 196	}
 197
 198	/* Flush pending "slot" event */
 199	if (is_new_slot) {
 200		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
 201		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 202	}
 203
 204	return INPUT_PASS_TO_HANDLERS;
 205}
 206
 207static int input_get_disposition(struct input_dev *dev,
 208			  unsigned int type, unsigned int code, int *pval)
 209{
 210	int disposition = INPUT_IGNORE_EVENT;
 211	int value = *pval;
 212
 213	/* filter-out events from inhibited devices */
 214	if (dev->inhibited)
 215		return INPUT_IGNORE_EVENT;
 216
 217	switch (type) {
 218
 219	case EV_SYN:
 220		switch (code) {
 221		case SYN_CONFIG:
 222			disposition = INPUT_PASS_TO_ALL;
 223			break;
 224
 225		case SYN_REPORT:
 226			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 227			break;
 228		case SYN_MT_REPORT:
 229			disposition = INPUT_PASS_TO_HANDLERS;
 230			break;
 231		}
 232		break;
 233
 234	case EV_KEY:
 235		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 236
 237			/* auto-repeat bypasses state updates */
 238			if (value == 2) {
 239				disposition = INPUT_PASS_TO_HANDLERS;
 240				break;
 241			}
 242
 243			if (!!test_bit(code, dev->key) != !!value) {
 244
 245				__change_bit(code, dev->key);
 246				disposition = INPUT_PASS_TO_HANDLERS;
 247			}
 248		}
 249		break;
 250
 251	case EV_SW:
 252		if (is_event_supported(code, dev->swbit, SW_MAX) &&
 253		    !!test_bit(code, dev->sw) != !!value) {
 254
 255			__change_bit(code, dev->sw);
 256			disposition = INPUT_PASS_TO_HANDLERS;
 257		}
 258		break;
 259
 260	case EV_ABS:
 261		if (is_event_supported(code, dev->absbit, ABS_MAX))
 262			disposition = input_handle_abs_event(dev, code, &value);
 263
 264		break;
 265
 266	case EV_REL:
 267		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 268			disposition = INPUT_PASS_TO_HANDLERS;
 269
 270		break;
 271
 272	case EV_MSC:
 273		if (is_event_supported(code, dev->mscbit, MSC_MAX))
 274			disposition = INPUT_PASS_TO_ALL;
 275
 276		break;
 277
 278	case EV_LED:
 279		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 280		    !!test_bit(code, dev->led) != !!value) {
 281
 282			__change_bit(code, dev->led);
 283			disposition = INPUT_PASS_TO_ALL;
 284		}
 285		break;
 286
 287	case EV_SND:
 288		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 289
 290			if (!!test_bit(code, dev->snd) != !!value)
 291				__change_bit(code, dev->snd);
 292			disposition = INPUT_PASS_TO_ALL;
 293		}
 294		break;
 295
 296	case EV_REP:
 297		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 298			dev->rep[code] = value;
 299			disposition = INPUT_PASS_TO_ALL;
 300		}
 301		break;
 302
 303	case EV_FF:
 304		if (value >= 0)
 305			disposition = INPUT_PASS_TO_ALL;
 306		break;
 307
 308	case EV_PWR:
 309		disposition = INPUT_PASS_TO_ALL;
 310		break;
 311	}
 312
 313	*pval = value;
 314	return disposition;
 315}
 316
 317static void input_event_dispose(struct input_dev *dev, int disposition,
 318				unsigned int type, unsigned int code, int value)
 319{
 
 
 
 
 
 
 
 
 
 
 320	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 321		dev->event(dev, type, code, value);
 322
 
 
 
 323	if (disposition & INPUT_PASS_TO_HANDLERS) {
 324		struct input_value *v;
 325
 326		if (disposition & INPUT_SLOT) {
 327			v = &dev->vals[dev->num_vals++];
 328			v->type = EV_ABS;
 329			v->code = ABS_MT_SLOT;
 330			v->value = dev->mt->slot;
 331		}
 332
 333		v = &dev->vals[dev->num_vals++];
 334		v->type = type;
 335		v->code = code;
 336		v->value = value;
 337	}
 338
 339	if (disposition & INPUT_FLUSH) {
 340		if (dev->num_vals >= 2)
 341			input_pass_values(dev, dev->vals, dev->num_vals);
 342		dev->num_vals = 0;
 343		/*
 344		 * Reset the timestamp on flush so we won't end up
 345		 * with a stale one. Note we only need to reset the
 346		 * monolithic one as we use its presence when deciding
 347		 * whether to generate a synthetic timestamp.
 348		 */
 349		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
 350	} else if (dev->num_vals >= dev->max_vals - 2) {
 351		dev->vals[dev->num_vals++] = input_value_sync;
 352		input_pass_values(dev, dev->vals, dev->num_vals);
 353		dev->num_vals = 0;
 354	}
 355}
 356
 357void input_handle_event(struct input_dev *dev,
 358			unsigned int type, unsigned int code, int value)
 359{
 360	int disposition;
 361
 362	lockdep_assert_held(&dev->event_lock);
 363
 364	disposition = input_get_disposition(dev, type, code, &value);
 365	if (disposition != INPUT_IGNORE_EVENT) {
 366		if (type != EV_SYN)
 367			add_input_randomness(type, code, value);
 368
 369		input_event_dispose(dev, disposition, type, code, value);
 370	}
 371}
 372
 373/**
 374 * input_event() - report new input event
 375 * @dev: device that generated the event
 376 * @type: type of the event
 377 * @code: event code
 378 * @value: value of the event
 379 *
 380 * This function should be used by drivers implementing various input
 381 * devices to report input events. See also input_inject_event().
 382 *
 383 * NOTE: input_event() may be safely used right after input device was
 384 * allocated with input_allocate_device(), even before it is registered
 385 * with input_register_device(), but the event will not reach any of the
 386 * input handlers. Such early invocation of input_event() may be used
 387 * to 'seed' initial state of a switch or initial position of absolute
 388 * axis, etc.
 389 */
 390void input_event(struct input_dev *dev,
 391		 unsigned int type, unsigned int code, int value)
 392{
 393	unsigned long flags;
 394
 395	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 396
 397		spin_lock_irqsave(&dev->event_lock, flags);
 398		input_handle_event(dev, type, code, value);
 399		spin_unlock_irqrestore(&dev->event_lock, flags);
 400	}
 401}
 402EXPORT_SYMBOL(input_event);
 403
 404/**
 405 * input_inject_event() - send input event from input handler
 406 * @handle: input handle to send event through
 407 * @type: type of the event
 408 * @code: event code
 409 * @value: value of the event
 410 *
 411 * Similar to input_event() but will ignore event if device is
 412 * "grabbed" and handle injecting event is not the one that owns
 413 * the device.
 414 */
 415void input_inject_event(struct input_handle *handle,
 416			unsigned int type, unsigned int code, int value)
 417{
 418	struct input_dev *dev = handle->dev;
 419	struct input_handle *grab;
 420	unsigned long flags;
 421
 422	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 423		spin_lock_irqsave(&dev->event_lock, flags);
 424
 425		rcu_read_lock();
 426		grab = rcu_dereference(dev->grab);
 427		if (!grab || grab == handle)
 428			input_handle_event(dev, type, code, value);
 429		rcu_read_unlock();
 430
 431		spin_unlock_irqrestore(&dev->event_lock, flags);
 432	}
 433}
 434EXPORT_SYMBOL(input_inject_event);
 435
 436/**
 437 * input_alloc_absinfo - allocates array of input_absinfo structs
 438 * @dev: the input device emitting absolute events
 439 *
 440 * If the absinfo struct the caller asked for is already allocated, this
 441 * functions will not do anything.
 442 */
 443void input_alloc_absinfo(struct input_dev *dev)
 444{
 445	if (dev->absinfo)
 446		return;
 447
 448	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 449	if (!dev->absinfo) {
 450		dev_err(dev->dev.parent ?: &dev->dev,
 451			"%s: unable to allocate memory\n", __func__);
 452		/*
 453		 * We will handle this allocation failure in
 454		 * input_register_device() when we refuse to register input
 455		 * device with ABS bits but without absinfo.
 456		 */
 457	}
 458}
 459EXPORT_SYMBOL(input_alloc_absinfo);
 460
 461void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 462			  int min, int max, int fuzz, int flat)
 463{
 464	struct input_absinfo *absinfo;
 465
 466	__set_bit(EV_ABS, dev->evbit);
 467	__set_bit(axis, dev->absbit);
 468
 469	input_alloc_absinfo(dev);
 470	if (!dev->absinfo)
 471		return;
 472
 473	absinfo = &dev->absinfo[axis];
 474	absinfo->minimum = min;
 475	absinfo->maximum = max;
 476	absinfo->fuzz = fuzz;
 477	absinfo->flat = flat;
 
 
 
 478}
 479EXPORT_SYMBOL(input_set_abs_params);
 480
 481/**
 482 * input_copy_abs - Copy absinfo from one input_dev to another
 483 * @dst: Destination input device to copy the abs settings to
 484 * @dst_axis: ABS_* value selecting the destination axis
 485 * @src: Source input device to copy the abs settings from
 486 * @src_axis: ABS_* value selecting the source axis
 487 *
 488 * Set absinfo for the selected destination axis by copying it from
 489 * the specified source input device's source axis.
 490 * This is useful to e.g. setup a pen/stylus input-device for combined
 491 * touchscreen/pen hardware where the pen uses the same coordinates as
 492 * the touchscreen.
 493 */
 494void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
 495		    const struct input_dev *src, unsigned int src_axis)
 496{
 497	/* src must have EV_ABS and src_axis set */
 498	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
 499		      test_bit(src_axis, src->absbit))))
 500		return;
 501
 502	/*
 503	 * input_alloc_absinfo() may have failed for the source. Our caller is
 504	 * expected to catch this when registering the input devices, which may
 505	 * happen after the input_copy_abs() call.
 506	 */
 507	if (!src->absinfo)
 508		return;
 509
 510	input_set_capability(dst, EV_ABS, dst_axis);
 511	if (!dst->absinfo)
 512		return;
 513
 514	dst->absinfo[dst_axis] = src->absinfo[src_axis];
 515}
 516EXPORT_SYMBOL(input_copy_abs);
 517
 518/**
 519 * input_grab_device - grabs device for exclusive use
 520 * @handle: input handle that wants to own the device
 521 *
 522 * When a device is grabbed by an input handle all events generated by
 523 * the device are delivered only to this handle. Also events injected
 524 * by other input handles are ignored while device is grabbed.
 525 */
 526int input_grab_device(struct input_handle *handle)
 527{
 528	struct input_dev *dev = handle->dev;
 529	int retval;
 530
 531	retval = mutex_lock_interruptible(&dev->mutex);
 532	if (retval)
 533		return retval;
 534
 535	if (dev->grab) {
 536		retval = -EBUSY;
 537		goto out;
 538	}
 539
 540	rcu_assign_pointer(dev->grab, handle);
 541
 542 out:
 543	mutex_unlock(&dev->mutex);
 544	return retval;
 545}
 546EXPORT_SYMBOL(input_grab_device);
 547
 548static void __input_release_device(struct input_handle *handle)
 549{
 550	struct input_dev *dev = handle->dev;
 551	struct input_handle *grabber;
 552
 553	grabber = rcu_dereference_protected(dev->grab,
 554					    lockdep_is_held(&dev->mutex));
 555	if (grabber == handle) {
 556		rcu_assign_pointer(dev->grab, NULL);
 557		/* Make sure input_pass_values() notices that grab is gone */
 558		synchronize_rcu();
 559
 560		list_for_each_entry(handle, &dev->h_list, d_node)
 561			if (handle->open && handle->handler->start)
 562				handle->handler->start(handle);
 563	}
 564}
 565
 566/**
 567 * input_release_device - release previously grabbed device
 568 * @handle: input handle that owns the device
 569 *
 570 * Releases previously grabbed device so that other input handles can
 571 * start receiving input events. Upon release all handlers attached
 572 * to the device have their start() method called so they have a change
 573 * to synchronize device state with the rest of the system.
 574 */
 575void input_release_device(struct input_handle *handle)
 576{
 577	struct input_dev *dev = handle->dev;
 578
 579	mutex_lock(&dev->mutex);
 580	__input_release_device(handle);
 581	mutex_unlock(&dev->mutex);
 582}
 583EXPORT_SYMBOL(input_release_device);
 584
 585/**
 586 * input_open_device - open input device
 587 * @handle: handle through which device is being accessed
 588 *
 589 * This function should be called by input handlers when they
 590 * want to start receive events from given input device.
 591 */
 592int input_open_device(struct input_handle *handle)
 593{
 594	struct input_dev *dev = handle->dev;
 595	int retval;
 596
 597	retval = mutex_lock_interruptible(&dev->mutex);
 598	if (retval)
 599		return retval;
 600
 601	if (dev->going_away) {
 602		retval = -ENODEV;
 603		goto out;
 604	}
 605
 606	handle->open++;
 607
 608	if (handle->handler->passive_observer)
 609		goto out;
 610
 611	if (dev->users++ || dev->inhibited) {
 612		/*
 613		 * Device is already opened and/or inhibited,
 614		 * so we can exit immediately and report success.
 615		 */
 616		goto out;
 617	}
 618
 619	if (dev->open) {
 620		retval = dev->open(dev);
 621		if (retval) {
 622			dev->users--;
 623			handle->open--;
 624			/*
 625			 * Make sure we are not delivering any more events
 626			 * through this handle
 627			 */
 628			synchronize_rcu();
 629			goto out;
 630		}
 631	}
 632
 633	if (dev->poller)
 634		input_dev_poller_start(dev->poller);
 635
 636 out:
 637	mutex_unlock(&dev->mutex);
 638	return retval;
 639}
 640EXPORT_SYMBOL(input_open_device);
 641
 642int input_flush_device(struct input_handle *handle, struct file *file)
 643{
 644	struct input_dev *dev = handle->dev;
 645	int retval;
 646
 647	retval = mutex_lock_interruptible(&dev->mutex);
 648	if (retval)
 649		return retval;
 650
 651	if (dev->flush)
 652		retval = dev->flush(dev, file);
 653
 654	mutex_unlock(&dev->mutex);
 655	return retval;
 656}
 657EXPORT_SYMBOL(input_flush_device);
 658
 659/**
 660 * input_close_device - close input device
 661 * @handle: handle through which device is being accessed
 662 *
 663 * This function should be called by input handlers when they
 664 * want to stop receive events from given input device.
 665 */
 666void input_close_device(struct input_handle *handle)
 667{
 668	struct input_dev *dev = handle->dev;
 669
 670	mutex_lock(&dev->mutex);
 671
 672	__input_release_device(handle);
 673
 674	if (!handle->handler->passive_observer) {
 675		if (!--dev->users && !dev->inhibited) {
 676			if (dev->poller)
 677				input_dev_poller_stop(dev->poller);
 678			if (dev->close)
 679				dev->close(dev);
 680		}
 681	}
 682
 683	if (!--handle->open) {
 684		/*
 685		 * synchronize_rcu() makes sure that input_pass_values()
 686		 * completed and that no more input events are delivered
 687		 * through this handle
 688		 */
 689		synchronize_rcu();
 690	}
 691
 692	mutex_unlock(&dev->mutex);
 693}
 694EXPORT_SYMBOL(input_close_device);
 695
 696/*
 697 * Simulate keyup events for all keys that are marked as pressed.
 698 * The function must be called with dev->event_lock held.
 699 */
 700static bool input_dev_release_keys(struct input_dev *dev)
 701{
 702	bool need_sync = false;
 703	int code;
 704
 705	lockdep_assert_held(&dev->event_lock);
 706
 707	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 708		for_each_set_bit(code, dev->key, KEY_CNT) {
 709			input_handle_event(dev, EV_KEY, code, 0);
 710			need_sync = true;
 711		}
 712	}
 713
 714	return need_sync;
 
 
 
 
 715}
 716
 717/*
 718 * Prepare device for unregistering
 719 */
 720static void input_disconnect_device(struct input_dev *dev)
 721{
 722	struct input_handle *handle;
 723
 724	/*
 725	 * Mark device as going away. Note that we take dev->mutex here
 726	 * not to protect access to dev->going_away but rather to ensure
 727	 * that there are no threads in the middle of input_open_device()
 728	 */
 729	mutex_lock(&dev->mutex);
 730	dev->going_away = true;
 731	mutex_unlock(&dev->mutex);
 732
 733	spin_lock_irq(&dev->event_lock);
 734
 735	/*
 736	 * Simulate keyup events for all pressed keys so that handlers
 737	 * are not left with "stuck" keys. The driver may continue
 738	 * generate events even after we done here but they will not
 739	 * reach any handlers.
 740	 */
 741	if (input_dev_release_keys(dev))
 742		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
 743
 744	list_for_each_entry(handle, &dev->h_list, d_node)
 745		handle->open = 0;
 746
 747	spin_unlock_irq(&dev->event_lock);
 748}
 749
 750/**
 751 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 752 * @ke: keymap entry containing scancode to be converted.
 753 * @scancode: pointer to the location where converted scancode should
 754 *	be stored.
 755 *
 756 * This function is used to convert scancode stored in &struct keymap_entry
 757 * into scalar form understood by legacy keymap handling methods. These
 758 * methods expect scancodes to be represented as 'unsigned int'.
 759 */
 760int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 761			     unsigned int *scancode)
 762{
 763	switch (ke->len) {
 764	case 1:
 765		*scancode = *((u8 *)ke->scancode);
 766		break;
 767
 768	case 2:
 769		*scancode = *((u16 *)ke->scancode);
 770		break;
 771
 772	case 4:
 773		*scancode = *((u32 *)ke->scancode);
 774		break;
 775
 776	default:
 777		return -EINVAL;
 778	}
 779
 780	return 0;
 781}
 782EXPORT_SYMBOL(input_scancode_to_scalar);
 783
 784/*
 785 * Those routines handle the default case where no [gs]etkeycode() is
 786 * defined. In this case, an array indexed by the scancode is used.
 787 */
 788
 789static unsigned int input_fetch_keycode(struct input_dev *dev,
 790					unsigned int index)
 791{
 792	switch (dev->keycodesize) {
 793	case 1:
 794		return ((u8 *)dev->keycode)[index];
 795
 796	case 2:
 797		return ((u16 *)dev->keycode)[index];
 798
 799	default:
 800		return ((u32 *)dev->keycode)[index];
 801	}
 802}
 803
 804static int input_default_getkeycode(struct input_dev *dev,
 805				    struct input_keymap_entry *ke)
 806{
 807	unsigned int index;
 808	int error;
 809
 810	if (!dev->keycodesize)
 811		return -EINVAL;
 812
 813	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 814		index = ke->index;
 815	else {
 816		error = input_scancode_to_scalar(ke, &index);
 817		if (error)
 818			return error;
 819	}
 820
 821	if (index >= dev->keycodemax)
 822		return -EINVAL;
 823
 824	ke->keycode = input_fetch_keycode(dev, index);
 825	ke->index = index;
 826	ke->len = sizeof(index);
 827	memcpy(ke->scancode, &index, sizeof(index));
 828
 829	return 0;
 830}
 831
 832static int input_default_setkeycode(struct input_dev *dev,
 833				    const struct input_keymap_entry *ke,
 834				    unsigned int *old_keycode)
 835{
 836	unsigned int index;
 837	int error;
 838	int i;
 839
 840	if (!dev->keycodesize)
 841		return -EINVAL;
 842
 843	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 844		index = ke->index;
 845	} else {
 846		error = input_scancode_to_scalar(ke, &index);
 847		if (error)
 848			return error;
 849	}
 850
 851	if (index >= dev->keycodemax)
 852		return -EINVAL;
 853
 854	if (dev->keycodesize < sizeof(ke->keycode) &&
 855			(ke->keycode >> (dev->keycodesize * 8)))
 856		return -EINVAL;
 857
 858	switch (dev->keycodesize) {
 859		case 1: {
 860			u8 *k = (u8 *)dev->keycode;
 861			*old_keycode = k[index];
 862			k[index] = ke->keycode;
 863			break;
 864		}
 865		case 2: {
 866			u16 *k = (u16 *)dev->keycode;
 867			*old_keycode = k[index];
 868			k[index] = ke->keycode;
 869			break;
 870		}
 871		default: {
 872			u32 *k = (u32 *)dev->keycode;
 873			*old_keycode = k[index];
 874			k[index] = ke->keycode;
 875			break;
 876		}
 877	}
 878
 879	if (*old_keycode <= KEY_MAX) {
 880		__clear_bit(*old_keycode, dev->keybit);
 881		for (i = 0; i < dev->keycodemax; i++) {
 882			if (input_fetch_keycode(dev, i) == *old_keycode) {
 883				__set_bit(*old_keycode, dev->keybit);
 884				/* Setting the bit twice is useless, so break */
 885				break;
 886			}
 887		}
 888	}
 889
 890	__set_bit(ke->keycode, dev->keybit);
 891	return 0;
 892}
 893
 894/**
 895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 896 * @dev: input device which keymap is being queried
 897 * @ke: keymap entry
 898 *
 899 * This function should be called by anyone interested in retrieving current
 900 * keymap. Presently evdev handlers use it.
 901 */
 902int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 903{
 904	unsigned long flags;
 905	int retval;
 906
 907	spin_lock_irqsave(&dev->event_lock, flags);
 908	retval = dev->getkeycode(dev, ke);
 909	spin_unlock_irqrestore(&dev->event_lock, flags);
 910
 911	return retval;
 912}
 913EXPORT_SYMBOL(input_get_keycode);
 914
 915/**
 916 * input_set_keycode - attribute a keycode to a given scancode
 917 * @dev: input device which keymap is being updated
 918 * @ke: new keymap entry
 919 *
 920 * This function should be called by anyone needing to update current
 921 * keymap. Presently keyboard and evdev handlers use it.
 922 */
 923int input_set_keycode(struct input_dev *dev,
 924		      const struct input_keymap_entry *ke)
 925{
 926	unsigned long flags;
 927	unsigned int old_keycode;
 928	int retval;
 929
 930	if (ke->keycode > KEY_MAX)
 931		return -EINVAL;
 932
 933	spin_lock_irqsave(&dev->event_lock, flags);
 934
 935	retval = dev->setkeycode(dev, ke, &old_keycode);
 936	if (retval)
 937		goto out;
 938
 939	/* Make sure KEY_RESERVED did not get enabled. */
 940	__clear_bit(KEY_RESERVED, dev->keybit);
 941
 942	/*
 943	 * Simulate keyup event if keycode is not present
 944	 * in the keymap anymore
 945	 */
 946	if (old_keycode > KEY_MAX) {
 947		dev_warn(dev->dev.parent ?: &dev->dev,
 948			 "%s: got too big old keycode %#x\n",
 949			 __func__, old_keycode);
 950	} else if (test_bit(EV_KEY, dev->evbit) &&
 951		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 952		   __test_and_clear_bit(old_keycode, dev->key)) {
 953		/*
 954		 * We have to use input_event_dispose() here directly instead
 955		 * of input_handle_event() because the key we want to release
 956		 * here is considered no longer supported by the device and
 957		 * input_handle_event() will ignore it.
 958		 */
 959		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
 960				    EV_KEY, old_keycode, 0);
 961		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
 962				    EV_SYN, SYN_REPORT, 1);
 963	}
 964
 965 out:
 966	spin_unlock_irqrestore(&dev->event_lock, flags);
 967
 968	return retval;
 969}
 970EXPORT_SYMBOL(input_set_keycode);
 971
 972bool input_match_device_id(const struct input_dev *dev,
 973			   const struct input_device_id *id)
 974{
 975	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 976		if (id->bustype != dev->id.bustype)
 977			return false;
 978
 979	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 980		if (id->vendor != dev->id.vendor)
 981			return false;
 982
 983	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 984		if (id->product != dev->id.product)
 985			return false;
 986
 987	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 988		if (id->version != dev->id.version)
 989			return false;
 990
 991	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 992	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 993	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 994	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 995	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 996	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
 997	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
 998	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
 999	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1000	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001		return false;
1002	}
1003
1004	return true;
1005}
1006EXPORT_SYMBOL(input_match_device_id);
1007
1008static const struct input_device_id *input_match_device(struct input_handler *handler,
1009							struct input_dev *dev)
1010{
1011	const struct input_device_id *id;
1012
1013	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1014		if (input_match_device_id(dev, id) &&
1015		    (!handler->match || handler->match(handler, dev))) {
1016			return id;
1017		}
1018	}
1019
1020	return NULL;
1021}
1022
1023static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1024{
1025	const struct input_device_id *id;
1026	int error;
1027
1028	id = input_match_device(handler, dev);
1029	if (!id)
1030		return -ENODEV;
1031
1032	error = handler->connect(handler, dev, id);
1033	if (error && error != -ENODEV)
1034		pr_err("failed to attach handler %s to device %s, error: %d\n",
1035		       handler->name, kobject_name(&dev->dev.kobj), error);
1036
1037	return error;
1038}
1039
1040#ifdef CONFIG_COMPAT
1041
1042static int input_bits_to_string(char *buf, int buf_size,
1043				unsigned long bits, bool skip_empty)
1044{
1045	int len = 0;
1046
1047	if (in_compat_syscall()) {
1048		u32 dword = bits >> 32;
1049		if (dword || !skip_empty)
1050			len += snprintf(buf, buf_size, "%x ", dword);
1051
1052		dword = bits & 0xffffffffUL;
1053		if (dword || !skip_empty || len)
1054			len += snprintf(buf + len, max(buf_size - len, 0),
1055					"%x", dword);
1056	} else {
1057		if (bits || !skip_empty)
1058			len += snprintf(buf, buf_size, "%lx", bits);
1059	}
1060
1061	return len;
1062}
1063
1064#else /* !CONFIG_COMPAT */
1065
1066static int input_bits_to_string(char *buf, int buf_size,
1067				unsigned long bits, bool skip_empty)
1068{
1069	return bits || !skip_empty ?
1070		snprintf(buf, buf_size, "%lx", bits) : 0;
1071}
1072
1073#endif
1074
1075#ifdef CONFIG_PROC_FS
1076
1077static struct proc_dir_entry *proc_bus_input_dir;
1078static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1079static int input_devices_state;
1080
1081static inline void input_wakeup_procfs_readers(void)
1082{
1083	input_devices_state++;
1084	wake_up(&input_devices_poll_wait);
1085}
1086
1087struct input_seq_state {
1088	unsigned short pos;
1089	bool mutex_acquired;
1090	int input_devices_state;
1091};
1092
1093static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1094{
1095	struct seq_file *seq = file->private_data;
1096	struct input_seq_state *state = seq->private;
1097
1098	poll_wait(file, &input_devices_poll_wait, wait);
1099	if (state->input_devices_state != input_devices_state) {
1100		state->input_devices_state = input_devices_state;
1101		return EPOLLIN | EPOLLRDNORM;
1102	}
1103
1104	return 0;
1105}
1106
 
 
 
 
 
 
 
 
1107static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1108{
1109	struct input_seq_state *state = seq->private;
1110	int error;
1111
 
 
 
1112	error = mutex_lock_interruptible(&input_mutex);
1113	if (error) {
1114		state->mutex_acquired = false;
1115		return ERR_PTR(error);
1116	}
1117
1118	state->mutex_acquired = true;
1119
1120	return seq_list_start(&input_dev_list, *pos);
1121}
1122
1123static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124{
1125	return seq_list_next(v, &input_dev_list, pos);
1126}
1127
1128static void input_seq_stop(struct seq_file *seq, void *v)
1129{
1130	struct input_seq_state *state = seq->private;
1131
1132	if (state->mutex_acquired)
1133		mutex_unlock(&input_mutex);
1134}
1135
1136static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137				   unsigned long *bitmap, int max)
1138{
1139	int i;
1140	bool skip_empty = true;
1141	char buf[18];
1142
1143	seq_printf(seq, "B: %s=", name);
1144
1145	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146		if (input_bits_to_string(buf, sizeof(buf),
1147					 bitmap[i], skip_empty)) {
1148			skip_empty = false;
1149			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1150		}
1151	}
1152
1153	/*
1154	 * If no output was produced print a single 0.
1155	 */
1156	if (skip_empty)
1157		seq_putc(seq, '0');
1158
1159	seq_putc(seq, '\n');
1160}
1161
1162static int input_devices_seq_show(struct seq_file *seq, void *v)
1163{
1164	struct input_dev *dev = container_of(v, struct input_dev, node);
1165	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166	struct input_handle *handle;
1167
1168	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1170
1171	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175	seq_puts(seq, "H: Handlers=");
1176
1177	list_for_each_entry(handle, &dev->h_list, d_node)
1178		seq_printf(seq, "%s ", handle->name);
1179	seq_putc(seq, '\n');
1180
1181	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1182
1183	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184	if (test_bit(EV_KEY, dev->evbit))
1185		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186	if (test_bit(EV_REL, dev->evbit))
1187		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188	if (test_bit(EV_ABS, dev->evbit))
1189		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190	if (test_bit(EV_MSC, dev->evbit))
1191		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192	if (test_bit(EV_LED, dev->evbit))
1193		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194	if (test_bit(EV_SND, dev->evbit))
1195		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196	if (test_bit(EV_FF, dev->evbit))
1197		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198	if (test_bit(EV_SW, dev->evbit))
1199		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1200
1201	seq_putc(seq, '\n');
1202
1203	kfree(path);
1204	return 0;
1205}
1206
1207static const struct seq_operations input_devices_seq_ops = {
1208	.start	= input_devices_seq_start,
1209	.next	= input_devices_seq_next,
1210	.stop	= input_seq_stop,
1211	.show	= input_devices_seq_show,
1212};
1213
1214static int input_proc_devices_open(struct inode *inode, struct file *file)
1215{
1216	return seq_open_private(file, &input_devices_seq_ops,
1217				sizeof(struct input_seq_state));
1218}
1219
1220static const struct proc_ops input_devices_proc_ops = {
1221	.proc_open	= input_proc_devices_open,
1222	.proc_poll	= input_proc_devices_poll,
1223	.proc_read	= seq_read,
1224	.proc_lseek	= seq_lseek,
1225	.proc_release	= seq_release_private,
1226};
1227
1228static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229{
1230	struct input_seq_state *state = seq->private;
1231	int error;
1232
 
 
 
1233	error = mutex_lock_interruptible(&input_mutex);
1234	if (error) {
1235		state->mutex_acquired = false;
1236		return ERR_PTR(error);
1237	}
1238
1239	state->mutex_acquired = true;
1240	state->pos = *pos;
1241
1242	return seq_list_start(&input_handler_list, *pos);
1243}
1244
1245static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1246{
1247	struct input_seq_state *state = seq->private;
1248
1249	state->pos = *pos + 1;
1250	return seq_list_next(v, &input_handler_list, pos);
1251}
1252
1253static int input_handlers_seq_show(struct seq_file *seq, void *v)
1254{
1255	struct input_handler *handler = container_of(v, struct input_handler, node);
1256	struct input_seq_state *state = seq->private;
1257
1258	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1259	if (handler->filter)
1260		seq_puts(seq, " (filter)");
1261	if (handler->legacy_minors)
1262		seq_printf(seq, " Minor=%d", handler->minor);
1263	seq_putc(seq, '\n');
1264
1265	return 0;
1266}
1267
1268static const struct seq_operations input_handlers_seq_ops = {
1269	.start	= input_handlers_seq_start,
1270	.next	= input_handlers_seq_next,
1271	.stop	= input_seq_stop,
1272	.show	= input_handlers_seq_show,
1273};
1274
1275static int input_proc_handlers_open(struct inode *inode, struct file *file)
1276{
1277	return seq_open_private(file, &input_handlers_seq_ops,
1278				sizeof(struct input_seq_state));
1279}
1280
1281static const struct proc_ops input_handlers_proc_ops = {
1282	.proc_open	= input_proc_handlers_open,
1283	.proc_read	= seq_read,
1284	.proc_lseek	= seq_lseek,
1285	.proc_release	= seq_release_private,
1286};
1287
1288static int __init input_proc_init(void)
1289{
1290	struct proc_dir_entry *entry;
1291
1292	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1293	if (!proc_bus_input_dir)
1294		return -ENOMEM;
1295
1296	entry = proc_create("devices", 0, proc_bus_input_dir,
1297			    &input_devices_proc_ops);
1298	if (!entry)
1299		goto fail1;
1300
1301	entry = proc_create("handlers", 0, proc_bus_input_dir,
1302			    &input_handlers_proc_ops);
1303	if (!entry)
1304		goto fail2;
1305
1306	return 0;
1307
1308 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1309 fail1: remove_proc_entry("bus/input", NULL);
1310	return -ENOMEM;
1311}
1312
1313static void input_proc_exit(void)
1314{
1315	remove_proc_entry("devices", proc_bus_input_dir);
1316	remove_proc_entry("handlers", proc_bus_input_dir);
1317	remove_proc_entry("bus/input", NULL);
1318}
1319
1320#else /* !CONFIG_PROC_FS */
1321static inline void input_wakeup_procfs_readers(void) { }
1322static inline int input_proc_init(void) { return 0; }
1323static inline void input_proc_exit(void) { }
1324#endif
1325
1326#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1327static ssize_t input_dev_show_##name(struct device *dev,		\
1328				     struct device_attribute *attr,	\
1329				     char *buf)				\
1330{									\
1331	struct input_dev *input_dev = to_input_dev(dev);		\
1332									\
1333	return sysfs_emit(buf, "%s\n",					\
1334			  input_dev->name ? input_dev->name : "");	\
1335}									\
1336static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1337
1338INPUT_DEV_STRING_ATTR_SHOW(name);
1339INPUT_DEV_STRING_ATTR_SHOW(phys);
1340INPUT_DEV_STRING_ATTR_SHOW(uniq);
1341
1342static int input_print_modalias_bits(char *buf, int size,
1343				     char name, const unsigned long *bm,
1344				     unsigned int min_bit, unsigned int max_bit)
1345{
1346	int bit = min_bit;
1347	int len = 0;
1348
1349	len += snprintf(buf, max(size, 0), "%c", name);
1350	for_each_set_bit_from(bit, bm, max_bit)
1351		len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
 
1352	return len;
1353}
1354
1355static int input_print_modalias_parts(char *buf, int size, int full_len,
1356				      const struct input_dev *id)
1357{
1358	int len, klen, remainder, space;
1359
1360	len = snprintf(buf, max(size, 0),
1361		       "input:b%04Xv%04Xp%04Xe%04X-",
1362		       id->id.bustype, id->id.vendor,
1363		       id->id.product, id->id.version);
1364
1365	len += input_print_modalias_bits(buf + len, size - len,
1366				'e', id->evbit, 0, EV_MAX);
1367
1368	/*
1369	 * Calculate the remaining space in the buffer making sure we
1370	 * have place for the terminating 0.
1371	 */
1372	space = max(size - (len + 1), 0);
1373
1374	klen = input_print_modalias_bits(buf + len, size - len,
1375				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1376	len += klen;
1377
1378	/*
1379	 * If we have more data than we can fit in the buffer, check
1380	 * if we can trim key data to fit in the rest. We will indicate
1381	 * that key data is incomplete by adding "+" sign at the end, like
1382	 * this: * "k1,2,3,45,+,".
1383	 *
1384	 * Note that we shortest key info (if present) is "k+," so we
1385	 * can only try to trim if key data is longer than that.
1386	 */
1387	if (full_len && size < full_len + 1 && klen > 3) {
1388		remainder = full_len - len;
1389		/*
1390		 * We can only trim if we have space for the remainder
1391		 * and also for at least "k+," which is 3 more characters.
1392		 */
1393		if (remainder <= space - 3) {
1394			/*
1395			 * We are guaranteed to have 'k' in the buffer, so
1396			 * we need at least 3 additional bytes for storing
1397			 * "+," in addition to the remainder.
1398			 */
1399			for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1400				if (buf[i] == 'k' || buf[i] == ',') {
1401					strcpy(buf + i + 1, "+,");
1402					len = i + 3; /* Not counting '\0' */
1403					break;
1404				}
1405			}
1406		}
1407	}
1408
1409	len += input_print_modalias_bits(buf + len, size - len,
1410				'r', id->relbit, 0, REL_MAX);
1411	len += input_print_modalias_bits(buf + len, size - len,
1412				'a', id->absbit, 0, ABS_MAX);
1413	len += input_print_modalias_bits(buf + len, size - len,
1414				'm', id->mscbit, 0, MSC_MAX);
1415	len += input_print_modalias_bits(buf + len, size - len,
1416				'l', id->ledbit, 0, LED_MAX);
1417	len += input_print_modalias_bits(buf + len, size - len,
1418				's', id->sndbit, 0, SND_MAX);
1419	len += input_print_modalias_bits(buf + len, size - len,
1420				'f', id->ffbit, 0, FF_MAX);
1421	len += input_print_modalias_bits(buf + len, size - len,
1422				'w', id->swbit, 0, SW_MAX);
1423
1424	return len;
1425}
1426
1427static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1428{
1429	int full_len;
1430
1431	/*
1432	 * Printing is done in 2 passes: first one figures out total length
1433	 * needed for the modalias string, second one will try to trim key
1434	 * data in case when buffer is too small for the entire modalias.
1435	 * If the buffer is too small regardless, it will fill as much as it
1436	 * can (without trimming key data) into the buffer and leave it to
1437	 * the caller to figure out what to do with the result.
1438	 */
1439	full_len = input_print_modalias_parts(NULL, 0, 0, id);
1440	return input_print_modalias_parts(buf, size, full_len, id);
1441}
1442
1443static ssize_t input_dev_show_modalias(struct device *dev,
1444				       struct device_attribute *attr,
1445				       char *buf)
1446{
1447	struct input_dev *id = to_input_dev(dev);
1448	ssize_t len;
1449
1450	len = input_print_modalias(buf, PAGE_SIZE, id);
1451	if (len < PAGE_SIZE - 2)
1452		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1453
1454	return min_t(int, len, PAGE_SIZE);
1455}
1456static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1457
1458static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1459			      int max, int add_cr);
1460
1461static ssize_t input_dev_show_properties(struct device *dev,
1462					 struct device_attribute *attr,
1463					 char *buf)
1464{
1465	struct input_dev *input_dev = to_input_dev(dev);
1466	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1467				     INPUT_PROP_MAX, true);
1468	return min_t(int, len, PAGE_SIZE);
1469}
1470static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1471
1472static int input_inhibit_device(struct input_dev *dev);
1473static int input_uninhibit_device(struct input_dev *dev);
1474
1475static ssize_t inhibited_show(struct device *dev,
1476			      struct device_attribute *attr,
1477			      char *buf)
1478{
1479	struct input_dev *input_dev = to_input_dev(dev);
1480
1481	return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1482}
1483
1484static ssize_t inhibited_store(struct device *dev,
1485			       struct device_attribute *attr, const char *buf,
1486			       size_t len)
1487{
1488	struct input_dev *input_dev = to_input_dev(dev);
1489	ssize_t rv;
1490	bool inhibited;
1491
1492	if (kstrtobool(buf, &inhibited))
1493		return -EINVAL;
1494
1495	if (inhibited)
1496		rv = input_inhibit_device(input_dev);
1497	else
1498		rv = input_uninhibit_device(input_dev);
1499
1500	if (rv != 0)
1501		return rv;
1502
1503	return len;
1504}
1505
1506static DEVICE_ATTR_RW(inhibited);
1507
1508static struct attribute *input_dev_attrs[] = {
1509	&dev_attr_name.attr,
1510	&dev_attr_phys.attr,
1511	&dev_attr_uniq.attr,
1512	&dev_attr_modalias.attr,
1513	&dev_attr_properties.attr,
1514	&dev_attr_inhibited.attr,
1515	NULL
1516};
1517
1518static const struct attribute_group input_dev_attr_group = {
1519	.attrs	= input_dev_attrs,
1520};
1521
1522#define INPUT_DEV_ID_ATTR(name)						\
1523static ssize_t input_dev_show_id_##name(struct device *dev,		\
1524					struct device_attribute *attr,	\
1525					char *buf)			\
1526{									\
1527	struct input_dev *input_dev = to_input_dev(dev);		\
1528	return sysfs_emit(buf, "%04x\n", input_dev->id.name);		\
1529}									\
1530static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1531
1532INPUT_DEV_ID_ATTR(bustype);
1533INPUT_DEV_ID_ATTR(vendor);
1534INPUT_DEV_ID_ATTR(product);
1535INPUT_DEV_ID_ATTR(version);
1536
1537static struct attribute *input_dev_id_attrs[] = {
1538	&dev_attr_bustype.attr,
1539	&dev_attr_vendor.attr,
1540	&dev_attr_product.attr,
1541	&dev_attr_version.attr,
1542	NULL
1543};
1544
1545static const struct attribute_group input_dev_id_attr_group = {
1546	.name	= "id",
1547	.attrs	= input_dev_id_attrs,
1548};
1549
1550static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1551			      int max, int add_cr)
1552{
1553	int i;
1554	int len = 0;
1555	bool skip_empty = true;
1556
1557	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1558		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1559					    bitmap[i], skip_empty);
1560		if (len) {
1561			skip_empty = false;
1562			if (i > 0)
1563				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1564		}
1565	}
1566
1567	/*
1568	 * If no output was produced print a single 0.
1569	 */
1570	if (len == 0)
1571		len = snprintf(buf, buf_size, "%d", 0);
1572
1573	if (add_cr)
1574		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1575
1576	return len;
1577}
1578
1579#define INPUT_DEV_CAP_ATTR(ev, bm)					\
1580static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1581				       struct device_attribute *attr,	\
1582				       char *buf)			\
1583{									\
1584	struct input_dev *input_dev = to_input_dev(dev);		\
1585	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1586				     input_dev->bm##bit, ev##_MAX,	\
1587				     true);				\
1588	return min_t(int, len, PAGE_SIZE);				\
1589}									\
1590static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1591
1592INPUT_DEV_CAP_ATTR(EV, ev);
1593INPUT_DEV_CAP_ATTR(KEY, key);
1594INPUT_DEV_CAP_ATTR(REL, rel);
1595INPUT_DEV_CAP_ATTR(ABS, abs);
1596INPUT_DEV_CAP_ATTR(MSC, msc);
1597INPUT_DEV_CAP_ATTR(LED, led);
1598INPUT_DEV_CAP_ATTR(SND, snd);
1599INPUT_DEV_CAP_ATTR(FF, ff);
1600INPUT_DEV_CAP_ATTR(SW, sw);
1601
1602static struct attribute *input_dev_caps_attrs[] = {
1603	&dev_attr_ev.attr,
1604	&dev_attr_key.attr,
1605	&dev_attr_rel.attr,
1606	&dev_attr_abs.attr,
1607	&dev_attr_msc.attr,
1608	&dev_attr_led.attr,
1609	&dev_attr_snd.attr,
1610	&dev_attr_ff.attr,
1611	&dev_attr_sw.attr,
1612	NULL
1613};
1614
1615static const struct attribute_group input_dev_caps_attr_group = {
1616	.name	= "capabilities",
1617	.attrs	= input_dev_caps_attrs,
1618};
1619
1620static const struct attribute_group *input_dev_attr_groups[] = {
1621	&input_dev_attr_group,
1622	&input_dev_id_attr_group,
1623	&input_dev_caps_attr_group,
1624	&input_poller_attribute_group,
1625	NULL
1626};
1627
1628static void input_dev_release(struct device *device)
1629{
1630	struct input_dev *dev = to_input_dev(device);
1631
1632	input_ff_destroy(dev);
1633	input_mt_destroy_slots(dev);
1634	kfree(dev->poller);
1635	kfree(dev->absinfo);
1636	kfree(dev->vals);
1637	kfree(dev);
1638
1639	module_put(THIS_MODULE);
1640}
1641
1642/*
1643 * Input uevent interface - loading event handlers based on
1644 * device bitfields.
1645 */
1646static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1647				   const char *name, const unsigned long *bitmap, int max)
1648{
1649	int len;
1650
1651	if (add_uevent_var(env, "%s", name))
1652		return -ENOMEM;
1653
1654	len = input_print_bitmap(&env->buf[env->buflen - 1],
1655				 sizeof(env->buf) - env->buflen,
1656				 bitmap, max, false);
1657	if (len >= (sizeof(env->buf) - env->buflen))
1658		return -ENOMEM;
1659
1660	env->buflen += len;
1661	return 0;
1662}
1663
1664/*
1665 * This is a pretty gross hack. When building uevent data the driver core
1666 * may try adding more environment variables to kobj_uevent_env without
1667 * telling us, so we have no idea how much of the buffer we can use to
1668 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1669 * reduce amount of memory we will use for the modalias environment variable.
1670 *
1671 * The potential additions are:
1672 *
1673 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1674 * HOME=/ (6 bytes)
1675 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1676 *
1677 * 68 bytes total. Allow extra buffer - 96 bytes
1678 */
1679#define UEVENT_ENV_EXTRA_LEN	96
1680
1681static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1682					 const struct input_dev *dev)
1683{
1684	int len;
1685
1686	if (add_uevent_var(env, "MODALIAS="))
1687		return -ENOMEM;
1688
1689	len = input_print_modalias(&env->buf[env->buflen - 1],
1690				   (int)sizeof(env->buf) - env->buflen -
1691					UEVENT_ENV_EXTRA_LEN,
1692				   dev);
1693	if (len >= ((int)sizeof(env->buf) - env->buflen -
1694					UEVENT_ENV_EXTRA_LEN))
1695		return -ENOMEM;
1696
1697	env->buflen += len;
1698	return 0;
1699}
1700
1701#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1702	do {								\
1703		int err = add_uevent_var(env, fmt, val);		\
1704		if (err)						\
1705			return err;					\
1706	} while (0)
1707
1708#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1709	do {								\
1710		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1711		if (err)						\
1712			return err;					\
1713	} while (0)
1714
1715#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1716	do {								\
1717		int err = input_add_uevent_modalias_var(env, dev);	\
1718		if (err)						\
1719			return err;					\
1720	} while (0)
1721
1722static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1723{
1724	const struct input_dev *dev = to_input_dev(device);
1725
1726	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1727				dev->id.bustype, dev->id.vendor,
1728				dev->id.product, dev->id.version);
1729	if (dev->name)
1730		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1731	if (dev->phys)
1732		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1733	if (dev->uniq)
1734		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1735
1736	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1737
1738	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1739	if (test_bit(EV_KEY, dev->evbit))
1740		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1741	if (test_bit(EV_REL, dev->evbit))
1742		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1743	if (test_bit(EV_ABS, dev->evbit))
1744		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1745	if (test_bit(EV_MSC, dev->evbit))
1746		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1747	if (test_bit(EV_LED, dev->evbit))
1748		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1749	if (test_bit(EV_SND, dev->evbit))
1750		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1751	if (test_bit(EV_FF, dev->evbit))
1752		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1753	if (test_bit(EV_SW, dev->evbit))
1754		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1755
1756	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1757
1758	return 0;
1759}
1760
1761#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1762	do {								\
1763		int i;							\
1764		bool active;						\
1765									\
1766		if (!test_bit(EV_##type, dev->evbit))			\
1767			break;						\
1768									\
1769		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1770			active = test_bit(i, dev->bits);		\
1771			if (!active && !on)				\
1772				continue;				\
1773									\
1774			dev->event(dev, EV_##type, i, on ? active : 0);	\
1775		}							\
1776	} while (0)
1777
1778static void input_dev_toggle(struct input_dev *dev, bool activate)
1779{
1780	if (!dev->event)
1781		return;
1782
1783	INPUT_DO_TOGGLE(dev, LED, led, activate);
1784	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1785
1786	if (activate && test_bit(EV_REP, dev->evbit)) {
1787		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1788		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1789	}
1790}
1791
1792/**
1793 * input_reset_device() - reset/restore the state of input device
1794 * @dev: input device whose state needs to be reset
1795 *
1796 * This function tries to reset the state of an opened input device and
1797 * bring internal state and state if the hardware in sync with each other.
1798 * We mark all keys as released, restore LED state, repeat rate, etc.
1799 */
1800void input_reset_device(struct input_dev *dev)
1801{
1802	unsigned long flags;
1803
1804	mutex_lock(&dev->mutex);
1805	spin_lock_irqsave(&dev->event_lock, flags);
1806
1807	input_dev_toggle(dev, true);
1808	if (input_dev_release_keys(dev))
1809		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1810
1811	spin_unlock_irqrestore(&dev->event_lock, flags);
1812	mutex_unlock(&dev->mutex);
1813}
1814EXPORT_SYMBOL(input_reset_device);
1815
1816static int input_inhibit_device(struct input_dev *dev)
1817{
 
 
1818	mutex_lock(&dev->mutex);
1819
1820	if (dev->inhibited)
1821		goto out;
1822
1823	if (dev->users) {
1824		if (dev->close)
1825			dev->close(dev);
1826		if (dev->poller)
1827			input_dev_poller_stop(dev->poller);
1828	}
1829
1830	spin_lock_irq(&dev->event_lock);
1831	input_mt_release_slots(dev);
1832	input_dev_release_keys(dev);
1833	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1834	input_dev_toggle(dev, false);
1835	spin_unlock_irq(&dev->event_lock);
1836
1837	dev->inhibited = true;
1838
1839out:
1840	mutex_unlock(&dev->mutex);
1841	return 0;
1842}
1843
1844static int input_uninhibit_device(struct input_dev *dev)
1845{
1846	int ret = 0;
1847
1848	mutex_lock(&dev->mutex);
1849
1850	if (!dev->inhibited)
1851		goto out;
1852
1853	if (dev->users) {
1854		if (dev->open) {
1855			ret = dev->open(dev);
1856			if (ret)
1857				goto out;
1858		}
1859		if (dev->poller)
1860			input_dev_poller_start(dev->poller);
1861	}
1862
1863	dev->inhibited = false;
1864	spin_lock_irq(&dev->event_lock);
1865	input_dev_toggle(dev, true);
1866	spin_unlock_irq(&dev->event_lock);
1867
1868out:
1869	mutex_unlock(&dev->mutex);
1870	return ret;
1871}
1872
 
1873static int input_dev_suspend(struct device *dev)
1874{
1875	struct input_dev *input_dev = to_input_dev(dev);
1876
1877	spin_lock_irq(&input_dev->event_lock);
1878
1879	/*
1880	 * Keys that are pressed now are unlikely to be
1881	 * still pressed when we resume.
1882	 */
1883	if (input_dev_release_keys(input_dev))
1884		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1885
1886	/* Turn off LEDs and sounds, if any are active. */
1887	input_dev_toggle(input_dev, false);
1888
1889	spin_unlock_irq(&input_dev->event_lock);
1890
1891	return 0;
1892}
1893
1894static int input_dev_resume(struct device *dev)
1895{
1896	struct input_dev *input_dev = to_input_dev(dev);
1897
1898	spin_lock_irq(&input_dev->event_lock);
1899
1900	/* Restore state of LEDs and sounds, if any were active. */
1901	input_dev_toggle(input_dev, true);
1902
1903	spin_unlock_irq(&input_dev->event_lock);
1904
1905	return 0;
1906}
1907
1908static int input_dev_freeze(struct device *dev)
1909{
1910	struct input_dev *input_dev = to_input_dev(dev);
1911
1912	spin_lock_irq(&input_dev->event_lock);
1913
1914	/*
1915	 * Keys that are pressed now are unlikely to be
1916	 * still pressed when we resume.
1917	 */
1918	if (input_dev_release_keys(input_dev))
1919		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1920
1921	spin_unlock_irq(&input_dev->event_lock);
1922
1923	return 0;
1924}
1925
1926static int input_dev_poweroff(struct device *dev)
1927{
1928	struct input_dev *input_dev = to_input_dev(dev);
1929
1930	spin_lock_irq(&input_dev->event_lock);
1931
1932	/* Turn off LEDs and sounds, if any are active. */
1933	input_dev_toggle(input_dev, false);
1934
1935	spin_unlock_irq(&input_dev->event_lock);
1936
1937	return 0;
1938}
1939
1940static const struct dev_pm_ops input_dev_pm_ops = {
1941	.suspend	= input_dev_suspend,
1942	.resume		= input_dev_resume,
1943	.freeze		= input_dev_freeze,
1944	.poweroff	= input_dev_poweroff,
1945	.restore	= input_dev_resume,
1946};
 
1947
1948static const struct device_type input_dev_type = {
1949	.groups		= input_dev_attr_groups,
1950	.release	= input_dev_release,
1951	.uevent		= input_dev_uevent,
1952	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
 
 
1953};
1954
1955static char *input_devnode(const struct device *dev, umode_t *mode)
1956{
1957	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1958}
1959
1960const struct class input_class = {
1961	.name		= "input",
1962	.devnode	= input_devnode,
1963};
1964EXPORT_SYMBOL_GPL(input_class);
1965
1966/**
1967 * input_allocate_device - allocate memory for new input device
1968 *
1969 * Returns prepared struct input_dev or %NULL.
1970 *
1971 * NOTE: Use input_free_device() to free devices that have not been
1972 * registered; input_unregister_device() should be used for already
1973 * registered devices.
1974 */
1975struct input_dev *input_allocate_device(void)
1976{
1977	static atomic_t input_no = ATOMIC_INIT(-1);
1978	struct input_dev *dev;
1979
1980	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1981	if (!dev)
1982		return NULL;
1983
1984	/*
1985	 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1986	 * see input_estimate_events_per_packet(). We will tune the number
1987	 * when we register the device.
1988	 */
1989	dev->max_vals = 10;
1990	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1991	if (!dev->vals) {
1992		kfree(dev);
1993		return NULL;
1994	}
1995
1996	mutex_init(&dev->mutex);
1997	spin_lock_init(&dev->event_lock);
1998	timer_setup(&dev->timer, NULL, 0);
1999	INIT_LIST_HEAD(&dev->h_list);
2000	INIT_LIST_HEAD(&dev->node);
2001
2002	dev->dev.type = &input_dev_type;
2003	dev->dev.class = &input_class;
2004	device_initialize(&dev->dev);
2005	/*
2006	 * From this point on we can no longer simply "kfree(dev)", we need
2007	 * to use input_free_device() so that device core properly frees its
2008	 * resources associated with the input device.
2009	 */
2010
2011	dev_set_name(&dev->dev, "input%lu",
2012		     (unsigned long)atomic_inc_return(&input_no));
2013
2014	__module_get(THIS_MODULE);
 
2015
2016	return dev;
2017}
2018EXPORT_SYMBOL(input_allocate_device);
2019
2020struct input_devres {
2021	struct input_dev *input;
2022};
2023
2024static int devm_input_device_match(struct device *dev, void *res, void *data)
2025{
2026	struct input_devres *devres = res;
2027
2028	return devres->input == data;
2029}
2030
2031static void devm_input_device_release(struct device *dev, void *res)
2032{
2033	struct input_devres *devres = res;
2034	struct input_dev *input = devres->input;
2035
2036	dev_dbg(dev, "%s: dropping reference to %s\n",
2037		__func__, dev_name(&input->dev));
2038	input_put_device(input);
2039}
2040
2041/**
2042 * devm_input_allocate_device - allocate managed input device
2043 * @dev: device owning the input device being created
2044 *
2045 * Returns prepared struct input_dev or %NULL.
2046 *
2047 * Managed input devices do not need to be explicitly unregistered or
2048 * freed as it will be done automatically when owner device unbinds from
2049 * its driver (or binding fails). Once managed input device is allocated,
2050 * it is ready to be set up and registered in the same fashion as regular
2051 * input device. There are no special devm_input_device_[un]register()
2052 * variants, regular ones work with both managed and unmanaged devices,
2053 * should you need them. In most cases however, managed input device need
2054 * not be explicitly unregistered or freed.
2055 *
2056 * NOTE: the owner device is set up as parent of input device and users
2057 * should not override it.
2058 */
2059struct input_dev *devm_input_allocate_device(struct device *dev)
2060{
2061	struct input_dev *input;
2062	struct input_devres *devres;
2063
2064	devres = devres_alloc(devm_input_device_release,
2065			      sizeof(*devres), GFP_KERNEL);
2066	if (!devres)
2067		return NULL;
2068
2069	input = input_allocate_device();
2070	if (!input) {
2071		devres_free(devres);
2072		return NULL;
2073	}
2074
2075	input->dev.parent = dev;
2076	input->devres_managed = true;
2077
2078	devres->input = input;
2079	devres_add(dev, devres);
2080
2081	return input;
2082}
2083EXPORT_SYMBOL(devm_input_allocate_device);
2084
2085/**
2086 * input_free_device - free memory occupied by input_dev structure
2087 * @dev: input device to free
2088 *
2089 * This function should only be used if input_register_device()
2090 * was not called yet or if it failed. Once device was registered
2091 * use input_unregister_device() and memory will be freed once last
2092 * reference to the device is dropped.
2093 *
2094 * Device should be allocated by input_allocate_device().
2095 *
2096 * NOTE: If there are references to the input device then memory
2097 * will not be freed until last reference is dropped.
2098 */
2099void input_free_device(struct input_dev *dev)
2100{
2101	if (dev) {
2102		if (dev->devres_managed)
2103			WARN_ON(devres_destroy(dev->dev.parent,
2104						devm_input_device_release,
2105						devm_input_device_match,
2106						dev));
2107		input_put_device(dev);
2108	}
2109}
2110EXPORT_SYMBOL(input_free_device);
2111
2112/**
2113 * input_set_timestamp - set timestamp for input events
2114 * @dev: input device to set timestamp for
2115 * @timestamp: the time at which the event has occurred
2116 *   in CLOCK_MONOTONIC
2117 *
2118 * This function is intended to provide to the input system a more
2119 * accurate time of when an event actually occurred. The driver should
2120 * call this function as soon as a timestamp is acquired ensuring
2121 * clock conversions in input_set_timestamp are done correctly.
2122 *
2123 * The system entering suspend state between timestamp acquisition and
2124 * calling input_set_timestamp can result in inaccurate conversions.
2125 */
2126void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2127{
2128	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2129	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2130	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2131							   TK_OFFS_BOOT);
2132}
2133EXPORT_SYMBOL(input_set_timestamp);
2134
2135/**
2136 * input_get_timestamp - get timestamp for input events
2137 * @dev: input device to get timestamp from
2138 *
2139 * A valid timestamp is a timestamp of non-zero value.
2140 */
2141ktime_t *input_get_timestamp(struct input_dev *dev)
2142{
2143	const ktime_t invalid_timestamp = ktime_set(0, 0);
2144
2145	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2146		input_set_timestamp(dev, ktime_get());
2147
2148	return dev->timestamp;
2149}
2150EXPORT_SYMBOL(input_get_timestamp);
2151
2152/**
2153 * input_set_capability - mark device as capable of a certain event
2154 * @dev: device that is capable of emitting or accepting event
2155 * @type: type of the event (EV_KEY, EV_REL, etc...)
2156 * @code: event code
2157 *
2158 * In addition to setting up corresponding bit in appropriate capability
2159 * bitmap the function also adjusts dev->evbit.
2160 */
2161void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2162{
2163	if (type < EV_CNT && input_max_code[type] &&
2164	    code > input_max_code[type]) {
2165		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2166		       type);
2167		dump_stack();
2168		return;
2169	}
2170
2171	switch (type) {
2172	case EV_KEY:
2173		__set_bit(code, dev->keybit);
2174		break;
2175
2176	case EV_REL:
2177		__set_bit(code, dev->relbit);
2178		break;
2179
2180	case EV_ABS:
2181		input_alloc_absinfo(dev);
 
