Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/ptrace.c
  4 *
  5 *  By Ross Biro 1/23/92
  6 * edited by Linus Torvalds
  7 * ARM modifications Copyright (C) 2000 Russell King
  8 */
  9#include <linux/kernel.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/mm.h>
 13#include <linux/elf.h>
 14#include <linux/smp.h>
 15#include <linux/ptrace.h>
 16#include <linux/user.h>
 17#include <linux/security.h>
 18#include <linux/init.h>
 19#include <linux/signal.h>
 20#include <linux/uaccess.h>
 21#include <linux/perf_event.h>
 22#include <linux/hw_breakpoint.h>
 23#include <linux/regset.h>
 24#include <linux/audit.h>
 
 25#include <linux/unistd.h>
 26
 27#include <asm/syscall.h>
 28#include <asm/traps.h>
 29
 30#define CREATE_TRACE_POINTS
 31#include <trace/events/syscalls.h>
 32
 33#define REG_PC	15
 34#define REG_PSR	16
 35/*
 36 * does not yet catch signals sent when the child dies.
 37 * in exit.c or in signal.c.
 38 */
 39
 40#if 0
 41/*
 42 * Breakpoint SWI instruction: SWI &9F0001
 43 */
 44#define BREAKINST_ARM	0xef9f0001
 45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 46#else
 47/*
 48 * New breakpoints - use an undefined instruction.  The ARM architecture
 49 * reference manual guarantees that the following instruction space
 50 * will produce an undefined instruction exception on all CPUs:
 51 *
 52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 53 *  Thumb: 1101 1110 xxxx xxxx
 54 */
 55#define BREAKINST_ARM	0xe7f001f0
 56#define BREAKINST_THUMB	0xde01
 57#endif
 58
 59struct pt_regs_offset {
 60	const char *name;
 61	int offset;
 62};
 63
 64#define REG_OFFSET_NAME(r) \
 65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 66#define REG_OFFSET_END {.name = NULL, .offset = 0}
 67
 68static const struct pt_regs_offset regoffset_table[] = {
 69	REG_OFFSET_NAME(r0),
 70	REG_OFFSET_NAME(r1),
 71	REG_OFFSET_NAME(r2),
 72	REG_OFFSET_NAME(r3),
 73	REG_OFFSET_NAME(r4),
 74	REG_OFFSET_NAME(r5),
 75	REG_OFFSET_NAME(r6),
 76	REG_OFFSET_NAME(r7),
 77	REG_OFFSET_NAME(r8),
 78	REG_OFFSET_NAME(r9),
 79	REG_OFFSET_NAME(r10),
 80	REG_OFFSET_NAME(fp),
 81	REG_OFFSET_NAME(ip),
 82	REG_OFFSET_NAME(sp),
 83	REG_OFFSET_NAME(lr),
 84	REG_OFFSET_NAME(pc),
 85	REG_OFFSET_NAME(cpsr),
 86	REG_OFFSET_NAME(ORIG_r0),
 87	REG_OFFSET_END,
 88};
 89
 90/**
 91 * regs_query_register_offset() - query register offset from its name
 92 * @name:	the name of a register
 93 *
 94 * regs_query_register_offset() returns the offset of a register in struct
 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 96 */
 97int regs_query_register_offset(const char *name)
 98{
 99	const struct pt_regs_offset *roff;
100	for (roff = regoffset_table; roff->name != NULL; roff++)
101		if (!strcmp(roff->name, name))
102			return roff->offset;
103	return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset:	the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115	const struct pt_regs_offset *roff;
116	for (roff = regoffset_table; roff->name != NULL; roff++)
117		if (roff->offset == offset)
118			return roff->name;
119	return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs:      pt_regs which contains kernel stack pointer.
125 * @addr:      address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132	return ((addr & ~(THREAD_SIZE - 1))  ==
133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs:	pt_regs which contains kernel stack pointer.
139 * @n:		stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148	addr += n;
149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150		return *addr;
151	else
152		return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163	return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175	struct pt_regs newregs, *regs = task_pt_regs(task);
176	int ret = -EINVAL;
177
178	newregs = *regs;
179	newregs.uregs[offset] = data;
180
181	if (valid_user_regs(&newregs)) {
182		regs->uregs[offset] = data;
183		ret = 0;
184	}
185
186	return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194	/* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203			(void __user *)instruction_pointer(regs));
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208	ptrace_break(regs);
209	return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213	.instr_mask	= 0x0fffffff,
214	.instr_val	= 0x07f001f0,
215	.cpsr_mask	= PSR_T_BIT,
216	.cpsr_val	= 0,
217	.fn		= break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221	.instr_mask	= 0xffffffff,
222	.instr_val	= 0x0000de01,
223	.cpsr_mask	= PSR_T_BIT,
224	.cpsr_val	= PSR_T_BIT,
225	.fn		= break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229	.instr_mask	= 0xffffffff,
230	.instr_val	= 0xf7f0a000,
231	.cpsr_mask	= PSR_T_BIT,
232	.cpsr_val	= PSR_T_BIT,
233	.fn		= break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238	register_undef_hook(&arm_break_hook);
239	register_undef_hook(&thumb_break_hook);
240	register_undef_hook(&thumb2_break_hook);
241	return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user".  We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251			    unsigned long __user *ret)
252{
253	unsigned long tmp;
254
255	if (off & 3)
256		return -EIO;
257
258	tmp = 0;
259	if (off == PT_TEXT_ADDR)
260		tmp = tsk->mm->start_code;
261	else if (off == PT_DATA_ADDR)
262		tmp = tsk->mm->start_data;
263	else if (off == PT_TEXT_END_ADDR)
264		tmp = tsk->mm->end_code;
265	else if (off < sizeof(struct pt_regs))
266		tmp = get_user_reg(tsk, off >> 2);
267	else if (off >= sizeof(struct user))
268		return -EIO;
269
270	return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user".  We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278			     unsigned long val)
279{
280	if (off & 3 || off >= sizeof(struct user))
281		return -EIO;
282
283	if (off >= sizeof(struct pt_regs))
284		return 0;
285
286	return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296	struct thread_info *thread = task_thread_info(tsk);
297
298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299		return -ENODATA;
300	iwmmxt_task_disable(thread);  /* force it to ram */
301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302		? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310	struct thread_info *thread = task_thread_info(tsk);
311
312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313		return -EACCES;
314	iwmmxt_task_release(thread);  /* force a reload */
315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316		? -EFAULT : 0;
317}
318
319#endif
320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321#ifdef CONFIG_HAVE_HW_BREAKPOINT
322/*
323 * Convert a virtual register number into an index for a thread_info
324 * breakpoint array. Breakpoints are identified using positive numbers
325 * whilst watchpoints are negative. The registers are laid out as pairs
326 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
327 * Register 0 is reserved for describing resource information.
328 */
329static int ptrace_hbp_num_to_idx(long num)
330{
331	if (num < 0)
332		num = (ARM_MAX_BRP << 1) - num;
333	return (num - 1) >> 1;
334}
335
336/*
337 * Returns the virtual register number for the address of the
338 * breakpoint at index idx.
339 */
340static long ptrace_hbp_idx_to_num(int idx)
341{
342	long mid = ARM_MAX_BRP << 1;
343	long num = (idx << 1) + 1;
344	return num > mid ? mid - num : num;
345}
346
347/*
348 * Handle hitting a HW-breakpoint.
349 */
350static void ptrace_hbptriggered(struct perf_event *bp,
351				     struct perf_sample_data *data,
352				     struct pt_regs *regs)
353{
354	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
355	long num;
356	int i;
357
358	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
359		if (current->thread.debug.hbp[i] == bp)
360			break;
361
362	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
363
364	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
365}
366
367/*
368 * Set ptrace breakpoint pointers to zero for this task.
369 * This is required in order to prevent child processes from unregistering
370 * breakpoints held by their parent.
371 */
372void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
373{
374	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
375}
376
377/*
378 * Unregister breakpoints from this task and reset the pointers in
379 * the thread_struct.
380 */
381void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
382{
383	int i;
384	struct thread_struct *t = &tsk->thread;
385
386	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
387		if (t->debug.hbp[i]) {
388			unregister_hw_breakpoint(t->debug.hbp[i]);
389			t->debug.hbp[i] = NULL;
390		}
391	}
392}
393
394static u32 ptrace_get_hbp_resource_info(void)
395{
396	u8 num_brps, num_wrps, debug_arch, wp_len;
397	u32 reg = 0;
398
399	num_brps	= hw_breakpoint_slots(TYPE_INST);
400	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
401	debug_arch	= arch_get_debug_arch();
402	wp_len		= arch_get_max_wp_len();
403
404	reg		|= debug_arch;
405	reg		<<= 8;
406	reg		|= wp_len;
407	reg		<<= 8;
408	reg		|= num_wrps;
409	reg		<<= 8;
410	reg		|= num_brps;
411
412	return reg;
413}
414
415static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
416{
417	struct perf_event_attr attr;
418
419	ptrace_breakpoint_init(&attr);
420
421	/* Initialise fields to sane defaults. */
422	attr.bp_addr	= 0;
423	attr.bp_len	= HW_BREAKPOINT_LEN_4;
424	attr.bp_type	= type;
425	attr.disabled	= 1;
426
427	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
428					   tsk);
429}
430
431static int ptrace_gethbpregs(struct task_struct *tsk, long num,
432			     unsigned long  __user *data)
433{
434	u32 reg;
435	int idx, ret = 0;
436	struct perf_event *bp;
437	struct arch_hw_breakpoint_ctrl arch_ctrl;
438
439	if (num == 0) {
440		reg = ptrace_get_hbp_resource_info();
441	} else {
442		idx = ptrace_hbp_num_to_idx(num);
443		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
444			ret = -EINVAL;
445			goto out;
446		}
447
448		bp = tsk->thread.debug.hbp[idx];
449		if (!bp) {
450			reg = 0;
451			goto put;
452		}
453
454		arch_ctrl = counter_arch_bp(bp)->ctrl;
455
456		/*
457		 * Fix up the len because we may have adjusted it
458		 * to compensate for an unaligned address.
459		 */
460		while (!(arch_ctrl.len & 0x1))
461			arch_ctrl.len >>= 1;
462
463		if (num & 0x1)
464			reg = bp->attr.bp_addr;
465		else
466			reg = encode_ctrl_reg(arch_ctrl);
467	}
468
469put:
470	if (put_user(reg, data))
471		ret = -EFAULT;
472
473out:
474	return ret;
475}
476
477static int ptrace_sethbpregs(struct task_struct *tsk, long num,
478			     unsigned long __user *data)
479{
480	int idx, gen_len, gen_type, implied_type, ret = 0;
481	u32 user_val;
482	struct perf_event *bp;
483	struct arch_hw_breakpoint_ctrl ctrl;
484	struct perf_event_attr attr;
485
486	if (num == 0)
487		goto out;
488	else if (num < 0)
489		implied_type = HW_BREAKPOINT_RW;
490	else
491		implied_type = HW_BREAKPOINT_X;
492
493	idx = ptrace_hbp_num_to_idx(num);
494	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
495		ret = -EINVAL;
496		goto out;
497	}
498
499	if (get_user(user_val, data)) {
500		ret = -EFAULT;
501		goto out;
502	}
503
504	bp = tsk->thread.debug.hbp[idx];
505	if (!bp) {
506		bp = ptrace_hbp_create(tsk, implied_type);
507		if (IS_ERR(bp)) {
508			ret = PTR_ERR(bp);
509			goto out;
510		}
511		tsk->thread.debug.hbp[idx] = bp;
512	}
513
514	attr = bp->attr;
515
516	if (num & 0x1) {
517		/* Address */
518		attr.bp_addr	= user_val;
519	} else {
520		/* Control */
521		decode_ctrl_reg(user_val, &ctrl);
522		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
523		if (ret)
524			goto out;
525
526		if ((gen_type & implied_type) != gen_type) {
527			ret = -EINVAL;
528			goto out;
529		}
530
531		attr.bp_len	= gen_len;
532		attr.bp_type	= gen_type;
533		attr.disabled	= !ctrl.enabled;
534	}
535
536	ret = modify_user_hw_breakpoint(bp, &attr);
537out:
538	return ret;
539}
540#endif
541
542/* regset get/set implementations */
543
544static int gpr_get(struct task_struct *target,
545		   const struct user_regset *regset,
546		   struct membuf to)
547{
548	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
549}
550
551static int gpr_set(struct task_struct *target,
552		   const struct user_regset *regset,
553		   unsigned int pos, unsigned int count,
554		   const void *kbuf, const void __user *ubuf)
555{
556	int ret;
557	struct pt_regs newregs = *task_pt_regs(target);
558
559	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
560				 &newregs,
561				 0, sizeof(newregs));
562	if (ret)
563		return ret;
564
565	if (!valid_user_regs(&newregs))
566		return -EINVAL;
567
568	*task_pt_regs(target) = newregs;
569	return 0;
570}
571
572static int fpa_get(struct task_struct *target,
573		   const struct user_regset *regset,
574		   struct membuf to)
575{
576	return membuf_write(&to, &task_thread_info(target)->fpstate,
577				 sizeof(struct user_fp));
578}
579
580static int fpa_set(struct task_struct *target,
581		   const struct user_regset *regset,
582		   unsigned int pos, unsigned int count,
583		   const void *kbuf, const void __user *ubuf)
584{
585	struct thread_info *thread = task_thread_info(target);
586
 
 
587	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
588		&thread->fpstate,
589		0, sizeof(struct user_fp));
590}
591
592#ifdef CONFIG_VFP
593/*
594 * VFP register get/set implementations.
