Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtual cpu timer based timer functions.
4 *
5 * Copyright IBM Corp. 2004, 2012
6 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7 */
8
9#include <linux/kernel_stat.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/timex.h>
13#include <linux/types.h>
14#include <linux/time.h>
15#include <asm/alternative.h>
16#include <asm/cputime.h>
17#include <asm/vtimer.h>
18#include <asm/vtime.h>
19#include <asm/cpu_mf.h>
20#include <asm/smp.h>
21
22#include "entry.h"
23
24static void virt_timer_expire(void);
25
26static LIST_HEAD(virt_timer_list);
27static DEFINE_SPINLOCK(virt_timer_lock);
28static atomic64_t virt_timer_current;
29static atomic64_t virt_timer_elapsed;
30
31DEFINE_PER_CPU(u64, mt_cycles[8]);
32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36static inline void set_vtimer(u64 expires)
37{
38 struct lowcore *lc = get_lowcore();
39 u64 timer;
40
41 asm volatile(
42 " stpt %0\n" /* Store current cpu timer value */
43 " spt %1" /* Set new value imm. afterwards */
44 : "=Q" (timer) : "Q" (expires));
45 lc->system_timer += lc->last_update_timer - timer;
46 lc->last_update_timer = expires;
47}
48
49static inline int virt_timer_forward(u64 elapsed)
50{
51 BUG_ON(!irqs_disabled());
52
53 if (list_empty(&virt_timer_list))
54 return 0;
55 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
56 return elapsed >= atomic64_read(&virt_timer_current);
57}
58
59static void update_mt_scaling(void)
60{
61 u64 cycles_new[8], *cycles_old;
62 u64 delta, fac, mult, div;
63 int i;
64
65 stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
66 cycles_old = this_cpu_ptr(mt_cycles);
67 fac = 1;
68 mult = div = 0;
69 for (i = 0; i <= smp_cpu_mtid; i++) {
70 delta = cycles_new[i] - cycles_old[i];
71 div += delta;
72 mult *= i + 1;
73 mult += delta * fac;
74 fac *= i + 1;
75 }
76 div *= fac;
77 if (div > 0) {
78 /* Update scaling factor */
79 __this_cpu_write(mt_scaling_mult, mult);
80 __this_cpu_write(mt_scaling_div, div);
81 memcpy(cycles_old, cycles_new,
82 sizeof(u64) * (smp_cpu_mtid + 1));
83 }
84 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
85}
86
87static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
88{
89 u64 delta;
90
91 delta = new - *tsk_vtime;
92 *tsk_vtime = new;
93 return delta;
94}
95
96
97static inline u64 scale_vtime(u64 vtime)
98{
99 u64 mult = __this_cpu_read(mt_scaling_mult);
100 u64 div = __this_cpu_read(mt_scaling_div);
101
102 if (smp_cpu_mtid)
103 return vtime * mult / div;
104 return vtime;
105}
106
107static void account_system_index_scaled(struct task_struct *p, u64 cputime,
108 enum cpu_usage_stat index)
109{
110 p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
111 account_system_index_time(p, cputime_to_nsecs(cputime), index);
112}
113
114/*
115 * Update process times based on virtual cpu times stored by entry.S
116 * to the lowcore fields user_timer, system_timer & steal_clock.
117 */
118static int do_account_vtime(struct task_struct *tsk)
119{
120 u64 timer, clock, user, guest, system, hardirq, softirq;
121 struct lowcore *lc = get_lowcore();
122
123 timer = lc->last_update_timer;
124 clock = lc->last_update_clock;
125 asm volatile(
126 " stpt %0\n" /* Store current cpu timer value */
127 " stckf %1" /* Store current tod clock value */
128 : "=Q" (lc->last_update_timer),
129 "=Q" (lc->last_update_clock)
130 : : "cc");
131 clock = lc->last_update_clock - clock;
132 timer -= lc->last_update_timer;
133
134 if (hardirq_count())
135 lc->hardirq_timer += timer;
136 else
137 lc->system_timer += timer;
138
139 /* Update MT utilization calculation */
140 if (smp_cpu_mtid &&
141 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
142 update_mt_scaling();
143
144 /* Calculate cputime delta */
145 user = update_tsk_timer(&tsk->thread.user_timer,
146 READ_ONCE(lc->user_timer));
147 guest = update_tsk_timer(&tsk->thread.guest_timer,
148 READ_ONCE(lc->guest_timer));
149 system = update_tsk_timer(&tsk->thread.system_timer,
150 READ_ONCE(lc->system_timer));
151 hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
152 READ_ONCE(lc->hardirq_timer));
153 softirq = update_tsk_timer(&tsk->thread.softirq_timer,
154 READ_ONCE(lc->softirq_timer));
155 lc->steal_timer +=
156 clock - user - guest - system - hardirq - softirq;
157
158 /* Push account value */
159 if (user) {
160 account_user_time(tsk, cputime_to_nsecs(user));
161 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
162 }
163
164 if (guest) {
165 account_guest_time(tsk, cputime_to_nsecs(guest));
166 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
167 }
168
169 if (system)
170 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
171 if (hardirq)
172 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
173 if (softirq)
174 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
175
176 return virt_timer_forward(user + guest + system + hardirq + softirq);
177}
178
179void vtime_task_switch(struct task_struct *prev)
180{
181 struct lowcore *lc = get_lowcore();
182
183 do_account_vtime(prev);
184 prev->thread.user_timer = lc->user_timer;
185 prev->thread.guest_timer = lc->guest_timer;
186 prev->thread.system_timer = lc->system_timer;
187 prev->thread.hardirq_timer = lc->hardirq_timer;
188 prev->thread.softirq_timer = lc->softirq_timer;
189 lc->user_timer = current->thread.user_timer;
190 lc->guest_timer = current->thread.guest_timer;
191 lc->system_timer = current->thread.system_timer;
192 lc->hardirq_timer = current->thread.hardirq_timer;
193 lc->softirq_timer = current->thread.softirq_timer;
194}
195
196/*
197 * In s390, accounting pending user time also implies
198 * accounting system time in order to correctly compute
199 * the stolen time accounting.
200 */
201void vtime_flush(struct task_struct *tsk)
202{
203 struct lowcore *lc = get_lowcore();
204 u64 steal, avg_steal;
205
206 if (do_account_vtime(tsk))
207 virt_timer_expire();
208
209 steal = lc->steal_timer;
210 avg_steal = lc->avg_steal_timer;
211 if ((s64) steal > 0) {
212 lc->steal_timer = 0;
213 account_steal_time(cputime_to_nsecs(steal));
214 avg_steal += steal;
215 }
216 lc->avg_steal_timer = avg_steal / 2;
217}
218
219static u64 vtime_delta(void)
220{
221 struct lowcore *lc = get_lowcore();
222 u64 timer = lc->last_update_timer;
223
224 lc->last_update_timer = get_cpu_timer();
225 return timer - lc->last_update_timer;
226}
227
228/*
229 * Update process times based on virtual cpu times stored by entry.S
230 * to the lowcore fields user_timer, system_timer & steal_clock.
231 */
232void vtime_account_kernel(struct task_struct *tsk)
233{
234 struct lowcore *lc = get_lowcore();
235 u64 delta = vtime_delta();
236
237 if (tsk->flags & PF_VCPU)
238 lc->guest_timer += delta;
239 else
240 lc->system_timer += delta;
241
242 virt_timer_forward(delta);
243}
244EXPORT_SYMBOL_GPL(vtime_account_kernel);
245
246void vtime_account_softirq(struct task_struct *tsk)
247{
248 u64 delta = vtime_delta();
249
250 get_lowcore()->softirq_timer += delta;
251
252 virt_timer_forward(delta);
253}
254
255void vtime_account_hardirq(struct task_struct *tsk)
256{
257 u64 delta = vtime_delta();
258
259 get_lowcore()->hardirq_timer += delta;
260
261 virt_timer_forward(delta);
262}
263
264/*
265 * Sorted add to a list. List is linear searched until first bigger
266 * element is found.
267 */
268static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
269{
270 struct vtimer_list *tmp;
271
272 list_for_each_entry(tmp, head, entry) {
273 if (tmp->expires > timer->expires) {
274 list_add_tail(&timer->entry, &tmp->entry);
275 return;
276 }
277 }
278 list_add_tail(&timer->entry, head);
279}
280
281/*
282 * Handler for expired virtual CPU timer.
283 */
284static void virt_timer_expire(void)
285{
286 struct vtimer_list *timer, *tmp;
287 unsigned long elapsed;
288 LIST_HEAD(cb_list);
289
290 /* walk timer list, fire all expired timers */
291 spin_lock(&virt_timer_lock);
292 elapsed = atomic64_read(&virt_timer_elapsed);
293 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
294 if (timer->expires < elapsed)
295 /* move expired timer to the callback queue */
296 list_move_tail(&timer->entry, &cb_list);
297 else
298 timer->expires -= elapsed;
299 }
300 if (!list_empty(&virt_timer_list)) {
301 timer = list_first_entry(&virt_timer_list,
302 struct vtimer_list, entry);
303 atomic64_set(&virt_timer_current, timer->expires);
304 }
305 atomic64_sub(elapsed, &virt_timer_elapsed);
306 spin_unlock(&virt_timer_lock);
307
308 /* Do callbacks and recharge periodic timers */
309 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
310 list_del_init(&timer->entry);
311 timer->function(timer->data);
312 if (timer->interval) {
313 /* Recharge interval timer */
314 timer->expires = timer->interval +
315 atomic64_read(&virt_timer_elapsed);
316 spin_lock(&virt_timer_lock);
317 list_add_sorted(timer, &virt_timer_list);
318 spin_unlock(&virt_timer_lock);
319 }
320 }
321}
322
323void init_virt_timer(struct vtimer_list *timer)
324{
325 timer->function = NULL;
326 INIT_LIST_HEAD(&timer->entry);
327}
328EXPORT_SYMBOL(init_virt_timer);
329
330static inline int vtimer_pending(struct vtimer_list *timer)
331{
332 return !list_empty(&timer->entry);
333}
334
335static void internal_add_vtimer(struct vtimer_list *timer)
336{
337 if (list_empty(&virt_timer_list)) {
338 /* First timer, just program it. */
339 atomic64_set(&virt_timer_current, timer->expires);
340 atomic64_set(&virt_timer_elapsed, 0);
341 list_add(&timer->entry, &virt_timer_list);
342 } else {
343 /* Update timer against current base. */
344 timer->expires += atomic64_read(&virt_timer_elapsed);
345 if (likely((s64) timer->expires <
346 (s64) atomic64_read(&virt_timer_current)))
347 /* The new timer expires before the current timer. */
348 atomic64_set(&virt_timer_current, timer->expires);
349 /* Insert new timer into the list. */
350 list_add_sorted(timer, &virt_timer_list);
351 }
352}
353
354static void __add_vtimer(struct vtimer_list *timer, int periodic)
355{
356 unsigned long flags;
357
358 timer->interval = periodic ? timer->expires : 0;
359 spin_lock_irqsave(&virt_timer_lock, flags);
360 internal_add_vtimer(timer);
361 spin_unlock_irqrestore(&virt_timer_lock, flags);
362}
363
364/*
365 * add_virt_timer - add a oneshot virtual CPU timer
366 */
367void add_virt_timer(struct vtimer_list *timer)
368{
369 __add_vtimer(timer, 0);
370}
371EXPORT_SYMBOL(add_virt_timer);
372
373/*
374 * add_virt_timer_int - add an interval virtual CPU timer
375 */
376void add_virt_timer_periodic(struct vtimer_list *timer)
377{
378 __add_vtimer(timer, 1);
379}
380EXPORT_SYMBOL(add_virt_timer_periodic);
381
382static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
383{
384 unsigned long flags;
385 int rc;
386
387 BUG_ON(!timer->function);
388
389 if (timer->expires == expires && vtimer_pending(timer))
390 return 1;
391 spin_lock_irqsave(&virt_timer_lock, flags);
392 rc = vtimer_pending(timer);
393 if (rc)
394 list_del_init(&timer->entry);
395 timer->interval = periodic ? expires : 0;
396 timer->expires = expires;
397 internal_add_vtimer(timer);
398 spin_unlock_irqrestore(&virt_timer_lock, flags);
399 return rc;
400}
401
402/*
403 * returns whether it has modified a pending timer (1) or not (0)
404 */
405int mod_virt_timer(struct vtimer_list *timer, u64 expires)
406{
407 return __mod_vtimer(timer, expires, 0);
408}
409EXPORT_SYMBOL(mod_virt_timer);
410
411/*
412 * returns whether it has modified a pending timer (1) or not (0)
413 */
414int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
415{
416 return __mod_vtimer(timer, expires, 1);
417}
418EXPORT_SYMBOL(mod_virt_timer_periodic);
419
420/*
421 * Delete a virtual timer.
422 *
423 * returns whether the deleted timer was pending (1) or not (0)
424 */
425int del_virt_timer(struct vtimer_list *timer)
426{
427 unsigned long flags;
428
429 if (!vtimer_pending(timer))
430 return 0;
431 spin_lock_irqsave(&virt_timer_lock, flags);
432 list_del_init(&timer->entry);
433 spin_unlock_irqrestore(&virt_timer_lock, flags);
434 return 1;
435}
436EXPORT_SYMBOL(del_virt_timer);
437
438/*
439 * Start the virtual CPU timer on the current CPU.
440 */
441void vtime_init(void)
442{
443 /* set initial cpu timer */
444 set_vtimer(VTIMER_MAX_SLICE);
445 /* Setup initial MT scaling values */
446 if (smp_cpu_mtid) {
447 __this_cpu_write(mt_scaling_jiffies, jiffies);
448 __this_cpu_write(mt_scaling_mult, 1);
449 __this_cpu_write(mt_scaling_div, 1);
450 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
451 }
452}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtual cpu timer based timer functions.
4 *
5 * Copyright IBM Corp. 2004, 2012
6 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7 */
8
9#include <linux/kernel_stat.h>
10#include <linux/sched/cputime.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/timex.h>
14#include <linux/types.h>
15#include <linux/time.h>
16#include <asm/alternative.h>
17#include <asm/vtimer.h>
18#include <asm/vtime.h>
19#include <asm/cpu_mf.h>
20#include <asm/smp.h>
21
22#include "entry.h"
23
24static void virt_timer_expire(void);
25
26static LIST_HEAD(virt_timer_list);
27static DEFINE_SPINLOCK(virt_timer_lock);
28static atomic64_t virt_timer_current;
29static atomic64_t virt_timer_elapsed;
30
31DEFINE_PER_CPU(u64, mt_cycles[8]);
32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36static inline u64 get_vtimer(void)
37{
38 u64 timer;
39
40 asm volatile("stpt %0" : "=Q" (timer));
41 return timer;
42}
43
44static inline void set_vtimer(u64 expires)
45{
46 u64 timer;
47
48 asm volatile(
49 " stpt %0\n" /* Store current cpu timer value */
50 " spt %1" /* Set new value imm. afterwards */
51 : "=Q" (timer) : "Q" (expires));
52 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53 S390_lowcore.last_update_timer = expires;
54}
55
56static inline int virt_timer_forward(u64 elapsed)
57{
58 BUG_ON(!irqs_disabled());
59
60 if (list_empty(&virt_timer_list))
61 return 0;
62 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63 return elapsed >= atomic64_read(&virt_timer_current);
64}
65
66static void update_mt_scaling(void)
67{
68 u64 cycles_new[8], *cycles_old;
69 u64 delta, fac, mult, div;
70 int i;
71
72 stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73 cycles_old = this_cpu_ptr(mt_cycles);
74 fac = 1;
75 mult = div = 0;
76 for (i = 0; i <= smp_cpu_mtid; i++) {
77 delta = cycles_new[i] - cycles_old[i];
78 div += delta;
79 mult *= i + 1;
80 mult += delta * fac;
81 fac *= i + 1;
82 }
83 div *= fac;
84 if (div > 0) {
85 /* Update scaling factor */
86 __this_cpu_write(mt_scaling_mult, mult);
87 __this_cpu_write(mt_scaling_div, div);
88 memcpy(cycles_old, cycles_new,
89 sizeof(u64) * (smp_cpu_mtid + 1));
90 }
91 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92}
93
94static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95{
96 u64 delta;
97
98 delta = new - *tsk_vtime;
99 *tsk_vtime = new;
100 return delta;
101}
102
103
104static inline u64 scale_vtime(u64 vtime)
105{
106 u64 mult = __this_cpu_read(mt_scaling_mult);
107 u64 div = __this_cpu_read(mt_scaling_div);
108
109 if (smp_cpu_mtid)
110 return vtime * mult / div;
111 return vtime;
112}
113
114static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115 enum cpu_usage_stat index)
116{
117 p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118 account_system_index_time(p, cputime_to_nsecs(cputime), index);
119}
120
121/*
122 * Update process times based on virtual cpu times stored by entry.S
123 * to the lowcore fields user_timer, system_timer & steal_clock.
124 */
125static int do_account_vtime(struct task_struct *tsk)
126{
127 u64 timer, clock, user, guest, system, hardirq, softirq;
128
129 timer = S390_lowcore.last_update_timer;
130 clock = S390_lowcore.last_update_clock;
131 /* Use STORE CLOCK by default, STORE CLOCK FAST if available. */
132 alternative_io("stpt %0\n .insn s,0xb2050000,%1\n",
133 "stpt %0\n .insn s,0xb27c0000,%1\n",
134 25,
135 ASM_OUTPUT2("=Q" (S390_lowcore.last_update_timer),
136 "=Q" (S390_lowcore.last_update_clock)),
137 ASM_NO_INPUT_CLOBBER("cc"));
138 clock = S390_lowcore.last_update_clock - clock;
139 timer -= S390_lowcore.last_update_timer;
140
141 if (hardirq_count())
142 S390_lowcore.hardirq_timer += timer;
143 else
144 S390_lowcore.system_timer += timer;
145
146 /* Update MT utilization calculation */
147 if (smp_cpu_mtid &&
148 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
149 update_mt_scaling();
150
151 /* Calculate cputime delta */
152 user = update_tsk_timer(&tsk->thread.user_timer,
153 READ_ONCE(S390_lowcore.user_timer));
154 guest = update_tsk_timer(&tsk->thread.guest_timer,
155 READ_ONCE(S390_lowcore.guest_timer));
156 system = update_tsk_timer(&tsk->thread.system_timer,
157 READ_ONCE(S390_lowcore.system_timer));
158 hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
159 READ_ONCE(S390_lowcore.hardirq_timer));
160 softirq = update_tsk_timer(&tsk->thread.softirq_timer,
161 READ_ONCE(S390_lowcore.softirq_timer));
162 S390_lowcore.steal_timer +=
163 clock - user - guest - system - hardirq - softirq;
164
165 /* Push account value */
166 if (user) {
167 account_user_time(tsk, cputime_to_nsecs(user));
168 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
169 }
170
171 if (guest) {
172 account_guest_time(tsk, cputime_to_nsecs(guest));
173 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
174 }
175
176 if (system)
177 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
178 if (hardirq)
179 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
180 if (softirq)
181 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
182
183 return virt_timer_forward(user + guest + system + hardirq + softirq);
184}
185
186void vtime_task_switch(struct task_struct *prev)
187{
188 do_account_vtime(prev);
189 prev->thread.user_timer = S390_lowcore.user_timer;
190 prev->thread.guest_timer = S390_lowcore.guest_timer;
191 prev->thread.system_timer = S390_lowcore.system_timer;
192 prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
193 prev->thread.softirq_timer = S390_lowcore.softirq_timer;
194 S390_lowcore.user_timer = current->thread.user_timer;
195 S390_lowcore.guest_timer = current->thread.guest_timer;
196 S390_lowcore.system_timer = current->thread.system_timer;
197 S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
198 S390_lowcore.softirq_timer = current->thread.softirq_timer;
199}
200
201/*
202 * In s390, accounting pending user time also implies
203 * accounting system time in order to correctly compute
204 * the stolen time accounting.
205 */
206void vtime_flush(struct task_struct *tsk)
207{
208 u64 steal, avg_steal;
209
210 if (do_account_vtime(tsk))
211 virt_timer_expire();
212
213 steal = S390_lowcore.steal_timer;
214 avg_steal = S390_lowcore.avg_steal_timer / 2;
215 if ((s64) steal > 0) {
216 S390_lowcore.steal_timer = 0;
217 account_steal_time(cputime_to_nsecs(steal));
218 avg_steal += steal;
219 }
220 S390_lowcore.avg_steal_timer = avg_steal;
221}
222
223static u64 vtime_delta(void)
224{
225 u64 timer = S390_lowcore.last_update_timer;
226
227 S390_lowcore.last_update_timer = get_vtimer();
228
229 return timer - S390_lowcore.last_update_timer;
230}
231
232/*
233 * Update process times based on virtual cpu times stored by entry.S
234 * to the lowcore fields user_timer, system_timer & steal_clock.
235 */
236void vtime_account_kernel(struct task_struct *tsk)
237{
238 u64 delta = vtime_delta();
239
240 if (tsk->flags & PF_VCPU)
241 S390_lowcore.guest_timer += delta;
242 else
243 S390_lowcore.system_timer += delta;
244
245 virt_timer_forward(delta);
246}
247EXPORT_SYMBOL_GPL(vtime_account_kernel);
248
249void vtime_account_softirq(struct task_struct *tsk)
250{
251 u64 delta = vtime_delta();
252
253 S390_lowcore.softirq_timer += delta;
254
255 virt_timer_forward(delta);
256}
257
258void vtime_account_hardirq(struct task_struct *tsk)
259{
260 u64 delta = vtime_delta();
261
262 S390_lowcore.hardirq_timer += delta;
263
264 virt_timer_forward(delta);
265}
266
267/*
268 * Sorted add to a list. List is linear searched until first bigger
269 * element is found.
270 */
271static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
272{
273 struct vtimer_list *tmp;
274
275 list_for_each_entry(tmp, head, entry) {
276 if (tmp->expires > timer->expires) {
277 list_add_tail(&timer->entry, &tmp->entry);
278 return;
279 }
280 }
281 list_add_tail(&timer->entry, head);
282}
283
284/*
285 * Handler for expired virtual CPU timer.
286 */
287static void virt_timer_expire(void)
288{
289 struct vtimer_list *timer, *tmp;
290 unsigned long elapsed;
291 LIST_HEAD(cb_list);
292
293 /* walk timer list, fire all expired timers */
294 spin_lock(&virt_timer_lock);
295 elapsed = atomic64_read(&virt_timer_elapsed);
296 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
297 if (timer->expires < elapsed)
298 /* move expired timer to the callback queue */
299 list_move_tail(&timer->entry, &cb_list);
300 else
301 timer->expires -= elapsed;
302 }
303 if (!list_empty(&virt_timer_list)) {
304 timer = list_first_entry(&virt_timer_list,
305 struct vtimer_list, entry);
306 atomic64_set(&virt_timer_current, timer->expires);
307 }
308 atomic64_sub(elapsed, &virt_timer_elapsed);
309 spin_unlock(&virt_timer_lock);
310
311 /* Do callbacks and recharge periodic timers */
312 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
313 list_del_init(&timer->entry);
314 timer->function(timer->data);
315 if (timer->interval) {
316 /* Recharge interval timer */
317 timer->expires = timer->interval +
318 atomic64_read(&virt_timer_elapsed);
319 spin_lock(&virt_timer_lock);
320 list_add_sorted(timer, &virt_timer_list);
321 spin_unlock(&virt_timer_lock);
322 }
323 }
324}
325
326void init_virt_timer(struct vtimer_list *timer)
327{
328 timer->function = NULL;
329 INIT_LIST_HEAD(&timer->entry);
330}
331EXPORT_SYMBOL(init_virt_timer);
332
333static inline int vtimer_pending(struct vtimer_list *timer)
334{
335 return !list_empty(&timer->entry);
336}
337
338static void internal_add_vtimer(struct vtimer_list *timer)
339{
340 if (list_empty(&virt_timer_list)) {
341 /* First timer, just program it. */
342 atomic64_set(&virt_timer_current, timer->expires);
343 atomic64_set(&virt_timer_elapsed, 0);
344 list_add(&timer->entry, &virt_timer_list);
345 } else {
346 /* Update timer against current base. */
347 timer->expires += atomic64_read(&virt_timer_elapsed);
348 if (likely((s64) timer->expires <
349 (s64) atomic64_read(&virt_timer_current)))
350 /* The new timer expires before the current timer. */
351 atomic64_set(&virt_timer_current, timer->expires);
352 /* Insert new timer into the list. */
353 list_add_sorted(timer, &virt_timer_list);
354 }
355}
356
357static void __add_vtimer(struct vtimer_list *timer, int periodic)
358{
359 unsigned long flags;
360
361 timer->interval = periodic ? timer->expires : 0;
362 spin_lock_irqsave(&virt_timer_lock, flags);
363 internal_add_vtimer(timer);
364 spin_unlock_irqrestore(&virt_timer_lock, flags);
365}
366
367/*
368 * add_virt_timer - add a oneshot virtual CPU timer
369 */
370void add_virt_timer(struct vtimer_list *timer)
371{
372 __add_vtimer(timer, 0);
373}
374EXPORT_SYMBOL(add_virt_timer);
375
376/*
377 * add_virt_timer_int - add an interval virtual CPU timer
378 */
379void add_virt_timer_periodic(struct vtimer_list *timer)
380{
381 __add_vtimer(timer, 1);
382}
383EXPORT_SYMBOL(add_virt_timer_periodic);
384
385static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
386{
387 unsigned long flags;
388 int rc;
389
390 BUG_ON(!timer->function);
391
392 if (timer->expires == expires && vtimer_pending(timer))
393 return 1;
394 spin_lock_irqsave(&virt_timer_lock, flags);
395 rc = vtimer_pending(timer);
396 if (rc)
397 list_del_init(&timer->entry);
398 timer->interval = periodic ? expires : 0;
399 timer->expires = expires;
400 internal_add_vtimer(timer);
401 spin_unlock_irqrestore(&virt_timer_lock, flags);
402 return rc;
403}
404
405/*
406 * returns whether it has modified a pending timer (1) or not (0)
407 */
408int mod_virt_timer(struct vtimer_list *timer, u64 expires)
409{
410 return __mod_vtimer(timer, expires, 0);
411}
412EXPORT_SYMBOL(mod_virt_timer);
413
414/*
415 * returns whether it has modified a pending timer (1) or not (0)
416 */
417int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
418{
419 return __mod_vtimer(timer, expires, 1);
420}
421EXPORT_SYMBOL(mod_virt_timer_periodic);
422
423/*
424 * Delete a virtual timer.
425 *
426 * returns whether the deleted timer was pending (1) or not (0)
427 */
428int del_virt_timer(struct vtimer_list *timer)
429{
430 unsigned long flags;
431
432 if (!vtimer_pending(timer))
433 return 0;
434 spin_lock_irqsave(&virt_timer_lock, flags);
435 list_del_init(&timer->entry);
436 spin_unlock_irqrestore(&virt_timer_lock, flags);
437 return 1;
438}
439EXPORT_SYMBOL(del_virt_timer);
440
441/*
442 * Start the virtual CPU timer on the current CPU.
443 */
444void vtime_init(void)
445{
446 /* set initial cpu timer */
447 set_vtimer(VTIMER_MAX_SLICE);
448 /* Setup initial MT scaling values */
449 if (smp_cpu_mtid) {
450 __this_cpu_write(mt_scaling_jiffies, jiffies);
451 __this_cpu_write(mt_scaling_mult, 1);
452 __this_cpu_write(mt_scaling_div, 1);
453 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
454 }
455}