Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31
  32#include <drm/display/drm_dp_helper.h>
  33#include <drm/drm_crtc.h>
  34#include <drm/drm_crtc_helper.h>
  35#include <drm/drm_edid.h>
  36#include <drm/drm_modeset_helper_vtables.h>
  37#include <drm/drm_simple_kms_helper.h>
  38
  39#include "gma_display.h"
  40#include "psb_drv.h"
  41#include "psb_intel_drv.h"
  42#include "psb_intel_reg.h"
  43
  44/**
  45 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  46 * 				 aux algorithm
  47 * @running: set by the algo indicating whether an i2c is ongoing or whether
  48 * 	     the i2c bus is quiescent
  49 * @address: i2c target address for the currently ongoing transfer
  50 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  51 */
  52struct i2c_algo_dp_aux_data {
  53	bool running;
  54	u16 address;
  55	int (*aux_ch) (struct i2c_adapter *adapter,
  56		       int mode, uint8_t write_byte,
  57		       uint8_t *read_byte);
  58};
  59
  60/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  61static int
  62i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  63			    uint8_t write_byte, uint8_t *read_byte)
  64{
  65	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  66	int ret;
  67
  68	ret = (*algo_data->aux_ch)(adapter, mode,
  69				   write_byte, read_byte);
  70	return ret;
  71}
  72
  73/*
  74 * I2C over AUX CH
  75 */
  76
  77/*
  78 * Send the address. If the I2C link is running, this 'restarts'
  79 * the connection with the new address, this is used for doing
  80 * a write followed by a read (as needed for DDC)
  81 */
  82static int
  83i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  84{
  85	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  86	int mode = MODE_I2C_START;
 
  87
  88	if (reading)
  89		mode |= MODE_I2C_READ;
  90	else
  91		mode |= MODE_I2C_WRITE;
  92	algo_data->address = address;
  93	algo_data->running = true;
  94	return i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 
  95}
  96
  97/*
  98 * Stop the I2C transaction. This closes out the link, sending
  99 * a bare address packet with the MOT bit turned off
 100 */
 101static void
 102i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 103{
 104	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 105	int mode = MODE_I2C_STOP;
 106
 107	if (reading)
 108		mode |= MODE_I2C_READ;
 109	else
 110		mode |= MODE_I2C_WRITE;
 111	if (algo_data->running) {
 112		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 113		algo_data->running = false;
 114	}
 115}
 116
 117/*
 118 * Write a single byte to the current I2C address, the
 119 * I2C link must be running or this returns -EIO
 120 */
 121static int
 122i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 123{
 124	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 
 125
 126	if (!algo_data->running)
 127		return -EIO;
 128
 129	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 
 130}
 131
 132/*
 133 * Read a single byte from the current I2C address, the
 134 * I2C link must be running or this returns -EIO
 135 */
 136static int
 137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 138{
 139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 
 140
 141	if (!algo_data->running)
 142		return -EIO;
 143
 144	return i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 
 145}
 146
 147static int
 148i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 149		     struct i2c_msg *msgs,
 150		     int num)
 151{
 152	int ret = 0;
 153	bool reading = false;
 154	int m;
 155	int b;
 156
 157	for (m = 0; m < num; m++) {
 158		u16 len = msgs[m].len;
 159		u8 *buf = msgs[m].buf;
 160		reading = (msgs[m].flags & I2C_M_RD) != 0;
 161		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 162		if (ret < 0)
 163			break;
 164		if (reading) {
 165			for (b = 0; b < len; b++) {
 166				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 167				if (ret < 0)
 168					break;
 169			}
 170		} else {
 171			for (b = 0; b < len; b++) {
 172				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 173				if (ret < 0)
 174					break;
 175			}
 176		}
 177		if (ret < 0)
 178			break;
 179	}
 180	if (ret >= 0)
 181		ret = num;
 182	i2c_algo_dp_aux_stop(adapter, reading);
 183	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 184	return ret;
 185}
 186
 187static u32
 188i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 189{
 190	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 191	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 192	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 193	       I2C_FUNC_10BIT_ADDR;
 194}
 195
 196static const struct i2c_algorithm i2c_dp_aux_algo = {
 197	.master_xfer	= i2c_algo_dp_aux_xfer,
 198	.functionality	= i2c_algo_dp_aux_functionality,
 199};
 200
 201static void
 202i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 203{
 204	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 205	(void) i2c_algo_dp_aux_stop(adapter, false);
 206}
 207
 208static int
 209i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 210{
 211	adapter->algo = &i2c_dp_aux_algo;
 212	adapter->retries = 3;
 213	i2c_dp_aux_reset_bus(adapter);
 214	return 0;
 215}
 216
 217/*
 218 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 219 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 220 */
 221static int
 222i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 223{
 224	int error;
 225
 226	error = i2c_dp_aux_prepare_bus(adapter);
 227	if (error)
 228		return error;
 229	error = i2c_add_adapter(adapter);
 230	return error;
 231}
 232
 233#define _wait_for(COND, MS, W) ({ \
 234        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 235        int ret__ = 0;                                                  \
 236        while (! (COND)) {                                              \
 237                if (time_after(jiffies, timeout__)) {                   \
 238                        ret__ = -ETIMEDOUT;                             \
 239                        break;                                          \
 240                }                                                       \
 241                if (W && !in_dbg_master()) msleep(W);                   \
 242        }                                                               \
 243        ret__;                                                          \
 244})
 245
 246#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 247
 248#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 249
 250#define DP_LINK_CONFIGURATION_SIZE	9
 251
 252#define CDV_FAST_LINK_TRAIN	1
 253
 254struct cdv_intel_dp {
 255	uint32_t output_reg;
 256	uint32_t DP;
 257	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 258	bool has_audio;
 259	int force_audio;
 260	uint32_t color_range;
 261	uint8_t link_bw;
 262	uint8_t lane_count;
 263	uint8_t dpcd[4];
 264	struct gma_encoder *encoder;
 265	struct i2c_adapter adapter;
 266	struct i2c_algo_dp_aux_data algo;
 267	uint8_t	train_set[4];
 268	uint8_t link_status[DP_LINK_STATUS_SIZE];
 269	int panel_power_up_delay;
 270	int panel_power_down_delay;
 271	int panel_power_cycle_delay;
 272	int backlight_on_delay;
 273	int backlight_off_delay;
 274	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 275	bool panel_on;
 276};
 277
 278struct ddi_regoff {
 279	uint32_t	PreEmph1;
 280	uint32_t	PreEmph2;
 281	uint32_t	VSwing1;
 282	uint32_t	VSwing2;
 283	uint32_t	VSwing3;
 284	uint32_t	VSwing4;
 285	uint32_t	VSwing5;
 286};
 287
 288static struct ddi_regoff ddi_DP_train_table[] = {
 289	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 290	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 291	.VSwing5 = 0x8158,},
 292	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 293	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 294	.VSwing5 = 0x8258,},
 295};
 296
 297static uint32_t dp_vswing_premph_table[] = {
 298        0x55338954,	0x4000,
 299        0x554d8954,	0x2000,
 300        0x55668954,	0,
 301        0x559ac0d4,	0x6000,
 302};
 303/**
 304 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 305 * @encoder: GMA encoder struct
 306 *
 307 * If a CPU or PCH DP output is attached to an eDP panel, this function
 308 * will return true, and false otherwise.
 309 */
 310static bool is_edp(struct gma_encoder *encoder)
 311{
 312	return encoder->type == INTEL_OUTPUT_EDP;
 313}
 314
 315
 316static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 317static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 318static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 319
 320static int
 321cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 322{
 323	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 324	int max_lane_count = 4;
 325
 326	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 327		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 328		switch (max_lane_count) {
 329		case 1: case 2: case 4:
 330			break;
 331		default:
 332			max_lane_count = 4;
 333		}
 334	}
 335	return max_lane_count;
 336}
 337
 338static int
 339cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 340{
 341	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 342	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 343
 344	switch (max_link_bw) {
 345	case DP_LINK_BW_1_62:
 346	case DP_LINK_BW_2_7:
 347		break;
 348	default:
 349		max_link_bw = DP_LINK_BW_1_62;
 350		break;
 351	}
 352	return max_link_bw;
 353}
 354
 355static int
 356cdv_intel_dp_link_clock(uint8_t link_bw)
 357{
 358	if (link_bw == DP_LINK_BW_2_7)
 359		return 270000;
 360	else
 361		return 162000;
 362}
 363
 364static int
 365cdv_intel_dp_link_required(int pixel_clock, int bpp)
 366{
 367	return (pixel_clock * bpp + 7) / 8;
 368}
 369
 370static int
 371cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 372{
 373	return (max_link_clock * max_lanes * 19) / 20;
 374}
 375
 376static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 377{
 378	struct drm_device *dev = intel_encoder->base.dev;
 379	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 380	u32 pp;
 381
 382	if (intel_dp->panel_on) {
 383		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 384		return;
 385	}
 386	DRM_DEBUG_KMS("\n");
 387
 388	pp = REG_READ(PP_CONTROL);
 389
 390	pp |= EDP_FORCE_VDD;
 391	REG_WRITE(PP_CONTROL, pp);
 392	REG_READ(PP_CONTROL);
 393	msleep(intel_dp->panel_power_up_delay);
 394}
 395
 396static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 397{
 398	struct drm_device *dev = intel_encoder->base.dev;
 399	u32 pp;
 400
 401	DRM_DEBUG_KMS("\n");
 402	pp = REG_READ(PP_CONTROL);
 403
 404	pp &= ~EDP_FORCE_VDD;
 405	REG_WRITE(PP_CONTROL, pp);
 406	REG_READ(PP_CONTROL);
 407
 408}
 409
 410/* Returns true if the panel was already on when called */
 411static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 412{
 413	struct drm_device *dev = intel_encoder->base.dev;
 414	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 415	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 416
 417	if (intel_dp->panel_on)
 418		return true;
 419
 420	DRM_DEBUG_KMS("\n");
 421	pp = REG_READ(PP_CONTROL);
 422	pp &= ~PANEL_UNLOCK_MASK;
 423
 424	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 425	REG_WRITE(PP_CONTROL, pp);
 426	REG_READ(PP_CONTROL);
 427
 428	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 429		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 430		intel_dp->panel_on = false;
 431	} else
 432		intel_dp->panel_on = true;
 433	msleep(intel_dp->panel_power_up_delay);
 434
 435	return false;
 436}
 437
 438static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 439{
 440	struct drm_device *dev = intel_encoder->base.dev;
 441	u32 pp, idle_off_mask = PP_ON ;
 442	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 443
 444	DRM_DEBUG_KMS("\n");
 445
 446	pp = REG_READ(PP_CONTROL);
 447
 448	if ((pp & POWER_TARGET_ON) == 0)
 449		return;
 450
 451	intel_dp->panel_on = false;
 452	pp &= ~PANEL_UNLOCK_MASK;
 453	/* ILK workaround: disable reset around power sequence */
 454
 455	pp &= ~POWER_TARGET_ON;
 456	pp &= ~EDP_FORCE_VDD;
 457	pp &= ~EDP_BLC_ENABLE;
 458	REG_WRITE(PP_CONTROL, pp);
 459	REG_READ(PP_CONTROL);
 460	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 461
 462	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 463		DRM_DEBUG_KMS("Error in turning off Panel\n");
 464	}
 465
 466	msleep(intel_dp->panel_power_cycle_delay);
 467	DRM_DEBUG_KMS("Over\n");
 468}
 469
 470static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 471{
 472	struct drm_device *dev = intel_encoder->base.dev;
 473	u32 pp;
 474
 475	DRM_DEBUG_KMS("\n");
 476	/*
 477	 * If we enable the backlight right away following a panel power
 478	 * on, we may see slight flicker as the panel syncs with the eDP
 479	 * link.  So delay a bit to make sure the image is solid before
 480	 * allowing it to appear.
 481	 */
 482	msleep(300);
 483	pp = REG_READ(PP_CONTROL);
 484
 485	pp |= EDP_BLC_ENABLE;
 486	REG_WRITE(PP_CONTROL, pp);
 487	gma_backlight_enable(dev);
 488}
 489
 490static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 491{
 492	struct drm_device *dev = intel_encoder->base.dev;
 493	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 494	u32 pp;
 495
 496	DRM_DEBUG_KMS("\n");
 497	gma_backlight_disable(dev);
 498	msleep(10);
 499	pp = REG_READ(PP_CONTROL);
 500
 501	pp &= ~EDP_BLC_ENABLE;
 502	REG_WRITE(PP_CONTROL, pp);
 503	msleep(intel_dp->backlight_off_delay);
 504}
 505
 506static enum drm_mode_status
 507cdv_intel_dp_mode_valid(struct drm_connector *connector,
 508		    struct drm_display_mode *mode)
 509{
 510	struct gma_encoder *encoder = gma_attached_encoder(connector);
 511	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 512	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 513	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 514	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
 515
 516	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 517		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 518			return MODE_PANEL;
 519		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 520			return MODE_PANEL;
 521	}
 522
 523	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 524	   which are outside spec tolerances but somehow work by magic */
 525	if (!is_edp(encoder) &&
 526	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 527	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 528		return MODE_CLOCK_HIGH;
 529
 530	if (is_edp(encoder)) {
 531	    if (cdv_intel_dp_link_required(mode->clock, 24)
 532	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 533		return MODE_CLOCK_HIGH;
 534
 535	}
 536	if (mode->clock < 10000)
 537		return MODE_CLOCK_LOW;
 538
 539	return MODE_OK;
 540}
 541
 542static uint32_t
 543pack_aux(uint8_t *src, int src_bytes)
 544{
 545	int	i;
 546	uint32_t v = 0;
 547
 548	if (src_bytes > 4)
 549		src_bytes = 4;
 550	for (i = 0; i < src_bytes; i++)
 551		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 552	return v;
 553}
 554
 555static void
 556unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 557{
 558	int i;
 559	if (dst_bytes > 4)
 560		dst_bytes = 4;
 561	for (i = 0; i < dst_bytes; i++)
 562		dst[i] = src >> ((3-i) * 8);
 563}
 564
 565static int
 566cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 567		uint8_t *send, int send_bytes,
 568		uint8_t *recv, int recv_size)
 569{
 570	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 571	uint32_t output_reg = intel_dp->output_reg;
 572	struct drm_device *dev = encoder->base.dev;
 573	uint32_t ch_ctl = output_reg + 0x10;
 574	uint32_t ch_data = ch_ctl + 4;
 575	int i;
 576	int recv_bytes;
 577	uint32_t status;
 578	uint32_t aux_clock_divider;
 579	int try, precharge;
 580
 581	/* The clock divider is based off the hrawclk,
 582	 * and would like to run at 2MHz. So, take the
 583	 * hrawclk value and divide by 2 and use that
 584	 * On CDV platform it uses 200MHz as hrawclk.
 585	 *
 586	 */
 587	aux_clock_divider = 200 / 2;
 588
 589	precharge = 4;
 590	if (is_edp(encoder))
 591		precharge = 10;
 592
 593	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 594		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 595			  REG_READ(ch_ctl));
 596		return -EBUSY;
 597	}
 598
 599	/* Must try at least 3 times according to DP spec */
 600	for (try = 0; try < 5; try++) {
 601		/* Load the send data into the aux channel data registers */
 602		for (i = 0; i < send_bytes; i += 4)
 603			REG_WRITE(ch_data + i,
 604				   pack_aux(send + i, send_bytes - i));
 605
 606		/* Send the command and wait for it to complete */
 607		REG_WRITE(ch_ctl,
 608			   DP_AUX_CH_CTL_SEND_BUSY |
 609			   DP_AUX_CH_CTL_TIME_OUT_400us |
 610			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 611			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 612			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 613			   DP_AUX_CH_CTL_DONE |
 614			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 615			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 616		for (;;) {
 617			status = REG_READ(ch_ctl);
 618			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 619				break;
 620			udelay(100);
 621		}
 622
 623		/* Clear done status and any errors */
 624		REG_WRITE(ch_ctl,
 625			   status |
 626			   DP_AUX_CH_CTL_DONE |
 627			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 628			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 629		if (status & DP_AUX_CH_CTL_DONE)
 630			break;
 631	}
 632
 633	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 634		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 635		return -EBUSY;
 636	}
 637
 638	/* Check for timeout or receive error.
 639	 * Timeouts occur when the sink is not connected
 640	 */
 641	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 642		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 643		return -EIO;
 644	}
 645
 646	/* Timeouts occur when the device isn't connected, so they're
 647	 * "normal" -- don't fill the kernel log with these */
 648	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 649		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 650		return -ETIMEDOUT;
 651	}
 652
 653	/* Unload any bytes sent back from the other side */
 654	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 655		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 656	if (recv_bytes > recv_size)
 657		recv_bytes = recv_size;
 658
 659	for (i = 0; i < recv_bytes; i += 4)
 660		unpack_aux(REG_READ(ch_data + i),
 661			   recv + i, recv_bytes - i);
 662
 663	return recv_bytes;
 664}
 665
 666/* Write data to the aux channel in native mode */
 667static int
 668cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 669			  uint16_t address, uint8_t *send, int send_bytes)
 670{
 671	int ret;
 672	uint8_t	msg[20];
 673	int msg_bytes;
 674	uint8_t	ack;
 675
 676	if (send_bytes > 16)
 677		return -1;
 678	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 679	msg[1] = address >> 8;
 680	msg[2] = address & 0xff;
 681	msg[3] = send_bytes - 1;
 682	memcpy(&msg[4], send, send_bytes);
 683	msg_bytes = send_bytes + 4;
 684	for (;;) {
 685		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 686		if (ret < 0)
 687			return ret;
 688		ack >>= 4;
 689		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 690			break;
 691		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 692			udelay(100);
 693		else
 694			return -EIO;
 695	}
 696	return send_bytes;
 697}
 698
 699/* Write a single byte to the aux channel in native mode */
 700static int
 701cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 702			    uint16_t address, uint8_t byte)
 703{
 704	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 705}
 706
 707/* read bytes from a native aux channel */
 708static int
 709cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 710			 uint16_t address, uint8_t *recv, int recv_bytes)
 711{
 712	uint8_t msg[4];
 713	int msg_bytes;
 714	uint8_t reply[20];
 715	int reply_bytes;
 716	uint8_t ack;
 717	int ret;
 718
 719	msg[0] = DP_AUX_NATIVE_READ << 4;
 720	msg[1] = address >> 8;
 721	msg[2] = address & 0xff;
 722	msg[3] = recv_bytes - 1;
 723
 724	msg_bytes = 4;
 725	reply_bytes = recv_bytes + 1;
 726
 727	for (;;) {
 728		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 729				      reply, reply_bytes);
 730		if (ret == 0)
 731			return -EPROTO;
 732		if (ret < 0)
 733			return ret;
 734		ack = reply[0] >> 4;
 735		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 736			memcpy(recv, reply + 1, ret - 1);
 737			return ret - 1;
 738		}
 739		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 740			udelay(100);
 741		else
 742			return -EIO;
 743	}
 744}
 745
 746static int
 747cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 748		    uint8_t write_byte, uint8_t *read_byte)
 749{
 750	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 751	struct cdv_intel_dp *intel_dp = container_of(adapter,
 752						struct cdv_intel_dp,
 753						adapter);
 754	struct gma_encoder *encoder = intel_dp->encoder;
 755	uint16_t address = algo_data->address;
 756	uint8_t msg[5];
 757	uint8_t reply[2];
 758	unsigned retry;
 759	int msg_bytes;
 760	int reply_bytes;
 761	int ret;
 762
 763	/* Set up the command byte */
 764	if (mode & MODE_I2C_READ)
 765		msg[0] = DP_AUX_I2C_READ << 4;
 766	else
 767		msg[0] = DP_AUX_I2C_WRITE << 4;
 768
 769	if (!(mode & MODE_I2C_STOP))
 770		msg[0] |= DP_AUX_I2C_MOT << 4;
 771
 772	msg[1] = address >> 8;
 773	msg[2] = address;
 774
 775	switch (mode) {
 776	case MODE_I2C_WRITE:
 777		msg[3] = 0;
 778		msg[4] = write_byte;
 779		msg_bytes = 5;
 780		reply_bytes = 1;
 781		break;
 782	case MODE_I2C_READ:
 783		msg[3] = 0;
 784		msg_bytes = 4;
 785		reply_bytes = 2;
 786		break;
 787	default:
 788		msg_bytes = 3;
 789		reply_bytes = 1;
 790		break;
 791	}
 792
 793	for (retry = 0; retry < 5; retry++) {
 794		ret = cdv_intel_dp_aux_ch(encoder,
 795				      msg, msg_bytes,
 796				      reply, reply_bytes);
 797		if (ret < 0) {
 798			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 799			return ret;
 800		}
 801
 802		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 803		case DP_AUX_NATIVE_REPLY_ACK:
 804			/* I2C-over-AUX Reply field is only valid
 805			 * when paired with AUX ACK.
 806			 */
 807			break;
 808		case DP_AUX_NATIVE_REPLY_NACK:
 809			DRM_DEBUG_KMS("aux_ch native nack\n");
 810			return -EREMOTEIO;
 811		case DP_AUX_NATIVE_REPLY_DEFER:
 812			udelay(100);
 813			continue;
 814		default:
 815			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 816				  reply[0]);
 817			return -EREMOTEIO;
 818		}
 819
 820		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 821		case DP_AUX_I2C_REPLY_ACK:
 822			if (mode == MODE_I2C_READ) {
 823				*read_byte = reply[1];
 824			}
 825			return reply_bytes - 1;
 826		case DP_AUX_I2C_REPLY_NACK:
 827			DRM_DEBUG_KMS("aux_i2c nack\n");
 828			return -EREMOTEIO;
 829		case DP_AUX_I2C_REPLY_DEFER:
 830			DRM_DEBUG_KMS("aux_i2c defer\n");
 831			udelay(100);
 832			break;
 833		default:
 834			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 835			return -EREMOTEIO;
 836		}
 837	}
 838
 839	DRM_ERROR("too many retries, giving up\n");
 840	return -EREMOTEIO;
 841}
 842
 843static int
 844cdv_intel_dp_i2c_init(struct gma_connector *connector,
 845		      struct gma_encoder *encoder, const char *name)
 846{
 847	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 848	int ret;
 849
 850	DRM_DEBUG_KMS("i2c_init %s\n", name);
 851
 852	intel_dp->algo.running = false;
 853	intel_dp->algo.address = 0;
 854	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 855
 856	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 857	intel_dp->adapter.owner = THIS_MODULE;
 
 858	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 859	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 860	intel_dp->adapter.algo_data = &intel_dp->algo;
 861	intel_dp->adapter.dev.parent = connector->base.kdev;
 862
 863	if (is_edp(encoder))
 864		cdv_intel_edp_panel_vdd_on(encoder);
 865	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 866	if (is_edp(encoder))
 867		cdv_intel_edp_panel_vdd_off(encoder);
 868
 869	return ret;
 870}
 871
 872static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 873	struct drm_display_mode *adjusted_mode)
 874{
 875	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 876	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 877	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 878	adjusted_mode->htotal = fixed_mode->htotal;
 879
 880	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 881	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 882	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 883	adjusted_mode->vtotal = fixed_mode->vtotal;
 884
 885	adjusted_mode->clock = fixed_mode->clock;
 886
 887	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 888}
 889
 890static bool
 891cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 892		    struct drm_display_mode *adjusted_mode)
 893{
 894	struct drm_psb_private *dev_priv = to_drm_psb_private(encoder->dev);
 895	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 896	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 897	int lane_count, clock;
 898	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 899	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 900	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 901	int refclock = mode->clock;
 902	int bpp = 24;
 903
 904	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 905		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 906		refclock = intel_dp->panel_fixed_mode->clock;
 907		bpp = dev_priv->edp.bpp;
 908	}
 909
 910	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 911		for (clock = max_clock; clock >= 0; clock--) {
 912			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 913
 914			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 915				intel_dp->link_bw = bws[clock];
 916				intel_dp->lane_count = lane_count;
 917				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 918				DRM_DEBUG_KMS("Display port link bw %02x lane "
 919						"count %d clock %d\n",
 920				       intel_dp->link_bw, intel_dp->lane_count,
 921				       adjusted_mode->clock);
 922				return true;
 923			}
 924		}
 925	}
 926	if (is_edp(intel_encoder)) {
 927		/* okay we failed just pick the highest */
 928		intel_dp->lane_count = max_lane_count;
 929		intel_dp->link_bw = bws[max_clock];
 930		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 931		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 932			      "count %d clock %d\n",
 933			      intel_dp->link_bw, intel_dp->lane_count,
 934			      adjusted_mode->clock);
 935
 936		return true;
 937	}
 938	return false;
 939}
 940
 941struct cdv_intel_dp_m_n {
 942	uint32_t	tu;
 943	uint32_t	gmch_m;
 944	uint32_t	gmch_n;
 945	uint32_t	link_m;
 946	uint32_t	link_n;
 947};
 948
 949static void
 950cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 951{
 952	/*
 953	while (*num > 0xffffff || *den > 0xffffff) {
 954		*num >>= 1;
 955		*den >>= 1;
 956	}*/
 957	uint64_t value, m;
 958	m = *num;
 959	value = m * (0x800000);
 960	m = do_div(value, *den);
 961	*num = value;
 962	*den = 0x800000;
 963}
 964
 965static void
 966cdv_intel_dp_compute_m_n(int bpp,
 967		     int nlanes,
 968		     int pixel_clock,
 969		     int link_clock,
 970		     struct cdv_intel_dp_m_n *m_n)
 971{
 972	m_n->tu = 64;
 973	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 974	m_n->gmch_n = link_clock * nlanes;
 975	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 976	m_n->link_m = pixel_clock;
 977	m_n->link_n = link_clock;
 978	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 979}
 980
 981void
 982cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 983		 struct drm_display_mode *adjusted_mode)
 984{
 985	struct drm_device *dev = crtc->dev;
 986	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
 987	struct drm_mode_config *mode_config = &dev->mode_config;
 988	struct drm_encoder *encoder;
 989	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 990	int lane_count = 4, bpp = 24;
 991	struct cdv_intel_dp_m_n m_n;
 992	int pipe = gma_crtc->pipe;
 993
 994	/*
 995	 * Find the lane count in the intel_encoder private
 996	 */
 997	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 998		struct gma_encoder *intel_encoder;
 999		struct cdv_intel_dp *intel_dp;
1000
1001		if (encoder->crtc != crtc)
1002			continue;
1003
1004		intel_encoder = to_gma_encoder(encoder);
1005		intel_dp = intel_encoder->dev_priv;
1006		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1007			lane_count = intel_dp->lane_count;
1008			break;
1009		} else if (is_edp(intel_encoder)) {
1010			lane_count = intel_dp->lane_count;
1011			bpp = dev_priv->edp.bpp;
1012			break;
1013		}
1014	}
1015
1016	/*
1017	 * Compute the GMCH and Link ratios. The '3' here is
1018	 * the number of bytes_per_pixel post-LUT, which we always
1019	 * set up for 8-bits of R/G/B, or 3 bytes total.
1020	 */
1021	cdv_intel_dp_compute_m_n(bpp, lane_count,
1022			     mode->clock, adjusted_mode->clock, &m_n);
1023
1024	{
1025		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1026			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1027			   m_n.gmch_m);
1028		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1029		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1030		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1031	}
1032}
1033
1034static void
1035cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1036		  struct drm_display_mode *adjusted_mode)
1037{
1038	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1039	struct drm_crtc *crtc = encoder->crtc;
1040	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1041	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1042	struct drm_device *dev = encoder->dev;
1043
1044	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1045	intel_dp->DP |= intel_dp->color_range;
1046
1047	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1048		intel_dp->DP |= DP_SYNC_HS_HIGH;
1049	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1050		intel_dp->DP |= DP_SYNC_VS_HIGH;
1051
1052	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1053
1054	switch (intel_dp->lane_count) {
1055	case 1:
1056		intel_dp->DP |= DP_PORT_WIDTH_1;
1057		break;
1058	case 2:
1059		intel_dp->DP |= DP_PORT_WIDTH_2;
1060		break;
1061	case 4:
1062		intel_dp->DP |= DP_PORT_WIDTH_4;
1063		break;
1064	}
1065	if (intel_dp->has_audio)
1066		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1067
1068	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1069	intel_dp->link_configuration[0] = intel_dp->link_bw;
1070	intel_dp->link_configuration[1] = intel_dp->lane_count;
1071
1072	/*
1073	 * Check for DPCD version > 1.1 and enhanced framing support
1074	 */
1075	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1076	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1077		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1078		intel_dp->DP |= DP_ENHANCED_FRAMING;
1079	}
1080
1081	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1082	if (gma_crtc->pipe == 1)
1083		intel_dp->DP |= DP_PIPEB_SELECT;
1084
1085	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1086	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1087	if (is_edp(intel_encoder)) {
1088		uint32_t pfit_control;
1089		cdv_intel_edp_panel_on(intel_encoder);
1090
1091		if (mode->hdisplay != adjusted_mode->hdisplay ||
1092			    mode->vdisplay != adjusted_mode->vdisplay)
1093			pfit_control = PFIT_ENABLE;
1094		else
1095			pfit_control = 0;
1096
1097		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1098
1099		REG_WRITE(PFIT_CONTROL, pfit_control);
1100	}
1101}
1102
1103
1104/* If the sink supports it, try to set the power state appropriately */
1105static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1106{
1107	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1108	int ret, i;
1109
1110	/* Should have a valid DPCD by this point */
1111	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1112		return;
1113
1114	if (mode != DRM_MODE_DPMS_ON) {
1115		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1116						  DP_SET_POWER_D3);
1117		if (ret != 1)
1118			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1119	} else {
1120		/*
1121		 * When turning on, we need to retry for 1ms to give the sink
1122		 * time to wake up.
1123		 */
1124		for (i = 0; i < 3; i++) {
1125			ret = cdv_intel_dp_aux_native_write_1(encoder,
1126							  DP_SET_POWER,
1127							  DP_SET_POWER_D0);
1128			if (ret == 1)
1129				break;
1130			udelay(1000);
1131		}
1132	}
1133}
1134
1135static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1136{
1137	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1138	int edp = is_edp(intel_encoder);
1139
1140	if (edp) {
1141		cdv_intel_edp_backlight_off(intel_encoder);
1142		cdv_intel_edp_panel_off(intel_encoder);
1143		cdv_intel_edp_panel_vdd_on(intel_encoder);
1144        }
1145	/* Wake up the sink first */
1146	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1147	cdv_intel_dp_link_down(intel_encoder);
1148	if (edp)
1149		cdv_intel_edp_panel_vdd_off(intel_encoder);
1150}
1151
1152static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1153{
1154	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1155	int edp = is_edp(intel_encoder);
1156
1157	if (edp)
1158		cdv_intel_edp_panel_on(intel_encoder);
1159	cdv_intel_dp_start_link_train(intel_encoder);
1160	cdv_intel_dp_complete_link_train(intel_encoder);
1161	if (edp)
1162		cdv_intel_edp_backlight_on(intel_encoder);
1163}
1164
1165static void
1166cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1167{
1168	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1169	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1170	struct drm_device *dev = encoder->dev;
1171	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1172	int edp = is_edp(intel_encoder);
1173
1174	if (mode != DRM_MODE_DPMS_ON) {
1175		if (edp) {
1176			cdv_intel_edp_backlight_off(intel_encoder);
1177			cdv_intel_edp_panel_vdd_on(intel_encoder);
1178		}
1179		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1180		cdv_intel_dp_link_down(intel_encoder);
1181		if (edp) {
1182			cdv_intel_edp_panel_vdd_off(intel_encoder);
1183			cdv_intel_edp_panel_off(intel_encoder);
1184		}
1185	} else {
1186        	if (edp)
1187			cdv_intel_edp_panel_on(intel_encoder);
1188		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1189		if (!(dp_reg & DP_PORT_EN)) {
1190			cdv_intel_dp_start_link_train(intel_encoder);
1191			cdv_intel_dp_complete_link_train(intel_encoder);
1192		}
1193		if (edp)
1194        		cdv_intel_edp_backlight_on(intel_encoder);
1195	}
1196}
1197
1198/*
1199 * Native read with retry for link status and receiver capability reads for
1200 * cases where the sink may still be asleep.
1201 */
1202static bool
1203cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1204			       uint8_t *recv, int recv_bytes)
1205{
1206	int ret, i;
1207
1208	/*
1209	 * Sinks are *supposed* to come up within 1ms from an off state,
1210	 * but we're also supposed to retry 3 times per the spec.
1211	 */
1212	for (i = 0; i < 3; i++) {
1213		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1214					       recv_bytes);
1215		if (ret == recv_bytes)
1216			return true;
1217		udelay(1000);
1218	}
1219
1220	return false;
1221}
1222
1223/*
1224 * Fetch AUX CH registers 0x202 - 0x207 which contain
1225 * link status information
1226 */
1227static bool
1228cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1229{
1230	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1231	return cdv_intel_dp_aux_native_read_retry(encoder,
1232					      DP_LANE0_1_STATUS,
1233					      intel_dp->link_status,
1234					      DP_LINK_STATUS_SIZE);
1235}
1236
1237static uint8_t
1238cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1239		     int r)
1240{
1241	return link_status[r - DP_LANE0_1_STATUS];
1242}
1243
1244static uint8_t
1245cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1246				 int lane)
1247{
1248	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1249	int	    s = ((lane & 1) ?
1250			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1251			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1252	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1253
1254	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1255}
1256
1257static uint8_t
1258cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1259				      int lane)
1260{
1261	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1262	int	    s = ((lane & 1) ?
1263			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1264			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1265	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1266
1267	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1268}
1269
1270#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1271
1272static void
1273cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1274{
1275	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1276	uint8_t v = 0;
1277	uint8_t p = 0;
1278	int lane;
1279
1280	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1281		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1282		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1283
1284		if (this_v > v)
1285			v = this_v;
1286		if (this_p > p)
1287			p = this_p;
1288	}
1289
1290	if (v >= CDV_DP_VOLTAGE_MAX)
1291		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1292
1293	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1294		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1295
1296	for (lane = 0; lane < 4; lane++)
1297		intel_dp->train_set[lane] = v | p;
1298}
1299
1300
1301static uint8_t
1302cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1303		      int lane)
1304{
1305	int i = DP_LANE0_1_STATUS + (lane >> 1);
1306	int s = (lane & 1) * 4;
1307	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1308
1309	return (l >> s) & 0xf;
1310}
1311
1312/* Check for clock recovery is done on all channels */
1313static bool
1314cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1315{
1316	int lane;
1317	uint8_t lane_status;
1318
1319	for (lane = 0; lane < lane_count; lane++) {
1320		lane_status = cdv_intel_get_lane_status(link_status, lane);
1321		if ((lane_status & DP_LANE_CR_DONE) == 0)
1322			return false;
1323	}
1324	return true;
1325}
1326
1327/* Check to see if channel eq is done on all channels */
1328#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1329			 DP_LANE_CHANNEL_EQ_DONE|\
1330			 DP_LANE_SYMBOL_LOCKED)
1331static bool
1332cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1333{
1334	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1335	uint8_t lane_align;
1336	uint8_t lane_status;
1337	int lane;
1338
1339	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1340					  DP_LANE_ALIGN_STATUS_UPDATED);
1341	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1342		return false;
1343	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1344		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1345		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1346			return false;
1347	}
1348	return true;
1349}
1350
1351static bool
1352cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1353			uint32_t dp_reg_value,
1354			uint8_t dp_train_pat)
1355{
1356	struct drm_device *dev = encoder->base.dev;
1357	int ret;
1358	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1359
1360	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1361	REG_READ(intel_dp->output_reg);
1362
1363	ret = cdv_intel_dp_aux_native_write_1(encoder,
1364				    DP_TRAINING_PATTERN_SET,
1365				    dp_train_pat);
1366
1367	if (ret != 1) {
1368		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1369				dp_train_pat);
1370		return false;
1371	}
1372
1373	return true;
1374}
1375
1376
1377static bool
1378cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1379			uint8_t dp_train_pat)
1380{
1381	int ret;
1382	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1383
1384	ret = cdv_intel_dp_aux_native_write(encoder,
1385					DP_TRAINING_LANE0_SET,
1386					intel_dp->train_set,
1387					intel_dp->lane_count);
1388
1389	if (ret != intel_dp->lane_count) {
1390		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1391				intel_dp->train_set[0], intel_dp->lane_count);
1392		return false;
1393	}
1394	return true;
1395}
1396
1397static void
1398cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1399{
1400	struct drm_device *dev = encoder->base.dev;
1401	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1402	struct ddi_regoff *ddi_reg;
1403	int vswing, premph, index;
1404
1405	if (intel_dp->output_reg == DP_B)
1406		ddi_reg = &ddi_DP_train_table[0];
1407	else
1408		ddi_reg = &ddi_DP_train_table[1];
1409
1410	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1411	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1412				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1413
1414	if (vswing + premph > 3)
1415		return;
1416#ifdef CDV_FAST_LINK_TRAIN
1417	return;
1418#endif
1419	DRM_DEBUG_KMS("Test2\n");
1420	//return ;
1421	cdv_sb_reset(dev);
1422	/* ;Swing voltage programming
1423        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1424	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1425
1426	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1427	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1428
1429	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1430	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1431	 */
1432	index = (vswing + premph) * 2;
1433	if (premph == 1 && vswing == 1) {
1434		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1435	} else
1436		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1437
1438	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1439	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1440		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1441	else
1442		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1443
1444	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1445	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1446
1447	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1448	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1449
1450	/* ;Pre emphasis programming
1451	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1452	 */
1453	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1454
1455	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1456	index = 2 * premph + 1;
1457	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1458	return;
1459}
1460
1461
1462/* Enable corresponding port and start training pattern 1 */
1463static void
1464cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1465{
1466	struct drm_device *dev = encoder->base.dev;
1467	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1468	int i;
1469	uint8_t voltage;
1470	bool clock_recovery = false;
1471	int tries;
1472	u32 reg;
1473	uint32_t DP = intel_dp->DP;
1474
1475	DP |= DP_PORT_EN;
1476	DP &= ~DP_LINK_TRAIN_MASK;
1477
1478	reg = DP;
1479	reg |= DP_LINK_TRAIN_PAT_1;
1480	/* Enable output, wait for it to become active */
1481	REG_WRITE(intel_dp->output_reg, reg);
1482	REG_READ(intel_dp->output_reg);
1483	gma_wait_for_vblank(dev);
1484
1485	DRM_DEBUG_KMS("Link config\n");
1486	/* Write the link configuration data */
1487	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1488				  intel_dp->link_configuration,
1489				  2);
1490
1491	memset(intel_dp->train_set, 0, 4);
1492	voltage = 0;
1493	tries = 0;
1494	clock_recovery = false;
1495
1496	DRM_DEBUG_KMS("Start train\n");
1497	reg = DP | DP_LINK_TRAIN_PAT_1;
1498
1499	for (;;) {
1500		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1501		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1502				intel_dp->train_set[0],
1503				intel_dp->link_configuration[0],
1504				intel_dp->link_configuration[1]);
1505
1506		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1507			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1508		}
1509		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1510		/* Set training pattern 1 */
1511
1512		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1513
1514		udelay(200);
1515		if (!cdv_intel_dp_get_link_status(encoder))
1516			break;
1517
1518		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1519				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1520				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1521
1522		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1523			DRM_DEBUG_KMS("PT1 train is done\n");
1524			clock_recovery = true;
1525			break;
1526		}
1527
1528		/* Check to see if we've tried the max voltage */
1529		for (i = 0; i < intel_dp->lane_count; i++)
1530			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1531				break;
1532		if (i == intel_dp->lane_count)
1533			break;
1534
1535		/* Check to see if we've tried the same voltage 5 times */
1536		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1537			++tries;
1538			if (tries == 5)
1539				break;
1540		} else
1541			tries = 0;
1542		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1543
1544		/* Compute new intel_dp->train_set as requested by target */
1545		cdv_intel_get_adjust_train(encoder);
1546
1547	}
1548
1549	if (!clock_recovery) {
1550		DRM_DEBUG_KMS("failure in DP pattern 1 training, train set %x\n", intel_dp->train_set[0]);
1551	}
1552
1553	intel_dp->DP = DP;
1554}
1555
1556static void
1557cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1558{
1559	struct drm_device *dev = encoder->base.dev;
1560	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1561	int tries, cr_tries;
1562	u32 reg;
1563	uint32_t DP = intel_dp->DP;
1564
1565	/* channel equalization */
1566	tries = 0;
1567	cr_tries = 0;
1568
1569	DRM_DEBUG_KMS("\n");
1570	reg = DP | DP_LINK_TRAIN_PAT_2;
1571
1572	for (;;) {
1573
1574		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1575				intel_dp->train_set[0],
1576				intel_dp->link_configuration[0],
1577				intel_dp->link_configuration[1]);
1578        	/* channel eq pattern */
1579
1580		if (!cdv_intel_dp_set_link_train(encoder, reg,
1581					     DP_TRAINING_PATTERN_2)) {
1582			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1583		}
1584		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1585
1586		if (cr_tries > 5) {
1587			DRM_ERROR("failed to train DP, aborting\n");
1588			cdv_intel_dp_link_down(encoder);
1589			break;
1590		}
1591
1592		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1593
1594		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1595
1596		udelay(1000);
1597		if (!cdv_intel_dp_get_link_status(encoder))
1598			break;
1599
1600		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1601				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1602				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1603
1604		/* Make sure clock is still ok */
1605		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1606			cdv_intel_dp_start_link_train(encoder);
1607			cr_tries++;
1608			continue;
1609		}
1610
1611		if (cdv_intel_channel_eq_ok(encoder)) {
1612			DRM_DEBUG_KMS("PT2 train is done\n");
1613			break;
1614		}
1615
1616		/* Try 5 times, then try clock recovery if that fails */
1617		if (tries > 5) {
1618			cdv_intel_dp_link_down(encoder);
1619			cdv_intel_dp_start_link_train(encoder);
1620			tries = 0;
1621			cr_tries++;
1622			continue;
1623		}
1624
1625		/* Compute new intel_dp->train_set as requested by target */
1626		cdv_intel_get_adjust_train(encoder);
1627		++tries;
1628
1629	}
1630
1631	reg = DP | DP_LINK_TRAIN_OFF;
1632
1633	REG_WRITE(intel_dp->output_reg, reg);
1634	REG_READ(intel_dp->output_reg);
1635	cdv_intel_dp_aux_native_write_1(encoder,
1636				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1637}
1638
1639static void
1640cdv_intel_dp_link_down(struct gma_encoder *encoder)
1641{
1642	struct drm_device *dev = encoder->base.dev;
1643	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1644	uint32_t DP = intel_dp->DP;
1645
1646	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1647		return;
1648
1649	DRM_DEBUG_KMS("\n");
1650
1651
1652	{
1653		DP &= ~DP_LINK_TRAIN_MASK;
1654		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1655	}
1656	REG_READ(intel_dp->output_reg);
1657
1658	msleep(17);
1659
1660	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1661	REG_READ(intel_dp->output_reg);
1662}
1663
1664static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1665{
1666	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1667	enum drm_connector_status status;
1668
1669	status = connector_status_disconnected;
1670	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1671				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1672	{
1673		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1674			status = connector_status_connected;
1675	}
1676	if (status == connector_status_connected)
1677		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1678			intel_dp->dpcd[0], intel_dp->dpcd[1],
1679			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1680	return status;
1681}
1682
1683/*
1684 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1685 *
1686 * \return true if DP port is connected.
1687 * \return false if DP port is disconnected.
1688 */
1689static enum drm_connector_status
1690cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1691{
1692	struct gma_encoder *encoder = gma_attached_encoder(connector);
1693	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1694	enum drm_connector_status status;
1695	struct edid *edid = NULL;
1696	int edp = is_edp(encoder);
1697
1698	intel_dp->has_audio = false;
1699
1700	if (edp)
1701		cdv_intel_edp_panel_vdd_on(encoder);
1702	status = cdv_dp_detect(encoder);
1703	if (status != connector_status_connected) {
1704		if (edp)
1705			cdv_intel_edp_panel_vdd_off(encoder);
1706		return status;
1707        }
1708
1709	if (intel_dp->force_audio) {
1710		intel_dp->has_audio = intel_dp->force_audio > 0;
1711	} else {
1712		edid = drm_get_edid(connector, &intel_dp->adapter);
1713		if (edid) {
1714			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1715			kfree(edid);
1716		}
1717	}
1718	if (edp)
1719		cdv_intel_edp_panel_vdd_off(encoder);
1720
1721	return connector_status_connected;
1722}
1723
1724static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1725{
1726	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1727	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1728	struct edid *edid = NULL;
1729	int ret = 0;
1730	int edp = is_edp(intel_encoder);
1731
1732
1733	edid = drm_get_edid(connector, &intel_dp->adapter);
1734	if (edid) {
1735		drm_connector_update_edid_property(connector, edid);
1736		ret = drm_add_edid_modes(connector, edid);
1737		kfree(edid);
1738	}
1739
1740	if (is_edp(intel_encoder)) {
1741		struct drm_device *dev = connector->dev;
1742		struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1743
1744		cdv_intel_edp_panel_vdd_off(intel_encoder);
1745		if (ret) {
1746			if (edp && !intel_dp->panel_fixed_mode) {
1747				struct drm_display_mode *newmode;
1748				list_for_each_entry(newmode, &connector->probed_modes,
1749					    head) {
1750					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1751						intel_dp->panel_fixed_mode =
1752							drm_mode_duplicate(dev, newmode);
1753						break;
1754					}
1755				}
1756			}
1757
1758			return ret;
1759		}
1760		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1761			intel_dp->panel_fixed_mode =
1762				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1763			if (intel_dp->panel_fixed_mode) {
1764				intel_dp->panel_fixed_mode->type |=
1765					DRM_MODE_TYPE_PREFERRED;
1766			}
1767		}
1768		if (intel_dp->panel_fixed_mode != NULL) {
1769			struct drm_display_mode *mode;
1770			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1771			drm_mode_probed_add(connector, mode);
1772			return 1;
1773		}
1774	}
1775
1776	return ret;
1777}
1778
1779static bool
1780cdv_intel_dp_detect_audio(struct drm_connector *connector)
1781{
1782	struct gma_encoder *encoder = gma_attached_encoder(connector);
1783	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1784	struct edid *edid;
1785	bool has_audio = false;
1786	int edp = is_edp(encoder);
1787
1788	if (edp)
1789		cdv_intel_edp_panel_vdd_on(encoder);
1790
1791	edid = drm_get_edid(connector, &intel_dp->adapter);
1792	if (edid) {
1793		has_audio = drm_detect_monitor_audio(edid);
1794		kfree(edid);
1795	}
1796	if (edp)
1797		cdv_intel_edp_panel_vdd_off(encoder);
1798
1799	return has_audio;
1800}
1801
1802static int
1803cdv_intel_dp_set_property(struct drm_connector *connector,
1804		      struct drm_property *property,
1805		      uint64_t val)
1806{
1807	struct drm_psb_private *dev_priv = to_drm_psb_private(connector->dev);
1808	struct gma_encoder *encoder = gma_attached_encoder(connector);
1809	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1810	int ret;
1811
1812	ret = drm_object_property_set_value(&connector->base, property, val);
1813	if (ret)
1814		return ret;
1815
1816	if (property == dev_priv->force_audio_property) {
1817		int i = val;
1818		bool has_audio;
1819
1820		if (i == intel_dp->force_audio)
1821			return 0;
1822
1823		intel_dp->force_audio = i;
1824
1825		if (i == 0)
1826			has_audio = cdv_intel_dp_detect_audio(connector);
1827		else
1828			has_audio = i > 0;
1829
1830		if (has_audio == intel_dp->has_audio)
1831			return 0;
1832
1833		intel_dp->has_audio = has_audio;
1834		goto done;
1835	}
1836
1837	if (property == dev_priv->broadcast_rgb_property) {
1838		if (val == !!intel_dp->color_range)
1839			return 0;
1840
1841		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1842		goto done;
1843	}
1844
1845	return -EINVAL;
1846
1847done:
1848	if (encoder->base.crtc) {
1849		struct drm_crtc *crtc = encoder->base.crtc;
1850		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1851					 crtc->x, crtc->y,
1852					 crtc->primary->fb);
1853	}
1854
1855	return 0;
1856}
1857
1858static void
1859cdv_intel_dp_destroy(struct drm_connector *connector)
1860{
1861	struct gma_connector *gma_connector = to_gma_connector(connector);
1862	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1863	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1864
1865	if (is_edp(gma_encoder)) {
1866	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1867		kfree(intel_dp->panel_fixed_mode);
1868		intel_dp->panel_fixed_mode = NULL;
1869	}
1870	i2c_del_adapter(&intel_dp->adapter);
 
1871	drm_connector_cleanup(connector);
1872	kfree(gma_connector);
1873}
1874
1875static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1876	.dpms = cdv_intel_dp_dpms,
1877	.mode_fixup = cdv_intel_dp_mode_fixup,
1878	.prepare = cdv_intel_dp_prepare,
1879	.mode_set = cdv_intel_dp_mode_set,
1880	.commit = cdv_intel_dp_commit,
1881};
1882
1883static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1884	.dpms = drm_helper_connector_dpms,
1885	.detect = cdv_intel_dp_detect,
1886	.fill_modes = drm_helper_probe_single_connector_modes,
1887	.set_property = cdv_intel_dp_set_property,
1888	.destroy = cdv_intel_dp_destroy,
1889};
1890
1891static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1892	.get_modes = cdv_intel_dp_get_modes,
1893	.mode_valid = cdv_intel_dp_mode_valid,
1894	.best_encoder = gma_best_encoder,
1895};
1896
1897static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1898{
1899	cdv_intel_attach_force_audio_property(connector);
1900	cdv_intel_attach_broadcast_rgb_property(connector);
1901}
1902
1903/* check the VBT to see whether the eDP is on DP-D port */
1904static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1905{
1906	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
1907	struct child_device_config *p_child;
1908	int i;
1909
1910	if (!dev_priv->child_dev_num)
1911		return false;
1912
1913	for (i = 0; i < dev_priv->child_dev_num; i++) {
1914		p_child = dev_priv->child_dev + i;
1915
1916		if (p_child->dvo_port == PORT_IDPC &&
1917		    p_child->device_type == DEVICE_TYPE_eDP)
1918			return true;
1919	}
1920	return false;
1921}
1922
1923/* Cedarview display clock gating
1924
1925   We need this disable dot get correct behaviour while enabling
1926   DP/eDP. TODO - investigate if we can turn it back to normality
1927   after enabling */
1928static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1929{
1930	u32 reg_value;
1931	reg_value = REG_READ(DSPCLK_GATE_D);
1932
1933	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1934			DPUNIT_PIPEA_GATE_DISABLE |
1935			DPCUNIT_CLOCK_GATE_DISABLE |
1936			DPLSUNIT_CLOCK_GATE_DISABLE |
1937			DPOUNIT_CLOCK_GATE_DISABLE |
1938			DPIOUNIT_CLOCK_GATE_DISABLE);
1939
1940	REG_WRITE(DSPCLK_GATE_D, reg_value);
1941
1942	udelay(500);
1943}
1944
1945void
1946cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1947{
1948	struct gma_encoder *gma_encoder;
1949	struct gma_connector *gma_connector;
1950	struct drm_connector *connector;
1951	struct drm_encoder *encoder;
1952	struct cdv_intel_dp *intel_dp;
1953	const char *name = NULL;
1954	int type = DRM_MODE_CONNECTOR_DisplayPort;
1955
1956	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1957	if (!gma_encoder)
1958		return;
1959        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1960        if (!gma_connector)
1961                goto err_connector;
1962	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1963	if (!intel_dp)
1964	        goto err_priv;
1965
1966	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1967		type = DRM_MODE_CONNECTOR_eDP;
1968
1969	connector = &gma_connector->base;
1970	encoder = &gma_encoder->base;
1971
1972	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1973	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1974
1975	gma_connector_attach_encoder(gma_connector, gma_encoder);
1976
1977	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1978		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1979        else
1980		gma_encoder->type = INTEL_OUTPUT_EDP;
1981
1982
1983	gma_encoder->dev_priv=intel_dp;
1984	intel_dp->encoder = gma_encoder;
1985	intel_dp->output_reg = output_reg;
1986
1987	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1988	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1989
1990	connector->polled = DRM_CONNECTOR_POLL_HPD;
1991	connector->interlace_allowed = false;
1992	connector->doublescan_allowed = false;
 
 
1993
1994	/* Set up the DDC bus. */
1995	switch (output_reg) {
1996		case DP_B:
1997			name = "DPDDC-B";
1998			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
1999			break;
2000		case DP_C:
2001			name = "DPDDC-C";
2002			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2003			break;
2004	}
2005
2006	cdv_disable_intel_clock_gating(dev);
2007
2008	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2009        /* FIXME:fail check */
2010	cdv_intel_dp_add_properties(connector);
2011
2012	if (is_edp(gma_encoder)) {
2013		int ret;
2014		struct edp_power_seq cur;
2015                u32 pp_on, pp_off, pp_div;
2016		u32 pwm_ctrl;
2017
2018		pp_on = REG_READ(PP_CONTROL);
2019		pp_on &= ~PANEL_UNLOCK_MASK;
2020	        pp_on |= PANEL_UNLOCK_REGS;
2021
2022		REG_WRITE(PP_CONTROL, pp_on);
2023
2024		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2025		pwm_ctrl |= PWM_PIPE_B;
2026		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2027
2028                pp_on = REG_READ(PP_ON_DELAYS);
2029                pp_off = REG_READ(PP_OFF_DELAYS);
2030                pp_div = REG_READ(PP_DIVISOR);
2031
2032		/* Pull timing values out of registers */
2033                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2034                        PANEL_POWER_UP_DELAY_SHIFT;
2035
2036                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2037                        PANEL_LIGHT_ON_DELAY_SHIFT;
2038
2039                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2040                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2041
2042                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2043                        PANEL_POWER_DOWN_DELAY_SHIFT;
2044
2045                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2046                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2047
2048                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2049                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2050
2051
2052		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2053                intel_dp->backlight_on_delay = cur.t8 / 10;
2054                intel_dp->backlight_off_delay = cur.t9 / 10;
2055                intel_dp->panel_power_down_delay = cur.t10 / 10;
2056                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2057
2058                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2059                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2060                              intel_dp->panel_power_cycle_delay);
2061
2062                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2063                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2064
2065
2066		cdv_intel_edp_panel_vdd_on(gma_encoder);
2067		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2068					       intel_dp->dpcd,
2069					       sizeof(intel_dp->dpcd));
2070		cdv_intel_edp_panel_vdd_off(gma_encoder);
2071		if (ret <= 0) {
2072			/* if this fails, presume the device is a ghost */
2073			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2074			drm_encoder_cleanup(encoder);
2075			cdv_intel_dp_destroy(connector);
2076			goto err_connector;
2077		} else {
2078        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2079				intel_dp->dpcd[0], intel_dp->dpcd[1],
2080				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2081
2082		}
2083		/* The CDV reference driver moves pnale backlight setup into the displays that
2084		   have a backlight: this is a good idea and one we should probably adopt, however
2085		   we need to migrate all the drivers before we can do that */
2086                /*cdv_intel_panel_setup_backlight(dev); */
2087	}
2088	return;
2089
2090err_priv:
2091	kfree(gma_connector);
2092err_connector:
2093	kfree(gma_encoder);
2094}
v5.14.15
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31
 
  32#include <drm/drm_crtc.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_dp_helper.h>
 
  35#include <drm/drm_simple_kms_helper.h>
  36
  37#include "gma_display.h"
  38#include "psb_drv.h"
  39#include "psb_intel_drv.h"
  40#include "psb_intel_reg.h"
  41
  42/**
  43 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  44 * 				 aux algorithm
  45 * @running: set by the algo indicating whether an i2c is ongoing or whether
  46 * 	     the i2c bus is quiescent
  47 * @address: i2c target address for the currently ongoing transfer
  48 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  49 */
  50struct i2c_algo_dp_aux_data {
  51	bool running;
  52	u16 address;
  53	int (*aux_ch) (struct i2c_adapter *adapter,
  54		       int mode, uint8_t write_byte,
  55		       uint8_t *read_byte);
  56};
  57
  58/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  59static int
  60i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  61			    uint8_t write_byte, uint8_t *read_byte)
  62{
  63	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  64	int ret;
  65
  66	ret = (*algo_data->aux_ch)(adapter, mode,
  67				   write_byte, read_byte);
  68	return ret;
  69}
  70
  71/*
  72 * I2C over AUX CH
  73 */
  74
  75/*
  76 * Send the address. If the I2C link is running, this 'restarts'
  77 * the connection with the new address, this is used for doing
  78 * a write followed by a read (as needed for DDC)
  79 */
  80static int
  81i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  82{
  83	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  84	int mode = MODE_I2C_START;
  85	int ret;
  86
  87	if (reading)
  88		mode |= MODE_I2C_READ;
  89	else
  90		mode |= MODE_I2C_WRITE;
  91	algo_data->address = address;
  92	algo_data->running = true;
  93	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
  94	return ret;
  95}
  96
  97/*
  98 * Stop the I2C transaction. This closes out the link, sending
  99 * a bare address packet with the MOT bit turned off
 100 */
 101static void
 102i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 103{
 104	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 105	int mode = MODE_I2C_STOP;
 106
 107	if (reading)
 108		mode |= MODE_I2C_READ;
 109	else
 110		mode |= MODE_I2C_WRITE;
 111	if (algo_data->running) {
 112		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 113		algo_data->running = false;
 114	}
 115}
 116
 117/*
 118 * Write a single byte to the current I2C address, the
 119 * the I2C link must be running or this returns -EIO
 120 */
 121static int
 122i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 123{
 124	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 125	int ret;
 126
 127	if (!algo_data->running)
 128		return -EIO;
 129
 130	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 131	return ret;
 132}
 133
 134/*
 135 * Read a single byte from the current I2C address, the
 136 * I2C link must be running or this returns -EIO
 137 */
 138static int
 139i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 140{
 141	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 142	int ret;
 143
 144	if (!algo_data->running)
 145		return -EIO;
 146
 147	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 148	return ret;
 149}
 150
 151static int
 152i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 153		     struct i2c_msg *msgs,
 154		     int num)
 155{
 156	int ret = 0;
 157	bool reading = false;
 158	int m;
 159	int b;
 160
 161	for (m = 0; m < num; m++) {
 162		u16 len = msgs[m].len;
 163		u8 *buf = msgs[m].buf;
 164		reading = (msgs[m].flags & I2C_M_RD) != 0;
 165		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 166		if (ret < 0)
 167			break;
 168		if (reading) {
 169			for (b = 0; b < len; b++) {
 170				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 171				if (ret < 0)
 172					break;
 173			}
 174		} else {
 175			for (b = 0; b < len; b++) {
 176				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 177				if (ret < 0)
 178					break;
 179			}
 180		}
 181		if (ret < 0)
 182			break;
 183	}
 184	if (ret >= 0)
 185		ret = num;
 186	i2c_algo_dp_aux_stop(adapter, reading);
 187	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 188	return ret;
 189}
 190
 191static u32
 192i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 193{
 194	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 195	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 196	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 197	       I2C_FUNC_10BIT_ADDR;
 198}
 199
 200static const struct i2c_algorithm i2c_dp_aux_algo = {
 201	.master_xfer	= i2c_algo_dp_aux_xfer,
 202	.functionality	= i2c_algo_dp_aux_functionality,
 203};
 204
 205static void
 206i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 207{
 208	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 209	(void) i2c_algo_dp_aux_stop(adapter, false);
 210}
 211
 212static int
 213i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 214{
 215	adapter->algo = &i2c_dp_aux_algo;
 216	adapter->retries = 3;
 217	i2c_dp_aux_reset_bus(adapter);
 218	return 0;
 219}
 220
 221/*
 222 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 223 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 224 */
 225static int
 226i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 227{
 228	int error;
 229
 230	error = i2c_dp_aux_prepare_bus(adapter);
 231	if (error)
 232		return error;
 233	error = i2c_add_adapter(adapter);
 234	return error;
 235}
 236
 237#define _wait_for(COND, MS, W) ({ \
 238        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 239        int ret__ = 0;                                                  \
 240        while (! (COND)) {                                              \
 241                if (time_after(jiffies, timeout__)) {                   \
 242                        ret__ = -ETIMEDOUT;                             \
 243                        break;                                          \
 244                }                                                       \
 245                if (W && !in_dbg_master()) msleep(W);                   \
 246        }                                                               \
 247        ret__;                                                          \
 248})
 249
 250#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 251
 252#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 253
 254#define DP_LINK_CONFIGURATION_SIZE	9
 255
 256#define CDV_FAST_LINK_TRAIN	1
 257
 258struct cdv_intel_dp {
 259	uint32_t output_reg;
 260	uint32_t DP;
 261	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 262	bool has_audio;
 263	int force_audio;
 264	uint32_t color_range;
 265	uint8_t link_bw;
 266	uint8_t lane_count;
 267	uint8_t dpcd[4];
 268	struct gma_encoder *encoder;
 269	struct i2c_adapter adapter;
 270	struct i2c_algo_dp_aux_data algo;
 271	uint8_t	train_set[4];
 272	uint8_t link_status[DP_LINK_STATUS_SIZE];
 273	int panel_power_up_delay;
 274	int panel_power_down_delay;
 275	int panel_power_cycle_delay;
 276	int backlight_on_delay;
 277	int backlight_off_delay;
 278	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 279	bool panel_on;
 280};
 281
 282struct ddi_regoff {
 283	uint32_t	PreEmph1;
 284	uint32_t	PreEmph2;
 285	uint32_t	VSwing1;
 286	uint32_t	VSwing2;
 287	uint32_t	VSwing3;
 288	uint32_t	VSwing4;
 289	uint32_t	VSwing5;
 290};
 291
 292static struct ddi_regoff ddi_DP_train_table[] = {
 293	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 294	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 295	.VSwing5 = 0x8158,},
 296	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 297	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 298	.VSwing5 = 0x8258,},
 299};
 300
 301static uint32_t dp_vswing_premph_table[] = {
 302        0x55338954,	0x4000,
 303        0x554d8954,	0x2000,
 304        0x55668954,	0,
 305        0x559ac0d4,	0x6000,
 306};
 307/**
 308 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 309 * @encoder: GMA encoder struct
 310 *
 311 * If a CPU or PCH DP output is attached to an eDP panel, this function
 312 * will return true, and false otherwise.
 313 */
 314static bool is_edp(struct gma_encoder *encoder)
 315{
 316	return encoder->type == INTEL_OUTPUT_EDP;
 317}
 318
 319
 320static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 321static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 322static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 323
 324static int
 325cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 326{
 327	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 328	int max_lane_count = 4;
 329
 330	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 331		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 332		switch (max_lane_count) {
 333		case 1: case 2: case 4:
 334			break;
 335		default:
 336			max_lane_count = 4;
 337		}
 338	}
 339	return max_lane_count;
 340}
 341
 342static int
 343cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 344{
 345	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 346	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 347
 348	switch (max_link_bw) {
 349	case DP_LINK_BW_1_62:
 350	case DP_LINK_BW_2_7:
 351		break;
 352	default:
 353		max_link_bw = DP_LINK_BW_1_62;
 354		break;
 355	}
 356	return max_link_bw;
 357}
 358
 359static int
 360cdv_intel_dp_link_clock(uint8_t link_bw)
 361{
 362	if (link_bw == DP_LINK_BW_2_7)
 363		return 270000;
 364	else
 365		return 162000;
 366}
 367
 368static int
 369cdv_intel_dp_link_required(int pixel_clock, int bpp)
 370{
 371	return (pixel_clock * bpp + 7) / 8;
 372}
 373
 374static int
 375cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 376{
 377	return (max_link_clock * max_lanes * 19) / 20;
 378}
 379
 380static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 381{
 382	struct drm_device *dev = intel_encoder->base.dev;
 383	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 384	u32 pp;
 385
 386	if (intel_dp->panel_on) {
 387		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 388		return;
 389	}
 390	DRM_DEBUG_KMS("\n");
 391
 392	pp = REG_READ(PP_CONTROL);
 393
 394	pp |= EDP_FORCE_VDD;
 395	REG_WRITE(PP_CONTROL, pp);
 396	REG_READ(PP_CONTROL);
 397	msleep(intel_dp->panel_power_up_delay);
 398}
 399
 400static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 401{
 402	struct drm_device *dev = intel_encoder->base.dev;
 403	u32 pp;
 404
 405	DRM_DEBUG_KMS("\n");
 406	pp = REG_READ(PP_CONTROL);
 407
 408	pp &= ~EDP_FORCE_VDD;
 409	REG_WRITE(PP_CONTROL, pp);
 410	REG_READ(PP_CONTROL);
 411
 412}
 413
 414/* Returns true if the panel was already on when called */
 415static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 416{
 417	struct drm_device *dev = intel_encoder->base.dev;
 418	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 419	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 420
 421	if (intel_dp->panel_on)
 422		return true;
 423
 424	DRM_DEBUG_KMS("\n");
 425	pp = REG_READ(PP_CONTROL);
 426	pp &= ~PANEL_UNLOCK_MASK;
 427
 428	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 429	REG_WRITE(PP_CONTROL, pp);
 430	REG_READ(PP_CONTROL);
 431
 432	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 433		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 434		intel_dp->panel_on = false;
 435	} else
 436		intel_dp->panel_on = true;
 437	msleep(intel_dp->panel_power_up_delay);
 438
 439	return false;
 440}
 441
 442static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 443{
 444	struct drm_device *dev = intel_encoder->base.dev;
 445	u32 pp, idle_off_mask = PP_ON ;
 446	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 447
 448	DRM_DEBUG_KMS("\n");
 449
 450	pp = REG_READ(PP_CONTROL);
 451
 452	if ((pp & POWER_TARGET_ON) == 0)
 453		return;
 454
 455	intel_dp->panel_on = false;
 456	pp &= ~PANEL_UNLOCK_MASK;
 457	/* ILK workaround: disable reset around power sequence */
 458
 459	pp &= ~POWER_TARGET_ON;
 460	pp &= ~EDP_FORCE_VDD;
 461	pp &= ~EDP_BLC_ENABLE;
 462	REG_WRITE(PP_CONTROL, pp);
 463	REG_READ(PP_CONTROL);
 464	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 465
 466	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 467		DRM_DEBUG_KMS("Error in turning off Panel\n");
 468	}
 469
 470	msleep(intel_dp->panel_power_cycle_delay);
 471	DRM_DEBUG_KMS("Over\n");
 472}
 473
 474static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 475{
 476	struct drm_device *dev = intel_encoder->base.dev;
 477	u32 pp;
 478
 479	DRM_DEBUG_KMS("\n");
 480	/*
 481	 * If we enable the backlight right away following a panel power
 482	 * on, we may see slight flicker as the panel syncs with the eDP
 483	 * link.  So delay a bit to make sure the image is solid before
 484	 * allowing it to appear.
 485	 */
 486	msleep(300);
 487	pp = REG_READ(PP_CONTROL);
 488
 489	pp |= EDP_BLC_ENABLE;
 490	REG_WRITE(PP_CONTROL, pp);
 491	gma_backlight_enable(dev);
 492}
 493
 494static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 495{
 496	struct drm_device *dev = intel_encoder->base.dev;
 497	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 498	u32 pp;
 499
 500	DRM_DEBUG_KMS("\n");
 501	gma_backlight_disable(dev);
 502	msleep(10);
 503	pp = REG_READ(PP_CONTROL);
 504
 505	pp &= ~EDP_BLC_ENABLE;
 506	REG_WRITE(PP_CONTROL, pp);
 507	msleep(intel_dp->backlight_off_delay);
 508}
 509
 510static enum drm_mode_status
 511cdv_intel_dp_mode_valid(struct drm_connector *connector,
 512		    struct drm_display_mode *mode)
 513{
 514	struct gma_encoder *encoder = gma_attached_encoder(connector);
 515	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 516	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 517	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 518	struct drm_psb_private *dev_priv = connector->dev->dev_private;
 519
 520	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 521		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 522			return MODE_PANEL;
 523		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 524			return MODE_PANEL;
 525	}
 526
 527	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 528	   which are outside spec tolerances but somehow work by magic */
 529	if (!is_edp(encoder) &&
 530	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 531	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 532		return MODE_CLOCK_HIGH;
 533
 534	if (is_edp(encoder)) {
 535	    if (cdv_intel_dp_link_required(mode->clock, 24)
 536	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 537		return MODE_CLOCK_HIGH;
 538
 539	}
 540	if (mode->clock < 10000)
 541		return MODE_CLOCK_LOW;
 542
 543	return MODE_OK;
 544}
 545
 546static uint32_t
 547pack_aux(uint8_t *src, int src_bytes)
 548{
 549	int	i;
 550	uint32_t v = 0;
 551
 552	if (src_bytes > 4)
 553		src_bytes = 4;
 554	for (i = 0; i < src_bytes; i++)
 555		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 556	return v;
 557}
 558
 559static void
 560unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 561{
 562	int i;
 563	if (dst_bytes > 4)
 564		dst_bytes = 4;
 565	for (i = 0; i < dst_bytes; i++)
 566		dst[i] = src >> ((3-i) * 8);
 567}
 568
 569static int
 570cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 571		uint8_t *send, int send_bytes,
 572		uint8_t *recv, int recv_size)
 573{
 574	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 575	uint32_t output_reg = intel_dp->output_reg;
 576	struct drm_device *dev = encoder->base.dev;
 577	uint32_t ch_ctl = output_reg + 0x10;
 578	uint32_t ch_data = ch_ctl + 4;
 579	int i;
 580	int recv_bytes;
 581	uint32_t status;
 582	uint32_t aux_clock_divider;
 583	int try, precharge;
 584
 585	/* The clock divider is based off the hrawclk,
 586	 * and would like to run at 2MHz. So, take the
 587	 * hrawclk value and divide by 2 and use that
 588	 * On CDV platform it uses 200MHz as hrawclk.
 589	 *
 590	 */
 591	aux_clock_divider = 200 / 2;
 592
 593	precharge = 4;
 594	if (is_edp(encoder))
 595		precharge = 10;
 596
 597	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 598		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 599			  REG_READ(ch_ctl));
 600		return -EBUSY;
 601	}
 602
 603	/* Must try at least 3 times according to DP spec */
 604	for (try = 0; try < 5; try++) {
 605		/* Load the send data into the aux channel data registers */
 606		for (i = 0; i < send_bytes; i += 4)
 607			REG_WRITE(ch_data + i,
 608				   pack_aux(send + i, send_bytes - i));
 609
 610		/* Send the command and wait for it to complete */
 611		REG_WRITE(ch_ctl,
 612			   DP_AUX_CH_CTL_SEND_BUSY |
 613			   DP_AUX_CH_CTL_TIME_OUT_400us |
 614			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 615			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 616			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 617			   DP_AUX_CH_CTL_DONE |
 618			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 619			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 620		for (;;) {
 621			status = REG_READ(ch_ctl);
 622			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 623				break;
 624			udelay(100);
 625		}
 626
 627		/* Clear done status and any errors */
 628		REG_WRITE(ch_ctl,
 629			   status |
 630			   DP_AUX_CH_CTL_DONE |
 631			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 632			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 633		if (status & DP_AUX_CH_CTL_DONE)
 634			break;
 635	}
 636
 637	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 638		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 639		return -EBUSY;
 640	}
 641
 642	/* Check for timeout or receive error.
 643	 * Timeouts occur when the sink is not connected
 644	 */
 645	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 646		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 647		return -EIO;
 648	}
 649
 650	/* Timeouts occur when the device isn't connected, so they're
 651	 * "normal" -- don't fill the kernel log with these */
 652	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 653		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 654		return -ETIMEDOUT;
 655	}
 656
 657	/* Unload any bytes sent back from the other side */
 658	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 659		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 660	if (recv_bytes > recv_size)
 661		recv_bytes = recv_size;
 662
 663	for (i = 0; i < recv_bytes; i += 4)
 664		unpack_aux(REG_READ(ch_data + i),
 665			   recv + i, recv_bytes - i);
 666
 667	return recv_bytes;
 668}
 669
 670/* Write data to the aux channel in native mode */
 671static int
 672cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 673			  uint16_t address, uint8_t *send, int send_bytes)
 674{
 675	int ret;
 676	uint8_t	msg[20];
 677	int msg_bytes;
 678	uint8_t	ack;
 679
 680	if (send_bytes > 16)
 681		return -1;
 682	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 683	msg[1] = address >> 8;
 684	msg[2] = address & 0xff;
 685	msg[3] = send_bytes - 1;
 686	memcpy(&msg[4], send, send_bytes);
 687	msg_bytes = send_bytes + 4;
 688	for (;;) {
 689		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 690		if (ret < 0)
 691			return ret;
 692		ack >>= 4;
 693		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 694			break;
 695		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 696			udelay(100);
 697		else
 698			return -EIO;
 699	}
 700	return send_bytes;
 701}
 702
 703/* Write a single byte to the aux channel in native mode */
 704static int
 705cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 706			    uint16_t address, uint8_t byte)
 707{
 708	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 709}
 710
 711/* read bytes from a native aux channel */
 712static int
 713cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 714			 uint16_t address, uint8_t *recv, int recv_bytes)
 715{
 716	uint8_t msg[4];
 717	int msg_bytes;
 718	uint8_t reply[20];
 719	int reply_bytes;
 720	uint8_t ack;
 721	int ret;
 722
 723	msg[0] = DP_AUX_NATIVE_READ << 4;
 724	msg[1] = address >> 8;
 725	msg[2] = address & 0xff;
 726	msg[3] = recv_bytes - 1;
 727
 728	msg_bytes = 4;
 729	reply_bytes = recv_bytes + 1;
 730
 731	for (;;) {
 732		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 733				      reply, reply_bytes);
 734		if (ret == 0)
 735			return -EPROTO;
 736		if (ret < 0)
 737			return ret;
 738		ack = reply[0] >> 4;
 739		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 740			memcpy(recv, reply + 1, ret - 1);
 741			return ret - 1;
 742		}
 743		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 744			udelay(100);
 745		else
 746			return -EIO;
 747	}
 748}
 749
 750static int
 751cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 752		    uint8_t write_byte, uint8_t *read_byte)
 753{
 754	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 755	struct cdv_intel_dp *intel_dp = container_of(adapter,
 756						struct cdv_intel_dp,
 757						adapter);
 758	struct gma_encoder *encoder = intel_dp->encoder;
 759	uint16_t address = algo_data->address;
 760	uint8_t msg[5];
 761	uint8_t reply[2];
 762	unsigned retry;
 763	int msg_bytes;
 764	int reply_bytes;
 765	int ret;
 766
 767	/* Set up the command byte */
 768	if (mode & MODE_I2C_READ)
 769		msg[0] = DP_AUX_I2C_READ << 4;
 770	else
 771		msg[0] = DP_AUX_I2C_WRITE << 4;
 772
 773	if (!(mode & MODE_I2C_STOP))
 774		msg[0] |= DP_AUX_I2C_MOT << 4;
 775
 776	msg[1] = address >> 8;
 777	msg[2] = address;
 778
 779	switch (mode) {
 780	case MODE_I2C_WRITE:
 781		msg[3] = 0;
 782		msg[4] = write_byte;
 783		msg_bytes = 5;
 784		reply_bytes = 1;
 785		break;
 786	case MODE_I2C_READ:
 787		msg[3] = 0;
 788		msg_bytes = 4;
 789		reply_bytes = 2;
 790		break;
 791	default:
 792		msg_bytes = 3;
 793		reply_bytes = 1;
 794		break;
 795	}
 796
 797	for (retry = 0; retry < 5; retry++) {
 798		ret = cdv_intel_dp_aux_ch(encoder,
 799				      msg, msg_bytes,
 800				      reply, reply_bytes);
 801		if (ret < 0) {
 802			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 803			return ret;
 804		}
 805
 806		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 807		case DP_AUX_NATIVE_REPLY_ACK:
 808			/* I2C-over-AUX Reply field is only valid
 809			 * when paired with AUX ACK.
 810			 */
 811			break;
 812		case DP_AUX_NATIVE_REPLY_NACK:
 813			DRM_DEBUG_KMS("aux_ch native nack\n");
 814			return -EREMOTEIO;
 815		case DP_AUX_NATIVE_REPLY_DEFER:
 816			udelay(100);
 817			continue;
 818		default:
 819			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 820				  reply[0]);
 821			return -EREMOTEIO;
 822		}
 823
 824		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 825		case DP_AUX_I2C_REPLY_ACK:
 826			if (mode == MODE_I2C_READ) {
 827				*read_byte = reply[1];
 828			}
 829			return reply_bytes - 1;
 830		case DP_AUX_I2C_REPLY_NACK:
 831			DRM_DEBUG_KMS("aux_i2c nack\n");
 832			return -EREMOTEIO;
 833		case DP_AUX_I2C_REPLY_DEFER:
 834			DRM_DEBUG_KMS("aux_i2c defer\n");
 835			udelay(100);
 836			break;
 837		default:
 838			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 839			return -EREMOTEIO;
 840		}
 841	}
 842
 843	DRM_ERROR("too many retries, giving up\n");
 844	return -EREMOTEIO;
 845}
 846
 847static int
 848cdv_intel_dp_i2c_init(struct gma_connector *connector,
 849		      struct gma_encoder *encoder, const char *name)
 850{
 851	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 852	int ret;
 853
 854	DRM_DEBUG_KMS("i2c_init %s\n", name);
 855
 856	intel_dp->algo.running = false;
 857	intel_dp->algo.address = 0;
 858	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 859
 860	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 861	intel_dp->adapter.owner = THIS_MODULE;
 862	intel_dp->adapter.class = I2C_CLASS_DDC;
 863	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 864	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 865	intel_dp->adapter.algo_data = &intel_dp->algo;
 866	intel_dp->adapter.dev.parent = connector->base.kdev;
 867
 868	if (is_edp(encoder))
 869		cdv_intel_edp_panel_vdd_on(encoder);
 870	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 871	if (is_edp(encoder))
 872		cdv_intel_edp_panel_vdd_off(encoder);
 873
 874	return ret;
 875}
 876
 877static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 878	struct drm_display_mode *adjusted_mode)
 879{
 880	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 881	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 882	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 883	adjusted_mode->htotal = fixed_mode->htotal;
 884
 885	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 886	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 887	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 888	adjusted_mode->vtotal = fixed_mode->vtotal;
 889
 890	adjusted_mode->clock = fixed_mode->clock;
 891
 892	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 893}
 894
 895static bool
 896cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 897		    struct drm_display_mode *adjusted_mode)
 898{
 899	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
 900	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 901	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 902	int lane_count, clock;
 903	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 904	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 905	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 906	int refclock = mode->clock;
 907	int bpp = 24;
 908
 909	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 910		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 911		refclock = intel_dp->panel_fixed_mode->clock;
 912		bpp = dev_priv->edp.bpp;
 913	}
 914
 915	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 916		for (clock = max_clock; clock >= 0; clock--) {
 917			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 918
 919			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 920				intel_dp->link_bw = bws[clock];
 921				intel_dp->lane_count = lane_count;
 922				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 923				DRM_DEBUG_KMS("Display port link bw %02x lane "
 924						"count %d clock %d\n",
 925				       intel_dp->link_bw, intel_dp->lane_count,
 926				       adjusted_mode->clock);
 927				return true;
 928			}
 929		}
 930	}
 931	if (is_edp(intel_encoder)) {
 932		/* okay we failed just pick the highest */
 933		intel_dp->lane_count = max_lane_count;
 934		intel_dp->link_bw = bws[max_clock];
 935		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 936		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 937			      "count %d clock %d\n",
 938			      intel_dp->link_bw, intel_dp->lane_count,
 939			      adjusted_mode->clock);
 940
 941		return true;
 942	}
 943	return false;
 944}
 945
 946struct cdv_intel_dp_m_n {
 947	uint32_t	tu;
 948	uint32_t	gmch_m;
 949	uint32_t	gmch_n;
 950	uint32_t	link_m;
 951	uint32_t	link_n;
 952};
 953
 954static void
 955cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 956{
 957	/*
 958	while (*num > 0xffffff || *den > 0xffffff) {
 959		*num >>= 1;
 960		*den >>= 1;
 961	}*/
 962	uint64_t value, m;
 963	m = *num;
 964	value = m * (0x800000);
 965	m = do_div(value, *den);
 966	*num = value;
 967	*den = 0x800000;
 968}
 969
 970static void
 971cdv_intel_dp_compute_m_n(int bpp,
 972		     int nlanes,
 973		     int pixel_clock,
 974		     int link_clock,
 975		     struct cdv_intel_dp_m_n *m_n)
 976{
 977	m_n->tu = 64;
 978	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 979	m_n->gmch_n = link_clock * nlanes;
 980	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 981	m_n->link_m = pixel_clock;
 982	m_n->link_n = link_clock;
 983	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 984}
 985
 986void
 987cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 988		 struct drm_display_mode *adjusted_mode)
 989{
 990	struct drm_device *dev = crtc->dev;
 991	struct drm_psb_private *dev_priv = dev->dev_private;
 992	struct drm_mode_config *mode_config = &dev->mode_config;
 993	struct drm_encoder *encoder;
 994	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 995	int lane_count = 4, bpp = 24;
 996	struct cdv_intel_dp_m_n m_n;
 997	int pipe = gma_crtc->pipe;
 998
 999	/*
1000	 * Find the lane count in the intel_encoder private
1001	 */
1002	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1003		struct gma_encoder *intel_encoder;
1004		struct cdv_intel_dp *intel_dp;
1005
1006		if (encoder->crtc != crtc)
1007			continue;
1008
1009		intel_encoder = to_gma_encoder(encoder);
1010		intel_dp = intel_encoder->dev_priv;
1011		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1012			lane_count = intel_dp->lane_count;
1013			break;
1014		} else if (is_edp(intel_encoder)) {
1015			lane_count = intel_dp->lane_count;
1016			bpp = dev_priv->edp.bpp;
1017			break;
1018		}
1019	}
1020
1021	/*
1022	 * Compute the GMCH and Link ratios. The '3' here is
1023	 * the number of bytes_per_pixel post-LUT, which we always
1024	 * set up for 8-bits of R/G/B, or 3 bytes total.
1025	 */
1026	cdv_intel_dp_compute_m_n(bpp, lane_count,
1027			     mode->clock, adjusted_mode->clock, &m_n);
1028
1029	{
1030		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1031			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1032			   m_n.gmch_m);
1033		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1034		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1035		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1036	}
1037}
1038
1039static void
1040cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1041		  struct drm_display_mode *adjusted_mode)
1042{
1043	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1044	struct drm_crtc *crtc = encoder->crtc;
1045	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1046	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1047	struct drm_device *dev = encoder->dev;
1048
1049	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1050	intel_dp->DP |= intel_dp->color_range;
1051
1052	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1053		intel_dp->DP |= DP_SYNC_HS_HIGH;
1054	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1055		intel_dp->DP |= DP_SYNC_VS_HIGH;
1056
1057	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1058
1059	switch (intel_dp->lane_count) {
1060	case 1:
1061		intel_dp->DP |= DP_PORT_WIDTH_1;
1062		break;
1063	case 2:
1064		intel_dp->DP |= DP_PORT_WIDTH_2;
1065		break;
1066	case 4:
1067		intel_dp->DP |= DP_PORT_WIDTH_4;
1068		break;
1069	}
1070	if (intel_dp->has_audio)
1071		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1072
1073	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1074	intel_dp->link_configuration[0] = intel_dp->link_bw;
1075	intel_dp->link_configuration[1] = intel_dp->lane_count;
1076
1077	/*
1078	 * Check for DPCD version > 1.1 and enhanced framing support
1079	 */
1080	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1081	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1082		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1083		intel_dp->DP |= DP_ENHANCED_FRAMING;
1084	}
1085
1086	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1087	if (gma_crtc->pipe == 1)
1088		intel_dp->DP |= DP_PIPEB_SELECT;
1089
1090	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1091	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1092	if (is_edp(intel_encoder)) {
1093		uint32_t pfit_control;
1094		cdv_intel_edp_panel_on(intel_encoder);
1095
1096		if (mode->hdisplay != adjusted_mode->hdisplay ||
1097			    mode->vdisplay != adjusted_mode->vdisplay)
1098			pfit_control = PFIT_ENABLE;
1099		else
1100			pfit_control = 0;
1101
1102		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1103
1104		REG_WRITE(PFIT_CONTROL, pfit_control);
1105	}
1106}
1107
1108
1109/* If the sink supports it, try to set the power state appropriately */
1110static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1111{
1112	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1113	int ret, i;
1114
1115	/* Should have a valid DPCD by this point */
1116	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1117		return;
1118
1119	if (mode != DRM_MODE_DPMS_ON) {
1120		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1121						  DP_SET_POWER_D3);
1122		if (ret != 1)
1123			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1124	} else {
1125		/*
1126		 * When turning on, we need to retry for 1ms to give the sink
1127		 * time to wake up.
1128		 */
1129		for (i = 0; i < 3; i++) {
1130			ret = cdv_intel_dp_aux_native_write_1(encoder,
1131							  DP_SET_POWER,
1132							  DP_SET_POWER_D0);
1133			if (ret == 1)
1134				break;
1135			udelay(1000);
1136		}
1137	}
1138}
1139
1140static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1141{
1142	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1143	int edp = is_edp(intel_encoder);
1144
1145	if (edp) {
1146		cdv_intel_edp_backlight_off(intel_encoder);
1147		cdv_intel_edp_panel_off(intel_encoder);
1148		cdv_intel_edp_panel_vdd_on(intel_encoder);
1149        }
1150	/* Wake up the sink first */
1151	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1152	cdv_intel_dp_link_down(intel_encoder);
1153	if (edp)
1154		cdv_intel_edp_panel_vdd_off(intel_encoder);
1155}
1156
1157static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1158{
1159	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1160	int edp = is_edp(intel_encoder);
1161
1162	if (edp)
1163		cdv_intel_edp_panel_on(intel_encoder);
1164	cdv_intel_dp_start_link_train(intel_encoder);
1165	cdv_intel_dp_complete_link_train(intel_encoder);
1166	if (edp)
1167		cdv_intel_edp_backlight_on(intel_encoder);
1168}
1169
1170static void
1171cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1172{
1173	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1174	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1175	struct drm_device *dev = encoder->dev;
1176	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1177	int edp = is_edp(intel_encoder);
1178
1179	if (mode != DRM_MODE_DPMS_ON) {
1180		if (edp) {
1181			cdv_intel_edp_backlight_off(intel_encoder);
1182			cdv_intel_edp_panel_vdd_on(intel_encoder);
1183		}
1184		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1185		cdv_intel_dp_link_down(intel_encoder);
1186		if (edp) {
1187			cdv_intel_edp_panel_vdd_off(intel_encoder);
1188			cdv_intel_edp_panel_off(intel_encoder);
1189		}
1190	} else {
1191        	if (edp)
1192			cdv_intel_edp_panel_on(intel_encoder);
1193		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1194		if (!(dp_reg & DP_PORT_EN)) {
1195			cdv_intel_dp_start_link_train(intel_encoder);
1196			cdv_intel_dp_complete_link_train(intel_encoder);
1197		}
1198		if (edp)
1199        		cdv_intel_edp_backlight_on(intel_encoder);
1200	}
1201}
1202
1203/*
1204 * Native read with retry for link status and receiver capability reads for
1205 * cases where the sink may still be asleep.
1206 */
1207static bool
1208cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1209			       uint8_t *recv, int recv_bytes)
1210{
1211	int ret, i;
1212
1213	/*
1214	 * Sinks are *supposed* to come up within 1ms from an off state,
1215	 * but we're also supposed to retry 3 times per the spec.
1216	 */
1217	for (i = 0; i < 3; i++) {
1218		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1219					       recv_bytes);
1220		if (ret == recv_bytes)
1221			return true;
1222		udelay(1000);
1223	}
1224
1225	return false;
1226}
1227
1228/*
1229 * Fetch AUX CH registers 0x202 - 0x207 which contain
1230 * link status information
1231 */
1232static bool
1233cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1234{
1235	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1236	return cdv_intel_dp_aux_native_read_retry(encoder,
1237					      DP_LANE0_1_STATUS,
1238					      intel_dp->link_status,
1239					      DP_LINK_STATUS_SIZE);
1240}
1241
1242static uint8_t
1243cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1244		     int r)
1245{
1246	return link_status[r - DP_LANE0_1_STATUS];
1247}
1248
1249static uint8_t
1250cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1251				 int lane)
1252{
1253	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1254	int	    s = ((lane & 1) ?
1255			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1256			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1257	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1258
1259	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1260}
1261
1262static uint8_t
1263cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264				      int lane)
1265{
1266	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1267	int	    s = ((lane & 1) ?
1268			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1269			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1270	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1271
1272	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1273}
1274
1275#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1276
1277static void
1278cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1279{
1280	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1281	uint8_t v = 0;
1282	uint8_t p = 0;
1283	int lane;
1284
1285	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1286		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1287		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1288
1289		if (this_v > v)
1290			v = this_v;
1291		if (this_p > p)
1292			p = this_p;
1293	}
1294
1295	if (v >= CDV_DP_VOLTAGE_MAX)
1296		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1297
1298	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1299		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1300
1301	for (lane = 0; lane < 4; lane++)
1302		intel_dp->train_set[lane] = v | p;
1303}
1304
1305
1306static uint8_t
1307cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1308		      int lane)
1309{
1310	int i = DP_LANE0_1_STATUS + (lane >> 1);
1311	int s = (lane & 1) * 4;
1312	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1313
1314	return (l >> s) & 0xf;
1315}
1316
1317/* Check for clock recovery is done on all channels */
1318static bool
1319cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1320{
1321	int lane;
1322	uint8_t lane_status;
1323
1324	for (lane = 0; lane < lane_count; lane++) {
1325		lane_status = cdv_intel_get_lane_status(link_status, lane);
1326		if ((lane_status & DP_LANE_CR_DONE) == 0)
1327			return false;
1328	}
1329	return true;
1330}
1331
1332/* Check to see if channel eq is done on all channels */
1333#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1334			 DP_LANE_CHANNEL_EQ_DONE|\
1335			 DP_LANE_SYMBOL_LOCKED)
1336static bool
1337cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1338{
1339	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1340	uint8_t lane_align;
1341	uint8_t lane_status;
1342	int lane;
1343
1344	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1345					  DP_LANE_ALIGN_STATUS_UPDATED);
1346	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1347		return false;
1348	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1349		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1350		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1351			return false;
1352	}
1353	return true;
1354}
1355
1356static bool
1357cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1358			uint32_t dp_reg_value,
1359			uint8_t dp_train_pat)
1360{
1361	struct drm_device *dev = encoder->base.dev;
1362	int ret;
1363	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1364
1365	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1366	REG_READ(intel_dp->output_reg);
1367
1368	ret = cdv_intel_dp_aux_native_write_1(encoder,
1369				    DP_TRAINING_PATTERN_SET,
1370				    dp_train_pat);
1371
1372	if (ret != 1) {
1373		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1374				dp_train_pat);
1375		return false;
1376	}
1377
1378	return true;
1379}
1380
1381
1382static bool
1383cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1384			uint8_t dp_train_pat)
1385{
1386	int ret;
1387	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1388
1389	ret = cdv_intel_dp_aux_native_write(encoder,
1390					DP_TRAINING_LANE0_SET,
1391					intel_dp->train_set,
1392					intel_dp->lane_count);
1393
1394	if (ret != intel_dp->lane_count) {
1395		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1396				intel_dp->train_set[0], intel_dp->lane_count);
1397		return false;
1398	}
1399	return true;
1400}
1401
1402static void
1403cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1404{
1405	struct drm_device *dev = encoder->base.dev;
1406	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1407	struct ddi_regoff *ddi_reg;
1408	int vswing, premph, index;
1409
1410	if (intel_dp->output_reg == DP_B)
1411		ddi_reg = &ddi_DP_train_table[0];
1412	else
1413		ddi_reg = &ddi_DP_train_table[1];
1414
1415	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1416	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1417				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1418
1419	if (vswing + premph > 3)
1420		return;
1421#ifdef CDV_FAST_LINK_TRAIN
1422	return;
1423#endif
1424	DRM_DEBUG_KMS("Test2\n");
1425	//return ;
1426	cdv_sb_reset(dev);
1427	/* ;Swing voltage programming
1428        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1429	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1430
1431	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1432	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1433
1434	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1435	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1436	 */
1437	index = (vswing + premph) * 2;
1438	if (premph == 1 && vswing == 1) {
1439		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1440	} else
1441		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1442
1443	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1444	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1445		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1446	else
1447		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1448
1449	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1450	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1451
1452	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1453	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1454
1455	/* ;Pre emphasis programming
1456	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1457	 */
1458	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1459
1460	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1461	index = 2 * premph + 1;
1462	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1463	return;
1464}
1465
1466
1467/* Enable corresponding port and start training pattern 1 */
1468static void
1469cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1470{
1471	struct drm_device *dev = encoder->base.dev;
1472	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1473	int i;
1474	uint8_t voltage;
1475	bool clock_recovery = false;
1476	int tries;
1477	u32 reg;
1478	uint32_t DP = intel_dp->DP;
1479
1480	DP |= DP_PORT_EN;
1481	DP &= ~DP_LINK_TRAIN_MASK;
1482
1483	reg = DP;
1484	reg |= DP_LINK_TRAIN_PAT_1;
1485	/* Enable output, wait for it to become active */
1486	REG_WRITE(intel_dp->output_reg, reg);
1487	REG_READ(intel_dp->output_reg);
1488	gma_wait_for_vblank(dev);
1489
1490	DRM_DEBUG_KMS("Link config\n");
1491	/* Write the link configuration data */
1492	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1493				  intel_dp->link_configuration,
1494				  2);
1495
1496	memset(intel_dp->train_set, 0, 4);
1497	voltage = 0;
1498	tries = 0;
1499	clock_recovery = false;
1500
1501	DRM_DEBUG_KMS("Start train\n");
1502	reg = DP | DP_LINK_TRAIN_PAT_1;
1503
1504	for (;;) {
1505		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1506		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1507				intel_dp->train_set[0],
1508				intel_dp->link_configuration[0],
1509				intel_dp->link_configuration[1]);
1510
1511		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1512			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1513		}
1514		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1515		/* Set training pattern 1 */
1516
1517		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1518
1519		udelay(200);
1520		if (!cdv_intel_dp_get_link_status(encoder))
1521			break;
1522
1523		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1524				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1525				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1526
1527		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1528			DRM_DEBUG_KMS("PT1 train is done\n");
1529			clock_recovery = true;
1530			break;
1531		}
1532
1533		/* Check to see if we've tried the max voltage */
1534		for (i = 0; i < intel_dp->lane_count; i++)
1535			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1536				break;
1537		if (i == intel_dp->lane_count)
1538			break;
1539
1540		/* Check to see if we've tried the same voltage 5 times */
1541		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1542			++tries;
1543			if (tries == 5)
1544				break;
1545		} else
1546			tries = 0;
1547		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1548
1549		/* Compute new intel_dp->train_set as requested by target */
1550		cdv_intel_get_adjust_train(encoder);
1551
1552	}
1553
1554	if (!clock_recovery) {
1555		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1556	}
1557
1558	intel_dp->DP = DP;
1559}
1560
1561static void
1562cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1563{
1564	struct drm_device *dev = encoder->base.dev;
1565	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1566	int tries, cr_tries;
1567	u32 reg;
1568	uint32_t DP = intel_dp->DP;
1569
1570	/* channel equalization */
1571	tries = 0;
1572	cr_tries = 0;
1573
1574	DRM_DEBUG_KMS("\n");
1575	reg = DP | DP_LINK_TRAIN_PAT_2;
1576
1577	for (;;) {
1578
1579		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1580				intel_dp->train_set[0],
1581				intel_dp->link_configuration[0],
1582				intel_dp->link_configuration[1]);
1583        	/* channel eq pattern */
1584
1585		if (!cdv_intel_dp_set_link_train(encoder, reg,
1586					     DP_TRAINING_PATTERN_2)) {
1587			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1588		}
1589		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1590
1591		if (cr_tries > 5) {
1592			DRM_ERROR("failed to train DP, aborting\n");
1593			cdv_intel_dp_link_down(encoder);
1594			break;
1595		}
1596
1597		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1598
1599		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1600
1601		udelay(1000);
1602		if (!cdv_intel_dp_get_link_status(encoder))
1603			break;
1604
1605		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1606				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1607				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1608
1609		/* Make sure clock is still ok */
1610		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1611			cdv_intel_dp_start_link_train(encoder);
1612			cr_tries++;
1613			continue;
1614		}
1615
1616		if (cdv_intel_channel_eq_ok(encoder)) {
1617			DRM_DEBUG_KMS("PT2 train is done\n");
1618			break;
1619		}
1620
1621		/* Try 5 times, then try clock recovery if that fails */
1622		if (tries > 5) {
1623			cdv_intel_dp_link_down(encoder);
1624			cdv_intel_dp_start_link_train(encoder);
1625			tries = 0;
1626			cr_tries++;
1627			continue;
1628		}
1629
1630		/* Compute new intel_dp->train_set as requested by target */
1631		cdv_intel_get_adjust_train(encoder);
1632		++tries;
1633
1634	}
1635
1636	reg = DP | DP_LINK_TRAIN_OFF;
1637
1638	REG_WRITE(intel_dp->output_reg, reg);
1639	REG_READ(intel_dp->output_reg);
1640	cdv_intel_dp_aux_native_write_1(encoder,
1641				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1642}
1643
1644static void
1645cdv_intel_dp_link_down(struct gma_encoder *encoder)
1646{
1647	struct drm_device *dev = encoder->base.dev;
1648	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1649	uint32_t DP = intel_dp->DP;
1650
1651	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1652		return;
1653
1654	DRM_DEBUG_KMS("\n");
1655
1656
1657	{
1658		DP &= ~DP_LINK_TRAIN_MASK;
1659		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1660	}
1661	REG_READ(intel_dp->output_reg);
1662
1663	msleep(17);
1664
1665	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1666	REG_READ(intel_dp->output_reg);
1667}
1668
1669static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1670{
1671	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1672	enum drm_connector_status status;
1673
1674	status = connector_status_disconnected;
1675	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1676				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1677	{
1678		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1679			status = connector_status_connected;
1680	}
1681	if (status == connector_status_connected)
1682		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1683			intel_dp->dpcd[0], intel_dp->dpcd[1],
1684			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1685	return status;
1686}
1687
1688/*
1689 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1690 *
1691 * \return true if DP port is connected.
1692 * \return false if DP port is disconnected.
1693 */
1694static enum drm_connector_status
1695cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1696{
1697	struct gma_encoder *encoder = gma_attached_encoder(connector);
1698	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1699	enum drm_connector_status status;
1700	struct edid *edid = NULL;
1701	int edp = is_edp(encoder);
1702
1703	intel_dp->has_audio = false;
1704
1705	if (edp)
1706		cdv_intel_edp_panel_vdd_on(encoder);
1707	status = cdv_dp_detect(encoder);
1708	if (status != connector_status_connected) {
1709		if (edp)
1710			cdv_intel_edp_panel_vdd_off(encoder);
1711		return status;
1712        }
1713
1714	if (intel_dp->force_audio) {
1715		intel_dp->has_audio = intel_dp->force_audio > 0;
1716	} else {
1717		edid = drm_get_edid(connector, &intel_dp->adapter);
1718		if (edid) {
1719			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1720			kfree(edid);
1721		}
1722	}
1723	if (edp)
1724		cdv_intel_edp_panel_vdd_off(encoder);
1725
1726	return connector_status_connected;
1727}
1728
1729static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1730{
1731	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1732	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1733	struct edid *edid = NULL;
1734	int ret = 0;
1735	int edp = is_edp(intel_encoder);
1736
1737
1738	edid = drm_get_edid(connector, &intel_dp->adapter);
1739	if (edid) {
1740		drm_connector_update_edid_property(connector, edid);
1741		ret = drm_add_edid_modes(connector, edid);
1742		kfree(edid);
1743	}
1744
1745	if (is_edp(intel_encoder)) {
1746		struct drm_device *dev = connector->dev;
1747		struct drm_psb_private *dev_priv = dev->dev_private;
1748
1749		cdv_intel_edp_panel_vdd_off(intel_encoder);
1750		if (ret) {
1751			if (edp && !intel_dp->panel_fixed_mode) {
1752				struct drm_display_mode *newmode;
1753				list_for_each_entry(newmode, &connector->probed_modes,
1754					    head) {
1755					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1756						intel_dp->panel_fixed_mode =
1757							drm_mode_duplicate(dev, newmode);
1758						break;
1759					}
1760				}
1761			}
1762
1763			return ret;
1764		}
1765		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1766			intel_dp->panel_fixed_mode =
1767				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1768			if (intel_dp->panel_fixed_mode) {
1769				intel_dp->panel_fixed_mode->type |=
1770					DRM_MODE_TYPE_PREFERRED;
1771			}
1772		}
1773		if (intel_dp->panel_fixed_mode != NULL) {
1774			struct drm_display_mode *mode;
1775			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1776			drm_mode_probed_add(connector, mode);
1777			return 1;
1778		}
1779	}
1780
1781	return ret;
1782}
1783
1784static bool
1785cdv_intel_dp_detect_audio(struct drm_connector *connector)
1786{
1787	struct gma_encoder *encoder = gma_attached_encoder(connector);
1788	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1789	struct edid *edid;
1790	bool has_audio = false;
1791	int edp = is_edp(encoder);
1792
1793	if (edp)
1794		cdv_intel_edp_panel_vdd_on(encoder);
1795
1796	edid = drm_get_edid(connector, &intel_dp->adapter);
1797	if (edid) {
1798		has_audio = drm_detect_monitor_audio(edid);
1799		kfree(edid);
1800	}
1801	if (edp)
1802		cdv_intel_edp_panel_vdd_off(encoder);
1803
1804	return has_audio;
1805}
1806
1807static int
1808cdv_intel_dp_set_property(struct drm_connector *connector,
1809		      struct drm_property *property,
1810		      uint64_t val)
1811{
1812	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1813	struct gma_encoder *encoder = gma_attached_encoder(connector);
1814	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1815	int ret;
1816
1817	ret = drm_object_property_set_value(&connector->base, property, val);
1818	if (ret)
1819		return ret;
1820
1821	if (property == dev_priv->force_audio_property) {
1822		int i = val;
1823		bool has_audio;
1824
1825		if (i == intel_dp->force_audio)
1826			return 0;
1827
1828		intel_dp->force_audio = i;
1829
1830		if (i == 0)
1831			has_audio = cdv_intel_dp_detect_audio(connector);
1832		else
1833			has_audio = i > 0;
1834
1835		if (has_audio == intel_dp->has_audio)
1836			return 0;
1837
1838		intel_dp->has_audio = has_audio;
1839		goto done;
1840	}
1841
1842	if (property == dev_priv->broadcast_rgb_property) {
1843		if (val == !!intel_dp->color_range)
1844			return 0;
1845
1846		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1847		goto done;
1848	}
1849
1850	return -EINVAL;
1851
1852done:
1853	if (encoder->base.crtc) {
1854		struct drm_crtc *crtc = encoder->base.crtc;
1855		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1856					 crtc->x, crtc->y,
1857					 crtc->primary->fb);
1858	}
1859
1860	return 0;
1861}
1862
1863static void
1864cdv_intel_dp_destroy(struct drm_connector *connector)
1865{
 
1866	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1867	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1868
1869	if (is_edp(gma_encoder)) {
1870	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1871		kfree(intel_dp->panel_fixed_mode);
1872		intel_dp->panel_fixed_mode = NULL;
1873	}
1874	i2c_del_adapter(&intel_dp->adapter);
1875	drm_connector_unregister(connector);
1876	drm_connector_cleanup(connector);
1877	kfree(connector);
1878}
1879
1880static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1881	.dpms = cdv_intel_dp_dpms,
1882	.mode_fixup = cdv_intel_dp_mode_fixup,
1883	.prepare = cdv_intel_dp_prepare,
1884	.mode_set = cdv_intel_dp_mode_set,
1885	.commit = cdv_intel_dp_commit,
1886};
1887
1888static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1889	.dpms = drm_helper_connector_dpms,
1890	.detect = cdv_intel_dp_detect,
1891	.fill_modes = drm_helper_probe_single_connector_modes,
1892	.set_property = cdv_intel_dp_set_property,
1893	.destroy = cdv_intel_dp_destroy,
1894};
1895
1896static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1897	.get_modes = cdv_intel_dp_get_modes,
1898	.mode_valid = cdv_intel_dp_mode_valid,
1899	.best_encoder = gma_best_encoder,
1900};
1901
1902static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1903{
1904	cdv_intel_attach_force_audio_property(connector);
1905	cdv_intel_attach_broadcast_rgb_property(connector);
1906}
1907
1908/* check the VBT to see whether the eDP is on DP-D port */
1909static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1910{
1911	struct drm_psb_private *dev_priv = dev->dev_private;
1912	struct child_device_config *p_child;
1913	int i;
1914
1915	if (!dev_priv->child_dev_num)
1916		return false;
1917
1918	for (i = 0; i < dev_priv->child_dev_num; i++) {
1919		p_child = dev_priv->child_dev + i;
1920
1921		if (p_child->dvo_port == PORT_IDPC &&
1922		    p_child->device_type == DEVICE_TYPE_eDP)
1923			return true;
1924	}
1925	return false;
1926}
1927
1928/* Cedarview display clock gating
1929
1930   We need this disable dot get correct behaviour while enabling
1931   DP/eDP. TODO - investigate if we can turn it back to normality
1932   after enabling */
1933static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1934{
1935	u32 reg_value;
1936	reg_value = REG_READ(DSPCLK_GATE_D);
1937
1938	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1939			DPUNIT_PIPEA_GATE_DISABLE |
1940			DPCUNIT_CLOCK_GATE_DISABLE |
1941			DPLSUNIT_CLOCK_GATE_DISABLE |
1942			DPOUNIT_CLOCK_GATE_DISABLE |
1943			DPIOUNIT_CLOCK_GATE_DISABLE);
1944
1945	REG_WRITE(DSPCLK_GATE_D, reg_value);
1946
1947	udelay(500);
1948}
1949
1950void
1951cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1952{
1953	struct gma_encoder *gma_encoder;
1954	struct gma_connector *gma_connector;
1955	struct drm_connector *connector;
1956	struct drm_encoder *encoder;
1957	struct cdv_intel_dp *intel_dp;
1958	const char *name = NULL;
1959	int type = DRM_MODE_CONNECTOR_DisplayPort;
1960
1961	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
1962	if (!gma_encoder)
1963		return;
1964        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
1965        if (!gma_connector)
1966                goto err_connector;
1967	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
1968	if (!intel_dp)
1969	        goto err_priv;
1970
1971	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
1972		type = DRM_MODE_CONNECTOR_eDP;
1973
1974	connector = &gma_connector->base;
1975	encoder = &gma_encoder->base;
1976
1977	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
1978	drm_simple_encoder_init(dev, encoder, DRM_MODE_ENCODER_TMDS);
1979
1980	gma_connector_attach_encoder(gma_connector, gma_encoder);
1981
1982	if (type == DRM_MODE_CONNECTOR_DisplayPort)
1983		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1984        else
1985		gma_encoder->type = INTEL_OUTPUT_EDP;
1986
1987
1988	gma_encoder->dev_priv=intel_dp;
1989	intel_dp->encoder = gma_encoder;
1990	intel_dp->output_reg = output_reg;
1991
1992	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
1993	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
1994
1995	connector->polled = DRM_CONNECTOR_POLL_HPD;
1996	connector->interlace_allowed = false;
1997	connector->doublescan_allowed = false;
1998
1999	drm_connector_register(connector);
2000
2001	/* Set up the DDC bus. */
2002	switch (output_reg) {
2003		case DP_B:
2004			name = "DPDDC-B";
2005			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2006			break;
2007		case DP_C:
2008			name = "DPDDC-C";
2009			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2010			break;
2011	}
2012
2013	cdv_disable_intel_clock_gating(dev);
2014
2015	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2016        /* FIXME:fail check */
2017	cdv_intel_dp_add_properties(connector);
2018
2019	if (is_edp(gma_encoder)) {
2020		int ret;
2021		struct edp_power_seq cur;
2022                u32 pp_on, pp_off, pp_div;
2023		u32 pwm_ctrl;
2024
2025		pp_on = REG_READ(PP_CONTROL);
2026		pp_on &= ~PANEL_UNLOCK_MASK;
2027	        pp_on |= PANEL_UNLOCK_REGS;
2028
2029		REG_WRITE(PP_CONTROL, pp_on);
2030
2031		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2032		pwm_ctrl |= PWM_PIPE_B;
2033		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2034
2035                pp_on = REG_READ(PP_ON_DELAYS);
2036                pp_off = REG_READ(PP_OFF_DELAYS);
2037                pp_div = REG_READ(PP_DIVISOR);
2038
2039		/* Pull timing values out of registers */
2040                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2041                        PANEL_POWER_UP_DELAY_SHIFT;
2042
2043                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2044                        PANEL_LIGHT_ON_DELAY_SHIFT;
2045
2046                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2047                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2048
2049                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2050                        PANEL_POWER_DOWN_DELAY_SHIFT;
2051
2052                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2053                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2054
2055                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2056                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2057
2058
2059		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2060                intel_dp->backlight_on_delay = cur.t8 / 10;
2061                intel_dp->backlight_off_delay = cur.t9 / 10;
2062                intel_dp->panel_power_down_delay = cur.t10 / 10;
2063                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2064
2065                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2066                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2067                              intel_dp->panel_power_cycle_delay);
2068
2069                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2070                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2071
2072
2073		cdv_intel_edp_panel_vdd_on(gma_encoder);
2074		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2075					       intel_dp->dpcd,
2076					       sizeof(intel_dp->dpcd));
2077		cdv_intel_edp_panel_vdd_off(gma_encoder);
2078		if (ret <= 0) {
2079			/* if this fails, presume the device is a ghost */
2080			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2081			drm_encoder_cleanup(encoder);
2082			cdv_intel_dp_destroy(connector);
2083			goto err_connector;
2084		} else {
2085        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2086				intel_dp->dpcd[0], intel_dp->dpcd[1],
2087				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2088
2089		}
2090		/* The CDV reference driver moves pnale backlight setup into the displays that
2091		   have a backlight: this is a good idea and one we should probably adopt, however
2092		   we need to migrate all the drivers before we can do that */
2093                /*cdv_intel_panel_setup_backlight(dev); */
2094	}
2095	return;
2096
2097err_priv:
2098	kfree(gma_connector);
2099err_connector:
2100	kfree(gma_encoder);
2101}