Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
  3#define ARCH_X86_KVM_REVERSE_CPUID_H
  4
  5#include <uapi/asm/kvm.h>
  6#include <asm/cpufeature.h>
  7#include <asm/cpufeatures.h>
  8
  9/*
 10 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
 11 * unknown to the kernel, but need to be directly used by KVM.  Note, these
 12 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
 13 */
 14enum kvm_only_cpuid_leafs {
 15	CPUID_12_EAX	 = NCAPINTS,
 16	CPUID_7_1_EDX,
 17	CPUID_8000_0007_EDX,
 18	CPUID_8000_0022_EAX,
 19	CPUID_7_2_EDX,
 20	CPUID_24_0_EBX,
 21	NR_KVM_CPU_CAPS,
 22
 23	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
 24};
 25
 26/*
 27 * Define a KVM-only feature flag.
 28 *
 29 * For features that are scattered by cpufeatures.h, __feature_translate() also
 30 * needs to be updated to translate the kernel-defined feature into the
 31 * KVM-defined feature.
 32 *
 33 * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
 34 * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
 35 * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
 36 * needed in this case.
 37 */
 38#define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
 39
 40/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
 41#define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
 42#define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
 43#define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
 44
 45/* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
 46#define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
 47#define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
 48#define X86_FEATURE_AMX_COMPLEX         KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
 49#define X86_FEATURE_AVX_VNNI_INT16      KVM_X86_FEATURE(CPUID_7_1_EDX, 10)
 50#define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
 51#define X86_FEATURE_AVX10               KVM_X86_FEATURE(CPUID_7_1_EDX, 19)
 52
 53/* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
 54#define X86_FEATURE_INTEL_PSFD		KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
 55#define X86_FEATURE_IPRED_CTRL		KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
 56#define KVM_X86_FEATURE_RRSBA_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
 57#define X86_FEATURE_DDPD_U		KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
 58#define KVM_X86_FEATURE_BHI_CTRL	KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
 59#define X86_FEATURE_MCDT_NO		KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
 60
 61/* Intel-defined sub-features, CPUID level 0x00000024:0 (EBX) */
 62#define X86_FEATURE_AVX10_128		KVM_X86_FEATURE(CPUID_24_0_EBX, 16)
 63#define X86_FEATURE_AVX10_256		KVM_X86_FEATURE(CPUID_24_0_EBX, 17)
 64#define X86_FEATURE_AVX10_512		KVM_X86_FEATURE(CPUID_24_0_EBX, 18)
 65
 66/* CPUID level 0x80000007 (EDX). */
 67#define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
 68
 69/* CPUID level 0x80000022 (EAX) */
 70#define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
 71
 72struct cpuid_reg {
 73	u32 function;
 74	u32 index;
 75	int reg;
 76};
 77
 78static const struct cpuid_reg reverse_cpuid[] = {
 79	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
 80	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
 81	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
 82	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
 83	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
 84	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
 85	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
 86	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
 87	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
 88	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
 89	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
 90	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
 91	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
 92	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
 93	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
 94	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
 95	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
 96	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
 97	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
 98	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
 99	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
100	[CPUID_7_2_EDX]       = {         7, 2, CPUID_EDX},
101	[CPUID_24_0_EBX]      = {      0x24, 0, CPUID_EBX},
102};
103
104/*
105 * Reverse CPUID and its derivatives can only be used for hardware-defined
106 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
107 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
108 * is nonsensical as the bit number/mask is an arbitrary software-defined value
109 * and can't be used by KVM to query/control guest capabilities.  And obviously
110 * the leaf being queried must have an entry in the lookup table.
111 */
112static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
113{
114	BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
115	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
116	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
117	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
118	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
119	BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
120	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
121	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
122}
123
124/*
125 * Translate feature bits that are scattered in the kernel's cpufeatures word
126 * into KVM feature words that align with hardware's definitions.
127 */
128static __always_inline u32 __feature_translate(int x86_feature)
129{
130#define KVM_X86_TRANSLATE_FEATURE(f)	\
131	case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
 
