Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/pgtable.h
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
  6 */
  7#ifndef _ASMARM_PGTABLE_H
  8#define _ASMARM_PGTABLE_H
  9
 10#include <linux/const.h>
 11#include <asm/proc-fns.h>
 12
 13#ifndef __ASSEMBLY__
 14/*
 15 * ZERO_PAGE is a global shared page that is always zero: used
 16 * for zero-mapped memory areas etc..
 17 */
 18extern struct page *empty_zero_page;
 19#define ZERO_PAGE(vaddr)	(empty_zero_page)
 20#endif
 21
 22#ifndef CONFIG_MMU
 23
 24#include <asm-generic/pgtable-nopud.h>
 25#include <asm/pgtable-nommu.h>
 26
 27#else
 28
 29#include <asm-generic/pgtable-nopud.h>
 30#include <asm/page.h>
 31#include <asm/pgtable-hwdef.h>
 32
 33
 34#include <asm/tlbflush.h>
 35
 36#ifdef CONFIG_ARM_LPAE
 37#include <asm/pgtable-3level.h>
 38#else
 39#include <asm/pgtable-2level.h>
 40#endif
 41
 42/*
 43 * Just any arbitrary offset to the start of the vmalloc VM area: the
 44 * current 8MB value just means that there will be a 8MB "hole" after the
 45 * physical memory until the kernel virtual memory starts.  That means that
 46 * any out-of-bounds memory accesses will hopefully be caught.
 47 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 48 * area for the same reason. ;)
 49 */
 50#define VMALLOC_OFFSET		(8*1024*1024)
 51#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 52#define VMALLOC_END		0xff800000UL
 53
 54#define LIBRARY_TEXT_START	0x0c000000
 55
 56#ifndef __ASSEMBLY__
 57extern void __pte_error(const char *file, int line, pte_t);
 58extern void __pmd_error(const char *file, int line, pmd_t);
 59extern void __pgd_error(const char *file, int line, pgd_t);
 60
 61#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 62#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 63#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 64
 65/*
 66 * This is the lowest virtual address we can permit any user space
 67 * mapping to be mapped at.  This is particularly important for
 68 * non-high vector CPUs.
 69 */
 70#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 71
 72/*
 73 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 74 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 75 * page shared between user and kernel).
 76 */
 77#ifdef CONFIG_ARM_LPAE
 78#define USER_PGTABLES_CEILING	TASK_SIZE
 79#endif
 80
 81/*
 82 * The pgprot_* and protection_map entries will be fixed up in runtime
 83 * to include the cachable and bufferable bits based on memory policy,
 84 * as well as any architecture dependent bits like global/ASID and SMP
 85 * shared mapping bits.
 86 */
 87#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 88
 89extern pgprot_t		pgprot_user;
 90extern pgprot_t		pgprot_kernel;
 91
 92#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 93
 94#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 95#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 96#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 97#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 98#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 99#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
100#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
101#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
102#define PAGE_KERNEL_EXEC	pgprot_kernel
103
104#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
105#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
106#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
107#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
108#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
109#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
110#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
111
112#define __pgprot_modify(prot,mask,bits)		\
113	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
114
115#define pgprot_noncached(prot) \
116	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
117
118#define pgprot_writecombine(prot) \
119	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
120
121#define pgprot_stronglyordered(prot) \
122	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
123
124#define pgprot_device(prot) \
125	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
126
127#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
128#define pgprot_dmacoherent(prot) \
129	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
130#define __HAVE_PHYS_MEM_ACCESS_PROT
131struct file;
132extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
133				     unsigned long size, pgprot_t vma_prot);
134#else
135#define pgprot_dmacoherent(prot) \
136	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
137#endif
138
139#endif /* __ASSEMBLY__ */
140
141/*
142 * The table below defines the page protection levels that we insert into our
143 * Linux page table version.  These get translated into the best that the
144 * architecture can perform.  Note that on most ARM hardware:
145 *  1) We cannot do execute protection
146 *  2) If we could do execute protection, then read is implied
147 *  3) write implies read permissions
148 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
150#ifndef __ASSEMBLY__
 
 
 
 
 
 
151
152extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
153
154#define pgdp_get(pgpd)		READ_ONCE(*pgdp)
155
156#define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
157#define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
158
159#define pmd_none(pmd)		(!pmd_val(pmd))
160
161static inline pte_t *pmd_page_vaddr(pmd_t pmd)
162{
163	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
164}
165
166#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
167
168#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
169#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
170
171#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
172#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
173
174#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
175
176#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
177						: !!(pte_val(pte) & (val)))
178#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
179
180#define pte_none(pte)		(!pte_val(pte))
181#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
182#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
183#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
184#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
185#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
186#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
187#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
188
189#define pte_valid_user(pte)	\
190	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
191
192static inline bool pte_access_permitted(pte_t pte, bool write)
193{
194	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
195	pteval_t needed = mask;
196
197	if (write)
198		mask |= L_PTE_RDONLY;
199
200	return (pte_val(pte) & mask) == needed;
201}
202#define pte_access_permitted pte_access_permitted
203
204#if __LINUX_ARM_ARCH__ < 6
205static inline void __sync_icache_dcache(pte_t pteval)
206{
207}
208#else
209extern void __sync_icache_dcache(pte_t pteval);
210#endif
211
212#define PFN_PTE_SHIFT		PAGE_SHIFT
213
214void set_ptes(struct mm_struct *mm, unsigned long addr,
215		      pte_t *ptep, pte_t pteval, unsigned int nr);
216#define set_ptes set_ptes
217
218static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
219{
220	pte_val(pte) &= ~pgprot_val(prot);
221	return pte;
222}
223
224static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
225{
226	pte_val(pte) |= pgprot_val(prot);
227	return pte;
228}
229
230static inline pte_t pte_wrprotect(pte_t pte)
231{
232	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
233}
234
235static inline pte_t pte_mkwrite_novma(pte_t pte)
236{
237	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
238}
239
240static inline pte_t pte_mkclean(pte_t pte)
241{
242	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
243}
244
245static inline pte_t pte_mkdirty(pte_t pte)
246{
247	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
248}
249
250static inline pte_t pte_mkold(pte_t pte)
251{
252	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
253}
254
255static inline pte_t pte_mkyoung(pte_t pte)
256{
257	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
258}
259
260static inline pte_t pte_mkexec(pte_t pte)
261{
262	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
263}
264
265static inline pte_t pte_mknexec(pte_t pte)
266{
267	return set_pte_bit(pte, __pgprot(L_PTE_XN));
268}
269
270static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
271{
272	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
273		L_PTE_NONE | L_PTE_VALID;
274	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
275	return pte;
276}
277
278/*
279 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
280 * are !pte_none() && !pte_present().
281 *
282 * Format of swap PTEs:
283 *
284 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
285 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
286 *   <------------------- offset ------------------> E < type -> 0 0
287 *
288 *   E is the exclusive marker that is not stored in swap entries.
289 *
290 * This gives us up to 31 swap files and 64GB per swap file.  Note that
291 * the offset field is always non-zero.
292 */
293#define __SWP_TYPE_SHIFT	2
294#define __SWP_TYPE_BITS		5
295#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
296#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT + 1)
297
298#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
299#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
300#define __swp_entry(type, offset) ((swp_entry_t) { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
301						   ((offset) << __SWP_OFFSET_SHIFT) })
302
303#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
304#define __swp_entry_to_pte(swp)	__pte((swp).val)
305
306static inline int pte_swp_exclusive(pte_t pte)
307{
308	return pte_isset(pte, L_PTE_SWP_EXCLUSIVE);
309}
310
311static inline pte_t pte_swp_mkexclusive(pte_t pte)
312{
313	return set_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE));
314}
315
316static inline pte_t pte_swp_clear_exclusive(pte_t pte)
317{
318	return clear_pte_bit(pte, __pgprot(L_PTE_SWP_EXCLUSIVE));
319}
320
321/*
322 * It is an error for the kernel to have more swap files than we can
323 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
324 * is increased beyond what we presently support.
325 */
326#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
 
 
 
 
327
328/*
329 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
330 */
331#define HAVE_ARCH_UNMAPPED_AREA
332#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
333
334#endif /* !__ASSEMBLY__ */
335
336#endif /* CONFIG_MMU */
337
338#endif /* _ASMARM_PGTABLE_H */
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/pgtable.h
  4 *
  5 *  Copyright (C) 1995-2002 Russell King
  6 */
  7#ifndef _ASMARM_PGTABLE_H
  8#define _ASMARM_PGTABLE_H
  9
 10#include <linux/const.h>
 11#include <asm/proc-fns.h>
 12
 
 
 
 
 
 
 
 
 
 13#ifndef CONFIG_MMU
 14
 15#include <asm-generic/pgtable-nopud.h>
 16#include <asm/pgtable-nommu.h>
 17
 18#else
 19
 20#include <asm-generic/pgtable-nopud.h>
 21#include <asm/memory.h>
 22#include <asm/pgtable-hwdef.h>
 23
 24
 25#include <asm/tlbflush.h>
 26
 27#ifdef CONFIG_ARM_LPAE
 28#include <asm/pgtable-3level.h>
 29#else
 30#include <asm/pgtable-2level.h>
 31#endif
 32
 33/*
 34 * Just any arbitrary offset to the start of the vmalloc VM area: the
 35 * current 8MB value just means that there will be a 8MB "hole" after the
 36 * physical memory until the kernel virtual memory starts.  That means that
 37 * any out-of-bounds memory accesses will hopefully be caught.
 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 39 * area for the same reason. ;)
 40 */
 41#define VMALLOC_OFFSET		(8*1024*1024)
 42#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 43#define VMALLOC_END		0xff800000UL
 44
 45#define LIBRARY_TEXT_START	0x0c000000
 46
 47#ifndef __ASSEMBLY__
 48extern void __pte_error(const char *file, int line, pte_t);
 49extern void __pmd_error(const char *file, int line, pmd_t);
 50extern void __pgd_error(const char *file, int line, pgd_t);
 51
 52#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte)
 53#define pmd_ERROR(pmd)		__pmd_error(__FILE__, __LINE__, pmd)
 54#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd)
 55
 56/*
 57 * This is the lowest virtual address we can permit any user space
 58 * mapping to be mapped at.  This is particularly important for
 59 * non-high vector CPUs.
 60 */
 61#define FIRST_USER_ADDRESS	(PAGE_SIZE * 2)
 62
 63/*
 64 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
 65 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
 66 * page shared between user and kernel).
 67 */
 68#ifdef CONFIG_ARM_LPAE
 69#define USER_PGTABLES_CEILING	TASK_SIZE
 70#endif
 71
 72/*
 73 * The pgprot_* and protection_map entries will be fixed up in runtime
 74 * to include the cachable and bufferable bits based on memory policy,
 75 * as well as any architecture dependent bits like global/ASID and SMP
 76 * shared mapping bits.
 77 */
 78#define _L_PTE_DEFAULT	L_PTE_PRESENT | L_PTE_YOUNG
 79
 80extern pgprot_t		pgprot_user;
 81extern pgprot_t		pgprot_kernel;
 82
 83#define _MOD_PROT(p, b)	__pgprot(pgprot_val(p) | (b))
 84
 85#define PAGE_NONE		_MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
 86#define PAGE_SHARED		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
 87#define PAGE_SHARED_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER)
 88#define PAGE_COPY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 89#define PAGE_COPY_EXEC		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 90#define PAGE_READONLY		_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 91#define PAGE_READONLY_EXEC	_MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
 92#define PAGE_KERNEL		_MOD_PROT(pgprot_kernel, L_PTE_XN)
 93#define PAGE_KERNEL_EXEC	pgprot_kernel
 94
 95#define __PAGE_NONE		__pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
 96#define __PAGE_SHARED		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
 97#define __PAGE_SHARED_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER)
 98#define __PAGE_COPY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
 99#define __PAGE_COPY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
100#define __PAGE_READONLY		__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
101#define __PAGE_READONLY_EXEC	__pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
102
103#define __pgprot_modify(prot,mask,bits)		\
104	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
105
106#define pgprot_noncached(prot) \
107	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
108
109#define pgprot_writecombine(prot) \
110	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
111
112#define pgprot_stronglyordered(prot) \
113	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
114
115#define pgprot_device(prot) \
116	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN)
117
118#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
119#define pgprot_dmacoherent(prot) \
120	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
121#define __HAVE_PHYS_MEM_ACCESS_PROT
122struct file;
123extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
124				     unsigned long size, pgprot_t vma_prot);
125#else
126#define pgprot_dmacoherent(prot) \
127	__pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
128#endif
129
130#endif /* __ASSEMBLY__ */
131
132/*
133 * The table below defines the page protection levels that we insert into our
134 * Linux page table version.  These get translated into the best that the
135 * architecture can perform.  Note that on most ARM hardware:
136 *  1) We cannot do execute protection
137 *  2) If we could do execute protection, then read is implied
138 *  3) write implies read permissions
139 */
140#define __P000  __PAGE_NONE
141#define __P001  __PAGE_READONLY
142#define __P010  __PAGE_COPY
143#define __P011  __PAGE_COPY
144#define __P100  __PAGE_READONLY_EXEC
145#define __P101  __PAGE_READONLY_EXEC
146#define __P110  __PAGE_COPY_EXEC
147#define __P111  __PAGE_COPY_EXEC
148
149#define __S000  __PAGE_NONE
150#define __S001  __PAGE_READONLY
151#define __S010  __PAGE_SHARED
152#define __S011  __PAGE_SHARED
153#define __S100  __PAGE_READONLY_EXEC
154#define __S101  __PAGE_READONLY_EXEC
155#define __S110  __PAGE_SHARED_EXEC
156#define __S111  __PAGE_SHARED_EXEC
157
158#ifndef __ASSEMBLY__
159/*
160 * ZERO_PAGE is a global shared page that is always zero: used
161 * for zero-mapped memory areas etc..
162 */
163extern struct page *empty_zero_page;
164#define ZERO_PAGE(vaddr)	(empty_zero_page)
165
 
166
167extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
168
169#define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
170#define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
171
172#define pmd_none(pmd)		(!pmd_val(pmd))
173
174static inline pte_t *pmd_page_vaddr(pmd_t pmd)
175{
176	return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
177}
178
179#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
180
181#define pte_pfn(pte)		((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
182#define pfn_pte(pfn,prot)	__pte(__pfn_to_phys(pfn) | pgprot_val(prot))
183
184#define pte_page(pte)		pfn_to_page(pte_pfn(pte))
185#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page), prot)
186
187#define pte_clear(mm,addr,ptep)	set_pte_ext(ptep, __pte(0), 0)
188
189#define pte_isset(pte, val)	((u32)(val) == (val) ? pte_val(pte) & (val) \
190						: !!(pte_val(pte) & (val)))
191#define pte_isclear(pte, val)	(!(pte_val(pte) & (val)))
192
193#define pte_none(pte)		(!pte_val(pte))
194#define pte_present(pte)	(pte_isset((pte), L_PTE_PRESENT))
195#define pte_valid(pte)		(pte_isset((pte), L_PTE_VALID))
196#define pte_accessible(mm, pte)	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
197#define pte_write(pte)		(pte_isclear((pte), L_PTE_RDONLY))
198#define pte_dirty(pte)		(pte_isset((pte), L_PTE_DIRTY))
199#define pte_young(pte)		(pte_isset((pte), L_PTE_YOUNG))
200#define pte_exec(pte)		(pte_isclear((pte), L_PTE_XN))
201
202#define pte_valid_user(pte)	\
203	(pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
204
205static inline bool pte_access_permitted(pte_t pte, bool write)
206{
207	pteval_t mask = L_PTE_PRESENT | L_PTE_USER;
208	pteval_t needed = mask;
209
210	if (write)
211		mask |= L_PTE_RDONLY;
212
213	return (pte_val(pte) & mask) == needed;
214}
215#define pte_access_permitted pte_access_permitted
216
217#if __LINUX_ARM_ARCH__ < 6
218static inline void __sync_icache_dcache(pte_t pteval)
219{
220}
221#else
222extern void __sync_icache_dcache(pte_t pteval);
223#endif
224
225void set_pte_at(struct mm_struct *mm, unsigned long addr,
226		      pte_t *ptep, pte_t pteval);
 
 
 
227
228static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
229{
230	pte_val(pte) &= ~pgprot_val(prot);
231	return pte;
232}
233
234static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
235{
236	pte_val(pte) |= pgprot_val(prot);
237	return pte;
238}
239
240static inline pte_t pte_wrprotect(pte_t pte)
241{
242	return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
243}
244
245static inline pte_t pte_mkwrite(pte_t pte)
246{
247	return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
248}
249
250static inline pte_t pte_mkclean(pte_t pte)
251{
252	return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
253}
254
255static inline pte_t pte_mkdirty(pte_t pte)
256{
257	return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
258}
259
260static inline pte_t pte_mkold(pte_t pte)
261{
262	return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
263}
264
265static inline pte_t pte_mkyoung(pte_t pte)
266{
267	return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
268}
269
270static inline pte_t pte_mkexec(pte_t pte)
271{
272	return clear_pte_bit(pte, __pgprot(L_PTE_XN));
273}
274
275static inline pte_t pte_mknexec(pte_t pte)
276{
277	return set_pte_bit(pte, __pgprot(L_PTE_XN));
278}
279
280static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
281{
282	const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
283		L_PTE_NONE | L_PTE_VALID;
284	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
285	return pte;
286}
287
288/*
289 * Encode and decode a swap entry.  Swap entries are stored in the Linux
290 * page tables as follows:
 
 
291 *
292 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
293 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
294 *   <--------------- offset ------------------------> < type -> 0 0
295 *
296 * This gives us up to 31 swap files and 128GB per swap file.  Note that
 
 
297 * the offset field is always non-zero.
298 */
299#define __SWP_TYPE_SHIFT	2
300#define __SWP_TYPE_BITS		5
301#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
302#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
303
304#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
305#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
306#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
 
307
308#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
309#define __swp_entry_to_pte(swp)	__pte((swp).val | PTE_TYPE_FAULT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
311/*
312 * It is an error for the kernel to have more swap files than we can
313 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
314 * is increased beyond what we presently support.
315 */
316#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
317
318/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
319/* FIXME: this is not correct */
320#define kern_addr_valid(addr)	(1)
321
322/*
323 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
324 */
325#define HAVE_ARCH_UNMAPPED_AREA
326#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
327
328#endif /* !__ASSEMBLY__ */
329
330#endif /* CONFIG_MMU */
331
332#endif /* _ASMARM_PGTABLE_H */