Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3#define ARCH_X86_KVM_REVERSE_CPUID_H
4
5#include <uapi/asm/kvm.h>
6#include <asm/cpufeature.h>
7#include <asm/cpufeatures.h>
8
9/*
10 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11 * unknown to the kernel, but need to be directly used by KVM. Note, these
12 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13 */
14enum kvm_only_cpuid_leafs {
15 CPUID_12_EAX = NCAPINTS,
16 CPUID_7_1_EDX,
17 CPUID_8000_0007_EDX,
18 CPUID_8000_0022_EAX,
19 CPUID_7_2_EDX,
20 CPUID_24_0_EBX,
21 NR_KVM_CPU_CAPS,
22
23 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
24};
25
26/*
27 * Define a KVM-only feature flag.
28 *
29 * For features that are scattered by cpufeatures.h, __feature_translate() also
30 * needs to be updated to translate the kernel-defined feature into the
31 * KVM-defined feature.
32 *
33 * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
34 * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
35 * that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is
36 * needed in this case.
37 */
38#define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
39
40/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
41#define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
42#define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
43#define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11)
44
45/* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
46#define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
47#define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
48#define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
49#define X86_FEATURE_AVX_VNNI_INT16 KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
50#define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
51#define X86_FEATURE_AVX10 KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
52
53/* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
54#define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
55#define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
56#define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
57#define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
58#define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
59#define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
60
61/* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
62#define X86_FEATURE_AVX10_128 KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
63#define X86_FEATURE_AVX10_256 KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
64#define X86_FEATURE_AVX10_512 KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
65
66/* CPUID level 0x80000007 (EDX). */
67#define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
68
69/* CPUID level 0x80000022 (EAX) */
70#define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
71
72struct cpuid_reg {
73 u32 function;
74 u32 index;
75 int reg;
76};
77
78static const struct cpuid_reg reverse_cpuid[] = {
79 [CPUID_1_EDX] = { 1, 0, CPUID_EDX},
80 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
81 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
82 [CPUID_1_ECX] = { 1, 0, CPUID_ECX},
83 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
84 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
85 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
86 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
87 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
88 [CPUID_6_EAX] = { 6, 0, CPUID_EAX},
89 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
90 [CPUID_7_ECX] = { 7, 0, CPUID_ECX},
91 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
92 [CPUID_7_EDX] = { 7, 0, CPUID_EDX},
93 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
94 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
95 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
96 [CPUID_7_1_EDX] = { 7, 1, CPUID_EDX},
97 [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
98 [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
99 [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
100 [CPUID_7_2_EDX] = { 7, 2, CPUID_EDX},
101 [CPUID_24_0_EBX] = { 0x24, 0, CPUID_EBX},
102};
103
104/*
105 * Reverse CPUID and its derivatives can only be used for hardware-defined
106 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
107 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
108 * is nonsensical as the bit number/mask is an arbitrary software-defined value
109 * and can't be used by KVM to query/control guest capabilities. And obviously
110 * the leaf being queried must have an entry in the lookup table.
111 */
112static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
113{
114 BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
115 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
116 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
117 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
118 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
119 BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
120 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
121 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
122}
123
124/*
125 * Translate feature bits that are scattered in the kernel's cpufeatures word
126 * into KVM feature words that align with hardware's definitions.
127 */
128static __always_inline u32 __feature_translate(int x86_feature)
129{
130#define KVM_X86_TRANSLATE_FEATURE(f) \
131 case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
132
133 switch (x86_feature) {
134 KVM_X86_TRANSLATE_FEATURE(SGX1);
135 KVM_X86_TRANSLATE_FEATURE(SGX2);
136 KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
137 KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
138 KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
139 KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
140 KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
141 default:
142 return x86_feature;
143 }
144}
145
146static __always_inline u32 __feature_leaf(int x86_feature)
147{
148 return __feature_translate(x86_feature) / 32;
149}
150
151/*
152 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
153 * the hardware defined bit number (stored in bits 4:0) and a software defined
154 * "word" (stored in bits 31:5). The word is used to index into arrays of
155 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
156 */
157static __always_inline u32 __feature_bit(int x86_feature)
158{
159 x86_feature = __feature_translate(x86_feature);
160
161 reverse_cpuid_check(x86_feature / 32);
162 return 1 << (x86_feature & 31);
163}
164
165#define feature_bit(name) __feature_bit(X86_FEATURE_##name)
166
167static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
168{
169 unsigned int x86_leaf = __feature_leaf(x86_feature);
170
171 reverse_cpuid_check(x86_leaf);
172 return reverse_cpuid[x86_leaf];
173}
174
175static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
176 u32 reg)
177{
178 switch (reg) {
179 case CPUID_EAX:
180 return &entry->eax;
181 case CPUID_EBX:
182 return &entry->ebx;
183 case CPUID_ECX:
184 return &entry->ecx;
185 case CPUID_EDX:
186 return &entry->edx;
187 default:
188 BUILD_BUG();
189 return NULL;
190 }
191}
192
193static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
194 unsigned int x86_feature)
195{
196 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
197
198 return __cpuid_entry_get_reg(entry, cpuid.reg);
199}
200
201static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
202 unsigned int x86_feature)
203{
204 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
205
206 return *reg & __feature_bit(x86_feature);
207}
208
209static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
210 unsigned int x86_feature)
211{
212 return cpuid_entry_get(entry, x86_feature);
213}
214
215static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
216 unsigned int x86_feature)
217{
218 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
219
220 *reg &= ~__feature_bit(x86_feature);
221}
222
223static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
224 unsigned int x86_feature)
225{
226 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
227
228 *reg |= __feature_bit(x86_feature);
229}
230
231static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
232 unsigned int x86_feature,
233 bool set)
234{
235 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
236
237 /*
238 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
239 * compiler into using CMOV instead of Jcc when possible.
240 */
241 if (set)
242 *reg |= __feature_bit(x86_feature);
243 else
244 *reg &= ~__feature_bit(x86_feature);
245}
246
247#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3#define ARCH_X86_KVM_REVERSE_CPUID_H
4
5#include <uapi/asm/kvm.h>
6#include <asm/cpufeature.h>
7#include <asm/cpufeatures.h>
8
9/*
10 * Hardware-defined CPUID leafs that are scattered in the kernel, but need to
11 * be directly used by KVM. Note, these word values conflict with the kernel's
12 * "bug" caps, but KVM doesn't use those.
13 */
14enum kvm_only_cpuid_leafs {
15 CPUID_12_EAX = NCAPINTS,
16 NR_KVM_CPU_CAPS,
17
18 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
19};
20
21#define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
22
23/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
24#define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
25#define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
26
27struct cpuid_reg {
28 u32 function;
29 u32 index;
30 int reg;
31};
32
33static const struct cpuid_reg reverse_cpuid[] = {
34 [CPUID_1_EDX] = { 1, 0, CPUID_EDX},
35 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
36 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
37 [CPUID_1_ECX] = { 1, 0, CPUID_ECX},
38 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
39 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
40 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
41 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
42 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
43 [CPUID_6_EAX] = { 6, 0, CPUID_EAX},
44 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
45 [CPUID_7_ECX] = { 7, 0, CPUID_ECX},
46 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
47 [CPUID_7_EDX] = { 7, 0, CPUID_EDX},
48 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
49 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
50 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
51};
52
53/*
54 * Reverse CPUID and its derivatives can only be used for hardware-defined
55 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
56 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
57 * is nonsensical as the bit number/mask is an arbitrary software-defined value
58 * and can't be used by KVM to query/control guest capabilities. And obviously
59 * the leaf being queried must have an entry in the lookup table.
60 */
61static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
62{
63 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
64 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
65 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
66 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
67 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
68 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
69}
70
71/*
72 * Translate feature bits that are scattered in the kernel's cpufeatures word
73 * into KVM feature words that align with hardware's definitions.
74 */
75static __always_inline u32 __feature_translate(int x86_feature)
76{
77 if (x86_feature == X86_FEATURE_SGX1)
78 return KVM_X86_FEATURE_SGX1;
79 else if (x86_feature == X86_FEATURE_SGX2)
80 return KVM_X86_FEATURE_SGX2;
81
82 return x86_feature;
83}
84
85static __always_inline u32 __feature_leaf(int x86_feature)
86{
87 return __feature_translate(x86_feature) / 32;
88}
89
90/*
91 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
92 * the hardware defined bit number (stored in bits 4:0) and a software defined
93 * "word" (stored in bits 31:5). The word is used to index into arrays of
94 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
95 */
96static __always_inline u32 __feature_bit(int x86_feature)
97{
98 x86_feature = __feature_translate(x86_feature);
99
100 reverse_cpuid_check(x86_feature / 32);
101 return 1 << (x86_feature & 31);
102}
103
104#define feature_bit(name) __feature_bit(X86_FEATURE_##name)
105
106static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
107{
108 unsigned int x86_leaf = __feature_leaf(x86_feature);
109
110 reverse_cpuid_check(x86_leaf);
111 return reverse_cpuid[x86_leaf];
112}
113
114static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
115 u32 reg)
116{
117 switch (reg) {
118 case CPUID_EAX:
119 return &entry->eax;
120 case CPUID_EBX:
121 return &entry->ebx;
122 case CPUID_ECX:
123 return &entry->ecx;
124 case CPUID_EDX:
125 return &entry->edx;
126 default:
127 BUILD_BUG();
128 return NULL;
129 }
130}
131
132static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
133 unsigned int x86_feature)
134{
135 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
136
137 return __cpuid_entry_get_reg(entry, cpuid.reg);
138}
139
140static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
141 unsigned int x86_feature)
142{
143 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
144
145 return *reg & __feature_bit(x86_feature);
146}
147
148static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
149 unsigned int x86_feature)
150{
151 return cpuid_entry_get(entry, x86_feature);
152}
153
154static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
155 unsigned int x86_feature)
156{
157 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
158
159 *reg &= ~__feature_bit(x86_feature);
160}
161
162static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
163 unsigned int x86_feature)
164{
165 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
166
167 *reg |= __feature_bit(x86_feature);
168}
169
170static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
171 unsigned int x86_feature,
172 bool set)
173{
174 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
175
176 /*
177 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
178 * compiler into using CMOV instead of Jcc when possible.
179 */
180 if (set)
181 *reg |= __feature_bit(x86_feature);
182 else
183 *reg &= ~__feature_bit(x86_feature);
184}
185
186#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */