Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 NVIDIA Corporation
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/debugfs.h>
   9#include <linux/io.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include <drm/display/drm_dp_helper.h>
  20#include <drm/display/drm_scdc_helper.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_debugfs.h>
  23#include <drm/drm_edid.h>
  24#include <drm/drm_eld.h>
  25#include <drm/drm_file.h>
  26#include <drm/drm_panel.h>
 
  27#include <drm/drm_simple_kms_helper.h>
  28
  29#include "dc.h"
  30#include "dp.h"
  31#include "drm.h"
  32#include "hda.h"
  33#include "sor.h"
  34#include "trace.h"
  35
  36#define SOR_REKEY 0x38
  37
  38struct tegra_sor_hdmi_settings {
  39	unsigned long frequency;
  40
  41	u8 vcocap;
  42	u8 filter;
  43	u8 ichpmp;
  44	u8 loadadj;
  45	u8 tmds_termadj;
  46	u8 tx_pu_value;
  47	u8 bg_temp_coef;
  48	u8 bg_vref_level;
  49	u8 avdd10_level;
  50	u8 avdd14_level;
  51	u8 sparepll;
  52
  53	u8 drive_current[4];
  54	u8 preemphasis[4];
  55};
  56
  57#if 1
  58static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  59	{
  60		.frequency = 54000000,
  61		.vcocap = 0x0,
  62		.filter = 0x0,
  63		.ichpmp = 0x1,
  64		.loadadj = 0x3,
  65		.tmds_termadj = 0x9,
  66		.tx_pu_value = 0x10,
  67		.bg_temp_coef = 0x3,
  68		.bg_vref_level = 0x8,
  69		.avdd10_level = 0x4,
  70		.avdd14_level = 0x4,
  71		.sparepll = 0x0,
  72		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  73		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  74	}, {
  75		.frequency = 75000000,
  76		.vcocap = 0x3,
  77		.filter = 0x0,
  78		.ichpmp = 0x1,
  79		.loadadj = 0x3,
  80		.tmds_termadj = 0x9,
  81		.tx_pu_value = 0x40,
  82		.bg_temp_coef = 0x3,
  83		.bg_vref_level = 0x8,
  84		.avdd10_level = 0x4,
  85		.avdd14_level = 0x4,
  86		.sparepll = 0x0,
  87		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  88		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  89	}, {
  90		.frequency = 150000000,
  91		.vcocap = 0x3,
  92		.filter = 0x0,
  93		.ichpmp = 0x1,
  94		.loadadj = 0x3,
  95		.tmds_termadj = 0x9,
  96		.tx_pu_value = 0x66,
  97		.bg_temp_coef = 0x3,
  98		.bg_vref_level = 0x8,
  99		.avdd10_level = 0x4,
 100		.avdd14_level = 0x4,
 101		.sparepll = 0x0,
 102		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 103		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 104	}, {
 105		.frequency = 300000000,
 106		.vcocap = 0x3,
 107		.filter = 0x0,
 108		.ichpmp = 0x1,
 109		.loadadj = 0x3,
 110		.tmds_termadj = 0x9,
 111		.tx_pu_value = 0x66,
 112		.bg_temp_coef = 0x3,
 113		.bg_vref_level = 0xa,
 114		.avdd10_level = 0x4,
 115		.avdd14_level = 0x4,
 116		.sparepll = 0x0,
 117		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 118		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 119	}, {
 120		.frequency = 600000000,
 121		.vcocap = 0x3,
 122		.filter = 0x0,
 123		.ichpmp = 0x1,
 124		.loadadj = 0x3,
 125		.tmds_termadj = 0x9,
 126		.tx_pu_value = 0x66,
 127		.bg_temp_coef = 0x3,
 128		.bg_vref_level = 0x8,
 129		.avdd10_level = 0x4,
 130		.avdd14_level = 0x4,
 131		.sparepll = 0x0,
 132		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 133		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 134	},
 135};
 136#else
 137static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 138	{
 139		.frequency = 75000000,
 140		.vcocap = 0x3,
 141		.filter = 0x0,
 142		.ichpmp = 0x1,
 143		.loadadj = 0x3,
 144		.tmds_termadj = 0x9,
 145		.tx_pu_value = 0x40,
 146		.bg_temp_coef = 0x3,
 147		.bg_vref_level = 0x8,
 148		.avdd10_level = 0x4,
 149		.avdd14_level = 0x4,
 150		.sparepll = 0x0,
 151		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 152		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 153	}, {
 154		.frequency = 150000000,
 155		.vcocap = 0x3,
 156		.filter = 0x0,
 157		.ichpmp = 0x1,
 158		.loadadj = 0x3,
 159		.tmds_termadj = 0x9,
 160		.tx_pu_value = 0x66,
 161		.bg_temp_coef = 0x3,
 162		.bg_vref_level = 0x8,
 163		.avdd10_level = 0x4,
 164		.avdd14_level = 0x4,
 165		.sparepll = 0x0,
 166		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 167		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 168	}, {
 169		.frequency = 300000000,
 170		.vcocap = 0x3,
 171		.filter = 0x0,
 172		.ichpmp = 0x6,
 173		.loadadj = 0x3,
 174		.tmds_termadj = 0x9,
 175		.tx_pu_value = 0x66,
 176		.bg_temp_coef = 0x3,
 177		.bg_vref_level = 0xf,
 178		.avdd10_level = 0x4,
 179		.avdd14_level = 0x4,
 180		.sparepll = 0x0,
 181		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 182		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 183	}, {
 184		.frequency = 600000000,
 185		.vcocap = 0x3,
 186		.filter = 0x0,
 187		.ichpmp = 0xa,
 188		.loadadj = 0x3,
 189		.tmds_termadj = 0xb,
 190		.tx_pu_value = 0x66,
 191		.bg_temp_coef = 0x3,
 192		.bg_vref_level = 0xe,
 193		.avdd10_level = 0x4,
 194		.avdd14_level = 0x4,
 195		.sparepll = 0x0,
 196		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 197		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 198	},
 199};
 200#endif
 201
 202static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 203	{
 204		.frequency = 54000000,
 205		.vcocap = 0,
 206		.filter = 5,
 207		.ichpmp = 5,
 208		.loadadj = 3,
 209		.tmds_termadj = 0xf,
 210		.tx_pu_value = 0,
 211		.bg_temp_coef = 3,
 212		.bg_vref_level = 8,
 213		.avdd10_level = 4,
 214		.avdd14_level = 4,
 215		.sparepll = 0x54,
 216		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 217		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 218	}, {
 219		.frequency = 75000000,
 220		.vcocap = 1,
 221		.filter = 5,
 222		.ichpmp = 5,
 223		.loadadj = 3,
 224		.tmds_termadj = 0xf,
 225		.tx_pu_value = 0,
 226		.bg_temp_coef = 3,
 227		.bg_vref_level = 8,
 228		.avdd10_level = 4,
 229		.avdd14_level = 4,
 230		.sparepll = 0x44,
 231		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 232		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 233	}, {
 234		.frequency = 150000000,
 235		.vcocap = 3,
 236		.filter = 5,
 237		.ichpmp = 5,
 238		.loadadj = 3,
 239		.tmds_termadj = 15,
 240		.tx_pu_value = 0x66 /* 0 */,
 241		.bg_temp_coef = 3,
 242		.bg_vref_level = 8,
 243		.avdd10_level = 4,
 244		.avdd14_level = 4,
 245		.sparepll = 0x00, /* 0x34 */
 246		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 247		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 248	}, {
 249		.frequency = 300000000,
 250		.vcocap = 3,
 251		.filter = 5,
 252		.ichpmp = 5,
 253		.loadadj = 3,
 254		.tmds_termadj = 15,
 255		.tx_pu_value = 64,
 256		.bg_temp_coef = 3,
 257		.bg_vref_level = 8,
 258		.avdd10_level = 4,
 259		.avdd14_level = 4,
 260		.sparepll = 0x34,
 261		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 262		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 263	}, {
 264		.frequency = 600000000,
 265		.vcocap = 3,
 266		.filter = 5,
 267		.ichpmp = 5,
 268		.loadadj = 3,
 269		.tmds_termadj = 12,
 270		.tx_pu_value = 96,
 271		.bg_temp_coef = 3,
 272		.bg_vref_level = 8,
 273		.avdd10_level = 4,
 274		.avdd14_level = 4,
 275		.sparepll = 0x34,
 276		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 277		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 278	}
 279};
 280
 281static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
 282	{
 283		.frequency = 54000000,
 284		.vcocap = 0,
 285		.filter = 5,
 286		.ichpmp = 5,
 287		.loadadj = 3,
 288		.tmds_termadj = 0xf,
 289		.tx_pu_value = 0,
 290		.bg_temp_coef = 3,
 291		.bg_vref_level = 8,
 292		.avdd10_level = 4,
 293		.avdd14_level = 4,
 294		.sparepll = 0x54,
 295		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 296		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 297	}, {
 298		.frequency = 75000000,
 299		.vcocap = 1,
 300		.filter = 5,
 301		.ichpmp = 5,
 302		.loadadj = 3,
 303		.tmds_termadj = 0xf,
 304		.tx_pu_value = 0,
 305		.bg_temp_coef = 3,
 306		.bg_vref_level = 8,
 307		.avdd10_level = 4,
 308		.avdd14_level = 4,
 309		.sparepll = 0x44,
 310		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 311		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 312	}, {
 313		.frequency = 150000000,
 314		.vcocap = 3,
 315		.filter = 5,
 316		.ichpmp = 5,
 317		.loadadj = 3,
 318		.tmds_termadj = 15,
 319		.tx_pu_value = 0x66 /* 0 */,
 320		.bg_temp_coef = 3,
 321		.bg_vref_level = 8,
 322		.avdd10_level = 4,
 323		.avdd14_level = 4,
 324		.sparepll = 0x00, /* 0x34 */
 325		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 326		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 327	}, {
 328		.frequency = 300000000,
 329		.vcocap = 3,
 330		.filter = 5,
 331		.ichpmp = 5,
 332		.loadadj = 3,
 333		.tmds_termadj = 15,
 334		.tx_pu_value = 64,
 335		.bg_temp_coef = 3,
 336		.bg_vref_level = 8,
 337		.avdd10_level = 4,
 338		.avdd14_level = 4,
 339		.sparepll = 0x34,
 340		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 341		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 342	}, {
 343		.frequency = 600000000,
 344		.vcocap = 3,
 345		.filter = 5,
 346		.ichpmp = 5,
 347		.loadadj = 3,
 348		.tmds_termadj = 12,
 349		.tx_pu_value = 96,
 350		.bg_temp_coef = 3,
 351		.bg_vref_level = 8,
 352		.avdd10_level = 4,
 353		.avdd14_level = 4,
 354		.sparepll = 0x34,
 355		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 356		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 357	}
 358};
 359
 360struct tegra_sor_regs {
 361	unsigned int head_state0;
 362	unsigned int head_state1;
 363	unsigned int head_state2;
 364	unsigned int head_state3;
 365	unsigned int head_state4;
 366	unsigned int head_state5;
 367	unsigned int pll0;
 368	unsigned int pll1;
 369	unsigned int pll2;
 370	unsigned int pll3;
 371	unsigned int dp_padctl0;
 372	unsigned int dp_padctl2;
 373};
 374
 375struct tegra_sor_soc {
 376	bool supports_lvds;
 377	bool supports_hdmi;
 378	bool supports_dp;
 379	bool supports_audio;
 380	bool supports_hdcp;
 381
 382	const struct tegra_sor_regs *regs;
 383	bool has_nvdisplay;
 384
 385	const struct tegra_sor_hdmi_settings *settings;
 386	unsigned int num_settings;
 387
 388	const u8 *xbar_cfg;
 389	const u8 *lane_map;
 390
 391	const u8 (*voltage_swing)[4][4];
 392	const u8 (*pre_emphasis)[4][4];
 393	const u8 (*post_cursor)[4][4];
 394	const u8 (*tx_pu)[4][4];
 395};
 396
 397struct tegra_sor;
 398
 399struct tegra_sor_ops {
 400	const char *name;
 401	int (*probe)(struct tegra_sor *sor);
 402	void (*audio_enable)(struct tegra_sor *sor);
 403	void (*audio_disable)(struct tegra_sor *sor);
 404};
 405
 406struct tegra_sor {
 407	struct host1x_client client;
 408	struct tegra_output output;
 409	struct device *dev;
 410
 411	const struct tegra_sor_soc *soc;
 412	void __iomem *regs;
 413	unsigned int index;
 414	unsigned int irq;
 415
 416	struct reset_control *rst;
 417	struct clk *clk_parent;
 418	struct clk *clk_safe;
 419	struct clk *clk_out;
 420	struct clk *clk_pad;
 421	struct clk *clk_dp;
 422	struct clk *clk;
 423
 424	u8 xbar_cfg[5];
 425
 426	struct drm_dp_link link;
 427	struct drm_dp_aux *aux;
 428
 429	struct drm_info_list *debugfs_files;
 430
 431	const struct tegra_sor_ops *ops;
 432	enum tegra_io_pad pad;
 433
 434	/* for HDMI 2.0 */
 435	struct tegra_sor_hdmi_settings *settings;
 436	unsigned int num_settings;
 437
 438	struct regulator *avdd_io_supply;
 439	struct regulator *vdd_pll_supply;
 440	struct regulator *hdmi_supply;
 441
 442	struct delayed_work scdc;
 443	bool scdc_enabled;
 444
 445	struct tegra_hda_format format;
 446};
 447
 448struct tegra_sor_state {
 449	struct drm_connector_state base;
 450
 451	unsigned int link_speed;
 452	unsigned long pclk;
 453	unsigned int bpc;
 454};
 455
 456static inline struct tegra_sor_state *
 457to_sor_state(struct drm_connector_state *state)
 458{
 459	return container_of(state, struct tegra_sor_state, base);
 460}
 461
 462struct tegra_sor_config {
 463	u32 bits_per_pixel;
 464
 465	u32 active_polarity;
 466	u32 active_count;
 467	u32 tu_size;
 468	u32 active_frac;
 469	u32 watermark;
 470
 471	u32 hblank_symbols;
 472	u32 vblank_symbols;
 473};
 474
 475static inline struct tegra_sor *
 476host1x_client_to_sor(struct host1x_client *client)
 477{
 478	return container_of(client, struct tegra_sor, client);
 479}
 480
 481static inline struct tegra_sor *to_sor(struct tegra_output *output)
 482{
 483	return container_of(output, struct tegra_sor, output);
 484}
 485
 486static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 487{
 488	u32 value = readl(sor->regs + (offset << 2));
 489
 490	trace_sor_readl(sor->dev, offset, value);
 491
 492	return value;
 493}
 494
 495static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 496				    unsigned int offset)
 497{
 498	trace_sor_writel(sor->dev, offset, value);
 499	writel(value, sor->regs + (offset << 2));
 500}
 501
 502static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 503{
 504	int err;
 505
 506	clk_disable_unprepare(sor->clk);
 507
 508	err = clk_set_parent(sor->clk_out, parent);
 509	if (err < 0)
 510		return err;
 511
 512	err = clk_prepare_enable(sor->clk);
 513	if (err < 0)
 514		return err;
 515
 516	return 0;
 517}
 518
 519struct tegra_clk_sor_pad {
 520	struct clk_hw hw;
 521	struct tegra_sor *sor;
 522};
 523
 524static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 525{
 526	return container_of(hw, struct tegra_clk_sor_pad, hw);
 527}
 528
 529static const char * const tegra_clk_sor_pad_parents[2][2] = {
 530	{ "pll_d_out0", "pll_dp" },
 531	{ "pll_d2_out0", "pll_dp" },
 532};
 533
 534/*
 535 * Implementing ->set_parent() here isn't really required because the parent
 536 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
 537 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
 538 * Tegra186 and later SoC generations where the BPMP implements this clock
 539 * and doesn't expose the mux via the common clock framework.
 540 */
 541
 542static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 543{
 544	struct tegra_clk_sor_pad *pad = to_pad(hw);
 545	struct tegra_sor *sor = pad->sor;
 546	u32 value;
 547
 548	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 549	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 550
 551	switch (index) {
 552	case 0:
 553		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 554		break;
 555
 556	case 1:
 557		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 558		break;
 559	}
 560
 561	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 562
 563	return 0;
 564}
 565
 566static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 567{
 568	struct tegra_clk_sor_pad *pad = to_pad(hw);
 569	struct tegra_sor *sor = pad->sor;
 570	u8 parent = U8_MAX;
 571	u32 value;
 572
 573	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 574
 575	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 576	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 577	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 578		parent = 0;
 579		break;
 580
 581	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 582	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 583		parent = 1;
 584		break;
 585	}
 586
 587	return parent;
 588}
 589
 590static const struct clk_ops tegra_clk_sor_pad_ops = {
 591	.determine_rate = clk_hw_determine_rate_no_reparent,
 592	.set_parent = tegra_clk_sor_pad_set_parent,
 593	.get_parent = tegra_clk_sor_pad_get_parent,
 594};
 595
 596static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 597					      const char *name)
 598{
 599	struct tegra_clk_sor_pad *pad;
 600	struct clk_init_data init;
 601	struct clk *clk;
 602
 603	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 604	if (!pad)
 605		return ERR_PTR(-ENOMEM);
 606
 607	pad->sor = sor;
 608
 609	init.name = name;
 610	init.flags = 0;
 611	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
 612	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
 613	init.ops = &tegra_clk_sor_pad_ops;
 614
 615	pad->hw.init = &init;
 616
 617	clk = devm_clk_register(sor->dev, &pad->hw);
 618
 619	return clk;
 620}
 621
 622static void tegra_sor_filter_rates(struct tegra_sor *sor)
 623{
 624	struct drm_dp_link *link = &sor->link;
 625	unsigned int i;
 626
 627	/* Tegra only supports RBR, HBR and HBR2 */
 628	for (i = 0; i < link->num_rates; i++) {
 629		switch (link->rates[i]) {
 630		case 1620000:
 631		case 2700000:
 632		case 5400000:
 633			break;
 634
 635		default:
 636			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
 637				      link->rates[i]);
 638			link->rates[i] = 0;
 639			break;
 640		}
 641	}
 642
 643	drm_dp_link_update_rates(link);
 644}
 645
 646static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
 647{
 648	unsigned long timeout;
 649	u32 value;
 650
 651	/*
 652	 * Clear or set the PD_TXD bit corresponding to each lane, depending
 653	 * on whether it is used or not.
 654	 */
 655	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 656
 657	if (lanes <= 2)
 658		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 659			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
 660	else
 661		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 662			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
 663
 664	if (lanes <= 1)
 665		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 666	else
 667		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 668
 669	if (lanes == 0)
 670		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 671	else
 672		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 673
 674	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 675
 676	/* start lane sequencer */
 677	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
 678		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
 679	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 680
 681	timeout = jiffies + msecs_to_jiffies(250);
 682
 683	while (time_before(jiffies, timeout)) {
 684		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 685		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 686			break;
 687
 688		usleep_range(250, 1000);
 689	}
 690
 691	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 692		return -ETIMEDOUT;
 693
 694	return 0;
 695}
 696
 697static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
 698{
 699	unsigned long timeout;
 700	u32 value;
 701
 702	/* power down all lanes */
 703	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 704	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
 705		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
 706	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 707
 708	/* start lane sequencer */
 709	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
 710		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
 711	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 712
 713	timeout = jiffies + msecs_to_jiffies(250);
 714
 715	while (time_before(jiffies, timeout)) {
 716		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 717		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 718			break;
 719
 720		usleep_range(25, 100);
 721	}
 722
 723	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 724		return -ETIMEDOUT;
 725
 726	return 0;
 727}
 728
 729static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
 730{
 731	u32 value;
 732
 733	/* pre-charge all used lanes */
 734	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 735
 736	if (lanes <= 2)
 737		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 738			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
 739	else
 740		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 741			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
 742
 743	if (lanes <= 1)
 744		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 745	else
 746		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 747
 748	if (lanes == 0)
 749		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 750	else
 751		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 752
 753	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 754
 755	usleep_range(15, 100);
 756
 757	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 758	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 759		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 760	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 761}
 762
 763static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
 764{
 765	u32 mask = 0x08, adj = 0, value;
 766
 767	/* enable pad calibration logic */
 768	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 769	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
 770	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 771
 772	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 773	value |= SOR_PLL1_TMDS_TERM;
 774	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 775
 776	while (mask) {
 777		adj |= mask;
 778
 779		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 780		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 781		value |= SOR_PLL1_TMDS_TERMADJ(adj);
 782		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 783
 784		usleep_range(100, 200);
 785
 786		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 787		if (value & SOR_PLL1_TERM_COMPOUT)
 788			adj &= ~mask;
 789
 790		mask >>= 1;
 791	}
 792
 793	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 794	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 795	value |= SOR_PLL1_TMDS_TERMADJ(adj);
 796	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 797
 798	/* disable pad calibration logic */
 799	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 800	value |= SOR_DP_PADCTL_PAD_CAL_PD;
 801	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 802}
 803
 804static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
 805{
 806	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 807	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
 808	const struct tegra_sor_soc *soc = sor->soc;
 809	u32 pattern = 0, tx_pu = 0, value;
 810	unsigned int i;
 811
 812	for (value = 0, i = 0; i < link->lanes; i++) {
 813		u8 vs = link->train.request.voltage_swing[i];
 814		u8 pe = link->train.request.pre_emphasis[i];
 815		u8 pc = link->train.request.post_cursor[i];
 816		u8 shift = sor->soc->lane_map[i] << 3;
 817
 818		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
 819		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
 820		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
 821
 822		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
 823			tx_pu = sor->soc->tx_pu[pc][vs][pe];
 824
 825		switch (link->train.pattern) {
 826		case DP_TRAINING_PATTERN_DISABLE:
 827			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
 828				SOR_DP_TPG_PATTERN_NONE;
 829			break;
 830
 831		case DP_TRAINING_PATTERN_1:
 832			value = SOR_DP_TPG_SCRAMBLER_NONE |
 833				SOR_DP_TPG_PATTERN_TRAIN1;
 834			break;
 835
 836		case DP_TRAINING_PATTERN_2:
 837			value = SOR_DP_TPG_SCRAMBLER_NONE |
 838				SOR_DP_TPG_PATTERN_TRAIN2;
 839			break;
 840
 841		case DP_TRAINING_PATTERN_3:
 842			value = SOR_DP_TPG_SCRAMBLER_NONE |
 843				SOR_DP_TPG_PATTERN_TRAIN3;
 844			break;
 845
 846		default:
 847			return -EINVAL;
 848		}
 849
 850		if (link->caps.channel_coding)
 851			value |= SOR_DP_TPG_CHANNEL_CODING;
 852
 853		pattern = pattern << 8 | value;
 854	}
 855
 856	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
 857	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
 858
 859	if (link->caps.tps3_supported)
 860		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
 861
 862	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
 863
 864	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 865	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 866	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 867	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
 868	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 869
 870	usleep_range(20, 100);
 871
 872	return 0;
 873}
 874
 875static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
 876{
 877	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 878	unsigned int rate, lanes;
 879	u32 value;
 880	int err;
 881
 882	rate = drm_dp_link_rate_to_bw_code(link->rate);
 883	lanes = link->lanes;
 884
 885	/* configure link speed and lane count */
 886	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 887	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
 888	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
 889	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 890
 891	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 892	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
 893	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
 894
 895	if (link->caps.enhanced_framing)
 896		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
 897
 898	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 899
 900	usleep_range(400, 1000);
 901
 902	/* configure load pulse position adjustment */
 903	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 904	value &= ~SOR_PLL1_LOADADJ_MASK;
 905
 906	switch (rate) {
 907	case DP_LINK_BW_1_62:
 908		value |= SOR_PLL1_LOADADJ(0x3);
 909		break;
 910
 911	case DP_LINK_BW_2_7:
 912		value |= SOR_PLL1_LOADADJ(0x4);
 913		break;
 914
 915	case DP_LINK_BW_5_4:
 916		value |= SOR_PLL1_LOADADJ(0x6);
 917		break;
 918	}
 919
 920	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 921
 922	/* use alternate scrambler reset for eDP */
 923	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 924
 925	if (link->edp == 0)
 926		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 927	else
 928		value |= SOR_DP_SPARE_PANEL_INTERNAL;
 929
 930	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 931
 932	err = tegra_sor_power_down_lanes(sor);
 933	if (err < 0) {
 934		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
 935		return err;
 936	}
 937
 938	/* power up and pre-charge lanes */
 939	err = tegra_sor_power_up_lanes(sor, lanes);
 940	if (err < 0) {
 941		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
 942			lanes, (lanes != 1) ? "s" : "", err);
 943		return err;
 944	}
 945
 946	tegra_sor_dp_precharge(sor, lanes);
 947
 948	return 0;
 949}
 950
 951static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
 952	.apply_training = tegra_sor_dp_link_apply_training,
 953	.configure = tegra_sor_dp_link_configure,
 954};
 955
 956static void tegra_sor_super_update(struct tegra_sor *sor)
 957{
 958	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 959	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 960	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 961}
 962
 963static void tegra_sor_update(struct tegra_sor *sor)
 964{
 965	tegra_sor_writel(sor, 0, SOR_STATE0);
 966	tegra_sor_writel(sor, 1, SOR_STATE0);
 967	tegra_sor_writel(sor, 0, SOR_STATE0);
 968}
 969
 970static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 971{
 972	u32 value;
 973
 974	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 975	value &= ~SOR_PWM_DIV_MASK;
 976	value |= 0x400; /* period */
 977	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 978
 979	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 980	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 981	value |= 0x400; /* duty cycle */
 982	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 983	value |= SOR_PWM_CTL_TRIGGER;
 984	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 985
 986	timeout = jiffies + msecs_to_jiffies(timeout);
 987
 988	while (time_before(jiffies, timeout)) {
 989		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 990		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 991			return 0;
 992
 993		usleep_range(25, 100);
 994	}
 995
 996	return -ETIMEDOUT;
 997}
 998
 999static int tegra_sor_attach(struct tegra_sor *sor)
1000{
1001	unsigned long value, timeout;
1002
1003	/* wake up in normal mode */
1004	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1005	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1006	value |= SOR_SUPER_STATE_MODE_NORMAL;
1007	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1008	tegra_sor_super_update(sor);
1009
1010	/* attach */
1011	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1012	value |= SOR_SUPER_STATE_ATTACHED;
1013	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1014	tegra_sor_super_update(sor);
1015
1016	timeout = jiffies + msecs_to_jiffies(250);
1017
1018	while (time_before(jiffies, timeout)) {
1019		value = tegra_sor_readl(sor, SOR_TEST);
1020		if ((value & SOR_TEST_ATTACHED) != 0)
1021			return 0;
1022
1023		usleep_range(25, 100);
1024	}
1025
1026	return -ETIMEDOUT;
1027}
1028
1029static int tegra_sor_wakeup(struct tegra_sor *sor)
1030{
1031	unsigned long value, timeout;
1032
1033	timeout = jiffies + msecs_to_jiffies(250);
1034
1035	/* wait for head to wake up */
1036	while (time_before(jiffies, timeout)) {
1037		value = tegra_sor_readl(sor, SOR_TEST);
1038		value &= SOR_TEST_HEAD_MODE_MASK;
1039
1040		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1041			return 0;
1042
1043		usleep_range(25, 100);
1044	}
1045
1046	return -ETIMEDOUT;
1047}
1048
1049static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1050{
1051	u32 value;
1052
1053	value = tegra_sor_readl(sor, SOR_PWR);
1054	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1055	tegra_sor_writel(sor, value, SOR_PWR);
1056
1057	timeout = jiffies + msecs_to_jiffies(timeout);
1058
1059	while (time_before(jiffies, timeout)) {
1060		value = tegra_sor_readl(sor, SOR_PWR);
1061		if ((value & SOR_PWR_TRIGGER) == 0)
1062			return 0;
1063
1064		usleep_range(25, 100);
1065	}
1066
1067	return -ETIMEDOUT;
1068}
1069
1070struct tegra_sor_params {
1071	/* number of link clocks per line */
1072	unsigned int num_clocks;
1073	/* ratio between input and output */
1074	u64 ratio;
1075	/* precision factor */
1076	u64 precision;
1077
1078	unsigned int active_polarity;
1079	unsigned int active_count;
1080	unsigned int active_frac;
1081	unsigned int tu_size;
1082	unsigned int error;
1083};
1084
1085static int tegra_sor_compute_params(struct tegra_sor *sor,
1086				    struct tegra_sor_params *params,
1087				    unsigned int tu_size)
1088{
1089	u64 active_sym, active_count, frac, approx;
1090	u32 active_polarity, active_frac = 0;
1091	const u64 f = params->precision;
1092	s64 error;
1093
1094	active_sym = params->ratio * tu_size;
1095	active_count = div_u64(active_sym, f) * f;
1096	frac = active_sym - active_count;
1097
1098	/* fraction < 0.5 */
1099	if (frac >= (f / 2)) {
1100		active_polarity = 1;
1101		frac = f - frac;
1102	} else {
1103		active_polarity = 0;
1104	}
1105
1106	if (frac != 0) {
1107		frac = div_u64(f * f,  frac); /* 1/fraction */
1108		if (frac <= (15 * f)) {
1109			active_frac = div_u64(frac, f);
1110
1111			/* round up */
1112			if (active_polarity)
1113				active_frac++;
1114		} else {
1115			active_frac = active_polarity ? 1 : 15;
1116		}
1117	}
1118
1119	if (active_frac == 1)
1120		active_polarity = 0;
1121
1122	if (active_polarity == 1) {
1123		if (active_frac) {
1124			approx = active_count + (active_frac * (f - 1)) * f;
1125			approx = div_u64(approx, active_frac * f);
1126		} else {
1127			approx = active_count + f;
1128		}
1129	} else {
1130		if (active_frac)
1131			approx = active_count + div_u64(f, active_frac);
1132		else
1133			approx = active_count;
1134	}
1135
1136	error = div_s64(active_sym - approx, tu_size);
1137	error *= params->num_clocks;
1138
1139	if (error <= 0 && abs(error) < params->error) {
1140		params->active_count = div_u64(active_count, f);
1141		params->active_polarity = active_polarity;
1142		params->active_frac = active_frac;
1143		params->error = abs(error);
1144		params->tu_size = tu_size;
1145
1146		if (error == 0)
1147			return true;
1148	}
1149
1150	return false;
1151}
1152
1153static int tegra_sor_compute_config(struct tegra_sor *sor,
1154				    const struct drm_display_mode *mode,
1155				    struct tegra_sor_config *config,
1156				    struct drm_dp_link *link)
1157{
1158	const u64 f = 100000, link_rate = link->rate * 1000;
1159	const u64 pclk = (u64)mode->clock * 1000;
1160	u64 input, output, watermark, num;
1161	struct tegra_sor_params params;
1162	u32 num_syms_per_line;
1163	unsigned int i;
1164
1165	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1166		return -EINVAL;
1167
1168	input = pclk * config->bits_per_pixel;
1169	output = link_rate * 8 * link->lanes;
1170
1171	if (input >= output)
1172		return -ERANGE;
1173
1174	memset(&params, 0, sizeof(params));
1175	params.ratio = div64_u64(input * f, output);
1176	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1177	params.precision = f;
1178	params.error = 64 * f;
1179	params.tu_size = 64;
1180
1181	for (i = params.tu_size; i >= 32; i--)
1182		if (tegra_sor_compute_params(sor, &params, i))
1183			break;
1184
1185	if (params.active_frac == 0) {
1186		config->active_polarity = 0;
1187		config->active_count = params.active_count;
1188
1189		if (!params.active_polarity)
1190			config->active_count--;
1191
1192		config->tu_size = params.tu_size;
1193		config->active_frac = 1;
1194	} else {
1195		config->active_polarity = params.active_polarity;
1196		config->active_count = params.active_count;
1197		config->active_frac = params.active_frac;
1198		config->tu_size = params.tu_size;
1199	}
1200
1201	dev_dbg(sor->dev,
1202		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1203		config->active_polarity, config->active_count,
1204		config->tu_size, config->active_frac);
1205
1206	watermark = params.ratio * config->tu_size * (f - params.ratio);
1207	watermark = div_u64(watermark, f);
1208
1209	watermark = div_u64(watermark + params.error, f);
1210	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1211	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1212			    (link->lanes * 8);
1213
1214	if (config->watermark > 30) {
1215		config->watermark = 30;
1216		dev_err(sor->dev,
1217			"unable to compute TU size, forcing watermark to %u\n",
1218			config->watermark);
1219	} else if (config->watermark > num_syms_per_line) {
1220		config->watermark = num_syms_per_line;
1221		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1222			config->watermark);
1223	}
1224
1225	/* compute the number of symbols per horizontal blanking interval */
1226	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1227	config->hblank_symbols = div_u64(num, pclk);
1228
1229	if (link->caps.enhanced_framing)
1230		config->hblank_symbols -= 3;
1231
1232	config->hblank_symbols -= 12 / link->lanes;
1233
1234	/* compute the number of symbols per vertical blanking interval */
1235	num = (mode->hdisplay - 25) * link_rate;
1236	config->vblank_symbols = div_u64(num, pclk);
1237	config->vblank_symbols -= 36 / link->lanes + 4;
1238
1239	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1240		config->vblank_symbols);
1241
1242	return 0;
1243}
1244
1245static void tegra_sor_apply_config(struct tegra_sor *sor,
1246				   const struct tegra_sor_config *config)
1247{
1248	u32 value;
1249
1250	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1251	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1252	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1253	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1254
1255	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1256	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1257	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1258
1259	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1260	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1261
1262	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1263	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1264
1265	if (config->active_polarity)
1266		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1267	else
1268		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1269
1270	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1271	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1272	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1273
1274	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1276	value |= config->hblank_symbols & 0xffff;
1277	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1278
1279	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1281	value |= config->vblank_symbols & 0xffff;
1282	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1283}
1284
1285static void tegra_sor_mode_set(struct tegra_sor *sor,
1286			       const struct drm_display_mode *mode,
1287			       struct tegra_sor_state *state)
1288{
1289	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1290	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1291	u32 value;
1292
1293	value = tegra_sor_readl(sor, SOR_STATE1);
1294	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1295	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1296	value &= ~SOR_STATE_ASY_OWNER_MASK;
1297
1298	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1299		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1300
1301	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1302		value &= ~SOR_STATE_ASY_HSYNCPOL;
1303
1304	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1305		value |= SOR_STATE_ASY_HSYNCPOL;
1306
1307	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1308		value &= ~SOR_STATE_ASY_VSYNCPOL;
1309
1310	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1311		value |= SOR_STATE_ASY_VSYNCPOL;
1312
1313	switch (state->bpc) {
1314	case 16:
1315		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1316		break;
1317
1318	case 12:
1319		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1320		break;
1321
1322	case 10:
1323		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1324		break;
1325
1326	case 8:
1327		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1328		break;
1329
1330	case 6:
1331		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1332		break;
1333
1334	default:
1335		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1336		break;
1337	}
1338
1339	tegra_sor_writel(sor, value, SOR_STATE1);
1340
1341	/*
1342	 * TODO: The video timing programming below doesn't seem to match the
1343	 * register definitions.
1344	 */
1345
1346	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1347	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1348
1349	/* sync end = sync width - 1 */
1350	vse = mode->vsync_end - mode->vsync_start - 1;
1351	hse = mode->hsync_end - mode->hsync_start - 1;
1352
1353	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1354	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1355
1356	/* blank end = sync end + back porch */
1357	vbe = vse + (mode->vtotal - mode->vsync_end);
1358	hbe = hse + (mode->htotal - mode->hsync_end);
1359
1360	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1361	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1362
1363	/* blank start = blank end + active */
1364	vbs = vbe + mode->vdisplay;
1365	hbs = hbe + mode->hdisplay;
1366
1367	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1368	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1369
1370	/* XXX interlacing support */
1371	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1372}
1373
1374static int tegra_sor_detach(struct tegra_sor *sor)
1375{
1376	unsigned long value, timeout;
1377
1378	/* switch to safe mode */
1379	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1380	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1381	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1382	tegra_sor_super_update(sor);
1383
1384	timeout = jiffies + msecs_to_jiffies(250);
1385
1386	while (time_before(jiffies, timeout)) {
1387		value = tegra_sor_readl(sor, SOR_PWR);
1388		if (value & SOR_PWR_MODE_SAFE)
1389			break;
1390	}
1391
1392	if ((value & SOR_PWR_MODE_SAFE) == 0)
1393		return -ETIMEDOUT;
1394
1395	/* go to sleep */
1396	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1397	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1398	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1399	tegra_sor_super_update(sor);
1400
1401	/* detach */
1402	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1403	value &= ~SOR_SUPER_STATE_ATTACHED;
1404	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1405	tegra_sor_super_update(sor);
1406
1407	timeout = jiffies + msecs_to_jiffies(250);
1408
1409	while (time_before(jiffies, timeout)) {
1410		value = tegra_sor_readl(sor, SOR_TEST);
1411		if ((value & SOR_TEST_ATTACHED) == 0)
1412			break;
1413
1414		usleep_range(25, 100);
1415	}
1416
1417	if ((value & SOR_TEST_ATTACHED) != 0)
1418		return -ETIMEDOUT;
1419
1420	return 0;
1421}
1422
1423static int tegra_sor_power_down(struct tegra_sor *sor)
1424{
1425	unsigned long value, timeout;
1426	int err;
1427
1428	value = tegra_sor_readl(sor, SOR_PWR);
1429	value &= ~SOR_PWR_NORMAL_STATE_PU;
1430	value |= SOR_PWR_TRIGGER;
1431	tegra_sor_writel(sor, value, SOR_PWR);
1432
1433	timeout = jiffies + msecs_to_jiffies(250);
1434
1435	while (time_before(jiffies, timeout)) {
1436		value = tegra_sor_readl(sor, SOR_PWR);
1437		if ((value & SOR_PWR_TRIGGER) == 0)
1438			return 0;
1439
1440		usleep_range(25, 100);
1441	}
1442
1443	if ((value & SOR_PWR_TRIGGER) != 0)
1444		return -ETIMEDOUT;
1445
1446	/* switch to safe parent clock */
1447	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1448	if (err < 0) {
1449		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1450		return err;
1451	}
1452
1453	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1454	value |= SOR_PLL2_PORT_POWERDOWN;
1455	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1456
1457	usleep_range(20, 100);
1458
1459	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1460	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1461	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1462
1463	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1464	value |= SOR_PLL2_SEQ_PLLCAPPD;
1465	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1466	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1467
1468	usleep_range(20, 100);
1469
1470	return 0;
1471}
1472
1473static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1474{
1475	u32 value;
1476
1477	timeout = jiffies + msecs_to_jiffies(timeout);
1478
1479	while (time_before(jiffies, timeout)) {
1480		value = tegra_sor_readl(sor, SOR_CRCA);
1481		if (value & SOR_CRCA_VALID)
1482			return 0;
1483
1484		usleep_range(100, 200);
1485	}
1486
1487	return -ETIMEDOUT;
1488}
1489
1490static int tegra_sor_show_crc(struct seq_file *s, void *data)
1491{
1492	struct drm_info_node *node = s->private;
1493	struct tegra_sor *sor = node->info_ent->data;
1494	struct drm_crtc *crtc = sor->output.encoder.crtc;
1495	struct drm_device *drm = node->minor->dev;
1496	int err = 0;
1497	u32 value;
1498
1499	drm_modeset_lock_all(drm);
1500
1501	if (!crtc || !crtc->state->active) {
1502		err = -EBUSY;
1503		goto unlock;
1504	}
1505
1506	value = tegra_sor_readl(sor, SOR_STATE1);
1507	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1508	tegra_sor_writel(sor, value, SOR_STATE1);
1509
1510	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1511	value |= SOR_CRC_CNTRL_ENABLE;
1512	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1513
1514	value = tegra_sor_readl(sor, SOR_TEST);
1515	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1516	tegra_sor_writel(sor, value, SOR_TEST);
1517
1518	err = tegra_sor_crc_wait(sor, 100);
1519	if (err < 0)
1520		goto unlock;
1521
1522	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1523	value = tegra_sor_readl(sor, SOR_CRCB);
1524
1525	seq_printf(s, "%08x\n", value);
1526
1527unlock:
1528	drm_modeset_unlock_all(drm);
1529	return err;
1530}
1531
1532#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1533
1534static const struct debugfs_reg32 tegra_sor_regs[] = {
1535	DEBUGFS_REG32(SOR_CTXSW),
1536	DEBUGFS_REG32(SOR_SUPER_STATE0),
1537	DEBUGFS_REG32(SOR_SUPER_STATE1),
1538	DEBUGFS_REG32(SOR_STATE0),
1539	DEBUGFS_REG32(SOR_STATE1),
1540	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1541	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1542	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1543	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1544	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1545	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1546	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1547	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1548	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1549	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1550	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1551	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1552	DEBUGFS_REG32(SOR_CRC_CNTRL),
1553	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1554	DEBUGFS_REG32(SOR_CLK_CNTRL),
1555	DEBUGFS_REG32(SOR_CAP),
1556	DEBUGFS_REG32(SOR_PWR),
1557	DEBUGFS_REG32(SOR_TEST),
1558	DEBUGFS_REG32(SOR_PLL0),
1559	DEBUGFS_REG32(SOR_PLL1),
1560	DEBUGFS_REG32(SOR_PLL2),
1561	DEBUGFS_REG32(SOR_PLL3),
1562	DEBUGFS_REG32(SOR_CSTM),
1563	DEBUGFS_REG32(SOR_LVDS),
1564	DEBUGFS_REG32(SOR_CRCA),
1565	DEBUGFS_REG32(SOR_CRCB),
1566	DEBUGFS_REG32(SOR_BLANK),
1567	DEBUGFS_REG32(SOR_SEQ_CTL),
1568	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1569	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1570	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1571	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1572	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1573	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1574	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1575	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1576	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1577	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1578	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1579	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1580	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1581	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1582	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1583	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1584	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1585	DEBUGFS_REG32(SOR_PWM_DIV),
1586	DEBUGFS_REG32(SOR_PWM_CTL),
1587	DEBUGFS_REG32(SOR_VCRC_A0),
1588	DEBUGFS_REG32(SOR_VCRC_A1),
1589	DEBUGFS_REG32(SOR_VCRC_B0),
1590	DEBUGFS_REG32(SOR_VCRC_B1),
1591	DEBUGFS_REG32(SOR_CCRC_A0),
1592	DEBUGFS_REG32(SOR_CCRC_A1),
1593	DEBUGFS_REG32(SOR_CCRC_B0),
1594	DEBUGFS_REG32(SOR_CCRC_B1),
1595	DEBUGFS_REG32(SOR_EDATA_A0),
1596	DEBUGFS_REG32(SOR_EDATA_A1),
1597	DEBUGFS_REG32(SOR_EDATA_B0),
1598	DEBUGFS_REG32(SOR_EDATA_B1),
1599	DEBUGFS_REG32(SOR_COUNT_A0),
1600	DEBUGFS_REG32(SOR_COUNT_A1),
1601	DEBUGFS_REG32(SOR_COUNT_B0),
1602	DEBUGFS_REG32(SOR_COUNT_B1),
1603	DEBUGFS_REG32(SOR_DEBUG_A0),
1604	DEBUGFS_REG32(SOR_DEBUG_A1),
1605	DEBUGFS_REG32(SOR_DEBUG_B0),
1606	DEBUGFS_REG32(SOR_DEBUG_B1),
1607	DEBUGFS_REG32(SOR_TRIG),
1608	DEBUGFS_REG32(SOR_MSCHECK),
1609	DEBUGFS_REG32(SOR_XBAR_CTRL),
1610	DEBUGFS_REG32(SOR_XBAR_POL),
1611	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1612	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1613	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1614	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1615	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1616	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1617	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1618	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1619	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1620	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1621	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1622	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1623	DEBUGFS_REG32(SOR_DP_CONFIG0),
1624	DEBUGFS_REG32(SOR_DP_CONFIG1),
1625	DEBUGFS_REG32(SOR_DP_MN0),
1626	DEBUGFS_REG32(SOR_DP_MN1),
1627	DEBUGFS_REG32(SOR_DP_PADCTL0),
1628	DEBUGFS_REG32(SOR_DP_PADCTL1),
1629	DEBUGFS_REG32(SOR_DP_PADCTL2),
1630	DEBUGFS_REG32(SOR_DP_DEBUG0),
1631	DEBUGFS_REG32(SOR_DP_DEBUG1),
1632	DEBUGFS_REG32(SOR_DP_SPARE0),
1633	DEBUGFS_REG32(SOR_DP_SPARE1),
1634	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1635	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1636	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1637	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1638	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1639	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1640	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1641	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1642	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1643	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1644	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1645	DEBUGFS_REG32(SOR_DP_TPG),
1646	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1647	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1648	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1649	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1650};
1651
1652static int tegra_sor_show_regs(struct seq_file *s, void *data)
1653{
1654	struct drm_info_node *node = s->private;
1655	struct tegra_sor *sor = node->info_ent->data;
1656	struct drm_crtc *crtc = sor->output.encoder.crtc;
1657	struct drm_device *drm = node->minor->dev;
1658	unsigned int i;
1659	int err = 0;
1660
1661	drm_modeset_lock_all(drm);
1662
1663	if (!crtc || !crtc->state->active) {
1664		err = -EBUSY;
1665		goto unlock;
1666	}
1667
1668	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1669		unsigned int offset = tegra_sor_regs[i].offset;
1670
1671		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1672			   offset, tegra_sor_readl(sor, offset));
1673	}
1674
1675unlock:
1676	drm_modeset_unlock_all(drm);
1677	return err;
1678}
1679
1680static const struct drm_info_list debugfs_files[] = {
1681	{ "crc", tegra_sor_show_crc, 0, NULL },
1682	{ "regs", tegra_sor_show_regs, 0, NULL },
1683};
1684
1685static int tegra_sor_late_register(struct drm_connector *connector)
1686{
1687	struct tegra_output *output = connector_to_output(connector);
1688	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1689	struct drm_minor *minor = connector->dev->primary;
1690	struct dentry *root = connector->debugfs_entry;
1691	struct tegra_sor *sor = to_sor(output);
1692
1693	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1694				     GFP_KERNEL);
1695	if (!sor->debugfs_files)
1696		return -ENOMEM;
1697
1698	for (i = 0; i < count; i++)
1699		sor->debugfs_files[i].data = sor;
1700
1701	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1702
1703	return 0;
1704}
1705
1706static void tegra_sor_early_unregister(struct drm_connector *connector)
1707{
1708	struct tegra_output *output = connector_to_output(connector);
1709	unsigned int count = ARRAY_SIZE(debugfs_files);
1710	struct tegra_sor *sor = to_sor(output);
1711
1712	drm_debugfs_remove_files(sor->debugfs_files, count,
1713				 connector->debugfs_entry,
1714				 connector->dev->primary);
1715	kfree(sor->debugfs_files);
1716	sor->debugfs_files = NULL;
1717}
1718
1719static void tegra_sor_connector_reset(struct drm_connector *connector)
1720{
1721	struct tegra_sor_state *state;
1722
1723	state = kzalloc(sizeof(*state), GFP_KERNEL);
1724	if (!state)
1725		return;
1726
1727	if (connector->state) {
1728		__drm_atomic_helper_connector_destroy_state(connector->state);
1729		kfree(connector->state);
1730	}
1731
1732	__drm_atomic_helper_connector_reset(connector, &state->base);
1733}
1734
1735static enum drm_connector_status
1736tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1737{
1738	struct tegra_output *output = connector_to_output(connector);
1739	struct tegra_sor *sor = to_sor(output);
1740
1741	if (sor->aux)
1742		return drm_dp_aux_detect(sor->aux);
1743
1744	return tegra_output_connector_detect(connector, force);
1745}
1746
1747static struct drm_connector_state *
1748tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1749{
1750	struct tegra_sor_state *state = to_sor_state(connector->state);
1751	struct tegra_sor_state *copy;
1752
1753	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1754	if (!copy)
1755		return NULL;
1756
1757	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1758
1759	return &copy->base;
1760}
1761
1762static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1763	.reset = tegra_sor_connector_reset,
1764	.detect = tegra_sor_connector_detect,
1765	.fill_modes = drm_helper_probe_single_connector_modes,
1766	.destroy = tegra_output_connector_destroy,
1767	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1768	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1769	.late_register = tegra_sor_late_register,
1770	.early_unregister = tegra_sor_early_unregister,
1771};
1772
1773static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1774{
1775	struct tegra_output *output = connector_to_output(connector);
1776	struct tegra_sor *sor = to_sor(output);
1777	int err;
1778
1779	if (sor->aux)
1780		drm_dp_aux_enable(sor->aux);
1781
1782	err = tegra_output_connector_get_modes(connector);
1783
1784	if (sor->aux)
1785		drm_dp_aux_disable(sor->aux);
1786
1787	return err;
1788}
1789
1790static enum drm_mode_status
1791tegra_sor_connector_mode_valid(struct drm_connector *connector,
1792			       struct drm_display_mode *mode)
1793{
1794	return MODE_OK;
1795}
1796
1797static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1798	.get_modes = tegra_sor_connector_get_modes,
1799	.mode_valid = tegra_sor_connector_mode_valid,
1800};
1801
1802static int
1803tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1804			       struct drm_crtc_state *crtc_state,
1805			       struct drm_connector_state *conn_state)
1806{
1807	struct tegra_output *output = encoder_to_output(encoder);
1808	struct tegra_sor_state *state = to_sor_state(conn_state);
1809	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1810	unsigned long pclk = crtc_state->mode.clock * 1000;
1811	struct tegra_sor *sor = to_sor(output);
1812	struct drm_display_info *info;
1813	int err;
1814
1815	info = &output->connector.display_info;
1816
1817	/*
1818	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1819	 * the pixel clock must be corrected accordingly.
1820	 */
1821	if (pclk >= 340000000) {
1822		state->link_speed = 20;
1823		state->pclk = pclk / 2;
1824	} else {
1825		state->link_speed = 10;
1826		state->pclk = pclk;
1827	}
1828
1829	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1830					 pclk, 0);
1831	if (err < 0) {
1832		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1833		return err;
1834	}
1835
1836	switch (info->bpc) {
1837	case 8:
1838	case 6:
1839		state->bpc = info->bpc;
1840		break;
1841
1842	default:
1843		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1844		state->bpc = 8;
1845		break;
1846	}
1847
1848	return 0;
1849}
1850
1851static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1852{
1853	u32 value = 0;
1854	size_t i;
1855
1856	for (i = size; i > 0; i--)
1857		value = (value << 8) | ptr[i - 1];
1858
1859	return value;
1860}
1861
1862static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1863					  const void *data, size_t size)
1864{
1865	const u8 *ptr = data;
1866	unsigned long offset;
1867	size_t i, j;
1868	u32 value;
1869
1870	switch (ptr[0]) {
1871	case HDMI_INFOFRAME_TYPE_AVI:
1872		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1873		break;
1874
1875	case HDMI_INFOFRAME_TYPE_AUDIO:
1876		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1877		break;
1878
1879	case HDMI_INFOFRAME_TYPE_VENDOR:
1880		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1881		break;
1882
1883	default:
1884		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1885			ptr[0]);
1886		return;
1887	}
1888
1889	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1890		INFOFRAME_HEADER_VERSION(ptr[1]) |
1891		INFOFRAME_HEADER_LEN(ptr[2]);
1892	tegra_sor_writel(sor, value, offset);
1893	offset++;
1894
1895	/*
1896	 * Each subpack contains 7 bytes, divided into:
1897	 * - subpack_low: bytes 0 - 3
1898	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1899	 */
1900	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1901		size_t rem = size - i, num = min_t(size_t, rem, 4);
1902
1903		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1904		tegra_sor_writel(sor, value, offset++);
1905
1906		num = min_t(size_t, rem - num, 3);
1907
1908		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1909		tegra_sor_writel(sor, value, offset++);
1910	}
1911}
1912
1913static int
1914tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1915				   const struct drm_display_mode *mode)
1916{
1917	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1918	struct hdmi_avi_infoframe frame;
1919	u32 value;
1920	int err;
1921
1922	/* disable AVI infoframe */
1923	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924	value &= ~INFOFRAME_CTRL_SINGLE;
1925	value &= ~INFOFRAME_CTRL_OTHER;
1926	value &= ~INFOFRAME_CTRL_ENABLE;
1927	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1928
1929	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1930						       &sor->output.connector, mode);
1931	if (err < 0) {
1932		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1933		return err;
1934	}
1935
1936	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1937	if (err < 0) {
1938		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1939		return err;
1940	}
1941
1942	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1943
1944	/* enable AVI infoframe */
1945	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1946	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1947	value |= INFOFRAME_CTRL_ENABLE;
1948	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1949
1950	return 0;
1951}
1952
1953static void tegra_sor_write_eld(struct tegra_sor *sor)
1954{
1955	size_t length = drm_eld_size(sor->output.connector.eld), i;
1956
1957	for (i = 0; i < length; i++)
1958		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1959				 SOR_AUDIO_HDA_ELD_BUFWR);
1960
1961	/*
1962	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1963	 * the HDA codec driver will check that each byte read from the buffer
1964	 * is valid. Therefore every byte must be written, even if no 96 bytes
1965	 * were parsed from EDID.
1966	 */
1967	for (i = length; i < 96; i++)
1968		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1969}
1970
1971static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1972{
1973	u32 value;
1974
1975	/*
1976	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1977	 * is used for interoperability between the HDA codec driver and the
1978	 * HDMI/DP driver.
1979	 */
1980	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1981	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1982	tegra_sor_writel(sor, value, SOR_INT_MASK);
1983
1984	tegra_sor_write_eld(sor);
1985
1986	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1987	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1988}
1989
1990static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1991{
1992	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1993	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1994	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1995}
1996
1997static void tegra_sor_audio_enable(struct tegra_sor *sor)
1998{
1999	u32 value;
2000
2001	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2002
2003	/* select HDA audio input */
2004	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2005	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2006
2007	/* inject null samples */
2008	if (sor->format.channels != 2)
2009		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2010	else
2011		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2012
2013	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2014
2015	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2016
2017	/* enable advertising HBR capability */
2018	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2019}
2020
2021static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2022{
2023	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2024	struct hdmi_audio_infoframe frame;
2025	u32 value;
2026	int err;
2027
2028	err = hdmi_audio_infoframe_init(&frame);
2029	if (err < 0) {
2030		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2031		return err;
2032	}
2033
2034	frame.channels = sor->format.channels;
2035
2036	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2037	if (err < 0) {
2038		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2039		return err;
2040	}
2041
2042	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2043
2044	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2045	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2046	value |= INFOFRAME_CTRL_ENABLE;
2047	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2048
2049	return 0;
2050}
2051
2052static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2053{
2054	u32 value;
2055
2056	tegra_sor_audio_enable(sor);
2057
2058	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2059
2060	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2061		SOR_HDMI_SPARE_CTS_RESET(1) |
2062		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2063	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2064
2065	/* enable HW CTS */
2066	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2067	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2068
2069	/* allow packet to be sent */
2070	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2071	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2072
2073	/* reset N counter and enable lookup */
2074	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2075	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2076
2077	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2078	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2079	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2080
2081	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2082	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2083
2084	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2085	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2086
2087	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2088	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2089
2090	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2091	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2092	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2093
2094	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2095	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2096	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2097
2098	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2099	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2100	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2101
2102	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2103	value &= ~SOR_HDMI_AUDIO_N_RESET;
2104	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2105
2106	tegra_sor_hdmi_enable_audio_infoframe(sor);
2107}
2108
2109static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2110{
2111	u32 value;
2112
2113	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2114	value &= ~INFOFRAME_CTRL_ENABLE;
2115	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2116}
2117
2118static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2119{
2120	tegra_sor_hdmi_disable_audio_infoframe(sor);
2121}
2122
2123static struct tegra_sor_hdmi_settings *
2124tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2125{
2126	unsigned int i;
2127
2128	for (i = 0; i < sor->num_settings; i++)
2129		if (frequency <= sor->settings[i].frequency)
2130			return &sor->settings[i];
2131
2132	return NULL;
2133}
2134
2135static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2136{
2137	u32 value;
2138
2139	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2140	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2141	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2142	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2143}
2144
2145static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2146{
2147	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2148	drm_scdc_set_scrambling(&sor->output.connector, false);
 
 
2149
2150	tegra_sor_hdmi_disable_scrambling(sor);
2151}
2152
2153static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2154{
2155	if (sor->scdc_enabled) {
2156		cancel_delayed_work_sync(&sor->scdc);
2157		tegra_sor_hdmi_scdc_disable(sor);
2158	}
2159}
2160
2161static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2162{
2163	u32 value;
2164
2165	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2166	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2167	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2168	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2169}
2170
2171static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2172{
2173	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2174	drm_scdc_set_scrambling(&sor->output.connector, true);
 
 
2175
2176	tegra_sor_hdmi_enable_scrambling(sor);
2177}
2178
2179static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180{
2181	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
 
2182
2183	if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2184		DRM_DEBUG_KMS("SCDC not scrambled\n");
2185		tegra_sor_hdmi_scdc_enable(sor);
2186	}
2187
2188	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2189}
2190
2191static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2192{
2193	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2194	struct drm_display_mode *mode;
2195
2196	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2197
2198	if (mode->clock >= 340000 && scdc->supported) {
2199		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2200		tegra_sor_hdmi_scdc_enable(sor);
2201		sor->scdc_enabled = true;
2202	}
2203}
2204
2205static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2206{
2207	struct tegra_output *output = encoder_to_output(encoder);
2208	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2209	struct tegra_sor *sor = to_sor(output);
2210	u32 value;
2211	int err;
2212
2213	tegra_sor_audio_unprepare(sor);
2214	tegra_sor_hdmi_scdc_stop(sor);
2215
2216	err = tegra_sor_detach(sor);
2217	if (err < 0)
2218		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2219
2220	tegra_sor_writel(sor, 0, SOR_STATE1);
2221	tegra_sor_update(sor);
2222
2223	/* disable display to SOR clock */
2224	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2225
2226	if (!sor->soc->has_nvdisplay)
2227		value &= ~SOR1_TIMING_CYA;
2228
2229	value &= ~SOR_ENABLE(sor->index);
2230
2231	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2232
2233	tegra_dc_commit(dc);
2234
2235	err = tegra_sor_power_down(sor);
2236	if (err < 0)
2237		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2238
2239	err = tegra_io_pad_power_disable(sor->pad);
2240	if (err < 0)
2241		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2242
2243	host1x_client_suspend(&sor->client);
2244}
2245
2246static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2247{
2248	struct tegra_output *output = encoder_to_output(encoder);
2249	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2250	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2251	struct tegra_sor_hdmi_settings *settings;
2252	struct tegra_sor *sor = to_sor(output);
2253	struct tegra_sor_state *state;
2254	struct drm_display_mode *mode;
2255	unsigned long rate, pclk;
2256	unsigned int div, i;
2257	u32 value;
2258	int err;
2259
2260	state = to_sor_state(output->connector.state);
2261	mode = &encoder->crtc->state->adjusted_mode;
2262	pclk = mode->clock * 1000;
2263
2264	err = host1x_client_resume(&sor->client);
2265	if (err < 0) {
2266		dev_err(sor->dev, "failed to resume: %d\n", err);
2267		return;
2268	}
2269
2270	/* switch to safe parent clock */
2271	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2272	if (err < 0) {
2273		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2274		return;
2275	}
2276
2277	div = clk_get_rate(sor->clk) / 1000000 * 4;
2278
2279	err = tegra_io_pad_power_enable(sor->pad);
2280	if (err < 0)
2281		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2282
2283	usleep_range(20, 100);
2284
2285	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2286	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2287	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2288
2289	usleep_range(20, 100);
2290
2291	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2292	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2293	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2294
2295	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2296	value &= ~SOR_PLL0_VCOPD;
2297	value &= ~SOR_PLL0_PWR;
2298	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2299
2300	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2301	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2302	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2303
2304	usleep_range(200, 400);
2305
2306	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2307	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2308	value &= ~SOR_PLL2_PORT_POWERDOWN;
2309	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2310
2311	usleep_range(20, 100);
2312
2313	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2314	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2315		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2316	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2317
2318	while (true) {
2319		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2320		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2321			break;
2322
2323		usleep_range(250, 1000);
2324	}
2325
2326	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2327		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2328	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2329
2330	while (true) {
2331		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2332		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2333			break;
2334
2335		usleep_range(250, 1000);
2336	}
2337
2338	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2339	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2340	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2341
2342	if (mode->clock < 340000) {
2343		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2344		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2345	} else {
2346		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2347		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2348	}
2349
2350	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2351	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2352
2353	/* SOR pad PLL stabilization time */
2354	usleep_range(250, 1000);
2355
2356	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2357	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2358	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2359	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2360
2361	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2362	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2363	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2364	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2365	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2366	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2367
2368	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2369		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2370	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2371
2372	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2373		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2374	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2375	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2376
2377	if (!sor->soc->has_nvdisplay) {
2378		/* program the reference clock */
2379		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2380		tegra_sor_writel(sor, value, SOR_REFCLK);
2381	}
2382
2383	/* XXX not in TRM */
2384	for (value = 0, i = 0; i < 5; i++)
2385		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2386			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2387
2388	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2389	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2390
2391	/*
2392	 * Switch the pad clock to the DP clock. Note that we cannot actually
2393	 * do this because Tegra186 and later don't support clk_set_parent()
2394	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2395	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2396	 */
2397#if 0
2398	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2399	if (err < 0) {
2400		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2401			err);
2402		return;
2403	}
2404#endif
2405
2406	/* switch the SOR clock to the pad clock */
2407	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2408	if (err < 0) {
2409		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2410			err);
2411		return;
2412	}
2413
2414	/* switch the output clock to the parent pixel clock */
2415	err = clk_set_parent(sor->clk, sor->clk_parent);
2416	if (err < 0) {
2417		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2418			err);
2419		return;
2420	}
2421
2422	/* adjust clock rate for HDMI 2.0 modes */
2423	rate = clk_get_rate(sor->clk_parent);
2424
2425	if (mode->clock >= 340000)
2426		rate /= 2;
2427
2428	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2429
2430	clk_set_rate(sor->clk, rate);
2431
2432	if (!sor->soc->has_nvdisplay) {
2433		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2434
2435		/* XXX is this the proper check? */
2436		if (mode->clock < 75000)
2437			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2438
2439		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2440	}
2441
2442	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2443
2444	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2445		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2446	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2447
2448	if (!dc->soc->has_nvdisplay) {
2449		/* H_PULSE2 setup */
2450		pulse_start = h_ref_to_sync +
2451			      (mode->hsync_end - mode->hsync_start) +
2452			      (mode->htotal - mode->hsync_end) - 10;
2453
2454		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2455			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2456		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2457
2458		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2459		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2460
2461		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2462		value |= H_PULSE2_ENABLE;
2463		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2464	}
2465
2466	/* infoframe setup */
2467	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2468	if (err < 0)
2469		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2470
2471	/* XXX HDMI audio support not implemented yet */
2472	tegra_sor_hdmi_disable_audio_infoframe(sor);
2473
2474	/* use single TMDS protocol */
2475	value = tegra_sor_readl(sor, SOR_STATE1);
2476	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2477	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2478	tegra_sor_writel(sor, value, SOR_STATE1);
2479
2480	/* power up pad calibration */
2481	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2482	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2483	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2484
2485	/* production settings */
2486	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2487	if (!settings) {
2488		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2489			mode->clock * 1000);
2490		return;
2491	}
2492
2493	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2494	value &= ~SOR_PLL0_ICHPMP_MASK;
2495	value &= ~SOR_PLL0_FILTER_MASK;
2496	value &= ~SOR_PLL0_VCOCAP_MASK;
2497	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2498	value |= SOR_PLL0_FILTER(settings->filter);
2499	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2500	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2501
2502	/* XXX not in TRM */
2503	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2504	value &= ~SOR_PLL1_LOADADJ_MASK;
2505	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2506	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2507	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2508	value |= SOR_PLL1_TMDS_TERM;
2509	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2510
2511	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2512	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2513	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2514	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2515	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2516	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2517	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2518	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2519	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2520	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2521
2522	value = settings->drive_current[3] << 24 |
2523		settings->drive_current[2] << 16 |
2524		settings->drive_current[1] <<  8 |
2525		settings->drive_current[0] <<  0;
2526	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2527
2528	value = settings->preemphasis[3] << 24 |
2529		settings->preemphasis[2] << 16 |
2530		settings->preemphasis[1] <<  8 |
2531		settings->preemphasis[0] <<  0;
2532	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2533
2534	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2535	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2536	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2537	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2538	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2539
2540	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2541	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2542	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2543	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2544
2545	/* power down pad calibration */
2546	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2547	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2548	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2549
2550	if (!dc->soc->has_nvdisplay) {
2551		/* miscellaneous display controller settings */
2552		value = VSYNC_H_POSITION(1);
2553		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2554	}
2555
2556	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2557	value &= ~DITHER_CONTROL_MASK;
2558	value &= ~BASE_COLOR_SIZE_MASK;
2559
2560	switch (state->bpc) {
2561	case 6:
2562		value |= BASE_COLOR_SIZE_666;
2563		break;
2564
2565	case 8:
2566		value |= BASE_COLOR_SIZE_888;
2567		break;
2568
2569	case 10:
2570		value |= BASE_COLOR_SIZE_101010;
2571		break;
2572
2573	case 12:
2574		value |= BASE_COLOR_SIZE_121212;
2575		break;
2576
2577	default:
2578		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2579		value |= BASE_COLOR_SIZE_888;
2580		break;
2581	}
2582
2583	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2584
2585	/* XXX set display head owner */
2586	value = tegra_sor_readl(sor, SOR_STATE1);
2587	value &= ~SOR_STATE_ASY_OWNER_MASK;
2588	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2589	tegra_sor_writel(sor, value, SOR_STATE1);
2590
2591	err = tegra_sor_power_up(sor, 250);
2592	if (err < 0)
2593		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2594
2595	/* configure dynamic range of output */
2596	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2597	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2598	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2599	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2600
2601	/* configure colorspace */
2602	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2603	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2604	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2605	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2606
2607	tegra_sor_mode_set(sor, mode, state);
2608
2609	tegra_sor_update(sor);
2610
2611	/* program preamble timing in SOR (XXX) */
2612	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2613	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2614	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2615
2616	err = tegra_sor_attach(sor);
2617	if (err < 0)
2618		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2619
2620	/* enable display to SOR clock and generate HDMI preamble */
2621	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2622
2623	if (!sor->soc->has_nvdisplay)
2624		value |= SOR1_TIMING_CYA;
2625
2626	value |= SOR_ENABLE(sor->index);
2627
2628	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2629
2630	if (dc->soc->has_nvdisplay) {
2631		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2632		value &= ~PROTOCOL_MASK;
2633		value |= PROTOCOL_SINGLE_TMDS_A;
2634		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2635	}
2636
2637	tegra_dc_commit(dc);
2638
2639	err = tegra_sor_wakeup(sor);
2640	if (err < 0)
2641		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2642
2643	tegra_sor_hdmi_scdc_start(sor);
2644	tegra_sor_audio_prepare(sor);
2645}
2646
2647static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2648	.disable = tegra_sor_hdmi_disable,
2649	.enable = tegra_sor_hdmi_enable,
2650	.atomic_check = tegra_sor_encoder_atomic_check,
2651};
2652
2653static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2654{
2655	struct tegra_output *output = encoder_to_output(encoder);
2656	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2657	struct tegra_sor *sor = to_sor(output);
2658	u32 value;
2659	int err;
2660
2661	if (output->panel)
2662		drm_panel_disable(output->panel);
2663
2664	/*
2665	 * Do not attempt to power down a DP link if we're not connected since
2666	 * the AUX transactions would just be timing out.
2667	 */
2668	if (output->connector.status != connector_status_disconnected) {
2669		err = drm_dp_link_power_down(sor->aux, &sor->link);
2670		if (err < 0)
2671			dev_err(sor->dev, "failed to power down link: %d\n",
2672				err);
2673	}
2674
2675	err = tegra_sor_detach(sor);
2676	if (err < 0)
2677		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2678
2679	tegra_sor_writel(sor, 0, SOR_STATE1);
2680	tegra_sor_update(sor);
2681
2682	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2683	value &= ~SOR_ENABLE(sor->index);
2684	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2685	tegra_dc_commit(dc);
2686
2687	value = tegra_sor_readl(sor, SOR_STATE1);
2688	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2689	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2690	value &= ~SOR_STATE_ASY_OWNER_MASK;
2691	tegra_sor_writel(sor, value, SOR_STATE1);
2692	tegra_sor_update(sor);
2693
2694	/* switch to safe parent clock */
2695	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2696	if (err < 0)
2697		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2698
2699	err = tegra_sor_power_down(sor);
2700	if (err < 0)
2701		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2702
2703	err = tegra_io_pad_power_disable(sor->pad);
2704	if (err < 0)
2705		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2706
2707	err = drm_dp_aux_disable(sor->aux);
2708	if (err < 0)
2709		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2710
2711	if (output->panel)
2712		drm_panel_unprepare(output->panel);
2713
2714	host1x_client_suspend(&sor->client);
2715}
2716
2717static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2718{
2719	struct tegra_output *output = encoder_to_output(encoder);
2720	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2721	struct tegra_sor *sor = to_sor(output);
2722	struct tegra_sor_config config;
2723	struct tegra_sor_state *state;
2724	struct drm_display_mode *mode;
2725	struct drm_display_info *info;
2726	unsigned int i;
2727	u32 value;
2728	int err;
2729
2730	state = to_sor_state(output->connector.state);
2731	mode = &encoder->crtc->state->adjusted_mode;
2732	info = &output->connector.display_info;
2733
2734	err = host1x_client_resume(&sor->client);
2735	if (err < 0) {
2736		dev_err(sor->dev, "failed to resume: %d\n", err);
2737		return;
2738	}
2739
2740	/* switch to safe parent clock */
2741	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2742	if (err < 0)
2743		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2744
2745	err = tegra_io_pad_power_enable(sor->pad);
2746	if (err < 0)
2747		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2748
2749	usleep_range(20, 100);
2750
2751	err = drm_dp_aux_enable(sor->aux);
2752	if (err < 0)
2753		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2754
2755	err = drm_dp_link_probe(sor->aux, &sor->link);
2756	if (err < 0)
2757		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2758
2759	tegra_sor_filter_rates(sor);
2760
2761	err = drm_dp_link_choose(&sor->link, mode, info);
2762	if (err < 0)
2763		dev_err(sor->dev, "failed to choose link: %d\n", err);
2764
2765	if (output->panel)
2766		drm_panel_prepare(output->panel);
2767
2768	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2769	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2770	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2771
2772	usleep_range(20, 40);
2773
2774	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2775	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2776	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2777
2778	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2779	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2780	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2781
2782	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2783	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2784	value |= SOR_PLL2_SEQ_PLLCAPPD;
2785	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2786
2787	usleep_range(200, 400);
2788
2789	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2790	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2791	value &= ~SOR_PLL2_PORT_POWERDOWN;
2792	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2793
2794	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2795	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2796
2797	if (output->panel)
2798		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2799	else
2800		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2801
2802	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2803
2804	usleep_range(200, 400);
2805
2806	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2807	/* XXX not in TRM */
2808	if (output->panel)
2809		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2810	else
2811		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2812
2813	value |= SOR_DP_SPARE_SEQ_ENABLE;
2814	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2815
2816	/* XXX not in TRM */
2817	tegra_sor_writel(sor, 0, SOR_LVDS);
2818
2819	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2820	value &= ~SOR_PLL0_ICHPMP_MASK;
2821	value &= ~SOR_PLL0_VCOCAP_MASK;
2822	value |= SOR_PLL0_ICHPMP(0x1);
2823	value |= SOR_PLL0_VCOCAP(0x3);
2824	value |= SOR_PLL0_RESISTOR_EXT;
2825	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2826
2827	/* XXX not in TRM */
2828	for (value = 0, i = 0; i < 5; i++)
2829		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2830			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2831
2832	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2833	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2834
2835	/*
2836	 * Switch the pad clock to the DP clock. Note that we cannot actually
2837	 * do this because Tegra186 and later don't support clk_set_parent()
2838	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2839	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2840	 */
2841#if 0
2842	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2843	if (err < 0) {
2844		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2845			err);
2846		return;
2847	}
2848#endif
2849
2850	/* switch the SOR clock to the pad clock */
2851	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2852	if (err < 0) {
2853		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2854			err);
2855		return;
2856	}
2857
2858	/* switch the output clock to the parent pixel clock */
2859	err = clk_set_parent(sor->clk, sor->clk_parent);
2860	if (err < 0) {
2861		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2862			err);
2863		return;
2864	}
2865
2866	/* use DP-A protocol */
2867	value = tegra_sor_readl(sor, SOR_STATE1);
2868	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2869	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2870	tegra_sor_writel(sor, value, SOR_STATE1);
2871
2872	/* enable port */
2873	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2874	value |= SOR_DP_LINKCTL_ENABLE;
2875	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2876
2877	tegra_sor_dp_term_calibrate(sor);
2878
2879	err = drm_dp_link_train(&sor->link);
2880	if (err < 0)
2881		dev_err(sor->dev, "link training failed: %d\n", err);
2882	else
2883		dev_dbg(sor->dev, "link training succeeded\n");
2884
2885	err = drm_dp_link_power_up(sor->aux, &sor->link);
2886	if (err < 0)
2887		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2888
2889	/* compute configuration */
2890	memset(&config, 0, sizeof(config));
2891	config.bits_per_pixel = state->bpc * 3;
2892
2893	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2894	if (err < 0)
2895		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2896
2897	tegra_sor_apply_config(sor, &config);
2898	tegra_sor_mode_set(sor, mode, state);
2899
2900	if (output->panel) {
2901		/* CSTM (LVDS, link A/B, upper) */
2902		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2903			SOR_CSTM_UPPER;
2904		tegra_sor_writel(sor, value, SOR_CSTM);
2905
2906		/* PWM setup */
2907		err = tegra_sor_setup_pwm(sor, 250);
2908		if (err < 0)
2909			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2910	}
2911
2912	tegra_sor_update(sor);
2913
2914	err = tegra_sor_power_up(sor, 250);
2915	if (err < 0)
2916		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2917
2918	/* attach and wake up */
2919	err = tegra_sor_attach(sor);
2920	if (err < 0)
2921		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2922
2923	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2924	value |= SOR_ENABLE(sor->index);
2925	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2926
2927	tegra_dc_commit(dc);
2928
2929	err = tegra_sor_wakeup(sor);
2930	if (err < 0)
2931		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2932
2933	if (output->panel)
2934		drm_panel_enable(output->panel);
2935}
2936
2937static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2938	.disable = tegra_sor_dp_disable,
2939	.enable = tegra_sor_dp_enable,
2940	.atomic_check = tegra_sor_encoder_atomic_check,
2941};
2942
2943static void tegra_sor_disable_regulator(void *data)
2944{
2945	struct regulator *reg = data;
2946
2947	regulator_disable(reg);
2948}
2949
2950static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2951{
2952	int err;
2953
2954	err = regulator_enable(reg);
2955	if (err)
2956		return err;
2957
2958	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2959}
2960
2961static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2962{
2963	int err;
2964
2965	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2966	if (IS_ERR(sor->avdd_io_supply))
2967		return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2968				     "cannot get AVDD I/O supply\n");
 
 
2969
2970	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2971	if (err < 0) {
2972		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2973			err);
2974		return err;
2975	}
2976
2977	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2978	if (IS_ERR(sor->vdd_pll_supply))
2979		return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2980				     "cannot get VDD PLL supply\n");
 
 
2981
2982	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2983	if (err < 0) {
2984		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2985			err);
2986		return err;
2987	}
2988
2989	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2990	if (IS_ERR(sor->hdmi_supply))
2991		return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2992				     "cannot get HDMI supply\n");
 
 
2993
2994	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2995	if (err < 0) {
2996		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2997		return err;
2998	}
2999
3000	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3001
3002	return 0;
3003}
3004
3005static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3006	.name = "HDMI",
3007	.probe = tegra_sor_hdmi_probe,
3008	.audio_enable = tegra_sor_hdmi_audio_enable,
3009	.audio_disable = tegra_sor_hdmi_audio_disable,
3010};
3011
3012static int tegra_sor_dp_probe(struct tegra_sor *sor)
3013{
3014	int err;
3015
3016	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3017	if (IS_ERR(sor->avdd_io_supply))
3018		return PTR_ERR(sor->avdd_io_supply);
3019
3020	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3021	if (err < 0)
3022		return err;
3023
3024	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3025	if (IS_ERR(sor->vdd_pll_supply))
3026		return PTR_ERR(sor->vdd_pll_supply);
3027
3028	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3029	if (err < 0)
3030		return err;
3031
3032	return 0;
3033}
3034
3035static const struct tegra_sor_ops tegra_sor_dp_ops = {
3036	.name = "DP",
3037	.probe = tegra_sor_dp_probe,
3038};
3039
3040static int tegra_sor_init(struct host1x_client *client)
3041{
3042	struct drm_device *drm = dev_get_drvdata(client->host);
3043	const struct drm_encoder_helper_funcs *helpers = NULL;
3044	struct tegra_sor *sor = host1x_client_to_sor(client);
3045	int connector = DRM_MODE_CONNECTOR_Unknown;
3046	int encoder = DRM_MODE_ENCODER_NONE;
3047	int err;
3048
3049	if (!sor->aux) {
3050		if (sor->ops == &tegra_sor_hdmi_ops) {
3051			connector = DRM_MODE_CONNECTOR_HDMIA;
3052			encoder = DRM_MODE_ENCODER_TMDS;
3053			helpers = &tegra_sor_hdmi_helpers;
3054		} else if (sor->soc->supports_lvds) {
3055			connector = DRM_MODE_CONNECTOR_LVDS;
3056			encoder = DRM_MODE_ENCODER_LVDS;
3057		}
3058	} else {
3059		if (sor->output.panel) {
3060			connector = DRM_MODE_CONNECTOR_eDP;
3061			encoder = DRM_MODE_ENCODER_TMDS;
3062			helpers = &tegra_sor_dp_helpers;
3063		} else {
3064			connector = DRM_MODE_CONNECTOR_DisplayPort;
3065			encoder = DRM_MODE_ENCODER_TMDS;
3066			helpers = &tegra_sor_dp_helpers;
3067		}
3068
3069		sor->link.ops = &tegra_sor_dp_link_ops;
3070		sor->link.aux = sor->aux;
3071	}
3072
3073	sor->output.dev = sor->dev;
3074
3075	drm_connector_init_with_ddc(drm, &sor->output.connector,
3076				    &tegra_sor_connector_funcs,
3077				    connector,
3078				    sor->output.ddc);
3079	drm_connector_helper_add(&sor->output.connector,
3080				 &tegra_sor_connector_helper_funcs);
3081	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3082
3083	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3084	drm_encoder_helper_add(&sor->output.encoder, helpers);
3085
3086	drm_connector_attach_encoder(&sor->output.connector,
3087					  &sor->output.encoder);
3088	drm_connector_register(&sor->output.connector);
3089
3090	err = tegra_output_init(drm, &sor->output);
3091	if (err < 0) {
3092		dev_err(client->dev, "failed to initialize output: %d\n", err);
3093		return err;
3094	}
3095
3096	tegra_output_find_possible_crtcs(&sor->output, drm);
3097
3098	if (sor->aux) {
3099		err = drm_dp_aux_attach(sor->aux, &sor->output);
3100		if (err < 0) {
3101			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3102			return err;
3103		}
3104	}
3105
3106	/*
3107	 * XXX: Remove this reset once proper hand-over from firmware to
3108	 * kernel is possible.
3109	 */
3110	if (sor->rst) {
3111		err = pm_runtime_resume_and_get(sor->dev);
3112		if (err < 0) {
3113			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3114			return err;
3115		}
3116
3117		err = reset_control_acquire(sor->rst);
3118		if (err < 0) {
3119			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3120				err);
3121			goto rpm_put;
3122		}
3123
3124		err = reset_control_assert(sor->rst);
3125		if (err < 0) {
3126			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3127				err);
3128			goto rpm_put;
3129		}
3130	}
3131
3132	err = clk_prepare_enable(sor->clk);
3133	if (err < 0) {
3134		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3135		goto rpm_put;
3136	}
3137
3138	usleep_range(1000, 3000);
3139
3140	if (sor->rst) {
3141		err = reset_control_deassert(sor->rst);
3142		if (err < 0) {
3143			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3144				err);
3145			clk_disable_unprepare(sor->clk);
3146			goto rpm_put;
3147		}
3148
3149		reset_control_release(sor->rst);
3150		pm_runtime_put(sor->dev);
3151	}
3152
3153	err = clk_prepare_enable(sor->clk_safe);
3154	if (err < 0) {
3155		clk_disable_unprepare(sor->clk);
3156		return err;
3157	}
3158
3159	err = clk_prepare_enable(sor->clk_dp);
3160	if (err < 0) {
3161		clk_disable_unprepare(sor->clk_safe);
3162		clk_disable_unprepare(sor->clk);
3163		return err;
3164	}
3165
3166	return 0;
3167
3168rpm_put:
3169	if (sor->rst)
3170		pm_runtime_put(sor->dev);
3171
3172	return err;
3173}
3174
3175static int tegra_sor_exit(struct host1x_client *client)
3176{
3177	struct tegra_sor *sor = host1x_client_to_sor(client);
3178	int err;
3179
3180	tegra_output_exit(&sor->output);
3181
3182	if (sor->aux) {
3183		err = drm_dp_aux_detach(sor->aux);
3184		if (err < 0) {
3185			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3186			return err;
3187		}
3188	}
3189
3190	clk_disable_unprepare(sor->clk_safe);
3191	clk_disable_unprepare(sor->clk_dp);
3192	clk_disable_unprepare(sor->clk);
3193
3194	return 0;
3195}
3196
3197static int tegra_sor_runtime_suspend(struct host1x_client *client)
3198{
3199	struct tegra_sor *sor = host1x_client_to_sor(client);
3200	struct device *dev = client->dev;
3201	int err;
3202
3203	if (sor->rst) {
3204		err = reset_control_assert(sor->rst);
3205		if (err < 0) {
3206			dev_err(dev, "failed to assert reset: %d\n", err);
3207			return err;
3208		}
3209
3210		reset_control_release(sor->rst);
3211	}
3212
3213	usleep_range(1000, 2000);
3214
3215	clk_disable_unprepare(sor->clk);
3216	pm_runtime_put_sync(dev);
3217
3218	return 0;
3219}
3220
3221static int tegra_sor_runtime_resume(struct host1x_client *client)
3222{
3223	struct tegra_sor *sor = host1x_client_to_sor(client);
3224	struct device *dev = client->dev;
3225	int err;
3226
3227	err = pm_runtime_resume_and_get(dev);
3228	if (err < 0) {
3229		dev_err(dev, "failed to get runtime PM: %d\n", err);
3230		return err;
3231	}
3232
3233	err = clk_prepare_enable(sor->clk);
3234	if (err < 0) {
3235		dev_err(dev, "failed to enable clock: %d\n", err);
3236		goto put_rpm;
3237	}
3238
3239	usleep_range(1000, 2000);
3240
3241	if (sor->rst) {
3242		err = reset_control_acquire(sor->rst);
3243		if (err < 0) {
3244			dev_err(dev, "failed to acquire reset: %d\n", err);
3245			goto disable_clk;
3246		}
3247
3248		err = reset_control_deassert(sor->rst);
3249		if (err < 0) {
3250			dev_err(dev, "failed to deassert reset: %d\n", err);
3251			goto release_reset;
3252		}
3253	}
3254
3255	return 0;
3256
3257release_reset:
3258	reset_control_release(sor->rst);
3259disable_clk:
3260	clk_disable_unprepare(sor->clk);
3261put_rpm:
3262	pm_runtime_put_sync(dev);
3263	return err;
3264}
3265
3266static const struct host1x_client_ops sor_client_ops = {
3267	.init = tegra_sor_init,
3268	.exit = tegra_sor_exit,
3269	.suspend = tegra_sor_runtime_suspend,
3270	.resume = tegra_sor_runtime_resume,
3271};
3272
3273static const u8 tegra124_sor_xbar_cfg[5] = {
3274	0, 1, 2, 3, 4
3275};
3276
3277static const struct tegra_sor_regs tegra124_sor_regs = {
3278	.head_state0 = 0x05,
3279	.head_state1 = 0x07,
3280	.head_state2 = 0x09,
3281	.head_state3 = 0x0b,
3282	.head_state4 = 0x0d,
3283	.head_state5 = 0x0f,
3284	.pll0 = 0x17,
3285	.pll1 = 0x18,
3286	.pll2 = 0x19,
3287	.pll3 = 0x1a,
3288	.dp_padctl0 = 0x5c,
3289	.dp_padctl2 = 0x73,
3290};
3291
3292/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3293static const u8 tegra124_sor_lane_map[4] = {
3294	2, 1, 0, 3,
3295};
3296
3297static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3298	{
3299		{ 0x13, 0x19, 0x1e, 0x28 },
3300		{ 0x1e, 0x25, 0x2d, },
3301		{ 0x28, 0x32, },
3302		{ 0x3c, },
3303	}, {
3304		{ 0x12, 0x17, 0x1b, 0x25 },
3305		{ 0x1c, 0x23, 0x2a, },
3306		{ 0x25, 0x2f, },
3307		{ 0x39, }
3308	}, {
3309		{ 0x12, 0x16, 0x1a, 0x22 },
3310		{ 0x1b, 0x20, 0x27, },
3311		{ 0x24, 0x2d, },
3312		{ 0x36, },
3313	}, {
3314		{ 0x11, 0x14, 0x17, 0x1f },
3315		{ 0x19, 0x1e, 0x24, },
3316		{ 0x22, 0x2a, },
3317		{ 0x32, },
3318	},
3319};
3320
3321static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3322	{
3323		{ 0x00, 0x09, 0x13, 0x25 },
3324		{ 0x00, 0x0f, 0x1e, },
3325		{ 0x00, 0x14, },
3326		{ 0x00, },
3327	}, {
3328		{ 0x00, 0x0a, 0x14, 0x28 },
3329		{ 0x00, 0x0f, 0x1e, },
3330		{ 0x00, 0x14, },
3331		{ 0x00 },
3332	}, {
3333		{ 0x00, 0x0a, 0x14, 0x28 },
3334		{ 0x00, 0x0f, 0x1e, },
3335		{ 0x00, 0x14, },
3336		{ 0x00, },
3337	}, {
3338		{ 0x00, 0x0a, 0x14, 0x28 },
3339		{ 0x00, 0x0f, 0x1e, },
3340		{ 0x00, 0x14, },
3341		{ 0x00, },
3342	},
3343};
3344
3345static const u8 tegra124_sor_post_cursor[4][4][4] = {
3346	{
3347		{ 0x00, 0x00, 0x00, 0x00 },
3348		{ 0x00, 0x00, 0x00, },
3349		{ 0x00, 0x00, },
3350		{ 0x00, },
3351	}, {
3352		{ 0x02, 0x02, 0x04, 0x05 },
3353		{ 0x02, 0x04, 0x05, },
3354		{ 0x04, 0x05, },
3355		{ 0x05, },
3356	}, {
3357		{ 0x04, 0x05, 0x08, 0x0b },
3358		{ 0x05, 0x09, 0x0b, },
3359		{ 0x08, 0x0a, },
3360		{ 0x0b, },
3361	}, {
3362		{ 0x05, 0x09, 0x0b, 0x12 },
3363		{ 0x09, 0x0d, 0x12, },
3364		{ 0x0b, 0x0f, },
3365		{ 0x12, },
3366	},
3367};
3368
3369static const u8 tegra124_sor_tx_pu[4][4][4] = {
3370	{
3371		{ 0x20, 0x30, 0x40, 0x60 },
3372		{ 0x30, 0x40, 0x60, },
3373		{ 0x40, 0x60, },
3374		{ 0x60, },
3375	}, {
3376		{ 0x20, 0x20, 0x30, 0x50 },
3377		{ 0x30, 0x40, 0x50, },
3378		{ 0x40, 0x50, },
3379		{ 0x60, },
3380	}, {
3381		{ 0x20, 0x20, 0x30, 0x40, },
3382		{ 0x30, 0x30, 0x40, },
3383		{ 0x40, 0x50, },
3384		{ 0x60, },
3385	}, {
3386		{ 0x20, 0x20, 0x20, 0x40, },
3387		{ 0x30, 0x30, 0x40, },
3388		{ 0x40, 0x40, },
3389		{ 0x60, },
3390	},
3391};
3392
3393static const struct tegra_sor_soc tegra124_sor = {
3394	.supports_lvds = true,
3395	.supports_hdmi = false,
3396	.supports_dp = true,
3397	.supports_audio = false,
3398	.supports_hdcp = false,
3399	.regs = &tegra124_sor_regs,
3400	.has_nvdisplay = false,
3401	.xbar_cfg = tegra124_sor_xbar_cfg,
3402	.lane_map = tegra124_sor_lane_map,
3403	.voltage_swing = tegra124_sor_voltage_swing,
3404	.pre_emphasis = tegra124_sor_pre_emphasis,
3405	.post_cursor = tegra124_sor_post_cursor,
3406	.tx_pu = tegra124_sor_tx_pu,
3407};
3408
3409static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3410	{
3411		{ 0x00, 0x08, 0x12, 0x24 },
3412		{ 0x01, 0x0e, 0x1d, },
3413		{ 0x01, 0x13, },
3414		{ 0x00, },
3415	}, {
3416		{ 0x00, 0x08, 0x12, 0x24 },
3417		{ 0x00, 0x0e, 0x1d, },
3418		{ 0x00, 0x13, },
3419		{ 0x00 },
3420	}, {
3421		{ 0x00, 0x08, 0x12, 0x24 },
3422		{ 0x00, 0x0e, 0x1d, },
3423		{ 0x00, 0x13, },
3424		{ 0x00, },
3425	}, {
3426		{ 0x00, 0x08, 0x12, 0x24 },
3427		{ 0x00, 0x0e, 0x1d, },
3428		{ 0x00, 0x13, },
3429		{ 0x00, },
3430	},
3431};
3432
3433static const struct tegra_sor_soc tegra132_sor = {
3434	.supports_lvds = true,
3435	.supports_hdmi = false,
3436	.supports_dp = true,
3437	.supports_audio = false,
3438	.supports_hdcp = false,
3439	.regs = &tegra124_sor_regs,
3440	.has_nvdisplay = false,
3441	.xbar_cfg = tegra124_sor_xbar_cfg,
3442	.lane_map = tegra124_sor_lane_map,
3443	.voltage_swing = tegra124_sor_voltage_swing,
3444	.pre_emphasis = tegra132_sor_pre_emphasis,
3445	.post_cursor = tegra124_sor_post_cursor,
3446	.tx_pu = tegra124_sor_tx_pu,
3447};
3448
3449static const struct tegra_sor_regs tegra210_sor_regs = {
3450	.head_state0 = 0x05,
3451	.head_state1 = 0x07,
3452	.head_state2 = 0x09,
3453	.head_state3 = 0x0b,
3454	.head_state4 = 0x0d,
3455	.head_state5 = 0x0f,
3456	.pll0 = 0x17,
3457	.pll1 = 0x18,
3458	.pll2 = 0x19,
3459	.pll3 = 0x1a,
3460	.dp_padctl0 = 0x5c,
3461	.dp_padctl2 = 0x73,
3462};
3463
3464static const u8 tegra210_sor_xbar_cfg[5] = {
3465	2, 1, 0, 3, 4
3466};
3467
3468static const u8 tegra210_sor_lane_map[4] = {
3469	0, 1, 2, 3,
3470};
3471
3472static const struct tegra_sor_soc tegra210_sor = {
3473	.supports_lvds = false,
3474	.supports_hdmi = false,
3475	.supports_dp = true,
3476	.supports_audio = false,
3477	.supports_hdcp = false,
3478
3479	.regs = &tegra210_sor_regs,
3480	.has_nvdisplay = false,
3481
3482	.xbar_cfg = tegra210_sor_xbar_cfg,
3483	.lane_map = tegra210_sor_lane_map,
3484	.voltage_swing = tegra124_sor_voltage_swing,
3485	.pre_emphasis = tegra124_sor_pre_emphasis,
3486	.post_cursor = tegra124_sor_post_cursor,
3487	.tx_pu = tegra124_sor_tx_pu,
3488};
3489
3490static const struct tegra_sor_soc tegra210_sor1 = {
3491	.supports_lvds = false,
3492	.supports_hdmi = true,
3493	.supports_dp = true,
3494	.supports_audio = true,
3495	.supports_hdcp = true,
3496
3497	.regs = &tegra210_sor_regs,
3498	.has_nvdisplay = false,
3499
3500	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3501	.settings = tegra210_sor_hdmi_defaults,
3502	.xbar_cfg = tegra210_sor_xbar_cfg,
3503	.lane_map = tegra210_sor_lane_map,
3504	.voltage_swing = tegra124_sor_voltage_swing,
3505	.pre_emphasis = tegra124_sor_pre_emphasis,
3506	.post_cursor = tegra124_sor_post_cursor,
3507	.tx_pu = tegra124_sor_tx_pu,
3508};
3509
3510static const struct tegra_sor_regs tegra186_sor_regs = {
3511	.head_state0 = 0x151,
3512	.head_state1 = 0x154,
3513	.head_state2 = 0x157,
3514	.head_state3 = 0x15a,
3515	.head_state4 = 0x15d,
3516	.head_state5 = 0x160,
3517	.pll0 = 0x163,
3518	.pll1 = 0x164,
3519	.pll2 = 0x165,
3520	.pll3 = 0x166,
3521	.dp_padctl0 = 0x168,
3522	.dp_padctl2 = 0x16a,
3523};
3524
3525static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3526	{
3527		{ 0x13, 0x19, 0x1e, 0x28 },
3528		{ 0x1e, 0x25, 0x2d, },
3529		{ 0x28, 0x32, },
3530		{ 0x39, },
3531	}, {
3532		{ 0x12, 0x16, 0x1b, 0x25 },
3533		{ 0x1c, 0x23, 0x2a, },
3534		{ 0x25, 0x2f, },
3535		{ 0x37, }
3536	}, {
3537		{ 0x12, 0x16, 0x1a, 0x22 },
3538		{ 0x1b, 0x20, 0x27, },
3539		{ 0x24, 0x2d, },
3540		{ 0x35, },
3541	}, {
3542		{ 0x11, 0x14, 0x17, 0x1f },
3543		{ 0x19, 0x1e, 0x24, },
3544		{ 0x22, 0x2a, },
3545		{ 0x32, },
3546	},
3547};
3548
3549static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3550	{
3551		{ 0x00, 0x08, 0x12, 0x24 },
3552		{ 0x01, 0x0e, 0x1d, },
3553		{ 0x01, 0x13, },
3554		{ 0x00, },
3555	}, {
3556		{ 0x00, 0x08, 0x12, 0x24 },
3557		{ 0x00, 0x0e, 0x1d, },
3558		{ 0x00, 0x13, },
3559		{ 0x00 },
3560	}, {
3561		{ 0x00, 0x08, 0x14, 0x24 },
3562		{ 0x00, 0x0e, 0x1d, },
3563		{ 0x00, 0x13, },
3564		{ 0x00, },
3565	}, {
3566		{ 0x00, 0x08, 0x12, 0x24 },
3567		{ 0x00, 0x0e, 0x1d, },
3568		{ 0x00, 0x13, },
3569		{ 0x00, },
3570	},
3571};
3572
3573static const struct tegra_sor_soc tegra186_sor = {
3574	.supports_lvds = false,
3575	.supports_hdmi = true,
3576	.supports_dp = true,
3577	.supports_audio = true,
3578	.supports_hdcp = true,
3579
3580	.regs = &tegra186_sor_regs,
3581	.has_nvdisplay = true,
3582
3583	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3584	.settings = tegra186_sor_hdmi_defaults,
3585	.xbar_cfg = tegra124_sor_xbar_cfg,
3586	.lane_map = tegra124_sor_lane_map,
3587	.voltage_swing = tegra186_sor_voltage_swing,
3588	.pre_emphasis = tegra186_sor_pre_emphasis,
3589	.post_cursor = tegra124_sor_post_cursor,
3590	.tx_pu = tegra124_sor_tx_pu,
3591};
3592
3593static const struct tegra_sor_regs tegra194_sor_regs = {
3594	.head_state0 = 0x151,
3595	.head_state1 = 0x155,
3596	.head_state2 = 0x159,
3597	.head_state3 = 0x15d,
3598	.head_state4 = 0x161,
3599	.head_state5 = 0x165,
3600	.pll0 = 0x169,
3601	.pll1 = 0x16a,
3602	.pll2 = 0x16b,
3603	.pll3 = 0x16c,
3604	.dp_padctl0 = 0x16e,
3605	.dp_padctl2 = 0x16f,
3606};
3607
3608static const struct tegra_sor_soc tegra194_sor = {
3609	.supports_lvds = false,
3610	.supports_hdmi = true,
3611	.supports_dp = true,
3612	.supports_audio = true,
3613	.supports_hdcp = true,
3614
3615	.regs = &tegra194_sor_regs,
3616	.has_nvdisplay = true,
3617
3618	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3619	.settings = tegra194_sor_hdmi_defaults,
3620
3621	.xbar_cfg = tegra210_sor_xbar_cfg,
3622	.lane_map = tegra124_sor_lane_map,
3623	.voltage_swing = tegra186_sor_voltage_swing,
3624	.pre_emphasis = tegra186_sor_pre_emphasis,
3625	.post_cursor = tegra124_sor_post_cursor,
3626	.tx_pu = tegra124_sor_tx_pu,
3627};
3628
3629static const struct of_device_id tegra_sor_of_match[] = {
3630	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3631	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3632	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3633	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3634	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3635	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3636	{ },
3637};
3638MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3639
3640static int tegra_sor_parse_dt(struct tegra_sor *sor)
3641{
3642	struct device_node *np = sor->dev->of_node;
3643	u32 xbar_cfg[5];
3644	unsigned int i;
3645	u32 value;
3646	int err;
3647
3648	if (sor->soc->has_nvdisplay) {
3649		err = of_property_read_u32(np, "nvidia,interface", &value);
3650		if (err < 0)
3651			return err;
3652
3653		sor->index = value;
3654
3655		/*
3656		 * override the default that we already set for Tegra210 and
3657		 * earlier
3658		 */
3659		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3660	} else {
3661		if (!sor->soc->supports_audio)
3662			sor->index = 0;
3663		else
3664			sor->index = 1;
3665	}
3666
3667	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3668	if (err < 0) {
3669		/* fall back to default per-SoC XBAR configuration */
3670		for (i = 0; i < 5; i++)
3671			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3672	} else {
3673		/* copy cells to SOR XBAR configuration */
3674		for (i = 0; i < 5; i++)
3675			sor->xbar_cfg[i] = xbar_cfg[i];
3676	}
3677
3678	return 0;
3679}
3680
3681static irqreturn_t tegra_sor_irq(int irq, void *data)
3682{
3683	struct tegra_sor *sor = data;
3684	u32 value;
3685
3686	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3687	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3688
3689	if (value & SOR_INT_CODEC_SCRATCH0) {
3690		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3691
3692		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3693			unsigned int format;
3694
3695			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3696
3697			tegra_hda_parse_format(format, &sor->format);
3698
3699			if (sor->ops->audio_enable)
3700				sor->ops->audio_enable(sor);
3701		} else {
3702			if (sor->ops->audio_disable)
3703				sor->ops->audio_disable(sor);
3704		}
3705	}
3706
3707	return IRQ_HANDLED;
3708}
3709
3710static int tegra_sor_probe(struct platform_device *pdev)
3711{
3712	struct device_node *np;
3713	struct tegra_sor *sor;
 
3714	int err;
3715
3716	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3717	if (!sor)
3718		return -ENOMEM;
3719
3720	sor->soc = of_device_get_match_data(&pdev->dev);
3721	sor->output.dev = sor->dev = &pdev->dev;
3722
3723	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3724				     sor->soc->num_settings *
3725					sizeof(*sor->settings),
3726				     GFP_KERNEL);
3727	if (!sor->settings)
3728		return -ENOMEM;
3729
3730	sor->num_settings = sor->soc->num_settings;
3731
3732	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3733	if (np) {
3734		sor->aux = drm_dp_aux_find_by_of_node(np);
3735		of_node_put(np);
3736
3737		if (!sor->aux)
3738			return -EPROBE_DEFER;
3739
3740		if (get_device(sor->aux->dev))
3741			sor->output.ddc = &sor->aux->ddc;
3742	}
3743
3744	if (!sor->aux) {
3745		if (sor->soc->supports_hdmi) {
3746			sor->ops = &tegra_sor_hdmi_ops;
3747			sor->pad = TEGRA_IO_PAD_HDMI;
3748		} else if (sor->soc->supports_lvds) {
3749			dev_err(&pdev->dev, "LVDS not supported yet\n");
3750			return -ENODEV;
3751		} else {
3752			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3753			return -ENODEV;
3754		}
3755	} else {
3756		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3757		/*
3758		 * No need to keep this around since we only use it as a check
3759		 * to see if a panel is connected (eDP) or not (DP).
3760		 */
3761		of_node_put(np);
3762
3763		sor->ops = &tegra_sor_dp_ops;
3764		sor->pad = TEGRA_IO_PAD_LVDS;
3765	}
3766
3767	err = tegra_sor_parse_dt(sor);
3768	if (err < 0)
3769		goto put_aux;
3770
3771	err = tegra_output_probe(&sor->output);
3772	if (err < 0) {
3773		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3774		goto put_aux;
3775	}
3776
3777	if (sor->ops && sor->ops->probe) {
3778		err = sor->ops->probe(sor);
3779		if (err < 0) {
3780			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3781				sor->ops->name, err);
3782			goto remove;
3783		}
3784	}
3785
3786	sor->regs = devm_platform_ioremap_resource(pdev, 0);
 
3787	if (IS_ERR(sor->regs)) {
3788		err = PTR_ERR(sor->regs);
3789		goto remove;
3790	}
3791
3792	err = platform_get_irq(pdev, 0);
3793	if (err < 0)
 
3794		goto remove;
 
3795
3796	sor->irq = err;
3797
3798	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3799			       dev_name(sor->dev), sor);
3800	if (err < 0) {
3801		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3802		goto remove;
3803	}
3804
3805	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3806	if (IS_ERR(sor->rst)) {
3807		err = PTR_ERR(sor->rst);
3808
3809		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3810			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3811				err);
3812			goto remove;
3813		}
3814
3815		/*
3816		 * At this point, the reset control is most likely being used
3817		 * by the generic power domain implementation. With any luck
3818		 * the power domain will have taken care of resetting the SOR
3819		 * and we don't have to do anything.
3820		 */
3821		sor->rst = NULL;
3822	}
3823
3824	sor->clk = devm_clk_get(&pdev->dev, NULL);
3825	if (IS_ERR(sor->clk)) {
3826		err = PTR_ERR(sor->clk);
3827		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3828		goto remove;
3829	}
3830
3831	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3832		struct device_node *np = pdev->dev.of_node;
3833		const char *name;
3834
3835		/*
3836		 * For backwards compatibility with Tegra210 device trees,
3837		 * fall back to the old clock name "source" if the new "out"
3838		 * clock is not available.
3839		 */
3840		if (of_property_match_string(np, "clock-names", "out") < 0)
3841			name = "source";
3842		else
3843			name = "out";
3844
3845		sor->clk_out = devm_clk_get(&pdev->dev, name);
3846		if (IS_ERR(sor->clk_out)) {
3847			err = PTR_ERR(sor->clk_out);
3848			dev_err(sor->dev, "failed to get %s clock: %d\n",
3849				name, err);
3850			goto remove;
3851		}
3852	} else {
3853		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3854		sor->clk_out = sor->clk;
3855	}
3856
3857	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3858	if (IS_ERR(sor->clk_parent)) {
3859		err = PTR_ERR(sor->clk_parent);
3860		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3861		goto remove;
3862	}
3863
3864	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3865	if (IS_ERR(sor->clk_safe)) {
3866		err = PTR_ERR(sor->clk_safe);
3867		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3868		goto remove;
3869	}
3870
3871	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3872	if (IS_ERR(sor->clk_dp)) {
3873		err = PTR_ERR(sor->clk_dp);
3874		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3875		goto remove;
3876	}
3877
3878	/*
3879	 * Starting with Tegra186, the BPMP provides an implementation for
3880	 * the pad output clock, so we have to look it up from device tree.
3881	 */
3882	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3883	if (IS_ERR(sor->clk_pad)) {
3884		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3885			err = PTR_ERR(sor->clk_pad);
3886			goto remove;
3887		}
3888
3889		/*
3890		 * If the pad output clock is not available, then we assume
3891		 * we're on Tegra210 or earlier and have to provide our own
3892		 * implementation.
3893		 */
3894		sor->clk_pad = NULL;
3895	}
3896
3897	/*
3898	 * The bootloader may have set up the SOR such that it's module clock
3899	 * is sourced by one of the display PLLs. However, that doesn't work
3900	 * without properly having set up other bits of the SOR.
3901	 */
3902	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3903	if (err < 0) {
3904		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3905		goto remove;
3906	}
3907
3908	platform_set_drvdata(pdev, sor);
3909	pm_runtime_enable(&pdev->dev);
3910
3911	host1x_client_init(&sor->client);
3912	sor->client.ops = &sor_client_ops;
3913	sor->client.dev = &pdev->dev;
3914
3915	/*
3916	 * On Tegra210 and earlier, provide our own implementation for the
3917	 * pad output clock.
3918	 */
3919	if (!sor->clk_pad) {
3920		char *name;
3921
3922		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3923				      sor->index);
3924		if (!name) {
3925			err = -ENOMEM;
3926			goto uninit;
3927		}
3928
3929		err = host1x_client_resume(&sor->client);
3930		if (err < 0) {
3931			dev_err(sor->dev, "failed to resume: %d\n", err);
3932			goto uninit;
3933		}
3934
3935		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3936		host1x_client_suspend(&sor->client);
3937	}
3938
3939	if (IS_ERR(sor->clk_pad)) {
3940		err = PTR_ERR(sor->clk_pad);
3941		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3942			err);
3943		goto uninit;
3944	}
3945
3946	err = __host1x_client_register(&sor->client);
3947	if (err < 0) {
3948		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3949			err);
3950		goto uninit;
3951	}
3952
3953	return 0;
3954
3955uninit:
3956	host1x_client_exit(&sor->client);
3957	pm_runtime_disable(&pdev->dev);
3958remove:
3959	if (sor->aux)
3960		sor->output.ddc = NULL;
3961
3962	tegra_output_remove(&sor->output);
3963put_aux:
3964	if (sor->aux)
3965		put_device(sor->aux->dev);
3966
3967	return err;
3968}
3969
3970static void tegra_sor_remove(struct platform_device *pdev)
3971{
3972	struct tegra_sor *sor = platform_get_drvdata(pdev);
 
3973
3974	host1x_client_unregister(&sor->client);
 
 
 
 
 
3975
3976	pm_runtime_disable(&pdev->dev);
3977
3978	if (sor->aux) {
3979		put_device(sor->aux->dev);
3980		sor->output.ddc = NULL;
3981	}
3982
3983	tegra_output_remove(&sor->output);
 
 
3984}
3985
3986static int __maybe_unused tegra_sor_suspend(struct device *dev)
3987{
3988	struct tegra_sor *sor = dev_get_drvdata(dev);
3989	int err;
3990
3991	err = tegra_output_suspend(&sor->output);
3992	if (err < 0) {
3993		dev_err(dev, "failed to suspend output: %d\n", err);
3994		return err;
3995	}
3996
3997	if (sor->hdmi_supply) {
3998		err = regulator_disable(sor->hdmi_supply);
3999		if (err < 0) {
4000			tegra_output_resume(&sor->output);
4001			return err;
4002		}
4003	}
4004
4005	return 0;
4006}
4007
4008static int __maybe_unused tegra_sor_resume(struct device *dev)
4009{
4010	struct tegra_sor *sor = dev_get_drvdata(dev);
4011	int err;
4012
4013	if (sor->hdmi_supply) {
4014		err = regulator_enable(sor->hdmi_supply);
4015		if (err < 0)
4016			return err;
4017	}
4018
4019	err = tegra_output_resume(&sor->output);
4020	if (err < 0) {
4021		dev_err(dev, "failed to resume output: %d\n", err);
4022
4023		if (sor->hdmi_supply)
4024			regulator_disable(sor->hdmi_supply);
4025
4026		return err;
4027	}
4028
4029	return 0;
4030}
4031
4032static const struct dev_pm_ops tegra_sor_pm_ops = {
4033	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4034};
4035
4036struct platform_driver tegra_sor_driver = {
4037	.driver = {
4038		.name = "tegra-sor",
4039		.of_match_table = tegra_sor_of_match,
4040		.pm = &tegra_sor_pm_ops,
4041	},
4042	.probe = tegra_sor_probe,
4043	.remove = tegra_sor_remove,
4044};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2013 NVIDIA Corporation
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/debugfs.h>
   9#include <linux/io.h>
  10#include <linux/module.h>
  11#include <linux/of_device.h>
  12#include <linux/platform_device.h>
  13#include <linux/pm_runtime.h>
  14#include <linux/regulator/consumer.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
 
 
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_debugfs.h>
  21#include <drm/drm_dp_helper.h>
 
  22#include <drm/drm_file.h>
  23#include <drm/drm_panel.h>
  24#include <drm/drm_scdc_helper.h>
  25#include <drm/drm_simple_kms_helper.h>
  26
  27#include "dc.h"
  28#include "dp.h"
  29#include "drm.h"
  30#include "hda.h"
  31#include "sor.h"
  32#include "trace.h"
  33
  34#define SOR_REKEY 0x38
  35
  36struct tegra_sor_hdmi_settings {
  37	unsigned long frequency;
  38
  39	u8 vcocap;
  40	u8 filter;
  41	u8 ichpmp;
  42	u8 loadadj;
  43	u8 tmds_termadj;
  44	u8 tx_pu_value;
  45	u8 bg_temp_coef;
  46	u8 bg_vref_level;
  47	u8 avdd10_level;
  48	u8 avdd14_level;
  49	u8 sparepll;
  50
  51	u8 drive_current[4];
  52	u8 preemphasis[4];
  53};
  54
  55#if 1
  56static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
  57	{
  58		.frequency = 54000000,
  59		.vcocap = 0x0,
  60		.filter = 0x0,
  61		.ichpmp = 0x1,
  62		.loadadj = 0x3,
  63		.tmds_termadj = 0x9,
  64		.tx_pu_value = 0x10,
  65		.bg_temp_coef = 0x3,
  66		.bg_vref_level = 0x8,
  67		.avdd10_level = 0x4,
  68		.avdd14_level = 0x4,
  69		.sparepll = 0x0,
  70		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  71		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  72	}, {
  73		.frequency = 75000000,
  74		.vcocap = 0x3,
  75		.filter = 0x0,
  76		.ichpmp = 0x1,
  77		.loadadj = 0x3,
  78		.tmds_termadj = 0x9,
  79		.tx_pu_value = 0x40,
  80		.bg_temp_coef = 0x3,
  81		.bg_vref_level = 0x8,
  82		.avdd10_level = 0x4,
  83		.avdd14_level = 0x4,
  84		.sparepll = 0x0,
  85		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
  86		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
  87	}, {
  88		.frequency = 150000000,
  89		.vcocap = 0x3,
  90		.filter = 0x0,
  91		.ichpmp = 0x1,
  92		.loadadj = 0x3,
  93		.tmds_termadj = 0x9,
  94		.tx_pu_value = 0x66,
  95		.bg_temp_coef = 0x3,
  96		.bg_vref_level = 0x8,
  97		.avdd10_level = 0x4,
  98		.avdd14_level = 0x4,
  99		.sparepll = 0x0,
 100		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
 101		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 102	}, {
 103		.frequency = 300000000,
 104		.vcocap = 0x3,
 105		.filter = 0x0,
 106		.ichpmp = 0x1,
 107		.loadadj = 0x3,
 108		.tmds_termadj = 0x9,
 109		.tx_pu_value = 0x66,
 110		.bg_temp_coef = 0x3,
 111		.bg_vref_level = 0xa,
 112		.avdd10_level = 0x4,
 113		.avdd14_level = 0x4,
 114		.sparepll = 0x0,
 115		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 116		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
 117	}, {
 118		.frequency = 600000000,
 119		.vcocap = 0x3,
 120		.filter = 0x0,
 121		.ichpmp = 0x1,
 122		.loadadj = 0x3,
 123		.tmds_termadj = 0x9,
 124		.tx_pu_value = 0x66,
 125		.bg_temp_coef = 0x3,
 126		.bg_vref_level = 0x8,
 127		.avdd10_level = 0x4,
 128		.avdd14_level = 0x4,
 129		.sparepll = 0x0,
 130		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
 131		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 132	},
 133};
 134#else
 135static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
 136	{
 137		.frequency = 75000000,
 138		.vcocap = 0x3,
 139		.filter = 0x0,
 140		.ichpmp = 0x1,
 141		.loadadj = 0x3,
 142		.tmds_termadj = 0x9,
 143		.tx_pu_value = 0x40,
 144		.bg_temp_coef = 0x3,
 145		.bg_vref_level = 0x8,
 146		.avdd10_level = 0x4,
 147		.avdd14_level = 0x4,
 148		.sparepll = 0x0,
 149		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
 150		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 151	}, {
 152		.frequency = 150000000,
 153		.vcocap = 0x3,
 154		.filter = 0x0,
 155		.ichpmp = 0x1,
 156		.loadadj = 0x3,
 157		.tmds_termadj = 0x9,
 158		.tx_pu_value = 0x66,
 159		.bg_temp_coef = 0x3,
 160		.bg_vref_level = 0x8,
 161		.avdd10_level = 0x4,
 162		.avdd14_level = 0x4,
 163		.sparepll = 0x0,
 164		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 165		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
 166	}, {
 167		.frequency = 300000000,
 168		.vcocap = 0x3,
 169		.filter = 0x0,
 170		.ichpmp = 0x6,
 171		.loadadj = 0x3,
 172		.tmds_termadj = 0x9,
 173		.tx_pu_value = 0x66,
 174		.bg_temp_coef = 0x3,
 175		.bg_vref_level = 0xf,
 176		.avdd10_level = 0x4,
 177		.avdd14_level = 0x4,
 178		.sparepll = 0x0,
 179		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
 180		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
 181	}, {
 182		.frequency = 600000000,
 183		.vcocap = 0x3,
 184		.filter = 0x0,
 185		.ichpmp = 0xa,
 186		.loadadj = 0x3,
 187		.tmds_termadj = 0xb,
 188		.tx_pu_value = 0x66,
 189		.bg_temp_coef = 0x3,
 190		.bg_vref_level = 0xe,
 191		.avdd10_level = 0x4,
 192		.avdd14_level = 0x4,
 193		.sparepll = 0x0,
 194		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
 195		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
 196	},
 197};
 198#endif
 199
 200static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
 201	{
 202		.frequency = 54000000,
 203		.vcocap = 0,
 204		.filter = 5,
 205		.ichpmp = 5,
 206		.loadadj = 3,
 207		.tmds_termadj = 0xf,
 208		.tx_pu_value = 0,
 209		.bg_temp_coef = 3,
 210		.bg_vref_level = 8,
 211		.avdd10_level = 4,
 212		.avdd14_level = 4,
 213		.sparepll = 0x54,
 214		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 215		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 216	}, {
 217		.frequency = 75000000,
 218		.vcocap = 1,
 219		.filter = 5,
 220		.ichpmp = 5,
 221		.loadadj = 3,
 222		.tmds_termadj = 0xf,
 223		.tx_pu_value = 0,
 224		.bg_temp_coef = 3,
 225		.bg_vref_level = 8,
 226		.avdd10_level = 4,
 227		.avdd14_level = 4,
 228		.sparepll = 0x44,
 229		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 230		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 231	}, {
 232		.frequency = 150000000,
 233		.vcocap = 3,
 234		.filter = 5,
 235		.ichpmp = 5,
 236		.loadadj = 3,
 237		.tmds_termadj = 15,
 238		.tx_pu_value = 0x66 /* 0 */,
 239		.bg_temp_coef = 3,
 240		.bg_vref_level = 8,
 241		.avdd10_level = 4,
 242		.avdd14_level = 4,
 243		.sparepll = 0x00, /* 0x34 */
 244		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 245		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 246	}, {
 247		.frequency = 300000000,
 248		.vcocap = 3,
 249		.filter = 5,
 250		.ichpmp = 5,
 251		.loadadj = 3,
 252		.tmds_termadj = 15,
 253		.tx_pu_value = 64,
 254		.bg_temp_coef = 3,
 255		.bg_vref_level = 8,
 256		.avdd10_level = 4,
 257		.avdd14_level = 4,
 258		.sparepll = 0x34,
 259		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 260		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 261	}, {
 262		.frequency = 600000000,
 263		.vcocap = 3,
 264		.filter = 5,
 265		.ichpmp = 5,
 266		.loadadj = 3,
 267		.tmds_termadj = 12,
 268		.tx_pu_value = 96,
 269		.bg_temp_coef = 3,
 270		.bg_vref_level = 8,
 271		.avdd10_level = 4,
 272		.avdd14_level = 4,
 273		.sparepll = 0x34,
 274		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 275		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 276	}
 277};
 278
 279static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
 280	{
 281		.frequency = 54000000,
 282		.vcocap = 0,
 283		.filter = 5,
 284		.ichpmp = 5,
 285		.loadadj = 3,
 286		.tmds_termadj = 0xf,
 287		.tx_pu_value = 0,
 288		.bg_temp_coef = 3,
 289		.bg_vref_level = 8,
 290		.avdd10_level = 4,
 291		.avdd14_level = 4,
 292		.sparepll = 0x54,
 293		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 294		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 295	}, {
 296		.frequency = 75000000,
 297		.vcocap = 1,
 298		.filter = 5,
 299		.ichpmp = 5,
 300		.loadadj = 3,
 301		.tmds_termadj = 0xf,
 302		.tx_pu_value = 0,
 303		.bg_temp_coef = 3,
 304		.bg_vref_level = 8,
 305		.avdd10_level = 4,
 306		.avdd14_level = 4,
 307		.sparepll = 0x44,
 308		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
 309		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 310	}, {
 311		.frequency = 150000000,
 312		.vcocap = 3,
 313		.filter = 5,
 314		.ichpmp = 5,
 315		.loadadj = 3,
 316		.tmds_termadj = 15,
 317		.tx_pu_value = 0x66 /* 0 */,
 318		.bg_temp_coef = 3,
 319		.bg_vref_level = 8,
 320		.avdd10_level = 4,
 321		.avdd14_level = 4,
 322		.sparepll = 0x00, /* 0x34 */
 323		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
 324		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 325	}, {
 326		.frequency = 300000000,
 327		.vcocap = 3,
 328		.filter = 5,
 329		.ichpmp = 5,
 330		.loadadj = 3,
 331		.tmds_termadj = 15,
 332		.tx_pu_value = 64,
 333		.bg_temp_coef = 3,
 334		.bg_vref_level = 8,
 335		.avdd10_level = 4,
 336		.avdd14_level = 4,
 337		.sparepll = 0x34,
 338		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 339		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 340	}, {
 341		.frequency = 600000000,
 342		.vcocap = 3,
 343		.filter = 5,
 344		.ichpmp = 5,
 345		.loadadj = 3,
 346		.tmds_termadj = 12,
 347		.tx_pu_value = 96,
 348		.bg_temp_coef = 3,
 349		.bg_vref_level = 8,
 350		.avdd10_level = 4,
 351		.avdd14_level = 4,
 352		.sparepll = 0x34,
 353		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
 354		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
 355	}
 356};
 357
 358struct tegra_sor_regs {
 359	unsigned int head_state0;
 360	unsigned int head_state1;
 361	unsigned int head_state2;
 362	unsigned int head_state3;
 363	unsigned int head_state4;
 364	unsigned int head_state5;
 365	unsigned int pll0;
 366	unsigned int pll1;
 367	unsigned int pll2;
 368	unsigned int pll3;
 369	unsigned int dp_padctl0;
 370	unsigned int dp_padctl2;
 371};
 372
 373struct tegra_sor_soc {
 374	bool supports_lvds;
 375	bool supports_hdmi;
 376	bool supports_dp;
 377	bool supports_audio;
 378	bool supports_hdcp;
 379
 380	const struct tegra_sor_regs *regs;
 381	bool has_nvdisplay;
 382
 383	const struct tegra_sor_hdmi_settings *settings;
 384	unsigned int num_settings;
 385
 386	const u8 *xbar_cfg;
 387	const u8 *lane_map;
 388
 389	const u8 (*voltage_swing)[4][4];
 390	const u8 (*pre_emphasis)[4][4];
 391	const u8 (*post_cursor)[4][4];
 392	const u8 (*tx_pu)[4][4];
 393};
 394
 395struct tegra_sor;
 396
 397struct tegra_sor_ops {
 398	const char *name;
 399	int (*probe)(struct tegra_sor *sor);
 400	void (*audio_enable)(struct tegra_sor *sor);
 401	void (*audio_disable)(struct tegra_sor *sor);
 402};
 403
 404struct tegra_sor {
 405	struct host1x_client client;
 406	struct tegra_output output;
 407	struct device *dev;
 408
 409	const struct tegra_sor_soc *soc;
 410	void __iomem *regs;
 411	unsigned int index;
 412	unsigned int irq;
 413
 414	struct reset_control *rst;
 415	struct clk *clk_parent;
 416	struct clk *clk_safe;
 417	struct clk *clk_out;
 418	struct clk *clk_pad;
 419	struct clk *clk_dp;
 420	struct clk *clk;
 421
 422	u8 xbar_cfg[5];
 423
 424	struct drm_dp_link link;
 425	struct drm_dp_aux *aux;
 426
 427	struct drm_info_list *debugfs_files;
 428
 429	const struct tegra_sor_ops *ops;
 430	enum tegra_io_pad pad;
 431
 432	/* for HDMI 2.0 */
 433	struct tegra_sor_hdmi_settings *settings;
 434	unsigned int num_settings;
 435
 436	struct regulator *avdd_io_supply;
 437	struct regulator *vdd_pll_supply;
 438	struct regulator *hdmi_supply;
 439
 440	struct delayed_work scdc;
 441	bool scdc_enabled;
 442
 443	struct tegra_hda_format format;
 444};
 445
 446struct tegra_sor_state {
 447	struct drm_connector_state base;
 448
 449	unsigned int link_speed;
 450	unsigned long pclk;
 451	unsigned int bpc;
 452};
 453
 454static inline struct tegra_sor_state *
 455to_sor_state(struct drm_connector_state *state)
 456{
 457	return container_of(state, struct tegra_sor_state, base);
 458}
 459
 460struct tegra_sor_config {
 461	u32 bits_per_pixel;
 462
 463	u32 active_polarity;
 464	u32 active_count;
 465	u32 tu_size;
 466	u32 active_frac;
 467	u32 watermark;
 468
 469	u32 hblank_symbols;
 470	u32 vblank_symbols;
 471};
 472
 473static inline struct tegra_sor *
 474host1x_client_to_sor(struct host1x_client *client)
 475{
 476	return container_of(client, struct tegra_sor, client);
 477}
 478
 479static inline struct tegra_sor *to_sor(struct tegra_output *output)
 480{
 481	return container_of(output, struct tegra_sor, output);
 482}
 483
 484static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
 485{
 486	u32 value = readl(sor->regs + (offset << 2));
 487
 488	trace_sor_readl(sor->dev, offset, value);
 489
 490	return value;
 491}
 492
 493static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
 494				    unsigned int offset)
 495{
 496	trace_sor_writel(sor->dev, offset, value);
 497	writel(value, sor->regs + (offset << 2));
 498}
 499
 500static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
 501{
 502	int err;
 503
 504	clk_disable_unprepare(sor->clk);
 505
 506	err = clk_set_parent(sor->clk_out, parent);
 507	if (err < 0)
 508		return err;
 509
 510	err = clk_prepare_enable(sor->clk);
 511	if (err < 0)
 512		return err;
 513
 514	return 0;
 515}
 516
 517struct tegra_clk_sor_pad {
 518	struct clk_hw hw;
 519	struct tegra_sor *sor;
 520};
 521
 522static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
 523{
 524	return container_of(hw, struct tegra_clk_sor_pad, hw);
 525}
 526
 527static const char * const tegra_clk_sor_pad_parents[2][2] = {
 528	{ "pll_d_out0", "pll_dp" },
 529	{ "pll_d2_out0", "pll_dp" },
 530};
 531
 532/*
 533 * Implementing ->set_parent() here isn't really required because the parent
 534 * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
 535 * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
 536 * Tegra186 and later SoC generations where the BPMP implements this clock
 537 * and doesn't expose the mux via the common clock framework.
 538 */
 539
 540static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
 541{
 542	struct tegra_clk_sor_pad *pad = to_pad(hw);
 543	struct tegra_sor *sor = pad->sor;
 544	u32 value;
 545
 546	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 547	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
 548
 549	switch (index) {
 550	case 0:
 551		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
 552		break;
 553
 554	case 1:
 555		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
 556		break;
 557	}
 558
 559	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 560
 561	return 0;
 562}
 563
 564static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
 565{
 566	struct tegra_clk_sor_pad *pad = to_pad(hw);
 567	struct tegra_sor *sor = pad->sor;
 568	u8 parent = U8_MAX;
 569	u32 value;
 570
 571	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 572
 573	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
 574	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
 575	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
 576		parent = 0;
 577		break;
 578
 579	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
 580	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
 581		parent = 1;
 582		break;
 583	}
 584
 585	return parent;
 586}
 587
 588static const struct clk_ops tegra_clk_sor_pad_ops = {
 
 589	.set_parent = tegra_clk_sor_pad_set_parent,
 590	.get_parent = tegra_clk_sor_pad_get_parent,
 591};
 592
 593static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
 594					      const char *name)
 595{
 596	struct tegra_clk_sor_pad *pad;
 597	struct clk_init_data init;
 598	struct clk *clk;
 599
 600	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
 601	if (!pad)
 602		return ERR_PTR(-ENOMEM);
 603
 604	pad->sor = sor;
 605
 606	init.name = name;
 607	init.flags = 0;
 608	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
 609	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
 610	init.ops = &tegra_clk_sor_pad_ops;
 611
 612	pad->hw.init = &init;
 613
 614	clk = devm_clk_register(sor->dev, &pad->hw);
 615
 616	return clk;
 617}
 618
 619static void tegra_sor_filter_rates(struct tegra_sor *sor)
 620{
 621	struct drm_dp_link *link = &sor->link;
 622	unsigned int i;
 623
 624	/* Tegra only supports RBR, HBR and HBR2 */
 625	for (i = 0; i < link->num_rates; i++) {
 626		switch (link->rates[i]) {
 627		case 1620000:
 628		case 2700000:
 629		case 5400000:
 630			break;
 631
 632		default:
 633			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
 634				      link->rates[i]);
 635			link->rates[i] = 0;
 636			break;
 637		}
 638	}
 639
 640	drm_dp_link_update_rates(link);
 641}
 642
 643static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
 644{
 645	unsigned long timeout;
 646	u32 value;
 647
 648	/*
 649	 * Clear or set the PD_TXD bit corresponding to each lane, depending
 650	 * on whether it is used or not.
 651	 */
 652	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 653
 654	if (lanes <= 2)
 655		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 656			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
 657	else
 658		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
 659			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
 660
 661	if (lanes <= 1)
 662		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 663	else
 664		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
 665
 666	if (lanes == 0)
 667		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 668	else
 669		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
 670
 671	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 672
 673	/* start lane sequencer */
 674	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
 675		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
 676	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 677
 678	timeout = jiffies + msecs_to_jiffies(250);
 679
 680	while (time_before(jiffies, timeout)) {
 681		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 682		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 683			break;
 684
 685		usleep_range(250, 1000);
 686	}
 687
 688	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 689		return -ETIMEDOUT;
 690
 691	return 0;
 692}
 693
 694static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
 695{
 696	unsigned long timeout;
 697	u32 value;
 698
 699	/* power down all lanes */
 700	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 701	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
 702		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
 703	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 704
 705	/* start lane sequencer */
 706	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
 707		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
 708	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
 709
 710	timeout = jiffies + msecs_to_jiffies(250);
 711
 712	while (time_before(jiffies, timeout)) {
 713		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
 714		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
 715			break;
 716
 717		usleep_range(25, 100);
 718	}
 719
 720	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
 721		return -ETIMEDOUT;
 722
 723	return 0;
 724}
 725
 726static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
 727{
 728	u32 value;
 729
 730	/* pre-charge all used lanes */
 731	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 732
 733	if (lanes <= 2)
 734		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 735			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
 736	else
 737		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
 738			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
 739
 740	if (lanes <= 1)
 741		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 742	else
 743		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
 744
 745	if (lanes == 0)
 746		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 747	else
 748		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
 749
 750	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 751
 752	usleep_range(15, 100);
 753
 754	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 755	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
 756		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
 757	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 758}
 759
 760static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
 761{
 762	u32 mask = 0x08, adj = 0, value;
 763
 764	/* enable pad calibration logic */
 765	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 766	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
 767	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 768
 769	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 770	value |= SOR_PLL1_TMDS_TERM;
 771	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 772
 773	while (mask) {
 774		adj |= mask;
 775
 776		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 777		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 778		value |= SOR_PLL1_TMDS_TERMADJ(adj);
 779		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 780
 781		usleep_range(100, 200);
 782
 783		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 784		if (value & SOR_PLL1_TERM_COMPOUT)
 785			adj &= ~mask;
 786
 787		mask >>= 1;
 788	}
 789
 790	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 791	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
 792	value |= SOR_PLL1_TMDS_TERMADJ(adj);
 793	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 794
 795	/* disable pad calibration logic */
 796	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 797	value |= SOR_DP_PADCTL_PAD_CAL_PD;
 798	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 799}
 800
 801static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
 802{
 803	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 804	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
 805	const struct tegra_sor_soc *soc = sor->soc;
 806	u32 pattern = 0, tx_pu = 0, value;
 807	unsigned int i;
 808
 809	for (value = 0, i = 0; i < link->lanes; i++) {
 810		u8 vs = link->train.request.voltage_swing[i];
 811		u8 pe = link->train.request.pre_emphasis[i];
 812		u8 pc = link->train.request.post_cursor[i];
 813		u8 shift = sor->soc->lane_map[i] << 3;
 814
 815		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
 816		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
 817		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
 818
 819		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
 820			tx_pu = sor->soc->tx_pu[pc][vs][pe];
 821
 822		switch (link->train.pattern) {
 823		case DP_TRAINING_PATTERN_DISABLE:
 824			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
 825				SOR_DP_TPG_PATTERN_NONE;
 826			break;
 827
 828		case DP_TRAINING_PATTERN_1:
 829			value = SOR_DP_TPG_SCRAMBLER_NONE |
 830				SOR_DP_TPG_PATTERN_TRAIN1;
 831			break;
 832
 833		case DP_TRAINING_PATTERN_2:
 834			value = SOR_DP_TPG_SCRAMBLER_NONE |
 835				SOR_DP_TPG_PATTERN_TRAIN2;
 836			break;
 837
 838		case DP_TRAINING_PATTERN_3:
 839			value = SOR_DP_TPG_SCRAMBLER_NONE |
 840				SOR_DP_TPG_PATTERN_TRAIN3;
 841			break;
 842
 843		default:
 844			return -EINVAL;
 845		}
 846
 847		if (link->caps.channel_coding)
 848			value |= SOR_DP_TPG_CHANNEL_CODING;
 849
 850		pattern = pattern << 8 | value;
 851	}
 852
 853	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
 854	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
 855
 856	if (link->caps.tps3_supported)
 857		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
 858
 859	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
 860
 861	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
 862	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
 863	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
 864	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
 865	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
 866
 867	usleep_range(20, 100);
 868
 869	return 0;
 870}
 871
 872static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
 873{
 874	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
 875	unsigned int rate, lanes;
 876	u32 value;
 877	int err;
 878
 879	rate = drm_dp_link_rate_to_bw_code(link->rate);
 880	lanes = link->lanes;
 881
 882	/* configure link speed and lane count */
 883	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
 884	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
 885	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
 886	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
 887
 888	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
 889	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
 890	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
 891
 892	if (link->caps.enhanced_framing)
 893		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
 894
 895	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
 896
 897	usleep_range(400, 1000);
 898
 899	/* configure load pulse position adjustment */
 900	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
 901	value &= ~SOR_PLL1_LOADADJ_MASK;
 902
 903	switch (rate) {
 904	case DP_LINK_BW_1_62:
 905		value |= SOR_PLL1_LOADADJ(0x3);
 906		break;
 907
 908	case DP_LINK_BW_2_7:
 909		value |= SOR_PLL1_LOADADJ(0x4);
 910		break;
 911
 912	case DP_LINK_BW_5_4:
 913		value |= SOR_PLL1_LOADADJ(0x6);
 914		break;
 915	}
 916
 917	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
 918
 919	/* use alternate scrambler reset for eDP */
 920	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
 921
 922	if (link->edp == 0)
 923		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
 924	else
 925		value |= SOR_DP_SPARE_PANEL_INTERNAL;
 926
 927	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
 928
 929	err = tegra_sor_power_down_lanes(sor);
 930	if (err < 0) {
 931		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
 932		return err;
 933	}
 934
 935	/* power up and pre-charge lanes */
 936	err = tegra_sor_power_up_lanes(sor, lanes);
 937	if (err < 0) {
 938		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
 939			lanes, (lanes != 1) ? "s" : "", err);
 940		return err;
 941	}
 942
 943	tegra_sor_dp_precharge(sor, lanes);
 944
 945	return 0;
 946}
 947
 948static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
 949	.apply_training = tegra_sor_dp_link_apply_training,
 950	.configure = tegra_sor_dp_link_configure,
 951};
 952
 953static void tegra_sor_super_update(struct tegra_sor *sor)
 954{
 955	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 956	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
 957	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
 958}
 959
 960static void tegra_sor_update(struct tegra_sor *sor)
 961{
 962	tegra_sor_writel(sor, 0, SOR_STATE0);
 963	tegra_sor_writel(sor, 1, SOR_STATE0);
 964	tegra_sor_writel(sor, 0, SOR_STATE0);
 965}
 966
 967static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
 968{
 969	u32 value;
 970
 971	value = tegra_sor_readl(sor, SOR_PWM_DIV);
 972	value &= ~SOR_PWM_DIV_MASK;
 973	value |= 0x400; /* period */
 974	tegra_sor_writel(sor, value, SOR_PWM_DIV);
 975
 976	value = tegra_sor_readl(sor, SOR_PWM_CTL);
 977	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
 978	value |= 0x400; /* duty cycle */
 979	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
 980	value |= SOR_PWM_CTL_TRIGGER;
 981	tegra_sor_writel(sor, value, SOR_PWM_CTL);
 982
 983	timeout = jiffies + msecs_to_jiffies(timeout);
 984
 985	while (time_before(jiffies, timeout)) {
 986		value = tegra_sor_readl(sor, SOR_PWM_CTL);
 987		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
 988			return 0;
 989
 990		usleep_range(25, 100);
 991	}
 992
 993	return -ETIMEDOUT;
 994}
 995
 996static int tegra_sor_attach(struct tegra_sor *sor)
 997{
 998	unsigned long value, timeout;
 999
1000	/* wake up in normal mode */
1001	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1002	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1003	value |= SOR_SUPER_STATE_MODE_NORMAL;
1004	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1005	tegra_sor_super_update(sor);
1006
1007	/* attach */
1008	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1009	value |= SOR_SUPER_STATE_ATTACHED;
1010	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1011	tegra_sor_super_update(sor);
1012
1013	timeout = jiffies + msecs_to_jiffies(250);
1014
1015	while (time_before(jiffies, timeout)) {
1016		value = tegra_sor_readl(sor, SOR_TEST);
1017		if ((value & SOR_TEST_ATTACHED) != 0)
1018			return 0;
1019
1020		usleep_range(25, 100);
1021	}
1022
1023	return -ETIMEDOUT;
1024}
1025
1026static int tegra_sor_wakeup(struct tegra_sor *sor)
1027{
1028	unsigned long value, timeout;
1029
1030	timeout = jiffies + msecs_to_jiffies(250);
1031
1032	/* wait for head to wake up */
1033	while (time_before(jiffies, timeout)) {
1034		value = tegra_sor_readl(sor, SOR_TEST);
1035		value &= SOR_TEST_HEAD_MODE_MASK;
1036
1037		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1038			return 0;
1039
1040		usleep_range(25, 100);
1041	}
1042
1043	return -ETIMEDOUT;
1044}
1045
1046static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1047{
1048	u32 value;
1049
1050	value = tegra_sor_readl(sor, SOR_PWR);
1051	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1052	tegra_sor_writel(sor, value, SOR_PWR);
1053
1054	timeout = jiffies + msecs_to_jiffies(timeout);
1055
1056	while (time_before(jiffies, timeout)) {
1057		value = tegra_sor_readl(sor, SOR_PWR);
1058		if ((value & SOR_PWR_TRIGGER) == 0)
1059			return 0;
1060
1061		usleep_range(25, 100);
1062	}
1063
1064	return -ETIMEDOUT;
1065}
1066
1067struct tegra_sor_params {
1068	/* number of link clocks per line */
1069	unsigned int num_clocks;
1070	/* ratio between input and output */
1071	u64 ratio;
1072	/* precision factor */
1073	u64 precision;
1074
1075	unsigned int active_polarity;
1076	unsigned int active_count;
1077	unsigned int active_frac;
1078	unsigned int tu_size;
1079	unsigned int error;
1080};
1081
1082static int tegra_sor_compute_params(struct tegra_sor *sor,
1083				    struct tegra_sor_params *params,
1084				    unsigned int tu_size)
1085{
1086	u64 active_sym, active_count, frac, approx;
1087	u32 active_polarity, active_frac = 0;
1088	const u64 f = params->precision;
1089	s64 error;
1090
1091	active_sym = params->ratio * tu_size;
1092	active_count = div_u64(active_sym, f) * f;
1093	frac = active_sym - active_count;
1094
1095	/* fraction < 0.5 */
1096	if (frac >= (f / 2)) {
1097		active_polarity = 1;
1098		frac = f - frac;
1099	} else {
1100		active_polarity = 0;
1101	}
1102
1103	if (frac != 0) {
1104		frac = div_u64(f * f,  frac); /* 1/fraction */
1105		if (frac <= (15 * f)) {
1106			active_frac = div_u64(frac, f);
1107
1108			/* round up */
1109			if (active_polarity)
1110				active_frac++;
1111		} else {
1112			active_frac = active_polarity ? 1 : 15;
1113		}
1114	}
1115
1116	if (active_frac == 1)
1117		active_polarity = 0;
1118
1119	if (active_polarity == 1) {
1120		if (active_frac) {
1121			approx = active_count + (active_frac * (f - 1)) * f;
1122			approx = div_u64(approx, active_frac * f);
1123		} else {
1124			approx = active_count + f;
1125		}
1126	} else {
1127		if (active_frac)
1128			approx = active_count + div_u64(f, active_frac);
1129		else
1130			approx = active_count;
1131	}
1132
1133	error = div_s64(active_sym - approx, tu_size);
1134	error *= params->num_clocks;
1135
1136	if (error <= 0 && abs(error) < params->error) {
1137		params->active_count = div_u64(active_count, f);
1138		params->active_polarity = active_polarity;
1139		params->active_frac = active_frac;
1140		params->error = abs(error);
1141		params->tu_size = tu_size;
1142
1143		if (error == 0)
1144			return true;
1145	}
1146
1147	return false;
1148}
1149
1150static int tegra_sor_compute_config(struct tegra_sor *sor,
1151				    const struct drm_display_mode *mode,
1152				    struct tegra_sor_config *config,
1153				    struct drm_dp_link *link)
1154{
1155	const u64 f = 100000, link_rate = link->rate * 1000;
1156	const u64 pclk = mode->clock * 1000;
1157	u64 input, output, watermark, num;
1158	struct tegra_sor_params params;
1159	u32 num_syms_per_line;
1160	unsigned int i;
1161
1162	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1163		return -EINVAL;
1164
1165	input = pclk * config->bits_per_pixel;
1166	output = link_rate * 8 * link->lanes;
1167
1168	if (input >= output)
1169		return -ERANGE;
1170
1171	memset(&params, 0, sizeof(params));
1172	params.ratio = div64_u64(input * f, output);
1173	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1174	params.precision = f;
1175	params.error = 64 * f;
1176	params.tu_size = 64;
1177
1178	for (i = params.tu_size; i >= 32; i--)
1179		if (tegra_sor_compute_params(sor, &params, i))
1180			break;
1181
1182	if (params.active_frac == 0) {
1183		config->active_polarity = 0;
1184		config->active_count = params.active_count;
1185
1186		if (!params.active_polarity)
1187			config->active_count--;
1188
1189		config->tu_size = params.tu_size;
1190		config->active_frac = 1;
1191	} else {
1192		config->active_polarity = params.active_polarity;
1193		config->active_count = params.active_count;
1194		config->active_frac = params.active_frac;
1195		config->tu_size = params.tu_size;
1196	}
1197
1198	dev_dbg(sor->dev,
1199		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1200		config->active_polarity, config->active_count,
1201		config->tu_size, config->active_frac);
1202
1203	watermark = params.ratio * config->tu_size * (f - params.ratio);
1204	watermark = div_u64(watermark, f);
1205
1206	watermark = div_u64(watermark + params.error, f);
1207	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1208	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1209			    (link->lanes * 8);
1210
1211	if (config->watermark > 30) {
1212		config->watermark = 30;
1213		dev_err(sor->dev,
1214			"unable to compute TU size, forcing watermark to %u\n",
1215			config->watermark);
1216	} else if (config->watermark > num_syms_per_line) {
1217		config->watermark = num_syms_per_line;
1218		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1219			config->watermark);
1220	}
1221
1222	/* compute the number of symbols per horizontal blanking interval */
1223	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1224	config->hblank_symbols = div_u64(num, pclk);
1225
1226	if (link->caps.enhanced_framing)
1227		config->hblank_symbols -= 3;
1228
1229	config->hblank_symbols -= 12 / link->lanes;
1230
1231	/* compute the number of symbols per vertical blanking interval */
1232	num = (mode->hdisplay - 25) * link_rate;
1233	config->vblank_symbols = div_u64(num, pclk);
1234	config->vblank_symbols -= 36 / link->lanes + 4;
1235
1236	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1237		config->vblank_symbols);
1238
1239	return 0;
1240}
1241
1242static void tegra_sor_apply_config(struct tegra_sor *sor,
1243				   const struct tegra_sor_config *config)
1244{
1245	u32 value;
1246
1247	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1248	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1249	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1250	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1251
1252	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1253	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1254	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1255
1256	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1257	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1258
1259	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1260	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1261
1262	if (config->active_polarity)
1263		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1264	else
1265		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1266
1267	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1268	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1269	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1270
1271	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1272	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1273	value |= config->hblank_symbols & 0xffff;
1274	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275
1276	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1277	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1278	value |= config->vblank_symbols & 0xffff;
1279	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280}
1281
1282static void tegra_sor_mode_set(struct tegra_sor *sor,
1283			       const struct drm_display_mode *mode,
1284			       struct tegra_sor_state *state)
1285{
1286	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1287	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1288	u32 value;
1289
1290	value = tegra_sor_readl(sor, SOR_STATE1);
1291	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1292	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1293	value &= ~SOR_STATE_ASY_OWNER_MASK;
1294
1295	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1296		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1297
1298	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1299		value &= ~SOR_STATE_ASY_HSYNCPOL;
1300
1301	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1302		value |= SOR_STATE_ASY_HSYNCPOL;
1303
1304	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1305		value &= ~SOR_STATE_ASY_VSYNCPOL;
1306
1307	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1308		value |= SOR_STATE_ASY_VSYNCPOL;
1309
1310	switch (state->bpc) {
1311	case 16:
1312		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1313		break;
1314
1315	case 12:
1316		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1317		break;
1318
1319	case 10:
1320		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1321		break;
1322
1323	case 8:
1324		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1325		break;
1326
1327	case 6:
1328		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1329		break;
1330
1331	default:
1332		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1333		break;
1334	}
1335
1336	tegra_sor_writel(sor, value, SOR_STATE1);
1337
1338	/*
1339	 * TODO: The video timing programming below doesn't seem to match the
1340	 * register definitions.
1341	 */
1342
1343	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1344	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1345
1346	/* sync end = sync width - 1 */
1347	vse = mode->vsync_end - mode->vsync_start - 1;
1348	hse = mode->hsync_end - mode->hsync_start - 1;
1349
1350	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1351	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1352
1353	/* blank end = sync end + back porch */
1354	vbe = vse + (mode->vtotal - mode->vsync_end);
1355	hbe = hse + (mode->htotal - mode->hsync_end);
1356
1357	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1358	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1359
1360	/* blank start = blank end + active */
1361	vbs = vbe + mode->vdisplay;
1362	hbs = hbe + mode->hdisplay;
1363
1364	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1365	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1366
1367	/* XXX interlacing support */
1368	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1369}
1370
1371static int tegra_sor_detach(struct tegra_sor *sor)
1372{
1373	unsigned long value, timeout;
1374
1375	/* switch to safe mode */
1376	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1377	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1378	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1379	tegra_sor_super_update(sor);
1380
1381	timeout = jiffies + msecs_to_jiffies(250);
1382
1383	while (time_before(jiffies, timeout)) {
1384		value = tegra_sor_readl(sor, SOR_PWR);
1385		if (value & SOR_PWR_MODE_SAFE)
1386			break;
1387	}
1388
1389	if ((value & SOR_PWR_MODE_SAFE) == 0)
1390		return -ETIMEDOUT;
1391
1392	/* go to sleep */
1393	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1394	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1395	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1396	tegra_sor_super_update(sor);
1397
1398	/* detach */
1399	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1400	value &= ~SOR_SUPER_STATE_ATTACHED;
1401	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1402	tegra_sor_super_update(sor);
1403
1404	timeout = jiffies + msecs_to_jiffies(250);
1405
1406	while (time_before(jiffies, timeout)) {
1407		value = tegra_sor_readl(sor, SOR_TEST);
1408		if ((value & SOR_TEST_ATTACHED) == 0)
1409			break;
1410
1411		usleep_range(25, 100);
1412	}
1413
1414	if ((value & SOR_TEST_ATTACHED) != 0)
1415		return -ETIMEDOUT;
1416
1417	return 0;
1418}
1419
1420static int tegra_sor_power_down(struct tegra_sor *sor)
1421{
1422	unsigned long value, timeout;
1423	int err;
1424
1425	value = tegra_sor_readl(sor, SOR_PWR);
1426	value &= ~SOR_PWR_NORMAL_STATE_PU;
1427	value |= SOR_PWR_TRIGGER;
1428	tegra_sor_writel(sor, value, SOR_PWR);
1429
1430	timeout = jiffies + msecs_to_jiffies(250);
1431
1432	while (time_before(jiffies, timeout)) {
1433		value = tegra_sor_readl(sor, SOR_PWR);
1434		if ((value & SOR_PWR_TRIGGER) == 0)
1435			return 0;
1436
1437		usleep_range(25, 100);
1438	}
1439
1440	if ((value & SOR_PWR_TRIGGER) != 0)
1441		return -ETIMEDOUT;
1442
1443	/* switch to safe parent clock */
1444	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1445	if (err < 0) {
1446		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1447		return err;
1448	}
1449
1450	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1451	value |= SOR_PLL2_PORT_POWERDOWN;
1452	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1453
1454	usleep_range(20, 100);
1455
1456	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1457	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1458	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1459
1460	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1461	value |= SOR_PLL2_SEQ_PLLCAPPD;
1462	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1463	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1464
1465	usleep_range(20, 100);
1466
1467	return 0;
1468}
1469
1470static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1471{
1472	u32 value;
1473
1474	timeout = jiffies + msecs_to_jiffies(timeout);
1475
1476	while (time_before(jiffies, timeout)) {
1477		value = tegra_sor_readl(sor, SOR_CRCA);
1478		if (value & SOR_CRCA_VALID)
1479			return 0;
1480
1481		usleep_range(100, 200);
1482	}
1483
1484	return -ETIMEDOUT;
1485}
1486
1487static int tegra_sor_show_crc(struct seq_file *s, void *data)
1488{
1489	struct drm_info_node *node = s->private;
1490	struct tegra_sor *sor = node->info_ent->data;
1491	struct drm_crtc *crtc = sor->output.encoder.crtc;
1492	struct drm_device *drm = node->minor->dev;
1493	int err = 0;
1494	u32 value;
1495
1496	drm_modeset_lock_all(drm);
1497
1498	if (!crtc || !crtc->state->active) {
1499		err = -EBUSY;
1500		goto unlock;
1501	}
1502
1503	value = tegra_sor_readl(sor, SOR_STATE1);
1504	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1505	tegra_sor_writel(sor, value, SOR_STATE1);
1506
1507	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1508	value |= SOR_CRC_CNTRL_ENABLE;
1509	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1510
1511	value = tegra_sor_readl(sor, SOR_TEST);
1512	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1513	tegra_sor_writel(sor, value, SOR_TEST);
1514
1515	err = tegra_sor_crc_wait(sor, 100);
1516	if (err < 0)
1517		goto unlock;
1518
1519	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1520	value = tegra_sor_readl(sor, SOR_CRCB);
1521
1522	seq_printf(s, "%08x\n", value);
1523
1524unlock:
1525	drm_modeset_unlock_all(drm);
1526	return err;
1527}
1528
1529#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1530
1531static const struct debugfs_reg32 tegra_sor_regs[] = {
1532	DEBUGFS_REG32(SOR_CTXSW),
1533	DEBUGFS_REG32(SOR_SUPER_STATE0),
1534	DEBUGFS_REG32(SOR_SUPER_STATE1),
1535	DEBUGFS_REG32(SOR_STATE0),
1536	DEBUGFS_REG32(SOR_STATE1),
1537	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1538	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1539	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1540	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1541	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1542	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1543	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1544	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1545	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1546	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1547	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1548	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1549	DEBUGFS_REG32(SOR_CRC_CNTRL),
1550	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1551	DEBUGFS_REG32(SOR_CLK_CNTRL),
1552	DEBUGFS_REG32(SOR_CAP),
1553	DEBUGFS_REG32(SOR_PWR),
1554	DEBUGFS_REG32(SOR_TEST),
1555	DEBUGFS_REG32(SOR_PLL0),
1556	DEBUGFS_REG32(SOR_PLL1),
1557	DEBUGFS_REG32(SOR_PLL2),
1558	DEBUGFS_REG32(SOR_PLL3),
1559	DEBUGFS_REG32(SOR_CSTM),
1560	DEBUGFS_REG32(SOR_LVDS),
1561	DEBUGFS_REG32(SOR_CRCA),
1562	DEBUGFS_REG32(SOR_CRCB),
1563	DEBUGFS_REG32(SOR_BLANK),
1564	DEBUGFS_REG32(SOR_SEQ_CTL),
1565	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1566	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1567	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1568	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1569	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1570	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1571	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1572	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1573	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1574	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1575	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1576	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1577	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1578	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1579	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1580	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1581	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1582	DEBUGFS_REG32(SOR_PWM_DIV),
1583	DEBUGFS_REG32(SOR_PWM_CTL),
1584	DEBUGFS_REG32(SOR_VCRC_A0),
1585	DEBUGFS_REG32(SOR_VCRC_A1),
1586	DEBUGFS_REG32(SOR_VCRC_B0),
1587	DEBUGFS_REG32(SOR_VCRC_B1),
1588	DEBUGFS_REG32(SOR_CCRC_A0),
1589	DEBUGFS_REG32(SOR_CCRC_A1),
1590	DEBUGFS_REG32(SOR_CCRC_B0),
1591	DEBUGFS_REG32(SOR_CCRC_B1),
1592	DEBUGFS_REG32(SOR_EDATA_A0),
1593	DEBUGFS_REG32(SOR_EDATA_A1),
1594	DEBUGFS_REG32(SOR_EDATA_B0),
1595	DEBUGFS_REG32(SOR_EDATA_B1),
1596	DEBUGFS_REG32(SOR_COUNT_A0),
1597	DEBUGFS_REG32(SOR_COUNT_A1),
1598	DEBUGFS_REG32(SOR_COUNT_B0),
1599	DEBUGFS_REG32(SOR_COUNT_B1),
1600	DEBUGFS_REG32(SOR_DEBUG_A0),
1601	DEBUGFS_REG32(SOR_DEBUG_A1),
1602	DEBUGFS_REG32(SOR_DEBUG_B0),
1603	DEBUGFS_REG32(SOR_DEBUG_B1),
1604	DEBUGFS_REG32(SOR_TRIG),
1605	DEBUGFS_REG32(SOR_MSCHECK),
1606	DEBUGFS_REG32(SOR_XBAR_CTRL),
1607	DEBUGFS_REG32(SOR_XBAR_POL),
1608	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1609	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1610	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1611	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1612	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1613	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1614	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1615	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1616	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1617	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1618	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1619	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1620	DEBUGFS_REG32(SOR_DP_CONFIG0),
1621	DEBUGFS_REG32(SOR_DP_CONFIG1),
1622	DEBUGFS_REG32(SOR_DP_MN0),
1623	DEBUGFS_REG32(SOR_DP_MN1),
1624	DEBUGFS_REG32(SOR_DP_PADCTL0),
1625	DEBUGFS_REG32(SOR_DP_PADCTL1),
1626	DEBUGFS_REG32(SOR_DP_PADCTL2),
1627	DEBUGFS_REG32(SOR_DP_DEBUG0),
1628	DEBUGFS_REG32(SOR_DP_DEBUG1),
1629	DEBUGFS_REG32(SOR_DP_SPARE0),
1630	DEBUGFS_REG32(SOR_DP_SPARE1),
1631	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1632	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1633	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1634	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1635	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1636	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1637	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1638	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1639	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1640	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1641	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1642	DEBUGFS_REG32(SOR_DP_TPG),
1643	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1644	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1645	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1646	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1647};
1648
1649static int tegra_sor_show_regs(struct seq_file *s, void *data)
1650{
1651	struct drm_info_node *node = s->private;
1652	struct tegra_sor *sor = node->info_ent->data;
1653	struct drm_crtc *crtc = sor->output.encoder.crtc;
1654	struct drm_device *drm = node->minor->dev;
1655	unsigned int i;
1656	int err = 0;
1657
1658	drm_modeset_lock_all(drm);
1659
1660	if (!crtc || !crtc->state->active) {
1661		err = -EBUSY;
1662		goto unlock;
1663	}
1664
1665	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1666		unsigned int offset = tegra_sor_regs[i].offset;
1667
1668		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1669			   offset, tegra_sor_readl(sor, offset));
1670	}
1671
1672unlock:
1673	drm_modeset_unlock_all(drm);
1674	return err;
1675}
1676
1677static const struct drm_info_list debugfs_files[] = {
1678	{ "crc", tegra_sor_show_crc, 0, NULL },
1679	{ "regs", tegra_sor_show_regs, 0, NULL },
1680};
1681
1682static int tegra_sor_late_register(struct drm_connector *connector)
1683{
1684	struct tegra_output *output = connector_to_output(connector);
1685	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1686	struct drm_minor *minor = connector->dev->primary;
1687	struct dentry *root = connector->debugfs_entry;
1688	struct tegra_sor *sor = to_sor(output);
1689
1690	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1691				     GFP_KERNEL);
1692	if (!sor->debugfs_files)
1693		return -ENOMEM;
1694
1695	for (i = 0; i < count; i++)
1696		sor->debugfs_files[i].data = sor;
1697
1698	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1699
1700	return 0;
1701}
1702
1703static void tegra_sor_early_unregister(struct drm_connector *connector)
1704{
1705	struct tegra_output *output = connector_to_output(connector);
1706	unsigned int count = ARRAY_SIZE(debugfs_files);
1707	struct tegra_sor *sor = to_sor(output);
1708
1709	drm_debugfs_remove_files(sor->debugfs_files, count,
 
1710				 connector->dev->primary);
1711	kfree(sor->debugfs_files);
1712	sor->debugfs_files = NULL;
1713}
1714
1715static void tegra_sor_connector_reset(struct drm_connector *connector)
1716{
1717	struct tegra_sor_state *state;
1718
1719	state = kzalloc(sizeof(*state), GFP_KERNEL);
1720	if (!state)
1721		return;
1722
1723	if (connector->state) {
1724		__drm_atomic_helper_connector_destroy_state(connector->state);
1725		kfree(connector->state);
1726	}
1727
1728	__drm_atomic_helper_connector_reset(connector, &state->base);
1729}
1730
1731static enum drm_connector_status
1732tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1733{
1734	struct tegra_output *output = connector_to_output(connector);
1735	struct tegra_sor *sor = to_sor(output);
1736
1737	if (sor->aux)
1738		return drm_dp_aux_detect(sor->aux);
1739
1740	return tegra_output_connector_detect(connector, force);
1741}
1742
1743static struct drm_connector_state *
1744tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1745{
1746	struct tegra_sor_state *state = to_sor_state(connector->state);
1747	struct tegra_sor_state *copy;
1748
1749	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1750	if (!copy)
1751		return NULL;
1752
1753	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1754
1755	return &copy->base;
1756}
1757
1758static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1759	.reset = tegra_sor_connector_reset,
1760	.detect = tegra_sor_connector_detect,
1761	.fill_modes = drm_helper_probe_single_connector_modes,
1762	.destroy = tegra_output_connector_destroy,
1763	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1764	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1765	.late_register = tegra_sor_late_register,
1766	.early_unregister = tegra_sor_early_unregister,
1767};
1768
1769static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1770{
1771	struct tegra_output *output = connector_to_output(connector);
1772	struct tegra_sor *sor = to_sor(output);
1773	int err;
1774
1775	if (sor->aux)
1776		drm_dp_aux_enable(sor->aux);
1777
1778	err = tegra_output_connector_get_modes(connector);
1779
1780	if (sor->aux)
1781		drm_dp_aux_disable(sor->aux);
1782
1783	return err;
1784}
1785
1786static enum drm_mode_status
1787tegra_sor_connector_mode_valid(struct drm_connector *connector,
1788			       struct drm_display_mode *mode)
1789{
1790	return MODE_OK;
1791}
1792
1793static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1794	.get_modes = tegra_sor_connector_get_modes,
1795	.mode_valid = tegra_sor_connector_mode_valid,
1796};
1797
1798static int
1799tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1800			       struct drm_crtc_state *crtc_state,
1801			       struct drm_connector_state *conn_state)
1802{
1803	struct tegra_output *output = encoder_to_output(encoder);
1804	struct tegra_sor_state *state = to_sor_state(conn_state);
1805	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1806	unsigned long pclk = crtc_state->mode.clock * 1000;
1807	struct tegra_sor *sor = to_sor(output);
1808	struct drm_display_info *info;
1809	int err;
1810
1811	info = &output->connector.display_info;
1812
1813	/*
1814	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1815	 * the pixel clock must be corrected accordingly.
1816	 */
1817	if (pclk >= 340000000) {
1818		state->link_speed = 20;
1819		state->pclk = pclk / 2;
1820	} else {
1821		state->link_speed = 10;
1822		state->pclk = pclk;
1823	}
1824
1825	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1826					 pclk, 0);
1827	if (err < 0) {
1828		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1829		return err;
1830	}
1831
1832	switch (info->bpc) {
1833	case 8:
1834	case 6:
1835		state->bpc = info->bpc;
1836		break;
1837
1838	default:
1839		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1840		state->bpc = 8;
1841		break;
1842	}
1843
1844	return 0;
1845}
1846
1847static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1848{
1849	u32 value = 0;
1850	size_t i;
1851
1852	for (i = size; i > 0; i--)
1853		value = (value << 8) | ptr[i - 1];
1854
1855	return value;
1856}
1857
1858static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1859					  const void *data, size_t size)
1860{
1861	const u8 *ptr = data;
1862	unsigned long offset;
1863	size_t i, j;
1864	u32 value;
1865
1866	switch (ptr[0]) {
1867	case HDMI_INFOFRAME_TYPE_AVI:
1868		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1869		break;
1870
1871	case HDMI_INFOFRAME_TYPE_AUDIO:
1872		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1873		break;
1874
1875	case HDMI_INFOFRAME_TYPE_VENDOR:
1876		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1877		break;
1878
1879	default:
1880		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1881			ptr[0]);
1882		return;
1883	}
1884
1885	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1886		INFOFRAME_HEADER_VERSION(ptr[1]) |
1887		INFOFRAME_HEADER_LEN(ptr[2]);
1888	tegra_sor_writel(sor, value, offset);
1889	offset++;
1890
1891	/*
1892	 * Each subpack contains 7 bytes, divided into:
1893	 * - subpack_low: bytes 0 - 3
1894	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1895	 */
1896	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1897		size_t rem = size - i, num = min_t(size_t, rem, 4);
1898
1899		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1900		tegra_sor_writel(sor, value, offset++);
1901
1902		num = min_t(size_t, rem - num, 3);
1903
1904		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1905		tegra_sor_writel(sor, value, offset++);
1906	}
1907}
1908
1909static int
1910tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1911				   const struct drm_display_mode *mode)
1912{
1913	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1914	struct hdmi_avi_infoframe frame;
1915	u32 value;
1916	int err;
1917
1918	/* disable AVI infoframe */
1919	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1920	value &= ~INFOFRAME_CTRL_SINGLE;
1921	value &= ~INFOFRAME_CTRL_OTHER;
1922	value &= ~INFOFRAME_CTRL_ENABLE;
1923	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924
1925	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1926						       &sor->output.connector, mode);
1927	if (err < 0) {
1928		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1929		return err;
1930	}
1931
1932	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1933	if (err < 0) {
1934		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1935		return err;
1936	}
1937
1938	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1939
1940	/* enable AVI infoframe */
1941	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1942	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1943	value |= INFOFRAME_CTRL_ENABLE;
1944	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1945
1946	return 0;
1947}
1948
1949static void tegra_sor_write_eld(struct tegra_sor *sor)
1950{
1951	size_t length = drm_eld_size(sor->output.connector.eld), i;
1952
1953	for (i = 0; i < length; i++)
1954		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1955				 SOR_AUDIO_HDA_ELD_BUFWR);
1956
1957	/*
1958	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1959	 * the HDA codec driver will check that each byte read from the buffer
1960	 * is valid. Therefore every byte must be written, even if no 96 bytes
1961	 * were parsed from EDID.
1962	 */
1963	for (i = length; i < 96; i++)
1964		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1965}
1966
1967static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1968{
1969	u32 value;
1970
1971	/*
1972	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1973	 * is used for interoperability between the HDA codec driver and the
1974	 * HDMI/DP driver.
1975	 */
1976	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1977	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1978	tegra_sor_writel(sor, value, SOR_INT_MASK);
1979
1980	tegra_sor_write_eld(sor);
1981
1982	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1983	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1984}
1985
1986static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1987{
1988	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1989	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1990	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1991}
1992
1993static void tegra_sor_audio_enable(struct tegra_sor *sor)
1994{
1995	u32 value;
1996
1997	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
1998
1999	/* select HDA audio input */
2000	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2001	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2002
2003	/* inject null samples */
2004	if (sor->format.channels != 2)
2005		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2006	else
2007		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2008
2009	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2010
2011	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2012
2013	/* enable advertising HBR capability */
2014	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2015}
2016
2017static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2018{
2019	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2020	struct hdmi_audio_infoframe frame;
2021	u32 value;
2022	int err;
2023
2024	err = hdmi_audio_infoframe_init(&frame);
2025	if (err < 0) {
2026		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2027		return err;
2028	}
2029
2030	frame.channels = sor->format.channels;
2031
2032	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2033	if (err < 0) {
2034		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2035		return err;
2036	}
2037
2038	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2039
2040	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2041	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2042	value |= INFOFRAME_CTRL_ENABLE;
2043	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2044
2045	return 0;
2046}
2047
2048static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2049{
2050	u32 value;
2051
2052	tegra_sor_audio_enable(sor);
2053
2054	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2055
2056	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2057		SOR_HDMI_SPARE_CTS_RESET(1) |
2058		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2059	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2060
2061	/* enable HW CTS */
2062	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2063	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2064
2065	/* allow packet to be sent */
2066	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2067	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2068
2069	/* reset N counter and enable lookup */
2070	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2071	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2072
2073	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2074	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2075	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2076
2077	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2078	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2079
2080	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2081	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2082
2083	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2084	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2085
2086	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2087	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2088	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2089
2090	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2091	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2092	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2093
2094	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2095	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2096	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2097
2098	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2099	value &= ~SOR_HDMI_AUDIO_N_RESET;
2100	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2101
2102	tegra_sor_hdmi_enable_audio_infoframe(sor);
2103}
2104
2105static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2106{
2107	u32 value;
2108
2109	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2110	value &= ~INFOFRAME_CTRL_ENABLE;
2111	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2112}
2113
2114static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2115{
2116	tegra_sor_hdmi_disable_audio_infoframe(sor);
2117}
2118
2119static struct tegra_sor_hdmi_settings *
2120tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2121{
2122	unsigned int i;
2123
2124	for (i = 0; i < sor->num_settings; i++)
2125		if (frequency <= sor->settings[i].frequency)
2126			return &sor->settings[i];
2127
2128	return NULL;
2129}
2130
2131static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2132{
2133	u32 value;
2134
2135	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2136	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2137	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2138	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2139}
2140
2141static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2142{
2143	struct i2c_adapter *ddc = sor->output.ddc;
2144
2145	drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2146	drm_scdc_set_scrambling(ddc, false);
2147
2148	tegra_sor_hdmi_disable_scrambling(sor);
2149}
2150
2151static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2152{
2153	if (sor->scdc_enabled) {
2154		cancel_delayed_work_sync(&sor->scdc);
2155		tegra_sor_hdmi_scdc_disable(sor);
2156	}
2157}
2158
2159static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2160{
2161	u32 value;
2162
2163	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2164	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2165	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2166	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2167}
2168
2169static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2170{
2171	struct i2c_adapter *ddc = sor->output.ddc;
2172
2173	drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2174	drm_scdc_set_scrambling(ddc, true);
2175
2176	tegra_sor_hdmi_enable_scrambling(sor);
2177}
2178
2179static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180{
2181	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2182	struct i2c_adapter *ddc = sor->output.ddc;
2183
2184	if (!drm_scdc_get_scrambling_status(ddc)) {
2185		DRM_DEBUG_KMS("SCDC not scrambled\n");
2186		tegra_sor_hdmi_scdc_enable(sor);
2187	}
2188
2189	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2190}
2191
2192static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2193{
2194	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2195	struct drm_display_mode *mode;
2196
2197	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2198
2199	if (mode->clock >= 340000 && scdc->supported) {
2200		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2201		tegra_sor_hdmi_scdc_enable(sor);
2202		sor->scdc_enabled = true;
2203	}
2204}
2205
2206static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2207{
2208	struct tegra_output *output = encoder_to_output(encoder);
2209	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2210	struct tegra_sor *sor = to_sor(output);
2211	u32 value;
2212	int err;
2213
2214	tegra_sor_audio_unprepare(sor);
2215	tegra_sor_hdmi_scdc_stop(sor);
2216
2217	err = tegra_sor_detach(sor);
2218	if (err < 0)
2219		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2220
2221	tegra_sor_writel(sor, 0, SOR_STATE1);
2222	tegra_sor_update(sor);
2223
2224	/* disable display to SOR clock */
2225	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2226
2227	if (!sor->soc->has_nvdisplay)
2228		value &= ~SOR1_TIMING_CYA;
2229
2230	value &= ~SOR_ENABLE(sor->index);
2231
2232	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2233
2234	tegra_dc_commit(dc);
2235
2236	err = tegra_sor_power_down(sor);
2237	if (err < 0)
2238		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2239
2240	err = tegra_io_pad_power_disable(sor->pad);
2241	if (err < 0)
2242		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2243
2244	host1x_client_suspend(&sor->client);
2245}
2246
2247static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2248{
2249	struct tegra_output *output = encoder_to_output(encoder);
2250	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2251	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2252	struct tegra_sor_hdmi_settings *settings;
2253	struct tegra_sor *sor = to_sor(output);
2254	struct tegra_sor_state *state;
2255	struct drm_display_mode *mode;
2256	unsigned long rate, pclk;
2257	unsigned int div, i;
2258	u32 value;
2259	int err;
2260
2261	state = to_sor_state(output->connector.state);
2262	mode = &encoder->crtc->state->adjusted_mode;
2263	pclk = mode->clock * 1000;
2264
2265	err = host1x_client_resume(&sor->client);
2266	if (err < 0) {
2267		dev_err(sor->dev, "failed to resume: %d\n", err);
2268		return;
2269	}
2270
2271	/* switch to safe parent clock */
2272	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2273	if (err < 0) {
2274		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2275		return;
2276	}
2277
2278	div = clk_get_rate(sor->clk) / 1000000 * 4;
2279
2280	err = tegra_io_pad_power_enable(sor->pad);
2281	if (err < 0)
2282		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2283
2284	usleep_range(20, 100);
2285
2286	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2287	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2288	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2289
2290	usleep_range(20, 100);
2291
2292	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2293	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2294	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2295
2296	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2297	value &= ~SOR_PLL0_VCOPD;
2298	value &= ~SOR_PLL0_PWR;
2299	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2300
2301	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2302	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2303	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2304
2305	usleep_range(200, 400);
2306
2307	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2308	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2309	value &= ~SOR_PLL2_PORT_POWERDOWN;
2310	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2311
2312	usleep_range(20, 100);
2313
2314	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2315	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2316		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2317	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2318
2319	while (true) {
2320		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2321		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2322			break;
2323
2324		usleep_range(250, 1000);
2325	}
2326
2327	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2328		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2329	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2330
2331	while (true) {
2332		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2333		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2334			break;
2335
2336		usleep_range(250, 1000);
2337	}
2338
2339	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2340	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2341	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2342
2343	if (mode->clock < 340000) {
2344		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2345		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2346	} else {
2347		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2348		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2349	}
2350
2351	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2352	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2353
2354	/* SOR pad PLL stabilization time */
2355	usleep_range(250, 1000);
2356
2357	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2358	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2359	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2360	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2361
2362	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2363	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2364	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2365	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2366	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2367	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2368
2369	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2370		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2371	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2372
2373	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2374		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2375	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2376	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2377
2378	if (!sor->soc->has_nvdisplay) {
2379		/* program the reference clock */
2380		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2381		tegra_sor_writel(sor, value, SOR_REFCLK);
2382	}
2383
2384	/* XXX not in TRM */
2385	for (value = 0, i = 0; i < 5; i++)
2386		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2387			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2388
2389	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2390	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2391
2392	/*
2393	 * Switch the pad clock to the DP clock. Note that we cannot actually
2394	 * do this because Tegra186 and later don't support clk_set_parent()
2395	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2396	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2397	 */
2398#if 0
2399	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2400	if (err < 0) {
2401		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2402			err);
2403		return;
2404	}
2405#endif
2406
2407	/* switch the SOR clock to the pad clock */
2408	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2409	if (err < 0) {
2410		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2411			err);
2412		return;
2413	}
2414
2415	/* switch the output clock to the parent pixel clock */
2416	err = clk_set_parent(sor->clk, sor->clk_parent);
2417	if (err < 0) {
2418		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2419			err);
2420		return;
2421	}
2422
2423	/* adjust clock rate for HDMI 2.0 modes */
2424	rate = clk_get_rate(sor->clk_parent);
2425
2426	if (mode->clock >= 340000)
2427		rate /= 2;
2428
2429	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2430
2431	clk_set_rate(sor->clk, rate);
2432
2433	if (!sor->soc->has_nvdisplay) {
2434		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2435
2436		/* XXX is this the proper check? */
2437		if (mode->clock < 75000)
2438			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2439
2440		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2441	}
2442
2443	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2444
2445	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2446		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2447	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2448
2449	if (!dc->soc->has_nvdisplay) {
2450		/* H_PULSE2 setup */
2451		pulse_start = h_ref_to_sync +
2452			      (mode->hsync_end - mode->hsync_start) +
2453			      (mode->htotal - mode->hsync_end) - 10;
2454
2455		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2456			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2457		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2458
2459		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2460		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2461
2462		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2463		value |= H_PULSE2_ENABLE;
2464		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2465	}
2466
2467	/* infoframe setup */
2468	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2469	if (err < 0)
2470		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2471
2472	/* XXX HDMI audio support not implemented yet */
2473	tegra_sor_hdmi_disable_audio_infoframe(sor);
2474
2475	/* use single TMDS protocol */
2476	value = tegra_sor_readl(sor, SOR_STATE1);
2477	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2478	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2479	tegra_sor_writel(sor, value, SOR_STATE1);
2480
2481	/* power up pad calibration */
2482	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2483	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2484	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2485
2486	/* production settings */
2487	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2488	if (!settings) {
2489		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2490			mode->clock * 1000);
2491		return;
2492	}
2493
2494	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2495	value &= ~SOR_PLL0_ICHPMP_MASK;
2496	value &= ~SOR_PLL0_FILTER_MASK;
2497	value &= ~SOR_PLL0_VCOCAP_MASK;
2498	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2499	value |= SOR_PLL0_FILTER(settings->filter);
2500	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2501	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2502
2503	/* XXX not in TRM */
2504	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2505	value &= ~SOR_PLL1_LOADADJ_MASK;
2506	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2507	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2508	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2509	value |= SOR_PLL1_TMDS_TERM;
2510	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2511
2512	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2513	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2514	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2515	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2516	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2517	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2518	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2519	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2520	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2521	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2522
2523	value = settings->drive_current[3] << 24 |
2524		settings->drive_current[2] << 16 |
2525		settings->drive_current[1] <<  8 |
2526		settings->drive_current[0] <<  0;
2527	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2528
2529	value = settings->preemphasis[3] << 24 |
2530		settings->preemphasis[2] << 16 |
2531		settings->preemphasis[1] <<  8 |
2532		settings->preemphasis[0] <<  0;
2533	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2534
2535	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2536	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2537	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2538	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2539	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2540
2541	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2542	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2543	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2544	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2545
2546	/* power down pad calibration */
2547	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2548	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2549	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2550
2551	if (!dc->soc->has_nvdisplay) {
2552		/* miscellaneous display controller settings */
2553		value = VSYNC_H_POSITION(1);
2554		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2555	}
2556
2557	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2558	value &= ~DITHER_CONTROL_MASK;
2559	value &= ~BASE_COLOR_SIZE_MASK;
2560
2561	switch (state->bpc) {
2562	case 6:
2563		value |= BASE_COLOR_SIZE_666;
2564		break;
2565
2566	case 8:
2567		value |= BASE_COLOR_SIZE_888;
2568		break;
2569
2570	case 10:
2571		value |= BASE_COLOR_SIZE_101010;
2572		break;
2573
2574	case 12:
2575		value |= BASE_COLOR_SIZE_121212;
2576		break;
2577
2578	default:
2579		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2580		value |= BASE_COLOR_SIZE_888;
2581		break;
2582	}
2583
2584	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2585
2586	/* XXX set display head owner */
2587	value = tegra_sor_readl(sor, SOR_STATE1);
2588	value &= ~SOR_STATE_ASY_OWNER_MASK;
2589	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2590	tegra_sor_writel(sor, value, SOR_STATE1);
2591
2592	err = tegra_sor_power_up(sor, 250);
2593	if (err < 0)
2594		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2595
2596	/* configure dynamic range of output */
2597	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2598	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2599	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2600	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2601
2602	/* configure colorspace */
2603	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2604	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2605	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2606	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2607
2608	tegra_sor_mode_set(sor, mode, state);
2609
2610	tegra_sor_update(sor);
2611
2612	/* program preamble timing in SOR (XXX) */
2613	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2614	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2615	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2616
2617	err = tegra_sor_attach(sor);
2618	if (err < 0)
2619		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2620
2621	/* enable display to SOR clock and generate HDMI preamble */
2622	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2623
2624	if (!sor->soc->has_nvdisplay)
2625		value |= SOR1_TIMING_CYA;
2626
2627	value |= SOR_ENABLE(sor->index);
2628
2629	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2630
2631	if (dc->soc->has_nvdisplay) {
2632		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2633		value &= ~PROTOCOL_MASK;
2634		value |= PROTOCOL_SINGLE_TMDS_A;
2635		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2636	}
2637
2638	tegra_dc_commit(dc);
2639
2640	err = tegra_sor_wakeup(sor);
2641	if (err < 0)
2642		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2643
2644	tegra_sor_hdmi_scdc_start(sor);
2645	tegra_sor_audio_prepare(sor);
2646}
2647
2648static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2649	.disable = tegra_sor_hdmi_disable,
2650	.enable = tegra_sor_hdmi_enable,
2651	.atomic_check = tegra_sor_encoder_atomic_check,
2652};
2653
2654static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2655{
2656	struct tegra_output *output = encoder_to_output(encoder);
2657	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2658	struct tegra_sor *sor = to_sor(output);
2659	u32 value;
2660	int err;
2661
2662	if (output->panel)
2663		drm_panel_disable(output->panel);
2664
2665	/*
2666	 * Do not attempt to power down a DP link if we're not connected since
2667	 * the AUX transactions would just be timing out.
2668	 */
2669	if (output->connector.status != connector_status_disconnected) {
2670		err = drm_dp_link_power_down(sor->aux, &sor->link);
2671		if (err < 0)
2672			dev_err(sor->dev, "failed to power down link: %d\n",
2673				err);
2674	}
2675
2676	err = tegra_sor_detach(sor);
2677	if (err < 0)
2678		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2679
2680	tegra_sor_writel(sor, 0, SOR_STATE1);
2681	tegra_sor_update(sor);
2682
2683	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2684	value &= ~SOR_ENABLE(sor->index);
2685	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2686	tegra_dc_commit(dc);
2687
2688	value = tegra_sor_readl(sor, SOR_STATE1);
2689	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2690	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2691	value &= ~SOR_STATE_ASY_OWNER_MASK;
2692	tegra_sor_writel(sor, value, SOR_STATE1);
2693	tegra_sor_update(sor);
2694
2695	/* switch to safe parent clock */
2696	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2697	if (err < 0)
2698		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2699
2700	err = tegra_sor_power_down(sor);
2701	if (err < 0)
2702		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2703
2704	err = tegra_io_pad_power_disable(sor->pad);
2705	if (err < 0)
2706		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2707
2708	err = drm_dp_aux_disable(sor->aux);
2709	if (err < 0)
2710		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2711
2712	if (output->panel)
2713		drm_panel_unprepare(output->panel);
2714
2715	host1x_client_suspend(&sor->client);
2716}
2717
2718static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2719{
2720	struct tegra_output *output = encoder_to_output(encoder);
2721	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2722	struct tegra_sor *sor = to_sor(output);
2723	struct tegra_sor_config config;
2724	struct tegra_sor_state *state;
2725	struct drm_display_mode *mode;
2726	struct drm_display_info *info;
2727	unsigned int i;
2728	u32 value;
2729	int err;
2730
2731	state = to_sor_state(output->connector.state);
2732	mode = &encoder->crtc->state->adjusted_mode;
2733	info = &output->connector.display_info;
2734
2735	err = host1x_client_resume(&sor->client);
2736	if (err < 0) {
2737		dev_err(sor->dev, "failed to resume: %d\n", err);
2738		return;
2739	}
2740
2741	/* switch to safe parent clock */
2742	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2743	if (err < 0)
2744		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2745
2746	err = tegra_io_pad_power_enable(sor->pad);
2747	if (err < 0)
2748		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2749
2750	usleep_range(20, 100);
2751
2752	err = drm_dp_aux_enable(sor->aux);
2753	if (err < 0)
2754		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2755
2756	err = drm_dp_link_probe(sor->aux, &sor->link);
2757	if (err < 0)
2758		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2759
2760	tegra_sor_filter_rates(sor);
2761
2762	err = drm_dp_link_choose(&sor->link, mode, info);
2763	if (err < 0)
2764		dev_err(sor->dev, "failed to choose link: %d\n", err);
2765
2766	if (output->panel)
2767		drm_panel_prepare(output->panel);
2768
2769	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2770	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2771	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2772
2773	usleep_range(20, 40);
2774
2775	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2776	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2777	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2778
2779	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2780	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2781	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2782
2783	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2784	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2785	value |= SOR_PLL2_SEQ_PLLCAPPD;
2786	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2787
2788	usleep_range(200, 400);
2789
2790	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2791	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2792	value &= ~SOR_PLL2_PORT_POWERDOWN;
2793	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2794
2795	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2796	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2797
2798	if (output->panel)
2799		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2800	else
2801		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2802
2803	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2804
2805	usleep_range(200, 400);
2806
2807	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2808	/* XXX not in TRM */
2809	if (output->panel)
2810		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2811	else
2812		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2813
2814	value |= SOR_DP_SPARE_SEQ_ENABLE;
2815	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2816
2817	/* XXX not in TRM */
2818	tegra_sor_writel(sor, 0, SOR_LVDS);
2819
2820	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2821	value &= ~SOR_PLL0_ICHPMP_MASK;
2822	value &= ~SOR_PLL0_VCOCAP_MASK;
2823	value |= SOR_PLL0_ICHPMP(0x1);
2824	value |= SOR_PLL0_VCOCAP(0x3);
2825	value |= SOR_PLL0_RESISTOR_EXT;
2826	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2827
2828	/* XXX not in TRM */
2829	for (value = 0, i = 0; i < 5; i++)
2830		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2831			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2832
2833	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2834	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2835
2836	/*
2837	 * Switch the pad clock to the DP clock. Note that we cannot actually
2838	 * do this because Tegra186 and later don't support clk_set_parent()
2839	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2840	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2841	 */
2842#if 0
2843	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2844	if (err < 0) {
2845		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2846			err);
2847		return;
2848	}
2849#endif
2850
2851	/* switch the SOR clock to the pad clock */
2852	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2853	if (err < 0) {
2854		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2855			err);
2856		return;
2857	}
2858
2859	/* switch the output clock to the parent pixel clock */
2860	err = clk_set_parent(sor->clk, sor->clk_parent);
2861	if (err < 0) {
2862		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2863			err);
2864		return;
2865	}
2866
2867	/* use DP-A protocol */
2868	value = tegra_sor_readl(sor, SOR_STATE1);
2869	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2870	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2871	tegra_sor_writel(sor, value, SOR_STATE1);
2872
2873	/* enable port */
2874	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2875	value |= SOR_DP_LINKCTL_ENABLE;
2876	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2877
2878	tegra_sor_dp_term_calibrate(sor);
2879
2880	err = drm_dp_link_train(&sor->link);
2881	if (err < 0)
2882		dev_err(sor->dev, "link training failed: %d\n", err);
2883	else
2884		dev_dbg(sor->dev, "link training succeeded\n");
2885
2886	err = drm_dp_link_power_up(sor->aux, &sor->link);
2887	if (err < 0)
2888		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2889
2890	/* compute configuration */
2891	memset(&config, 0, sizeof(config));
2892	config.bits_per_pixel = state->bpc * 3;
2893
2894	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2895	if (err < 0)
2896		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2897
2898	tegra_sor_apply_config(sor, &config);
2899	tegra_sor_mode_set(sor, mode, state);
2900
2901	if (output->panel) {
2902		/* CSTM (LVDS, link A/B, upper) */
2903		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2904			SOR_CSTM_UPPER;
2905		tegra_sor_writel(sor, value, SOR_CSTM);
2906
2907		/* PWM setup */
2908		err = tegra_sor_setup_pwm(sor, 250);
2909		if (err < 0)
2910			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2911	}
2912
2913	tegra_sor_update(sor);
2914
2915	err = tegra_sor_power_up(sor, 250);
2916	if (err < 0)
2917		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2918
2919	/* attach and wake up */
2920	err = tegra_sor_attach(sor);
2921	if (err < 0)
2922		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2923
2924	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2925	value |= SOR_ENABLE(sor->index);
2926	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2927
2928	tegra_dc_commit(dc);
2929
2930	err = tegra_sor_wakeup(sor);
2931	if (err < 0)
2932		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2933
2934	if (output->panel)
2935		drm_panel_enable(output->panel);
2936}
2937
2938static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2939	.disable = tegra_sor_dp_disable,
2940	.enable = tegra_sor_dp_enable,
2941	.atomic_check = tegra_sor_encoder_atomic_check,
2942};
2943
2944static void tegra_sor_disable_regulator(void *data)
2945{
2946	struct regulator *reg = data;
2947
2948	regulator_disable(reg);
2949}
2950
2951static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2952{
2953	int err;
2954
2955	err = regulator_enable(reg);
2956	if (err)
2957		return err;
2958
2959	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2960}
2961
2962static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2963{
2964	int err;
2965
2966	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2967	if (IS_ERR(sor->avdd_io_supply)) {
2968		dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2969			PTR_ERR(sor->avdd_io_supply));
2970		return PTR_ERR(sor->avdd_io_supply);
2971	}
2972
2973	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2974	if (err < 0) {
2975		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2976			err);
2977		return err;
2978	}
2979
2980	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2981	if (IS_ERR(sor->vdd_pll_supply)) {
2982		dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2983			PTR_ERR(sor->vdd_pll_supply));
2984		return PTR_ERR(sor->vdd_pll_supply);
2985	}
2986
2987	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2988	if (err < 0) {
2989		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2990			err);
2991		return err;
2992	}
2993
2994	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2995	if (IS_ERR(sor->hdmi_supply)) {
2996		dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2997			PTR_ERR(sor->hdmi_supply));
2998		return PTR_ERR(sor->hdmi_supply);
2999	}
3000
3001	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
3002	if (err < 0) {
3003		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
3004		return err;
3005	}
3006
3007	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3008
3009	return 0;
3010}
3011
3012static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3013	.name = "HDMI",
3014	.probe = tegra_sor_hdmi_probe,
3015	.audio_enable = tegra_sor_hdmi_audio_enable,
3016	.audio_disable = tegra_sor_hdmi_audio_disable,
3017};
3018
3019static int tegra_sor_dp_probe(struct tegra_sor *sor)
3020{
3021	int err;
3022
3023	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3024	if (IS_ERR(sor->avdd_io_supply))
3025		return PTR_ERR(sor->avdd_io_supply);
3026
3027	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3028	if (err < 0)
3029		return err;
3030
3031	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3032	if (IS_ERR(sor->vdd_pll_supply))
3033		return PTR_ERR(sor->vdd_pll_supply);
3034
3035	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3036	if (err < 0)
3037		return err;
3038
3039	return 0;
3040}
3041
3042static const struct tegra_sor_ops tegra_sor_dp_ops = {
3043	.name = "DP",
3044	.probe = tegra_sor_dp_probe,
3045};
3046
3047static int tegra_sor_init(struct host1x_client *client)
3048{
3049	struct drm_device *drm = dev_get_drvdata(client->host);
3050	const struct drm_encoder_helper_funcs *helpers = NULL;
3051	struct tegra_sor *sor = host1x_client_to_sor(client);
3052	int connector = DRM_MODE_CONNECTOR_Unknown;
3053	int encoder = DRM_MODE_ENCODER_NONE;
3054	int err;
3055
3056	if (!sor->aux) {
3057		if (sor->ops == &tegra_sor_hdmi_ops) {
3058			connector = DRM_MODE_CONNECTOR_HDMIA;
3059			encoder = DRM_MODE_ENCODER_TMDS;
3060			helpers = &tegra_sor_hdmi_helpers;
3061		} else if (sor->soc->supports_lvds) {
3062			connector = DRM_MODE_CONNECTOR_LVDS;
3063			encoder = DRM_MODE_ENCODER_LVDS;
3064		}
3065	} else {
3066		if (sor->output.panel) {
3067			connector = DRM_MODE_CONNECTOR_eDP;
3068			encoder = DRM_MODE_ENCODER_TMDS;
3069			helpers = &tegra_sor_dp_helpers;
3070		} else {
3071			connector = DRM_MODE_CONNECTOR_DisplayPort;
3072			encoder = DRM_MODE_ENCODER_TMDS;
3073			helpers = &tegra_sor_dp_helpers;
3074		}
3075
3076		sor->link.ops = &tegra_sor_dp_link_ops;
3077		sor->link.aux = sor->aux;
3078	}
3079
3080	sor->output.dev = sor->dev;
3081
3082	drm_connector_init_with_ddc(drm, &sor->output.connector,
3083				    &tegra_sor_connector_funcs,
3084				    connector,
3085				    sor->output.ddc);
3086	drm_connector_helper_add(&sor->output.connector,
3087				 &tegra_sor_connector_helper_funcs);
3088	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3089
3090	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3091	drm_encoder_helper_add(&sor->output.encoder, helpers);
3092
3093	drm_connector_attach_encoder(&sor->output.connector,
3094					  &sor->output.encoder);
3095	drm_connector_register(&sor->output.connector);
3096
3097	err = tegra_output_init(drm, &sor->output);
3098	if (err < 0) {
3099		dev_err(client->dev, "failed to initialize output: %d\n", err);
3100		return err;
3101	}
3102
3103	tegra_output_find_possible_crtcs(&sor->output, drm);
3104
3105	if (sor->aux) {
3106		err = drm_dp_aux_attach(sor->aux, &sor->output);
3107		if (err < 0) {
3108			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3109			return err;
3110		}
3111	}
3112
3113	/*
3114	 * XXX: Remove this reset once proper hand-over from firmware to
3115	 * kernel is possible.
3116	 */
3117	if (sor->rst) {
3118		err = pm_runtime_resume_and_get(sor->dev);
3119		if (err < 0) {
3120			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3121			return err;
3122		}
3123
3124		err = reset_control_acquire(sor->rst);
3125		if (err < 0) {
3126			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3127				err);
3128			goto rpm_put;
3129		}
3130
3131		err = reset_control_assert(sor->rst);
3132		if (err < 0) {
3133			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3134				err);
3135			goto rpm_put;
3136		}
3137	}
3138
3139	err = clk_prepare_enable(sor->clk);
3140	if (err < 0) {
3141		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3142		goto rpm_put;
3143	}
3144
3145	usleep_range(1000, 3000);
3146
3147	if (sor->rst) {
3148		err = reset_control_deassert(sor->rst);
3149		if (err < 0) {
3150			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3151				err);
3152			clk_disable_unprepare(sor->clk);
3153			goto rpm_put;
3154		}
3155
3156		reset_control_release(sor->rst);
3157		pm_runtime_put(sor->dev);
3158	}
3159
3160	err = clk_prepare_enable(sor->clk_safe);
3161	if (err < 0) {
3162		clk_disable_unprepare(sor->clk);
3163		return err;
3164	}
3165
3166	err = clk_prepare_enable(sor->clk_dp);
3167	if (err < 0) {
3168		clk_disable_unprepare(sor->clk_safe);
3169		clk_disable_unprepare(sor->clk);
3170		return err;
3171	}
3172
3173	return 0;
3174
3175rpm_put:
3176	if (sor->rst)
3177		pm_runtime_put(sor->dev);
3178
3179	return err;
3180}
3181
3182static int tegra_sor_exit(struct host1x_client *client)
3183{
3184	struct tegra_sor *sor = host1x_client_to_sor(client);
3185	int err;
3186
3187	tegra_output_exit(&sor->output);
3188
3189	if (sor->aux) {
3190		err = drm_dp_aux_detach(sor->aux);
3191		if (err < 0) {
3192			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3193			return err;
3194		}
3195	}
3196
3197	clk_disable_unprepare(sor->clk_safe);
3198	clk_disable_unprepare(sor->clk_dp);
3199	clk_disable_unprepare(sor->clk);
3200
3201	return 0;
3202}
3203
3204static int tegra_sor_runtime_suspend(struct host1x_client *client)
3205{
3206	struct tegra_sor *sor = host1x_client_to_sor(client);
3207	struct device *dev = client->dev;
3208	int err;
3209
3210	if (sor->rst) {
3211		err = reset_control_assert(sor->rst);
3212		if (err < 0) {
3213			dev_err(dev, "failed to assert reset: %d\n", err);
3214			return err;
3215		}
3216
3217		reset_control_release(sor->rst);
3218	}
3219
3220	usleep_range(1000, 2000);
3221
3222	clk_disable_unprepare(sor->clk);
3223	pm_runtime_put_sync(dev);
3224
3225	return 0;
3226}
3227
3228static int tegra_sor_runtime_resume(struct host1x_client *client)
3229{
3230	struct tegra_sor *sor = host1x_client_to_sor(client);
3231	struct device *dev = client->dev;
3232	int err;
3233
3234	err = pm_runtime_resume_and_get(dev);
3235	if (err < 0) {
3236		dev_err(dev, "failed to get runtime PM: %d\n", err);
3237		return err;
3238	}
3239
3240	err = clk_prepare_enable(sor->clk);
3241	if (err < 0) {
3242		dev_err(dev, "failed to enable clock: %d\n", err);
3243		goto put_rpm;
3244	}
3245
3246	usleep_range(1000, 2000);
3247
3248	if (sor->rst) {
3249		err = reset_control_acquire(sor->rst);
3250		if (err < 0) {
3251			dev_err(dev, "failed to acquire reset: %d\n", err);
3252			goto disable_clk;
3253		}
3254
3255		err = reset_control_deassert(sor->rst);
3256		if (err < 0) {
3257			dev_err(dev, "failed to deassert reset: %d\n", err);
3258			goto release_reset;
3259		}
3260	}
3261
3262	return 0;
3263
3264release_reset:
3265	reset_control_release(sor->rst);
3266disable_clk:
3267	clk_disable_unprepare(sor->clk);
3268put_rpm:
3269	pm_runtime_put_sync(dev);
3270	return err;
3271}
3272
3273static const struct host1x_client_ops sor_client_ops = {
3274	.init = tegra_sor_init,
3275	.exit = tegra_sor_exit,
3276	.suspend = tegra_sor_runtime_suspend,
3277	.resume = tegra_sor_runtime_resume,
3278};
3279
3280static const u8 tegra124_sor_xbar_cfg[5] = {
3281	0, 1, 2, 3, 4
3282};
3283
3284static const struct tegra_sor_regs tegra124_sor_regs = {
3285	.head_state0 = 0x05,
3286	.head_state1 = 0x07,
3287	.head_state2 = 0x09,
3288	.head_state3 = 0x0b,
3289	.head_state4 = 0x0d,
3290	.head_state5 = 0x0f,
3291	.pll0 = 0x17,
3292	.pll1 = 0x18,
3293	.pll2 = 0x19,
3294	.pll3 = 0x1a,
3295	.dp_padctl0 = 0x5c,
3296	.dp_padctl2 = 0x73,
3297};
3298
3299/* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3300static const u8 tegra124_sor_lane_map[4] = {
3301	2, 1, 0, 3,
3302};
3303
3304static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3305	{
3306		{ 0x13, 0x19, 0x1e, 0x28 },
3307		{ 0x1e, 0x25, 0x2d, },
3308		{ 0x28, 0x32, },
3309		{ 0x3c, },
3310	}, {
3311		{ 0x12, 0x17, 0x1b, 0x25 },
3312		{ 0x1c, 0x23, 0x2a, },
3313		{ 0x25, 0x2f, },
3314		{ 0x39, }
3315	}, {
3316		{ 0x12, 0x16, 0x1a, 0x22 },
3317		{ 0x1b, 0x20, 0x27, },
3318		{ 0x24, 0x2d, },
3319		{ 0x36, },
3320	}, {
3321		{ 0x11, 0x14, 0x17, 0x1f },
3322		{ 0x19, 0x1e, 0x24, },
3323		{ 0x22, 0x2a, },
3324		{ 0x32, },
3325	},
3326};
3327
3328static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3329	{
3330		{ 0x00, 0x09, 0x13, 0x25 },
3331		{ 0x00, 0x0f, 0x1e, },
3332		{ 0x00, 0x14, },
3333		{ 0x00, },
3334	}, {
3335		{ 0x00, 0x0a, 0x14, 0x28 },
3336		{ 0x00, 0x0f, 0x1e, },
3337		{ 0x00, 0x14, },
3338		{ 0x00 },
3339	}, {
3340		{ 0x00, 0x0a, 0x14, 0x28 },
3341		{ 0x00, 0x0f, 0x1e, },
3342		{ 0x00, 0x14, },
3343		{ 0x00, },
3344	}, {
3345		{ 0x00, 0x0a, 0x14, 0x28 },
3346		{ 0x00, 0x0f, 0x1e, },
3347		{ 0x00, 0x14, },
3348		{ 0x00, },
3349	},
3350};
3351
3352static const u8 tegra124_sor_post_cursor[4][4][4] = {
3353	{
3354		{ 0x00, 0x00, 0x00, 0x00 },
3355		{ 0x00, 0x00, 0x00, },
3356		{ 0x00, 0x00, },
3357		{ 0x00, },
3358	}, {
3359		{ 0x02, 0x02, 0x04, 0x05 },
3360		{ 0x02, 0x04, 0x05, },
3361		{ 0x04, 0x05, },
3362		{ 0x05, },
3363	}, {
3364		{ 0x04, 0x05, 0x08, 0x0b },
3365		{ 0x05, 0x09, 0x0b, },
3366		{ 0x08, 0x0a, },
3367		{ 0x0b, },
3368	}, {
3369		{ 0x05, 0x09, 0x0b, 0x12 },
3370		{ 0x09, 0x0d, 0x12, },
3371		{ 0x0b, 0x0f, },
3372		{ 0x12, },
3373	},
3374};
3375
3376static const u8 tegra124_sor_tx_pu[4][4][4] = {
3377	{
3378		{ 0x20, 0x30, 0x40, 0x60 },
3379		{ 0x30, 0x40, 0x60, },
3380		{ 0x40, 0x60, },
3381		{ 0x60, },
3382	}, {
3383		{ 0x20, 0x20, 0x30, 0x50 },
3384		{ 0x30, 0x40, 0x50, },
3385		{ 0x40, 0x50, },
3386		{ 0x60, },
3387	}, {
3388		{ 0x20, 0x20, 0x30, 0x40, },
3389		{ 0x30, 0x30, 0x40, },
3390		{ 0x40, 0x50, },
3391		{ 0x60, },
3392	}, {
3393		{ 0x20, 0x20, 0x20, 0x40, },
3394		{ 0x30, 0x30, 0x40, },
3395		{ 0x40, 0x40, },
3396		{ 0x60, },
3397	},
3398};
3399
3400static const struct tegra_sor_soc tegra124_sor = {
3401	.supports_lvds = true,
3402	.supports_hdmi = false,
3403	.supports_dp = true,
3404	.supports_audio = false,
3405	.supports_hdcp = false,
3406	.regs = &tegra124_sor_regs,
3407	.has_nvdisplay = false,
3408	.xbar_cfg = tegra124_sor_xbar_cfg,
3409	.lane_map = tegra124_sor_lane_map,
3410	.voltage_swing = tegra124_sor_voltage_swing,
3411	.pre_emphasis = tegra124_sor_pre_emphasis,
3412	.post_cursor = tegra124_sor_post_cursor,
3413	.tx_pu = tegra124_sor_tx_pu,
3414};
3415
3416static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3417	{
3418		{ 0x00, 0x08, 0x12, 0x24 },
3419		{ 0x01, 0x0e, 0x1d, },
3420		{ 0x01, 0x13, },
3421		{ 0x00, },
3422	}, {
3423		{ 0x00, 0x08, 0x12, 0x24 },
3424		{ 0x00, 0x0e, 0x1d, },
3425		{ 0x00, 0x13, },
3426		{ 0x00 },
3427	}, {
3428		{ 0x00, 0x08, 0x12, 0x24 },
3429		{ 0x00, 0x0e, 0x1d, },
3430		{ 0x00, 0x13, },
3431		{ 0x00, },
3432	}, {
3433		{ 0x00, 0x08, 0x12, 0x24 },
3434		{ 0x00, 0x0e, 0x1d, },
3435		{ 0x00, 0x13, },
3436		{ 0x00, },
3437	},
3438};
3439
3440static const struct tegra_sor_soc tegra132_sor = {
3441	.supports_lvds = true,
3442	.supports_hdmi = false,
3443	.supports_dp = true,
3444	.supports_audio = false,
3445	.supports_hdcp = false,
3446	.regs = &tegra124_sor_regs,
3447	.has_nvdisplay = false,
3448	.xbar_cfg = tegra124_sor_xbar_cfg,
3449	.lane_map = tegra124_sor_lane_map,
3450	.voltage_swing = tegra124_sor_voltage_swing,
3451	.pre_emphasis = tegra132_sor_pre_emphasis,
3452	.post_cursor = tegra124_sor_post_cursor,
3453	.tx_pu = tegra124_sor_tx_pu,
3454};
3455
3456static const struct tegra_sor_regs tegra210_sor_regs = {
3457	.head_state0 = 0x05,
3458	.head_state1 = 0x07,
3459	.head_state2 = 0x09,
3460	.head_state3 = 0x0b,
3461	.head_state4 = 0x0d,
3462	.head_state5 = 0x0f,
3463	.pll0 = 0x17,
3464	.pll1 = 0x18,
3465	.pll2 = 0x19,
3466	.pll3 = 0x1a,
3467	.dp_padctl0 = 0x5c,
3468	.dp_padctl2 = 0x73,
3469};
3470
3471static const u8 tegra210_sor_xbar_cfg[5] = {
3472	2, 1, 0, 3, 4
3473};
3474
3475static const u8 tegra210_sor_lane_map[4] = {
3476	0, 1, 2, 3,
3477};
3478
3479static const struct tegra_sor_soc tegra210_sor = {
3480	.supports_lvds = false,
3481	.supports_hdmi = false,
3482	.supports_dp = true,
3483	.supports_audio = false,
3484	.supports_hdcp = false,
3485
3486	.regs = &tegra210_sor_regs,
3487	.has_nvdisplay = false,
3488
3489	.xbar_cfg = tegra210_sor_xbar_cfg,
3490	.lane_map = tegra210_sor_lane_map,
3491	.voltage_swing = tegra124_sor_voltage_swing,
3492	.pre_emphasis = tegra124_sor_pre_emphasis,
3493	.post_cursor = tegra124_sor_post_cursor,
3494	.tx_pu = tegra124_sor_tx_pu,
3495};
3496
3497static const struct tegra_sor_soc tegra210_sor1 = {
3498	.supports_lvds = false,
3499	.supports_hdmi = true,
3500	.supports_dp = true,
3501	.supports_audio = true,
3502	.supports_hdcp = true,
3503
3504	.regs = &tegra210_sor_regs,
3505	.has_nvdisplay = false,
3506
3507	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3508	.settings = tegra210_sor_hdmi_defaults,
3509	.xbar_cfg = tegra210_sor_xbar_cfg,
3510	.lane_map = tegra210_sor_lane_map,
3511	.voltage_swing = tegra124_sor_voltage_swing,
3512	.pre_emphasis = tegra124_sor_pre_emphasis,
3513	.post_cursor = tegra124_sor_post_cursor,
3514	.tx_pu = tegra124_sor_tx_pu,
3515};
3516
3517static const struct tegra_sor_regs tegra186_sor_regs = {
3518	.head_state0 = 0x151,
3519	.head_state1 = 0x154,
3520	.head_state2 = 0x157,
3521	.head_state3 = 0x15a,
3522	.head_state4 = 0x15d,
3523	.head_state5 = 0x160,
3524	.pll0 = 0x163,
3525	.pll1 = 0x164,
3526	.pll2 = 0x165,
3527	.pll3 = 0x166,
3528	.dp_padctl0 = 0x168,
3529	.dp_padctl2 = 0x16a,
3530};
3531
3532static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3533	{
3534		{ 0x13, 0x19, 0x1e, 0x28 },
3535		{ 0x1e, 0x25, 0x2d, },
3536		{ 0x28, 0x32, },
3537		{ 0x39, },
3538	}, {
3539		{ 0x12, 0x16, 0x1b, 0x25 },
3540		{ 0x1c, 0x23, 0x2a, },
3541		{ 0x25, 0x2f, },
3542		{ 0x37, }
3543	}, {
3544		{ 0x12, 0x16, 0x1a, 0x22 },
3545		{ 0x1b, 0x20, 0x27, },
3546		{ 0x24, 0x2d, },
3547		{ 0x35, },
3548	}, {
3549		{ 0x11, 0x14, 0x17, 0x1f },
3550		{ 0x19, 0x1e, 0x24, },
3551		{ 0x22, 0x2a, },
3552		{ 0x32, },
3553	},
3554};
3555
3556static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3557	{
3558		{ 0x00, 0x08, 0x12, 0x24 },
3559		{ 0x01, 0x0e, 0x1d, },
3560		{ 0x01, 0x13, },
3561		{ 0x00, },
3562	}, {
3563		{ 0x00, 0x08, 0x12, 0x24 },
3564		{ 0x00, 0x0e, 0x1d, },
3565		{ 0x00, 0x13, },
3566		{ 0x00 },
3567	}, {
3568		{ 0x00, 0x08, 0x14, 0x24 },
3569		{ 0x00, 0x0e, 0x1d, },
3570		{ 0x00, 0x13, },
3571		{ 0x00, },
3572	}, {
3573		{ 0x00, 0x08, 0x12, 0x24 },
3574		{ 0x00, 0x0e, 0x1d, },
3575		{ 0x00, 0x13, },
3576		{ 0x00, },
3577	},
3578};
3579
3580static const struct tegra_sor_soc tegra186_sor = {
3581	.supports_lvds = false,
3582	.supports_hdmi = true,
3583	.supports_dp = true,
3584	.supports_audio = true,
3585	.supports_hdcp = true,
3586
3587	.regs = &tegra186_sor_regs,
3588	.has_nvdisplay = true,
3589
3590	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3591	.settings = tegra186_sor_hdmi_defaults,
3592	.xbar_cfg = tegra124_sor_xbar_cfg,
3593	.lane_map = tegra124_sor_lane_map,
3594	.voltage_swing = tegra186_sor_voltage_swing,
3595	.pre_emphasis = tegra186_sor_pre_emphasis,
3596	.post_cursor = tegra124_sor_post_cursor,
3597	.tx_pu = tegra124_sor_tx_pu,
3598};
3599
3600static const struct tegra_sor_regs tegra194_sor_regs = {
3601	.head_state0 = 0x151,
3602	.head_state1 = 0x155,
3603	.head_state2 = 0x159,
3604	.head_state3 = 0x15d,
3605	.head_state4 = 0x161,
3606	.head_state5 = 0x165,
3607	.pll0 = 0x169,
3608	.pll1 = 0x16a,
3609	.pll2 = 0x16b,
3610	.pll3 = 0x16c,
3611	.dp_padctl0 = 0x16e,
3612	.dp_padctl2 = 0x16f,
3613};
3614
3615static const struct tegra_sor_soc tegra194_sor = {
3616	.supports_lvds = false,
3617	.supports_hdmi = true,
3618	.supports_dp = true,
3619	.supports_audio = true,
3620	.supports_hdcp = true,
3621
3622	.regs = &tegra194_sor_regs,
3623	.has_nvdisplay = true,
3624
3625	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3626	.settings = tegra194_sor_hdmi_defaults,
3627
3628	.xbar_cfg = tegra210_sor_xbar_cfg,
3629	.lane_map = tegra124_sor_lane_map,
3630	.voltage_swing = tegra186_sor_voltage_swing,
3631	.pre_emphasis = tegra186_sor_pre_emphasis,
3632	.post_cursor = tegra124_sor_post_cursor,
3633	.tx_pu = tegra124_sor_tx_pu,
3634};
3635
3636static const struct of_device_id tegra_sor_of_match[] = {
3637	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3638	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3639	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3640	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3641	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3642	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3643	{ },
3644};
3645MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3646
3647static int tegra_sor_parse_dt(struct tegra_sor *sor)
3648{
3649	struct device_node *np = sor->dev->of_node;
3650	u32 xbar_cfg[5];
3651	unsigned int i;
3652	u32 value;
3653	int err;
3654
3655	if (sor->soc->has_nvdisplay) {
3656		err = of_property_read_u32(np, "nvidia,interface", &value);
3657		if (err < 0)
3658			return err;
3659
3660		sor->index = value;
3661
3662		/*
3663		 * override the default that we already set for Tegra210 and
3664		 * earlier
3665		 */
3666		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3667	} else {
3668		if (!sor->soc->supports_audio)
3669			sor->index = 0;
3670		else
3671			sor->index = 1;
3672	}
3673
3674	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3675	if (err < 0) {
3676		/* fall back to default per-SoC XBAR configuration */
3677		for (i = 0; i < 5; i++)
3678			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3679	} else {
3680		/* copy cells to SOR XBAR configuration */
3681		for (i = 0; i < 5; i++)
3682			sor->xbar_cfg[i] = xbar_cfg[i];
3683	}
3684
3685	return 0;
3686}
3687
3688static irqreturn_t tegra_sor_irq(int irq, void *data)
3689{
3690	struct tegra_sor *sor = data;
3691	u32 value;
3692
3693	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3694	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3695
3696	if (value & SOR_INT_CODEC_SCRATCH0) {
3697		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3698
3699		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3700			unsigned int format;
3701
3702			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3703
3704			tegra_hda_parse_format(format, &sor->format);
3705
3706			if (sor->ops->audio_enable)
3707				sor->ops->audio_enable(sor);
3708		} else {
3709			if (sor->ops->audio_disable)
3710				sor->ops->audio_disable(sor);
3711		}
3712	}
3713
3714	return IRQ_HANDLED;
3715}
3716
3717static int tegra_sor_probe(struct platform_device *pdev)
3718{
3719	struct device_node *np;
3720	struct tegra_sor *sor;
3721	struct resource *regs;
3722	int err;
3723
3724	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3725	if (!sor)
3726		return -ENOMEM;
3727
3728	sor->soc = of_device_get_match_data(&pdev->dev);
3729	sor->output.dev = sor->dev = &pdev->dev;
3730
3731	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3732				     sor->soc->num_settings *
3733					sizeof(*sor->settings),
3734				     GFP_KERNEL);
3735	if (!sor->settings)
3736		return -ENOMEM;
3737
3738	sor->num_settings = sor->soc->num_settings;
3739
3740	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3741	if (np) {
3742		sor->aux = drm_dp_aux_find_by_of_node(np);
3743		of_node_put(np);
3744
3745		if (!sor->aux)
3746			return -EPROBE_DEFER;
3747
3748		if (get_device(sor->aux->dev))
3749			sor->output.ddc = &sor->aux->ddc;
3750	}
3751
3752	if (!sor->aux) {
3753		if (sor->soc->supports_hdmi) {
3754			sor->ops = &tegra_sor_hdmi_ops;
3755			sor->pad = TEGRA_IO_PAD_HDMI;
3756		} else if (sor->soc->supports_lvds) {
3757			dev_err(&pdev->dev, "LVDS not supported yet\n");
3758			return -ENODEV;
3759		} else {
3760			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3761			return -ENODEV;
3762		}
3763	} else {
3764		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3765		/*
3766		 * No need to keep this around since we only use it as a check
3767		 * to see if a panel is connected (eDP) or not (DP).
3768		 */
3769		of_node_put(np);
3770
3771		sor->ops = &tegra_sor_dp_ops;
3772		sor->pad = TEGRA_IO_PAD_LVDS;
3773	}
3774
3775	err = tegra_sor_parse_dt(sor);
3776	if (err < 0)
3777		goto put_aux;
3778
3779	err = tegra_output_probe(&sor->output);
3780	if (err < 0) {
3781		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3782		goto put_aux;
3783	}
3784
3785	if (sor->ops && sor->ops->probe) {
3786		err = sor->ops->probe(sor);
3787		if (err < 0) {
3788			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3789				sor->ops->name, err);
3790			goto remove;
3791		}
3792	}
3793
3794	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3795	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3796	if (IS_ERR(sor->regs)) {
3797		err = PTR_ERR(sor->regs);
3798		goto remove;
3799	}
3800
3801	err = platform_get_irq(pdev, 0);
3802	if (err < 0) {
3803		dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
3804		goto remove;
3805	}
3806
3807	sor->irq = err;
3808
3809	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3810			       dev_name(sor->dev), sor);
3811	if (err < 0) {
3812		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3813		goto remove;
3814	}
3815
3816	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3817	if (IS_ERR(sor->rst)) {
3818		err = PTR_ERR(sor->rst);
3819
3820		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3821			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3822				err);
3823			goto remove;
3824		}
3825
3826		/*
3827		 * At this point, the reset control is most likely being used
3828		 * by the generic power domain implementation. With any luck
3829		 * the power domain will have taken care of resetting the SOR
3830		 * and we don't have to do anything.
3831		 */
3832		sor->rst = NULL;
3833	}
3834
3835	sor->clk = devm_clk_get(&pdev->dev, NULL);
3836	if (IS_ERR(sor->clk)) {
3837		err = PTR_ERR(sor->clk);
3838		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3839		goto remove;
3840	}
3841
3842	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3843		struct device_node *np = pdev->dev.of_node;
3844		const char *name;
3845
3846		/*
3847		 * For backwards compatibility with Tegra210 device trees,
3848		 * fall back to the old clock name "source" if the new "out"
3849		 * clock is not available.
3850		 */
3851		if (of_property_match_string(np, "clock-names", "out") < 0)
3852			name = "source";
3853		else
3854			name = "out";
3855
3856		sor->clk_out = devm_clk_get(&pdev->dev, name);
3857		if (IS_ERR(sor->clk_out)) {
3858			err = PTR_ERR(sor->clk_out);
3859			dev_err(sor->dev, "failed to get %s clock: %d\n",
3860				name, err);
3861			goto remove;
3862		}
3863	} else {
3864		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3865		sor->clk_out = sor->clk;
3866	}
3867
3868	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3869	if (IS_ERR(sor->clk_parent)) {
3870		err = PTR_ERR(sor->clk_parent);
3871		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3872		goto remove;
3873	}
3874
3875	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3876	if (IS_ERR(sor->clk_safe)) {
3877		err = PTR_ERR(sor->clk_safe);
3878		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3879		goto remove;
3880	}
3881
3882	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3883	if (IS_ERR(sor->clk_dp)) {
3884		err = PTR_ERR(sor->clk_dp);
3885		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3886		goto remove;
3887	}
3888
3889	/*
3890	 * Starting with Tegra186, the BPMP provides an implementation for
3891	 * the pad output clock, so we have to look it up from device tree.
3892	 */
3893	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3894	if (IS_ERR(sor->clk_pad)) {
3895		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3896			err = PTR_ERR(sor->clk_pad);
3897			goto remove;
3898		}
3899
3900		/*
3901		 * If the pad output clock is not available, then we assume
3902		 * we're on Tegra210 or earlier and have to provide our own
3903		 * implementation.
3904		 */
3905		sor->clk_pad = NULL;
3906	}
3907
3908	/*
3909	 * The bootloader may have set up the SOR such that it's module clock
3910	 * is sourced by one of the display PLLs. However, that doesn't work
3911	 * without properly having set up other bits of the SOR.
3912	 */
3913	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3914	if (err < 0) {
3915		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3916		goto remove;
3917	}
3918
3919	platform_set_drvdata(pdev, sor);
3920	pm_runtime_enable(&pdev->dev);
3921
3922	host1x_client_init(&sor->client);
3923	sor->client.ops = &sor_client_ops;
3924	sor->client.dev = &pdev->dev;
3925
3926	/*
3927	 * On Tegra210 and earlier, provide our own implementation for the
3928	 * pad output clock.
3929	 */
3930	if (!sor->clk_pad) {
3931		char *name;
3932
3933		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3934				      sor->index);
3935		if (!name) {
3936			err = -ENOMEM;
3937			goto uninit;
3938		}
3939
3940		err = host1x_client_resume(&sor->client);
3941		if (err < 0) {
3942			dev_err(sor->dev, "failed to resume: %d\n", err);
3943			goto uninit;
3944		}
3945
3946		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3947		host1x_client_suspend(&sor->client);
3948	}
3949
3950	if (IS_ERR(sor->clk_pad)) {
3951		err = PTR_ERR(sor->clk_pad);
3952		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3953			err);
3954		goto uninit;
3955	}
3956
3957	err = __host1x_client_register(&sor->client);
3958	if (err < 0) {
3959		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3960			err);
3961		goto uninit;
3962	}
3963
3964	return 0;
3965
3966uninit:
3967	host1x_client_exit(&sor->client);
3968	pm_runtime_disable(&pdev->dev);
3969remove:
3970	if (sor->aux)
3971		sor->output.ddc = NULL;
3972
3973	tegra_output_remove(&sor->output);
3974put_aux:
3975	if (sor->aux)
3976		put_device(sor->aux->dev);
3977
3978	return err;
3979}
3980
3981static int tegra_sor_remove(struct platform_device *pdev)
3982{
3983	struct tegra_sor *sor = platform_get_drvdata(pdev);
3984	int err;
3985
3986	err = host1x_client_unregister(&sor->client);
3987	if (err < 0) {
3988		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3989			err);
3990		return err;
3991	}
3992
3993	pm_runtime_disable(&pdev->dev);
3994
3995	if (sor->aux) {
3996		put_device(sor->aux->dev);
3997		sor->output.ddc = NULL;
3998	}
3999
4000	tegra_output_remove(&sor->output);
4001
4002	return 0;
4003}
4004
4005static int __maybe_unused tegra_sor_suspend(struct device *dev)
4006{
4007	struct tegra_sor *sor = dev_get_drvdata(dev);
4008	int err;
4009
4010	err = tegra_output_suspend(&sor->output);
4011	if (err < 0) {
4012		dev_err(dev, "failed to suspend output: %d\n", err);
4013		return err;
4014	}
4015
4016	if (sor->hdmi_supply) {
4017		err = regulator_disable(sor->hdmi_supply);
4018		if (err < 0) {
4019			tegra_output_resume(&sor->output);
4020			return err;
4021		}
4022	}
4023
4024	return 0;
4025}
4026
4027static int __maybe_unused tegra_sor_resume(struct device *dev)
4028{
4029	struct tegra_sor *sor = dev_get_drvdata(dev);
4030	int err;
4031
4032	if (sor->hdmi_supply) {
4033		err = regulator_enable(sor->hdmi_supply);
4034		if (err < 0)
4035			return err;
4036	}
4037
4038	err = tegra_output_resume(&sor->output);
4039	if (err < 0) {
4040		dev_err(dev, "failed to resume output: %d\n", err);
4041
4042		if (sor->hdmi_supply)
4043			regulator_disable(sor->hdmi_supply);
4044
4045		return err;
4046	}
4047
4048	return 0;
4049}
4050
4051static const struct dev_pm_ops tegra_sor_pm_ops = {
4052	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4053};
4054
4055struct platform_driver tegra_sor_driver = {
4056	.driver = {
4057		.name = "tegra-sor",
4058		.of_match_table = tegra_sor_of_match,
4059		.pm = &tegra_sor_pm_ops,
4060	},
4061	.probe = tegra_sor_probe,
4062	.remove = tegra_sor_remove,
4063};