 
132
133	switch (x86_feature) {
134	KVM_X86_TRANSLATE_FEATURE(SGX1);
135	KVM_X86_TRANSLATE_FEATURE(SGX2);
136	KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
137	KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
138	KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
139	KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
140	KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
141	default:
142		return x86_feature;
143	}
144}
145
146static __always_inline u32 __feature_leaf(int x86_feature)
147{
148	return __feature_translate(x86_feature) / 32;
149}
150
151/*
152 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
153 * the hardware defined bit number (stored in bits 4:0) and a software defined
154 * "word" (stored in bits 31:5).  The word is used to index into arrays of
155 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
156 */
157static __always_inline u32 __feature_bit(int x86_feature)
158{
159	x86_feature = __feature_translate(x86_feature);
160
161	reverse_cpuid_check(x86_feature / 32);
162	return 1 << (x86_feature & 31);
163}
164
165#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
166
167static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
168{
169	unsigned int x86_leaf = __feature_leaf(x86_feature);
170
171	reverse_cpuid_check(x86_leaf);
172	return reverse_cpuid[x86_leaf];
173}
174
175static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
176						  u32 reg)
177{
178	switch (reg) {
179	case CPUID_EAX:
180		return &entry->eax;
181	case CPUID_EBX:
182		return &entry->ebx;
183	case CPUID_ECX:
184		return &entry->ecx;
185	case CPUID_EDX:
186		return &entry->edx;
187	default:
188		BUILD_BUG();
189		return NULL;
190	}
191}
192
193static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
194						unsigned int x86_feature)
195{
196	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
197
198	return __cpuid_entry_get_reg(entry, cpuid.reg);
199}
200
201static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
202					   unsigned int x86_feature)
203{
204	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
205
206	return *reg & __feature_bit(x86_feature);
207}
208
209static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
210					    unsigned int x86_feature)
211{
212	return cpuid_entry_get(entry, x86_feature);
213}
214
215static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
216					      unsigned int x86_feature)
217{
218	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
219
220	*reg &= ~__feature_bit(x86_feature);
221}
222
223static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
224					    unsigned int x86_feature)
225{
226	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
227
228	*reg |= __feature_bit(x86_feature);
229}
230
231static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
232					       unsigned int x86_feature,
233					       bool set)
234{
235	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
236
237	/*
238	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
239	 * compiler into using CMOV instead of Jcc when possible.
240	 */
241	if (set)
242		*reg |= __feature_bit(x86_feature);
243	else
244		*reg &= ~__feature_bit(x86_feature);
245}
246
247#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
  3#define ARCH_X86_KVM_REVERSE_CPUID_H
  4
  5#include <uapi/asm/kvm.h>
  6#include <asm/cpufeature.h>
  7#include <asm/cpufeatures.h>
  8
  9/*
 10 * Hardware-defined CPUID leafs that are scattered in the kernel, but need to
 11 * be directly used by KVM.  Note, these word values conflict with the kernel's
 12 * "bug" caps, but KVM doesn't use those.
 13 */
 14enum kvm_only_cpuid_leafs {
 15	CPUID_12_EAX	 = NCAPINTS,
 
 
 
 
 
 16	NR_KVM_CPU_CAPS,
 17
 18	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
 19};
 20
 
 
 
 
 
 
 
 
 
 
 
 
 21#define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
 22
 23/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
 24#define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
 25#define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27struct cpuid_reg {
 28	u32 function;
 29	u32 index;
 30	int reg;
 31};
 32
 33static const struct cpuid_reg reverse_cpuid[] = {
 34	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
 35	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
 36	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
 37	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
 38	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
 39	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
 40	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
 41	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
 42	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
 43	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
 44	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
 45	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
 46	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
 47	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
 48	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
 49	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
 50	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
 
 
 
 
 
 
 51};
 52
 53/*
 54 * Reverse CPUID and its derivatives can only be used for hardware-defined
 55 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
 56 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
 57 * is nonsensical as the bit number/mask is an arbitrary software-defined value
 58 * and can't be used by KVM to query/control guest capabilities.  And obviously
 59 * the leaf being queried must have an entry in the lookup table.
 60 */
 61static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
 62{
 
 63	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
 64	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
 65	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
 66	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
 
 67	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
 68	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
 69}
 70
 71/*
 72 * Translate feature bits that are scattered in the kernel's cpufeatures word
 73 * into KVM feature words that align with hardware's definitions.
 74 */
 75static __always_inline u32 __feature_translate(int x86_feature)
 76{
 77	if (x86_feature == X86_FEATURE_SGX1)
 78		return KVM_X86_FEATURE_SGX1;
 79	else if (x86_feature == X86_FEATURE_SGX2)
 80		return KVM_X86_FEATURE_SGX2;
 81
 82	return x86_feature;
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85static __always_inline u32 __feature_leaf(int x86_feature)
 86{
 87	return __feature_translate(x86_feature) / 32;
 88}
 89
 90/*
 91 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
 92 * the hardware defined bit number (stored in bits 4:0) and a software defined
 93 * "word" (stored in bits 31:5).  The word is used to index into arrays of
 94 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
 95 */
 96static __always_inline u32 __feature_bit(int x86_feature)
 97{
 98	x86_feature = __feature_translate(x86_feature);
 99
100	reverse_cpuid_check(x86_feature / 32);
101	return 1 << (x86_feature & 31);
102}
103
104#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
105
106static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
107{
108	unsigned int x86_leaf = __feature_leaf(x86_feature);
109
110	reverse_cpuid_check(x86_leaf);
111	return reverse_cpuid[x86_leaf];
112}
113
114static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
115						  u32 reg)
116{
117	switch (reg) {
118	case CPUID_EAX:
119		return &entry->eax;
120	case CPUID_EBX:
121		return &entry->ebx;
122	case CPUID_ECX:
123		return &entry->ecx;
124	case CPUID_EDX:
125		return &entry->edx;
126	default:
127		BUILD_BUG();
128		return NULL;
129	}
130}
131
132static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
133						unsigned int x86_feature)
134{
135	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
136
137	return __cpuid_entry_get_reg(entry, cpuid.reg);
138}
139
140static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
141					   unsigned int x86_feature)
142{
143	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
144
145	return *reg & __feature_bit(x86_feature);
146}
147
148static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
149					    unsigned int x86_feature)
150{
151	return cpuid_entry_get(entry, x86_feature);
152}
153
154static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
155					      unsigned int x86_feature)
156{
157	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
158
159	*reg &= ~__feature_bit(x86_feature);
160}
161
162static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
163					    unsigned int x86_feature)
164{
165	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
166
167	*reg |= __feature_bit(x86_feature);
168}
169
170static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
171					       unsigned int x86_feature,
172					       bool set)
173{
174	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
175
176	/*
177	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
178	 * compiler into using CMOV instead of Jcc when possible.
179	 */
180	if (set)
181		*reg |= __feature_bit(x86_feature);
182	else
183		*reg &= ~__feature_bit(x86_feature);
184}
185
186#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */