Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
 
 
 
 
 
 
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
  98{
  99	u16 i, j;
 
 100	bool print_unknown_handle = false;
 101
 102	/* Find number of classes in the input mapping */
 103	if (!map)
 104		return -EINVAL;
 105	i = 0;
 106	while (map[i].name)
 107		i++;
 108
 109	/* Allocate space for the class records, plus one for class zero */
 110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 111	if (!out_map->mapping)
 112		return -ENOMEM;
 113
 114	/* Store the raw class and permission values */
 115	j = 0;
 116	while (map[j].name) {
 117		const struct security_class_mapping *p_in = map + (j++);
 118		struct selinux_mapping *p_out = out_map->mapping + j;
 119		u16 k;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= (u32)1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= (u32)1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= (u32)1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= (u32)1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= (u32)1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= (u32)1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(void)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized())
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(selinux_state.policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * Flag which drivers have permissions and which base permissions are covered.
 
 586 */
 587void services_compute_xperms_drivers(
 588		struct extended_perms *xperms,
 589		struct avtab_node *node)
 590{
 591	unsigned int i;
 592
 593	switch (node->datum.u.xperms->specified) {
 594	case AVTAB_XPERMS_IOCTLDRIVER:
 595		xperms->base_perms |= AVC_EXT_IOCTL;
 596		/* if one or more driver has all permissions allowed */
 597		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 598			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 599		break;
 600	case AVTAB_XPERMS_IOCTLFUNCTION:
 601		xperms->base_perms |= AVC_EXT_IOCTL;
 602		/* if allowing permissions within a driver */
 603		security_xperm_set(xperms->drivers.p,
 604					node->datum.u.xperms->driver);
 605		break;
 606	case AVTAB_XPERMS_NLMSG:
 607		xperms->base_perms |= AVC_EXT_NLMSG;
 608		/* if allowing permissions within a driver */
 609		security_xperm_set(xperms->drivers.p,
 610					node->datum.u.xperms->driver);
 611		break;
 612	}
 613
 614	xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(xperms, 0, sizeof(*xperms));
 
 642	}
 643
 644	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 645		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
 
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_policy *policy,
 
 725					struct sidtab_entry *oentry,
 726					struct sidtab_entry *nentry,
 727					struct sidtab_entry *tentry,
 728					u16 tclass)
 729{
 730	struct policydb *p = &policy->policydb;
 731	struct sidtab *sidtab = policy->sidtab;
 732	char *o = NULL, *n = NULL, *t = NULL;
 733	u32 olen, nlen, tlen;
 734
 735	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 736		goto out;
 737	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 738		goto out;
 739	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 740		goto out;
 741	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 742		  "op=security_validate_transition seresult=denied"
 743		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 744		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 745out:
 746	kfree(o);
 747	kfree(n);
 748	kfree(t);
 749
 750	if (!enforcing_enabled())
 751		return 0;
 752	return -EPERM;
 753}
 754
 755static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 
 756					  u16 orig_tclass, bool user)
 757{
 758	struct selinux_policy *policy;
 759	struct policydb *policydb;
 760	struct sidtab *sidtab;
 761	struct sidtab_entry *oentry;
 762	struct sidtab_entry *nentry;
 763	struct sidtab_entry *tentry;
 764	struct class_datum *tclass_datum;
 765	struct constraint_node *constraint;
 766	u16 tclass;
 767	int rc = 0;
 768
 769
 770	if (!selinux_initialized())
 771		return 0;
 772
 773	rcu_read_lock();
 774
 775	policy = rcu_dereference(selinux_state.policy);
 776	policydb = &policy->policydb;
 777	sidtab = policy->sidtab;
 778
 779	if (!user)
 780		tclass = unmap_class(&policy->map, orig_tclass);
 781	else
 782		tclass = orig_tclass;
 783
 784	if (!tclass || tclass > policydb->p_classes.nprim) {
 785		rc = -EINVAL;
 786		goto out;
 787	}
 788	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 789
 790	oentry = sidtab_search_entry(sidtab, oldsid);
 791	if (!oentry) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, oldsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	nentry = sidtab_search_entry(sidtab, newsid);
 799	if (!nentry) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, newsid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	tentry = sidtab_search_entry(sidtab, tasksid);
 807	if (!tentry) {
 808		pr_err("SELinux: %s:  unrecognized SID %d\n",
 809			__func__, tasksid);
 810		rc = -EINVAL;
 811		goto out;
 812	}
 813
 814	constraint = tclass_datum->validatetrans;
 815	while (constraint) {
 816		if (!constraint_expr_eval(policydb, &oentry->context,
 817					  &nentry->context, &tentry->context,
 818					  constraint->expr)) {
 819			if (user)
 820				rc = -EPERM;
 821			else
 822				rc = security_validtrans_handle_fail(policy,
 
 823								oentry,
 824								nentry,
 825								tentry,
 826								tclass);
 827			goto out;
 828		}
 829		constraint = constraint->next;
 830	}
 831
 832out:
 833	rcu_read_unlock();
 834	return rc;
 835}
 836
 837int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 
 838				      u16 tclass)
 839{
 840	return security_compute_validatetrans(oldsid, newsid, tasksid,
 841					      tclass, true);
 842}
 843
 844int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 861{
 862	struct selinux_policy *policy;
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	u32 index;
 868	int rc;
 869
 870	if (!selinux_initialized())
 871		return 0;
 872
 873	rcu_read_lock();
 874	policy = rcu_dereference(selinux_state.policy);
 875	policydb = &policy->policydb;
 876	sidtab = policy->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	rcu_read_unlock();
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	if (policy)
 948		avd->seqno = policy->latest_granting;
 949	else
 950		avd->seqno = 0;
 951	avd->flags = 0;
 952}
 953
 954static void update_xperms_extended_data(u8 specified,
 955					struct extended_perms_data *from,
 956					struct extended_perms_data *xp_data)
 957{
 958	unsigned int i;
 959
 960	switch (specified) {
 961	case AVTAB_XPERMS_IOCTLDRIVER:
 962		memset(xp_data->p, 0xff, sizeof(xp_data->p));
 963		break;
 964	case AVTAB_XPERMS_IOCTLFUNCTION:
 965	case AVTAB_XPERMS_NLMSG:
 966		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
 967			xp_data->p[i] |= from->p[i];
 968		break;
 969	}
 970
 971}
 972
 973void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 974					struct avtab_node *node)
 975{
 976	switch (node->datum.u.xperms->specified) {
 977	case AVTAB_XPERMS_IOCTLFUNCTION:
 978		if (xpermd->base_perm != AVC_EXT_IOCTL ||
 979		    xpermd->driver != node->datum.u.xperms->driver)
 980			return;
 981		break;
 982	case AVTAB_XPERMS_IOCTLDRIVER:
 983		if (xpermd->base_perm != AVC_EXT_IOCTL ||
 984		    !security_xperm_test(node->datum.u.xperms->perms.p,
 985					 xpermd->driver))
 986			return;
 987		break;
 988	case AVTAB_XPERMS_NLMSG:
 989		if (xpermd->base_perm != AVC_EXT_NLMSG ||
 990		    xpermd->driver != node->datum.u.xperms->driver)
 991			return;
 992		break;
 993	default:
 994		pr_warn_once(
 995			"SELinux: unknown extended permission (%u) will be ignored\n",
 996			node->datum.u.xperms->specified);
 997		return;
 998	}
 999
1000	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
1001		xpermd->used |= XPERMS_ALLOWED;
1002		update_xperms_extended_data(node->datum.u.xperms->specified,
1003					    &node->datum.u.xperms->perms,
1004					    xpermd->allowed);
 
 
 
 
 
 
1005	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
1006		xpermd->used |= XPERMS_AUDITALLOW;
1007		update_xperms_extended_data(node->datum.u.xperms->specified,
1008					    &node->datum.u.xperms->perms,
1009					    xpermd->auditallow);
 
 
 
 
 
 
1010	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1011		xpermd->used |= XPERMS_DONTAUDIT;
1012		update_xperms_extended_data(node->datum.u.xperms->specified,
1013					    &node->datum.u.xperms->perms,
1014					    xpermd->dontaudit);
 
 
 
 
 
 
1015	} else {
1016		pr_warn_once("SELinux: unknown specified key (%u)\n",
1017			     node->key.specified);
1018	}
1019}
1020
1021void security_compute_xperms_decision(u32 ssid,
 
1022				      u32 tsid,
1023				      u16 orig_tclass,
1024				      u8 driver,
1025				      u8 base_perm,
1026				      struct extended_perms_decision *xpermd)
1027{
1028	struct selinux_policy *policy;
1029	struct policydb *policydb;
1030	struct sidtab *sidtab;
1031	u16 tclass;
1032	struct context *scontext, *tcontext;
1033	struct avtab_key avkey;
1034	struct avtab_node *node;
1035	struct ebitmap *sattr, *tattr;
1036	struct ebitmap_node *snode, *tnode;
1037	unsigned int i, j;
1038
1039	xpermd->base_perm = base_perm;
1040	xpermd->driver = driver;
1041	xpermd->used = 0;
1042	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1043	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1044	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1045
1046	rcu_read_lock();
1047	if (!selinux_initialized())
1048		goto allow;
1049
1050	policy = rcu_dereference(selinux_state.policy);
1051	policydb = &policy->policydb;
1052	sidtab = policy->sidtab;
1053
1054	scontext = sidtab_search(sidtab, ssid);
1055	if (!scontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, ssid);
1058		goto out;
1059	}
1060
1061	tcontext = sidtab_search(sidtab, tsid);
1062	if (!tcontext) {
1063		pr_err("SELinux: %s:  unrecognized SID %d\n",
1064		       __func__, tsid);
1065		goto out;
1066	}
1067
1068	tclass = unmap_class(&policy->map, orig_tclass);
1069	if (unlikely(orig_tclass && !tclass)) {
1070		if (policydb->allow_unknown)
1071			goto allow;
1072		goto out;
1073	}
1074
1075
1076	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1077		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1078		goto out;
1079	}
1080
1081	avkey.target_class = tclass;
1082	avkey.specified = AVTAB_XPERMS;
1083	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1084	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1085	ebitmap_for_each_positive_bit(sattr, snode, i) {
1086		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1087			avkey.source_type = i + 1;
1088			avkey.target_type = j + 1;
1089			for (node = avtab_search_node(&policydb->te_avtab,
1090						      &avkey);
1091			     node;
1092			     node = avtab_search_node_next(node, avkey.specified))
1093				services_compute_xperms_decision(xpermd, node);
1094
1095			cond_compute_xperms(&policydb->te_cond_avtab,
1096						&avkey, xpermd);
1097		}
1098	}
1099out:
1100	rcu_read_unlock();
1101	return;
1102allow:
1103	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1104	goto out;
1105}
1106
1107/**
1108 * security_compute_av - Compute access vector decisions.
 
1109 * @ssid: source security identifier
1110 * @tsid: target security identifier
1111 * @orig_tclass: target security class
1112 * @avd: access vector decisions
1113 * @xperms: extended permissions
1114 *
1115 * Compute a set of access vector decisions based on the
1116 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1117 */
1118void security_compute_av(u32 ssid,
 
1119			 u32 tsid,
1120			 u16 orig_tclass,
1121			 struct av_decision *avd,
1122			 struct extended_perms *xperms)
1123{
1124	struct selinux_policy *policy;
1125	struct policydb *policydb;
1126	struct sidtab *sidtab;
1127	u16 tclass;
1128	struct context *scontext = NULL, *tcontext = NULL;
1129
1130	rcu_read_lock();
1131	policy = rcu_dereference(selinux_state.policy);
1132	avd_init(policy, avd);
1133	xperms->len = 0;
1134	if (!selinux_initialized())
1135		goto allow;
1136
1137	policydb = &policy->policydb;
1138	sidtab = policy->sidtab;
1139
1140	scontext = sidtab_search(sidtab, ssid);
1141	if (!scontext) {
1142		pr_err("SELinux: %s:  unrecognized SID %d\n",
1143		       __func__, ssid);
1144		goto out;
1145	}
1146
1147	/* permissive domain? */
1148	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1149		avd->flags |= AVD_FLAGS_PERMISSIVE;
1150
1151	tcontext = sidtab_search(sidtab, tsid);
1152	if (!tcontext) {
1153		pr_err("SELinux: %s:  unrecognized SID %d\n",
1154		       __func__, tsid);
1155		goto out;
1156	}
1157
1158	tclass = unmap_class(&policy->map, orig_tclass);
1159	if (unlikely(orig_tclass && !tclass)) {
1160		if (policydb->allow_unknown)
1161			goto allow;
1162		goto out;
1163	}
1164	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1165				  xperms);
1166	map_decision(&policy->map, orig_tclass, avd,
1167		     policydb->allow_unknown);
1168out:
1169	rcu_read_unlock();
1170	return;
1171allow:
1172	avd->allowed = 0xffffffff;
1173	goto out;
1174}
1175
1176void security_compute_av_user(u32 ssid,
 