595 *
596 * With respect to the kernel, struct user_fp is divided into three chunks:
597 * 16 or 32 real VFP registers (d0-d15 or d0-31)
598 *	These are transferred to/from the real registers in the task's
599 *	vfp_hard_struct.  The number of registers depends on the kernel
600 *	configuration.
601 *
602 * 16 or 0 fake VFP registers (d16-d31 or empty)
603 *	i.e., the user_vfp structure has space for 32 registers even if
604 *	the kernel doesn't have them all.
605 *
606 *	vfp_get() reads this chunk as zero where applicable
607 *	vfp_set() ignores this chunk
608 *
609 * 1 word for the FPSCR
610 */
611static int vfp_get(struct task_struct *target,
612		   const struct user_regset *regset,
613		   struct membuf to)
614{
615	struct thread_info *thread = task_thread_info(target);
616	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
617	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
618
619	vfp_sync_hwstate(thread);
620
621	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
622	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
623	return membuf_store(&to, vfp->fpscr);
624}
625
626/*
627 * For vfp_set() a read-modify-write is done on the VFP registers,
628 * in order to avoid writing back a half-modified set of registers on
629 * failure.
630 */
631static int vfp_set(struct task_struct *target,
632			  const struct user_regset *regset,
633			  unsigned int pos, unsigned int count,
634			  const void *kbuf, const void __user *ubuf)
635{
636	int ret;
637	struct thread_info *thread = task_thread_info(target);
638	struct vfp_hard_struct new_vfp;
639	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
640	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
641
642	vfp_sync_hwstate(thread);
643	new_vfp = thread->vfpstate.hard;
644
645	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
646				  &new_vfp.fpregs,
647				  user_fpregs_offset,
648				  user_fpregs_offset + sizeof(new_vfp.fpregs));
649	if (ret)
650		return ret;
651
652	user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
653				  user_fpregs_offset + sizeof(new_vfp.fpregs),
654				  user_fpscr_offset);
 
 
655
656	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
657				 &new_vfp.fpscr,
658				 user_fpscr_offset,
659				 user_fpscr_offset + sizeof(new_vfp.fpscr));
660	if (ret)
661		return ret;
662
663	thread->vfpstate.hard = new_vfp;
664	vfp_flush_hwstate(thread);
665
666	return 0;
667}
668#endif /* CONFIG_VFP */
669
670enum arm_regset {
671	REGSET_GPR,
672	REGSET_FPR,
673#ifdef CONFIG_VFP
674	REGSET_VFP,
675#endif
676};
677
678static const struct user_regset arm_regsets[] = {
679	[REGSET_GPR] = {
680		.core_note_type = NT_PRSTATUS,
681		.n = ELF_NGREG,
682		.size = sizeof(u32),
683		.align = sizeof(u32),
684		.regset_get = gpr_get,
685		.set = gpr_set
686	},
687	[REGSET_FPR] = {
688		/*
689		 * For the FPA regs in fpstate, the real fields are a mixture
690		 * of sizes, so pretend that the registers are word-sized:
691		 */
692		.core_note_type = NT_PRFPREG,
693		.n = sizeof(struct user_fp) / sizeof(u32),
694		.size = sizeof(u32),
695		.align = sizeof(u32),
696		.regset_get = fpa_get,
697		.set = fpa_set
698	},
699#ifdef CONFIG_VFP
700	[REGSET_VFP] = {
701		/*
702		 * Pretend that the VFP regs are word-sized, since the FPSCR is
703		 * a single word dangling at the end of struct user_vfp:
704		 */
705		.core_note_type = NT_ARM_VFP,
706		.n = ARM_VFPREGS_SIZE / sizeof(u32),
707		.size = sizeof(u32),
708		.align = sizeof(u32),
709		.regset_get = vfp_get,
710		.set = vfp_set
711	},
712#endif /* CONFIG_VFP */
713};
714
715static const struct user_regset_view user_arm_view = {
716	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
717	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
718};
719
720const struct user_regset_view *task_user_regset_view(struct task_struct *task)
721{
722	return &user_arm_view;
723}
724
725long arch_ptrace(struct task_struct *child, long request,
726		 unsigned long addr, unsigned long data)
727{
728	int ret;
729	unsigned long __user *datap = (unsigned long __user *) data;
730
731	switch (request) {
732		case PTRACE_PEEKUSR:
733			ret = ptrace_read_user(child, addr, datap);
734			break;
735
736		case PTRACE_POKEUSR:
737			ret = ptrace_write_user(child, addr, data);
738			break;
739
740		case PTRACE_GETREGS:
741			ret = copy_regset_to_user(child,
742						  &user_arm_view, REGSET_GPR,
743						  0, sizeof(struct pt_regs),
744						  datap);
745			break;
746
747		case PTRACE_SETREGS:
748			ret = copy_regset_from_user(child,
749						    &user_arm_view, REGSET_GPR,
750						    0, sizeof(struct pt_regs),
751						    datap);
752			break;
753
754		case PTRACE_GETFPREGS:
755			ret = copy_regset_to_user(child,
756						  &user_arm_view, REGSET_FPR,
757						  0, sizeof(union fp_state),
758						  datap);
759			break;
760
761		case PTRACE_SETFPREGS:
762			ret = copy_regset_from_user(child,
763						    &user_arm_view, REGSET_FPR,
764						    0, sizeof(union fp_state),
765						    datap);
766			break;
767
768#ifdef CONFIG_IWMMXT
769		case PTRACE_GETWMMXREGS:
770			ret = ptrace_getwmmxregs(child, datap);
771			break;
772
773		case PTRACE_SETWMMXREGS:
774			ret = ptrace_setwmmxregs(child, datap);
775			break;
776#endif
777
778		case PTRACE_GET_THREAD_AREA:
779			ret = put_user(task_thread_info(child)->tp_value[0],
780				       datap);
781			break;
782
783		case PTRACE_SET_SYSCALL:
784			if (data != -1)
785				data &= __NR_SYSCALL_MASK;
786			task_thread_info(child)->abi_syscall = data;
787			ret = 0;
788			break;
789
 
 
 
 
 
 
 
 
 
 
790#ifdef CONFIG_VFP
791		case PTRACE_GETVFPREGS:
792			ret = copy_regset_to_user(child,
793						  &user_arm_view, REGSET_VFP,
794						  0, ARM_VFPREGS_SIZE,
795						  datap);
796			break;
797
798		case PTRACE_SETVFPREGS:
799			ret = copy_regset_from_user(child,
800						    &user_arm_view, REGSET_VFP,
801						    0, ARM_VFPREGS_SIZE,
802						    datap);
803			break;
804#endif
805
806#ifdef CONFIG_HAVE_HW_BREAKPOINT
807		case PTRACE_GETHBPREGS:
808			ret = ptrace_gethbpregs(child, addr,
809						(unsigned long __user *)data);
810			break;
811		case PTRACE_SETHBPREGS:
812			ret = ptrace_sethbpregs(child, addr,
813						(unsigned long __user *)data);
814			break;
815#endif
816
817		default:
818			ret = ptrace_request(child, request, addr, data);
819			break;
820	}
821
822	return ret;
823}
824
825enum ptrace_syscall_dir {
826	PTRACE_SYSCALL_ENTER = 0,
827	PTRACE_SYSCALL_EXIT,
828};
829
830static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
 
831{
832	unsigned long ip;
833
834	/*
835	 * IP is used to denote syscall entry/exit:
836	 * IP = 0 -> entry, =1 -> exit
837	 */
838	ip = regs->ARM_ip;
839	regs->ARM_ip = dir;
840
841	if (dir == PTRACE_SYSCALL_EXIT)
842		ptrace_report_syscall_exit(regs, 0);
843	else if (ptrace_report_syscall_entry(regs))
844		current_thread_info()->abi_syscall = -1;
845
846	regs->ARM_ip = ip;
847}
848
849asmlinkage int syscall_trace_enter(struct pt_regs *regs)
850{
851	int scno;
852
853	if (test_thread_flag(TIF_SYSCALL_TRACE))
854		report_syscall(regs, PTRACE_SYSCALL_ENTER);
855
856	/* Do seccomp after ptrace; syscall may have changed. */
857#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
858	if (secure_computing() == -1)
859		return -1;
860#else
861	/* XXX: remove this once OABI gets fixed */
862	secure_computing_strict(syscall_get_nr(current, regs));
863#endif
864
865	/* Tracer or seccomp may have changed syscall. */
866	scno = syscall_get_nr(current, regs);
867
868	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
869		trace_sys_enter(regs, scno);
870
871	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
872			    regs->ARM_r3);
873
874	return scno;
875}
876
877asmlinkage void syscall_trace_exit(struct pt_regs *regs)
878{
879	/*
880	 * Audit the syscall before anything else, as a debugger may
881	 * come in and change the current registers.
882	 */
883	audit_syscall_exit(regs);
884
885	/*
886	 * Note that we haven't updated the ->syscall field for the
887	 * current thread. This isn't a problem because it will have
888	 * been set on syscall entry and there hasn't been an opportunity
889	 * for a PTRACE_SET_SYSCALL since then.
890	 */
891	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
892		trace_sys_exit(regs, regs_return_value(regs));
893
894	if (test_thread_flag(TIF_SYSCALL_TRACE))
895		report_syscall(regs, PTRACE_SYSCALL_EXIT);
896}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/kernel/ptrace.c
  4 *
  5 *  By Ross Biro 1/23/92
  6 * edited by Linus Torvalds
  7 * ARM modifications Copyright (C) 2000 Russell King
  8 */
  9#include <linux/kernel.h>
 10#include <linux/sched/signal.h>
 11#include <linux/sched/task_stack.h>
 12#include <linux/mm.h>
 13#include <linux/elf.h>
 14#include <linux/smp.h>
 15#include <linux/ptrace.h>
 16#include <linux/user.h>
 17#include <linux/security.h>
 18#include <linux/init.h>
 19#include <linux/signal.h>
 20#include <linux/uaccess.h>
 21#include <linux/perf_event.h>
 22#include <linux/hw_breakpoint.h>
 23#include <linux/regset.h>
 24#include <linux/audit.h>
 25#include <linux/tracehook.h>
 26#include <linux/unistd.h>
 27
 
 28#include <asm/traps.h>
 29
 30#define CREATE_TRACE_POINTS
 31#include <trace/events/syscalls.h>
 32
 33#define REG_PC	15
 34#define REG_PSR	16
 35/*
 36 * does not yet catch signals sent when the child dies.
 37 * in exit.c or in signal.c.
 38 */
 39
 40#if 0
 41/*
 42 * Breakpoint SWI instruction: SWI &9F0001
 43 */
 44#define BREAKINST_ARM	0xef9f0001
 45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
 46#else
 47/*
 48 * New breakpoints - use an undefined instruction.  The ARM architecture
 49 * reference manual guarantees that the following instruction space
 50 * will produce an undefined instruction exception on all CPUs:
 51 *
 52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
 53 *  Thumb: 1101 1110 xxxx xxxx
 54 */
 55#define BREAKINST_ARM	0xe7f001f0
 56#define BREAKINST_THUMB	0xde01
 57#endif
 58
 59struct pt_regs_offset {
 60	const char *name;
 61	int offset;
 62};
 63
 64#define REG_OFFSET_NAME(r) \
 65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
 66#define REG_OFFSET_END {.name = NULL, .offset = 0}
 67
 68static const struct pt_regs_offset regoffset_table[] = {
 69	REG_OFFSET_NAME(r0),
 70	REG_OFFSET_NAME(r1),
 71	REG_OFFSET_NAME(r2),
 72	REG_OFFSET_NAME(r3),
 73	REG_OFFSET_NAME(r4),
 74	REG_OFFSET_NAME(r5),
 75	REG_OFFSET_NAME(r6),
 76	REG_OFFSET_NAME(r7),
 77	REG_OFFSET_NAME(r8),
 78	REG_OFFSET_NAME(r9),
 79	REG_OFFSET_NAME(r10),
 80	REG_OFFSET_NAME(fp),
 81	REG_OFFSET_NAME(ip),
 82	REG_OFFSET_NAME(sp),
 83	REG_OFFSET_NAME(lr),
 84	REG_OFFSET_NAME(pc),
 85	REG_OFFSET_NAME(cpsr),
 86	REG_OFFSET_NAME(ORIG_r0),
 87	REG_OFFSET_END,
 88};
 89
 90/**
 91 * regs_query_register_offset() - query register offset from its name
 92 * @name:	the name of a register
 93 *
 94 * regs_query_register_offset() returns the offset of a register in struct
 95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 96 */
 97int regs_query_register_offset(const char *name)
 98{
 99	const struct pt_regs_offset *roff;
100	for (roff = regoffset_table; roff->name != NULL; roff++)
101		if (!strcmp(roff->name, name))
102			return roff->offset;
103	return -EINVAL;
104}
105
106/**
107 * regs_query_register_name() - query register name from its offset
108 * @offset:	the offset of a register in struct pt_regs.
109 *
110 * regs_query_register_name() returns the name of a register from its
111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112 */
113const char *regs_query_register_name(unsigned int offset)
114{
115	const struct pt_regs_offset *roff;
116	for (roff = regoffset_table; roff->name != NULL; roff++)
117		if (roff->offset == offset)
118			return roff->name;
119	return NULL;
120}
121
122/**
123 * regs_within_kernel_stack() - check the address in the stack
124 * @regs:      pt_regs which contains kernel stack pointer.
125 * @addr:      address which is checked.
126 *
127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128 * If @addr is within the kernel stack, it returns true. If not, returns false.
129 */
130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131{
132	return ((addr & ~(THREAD_SIZE - 1))  ==
133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134}
135
136/**
137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
138 * @regs:	pt_regs which contains kernel stack pointer.
139 * @n:		stack entry number.
140 *
141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143 * this returns 0.
144 */
145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146{
147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148	addr += n;
149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
150		return *addr;
151	else
152		return 0;
153}
154
155/*
156 * this routine will get a word off of the processes privileged stack.
157 * the offset is how far from the base addr as stored in the THREAD.
158 * this routine assumes that all the privileged stacks are in our
159 * data space.
160 */
161static inline long get_user_reg(struct task_struct *task, int offset)
162{
163	return task_pt_regs(task)->uregs[offset];
164}
165
166/*
167 * this routine will put a word on the processes privileged stack.
168 * the offset is how far from the base addr as stored in the THREAD.
169 * this routine assumes that all the privileged stacks are in our
170 * data space.
171 */
172static inline int
173put_user_reg(struct task_struct *task, int offset, long data)
174{
175	struct pt_regs newregs, *regs = task_pt_regs(task);
176	int ret = -EINVAL;
177
178	newregs = *regs;
179	newregs.uregs[offset] = data;
180
181	if (valid_user_regs(&newregs)) {
182		regs->uregs[offset] = data;
183		ret = 0;
184	}
185
186	return ret;
187}
188
189/*
190 * Called by kernel/ptrace.c when detaching..
191 */
192void ptrace_disable(struct task_struct *child)
193{
194	/* Nothing to do. */
195}
196
197/*
198 * Handle hitting a breakpoint.
199 */
200void ptrace_break(struct pt_regs *regs)
201{
202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
203			(void __user *)instruction_pointer(regs));
204}
205
206static int break_trap(struct pt_regs *regs, unsigned int instr)
207{
208	ptrace_break(regs);
209	return 0;
210}
211
212static struct undef_hook arm_break_hook = {
213	.instr_mask	= 0x0fffffff,
214	.instr_val	= 0x07f001f0,
215	.cpsr_mask	= PSR_T_BIT,
216	.cpsr_val	= 0,
217	.fn		= break_trap,
218};
219
220static struct undef_hook thumb_break_hook = {
221	.instr_mask	= 0xffffffff,
222	.instr_val	= 0x0000de01,
223	.cpsr_mask	= PSR_T_BIT,
224	.cpsr_val	= PSR_T_BIT,
225	.fn		= break_trap,
226};
227
228static struct undef_hook thumb2_break_hook = {
229	.instr_mask	= 0xffffffff,
230	.instr_val	= 0xf7f0a000,
231	.cpsr_mask	= PSR_T_BIT,
232	.cpsr_val	= PSR_T_BIT,
233	.fn		= break_trap,
234};
235
236static int __init ptrace_break_init(void)
237{
238	register_undef_hook(&arm_break_hook);
239	register_undef_hook(&thumb_break_hook);
240	register_undef_hook(&thumb2_break_hook);
241	return 0;
242}
243
244core_initcall(ptrace_break_init);
245
246/*
247 * Read the word at offset "off" into the "struct user".  We
248 * actually access the pt_regs stored on the kernel stack.
249 */
250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251			    unsigned long __user *ret)
252{
253	unsigned long tmp;
254
255	if (off & 3)
256		return -EIO;
257
258	tmp = 0;
259	if (off == PT_TEXT_ADDR)
260		tmp = tsk->mm->start_code;
261	else if (off == PT_DATA_ADDR)
262		tmp = tsk->mm->start_data;
263	else if (off == PT_TEXT_END_ADDR)
264		tmp = tsk->mm->end_code;
265	else if (off < sizeof(struct pt_regs))
266		tmp = get_user_reg(tsk, off >> 2);
267	else if (off >= sizeof(struct user))
268		return -EIO;
269
270	return put_user(tmp, ret);
271}
272
273/*
274 * Write the word at offset "off" into "struct user".  We
275 * actually access the pt_regs stored on the kernel stack.
276 */
277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278			     unsigned long val)
279{
280	if (off & 3 || off >= sizeof(struct user))
281		return -EIO;
282
283	if (off >= sizeof(struct pt_regs))
284		return 0;
285
286	return put_user_reg(tsk, off >> 2, val);
287}
288
289#ifdef CONFIG_IWMMXT
290
291/*
292 * Get the child iWMMXt state.
293 */
294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295{
296	struct thread_info *thread = task_thread_info(tsk);
297
298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299		return -ENODATA;
300	iwmmxt_task_disable(thread);  /* force it to ram */
301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302		? -EFAULT : 0;
303}
304
305/*
306 * Set the child iWMMXt state.
307 */
308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309{
310	struct thread_info *thread = task_thread_info(tsk);
311
312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313		return -EACCES;
314	iwmmxt_task_release(thread);  /* force a reload */
315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316		? -EFAULT : 0;
317}
318
319#endif
320
321#ifdef CONFIG_CRUNCH
322/*
323 * Get the child Crunch state.
324 */
325static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
326{
327	struct thread_info *thread = task_thread_info(tsk);
328
329	crunch_task_disable(thread);  /* force it to ram */
330	return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
331		? -EFAULT : 0;
332}
333
334/*
335 * Set the child Crunch state.
336 */
337static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
338{
339	struct thread_info *thread = task_thread_info(tsk);
340
341	crunch_task_release(thread);  /* force a reload */
342	return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
343		? -EFAULT : 0;
344}
345#endif
346
347#ifdef CONFIG_HAVE_HW_BREAKPOINT
348/*
349 * Convert a virtual register number into an index for a thread_info
350 * breakpoint array. Breakpoints are identified using positive numbers
351 * whilst watchpoints are negative. The registers are laid out as pairs
352 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
353 * Register 0 is reserved for describing resource information.
354 */
355static int ptrace_hbp_num_to_idx(long num)
356{
357	if (num < 0)
358		num = (ARM_MAX_BRP << 1) - num;
359	return (num - 1) >> 1;
360}
361
362/*
363 * Returns the virtual register number for the address of the
364 * breakpoint at index idx.
365 */
366static long ptrace_hbp_idx_to_num(int idx)
367{
368	long mid = ARM_MAX_BRP << 1;
369	long num = (idx << 1) + 1;
370	return num > mid ? mid - num : num;
371}
372
373/*
374 * Handle hitting a HW-breakpoint.
375 */
376static void ptrace_hbptriggered(struct perf_event *bp,
377				     struct perf_sample_data *data,
378				     struct pt_regs *regs)
379{
380	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
381	long num;
382	int i;
383
384	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
385		if (current->thread.debug.hbp[i] == bp)
386			break;
387
388	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
389
390	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
391}
392
393/*
394 * Set ptrace breakpoint pointers to zero for this task.
395 * This is required in order to prevent child processes from unregistering
396 * breakpoints held by their parent.
397 */
398void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
399{
400	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
401}
402
403/*
404 * Unregister breakpoints from this task and reset the pointers in
405 * the thread_struct.
406 */
407void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408{
409	int i;
410	struct thread_struct *t = &tsk->thread;
411
412	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
413		if (t->debug.hbp[i]) {
414			unregister_hw_breakpoint(t->debug.hbp[i]);
415			t->debug.hbp[i] = NULL;
416		}
417	}
418}
419
420static u32 ptrace_get_hbp_resource_info(void)
421{
422	u8 num_brps, num_wrps, debug_arch, wp_len;
423	u32 reg = 0;
424
425	num_brps	= hw_breakpoint_slots(TYPE_INST);
426	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
427	debug_arch	= arch_get_debug_arch();
428	wp_len		= arch_get_max_wp_len();
429
430	reg		|= debug_arch;
431	reg		<<= 8;
432	reg		|= wp_len;
433	reg		<<= 8;
434	reg		|= num_wrps;
435	reg		<<= 8;
436	reg		|= num_brps;
437
438	return reg;
439}
440
441static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
442{
443	struct perf_event_attr attr;
444
445	ptrace_breakpoint_init(&attr);
446
447	/* Initialise fields to sane defaults. */
448	attr.bp_addr	= 0;
449	attr.bp_len	= HW_BREAKPOINT_LEN_4;
450	attr.bp_type	= type;
451	attr.disabled	= 1;
452
453	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
454					   tsk);
455}
456
457static int ptrace_gethbpregs(struct task_struct *tsk, long num,
458			     unsigned long  __user *data)
459{
460	u32 reg;
461	int idx, ret = 0;
462	struct perf_event *bp;
463	struct arch_hw_breakpoint_ctrl arch_ctrl;
464
465	if (num == 0) {
466		reg = ptrace_get_hbp_resource_info();
467	} else {
468		idx = ptrace_hbp_num_to_idx(num);
469		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
470			ret = -EINVAL;
471			goto out;
472		}
473
474		bp = tsk->thread.debug.hbp[idx];
475		if (!bp) {
476			reg = 0;
477			goto put;
478		}
479
480		arch_ctrl = counter_arch_bp(bp)->ctrl;
481
482		/*
483		 * Fix up the len because we may have adjusted it
484		 * to compensate for an unaligned address.
485		 */
486		while (!(arch_ctrl.len & 0x1))
487			arch_ctrl.len >>= 1;
488
489		if (num & 0x1)
490			reg = bp->attr.bp_addr;
491		else
492			reg = encode_ctrl_reg(arch_ctrl);
493	}
494
495put:
496	if (put_user(reg, data))
497		ret = -EFAULT;
498
499out:
500	return ret;
501}
502
503static int ptrace_sethbpregs(struct task_struct *tsk, long num,
504			     unsigned long __user *data)
505{
506	int idx, gen_len, gen_type, implied_type, ret = 0;
507	u32 user_val;
508	struct perf_event *bp;
509	struct arch_hw_breakpoint_ctrl ctrl;
510	struct perf_event_attr attr;
511
512	if (num == 0)
513		goto out;
514	else if (num < 0)
515		implied_type = HW_BREAKPOINT_RW;
516	else
517		implied_type = HW_BREAKPOINT_X;
518
519	idx = ptrace_hbp_num_to_idx(num);
520	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
521		ret = -EINVAL;
522		goto out;
523	}
524
525	if (get_user(user_val, data)) {
526		ret = -EFAULT;
527		goto out;
528	}
529
530	bp = tsk->thread.debug.hbp[idx];
531	if (!bp) {
532		bp = ptrace_hbp_create(tsk, implied_type);
533		if (IS_ERR(bp)) {
534			ret = PTR_ERR(bp);
535			goto out;
536		}
537		tsk->thread.debug.hbp[idx] = bp;
538	}
539
540	attr = bp->attr;
541
542	if (num & 0x1) {
543		/* Address */
544		attr.bp_addr	= user_val;
545	} else {
546		/* Control */
547		decode_ctrl_reg(user_val, &ctrl);
548		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
549		if (ret)
550			goto out;
551
552		if ((gen_type & implied_type) != gen_type) {
553			ret = -EINVAL;
554			goto out;
555		}
556
557		attr.bp_len	= gen_len;
558		attr.bp_type	= gen_type;
559		attr.disabled	= !ctrl.enabled;
560	}
561
562	ret = modify_user_hw_breakpoint(bp, &attr);
563out:
564	return ret;
565}
566#endif
567
568/* regset get/set implementations */
569
570static int gpr_get(struct task_struct *target,
571		   const struct user_regset *regset,
572		   struct membuf to)
573{
574	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
575}
576
577static int gpr_set(struct task_struct *target,
578		   const struct user_regset *regset,
579		   unsigned int pos, unsigned int count,
580		   const void *kbuf, const void __user *ubuf)
581{
582	int ret;
583	struct pt_regs newregs = *task_pt_regs(target);
584
585	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
586				 &newregs,
587				 0, sizeof(newregs));
588	if (ret)
589		return ret;
590
591	if (!valid_user_regs(&newregs))
592		return -EINVAL;
593
594	*task_pt_regs(target) = newregs;
595	return 0;
596}
597
598static int fpa_get(struct task_struct *target,
599		   const struct user_regset *regset,
600		   struct membuf to)
601{
602	return membuf_write(&to, &task_thread_info(target)->fpstate,
603				 sizeof(struct user_fp));
604}
605
606static int fpa_set(struct task_struct *target,
607		   const struct user_regset *regset,
608		   unsigned int pos, unsigned int count,
609		   const void *kbuf, const void __user *ubuf)
610{
611	struct thread_info *thread = task_thread_info(target);
612
613	thread->used_cp[1] = thread->used_cp[2] = 1;
614
615	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
616		&thread->fpstate,
617		0, sizeof(struct user_fp));
618}
619
620#ifdef CONFIG_VFP
621/*
622 * VFP register get/set implementations.
623 *
624 * With respect to the kernel, struct user_fp is divided into three chunks:
625 * 16 or 32 real VFP registers (d0-d15 or d0-31)
626 *	These are transferred to/from the real registers in the task's
627 *	vfp_hard_struct.  The number of registers depends on the kernel
628 *	configuration.
629 *
630 * 16 or 0 fake VFP registers (d16-d31 or empty)
631 *	i.e., the user_vfp structure has space for 32 registers even if
632 *	the kernel doesn't have them all.
633 *
634 *	vfp_get() reads this chunk as zero where applicable
635 *	vfp_set() ignores this chunk
636 *
637 * 1 word for the FPSCR
638 */
639static int vfp_get(struct task_struct *target,
640		   const struct user_regset *regset,
641		   struct membuf to)
642{
643	struct thread_info *thread = task_thread_info(target);
644	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
645	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
646
647	vfp_sync_hwstate(thread);
648
649	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
650	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
651	return membuf_store(&to, vfp->fpscr);
652}
653
654/*
655 * For vfp_set() a read-modify-write is done on the VFP registers,
656 * in order to avoid writing back a half-modified set of registers on
657 * failure.
658 */
659static int vfp_set(struct task_struct *target,
660			  const struct user_regset *regset,
661			  unsigned int pos, unsigned int count,
662			  const void *kbuf, const void __user *ubuf)
663{
664	int ret;
665	struct thread_info *thread = task_thread_info(target);
666	struct vfp_hard_struct new_vfp;
667	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670	vfp_sync_hwstate(thread);
671	new_vfp = thread->vfpstate.hard;
672
673	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674				  &new_vfp.fpregs,
675				  user_fpregs_offset,
676				  user_fpregs_offset + sizeof(new_vfp.fpregs));
677	if (ret)
678		return ret;
679
680	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
681				user_fpregs_offset + sizeof(new_vfp.fpregs),
682				user_fpscr_offset);
683	if (ret)
684		return ret;
685
686	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
687				 &new_vfp.fpscr,
688				 user_fpscr_offset,
689				 user_fpscr_offset + sizeof(new_vfp.fpscr));
690	if (ret)
691		return ret;
692
693	thread->vfpstate.hard = new_vfp;
694	vfp_flush_hwstate(thread);
695
696	return 0;
697}
698#endif /* CONFIG_VFP */
699
700enum arm_regset {
701	REGSET_GPR,
702	REGSET_FPR,
703#ifdef CONFIG_VFP
704	REGSET_VFP,
705#endif
706};
707
708static const struct user_regset arm_regsets[] = {
709	[REGSET_GPR] = {
710		.core_note_type = NT_PRSTATUS,
711		.n = ELF_NGREG,
712		.size = sizeof(u32),
713		.align = sizeof(u32),
714		.regset_get = gpr_get,
715		.set = gpr_set
716	},
717	[REGSET_FPR] = {
718		/*
719		 * For the FPA regs in fpstate, the real fields are a mixture
720		 * of sizes, so pretend that the registers are word-sized:
721		 */
722		.core_note_type = NT_PRFPREG,
723		.n = sizeof(struct user_fp) / sizeof(u32),
724		.size = sizeof(u32),
725		.align = sizeof(u32),
726		.regset_get = fpa_get,
727		.set = fpa_set
728	},
729#ifdef CONFIG_VFP
730	[REGSET_VFP] = {
731		/*
732		 * Pretend that the VFP regs are word-sized, since the FPSCR is
733		 * a single word dangling at the end of struct user_vfp:
734		 */
735		.core_note_type = NT_ARM_VFP,
736		.n = ARM_VFPREGS_SIZE / sizeof(u32),
737		.size = sizeof(u32),
738		.align = sizeof(u32),
739		.regset_get = vfp_get,
740		.set = vfp_set
741	},
742#endif /* CONFIG_VFP */
743};
744
745static const struct user_regset_view user_arm_view = {
746	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
747	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
748};
749
750const struct user_regset_view *task_user_regset_view(struct task_struct *task)
751{
752	return &user_arm_view;
753}
754
755long arch_ptrace(struct task_struct *child, long request,
756		 unsigned long addr, unsigned long data)
757{
758	int ret;
759	unsigned long __user *datap = (unsigned long __user *) data;
760
761	switch (request) {
762		case PTRACE_PEEKUSR:
763			ret = ptrace_read_user(child, addr, datap);
764			break;
765
766		case PTRACE_POKEUSR:
767			ret = ptrace_write_user(child, addr, data);
768			break;
769
770		case PTRACE_GETREGS:
771			ret = copy_regset_to_user(child,
772						  &user_arm_view, REGSET_GPR,
773						  0, sizeof(struct pt_regs),
774						  datap);
775			break;
776
777		case PTRACE_SETREGS:
778			ret = copy_regset_from_user(child,
779						    &user_arm_view, REGSET_GPR,
780						    0, sizeof(struct pt_regs),
781						    datap);
782			break;
783
784		case PTRACE_GETFPREGS:
785			ret = copy_regset_to_user(child,
786						  &user_arm_view, REGSET_FPR,
787						  0, sizeof(union fp_state),
788						  datap);
789			break;
790
791		case PTRACE_SETFPREGS:
792			ret = copy_regset_from_user(child,
793						    &user_arm_view, REGSET_FPR,
794						    0, sizeof(union fp_state),
795						    datap);
796			break;
797
798#ifdef CONFIG_IWMMXT
799		case PTRACE_GETWMMXREGS:
800			ret = ptrace_getwmmxregs(child, datap);
801			break;
802
803		case PTRACE_SETWMMXREGS:
804			ret = ptrace_setwmmxregs(child, datap);
805			break;
806#endif
807
808		case PTRACE_GET_THREAD_AREA:
809			ret = put_user(task_thread_info(child)->tp_value[0],
810				       datap);
811			break;
812
813		case PTRACE_SET_SYSCALL:
814			task_thread_info(child)->syscall = data;
 
 
815			ret = 0;
816			break;
817
818#ifdef CONFIG_CRUNCH
819		case PTRACE_GETCRUNCHREGS:
820			ret = ptrace_getcrunchregs(child, datap);
821			break;
822
823		case PTRACE_SETCRUNCHREGS:
824			ret = ptrace_setcrunchregs(child, datap);
825			break;
826#endif
827
828#ifdef CONFIG_VFP
829		case PTRACE_GETVFPREGS:
830			ret = copy_regset_to_user(child,
831						  &user_arm_view, REGSET_VFP,
832						  0, ARM_VFPREGS_SIZE,
833						  datap);
834			break;
835
836		case PTRACE_SETVFPREGS:
837			ret = copy_regset_from_user(child,
838						    &user_arm_view, REGSET_VFP,
839						    0, ARM_VFPREGS_SIZE,
840						    datap);
841			break;
842#endif
843
844#ifdef CONFIG_HAVE_HW_BREAKPOINT
845		case PTRACE_GETHBPREGS:
846			ret = ptrace_gethbpregs(child, addr,
847						(unsigned long __user *)data);
848			break;
849		case PTRACE_SETHBPREGS:
850			ret = ptrace_sethbpregs(child, addr,
851						(unsigned long __user *)data);
852			break;
853#endif
854
855		default:
856			ret = ptrace_request(child, request, addr, data);
857			break;
858	}
859
860	return ret;
861}
862
863enum ptrace_syscall_dir {
864	PTRACE_SYSCALL_ENTER = 0,
865	PTRACE_SYSCALL_EXIT,
866};
867
868static void tracehook_report_syscall(struct pt_regs *regs,
869				    enum ptrace_syscall_dir dir)
870{
871	unsigned long ip;
872
873	/*
874	 * IP is used to denote syscall entry/exit:
875	 * IP = 0 -> entry, =1 -> exit
876	 */
877	ip = regs->ARM_ip;
878	regs->ARM_ip = dir;
879
880	if (dir == PTRACE_SYSCALL_EXIT)
881		tracehook_report_syscall_exit(regs, 0);
882	else if (tracehook_report_syscall_entry(regs))
883		current_thread_info()->syscall = -1;
884
885	regs->ARM_ip = ip;
886}
887
888asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
889{
890	current_thread_info()->syscall = scno;
891
892	if (test_thread_flag(TIF_SYSCALL_TRACE))
893		tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
894
895	/* Do seccomp after ptrace; syscall may have changed. */
896#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
897	if (secure_computing() == -1)
898		return -1;
899#else
900	/* XXX: remove this once OABI gets fixed */
901	secure_computing_strict(current_thread_info()->syscall);
902#endif
903
904	/* Tracer or seccomp may have changed syscall. */
905	scno = current_thread_info()->syscall;
906
907	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
908		trace_sys_enter(regs, scno);
909
910	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
911			    regs->ARM_r3);
912
913	return scno;
914}
915
916asmlinkage void syscall_trace_exit(struct pt_regs *regs)
917{
918	/*
919	 * Audit the syscall before anything else, as a debugger may
920	 * come in and change the current registers.
921	 */
922	audit_syscall_exit(regs);
923
924	/*
925	 * Note that we haven't updated the ->syscall field for the
926	 * current thread. This isn't a problem because it will have
927	 * been set on syscall entry and there hasn't been an opportunity
928	 * for a PTRACE_SET_SYSCALL since then.
929	 */
930	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
931		trace_sys_exit(regs, regs_return_value(regs));
932
933	if (test_thread_flag(TIF_SYSCALL_TRACE))
934		tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
935}