 
 
2182		__set_bit(code, dev->absbit);
2183		break;
2184
2185	case EV_MSC:
2186		__set_bit(code, dev->mscbit);
2187		break;
2188
2189	case EV_SW:
2190		__set_bit(code, dev->swbit);
2191		break;
2192
2193	case EV_LED:
2194		__set_bit(code, dev->ledbit);
2195		break;
2196
2197	case EV_SND:
2198		__set_bit(code, dev->sndbit);
2199		break;
2200
2201	case EV_FF:
2202		__set_bit(code, dev->ffbit);
2203		break;
2204
2205	case EV_PWR:
2206		/* do nothing */
2207		break;
2208
2209	default:
2210		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2211		dump_stack();
2212		return;
2213	}
2214
2215	__set_bit(type, dev->evbit);
2216}
2217EXPORT_SYMBOL(input_set_capability);
2218
2219static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2220{
2221	int mt_slots;
2222	int i;
2223	unsigned int events;
2224
2225	if (dev->mt) {
2226		mt_slots = dev->mt->num_slots;
2227	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2228		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2229			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2230		mt_slots = clamp(mt_slots, 2, 32);
2231	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2232		mt_slots = 2;
2233	} else {
2234		mt_slots = 0;
2235	}
2236
2237	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2238
2239	if (test_bit(EV_ABS, dev->evbit))
2240		for_each_set_bit(i, dev->absbit, ABS_CNT)
2241			events += input_is_mt_axis(i) ? mt_slots : 1;
2242
2243	if (test_bit(EV_REL, dev->evbit))
2244		events += bitmap_weight(dev->relbit, REL_CNT);
2245
2246	/* Make room for KEY and MSC events */
2247	events += 7;
2248
2249	return events;
2250}
2251
2252#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2253	do {								\
2254		if (!test_bit(EV_##type, dev->evbit))			\
2255			memset(dev->bits##bit, 0,			\
2256				sizeof(dev->bits##bit));		\
2257	} while (0)
2258
2259static void input_cleanse_bitmasks(struct input_dev *dev)
2260{
2261	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2262	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2263	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2264	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2265	INPUT_CLEANSE_BITMASK(dev, LED, led);
2266	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2267	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2268	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2269}
2270
2271static void __input_unregister_device(struct input_dev *dev)
2272{
2273	struct input_handle *handle, *next;
2274
2275	input_disconnect_device(dev);
2276
2277	mutex_lock(&input_mutex);
2278
2279	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2280		handle->handler->disconnect(handle);
2281	WARN_ON(!list_empty(&dev->h_list));
2282
2283	del_timer_sync(&dev->timer);
2284	list_del_init(&dev->node);
2285
2286	input_wakeup_procfs_readers();
2287
2288	mutex_unlock(&input_mutex);
2289
2290	device_del(&dev->dev);
2291}
2292
2293static void devm_input_device_unregister(struct device *dev, void *res)
2294{
2295	struct input_devres *devres = res;
2296	struct input_dev *input = devres->input;
2297
2298	dev_dbg(dev, "%s: unregistering device %s\n",
2299		__func__, dev_name(&input->dev));
2300	__input_unregister_device(input);
2301}
2302
2303/*
2304 * Generate software autorepeat event. Note that we take
2305 * dev->event_lock here to avoid racing with input_event
2306 * which may cause keys get "stuck".
2307 */
2308static void input_repeat_key(struct timer_list *t)
2309{
2310	struct input_dev *dev = from_timer(dev, t, timer);
2311	unsigned long flags;
2312
2313	spin_lock_irqsave(&dev->event_lock, flags);
2314
2315	if (!dev->inhibited &&
2316	    test_bit(dev->repeat_key, dev->key) &&
2317	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2318
2319		input_set_timestamp(dev, ktime_get());
2320		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2321		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2322
2323		if (dev->rep[REP_PERIOD])
2324			mod_timer(&dev->timer, jiffies +
2325					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2326	}
2327
2328	spin_unlock_irqrestore(&dev->event_lock, flags);
2329}
2330
2331/**
2332 * input_enable_softrepeat - enable software autorepeat
2333 * @dev: input device
2334 * @delay: repeat delay
2335 * @period: repeat period
2336 *
2337 * Enable software autorepeat on the input device.
2338 */
2339void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2340{
2341	dev->timer.function = input_repeat_key;
2342	dev->rep[REP_DELAY] = delay;
2343	dev->rep[REP_PERIOD] = period;
2344}
2345EXPORT_SYMBOL(input_enable_softrepeat);
2346
2347bool input_device_enabled(struct input_dev *dev)
2348{
2349	lockdep_assert_held(&dev->mutex);
2350
2351	return !dev->inhibited && dev->users > 0;
2352}
2353EXPORT_SYMBOL_GPL(input_device_enabled);
2354
2355static int input_device_tune_vals(struct input_dev *dev)
2356{
2357	struct input_value *vals;
2358	unsigned int packet_size;
2359	unsigned int max_vals;
2360
2361	packet_size = input_estimate_events_per_packet(dev);
2362	if (dev->hint_events_per_packet < packet_size)
2363		dev->hint_events_per_packet = packet_size;
2364
2365	max_vals = dev->hint_events_per_packet + 2;
2366	if (dev->max_vals >= max_vals)
2367		return 0;
2368
2369	vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2370	if (!vals)
2371		return -ENOMEM;
2372
2373	spin_lock_irq(&dev->event_lock);
2374	dev->max_vals = max_vals;
2375	swap(dev->vals, vals);
2376	spin_unlock_irq(&dev->event_lock);
2377
2378	/* Because of swap() above, this frees the old vals memory */
2379	kfree(vals);
2380
2381	return 0;
2382}
2383
2384/**
2385 * input_register_device - register device with input core
2386 * @dev: device to be registered
2387 *
2388 * This function registers device with input core. The device must be
2389 * allocated with input_allocate_device() and all it's capabilities
2390 * set up before registering.
2391 * If function fails the device must be freed with input_free_device().
2392 * Once device has been successfully registered it can be unregistered
2393 * with input_unregister_device(); input_free_device() should not be
2394 * called in this case.
2395 *
2396 * Note that this function is also used to register managed input devices
2397 * (ones allocated with devm_input_allocate_device()). Such managed input
2398 * devices need not be explicitly unregistered or freed, their tear down
2399 * is controlled by the devres infrastructure. It is also worth noting
2400 * that tear down of managed input devices is internally a 2-step process:
2401 * registered managed input device is first unregistered, but stays in
2402 * memory and can still handle input_event() calls (although events will
2403 * not be delivered anywhere). The freeing of managed input device will
2404 * happen later, when devres stack is unwound to the point where device
2405 * allocation was made.
2406 */
2407int input_register_device(struct input_dev *dev)
2408{
2409	struct input_devres *devres = NULL;
2410	struct input_handler *handler;
 
2411	const char *path;
2412	int error;
2413
2414	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2415		dev_err(&dev->dev,
2416			"Absolute device without dev->absinfo, refusing to register\n");
2417		return -EINVAL;
2418	}
2419
2420	if (dev->devres_managed) {
2421		devres = devres_alloc(devm_input_device_unregister,
2422				      sizeof(*devres), GFP_KERNEL);
2423		if (!devres)
2424			return -ENOMEM;
2425
2426		devres->input = dev;
2427	}
2428
2429	/* Every input device generates EV_SYN/SYN_REPORT events. */
2430	__set_bit(EV_SYN, dev->evbit);
2431
2432	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2433	__clear_bit(KEY_RESERVED, dev->keybit);
2434
2435	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2436	input_cleanse_bitmasks(dev);
2437
2438	error = input_device_tune_vals(dev);
2439	if (error)
 
 
 
 
 
 
2440		goto err_devres_free;
 
2441
2442	/*
2443	 * If delay and period are pre-set by the driver, then autorepeating
2444	 * is handled by the driver itself and we don't do it in input.c.
2445	 */
2446	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2447		input_enable_softrepeat(dev, 250, 33);
2448
2449	if (!dev->getkeycode)
2450		dev->getkeycode = input_default_getkeycode;
2451
2452	if (!dev->setkeycode)
2453		dev->setkeycode = input_default_setkeycode;
2454
2455	if (dev->poller)
2456		input_dev_poller_finalize(dev->poller);
2457
2458	error = device_add(&dev->dev);
2459	if (error)
2460		goto err_devres_free;
2461
2462	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2463	pr_info("%s as %s\n",
2464		dev->name ? dev->name : "Unspecified device",
2465		path ? path : "N/A");
2466	kfree(path);
2467
2468	error = mutex_lock_interruptible(&input_mutex);
2469	if (error)
2470		goto err_device_del;
2471
2472	list_add_tail(&dev->node, &input_dev_list);
2473
2474	list_for_each_entry(handler, &input_handler_list, node)
2475		input_attach_handler(dev, handler);
2476
2477	input_wakeup_procfs_readers();
2478
2479	mutex_unlock(&input_mutex);
2480
2481	if (dev->devres_managed) {
2482		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2483			__func__, dev_name(&dev->dev));
2484		devres_add(dev->dev.parent, devres);
2485	}
2486	return 0;
2487
2488err_device_del:
2489	device_del(&dev->dev);
 
 
 
2490err_devres_free:
2491	devres_free(devres);
2492	return error;
2493}
2494EXPORT_SYMBOL(input_register_device);
2495
2496/**
2497 * input_unregister_device - unregister previously registered device
2498 * @dev: device to be unregistered
2499 *
2500 * This function unregisters an input device. Once device is unregistered
2501 * the caller should not try to access it as it may get freed at any moment.
2502 */
2503void input_unregister_device(struct input_dev *dev)
2504{
2505	if (dev->devres_managed) {
2506		WARN_ON(devres_destroy(dev->dev.parent,
2507					devm_input_device_unregister,
2508					devm_input_device_match,
2509					dev));
2510		__input_unregister_device(dev);
2511		/*
2512		 * We do not do input_put_device() here because it will be done
2513		 * when 2nd devres fires up.
2514		 */
2515	} else {
2516		__input_unregister_device(dev);
2517		input_put_device(dev);
2518	}
2519}
2520EXPORT_SYMBOL(input_unregister_device);
2521
2522static int input_handler_check_methods(const struct input_handler *handler)
2523{
2524	int count = 0;
2525
2526	if (handler->filter)
2527		count++;
2528	if (handler->events)
2529		count++;
2530	if (handler->event)
2531		count++;
2532
2533	if (count > 1) {
2534		pr_err("%s: only one event processing method can be defined (%s)\n",
2535		       __func__, handler->name);
2536		return -EINVAL;
2537	}
2538
2539	return 0;
2540}
2541
2542/**
2543 * input_register_handler - register a new input handler
2544 * @handler: handler to be registered
2545 *
2546 * This function registers a new input handler (interface) for input
2547 * devices in the system and attaches it to all input devices that
2548 * are compatible with the handler.
2549 */
2550int input_register_handler(struct input_handler *handler)
2551{
2552	struct input_dev *dev;
2553	int error;
2554
2555	error = input_handler_check_methods(handler);
2556	if (error)
2557		return error;
2558
2559	INIT_LIST_HEAD(&handler->h_list);
2560
2561	error = mutex_lock_interruptible(&input_mutex);
2562	if (error)
2563		return error;
2564
2565	list_add_tail(&handler->node, &input_handler_list);
2566
2567	list_for_each_entry(dev, &input_dev_list, node)
2568		input_attach_handler(dev, handler);
2569
2570	input_wakeup_procfs_readers();
2571
2572	mutex_unlock(&input_mutex);
2573	return 0;
2574}
2575EXPORT_SYMBOL(input_register_handler);
2576
2577/**
2578 * input_unregister_handler - unregisters an input handler
2579 * @handler: handler to be unregistered
2580 *
2581 * This function disconnects a handler from its input devices and
2582 * removes it from lists of known handlers.
2583 */
2584void input_unregister_handler(struct input_handler *handler)
2585{
2586	struct input_handle *handle, *next;
2587
2588	mutex_lock(&input_mutex);
2589
2590	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2591		handler->disconnect(handle);
2592	WARN_ON(!list_empty(&handler->h_list));
2593
2594	list_del_init(&handler->node);
2595
2596	input_wakeup_procfs_readers();
2597
2598	mutex_unlock(&input_mutex);
2599}
2600EXPORT_SYMBOL(input_unregister_handler);
2601
2602/**
2603 * input_handler_for_each_handle - handle iterator
2604 * @handler: input handler to iterate
2605 * @data: data for the callback
2606 * @fn: function to be called for each handle
2607 *
2608 * Iterate over @bus's list of devices, and call @fn for each, passing
2609 * it @data and stop when @fn returns a non-zero value. The function is
2610 * using RCU to traverse the list and therefore may be using in atomic
2611 * contexts. The @fn callback is invoked from RCU critical section and
2612 * thus must not sleep.
2613 */
2614int input_handler_for_each_handle(struct input_handler *handler, void *data,
2615				  int (*fn)(struct input_handle *, void *))
2616{
2617	struct input_handle *handle;
2618	int retval = 0;
2619
2620	rcu_read_lock();
2621
2622	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2623		retval = fn(handle, data);
2624		if (retval)
2625			break;
2626	}
2627
2628	rcu_read_unlock();
2629
2630	return retval;
2631}
2632EXPORT_SYMBOL(input_handler_for_each_handle);
2633
2634/*
2635 * An implementation of input_handle's handle_events() method that simply
2636 * invokes handler->event() method for each event one by one.
2637 */
2638static unsigned int input_handle_events_default(struct input_handle *handle,
2639						struct input_value *vals,
2640						unsigned int count)
2641{
2642	struct input_handler *handler = handle->handler;
2643	struct input_value *v;
2644
2645	for (v = vals; v != vals + count; v++)
2646		handler->event(handle, v->type, v->code, v->value);
2647
2648	return count;
2649}
2650
2651/*
2652 * An implementation of input_handle's handle_events() method that invokes
2653 * handler->filter() method for each event one by one and removes events
2654 * that were filtered out from the "vals" array.
2655 */
2656static unsigned int input_handle_events_filter(struct input_handle *handle,
2657					       struct input_value *vals,
2658					       unsigned int count)
2659{
2660	struct input_handler *handler = handle->handler;
2661	struct input_value *end = vals;
2662	struct input_value *v;
2663
2664	for (v = vals; v != vals + count; v++) {
2665		if (handler->filter(handle, v->type, v->code, v->value))
2666			continue;
2667		if (end != v)
2668			*end = *v;
2669		end++;
2670	}
2671
2672	return end - vals;
2673}
2674
2675/*
2676 * An implementation of input_handle's handle_events() method that does nothing.
2677 */
2678static unsigned int input_handle_events_null(struct input_handle *handle,
2679					     struct input_value *vals,
2680					     unsigned int count)
2681{
2682	return count;
2683}
2684
2685/*
2686 * Sets up appropriate handle->event_handler based on the input_handler
2687 * associated with the handle.
2688 */
2689static void input_handle_setup_event_handler(struct input_handle *handle)
2690{
2691	struct input_handler *handler = handle->handler;
2692
2693	if (handler->filter)
2694		handle->handle_events = input_handle_events_filter;
2695	else if (handler->event)
2696		handle->handle_events = input_handle_events_default;
2697	else if (handler->events)
2698		handle->handle_events = handler->events;
2699	else
2700		handle->handle_events = input_handle_events_null;
2701}
2702
2703/**
2704 * input_register_handle - register a new input handle
2705 * @handle: handle to register
2706 *
2707 * This function puts a new input handle onto device's
2708 * and handler's lists so that events can flow through
2709 * it once it is opened using input_open_device().
2710 *
2711 * This function is supposed to be called from handler's
2712 * connect() method.
2713 */
2714int input_register_handle(struct input_handle *handle)
2715{
2716	struct input_handler *handler = handle->handler;
2717	struct input_dev *dev = handle->dev;
2718	int error;
2719
2720	input_handle_setup_event_handler(handle);
2721	/*
2722	 * We take dev->mutex here to prevent race with
2723	 * input_release_device().
2724	 */
2725	error = mutex_lock_interruptible(&dev->mutex);
2726	if (error)
2727		return error;
2728
2729	/*
2730	 * Filters go to the head of the list, normal handlers
2731	 * to the tail.
2732	 */
2733	if (handler->filter)
2734		list_add_rcu(&handle->d_node, &dev->h_list);
2735	else
2736		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2737
2738	mutex_unlock(&dev->mutex);
2739
2740	/*
2741	 * Since we are supposed to be called from ->connect()
2742	 * which is mutually exclusive with ->disconnect()
2743	 * we can't be racing with input_unregister_handle()
2744	 * and so separate lock is not needed here.
2745	 */
2746	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2747
2748	if (handler->start)
2749		handler->start(handle);
2750
2751	return 0;
2752}
2753EXPORT_SYMBOL(input_register_handle);
2754
2755/**
2756 * input_unregister_handle - unregister an input handle
2757 * @handle: handle to unregister
2758 *
2759 * This function removes input handle from device's
2760 * and handler's lists.
2761 *
2762 * This function is supposed to be called from handler's
2763 * disconnect() method.
2764 */
2765void input_unregister_handle(struct input_handle *handle)
2766{
2767	struct input_dev *dev = handle->dev;
2768
2769	list_del_rcu(&handle->h_node);
2770
2771	/*
2772	 * Take dev->mutex to prevent race with input_release_device().
2773	 */
2774	mutex_lock(&dev->mutex);
2775	list_del_rcu(&handle->d_node);
2776	mutex_unlock(&dev->mutex);
2777
2778	synchronize_rcu();
2779}
2780EXPORT_SYMBOL(input_unregister_handle);
2781
2782/**
2783 * input_get_new_minor - allocates a new input minor number
2784 * @legacy_base: beginning or the legacy range to be searched
2785 * @legacy_num: size of legacy range
2786 * @allow_dynamic: whether we can also take ID from the dynamic range
2787 *
2788 * This function allocates a new device minor for from input major namespace.
2789 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2790 * parameters and whether ID can be allocated from dynamic range if there are
2791 * no free IDs in legacy range.
2792 */
2793int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2794			bool allow_dynamic)
2795{
2796	/*
2797	 * This function should be called from input handler's ->connect()
2798	 * methods, which are serialized with input_mutex, so no additional
2799	 * locking is needed here.
2800	 */
2801	if (legacy_base >= 0) {
2802		int minor = ida_alloc_range(&input_ida, legacy_base,
2803					    legacy_base + legacy_num - 1,
2804					    GFP_KERNEL);
 
2805		if (minor >= 0 || !allow_dynamic)
2806			return minor;
2807	}
2808
2809	return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2810			       INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
 
2811}
2812EXPORT_SYMBOL(input_get_new_minor);
2813
2814/**
2815 * input_free_minor - release previously allocated minor
2816 * @minor: minor to be released
2817 *
2818 * This function releases previously allocated input minor so that it can be
2819 * reused later.
2820 */
2821void input_free_minor(unsigned int minor)
2822{
2823	ida_free(&input_ida, minor);
2824}
2825EXPORT_SYMBOL(input_free_minor);
2826
2827static int __init input_init(void)
2828{
2829	int err;
2830
2831	err = class_register(&input_class);
2832	if (err) {
2833		pr_err("unable to register input_dev class\n");
2834		return err;
2835	}
2836
2837	err = input_proc_init();
2838	if (err)
2839		goto fail1;
2840
2841	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842				     INPUT_MAX_CHAR_DEVICES, "input");
2843	if (err) {
2844		pr_err("unable to register char major %d", INPUT_MAJOR);
2845		goto fail2;
2846	}
2847
2848	return 0;
2849
2850 fail2:	input_proc_exit();
2851 fail1:	class_unregister(&input_class);
2852	return err;
2853}
2854
2855static void __exit input_exit(void)
2856{
2857	input_proc_exit();
2858	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2859				 INPUT_MAX_CHAR_DEVICES);
2860	class_unregister(&input_class);
2861}
2862
2863subsys_initcall(input_init);
2864module_exit(input_exit);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * The input core
   4 *
   5 * Copyright (c) 1999-2002 Vojtech Pavlik
   6 */
   7
   8
   9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/types.h>
  13#include <linux/idr.h>
  14#include <linux/input/mt.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/random.h>
  18#include <linux/major.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
 
  22#include <linux/poll.h>
  23#include <linux/device.h>
 
  24#include <linux/mutex.h>
  25#include <linux/rcupdate.h>
  26#include "input-compat.h"
 
  27#include "input-poller.h"
  28
  29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  30MODULE_DESCRIPTION("Input core");
  31MODULE_LICENSE("GPL");
  32
  33#define INPUT_MAX_CHAR_DEVICES		1024
  34#define INPUT_FIRST_DYNAMIC_DEV		256
  35static DEFINE_IDA(input_ida);
  36
  37static LIST_HEAD(input_dev_list);
  38static LIST_HEAD(input_handler_list);
  39
  40/*
  41 * input_mutex protects access to both input_dev_list and input_handler_list.
  42 * This also causes input_[un]register_device and input_[un]register_handler
  43 * be mutually exclusive which simplifies locking in drivers implementing
  44 * input handlers.
  45 */
  46static DEFINE_MUTEX(input_mutex);
  47
  48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
  49
 
 
 
 
 
 
 
 
 
 
 
  50static inline int is_event_supported(unsigned int code,
  51				     unsigned long *bm, unsigned int max)
  52{
  53	return code <= max && test_bit(code, bm);
  54}
  55
  56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  57{
  58	if (fuzz) {
  59		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  60			return old_val;
  61
  62		if (value > old_val - fuzz && value < old_val + fuzz)
  63			return (old_val * 3 + value) / 4;
  64
  65		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  66			return (old_val + value) / 2;
  67	}
  68
  69	return value;
  70}
  71
  72static void input_start_autorepeat(struct input_dev *dev, int code)
  73{
  74	if (test_bit(EV_REP, dev->evbit) &&
  75	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  76	    dev->timer.function) {
  77		dev->repeat_key = code;
  78		mod_timer(&dev->timer,
  79			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  80	}
  81}
  82
  83static void input_stop_autorepeat(struct input_dev *dev)
  84{
  85	del_timer(&dev->timer);
  86}
  87
  88/*
  89 * Pass event first through all filters and then, if event has not been
  90 * filtered out, through all open handles. This function is called with
  91 * dev->event_lock held and interrupts disabled.
  92 */
  93static unsigned int input_to_handler(struct input_handle *handle,
  94			struct input_value *vals, unsigned int count)
  95{
  96	struct input_handler *handler = handle->handler;
  97	struct input_value *end = vals;
  98	struct input_value *v;
  99
 100	if (handler->filter) {
 101		for (v = vals; v != vals + count; v++) {
 102			if (handler->filter(handle, v->type, v->code, v->value))
 103				continue;
 104			if (end != v)
 105				*end = *v;
 106			end++;
 107		}
 108		count = end - vals;
 109	}
 110
 111	if (!count)
 112		return 0;
 113
 114	if (handler->events)
 115		handler->events(handle, vals, count);
 116	else if (handler->event)
 117		for (v = vals; v != vals + count; v++)
 118			handler->event(handle, v->type, v->code, v->value);
 119
 120	return count;
 121}
 122
 123/*
 124 * Pass values first through all filters and then, if event has not been
 125 * filtered out, through all open handles. This function is called with
 126 * dev->event_lock held and interrupts disabled.
 
 
 
 127 */
 128static void input_pass_values(struct input_dev *dev,
 129			      struct input_value *vals, unsigned int count)
 130{
 131	struct input_handle *handle;
 132	struct input_value *v;
 133
 134	if (!count)
 135		return;
 136
 137	rcu_read_lock();
 138
 139	handle = rcu_dereference(dev->grab);
 140	if (handle) {
 141		count = input_to_handler(handle, vals, count);
 142	} else {
 143		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
 144			if (handle->open) {
 145				count = input_to_handler(handle, vals, count);
 
 146				if (!count)
 147					break;
 148			}
 149	}
 150
 151	rcu_read_unlock();
 152
 153	/* trigger auto repeat for key events */
 154	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
 155		for (v = vals; v != vals + count; v++) {
 156			if (v->type == EV_KEY && v->value != 2) {
 157				if (v->value)
 158					input_start_autorepeat(dev, v->code);
 159				else
 160					input_stop_autorepeat(dev);
 161			}
 162		}
 163	}
 164}
 165
 166static void input_pass_event(struct input_dev *dev,
 167			     unsigned int type, unsigned int code, int value)
 168{
 169	struct input_value vals[] = { { type, code, value } };
 170
 171	input_pass_values(dev, vals, ARRAY_SIZE(vals));
 172}
 173
 174/*
 175 * Generate software autorepeat event. Note that we take
 176 * dev->event_lock here to avoid racing with input_event
 177 * which may cause keys get "stuck".
 178 */
 179static void input_repeat_key(struct timer_list *t)
 180{
 181	struct input_dev *dev = from_timer(dev, t, timer);
 182	unsigned long flags;
 183
 184	spin_lock_irqsave(&dev->event_lock, flags);
 185
 186	if (test_bit(dev->repeat_key, dev->key) &&
 187	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
 188		struct input_value vals[] =  {
 189			{ EV_KEY, dev->repeat_key, 2 },
 190			input_value_sync
 191		};
 192
 193		input_set_timestamp(dev, ktime_get());
 194		input_pass_values(dev, vals, ARRAY_SIZE(vals));
 195
 196		if (dev->rep[REP_PERIOD])
 197			mod_timer(&dev->timer, jiffies +
 198					msecs_to_jiffies(dev->rep[REP_PERIOD]));
 199	}
 200
 201	spin_unlock_irqrestore(&dev->event_lock, flags);
 202}
 203
 204#define INPUT_IGNORE_EVENT	0
 205#define INPUT_PASS_TO_HANDLERS	1
 206#define INPUT_PASS_TO_DEVICE	2
 207#define INPUT_SLOT		4
 208#define INPUT_FLUSH		8
 209#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
 210
 211static int input_handle_abs_event(struct input_dev *dev,
 212				  unsigned int code, int *pval)
 213{
 214	struct input_mt *mt = dev->mt;
 
 215	bool is_mt_event;
 216	int *pold;
 217
 218	if (code == ABS_MT_SLOT) {
 219		/*
 220		 * "Stage" the event; we'll flush it later, when we
 221		 * get actual touch data.
 222		 */
 223		if (mt && *pval >= 0 && *pval < mt->num_slots)
 224			mt->slot = *pval;
 225
 226		return INPUT_IGNORE_EVENT;
 227	}
 228
 229	is_mt_event = input_is_mt_value(code);
 230
 231	if (!is_mt_event) {
 232		pold = &dev->absinfo[code].value;
 233	} else if (mt) {
 234		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
 
 235	} else {
 236		/*
 237		 * Bypass filtering for multi-touch events when
 238		 * not employing slots.
 239		 */
 240		pold = NULL;
 241	}
 242
 243	if (pold) {
 244		*pval = input_defuzz_abs_event(*pval, *pold,
 245						dev->absinfo[code].fuzz);
 246		if (*pold == *pval)
 247			return INPUT_IGNORE_EVENT;
 248
 249		*pold = *pval;
 250	}
 251
 252	/* Flush pending "slot" event */
 253	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
 254		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
 255		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
 256	}
 257
 258	return INPUT_PASS_TO_HANDLERS;
 259}
 260
 261static int input_get_disposition(struct input_dev *dev,
 262			  unsigned int type, unsigned int code, int *pval)
 263{
 264	int disposition = INPUT_IGNORE_EVENT;
 265	int value = *pval;
 266
 
 
 
 
 267	switch (type) {
 268
 269	case EV_SYN:
 270		switch (code) {
 271		case SYN_CONFIG:
 272			disposition = INPUT_PASS_TO_ALL;
 273			break;
 274
 275		case SYN_REPORT:
 276			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
 277			break;
 278		case SYN_MT_REPORT:
 279			disposition = INPUT_PASS_TO_HANDLERS;
 280			break;
 281		}
 282		break;
 283
 284	case EV_KEY:
 285		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
 286
 287			/* auto-repeat bypasses state updates */
 288			if (value == 2) {
 289				disposition = INPUT_PASS_TO_HANDLERS;
 290				break;
 291			}
 292
 293			if (!!test_bit(code, dev->key) != !!value) {
 294
 295				__change_bit(code, dev->key);
 296				disposition = INPUT_PASS_TO_HANDLERS;
 297			}
 298		}
 299		break;
 300
 301	case EV_SW:
 302		if (is_event_supported(code, dev->swbit, SW_MAX) &&
 303		    !!test_bit(code, dev->sw) != !!value) {
 304
 305			__change_bit(code, dev->sw);
 306			disposition = INPUT_PASS_TO_HANDLERS;
 307		}
 308		break;
 309
 310	case EV_ABS:
 311		if (is_event_supported(code, dev->absbit, ABS_MAX))
 312			disposition = input_handle_abs_event(dev, code, &value);
 313
 314		break;
 315
 316	case EV_REL:
 317		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
 318			disposition = INPUT_PASS_TO_HANDLERS;
 319
 320		break;
 321
 322	case EV_MSC:
 323		if (is_event_supported(code, dev->mscbit, MSC_MAX))
 324			disposition = INPUT_PASS_TO_ALL;
 325
 326		break;
 327
 328	case EV_LED:
 329		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
 330		    !!test_bit(code, dev->led) != !!value) {
 331
 332			__change_bit(code, dev->led);
 333			disposition = INPUT_PASS_TO_ALL;
 334		}
 335		break;
 336
 337	case EV_SND:
 338		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
 339
 340			if (!!test_bit(code, dev->snd) != !!value)
 341				__change_bit(code, dev->snd);
 342			disposition = INPUT_PASS_TO_ALL;
 343		}
 344		break;
 345
 346	case EV_REP:
 347		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
 348			dev->rep[code] = value;
 349			disposition = INPUT_PASS_TO_ALL;
 350		}
 351		break;
 352
 353	case EV_FF:
 354		if (value >= 0)
 355			disposition = INPUT_PASS_TO_ALL;
 356		break;
 357
 358	case EV_PWR:
 359		disposition = INPUT_PASS_TO_ALL;
 360		break;
 361	}
 362
 363	*pval = value;
 364	return disposition;
 365}
 366
 367static void input_handle_event(struct input_dev *dev,
 368			       unsigned int type, unsigned int code, int value)
 369{
 370	int disposition;
 371
 372	/* filter-out events from inhibited devices */
 373	if (dev->inhibited)
 374		return;
 375
 376	disposition = input_get_disposition(dev, type, code, &value);
 377	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
 378		add_input_randomness(type, code, value);
 379
 380	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
 381		dev->event(dev, type, code, value);
 382
 383	if (!dev->vals)
 384		return;
 385
 386	if (disposition & INPUT_PASS_TO_HANDLERS) {
 387		struct input_value *v;
 388
 389		if (disposition & INPUT_SLOT) {
 390			v = &dev->vals[dev->num_vals++];
 391			v->type = EV_ABS;
 392			v->code = ABS_MT_SLOT;
 393			v->value = dev->mt->slot;
 394		}
 395
 396		v = &dev->vals[dev->num_vals++];
 397		v->type = type;
 398		v->code = code;
 399		v->value = value;
 400	}
 401
 402	if (disposition & INPUT_FLUSH) {
 403		if (dev->num_vals >= 2)
 404			input_pass_values(dev, dev->vals, dev->num_vals);
 405		dev->num_vals = 0;
 406		/*
 407		 * Reset the timestamp on flush so we won't end up
 408		 * with a stale one. Note we only need to reset the
 409		 * monolithic one as we use its presence when deciding
 410		 * whether to generate a synthetic timestamp.
 411		 */
 412		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
 413	} else if (dev->num_vals >= dev->max_vals - 2) {
 414		dev->vals[dev->num_vals++] = input_value_sync;
 415		input_pass_values(dev, dev->vals, dev->num_vals);
 416		dev->num_vals = 0;
 417	}
 
 
 
 
 
 
 
 
 418
 
 
 
 
 
 
 
 419}
 420
 421/**
 422 * input_event() - report new input event
 423 * @dev: device that generated the event
 424 * @type: type of the event
 425 * @code: event code
 426 * @value: value of the event
 427 *
 428 * This function should be used by drivers implementing various input
 429 * devices to report input events. See also input_inject_event().
 430 *
 431 * NOTE: input_event() may be safely used right after input device was
 432 * allocated with input_allocate_device(), even before it is registered
 433 * with input_register_device(), but the event will not reach any of the
 434 * input handlers. Such early invocation of input_event() may be used
 435 * to 'seed' initial state of a switch or initial position of absolute
 436 * axis, etc.
 437 */
 438void input_event(struct input_dev *dev,
 439		 unsigned int type, unsigned int code, int value)
 440{
 441	unsigned long flags;
 442
 443	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 444
 445		spin_lock_irqsave(&dev->event_lock, flags);
 446		input_handle_event(dev, type, code, value);
 447		spin_unlock_irqrestore(&dev->event_lock, flags);
 448	}
 449}
 450EXPORT_SYMBOL(input_event);
 451
 452/**
 453 * input_inject_event() - send input event from input handler
 454 * @handle: input handle to send event through
 455 * @type: type of the event
 456 * @code: event code
 457 * @value: value of the event
 458 *
 459 * Similar to input_event() but will ignore event if device is
 460 * "grabbed" and handle injecting event is not the one that owns
 461 * the device.
 462 */
 463void input_inject_event(struct input_handle *handle,
 464			unsigned int type, unsigned int code, int value)
 465{
 466	struct input_dev *dev = handle->dev;
 467	struct input_handle *grab;
 468	unsigned long flags;
 469
 470	if (is_event_supported(type, dev->evbit, EV_MAX)) {
 471		spin_lock_irqsave(&dev->event_lock, flags);
 472
 473		rcu_read_lock();
 474		grab = rcu_dereference(dev->grab);
 475		if (!grab || grab == handle)
 476			input_handle_event(dev, type, code, value);
 477		rcu_read_unlock();
 478
 479		spin_unlock_irqrestore(&dev->event_lock, flags);
 480	}
 481}
 482EXPORT_SYMBOL(input_inject_event);
 483
 484/**
 485 * input_alloc_absinfo - allocates array of input_absinfo structs
 486 * @dev: the input device emitting absolute events
 487 *
 488 * If the absinfo struct the caller asked for is already allocated, this
 489 * functions will not do anything.
 490 */
 491void input_alloc_absinfo(struct input_dev *dev)
 492{
 493	if (dev->absinfo)
 494		return;
 495
 496	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
 497	if (!dev->absinfo) {
 498		dev_err(dev->dev.parent ?: &dev->dev,
 499			"%s: unable to allocate memory\n", __func__);
 500		/*
 501		 * We will handle this allocation failure in
 502		 * input_register_device() when we refuse to register input
 503		 * device with ABS bits but without absinfo.
 504		 */
 505	}
 506}
 507EXPORT_SYMBOL(input_alloc_absinfo);
 508
 509void input_set_abs_params(struct input_dev *dev, unsigned int axis,
 510			  int min, int max, int fuzz, int flat)
 511{
 512	struct input_absinfo *absinfo;
 513
 
 
 
 514	input_alloc_absinfo(dev);
 515	if (!dev->absinfo)
 516		return;
 517
 518	absinfo = &dev->absinfo[axis];
 519	absinfo->minimum = min;
 520	absinfo->maximum = max;
 521	absinfo->fuzz = fuzz;
 522	absinfo->flat = flat;
 523
 524	__set_bit(EV_ABS, dev->evbit);
 525	__set_bit(axis, dev->absbit);
 526}
 527EXPORT_SYMBOL(input_set_abs_params);
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530/**
 531 * input_grab_device - grabs device for exclusive use
 532 * @handle: input handle that wants to own the device
 533 *
 534 * When a device is grabbed by an input handle all events generated by
 535 * the device are delivered only to this handle. Also events injected
 536 * by other input handles are ignored while device is grabbed.
 537 */
 538int input_grab_device(struct input_handle *handle)
 539{
 540	struct input_dev *dev = handle->dev;
 541	int retval;
 542
 543	retval = mutex_lock_interruptible(&dev->mutex);
 544	if (retval)
 545		return retval;
 546
 547	if (dev->grab) {
 548		retval = -EBUSY;
 549		goto out;
 550	}
 551
 552	rcu_assign_pointer(dev->grab, handle);
 553
 554 out:
 555	mutex_unlock(&dev->mutex);
 556	return retval;
 557}
 558EXPORT_SYMBOL(input_grab_device);
 559
 560static void __input_release_device(struct input_handle *handle)
 561{
 562	struct input_dev *dev = handle->dev;
 563	struct input_handle *grabber;
 564
 565	grabber = rcu_dereference_protected(dev->grab,
 566					    lockdep_is_held(&dev->mutex));
 567	if (grabber == handle) {
 568		rcu_assign_pointer(dev->grab, NULL);
 569		/* Make sure input_pass_event() notices that grab is gone */
 570		synchronize_rcu();
 571
 572		list_for_each_entry(handle, &dev->h_list, d_node)
 573			if (handle->open && handle->handler->start)
 574				handle->handler->start(handle);
 575	}
 576}
 577
 578/**
 579 * input_release_device - release previously grabbed device
 580 * @handle: input handle that owns the device
 581 *
 582 * Releases previously grabbed device so that other input handles can
 583 * start receiving input events. Upon release all handlers attached
 584 * to the device have their start() method called so they have a change
 585 * to synchronize device state with the rest of the system.
 586 */
 587void input_release_device(struct input_handle *handle)
 588{
 589	struct input_dev *dev = handle->dev;
 590
 591	mutex_lock(&dev->mutex);
 592	__input_release_device(handle);
 593	mutex_unlock(&dev->mutex);
 594}
 595EXPORT_SYMBOL(input_release_device);
 596
 597/**
 598 * input_open_device - open input device
 599 * @handle: handle through which device is being accessed
 600 *
 601 * This function should be called by input handlers when they
 602 * want to start receive events from given input device.
 603 */
 604int input_open_device(struct input_handle *handle)
 605{
 606	struct input_dev *dev = handle->dev;
 607	int retval;
 608
 609	retval = mutex_lock_interruptible(&dev->mutex);
 610	if (retval)
 611		return retval;
 612
 613	if (dev->going_away) {
 614		retval = -ENODEV;
 615		goto out;
 616	}
 617
 618	handle->open++;
 619
 
 
 
 620	if (dev->users++ || dev->inhibited) {
 621		/*
 622		 * Device is already opened and/or inhibited,
 623		 * so we can exit immediately and report success.
 624		 */
 625		goto out;
 626	}
 627
 628	if (dev->open) {
 629		retval = dev->open(dev);
 630		if (retval) {
 631			dev->users--;
 632			handle->open--;
 633			/*
 634			 * Make sure we are not delivering any more events
 635			 * through this handle
 636			 */
 637			synchronize_rcu();
 638			goto out;
 639		}
 640	}
 641
 642	if (dev->poller)
 643		input_dev_poller_start(dev->poller);
 644
 645 out:
 646	mutex_unlock(&dev->mutex);
 647	return retval;
 648}
 649EXPORT_SYMBOL(input_open_device);
 650
 651int input_flush_device(struct input_handle *handle, struct file *file)
 652{
 653	struct input_dev *dev = handle->dev;
 654	int retval;
 655
 656	retval = mutex_lock_interruptible(&dev->mutex);
 657	if (retval)
 658		return retval;
 659
 660	if (dev->flush)
 661		retval = dev->flush(dev, file);
 662
 663	mutex_unlock(&dev->mutex);
 664	return retval;
 665}
 666EXPORT_SYMBOL(input_flush_device);
 667
 668/**
 669 * input_close_device - close input device
 670 * @handle: handle through which device is being accessed
 671 *
 672 * This function should be called by input handlers when they
 673 * want to stop receive events from given input device.
 674 */
 675void input_close_device(struct input_handle *handle)
 676{
 677	struct input_dev *dev = handle->dev;
 678
 679	mutex_lock(&dev->mutex);
 680
 681	__input_release_device(handle);
 682
 683	if (!dev->inhibited && !--dev->users) {
 684		if (dev->poller)
 685			input_dev_poller_stop(dev->poller);
 686		if (dev->close)
 687			dev->close(dev);
 
 
 688	}
 689
 690	if (!--handle->open) {
 691		/*
 692		 * synchronize_rcu() makes sure that input_pass_event()
 693		 * completed and that no more input events are delivered
 694		 * through this handle
 695		 */
 696		synchronize_rcu();
 697	}
 698
 699	mutex_unlock(&dev->mutex);
 700}
 701EXPORT_SYMBOL(input_close_device);
 702
 703/*
 704 * Simulate keyup events for all keys that are marked as pressed.
 705 * The function must be called with dev->event_lock held.
 706 */
 707static void input_dev_release_keys(struct input_dev *dev)
 708{
 709	bool need_sync = false;
 710	int code;
 711
 
 
 712	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
 713		for_each_set_bit(code, dev->key, KEY_CNT) {
 714			input_pass_event(dev, EV_KEY, code, 0);
 715			need_sync = true;
 716		}
 
 717
 718		if (need_sync)
 719			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
 720
 721		memset(dev->key, 0, sizeof(dev->key));
 722	}
 723}
 724
 725/*
 726 * Prepare device for unregistering
 727 */
 728static void input_disconnect_device(struct input_dev *dev)
 729{
 730	struct input_handle *handle;
 731
 732	/*
 733	 * Mark device as going away. Note that we take dev->mutex here
 734	 * not to protect access to dev->going_away but rather to ensure
 735	 * that there are no threads in the middle of input_open_device()
 736	 */
 737	mutex_lock(&dev->mutex);
 738	dev->going_away = true;
 739	mutex_unlock(&dev->mutex);
 740
 741	spin_lock_irq(&dev->event_lock);
 742
 743	/*
 744	 * Simulate keyup events for all pressed keys so that handlers
 745	 * are not left with "stuck" keys. The driver may continue
 746	 * generate events even after we done here but they will not
 747	 * reach any handlers.
 748	 */
 749	input_dev_release_keys(dev);
 
 750
 751	list_for_each_entry(handle, &dev->h_list, d_node)
 752		handle->open = 0;
 753
 754	spin_unlock_irq(&dev->event_lock);
 755}
 756
 757/**
 758 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 759 * @ke: keymap entry containing scancode to be converted.
 760 * @scancode: pointer to the location where converted scancode should
 761 *	be stored.
 762 *
 763 * This function is used to convert scancode stored in &struct keymap_entry
 764 * into scalar form understood by legacy keymap handling methods. These
 765 * methods expect scancodes to be represented as 'unsigned int'.
 766 */
 767int input_scancode_to_scalar(const struct input_keymap_entry *ke,
 768			     unsigned int *scancode)
 769{
 770	switch (ke->len) {
 771	case 1:
 772		*scancode = *((u8 *)ke->scancode);
 773		break;
 774
 775	case 2:
 776		*scancode = *((u16 *)ke->scancode);
 777		break;
 778
 779	case 4:
 780		*scancode = *((u32 *)ke->scancode);
 781		break;
 782
 783	default:
 784		return -EINVAL;
 785	}
 786
 787	return 0;
 788}
 789EXPORT_SYMBOL(input_scancode_to_scalar);
 790
 791/*
 792 * Those routines handle the default case where no [gs]etkeycode() is
 793 * defined. In this case, an array indexed by the scancode is used.
 794 */
 795
 796static unsigned int input_fetch_keycode(struct input_dev *dev,
 797					unsigned int index)
 798{
 799	switch (dev->keycodesize) {
 800	case 1:
 801		return ((u8 *)dev->keycode)[index];
 802
 803	case 2:
 804		return ((u16 *)dev->keycode)[index];
 805
 806	default:
 807		return ((u32 *)dev->keycode)[index];
 808	}
 809}
 810
 811static int input_default_getkeycode(struct input_dev *dev,
 812				    struct input_keymap_entry *ke)
 813{
 814	unsigned int index;
 815	int error;
 816
 817	if (!dev->keycodesize)
 818		return -EINVAL;
 819
 820	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
 821		index = ke->index;
 822	else {
 823		error = input_scancode_to_scalar(ke, &index);
 824		if (error)
 825			return error;
 826	}
 827
 828	if (index >= dev->keycodemax)
 829		return -EINVAL;
 830
 831	ke->keycode = input_fetch_keycode(dev, index);
 832	ke->index = index;
 833	ke->len = sizeof(index);
 834	memcpy(ke->scancode, &index, sizeof(index));
 835
 836	return 0;
 837}
 838
 839static int input_default_setkeycode(struct input_dev *dev,
 840				    const struct input_keymap_entry *ke,
 841				    unsigned int *old_keycode)
 842{
 843	unsigned int index;
 844	int error;
 845	int i;
 846
 847	if (!dev->keycodesize)
 848		return -EINVAL;
 849
 850	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 851		index = ke->index;
 852	} else {
 853		error = input_scancode_to_scalar(ke, &index);
 854		if (error)
 855			return error;
 856	}
 857
 858	if (index >= dev->keycodemax)
 859		return -EINVAL;
 860
 861	if (dev->keycodesize < sizeof(ke->keycode) &&
 862			(ke->keycode >> (dev->keycodesize * 8)))
 863		return -EINVAL;
 864
 865	switch (dev->keycodesize) {
 866		case 1: {
 867			u8 *k = (u8 *)dev->keycode;
 868			*old_keycode = k[index];
 869			k[index] = ke->keycode;
 870			break;
 871		}
 872		case 2: {
 873			u16 *k = (u16 *)dev->keycode;
 874			*old_keycode = k[index];
 875			k[index] = ke->keycode;
 876			break;
 877		}
 878		default: {
 879			u32 *k = (u32 *)dev->keycode;
 880			*old_keycode = k[index];
 881			k[index] = ke->keycode;
 882			break;
 883		}
 884	}
 885
 886	if (*old_keycode <= KEY_MAX) {
 887		__clear_bit(*old_keycode, dev->keybit);
 888		for (i = 0; i < dev->keycodemax; i++) {
 889			if (input_fetch_keycode(dev, i) == *old_keycode) {
 890				__set_bit(*old_keycode, dev->keybit);
 891				/* Setting the bit twice is useless, so break */
 892				break;
 893			}
 894		}
 895	}
 896
 897	__set_bit(ke->keycode, dev->keybit);
 898	return 0;
 899}
 900
 901/**
 902 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 903 * @dev: input device which keymap is being queried
 904 * @ke: keymap entry
 905 *
 906 * This function should be called by anyone interested in retrieving current
 907 * keymap. Presently evdev handlers use it.
 908 */
 909int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
 910{
 911	unsigned long flags;
 912	int retval;
 913
 914	spin_lock_irqsave(&dev->event_lock, flags);
 915	retval = dev->getkeycode(dev, ke);
 916	spin_unlock_irqrestore(&dev->event_lock, flags);
 917
 918	return retval;
 919}
 920EXPORT_SYMBOL(input_get_keycode);
 921
 922/**
 923 * input_set_keycode - attribute a keycode to a given scancode
 924 * @dev: input device which keymap is being updated
 925 * @ke: new keymap entry
 926 *
 927 * This function should be called by anyone needing to update current
 928 * keymap. Presently keyboard and evdev handlers use it.
 929 */
 930int input_set_keycode(struct input_dev *dev,
 931		      const struct input_keymap_entry *ke)
 932{
 933	unsigned long flags;
 934	unsigned int old_keycode;
 935	int retval;
 936
 937	if (ke->keycode > KEY_MAX)
 938		return -EINVAL;
 939
 940	spin_lock_irqsave(&dev->event_lock, flags);
 941
 942	retval = dev->setkeycode(dev, ke, &old_keycode);
 943	if (retval)
 944		goto out;
 945
 946	/* Make sure KEY_RESERVED did not get enabled. */
 947	__clear_bit(KEY_RESERVED, dev->keybit);
 948
 949	/*
 950	 * Simulate keyup event if keycode is not present
 951	 * in the keymap anymore
 952	 */
 953	if (old_keycode > KEY_MAX) {
 954		dev_warn(dev->dev.parent ?: &dev->dev,
 955			 "%s: got too big old keycode %#x\n",
 956			 __func__, old_keycode);
 957	} else if (test_bit(EV_KEY, dev->evbit) &&
 958		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
 959		   __test_and_clear_bit(old_keycode, dev->key)) {
 960		struct input_value vals[] =  {
 961			{ EV_KEY, old_keycode, 0 },
 962			input_value_sync
 963		};
 964
 965		input_pass_values(dev, vals, ARRAY_SIZE(vals));
 
 
 
 
 966	}
 967
 968 out:
 969	spin_unlock_irqrestore(&dev->event_lock, flags);
 970
 971	return retval;
 972}
 973EXPORT_SYMBOL(input_set_keycode);
 974
 975bool input_match_device_id(const struct input_dev *dev,
 976			   const struct input_device_id *id)
 977{
 978	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
 979		if (id->bustype != dev->id.bustype)
 980			return false;
 981
 982	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
 983		if (id->vendor != dev->id.vendor)
 984			return false;
 985
 986	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
 987		if (id->product != dev->id.product)
 988			return false;
 989
 990	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
 991		if (id->version != dev->id.version)
 992			return false;
 993
 994	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
 995	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
 996	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
 997	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
 998	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
 999	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1000	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1001	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1002	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1003	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1004		return false;
1005	}
1006
1007	return true;
1008}
1009EXPORT_SYMBOL(input_match_device_id);
1010
1011static const struct input_device_id *input_match_device(struct input_handler *handler,
1012							struct input_dev *dev)
1013{
1014	const struct input_device_id *id;
1015
1016	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1017		if (input_match_device_id(dev, id) &&
1018		    (!handler->match || handler->match(handler, dev))) {
1019			return id;
1020		}
1021	}
1022
1023	return NULL;
1024}
1025
1026static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1027{
1028	const struct input_device_id *id;
1029	int error;
1030
1031	id = input_match_device(handler, dev);
1032	if (!id)
1033		return -ENODEV;
1034
1035	error = handler->connect(handler, dev, id);
1036	if (error && error != -ENODEV)
1037		pr_err("failed to attach handler %s to device %s, error: %d\n",
1038		       handler->name, kobject_name(&dev->dev.kobj), error);
1039
1040	return error;
1041}
1042
1043#ifdef CONFIG_COMPAT
1044
1045static int input_bits_to_string(char *buf, int buf_size,
1046				unsigned long bits, bool skip_empty)
1047{
1048	int len = 0;
1049
1050	if (in_compat_syscall()) {
1051		u32 dword = bits >> 32;
1052		if (dword || !skip_empty)
1053			len += snprintf(buf, buf_size, "%x ", dword);
1054
1055		dword = bits & 0xffffffffUL;
1056		if (dword || !skip_empty || len)
1057			len += snprintf(buf + len, max(buf_size - len, 0),
1058					"%x", dword);
1059	} else {
1060		if (bits || !skip_empty)
1061			len += snprintf(buf, buf_size, "%lx", bits);
1062	}
1063
1064	return len;
1065}
1066
1067#else /* !CONFIG_COMPAT */
1068
1069static int input_bits_to_string(char *buf, int buf_size,
1070				unsigned long bits, bool skip_empty)
1071{
1072	return bits || !skip_empty ?
1073		snprintf(buf, buf_size, "%lx", bits) : 0;
1074}
1075
1076#endif
1077
1078#ifdef CONFIG_PROC_FS
1079
1080static struct proc_dir_entry *proc_bus_input_dir;
1081static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1082static int input_devices_state;
1083
1084static inline void input_wakeup_procfs_readers(void)
1085{
1086	input_devices_state++;
1087	wake_up(&input_devices_poll_wait);
1088}
1089
 
 
 
 
 
 
1090static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1091{
 
 
 
1092	poll_wait(file, &input_devices_poll_wait, wait);
1093	if (file->f_version != input_devices_state) {
1094		file->f_version = input_devices_state;
1095		return EPOLLIN | EPOLLRDNORM;
1096	}
1097
1098	return 0;
1099}
1100
1101union input_seq_state {
1102	struct {
1103		unsigned short pos;
1104		bool mutex_acquired;
1105	};
1106	void *p;
1107};
1108
1109static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1110{
1111	union input_seq_state *state = (union input_seq_state *)&seq->private;
1112	int error;
1113
1114	/* We need to fit into seq->private pointer */
1115	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1116
1117	error = mutex_lock_interruptible(&input_mutex);
1118	if (error) {
1119		state->mutex_acquired = false;
1120		return ERR_PTR(error);
1121	}
1122
1123	state->mutex_acquired = true;
1124
1125	return seq_list_start(&input_dev_list, *pos);
1126}
1127
1128static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1129{
1130	return seq_list_next(v, &input_dev_list, pos);
1131}
1132
1133static void input_seq_stop(struct seq_file *seq, void *v)
1134{
1135	union input_seq_state *state = (union input_seq_state *)&seq->private;
1136
1137	if (state->mutex_acquired)
1138		mutex_unlock(&input_mutex);
1139}
1140
1141static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1142				   unsigned long *bitmap, int max)
1143{
1144	int i;
1145	bool skip_empty = true;
1146	char buf[18];
1147
1148	seq_printf(seq, "B: %s=", name);
1149
1150	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1151		if (input_bits_to_string(buf, sizeof(buf),
1152					 bitmap[i], skip_empty)) {
1153			skip_empty = false;
1154			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1155		}
1156	}
1157
1158	/*
1159	 * If no output was produced print a single 0.
1160	 */
1161	if (skip_empty)
1162		seq_putc(seq, '0');
1163
1164	seq_putc(seq, '\n');
1165}
1166
1167static int input_devices_seq_show(struct seq_file *seq, void *v)
1168{
1169	struct input_dev *dev = container_of(v, struct input_dev, node);
1170	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1171	struct input_handle *handle;
1172
1173	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1174		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1175
1176	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1177	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1178	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1179	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1180	seq_puts(seq, "H: Handlers=");
1181
1182	list_for_each_entry(handle, &dev->h_list, d_node)
1183		seq_printf(seq, "%s ", handle->name);
1184	seq_putc(seq, '\n');
1185
1186	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1187
1188	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1189	if (test_bit(EV_KEY, dev->evbit))
1190		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1191	if (test_bit(EV_REL, dev->evbit))
1192		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1193	if (test_bit(EV_ABS, dev->evbit))
1194		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1195	if (test_bit(EV_MSC, dev->evbit))
1196		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1197	if (test_bit(EV_LED, dev->evbit))
1198		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1199	if (test_bit(EV_SND, dev->evbit))
1200		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1201	if (test_bit(EV_FF, dev->evbit))
1202		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1203	if (test_bit(EV_SW, dev->evbit))
1204		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1205
1206	seq_putc(seq, '\n');
1207
1208	kfree(path);
1209	return 0;
1210}
1211
1212static const struct seq_operations input_devices_seq_ops = {
1213	.start	= input_devices_seq_start,
1214	.next	= input_devices_seq_next,
1215	.stop	= input_seq_stop,
1216	.show	= input_devices_seq_show,
1217};
1218
1219static int input_proc_devices_open(struct inode *inode, struct file *file)
1220{
1221	return seq_open(file, &input_devices_seq_ops);
 
1222}
1223
1224static const struct proc_ops input_devices_proc_ops = {
1225	.proc_open	= input_proc_devices_open,
1226	.proc_poll	= input_proc_devices_poll,
1227	.proc_read	= seq_read,
1228	.proc_lseek	= seq_lseek,
1229	.proc_release	= seq_release,
1230};
1231
1232static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1233{
1234	union input_seq_state *state = (union input_seq_state *)&seq->private;
1235	int error;
1236
1237	/* We need to fit into seq->private pointer */
1238	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1239
1240	error = mutex_lock_interruptible(&input_mutex);
1241	if (error) {
1242		state->mutex_acquired = false;
1243		return ERR_PTR(error);
1244	}
1245
1246	state->mutex_acquired = true;
1247	state->pos = *pos;
1248
1249	return seq_list_start(&input_handler_list, *pos);
1250}
1251
1252static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1253{
1254	union input_seq_state *state = (union input_seq_state *)&seq->private;
1255
1256	state->pos = *pos + 1;
1257	return seq_list_next(v, &input_handler_list, pos);
1258}
1259
1260static int input_handlers_seq_show(struct seq_file *seq, void *v)
1261{
1262	struct input_handler *handler = container_of(v, struct input_handler, node);
1263	union input_seq_state *state = (union input_seq_state *)&seq->private;
1264
1265	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1266	if (handler->filter)
1267		seq_puts(seq, " (filter)");
1268	if (handler->legacy_minors)
1269		seq_printf(seq, " Minor=%d", handler->minor);
1270	seq_putc(seq, '\n');
1271
1272	return 0;
1273}
1274
1275static const struct seq_operations input_handlers_seq_ops = {
1276	.start	= input_handlers_seq_start,
1277	.next	= input_handlers_seq_next,
1278	.stop	= input_seq_stop,
1279	.show	= input_handlers_seq_show,
1280};
1281
1282static int input_proc_handlers_open(struct inode *inode, struct file *file)
1283{
1284	return seq_open(file, &input_handlers_seq_ops);
 
1285}
1286
1287static const struct proc_ops input_handlers_proc_ops = {
1288	.proc_open	= input_proc_handlers_open,
1289	.proc_read	= seq_read,
1290	.proc_lseek	= seq_lseek,
1291	.proc_release	= seq_release,
1292};
1293
1294static int __init input_proc_init(void)
1295{
1296	struct proc_dir_entry *entry;
1297
1298	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1299	if (!proc_bus_input_dir)
1300		return -ENOMEM;
1301
1302	entry = proc_create("devices", 0, proc_bus_input_dir,
1303			    &input_devices_proc_ops);
1304	if (!entry)
1305		goto fail1;
1306
1307	entry = proc_create("handlers", 0, proc_bus_input_dir,
1308			    &input_handlers_proc_ops);
1309	if (!entry)
1310		goto fail2;
1311
1312	return 0;
1313
1314 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1315 fail1: remove_proc_entry("bus/input", NULL);
1316	return -ENOMEM;
1317}
1318
1319static void input_proc_exit(void)
1320{
1321	remove_proc_entry("devices", proc_bus_input_dir);
1322	remove_proc_entry("handlers", proc_bus_input_dir);
1323	remove_proc_entry("bus/input", NULL);
1324}
1325
1326#else /* !CONFIG_PROC_FS */
1327static inline void input_wakeup_procfs_readers(void) { }
1328static inline int input_proc_init(void) { return 0; }
1329static inline void input_proc_exit(void) { }
1330#endif
1331
1332#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1333static ssize_t input_dev_show_##name(struct device *dev,		\
1334				     struct device_attribute *attr,	\
1335				     char *buf)				\
1336{									\
1337	struct input_dev *input_dev = to_input_dev(dev);		\
1338									\
1339	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1340			 input_dev->name ? input_dev->name : "");	\
1341}									\
1342static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1343
1344INPUT_DEV_STRING_ATTR_SHOW(name);
1345INPUT_DEV_STRING_ATTR_SHOW(phys);
1346INPUT_DEV_STRING_ATTR_SHOW(uniq);
1347
1348static int input_print_modalias_bits(char *buf, int size,
1349				     char name, unsigned long *bm,
1350				     unsigned int min_bit, unsigned int max_bit)
1351{
1352	int len = 0, i;
 
1353
1354	len += snprintf(buf, max(size, 0), "%c", name);
1355	for (i = min_bit; i < max_bit; i++)
1356		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1357			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1358	return len;
1359}
1360
1361static int input_print_modalias(char *buf, int size, struct input_dev *id,
1362				int add_cr)
1363{
1364	int len;
1365
1366	len = snprintf(buf, max(size, 0),
1367		       "input:b%04Xv%04Xp%04Xe%04X-",
1368		       id->id.bustype, id->id.vendor,
1369		       id->id.product, id->id.version);
1370
1371	len += input_print_modalias_bits(buf + len, size - len,
1372				'e', id->evbit, 0, EV_MAX);
1373	len += input_print_modalias_bits(buf + len, size - len,
 
 
 
 
 
 
 
1374				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375	len += input_print_modalias_bits(buf + len, size - len,
1376				'r', id->relbit, 0, REL_MAX);
1377	len += input_print_modalias_bits(buf + len, size - len,
1378				'a', id->absbit, 0, ABS_MAX);
1379	len += input_print_modalias_bits(buf + len, size - len,
1380				'm', id->mscbit, 0, MSC_MAX);
1381	len += input_print_modalias_bits(buf + len, size - len,
1382				'l', id->ledbit, 0, LED_MAX);
1383	len += input_print_modalias_bits(buf + len, size - len,
1384				's', id->sndbit, 0, SND_MAX);
1385	len += input_print_modalias_bits(buf + len, size - len,
1386				'f', id->ffbit, 0, FF_MAX);
1387	len += input_print_modalias_bits(buf + len, size - len,
1388				'w', id->swbit, 0, SW_MAX);
1389
1390	if (add_cr)
1391		len += snprintf(buf + len, max(size - len, 0), "\n");
 
 
 
 
1392
1393	return len;
 
 
 
 
 
 
 
 
 
1394}
1395
1396static ssize_t input_dev_show_modalias(struct device *dev,
1397				       struct device_attribute *attr,
1398				       char *buf)
1399{
1400	struct input_dev *id = to_input_dev(dev);
1401	ssize_t len;
1402
1403	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
 
 
1404
1405	return min_t(int, len, PAGE_SIZE);
1406}
1407static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1408
1409static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1410			      int max, int add_cr);
1411
1412static ssize_t input_dev_show_properties(struct device *dev,
1413					 struct device_attribute *attr,
1414					 char *buf)
1415{
1416	struct input_dev *input_dev = to_input_dev(dev);
1417	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1418				     INPUT_PROP_MAX, true);
1419	return min_t(int, len, PAGE_SIZE);
1420}
1421static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1422
1423static int input_inhibit_device(struct input_dev *dev);
1424static int input_uninhibit_device(struct input_dev *dev);
1425
1426static ssize_t inhibited_show(struct device *dev,
1427			      struct device_attribute *attr,
1428			      char *buf)
1429{
1430	struct input_dev *input_dev = to_input_dev(dev);
1431
1432	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1433}
1434
1435static ssize_t inhibited_store(struct device *dev,
1436			       struct device_attribute *attr, const char *buf,
1437			       size_t len)
1438{
1439	struct input_dev *input_dev = to_input_dev(dev);
1440	ssize_t rv;
1441	bool inhibited;
1442
1443	if (strtobool(buf, &inhibited))
1444		return -EINVAL;
1445
1446	if (inhibited)
1447		rv = input_inhibit_device(input_dev);
1448	else
1449		rv = input_uninhibit_device(input_dev);
1450
1451	if (rv != 0)
1452		return rv;
1453
1454	return len;
1455}
1456
1457static DEVICE_ATTR_RW(inhibited);
1458
1459static struct attribute *input_dev_attrs[] = {
1460	&dev_attr_name.attr,
1461	&dev_attr_phys.attr,
1462	&dev_attr_uniq.attr,
1463	&dev_attr_modalias.attr,
1464	&dev_attr_properties.attr,
1465	&dev_attr_inhibited.attr,
1466	NULL
1467};
1468
1469static const struct attribute_group input_dev_attr_group = {
1470	.attrs	= input_dev_attrs,
1471};
1472
1473#define INPUT_DEV_ID_ATTR(name)						\
1474static ssize_t input_dev_show_id_##name(struct device *dev,		\
1475					struct device_attribute *attr,	\
1476					char *buf)			\
1477{									\
1478	struct input_dev *input_dev = to_input_dev(dev);		\
1479	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1480}									\
1481static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1482
1483INPUT_DEV_ID_ATTR(bustype);
1484INPUT_DEV_ID_ATTR(vendor);
1485INPUT_DEV_ID_ATTR(product);
1486INPUT_DEV_ID_ATTR(version);
1487
1488static struct attribute *input_dev_id_attrs[] = {
1489	&dev_attr_bustype.attr,
1490	&dev_attr_vendor.attr,
1491	&dev_attr_product.attr,
1492	&dev_attr_version.attr,
1493	NULL
1494};
1495
1496static const struct attribute_group input_dev_id_attr_group = {
1497	.name	= "id",
1498	.attrs	= input_dev_id_attrs,
1499};
1500
1501static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1502			      int max, int add_cr)
1503{
1504	int i;
1505	int len = 0;
1506	bool skip_empty = true;
1507
1508	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1509		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1510					    bitmap[i], skip_empty);
1511		if (len) {
1512			skip_empty = false;
1513			if (i > 0)
1514				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1515		}
1516	}
1517
1518	/*
1519	 * If no output was produced print a single 0.
1520	 */
1521	if (len == 0)
1522		len = snprintf(buf, buf_size, "%d", 0);
1523
1524	if (add_cr)
1525		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1526
1527	return len;
1528}
1529
1530#define INPUT_DEV_CAP_ATTR(ev, bm)					\
1531static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1532				       struct device_attribute *attr,	\
1533				       char *buf)			\
1534{									\
1535	struct input_dev *input_dev = to_input_dev(dev);		\
1536	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1537				     input_dev->bm##bit, ev##_MAX,	\
1538				     true);				\
1539	return min_t(int, len, PAGE_SIZE);				\
1540}									\
1541static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1542
1543INPUT_DEV_CAP_ATTR(EV, ev);
1544INPUT_DEV_CAP_ATTR(KEY, key);
1545INPUT_DEV_CAP_ATTR(REL, rel);
1546INPUT_DEV_CAP_ATTR(ABS, abs);
1547INPUT_DEV_CAP_ATTR(MSC, msc);
1548INPUT_DEV_CAP_ATTR(LED, led);
1549INPUT_DEV_CAP_ATTR(SND, snd);
1550INPUT_DEV_CAP_ATTR(FF, ff);
1551INPUT_DEV_CAP_ATTR(SW, sw);
1552
1553static struct attribute *input_dev_caps_attrs[] = {
1554	&dev_attr_ev.attr,
1555	&dev_attr_key.attr,
1556	&dev_attr_rel.attr,
1557	&dev_attr_abs.attr,
1558	&dev_attr_msc.attr,
1559	&dev_attr_led.attr,
1560	&dev_attr_snd.attr,
1561	&dev_attr_ff.attr,
1562	&dev_attr_sw.attr,
1563	NULL
1564};
1565
1566static const struct attribute_group input_dev_caps_attr_group = {
1567	.name	= "capabilities",
1568	.attrs	= input_dev_caps_attrs,
1569};
1570
1571static const struct attribute_group *input_dev_attr_groups[] = {
1572	&input_dev_attr_group,
1573	&input_dev_id_attr_group,
1574	&input_dev_caps_attr_group,
1575	&input_poller_attribute_group,
1576	NULL
1577};
1578
1579static void input_dev_release(struct device *device)
1580{
1581	struct input_dev *dev = to_input_dev(device);
1582
1583	input_ff_destroy(dev);
1584	input_mt_destroy_slots(dev);
1585	kfree(dev->poller);
1586	kfree(dev->absinfo);
1587	kfree(dev->vals);
1588	kfree(dev);
1589
1590	module_put(THIS_MODULE);
1591}
1592
1593/*
1594 * Input uevent interface - loading event handlers based on
1595 * device bitfields.
1596 */
1597static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1598				   const char *name, unsigned long *bitmap, int max)
1599{
1600	int len;
1601
1602	if (add_uevent_var(env, "%s", name))
1603		return -ENOMEM;
1604
1605	len = input_print_bitmap(&env->buf[env->buflen - 1],
1606				 sizeof(env->buf) - env->buflen,
1607				 bitmap, max, false);
1608	if (len >= (sizeof(env->buf) - env->buflen))
1609		return -ENOMEM;
1610
1611	env->buflen += len;
1612	return 0;
1613}
1614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1616					 struct input_dev *dev)
1617{
1618	int len;
1619
1620	if (add_uevent_var(env, "MODALIAS="))
1621		return -ENOMEM;
1622
1623	len = input_print_modalias(&env->buf[env->buflen - 1],
1624				   sizeof(env->buf) - env->buflen,
1625				   dev, 0);
1626	if (len >= (sizeof(env->buf) - env->buflen))
 
 
1627		return -ENOMEM;
1628
1629	env->buflen += len;
1630	return 0;
1631}
1632
1633#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1634	do {								\
1635		int err = add_uevent_var(env, fmt, val);		\
1636		if (err)						\
1637			return err;					\
1638	} while (0)
1639
1640#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1641	do {								\
1642		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1643		if (err)						\
1644			return err;					\
1645	} while (0)
1646
1647#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1648	do {								\
1649		int err = input_add_uevent_modalias_var(env, dev);	\
1650		if (err)						\
1651			return err;					\
1652	} while (0)
1653
1654static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1655{
1656	struct input_dev *dev = to_input_dev(device);
1657
1658	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1659				dev->id.bustype, dev->id.vendor,
1660				dev->id.product, dev->id.version);
1661	if (dev->name)
1662		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1663	if (dev->phys)
1664		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1665	if (dev->uniq)
1666		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1667
1668	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1669
1670	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1671	if (test_bit(EV_KEY, dev->evbit))
1672		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1673	if (test_bit(EV_REL, dev->evbit))
1674		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1675	if (test_bit(EV_ABS, dev->evbit))
1676		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1677	if (test_bit(EV_MSC, dev->evbit))
1678		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1679	if (test_bit(EV_LED, dev->evbit))
1680		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1681	if (test_bit(EV_SND, dev->evbit))
1682		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1683	if (test_bit(EV_FF, dev->evbit))
1684		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1685	if (test_bit(EV_SW, dev->evbit))
1686		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1687
1688	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1689
1690	return 0;
1691}
1692
1693#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1694	do {								\
1695		int i;							\
1696		bool active;						\
1697									\
1698		if (!test_bit(EV_##type, dev->evbit))			\
1699			break;						\
1700									\
1701		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1702			active = test_bit(i, dev->bits);		\
1703			if (!active && !on)				\
1704				continue;				\
1705									\
1706			dev->event(dev, EV_##type, i, on ? active : 0);	\
1707		}							\
1708	} while (0)
1709
1710static void input_dev_toggle(struct input_dev *dev, bool activate)
1711{
1712	if (!dev->event)
1713		return;
1714
1715	INPUT_DO_TOGGLE(dev, LED, led, activate);
1716	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1717
1718	if (activate && test_bit(EV_REP, dev->evbit)) {
1719		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1720		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1721	}
1722}
1723
1724/**
1725 * input_reset_device() - reset/restore the state of input device
1726 * @dev: input device whose state needs to be reset
1727 *
1728 * This function tries to reset the state of an opened input device and
1729 * bring internal state and state if the hardware in sync with each other.
1730 * We mark all keys as released, restore LED state, repeat rate, etc.
1731 */
1732void input_reset_device(struct input_dev *dev)
1733{
1734	unsigned long flags;
1735
1736	mutex_lock(&dev->mutex);
1737	spin_lock_irqsave(&dev->event_lock, flags);
1738
1739	input_dev_toggle(dev, true);
1740	input_dev_release_keys(dev);
 
1741
1742	spin_unlock_irqrestore(&dev->event_lock, flags);
1743	mutex_unlock(&dev->mutex);
1744}
1745EXPORT_SYMBOL(input_reset_device);
1746
1747static int input_inhibit_device(struct input_dev *dev)
1748{
1749	int ret = 0;
1750
1751	mutex_lock(&dev->mutex);
1752
1753	if (dev->inhibited)
1754		goto out;
1755
1756	if (dev->users) {
1757		if (dev->close)
1758			dev->close(dev);
1759		if (dev->poller)
1760			input_dev_poller_stop(dev->poller);
1761	}
1762
1763	spin_lock_irq(&dev->event_lock);
 
1764	input_dev_release_keys(dev);
 
1765	input_dev_toggle(dev, false);
1766	spin_unlock_irq(&dev->event_lock);
1767
1768	dev->inhibited = true;
1769
1770out:
1771	mutex_unlock(&dev->mutex);
1772	return ret;
1773}
1774
1775static int input_uninhibit_device(struct input_dev *dev)
1776{
1777	int ret = 0;
1778
1779	mutex_lock(&dev->mutex);
1780
1781	if (!dev->inhibited)
1782		goto out;
1783
1784	if (dev->users) {
1785		if (dev->open) {
1786			ret = dev->open(dev);
1787			if (ret)
1788				goto out;
1789		}
1790		if (dev->poller)
1791			input_dev_poller_start(dev->poller);
1792	}
1793
1794	dev->inhibited = false;
1795	spin_lock_irq(&dev->event_lock);
1796	input_dev_toggle(dev, true);
1797	spin_unlock_irq(&dev->event_lock);
1798
1799out:
1800	mutex_unlock(&dev->mutex);
1801	return ret;
1802}
1803
1804#ifdef CONFIG_PM_SLEEP
1805static int input_dev_suspend(struct device *dev)
1806{
1807	struct input_dev *input_dev = to_input_dev(dev);
1808
1809	spin_lock_irq(&input_dev->event_lock);
1810
1811	/*
1812	 * Keys that are pressed now are unlikely to be
1813	 * still pressed when we resume.
1814	 */
1815	input_dev_release_keys(input_dev);
 
1816
1817	/* Turn off LEDs and sounds, if any are active. */
1818	input_dev_toggle(input_dev, false);
1819
1820	spin_unlock_irq(&input_dev->event_lock);
1821
1822	return 0;
1823}
1824
1825static int input_dev_resume(struct device *dev)
1826{
1827	struct input_dev *input_dev = to_input_dev(dev);
1828
1829	spin_lock_irq(&input_dev->event_lock);
1830
1831	/* Restore state of LEDs and sounds, if any were active. */
1832	input_dev_toggle(input_dev, true);
1833
1834	spin_unlock_irq(&input_dev->event_lock);
1835
1836	return 0;
1837}
1838
1839static int input_dev_freeze(struct device *dev)
1840{
1841	struct input_dev *input_dev = to_input_dev(dev);
1842
1843	spin_lock_irq(&input_dev->event_lock);
1844
1845	/*
1846	 * Keys that are pressed now are unlikely to be
1847	 * still pressed when we resume.
1848	 */
1849	input_dev_release_keys(input_dev);
 
1850
1851	spin_unlock_irq(&input_dev->event_lock);
1852
1853	return 0;
1854}
1855
1856static int input_dev_poweroff(struct device *dev)
1857{
1858	struct input_dev *input_dev = to_input_dev(dev);
1859
1860	spin_lock_irq(&input_dev->event_lock);
1861
1862	/* Turn off LEDs and sounds, if any are active. */
1863	input_dev_toggle(input_dev, false);
1864
1865	spin_unlock_irq(&input_dev->event_lock);
1866
1867	return 0;
1868}
1869
1870static const struct dev_pm_ops input_dev_pm_ops = {
1871	.suspend	= input_dev_suspend,
1872	.resume		= input_dev_resume,
1873	.freeze		= input_dev_freeze,
1874	.poweroff	= input_dev_poweroff,
1875	.restore	= input_dev_resume,
1876};
1877#endif /* CONFIG_PM */
1878
1879static const struct device_type input_dev_type = {
1880	.groups		= input_dev_attr_groups,
1881	.release	= input_dev_release,
1882	.uevent		= input_dev_uevent,
1883#ifdef CONFIG_PM_SLEEP
1884	.pm		= &input_dev_pm_ops,
1885#endif
1886};
1887
1888static char *input_devnode(struct device *dev, umode_t *mode)
1889{
1890	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1891}
1892
1893struct class input_class = {
1894	.name		= "input",
1895	.devnode	= input_devnode,
1896};
1897EXPORT_SYMBOL_GPL(input_class);
1898
1899/**
1900 * input_allocate_device - allocate memory for new input device
1901 *
1902 * Returns prepared struct input_dev or %NULL.
1903 *
1904 * NOTE: Use input_free_device() to free devices that have not been
1905 * registered; input_unregister_device() should be used for already
1906 * registered devices.
1907 */
1908struct input_dev *input_allocate_device(void)
1909{
1910	static atomic_t input_no = ATOMIC_INIT(-1);
1911	struct input_dev *dev;
1912
1913	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1914	if (dev) {
1915		dev->dev.type = &input_dev_type;
1916		dev->dev.class = &input_class;
1917		device_initialize(&dev->dev);
1918		mutex_init(&dev->mutex);
1919		spin_lock_init(&dev->event_lock);
1920		timer_setup(&dev->timer, NULL, 0);
1921		INIT_LIST_HEAD(&dev->h_list);
1922		INIT_LIST_HEAD(&dev->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923
1924		dev_set_name(&dev->dev, "input%lu",
1925			     (unsigned long)atomic_inc_return(&input_no));
1926
1927		__module_get(THIS_MODULE);
1928	}
1929
1930	return dev;
1931}
1932EXPORT_SYMBOL(input_allocate_device);
1933
1934struct input_devres {
1935	struct input_dev *input;
1936};
1937
1938static int devm_input_device_match(struct device *dev, void *res, void *data)
1939{
1940	struct input_devres *devres = res;
1941
1942	return devres->input == data;
1943}
1944
1945static void devm_input_device_release(struct device *dev, void *res)
1946{
1947	struct input_devres *devres = res;
1948	struct input_dev *input = devres->input;
1949
1950	dev_dbg(dev, "%s: dropping reference to %s\n",
1951		__func__, dev_name(&input->dev));
1952	input_put_device(input);
1953}
1954
1955/**
1956 * devm_input_allocate_device - allocate managed input device
1957 * @dev: device owning the input device being created
1958 *
1959 * Returns prepared struct input_dev or %NULL.
1960 *
1961 * Managed input devices do not need to be explicitly unregistered or
1962 * freed as it will be done automatically when owner device unbinds from
1963 * its driver (or binding fails). Once managed input device is allocated,
1964 * it is ready to be set up and registered in the same fashion as regular
1965 * input device. There are no special devm_input_device_[un]register()
1966 * variants, regular ones work with both managed and unmanaged devices,
1967 * should you need them. In most cases however, managed input device need
1968 * not be explicitly unregistered or freed.
1969 *
1970 * NOTE: the owner device is set up as parent of input device and users
1971 * should not override it.
1972 */
1973struct input_dev *devm_input_allocate_device(struct device *dev)
1974{
1975	struct input_dev *input;
1976	struct input_devres *devres;
1977
1978	devres = devres_alloc(devm_input_device_release,
1979			      sizeof(*devres), GFP_KERNEL);
1980	if (!devres)
1981		return NULL;
1982
1983	input = input_allocate_device();
1984	if (!input) {
1985		devres_free(devres);
1986		return NULL;
1987	}
1988
1989	input->dev.parent = dev;
1990	input->devres_managed = true;
1991
1992	devres->input = input;
1993	devres_add(dev, devres);
1994
1995	return input;
1996}
1997EXPORT_SYMBOL(devm_input_allocate_device);
1998
1999/**
2000 * input_free_device - free memory occupied by input_dev structure
2001 * @dev: input device to free
2002 *
2003 * This function should only be used if input_register_device()
2004 * was not called yet or if it failed. Once device was registered
2005 * use input_unregister_device() and memory will be freed once last
2006 * reference to the device is dropped.
2007 *
2008 * Device should be allocated by input_allocate_device().
2009 *
2010 * NOTE: If there are references to the input device then memory
2011 * will not be freed until last reference is dropped.
2012 */
2013void input_free_device(struct input_dev *dev)
2014{
2015	if (dev) {
2016		if (dev->devres_managed)
2017			WARN_ON(devres_destroy(dev->dev.parent,
2018						devm_input_device_release,
2019						devm_input_device_match,
2020						dev));
2021		input_put_device(dev);
2022	}
2023}
2024EXPORT_SYMBOL(input_free_device);
2025
2026/**
2027 * input_set_timestamp - set timestamp for input events
2028 * @dev: input device to set timestamp for
2029 * @timestamp: the time at which the event has occurred
2030 *   in CLOCK_MONOTONIC
2031 *
2032 * This function is intended to provide to the input system a more
2033 * accurate time of when an event actually occurred. The driver should
2034 * call this function as soon as a timestamp is acquired ensuring
2035 * clock conversions in input_set_timestamp are done correctly.
2036 *
2037 * The system entering suspend state between timestamp acquisition and
2038 * calling input_set_timestamp can result in inaccurate conversions.
2039 */
2040void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2041{
2042	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2043	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2044	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2045							   TK_OFFS_BOOT);
2046}
2047EXPORT_SYMBOL(input_set_timestamp);
2048
2049/**
2050 * input_get_timestamp - get timestamp for input events
2051 * @dev: input device to get timestamp from
2052 *
2053 * A valid timestamp is a timestamp of non-zero value.
2054 */
2055ktime_t *input_get_timestamp(struct input_dev *dev)
2056{
2057	const ktime_t invalid_timestamp = ktime_set(0, 0);
2058
2059	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2060		input_set_timestamp(dev, ktime_get());
2061
2062	return dev->timestamp;
2063}
2064EXPORT_SYMBOL(input_get_timestamp);
2065
2066/**
2067 * input_set_capability - mark device as capable of a certain event
2068 * @dev: device that is capable of emitting or accepting event
2069 * @type: type of the event (EV_KEY, EV_REL, etc...)
2070 * @code: event code
2071 *
2072 * In addition to setting up corresponding bit in appropriate capability
2073 * bitmap the function also adjusts dev->evbit.
2074 */
2075void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2076{
 
 
 
 
 
 
 
 
2077	switch (type) {
2078	case EV_KEY:
2079		__set_bit(code, dev->keybit);
2080		break;
2081
2082	case EV_REL:
2083		__set_bit(code, dev->relbit);
2084		break;
2085
2086	case EV_ABS:
2087		input_alloc_absinfo(dev);
2088		if (!dev->absinfo)
2089			return;
2090
2091		__set_bit(code, dev->absbit);
2092		break;
2093
2094	case EV_MSC:
2095		__set_bit(code, dev->mscbit);
2096		break;
2097
2098	case EV_SW:
2099		__set_bit(code, dev->swbit);
2100		break;
2101
2102	case EV_LED:
2103		__set_bit(code, dev->ledbit);
2104		break;
2105
2106	case EV_SND:
2107		__set_bit(code, dev->sndbit);
2108		break;
2109
2110	case EV_FF:
2111		__set_bit(code, dev->ffbit);
2112		break;
2113
2114	case EV_PWR:
2115		/* do nothing */
2116		break;
2117
2118	default:
2119		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2120		dump_stack();
2121		return;
2122	}
2123
2124	__set_bit(type, dev->evbit);
2125}
2126EXPORT_SYMBOL(input_set_capability);
2127
2128static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2129{
2130	int mt_slots;
2131	int i;
2132	unsigned int events;
2133
2134	if (dev->mt) {
2135		mt_slots = dev->mt->num_slots;
2136	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2137		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2138			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2139		mt_slots = clamp(mt_slots, 2, 32);
2140	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2141		mt_slots = 2;
2142	} else {
2143		mt_slots = 0;
2144	}
2145
2146	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2147
2148	if (test_bit(EV_ABS, dev->evbit))
2149		for_each_set_bit(i, dev->absbit, ABS_CNT)
2150			events += input_is_mt_axis(i) ? mt_slots : 1;
2151
2152	if (test_bit(EV_REL, dev->evbit))
2153		events += bitmap_weight(dev->relbit, REL_CNT);
2154
2155	/* Make room for KEY and MSC events */
2156	events += 7;
2157
2158	return events;
2159}
2160
2161#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2162	do {								\
2163		if (!test_bit(EV_##type, dev->evbit))			\
2164			memset(dev->bits##bit, 0,			\
2165				sizeof(dev->bits##bit));		\
2166	} while (0)
2167
2168static void input_cleanse_bitmasks(struct input_dev *dev)
2169{
2170	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2171	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2172	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2173	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2174	INPUT_CLEANSE_BITMASK(dev, LED, led);
2175	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2176	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2177	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2178}
2179
2180static void __input_unregister_device(struct input_dev *dev)
2181{
2182	struct input_handle *handle, *next;
2183
2184	input_disconnect_device(dev);
2185
2186	mutex_lock(&input_mutex);
2187
2188	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2189		handle->handler->disconnect(handle);
2190	WARN_ON(!list_empty(&dev->h_list));
2191
2192	del_timer_sync(&dev->timer);
2193	list_del_init(&dev->node);
2194
2195	input_wakeup_procfs_readers();
2196
2197	mutex_unlock(&input_mutex);
2198
2199	device_del(&dev->dev);
2200}
2201
2202static void devm_input_device_unregister(struct device *dev, void *res)
2203{
2204	struct input_devres *devres = res;
2205	struct input_dev *input = devres->input;
2206
2207	dev_dbg(dev, "%s: unregistering device %s\n",
2208		__func__, dev_name(&input->dev));
2209	__input_unregister_device(input);
2210}
2211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212/**
2213 * input_enable_softrepeat - enable software autorepeat
2214 * @dev: input device
2215 * @delay: repeat delay
2216 * @period: repeat period
2217 *
2218 * Enable software autorepeat on the input device.
2219 */
2220void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2221{
2222	dev->timer.function = input_repeat_key;
2223	dev->rep[REP_DELAY] = delay;
2224	dev->rep[REP_PERIOD] = period;
2225}
2226EXPORT_SYMBOL(input_enable_softrepeat);
2227
2228bool input_device_enabled(struct input_dev *dev)
2229{
2230	lockdep_assert_held(&dev->mutex);
2231
2232	return !dev->inhibited && dev->users > 0;
2233}
2234EXPORT_SYMBOL_GPL(input_device_enabled);
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236/**
2237 * input_register_device - register device with input core
2238 * @dev: device to be registered
2239 *
2240 * This function registers device with input core. The device must be
2241 * allocated with input_allocate_device() and all it's capabilities
2242 * set up before registering.
2243 * If function fails the device must be freed with input_free_device().
2244 * Once device has been successfully registered it can be unregistered
2245 * with input_unregister_device(); input_free_device() should not be
2246 * called in this case.
2247 *
2248 * Note that this function is also used to register managed input devices
2249 * (ones allocated with devm_input_allocate_device()). Such managed input
2250 * devices need not be explicitly unregistered or freed, their tear down
2251 * is controlled by the devres infrastructure. It is also worth noting
2252 * that tear down of managed input devices is internally a 2-step process:
2253 * registered managed input device is first unregistered, but stays in
2254 * memory and can still handle input_event() calls (although events will
2255 * not be delivered anywhere). The freeing of managed input device will
2256 * happen later, when devres stack is unwound to the point where device
2257 * allocation was made.
2258 */
2259int input_register_device(struct input_dev *dev)
2260{
2261	struct input_devres *devres = NULL;
2262	struct input_handler *handler;
2263	unsigned int packet_size;
2264	const char *path;
2265	int error;
2266
2267	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2268		dev_err(&dev->dev,
2269			"Absolute device without dev->absinfo, refusing to register\n");
2270		return -EINVAL;
2271	}
2272
2273	if (dev->devres_managed) {
2274		devres = devres_alloc(devm_input_device_unregister,
2275				      sizeof(*devres), GFP_KERNEL);
2276		if (!devres)
2277			return -ENOMEM;
2278
2279		devres->input = dev;
2280	}
2281
2282	/* Every input device generates EV_SYN/SYN_REPORT events. */
2283	__set_bit(EV_SYN, dev->evbit);
2284
2285	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2286	__clear_bit(KEY_RESERVED, dev->keybit);
2287
2288	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2289	input_cleanse_bitmasks(dev);
2290
2291	packet_size = input_estimate_events_per_packet(dev);
2292	if (dev->hint_events_per_packet < packet_size)
2293		dev->hint_events_per_packet = packet_size;
2294
2295	dev->max_vals = dev->hint_events_per_packet + 2;
2296	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2297	if (!dev->vals) {
2298		error = -ENOMEM;
2299		goto err_devres_free;
2300	}
2301
2302	/*
2303	 * If delay and period are pre-set by the driver, then autorepeating
2304	 * is handled by the driver itself and we don't do it in input.c.
2305	 */
2306	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2307		input_enable_softrepeat(dev, 250, 33);
2308
2309	if (!dev->getkeycode)
2310		dev->getkeycode = input_default_getkeycode;
2311
2312	if (!dev->setkeycode)
2313		dev->setkeycode = input_default_setkeycode;
2314
2315	if (dev->poller)
2316		input_dev_poller_finalize(dev->poller);
2317
2318	error = device_add(&dev->dev);
2319	if (error)
2320		goto err_free_vals;
2321
2322	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2323	pr_info("%s as %s\n",
2324		dev->name ? dev->name : "Unspecified device",
2325		path ? path : "N/A");
2326	kfree(path);
2327
2328	error = mutex_lock_interruptible(&input_mutex);
2329	if (error)
2330		goto err_device_del;
2331
2332	list_add_tail(&dev->node, &input_dev_list);
2333
2334	list_for_each_entry(handler, &input_handler_list, node)
2335		input_attach_handler(dev, handler);
2336
2337	input_wakeup_procfs_readers();
2338
2339	mutex_unlock(&input_mutex);
2340
2341	if (dev->devres_managed) {
2342		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2343			__func__, dev_name(&dev->dev));
2344		devres_add(dev->dev.parent, devres);
2345	}
2346	return 0;
2347
2348err_device_del:
2349	device_del(&dev->dev);
2350err_free_vals:
2351	kfree(dev->vals);
2352	dev->vals = NULL;
2353err_devres_free:
2354	devres_free(devres);
2355	return error;
2356}
2357EXPORT_SYMBOL(input_register_device);
2358
2359/**
2360 * input_unregister_device - unregister previously registered device
2361 * @dev: device to be unregistered
2362 *
2363 * This function unregisters an input device. Once device is unregistered
2364 * the caller should not try to access it as it may get freed at any moment.
2365 */
2366void input_unregister_device(struct input_dev *dev)
2367{
2368	if (dev->devres_managed) {
2369		WARN_ON(devres_destroy(dev->dev.parent,
2370					devm_input_device_unregister,
2371					devm_input_device_match,
2372					dev));
2373		__input_unregister_device(dev);
2374		/*
2375		 * We do not do input_put_device() here because it will be done
2376		 * when 2nd devres fires up.
2377		 */
2378	} else {
2379		__input_unregister_device(dev);
2380		input_put_device(dev);
2381	}
2382}
2383EXPORT_SYMBOL(input_unregister_device);
2384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385/**
2386 * input_register_handler - register a new input handler
2387 * @handler: handler to be registered
2388 *
2389 * This function registers a new input handler (interface) for input
2390 * devices in the system and attaches it to all input devices that
2391 * are compatible with the handler.
2392 */
2393int input_register_handler(struct input_handler *handler)
2394{
2395	struct input_dev *dev;
2396	int error;
2397
2398	error = mutex_lock_interruptible(&input_mutex);
2399	if (error)
2400		return error;
2401
2402	INIT_LIST_HEAD(&handler->h_list);
2403
 
 
 
 
2404	list_add_tail(&handler->node, &input_handler_list);
2405
2406	list_for_each_entry(dev, &input_dev_list, node)
2407		input_attach_handler(dev, handler);
2408
2409	input_wakeup_procfs_readers();
2410
2411	mutex_unlock(&input_mutex);
2412	return 0;
2413}
2414EXPORT_SYMBOL(input_register_handler);
2415
2416/**
2417 * input_unregister_handler - unregisters an input handler
2418 * @handler: handler to be unregistered
2419 *
2420 * This function disconnects a handler from its input devices and
2421 * removes it from lists of known handlers.
2422 */
2423void input_unregister_handler(struct input_handler *handler)
2424{
2425	struct input_handle *handle, *next;
2426
2427	mutex_lock(&input_mutex);
2428
2429	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2430		handler->disconnect(handle);
2431	WARN_ON(!list_empty(&handler->h_list));
2432
2433	list_del_init(&handler->node);
2434
2435	input_wakeup_procfs_readers();
2436
2437	mutex_unlock(&input_mutex);
2438}
2439EXPORT_SYMBOL(input_unregister_handler);
2440
2441/**
2442 * input_handler_for_each_handle - handle iterator
2443 * @handler: input handler to iterate
2444 * @data: data for the callback
2445 * @fn: function to be called for each handle
2446 *
2447 * Iterate over @bus's list of devices, and call @fn for each, passing
2448 * it @data and stop when @fn returns a non-zero value. The function is
2449 * using RCU to traverse the list and therefore may be using in atomic
2450 * contexts. The @fn callback is invoked from RCU critical section and
2451 * thus must not sleep.
2452 */
2453int input_handler_for_each_handle(struct input_handler *handler, void *data,
2454				  int (*fn)(struct input_handle *, void *))
2455{
2456	struct input_handle *handle;
2457	int retval = 0;
2458
2459	rcu_read_lock();
2460
2461	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2462		retval = fn(handle, data);
2463		if (retval)
2464			break;
2465	}
2466
2467	rcu_read_unlock();
2468
2469	return retval;
2470}
2471EXPORT_SYMBOL(input_handler_for_each_handle);
2472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473/**
2474 * input_register_handle - register a new input handle
2475 * @handle: handle to register
2476 *
2477 * This function puts a new input handle onto device's
2478 * and handler's lists so that events can flow through
2479 * it once it is opened using input_open_device().
2480 *
2481 * This function is supposed to be called from handler's
2482 * connect() method.
2483 */
2484int input_register_handle(struct input_handle *handle)
2485{
2486	struct input_handler *handler = handle->handler;
2487	struct input_dev *dev = handle->dev;
2488	int error;
2489
 
2490	/*
2491	 * We take dev->mutex here to prevent race with
2492	 * input_release_device().
2493	 */
2494	error = mutex_lock_interruptible(&dev->mutex);
2495	if (error)
2496		return error;
2497
2498	/*
2499	 * Filters go to the head of the list, normal handlers
2500	 * to the tail.
2501	 */
2502	if (handler->filter)
2503		list_add_rcu(&handle->d_node, &dev->h_list);
2504	else
2505		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2506
2507	mutex_unlock(&dev->mutex);
2508
2509	/*
2510	 * Since we are supposed to be called from ->connect()
2511	 * which is mutually exclusive with ->disconnect()
2512	 * we can't be racing with input_unregister_handle()
2513	 * and so separate lock is not needed here.
2514	 */
2515	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2516
2517	if (handler->start)
2518		handler->start(handle);
2519
2520	return 0;
2521}
2522EXPORT_SYMBOL(input_register_handle);
2523
2524/**
2525 * input_unregister_handle - unregister an input handle
2526 * @handle: handle to unregister
2527 *
2528 * This function removes input handle from device's
2529 * and handler's lists.
2530 *
2531 * This function is supposed to be called from handler's
2532 * disconnect() method.
2533 */
2534void input_unregister_handle(struct input_handle *handle)
2535{
2536	struct input_dev *dev = handle->dev;
2537
2538	list_del_rcu(&handle->h_node);
2539
2540	/*
2541	 * Take dev->mutex to prevent race with input_release_device().
2542	 */
2543	mutex_lock(&dev->mutex);
2544	list_del_rcu(&handle->d_node);
2545	mutex_unlock(&dev->mutex);
2546
2547	synchronize_rcu();
2548}
2549EXPORT_SYMBOL(input_unregister_handle);
2550
2551/**
2552 * input_get_new_minor - allocates a new input minor number
2553 * @legacy_base: beginning or the legacy range to be searched
2554 * @legacy_num: size of legacy range
2555 * @allow_dynamic: whether we can also take ID from the dynamic range
2556 *
2557 * This function allocates a new device minor for from input major namespace.
2558 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2559 * parameters and whether ID can be allocated from dynamic range if there are
2560 * no free IDs in legacy range.
2561 */
2562int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2563			bool allow_dynamic)
2564{
2565	/*
2566	 * This function should be called from input handler's ->connect()
2567	 * methods, which are serialized with input_mutex, so no additional
2568	 * locking is needed here.
2569	 */
2570	if (legacy_base >= 0) {
2571		int minor = ida_simple_get(&input_ida,
2572					   legacy_base,
2573					   legacy_base + legacy_num,
2574					   GFP_KERNEL);
2575		if (minor >= 0 || !allow_dynamic)
2576			return minor;
2577	}
2578
2579	return ida_simple_get(&input_ida,
2580			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2581			      GFP_KERNEL);
2582}
2583EXPORT_SYMBOL(input_get_new_minor);
2584
2585/**
2586 * input_free_minor - release previously allocated minor
2587 * @minor: minor to be released
2588 *
2589 * This function releases previously allocated input minor so that it can be
2590 * reused later.
2591 */
2592void input_free_minor(unsigned int minor)
2593{
2594	ida_simple_remove(&input_ida, minor);
2595}
2596EXPORT_SYMBOL(input_free_minor);
2597
2598static int __init input_init(void)
2599{
2600	int err;
2601
2602	err = class_register(&input_class);
2603	if (err) {
2604		pr_err("unable to register input_dev class\n");
2605		return err;
2606	}
2607
2608	err = input_proc_init();
2609	if (err)
2610		goto fail1;
2611
2612	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2613				     INPUT_MAX_CHAR_DEVICES, "input");
2614	if (err) {
2615		pr_err("unable to register char major %d", INPUT_MAJOR);
2616		goto fail2;
2617	}
2618
2619	return 0;
2620
2621 fail2:	input_proc_exit();
2622 fail1:	class_unregister(&input_class);
2623	return err;
2624}
2625
2626static void __exit input_exit(void)
2627{
2628	input_proc_exit();
2629	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2630				 INPUT_MAX_CHAR_DEVICES);
2631	class_unregister(&input_class);
2632}
2633
2634subsys_initcall(input_init);
2635module_exit(input_exit);