1177			      u32 tsid,
1178			      u16 tclass,
1179			      struct av_decision *avd)
1180{
1181	struct selinux_policy *policy;
1182	struct policydb *policydb;
1183	struct sidtab *sidtab;
1184	struct context *scontext = NULL, *tcontext = NULL;
1185
1186	rcu_read_lock();
1187	policy = rcu_dereference(selinux_state.policy);
1188	avd_init(policy, avd);
1189	if (!selinux_initialized())
1190		goto allow;
1191
1192	policydb = &policy->policydb;
1193	sidtab = policy->sidtab;
1194
1195	scontext = sidtab_search(sidtab, ssid);
1196	if (!scontext) {
1197		pr_err("SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, ssid);
1199		goto out;
1200	}
1201
1202	/* permissive domain? */
1203	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1204		avd->flags |= AVD_FLAGS_PERMISSIVE;
1205
1206	tcontext = sidtab_search(sidtab, tsid);
1207	if (!tcontext) {
1208		pr_err("SELinux: %s:  unrecognized SID %d\n",
1209		       __func__, tsid);
1210		goto out;
1211	}
1212
1213	if (unlikely(!tclass)) {
1214		if (policydb->allow_unknown)
1215			goto allow;
1216		goto out;
1217	}
1218
1219	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1220				  NULL);
1221 out:
1222	rcu_read_unlock();
1223	return;
1224allow:
1225	avd->allowed = 0xffffffff;
1226	goto out;
1227}
1228
1229/*
1230 * Write the security context string representation of
1231 * the context structure `context' into a dynamically
1232 * allocated string of the correct size.  Set `*scontext'
1233 * to point to this string and set `*scontext_len' to
1234 * the length of the string.
1235 */
1236static int context_struct_to_string(struct policydb *p,
1237				    struct context *context,
1238				    char **scontext, u32 *scontext_len)
1239{
1240	char *scontextp;
1241
1242	if (scontext)
1243		*scontext = NULL;
1244	*scontext_len = 0;
1245
1246	if (context->len) {
1247		*scontext_len = context->len;
1248		if (scontext) {
1249			*scontext = kstrdup(context->str, GFP_ATOMIC);
1250			if (!(*scontext))
1251				return -ENOMEM;
1252		}
1253		return 0;
1254	}
1255
1256	/* Compute the size of the context. */
1257	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1258	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1259	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1260	*scontext_len += mls_compute_context_len(p, context);
1261
1262	if (!scontext)
1263		return 0;
1264
1265	/* Allocate space for the context; caller must free this space. */
1266	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1267	if (!scontextp)
1268		return -ENOMEM;
1269	*scontext = scontextp;
1270
1271	/*
1272	 * Copy the user name, role name and type name into the context.
1273	 */
1274	scontextp += sprintf(scontextp, "%s:%s:%s",
1275		sym_name(p, SYM_USERS, context->user - 1),
1276		sym_name(p, SYM_ROLES, context->role - 1),
1277		sym_name(p, SYM_TYPES, context->type - 1));
1278
1279	mls_sid_to_context(p, context, &scontextp);
1280
1281	*scontextp = 0;
1282
1283	return 0;
1284}
1285
1286static int sidtab_entry_to_string(struct policydb *p,
1287				  struct sidtab *sidtab,
1288				  struct sidtab_entry *entry,
1289				  char **scontext, u32 *scontext_len)
1290{
1291	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1292
1293	if (rc != -ENOENT)
1294		return rc;
1295
1296	rc = context_struct_to_string(p, &entry->context, scontext,
1297				      scontext_len);
1298	if (!rc && scontext)
1299		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1300	return rc;
1301}
1302
1303#include "initial_sid_to_string.h"
1304
1305int security_sidtab_hash_stats(char *page)
1306{
1307	struct selinux_policy *policy;
1308	int rc;
1309
1310	if (!selinux_initialized()) {
1311		pr_err("SELinux: %s:  called before initial load_policy\n",
1312		       __func__);
1313		return -EINVAL;
1314	}
1315
1316	rcu_read_lock();
1317	policy = rcu_dereference(selinux_state.policy);
1318	rc = sidtab_hash_stats(policy->sidtab, page);
1319	rcu_read_unlock();
1320
1321	return rc;
1322}
1323
1324const char *security_get_initial_sid_context(u32 sid)
1325{
1326	if (unlikely(sid > SECINITSID_NUM))
1327		return NULL;
1328	return initial_sid_to_string[sid];
1329}
1330
1331static int security_sid_to_context_core(u32 sid, char **scontext,
 
1332					u32 *scontext_len, int force,
1333					int only_invalid)
1334{
1335	struct selinux_policy *policy;
1336	struct policydb *policydb;
1337	struct sidtab *sidtab;
1338	struct sidtab_entry *entry;
1339	int rc = 0;
1340
1341	if (scontext)
1342		*scontext = NULL;
1343	*scontext_len  = 0;
1344
1345	if (!selinux_initialized()) {
1346		if (sid <= SECINITSID_NUM) {
1347			char *scontextp;
1348			const char *s;
1349
1350			/*
1351			 * Before the policy is loaded, translate
1352			 * SECINITSID_INIT to "kernel", because systemd and
1353			 * libselinux < 2.6 take a getcon_raw() result that is
1354			 * both non-null and not "kernel" to mean that a policy
1355			 * is already loaded.
1356			 */
1357			if (sid == SECINITSID_INIT)
1358				sid = SECINITSID_KERNEL;
1359
1360			s = initial_sid_to_string[sid];
1361			if (!s)
1362				return -EINVAL;
1363			*scontext_len = strlen(s) + 1;
1364			if (!scontext)
1365				return 0;
1366			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1367			if (!scontextp)
1368				return -ENOMEM;
1369			*scontext = scontextp;
1370			return 0;
1371		}
1372		pr_err("SELinux: %s:  called before initial "
1373		       "load_policy on unknown SID %d\n", __func__, sid);
1374		return -EINVAL;
1375	}
1376	rcu_read_lock();
1377	policy = rcu_dereference(selinux_state.policy);
1378	policydb = &policy->policydb;
1379	sidtab = policy->sidtab;
1380
1381	if (force)
1382		entry = sidtab_search_entry_force(sidtab, sid);
1383	else
1384		entry = sidtab_search_entry(sidtab, sid);
1385	if (!entry) {
1386		pr_err("SELinux: %s:  unrecognized SID %d\n",
1387			__func__, sid);
1388		rc = -EINVAL;
1389		goto out_unlock;
1390	}
1391	if (only_invalid && !entry->context.len)
1392		goto out_unlock;
1393
1394	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1395				    scontext_len);
1396
1397out_unlock:
1398	rcu_read_unlock();
1399	return rc;
1400
1401}
1402
1403/**
1404 * security_sid_to_context - Obtain a context for a given SID.
 
1405 * @sid: security identifier, SID
1406 * @scontext: security context
1407 * @scontext_len: length in bytes
1408 *
1409 * Write the string representation of the context associated with @sid
1410 * into a dynamically allocated string of the correct size.  Set @scontext
1411 * to point to this string and set @scontext_len to the length of the string.
1412 */
1413int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1414{
1415	return security_sid_to_context_core(sid, scontext,
1416					    scontext_len, 0, 0);
1417}
1418
1419int security_sid_to_context_force(u32 sid,
1420				  char **scontext, u32 *scontext_len)
1421{
1422	return security_sid_to_context_core(sid, scontext,
1423					    scontext_len, 1, 0);
1424}
1425
1426/**
1427 * security_sid_to_context_inval - Obtain a context for a given SID if it
1428 *                                 is invalid.
 
1429 * @sid: security identifier, SID
1430 * @scontext: security context
1431 * @scontext_len: length in bytes
1432 *
1433 * Write the string representation of the context associated with @sid
1434 * into a dynamically allocated string of the correct size, but only if the
1435 * context is invalid in the current policy.  Set @scontext to point to
1436 * this string (or NULL if the context is valid) and set @scontext_len to
1437 * the length of the string (or 0 if the context is valid).
1438 */
1439int security_sid_to_context_inval(u32 sid,
1440				  char **scontext, u32 *scontext_len)
1441{
1442	return security_sid_to_context_core(sid, scontext,
1443					    scontext_len, 1, 1);
1444}
1445
1446/*
1447 * Caveat:  Mutates scontext.
1448 */
1449static int string_to_context_struct(struct policydb *pol,
1450				    struct sidtab *sidtabp,
1451				    char *scontext,
1452				    struct context *ctx,
1453				    u32 def_sid)
1454{
1455	struct role_datum *role;
1456	struct type_datum *typdatum;
1457	struct user_datum *usrdatum;
1458	char *scontextp, *p, oldc;
1459	int rc = 0;
1460
1461	context_init(ctx);
1462
1463	/* Parse the security context. */
1464
1465	rc = -EINVAL;
1466	scontextp = scontext;
1467
1468	/* Extract the user. */
1469	p = scontextp;
1470	while (*p && *p != ':')
1471		p++;
1472
1473	if (*p == 0)
1474		goto out;
1475
1476	*p++ = 0;
1477
1478	usrdatum = symtab_search(&pol->p_users, scontextp);
1479	if (!usrdatum)
1480		goto out;
1481
1482	ctx->user = usrdatum->value;
1483
1484	/* Extract role. */
1485	scontextp = p;
1486	while (*p && *p != ':')
1487		p++;
1488
1489	if (*p == 0)
1490		goto out;
1491
1492	*p++ = 0;
1493
1494	role = symtab_search(&pol->p_roles, scontextp);
1495	if (!role)
1496		goto out;
1497	ctx->role = role->value;
1498
1499	/* Extract type. */
1500	scontextp = p;
1501	while (*p && *p != ':')
1502		p++;
1503	oldc = *p;
1504	*p++ = 0;
1505
1506	typdatum = symtab_search(&pol->p_types, scontextp);
1507	if (!typdatum || typdatum->attribute)
1508		goto out;
1509
1510	ctx->type = typdatum->value;
1511
1512	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1513	if (rc)
1514		goto out;
1515
1516	/* Check the validity of the new context. */
1517	rc = -EINVAL;
1518	if (!policydb_context_isvalid(pol, ctx))
1519		goto out;
1520	rc = 0;
1521out:
1522	if (rc)
1523		context_destroy(ctx);
1524	return rc;
1525}
1526
1527static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1528					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1529					int force)
1530{
1531	struct selinux_policy *policy;
1532	struct policydb *policydb;
1533	struct sidtab *sidtab;
1534	char *scontext2, *str = NULL;
1535	struct context context;
1536	int rc = 0;
1537
1538	/* An empty security context is never valid. */
1539	if (!scontext_len)
1540		return -EINVAL;
1541
1542	/* Copy the string to allow changes and ensure a NUL terminator */
1543	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1544	if (!scontext2)
1545		return -ENOMEM;
1546
1547	if (!selinux_initialized()) {
1548		u32 i;
1549
1550		for (i = 1; i < SECINITSID_NUM; i++) {
1551			const char *s = initial_sid_to_string[i];
1552
1553			if (s && !strcmp(s, scontext2)) {
1554				*sid = i;
1555				goto out;
1556			}
1557		}
1558		*sid = SECINITSID_KERNEL;
1559		goto out;
1560	}
1561	*sid = SECSID_NULL;
1562
1563	if (force) {
1564		/* Save another copy for storing in uninterpreted form */
1565		rc = -ENOMEM;
1566		str = kstrdup(scontext2, gfp_flags);
1567		if (!str)
1568			goto out;
1569	}
1570retry:
1571	rcu_read_lock();
1572	policy = rcu_dereference(selinux_state.policy);
1573	policydb = &policy->policydb;
1574	sidtab = policy->sidtab;
1575	rc = string_to_context_struct(policydb, sidtab, scontext2,
1576				      &context, def_sid);
1577	if (rc == -EINVAL && force) {
1578		context.str = str;
1579		context.len = strlen(str) + 1;
1580		str = NULL;
1581	} else if (rc)
1582		goto out_unlock;
1583	rc = sidtab_context_to_sid(sidtab, &context, sid);
1584	if (rc == -ESTALE) {
1585		rcu_read_unlock();
1586		if (context.str) {
1587			str = context.str;
1588			context.str = NULL;
1589		}
1590		context_destroy(&context);
1591		goto retry;
1592	}
1593	context_destroy(&context);
1594out_unlock:
1595	rcu_read_unlock();
1596out:
1597	kfree(scontext2);
1598	kfree(str);
1599	return rc;
1600}
1601
1602/**
1603 * security_context_to_sid - Obtain a SID for a given security context.
 
1604 * @scontext: security context
1605 * @scontext_len: length in bytes
1606 * @sid: security identifier, SID
1607 * @gfp: context for the allocation
1608 *
1609 * Obtains a SID associated with the security context that
1610 * has the string representation specified by @scontext.
1611 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1612 * memory is available, or 0 on success.
1613 */
1614int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1615			    gfp_t gfp)
1616{
1617	return security_context_to_sid_core(scontext, scontext_len,
1618					    sid, SECSID_NULL, gfp, 0);
1619}
1620
1621int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
 
1622{
1623	return security_context_to_sid(scontext, strlen(scontext),
1624				       sid, gfp);
1625}
1626
1627/**
1628 * security_context_to_sid_default - Obtain a SID for a given security context,
1629 * falling back to specified default if needed.
1630 *
 
1631 * @scontext: security context
1632 * @scontext_len: length in bytes
1633 * @sid: security identifier, SID
1634 * @def_sid: default SID to assign on error
1635 * @gfp_flags: the allocator get-free-page (GFP) flags
1636 *
1637 * Obtains a SID associated with the security context that
1638 * has the string representation specified by @scontext.
1639 * The default SID is passed to the MLS layer to be used to allow
1640 * kernel labeling of the MLS field if the MLS field is not present
1641 * (for upgrading to MLS without full relabel).
1642 * Implicitly forces adding of the context even if it cannot be mapped yet.
1643 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1644 * memory is available, or 0 on success.
1645 */
1646int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1647				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1648{
1649	return security_context_to_sid_core(scontext, scontext_len,
1650					    sid, def_sid, gfp_flags, 1);
1651}
1652
1653int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1654				  u32 *sid)
1655{
1656	return security_context_to_sid_core(scontext, scontext_len,
1657					    sid, SECSID_NULL, GFP_KERNEL, 1);
1658}
1659
1660static int compute_sid_handle_invalid_context(
 
1661	struct selinux_policy *policy,
1662	struct sidtab_entry *sentry,
1663	struct sidtab_entry *tentry,
1664	u16 tclass,
1665	struct context *newcontext)
1666{
1667	struct policydb *policydb = &policy->policydb;
1668	struct sidtab *sidtab = policy->sidtab;
1669	char *s = NULL, *t = NULL, *n = NULL;
1670	u32 slen, tlen, nlen;
1671	struct audit_buffer *ab;
1672
1673	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1674		goto out;
1675	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1676		goto out;
1677	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1678		goto out;
1679	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1680	if (!ab)
1681		goto out;
1682	audit_log_format(ab,
1683			 "op=security_compute_sid invalid_context=");
1684	/* no need to record the NUL with untrusted strings */
1685	audit_log_n_untrustedstring(ab, n, nlen - 1);
1686	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1687			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1688	audit_log_end(ab);
1689out:
1690	kfree(s);
1691	kfree(t);
1692	kfree(n);
1693	if (!enforcing_enabled())
1694		return 0;
1695	return -EACCES;
1696}
1697
1698static void filename_compute_type(struct policydb *policydb,
1699				  struct context *newcontext,
1700				  u32 stype, u32 ttype, u16 tclass,
1701				  const char *objname)
1702{
1703	struct filename_trans_key ft;
1704	struct filename_trans_datum *datum;
1705
1706	/*
1707	 * Most filename trans rules are going to live in specific directories
1708	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1709	 * if the ttype does not contain any rules.
1710	 */
1711	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1712		return;
1713
1714	ft.ttype = ttype;
1715	ft.tclass = tclass;
1716	ft.name = objname;
1717
1718	datum = policydb_filenametr_search(policydb, &ft);
1719	while (datum) {
1720		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1721			newcontext->type = datum->otype;
1722			return;
1723		}
1724		datum = datum->next;
1725	}
1726}
1727
1728static int security_compute_sid(u32 ssid,
 
1729				u32 tsid,
1730				u16 orig_tclass,
1731				u16 specified,
1732				const char *objname,
1733				u32 *out_sid,
1734				bool kern)
1735{
1736	struct selinux_policy *policy;
1737	struct policydb *policydb;
1738	struct sidtab *sidtab;
1739	struct class_datum *cladatum;
1740	struct context *scontext, *tcontext, newcontext;
1741	struct sidtab_entry *sentry, *tentry;
1742	struct avtab_key avkey;
1743	struct avtab_node *avnode, *node;
 
1744	u16 tclass;
1745	int rc = 0;
1746	bool sock;
1747
1748	if (!selinux_initialized()) {
1749		switch (orig_tclass) {
1750		case SECCLASS_PROCESS: /* kernel value */
1751			*out_sid = ssid;
1752			break;
1753		default:
1754			*out_sid = tsid;
1755			break;
1756		}
1757		goto out;
1758	}
1759
1760retry:
1761	cladatum = NULL;
1762	context_init(&newcontext);
1763
1764	rcu_read_lock();
1765
1766	policy = rcu_dereference(selinux_state.policy);
1767
1768	if (kern) {
1769		tclass = unmap_class(&policy->map, orig_tclass);
1770		sock = security_is_socket_class(orig_tclass);
1771	} else {
1772		tclass = orig_tclass;
1773		sock = security_is_socket_class(map_class(&policy->map,
1774							  tclass));
1775	}
1776
1777	policydb = &policy->policydb;
1778	sidtab = policy->sidtab;
1779
1780	sentry = sidtab_search_entry(sidtab, ssid);
1781	if (!sentry) {
1782		pr_err("SELinux: %s:  unrecognized SID %d\n",
1783		       __func__, ssid);
1784		rc = -EINVAL;
1785		goto out_unlock;
1786	}
1787	tentry = sidtab_search_entry(sidtab, tsid);
1788	if (!tentry) {
1789		pr_err("SELinux: %s:  unrecognized SID %d\n",
1790		       __func__, tsid);
1791		rc = -EINVAL;
1792		goto out_unlock;
1793	}
1794
1795	scontext = &sentry->context;
1796	tcontext = &tentry->context;
1797
1798	if (tclass && tclass <= policydb->p_classes.nprim)
1799		cladatum = policydb->class_val_to_struct[tclass - 1];
1800
1801	/* Set the user identity. */
1802	switch (specified) {
1803	case AVTAB_TRANSITION:
1804	case AVTAB_CHANGE:
1805		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1806			newcontext.user = tcontext->user;
1807		} else {
1808			/* notice this gets both DEFAULT_SOURCE and unset */
1809			/* Use the process user identity. */
1810			newcontext.user = scontext->user;
1811		}
1812		break;
1813	case AVTAB_MEMBER:
1814		/* Use the related object owner. */
1815		newcontext.user = tcontext->user;
1816		break;
1817	}
1818
1819	/* Set the role to default values. */
1820	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1821		newcontext.role = scontext->role;
1822	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1823		newcontext.role = tcontext->role;
1824	} else {
1825		if ((tclass == policydb->process_class) || sock)
1826			newcontext.role = scontext->role;
1827		else
1828			newcontext.role = OBJECT_R_VAL;
1829	}
1830
1831	/* Set the type.
1832	 * Look for a type transition/member/change rule.
1833	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1834	avkey.source_type = scontext->type;
1835	avkey.target_type = tcontext->type;
1836	avkey.target_class = tclass;
1837	avkey.specified = specified;
1838	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1839
1840	/* If no permanent rule, also check for enabled conditional rules */
1841	if (!avnode) {
1842		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1843		for (; node; node = avtab_search_node_next(node, specified)) {
1844			if (node->key.specified & AVTAB_ENABLED) {
1845				avnode = node;
1846				break;
1847			}
1848		}
1849	}
1850
1851	/* If a permanent rule is found, use the type from
1852	 * the type transition/member/change rule. Otherwise,
1853	 * set the type to its default values.
1854	 */
1855	if (avnode) {
1856		newcontext.type = avnode->datum.u.data;
1857	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1858		newcontext.type = scontext->type;
1859	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1860		newcontext.type = tcontext->type;
1861	} else {
1862		if ((tclass == policydb->process_class) || sock) {
1863			/* Use the type of process. */
1864			newcontext.type = scontext->type;
1865		} else {
1866			/* Use the type of the related object. */
1867			newcontext.type = tcontext->type;
1868		}
1869	}
1870
1871	/* if we have a objname this is a file trans check so check those rules */
1872	if (objname)
1873		filename_compute_type(policydb, &newcontext, scontext->type,
1874				      tcontext->type, tclass, objname);
1875
1876	/* Check for class-specific changes. */
1877	if (specified & AVTAB_TRANSITION) {
1878		/* Look for a role transition rule. */
1879		struct role_trans_datum *rtd;
1880		struct role_trans_key rtk = {
1881			.role = scontext->role,
1882			.type = tcontext->type,
1883			.tclass = tclass,
1884		};
1885
1886		rtd = policydb_roletr_search(policydb, &rtk);
1887		if (rtd)
1888			newcontext.role = rtd->new_role;
1889	}
1890
1891	/* Set the MLS attributes.
1892	   This is done last because it may allocate memory. */
1893	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1894			     &newcontext, sock);
1895	if (rc)
1896		goto out_unlock;
1897
1898	/* Check the validity of the context. */
1899	if (!policydb_context_isvalid(policydb, &newcontext)) {
1900		rc = compute_sid_handle_invalid_context(policy, sentry,
1901							tentry, tclass,
1902							&newcontext);
1903		if (rc)
1904			goto out_unlock;
1905	}
1906	/* Obtain the sid for the context. */
1907	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1908	if (rc == -ESTALE) {
1909		rcu_read_unlock();
1910		context_destroy(&newcontext);
1911		goto retry;
1912	}
1913out_unlock:
1914	rcu_read_unlock();
1915	context_destroy(&newcontext);
1916out:
1917	return rc;
1918}
1919
1920/**
1921 * security_transition_sid - Compute the SID for a new subject/object.
 
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @qstr: object name
1926 * @out_sid: security identifier for new subject/object
1927 *
1928 * Compute a SID to use for labeling a new subject or object in the
1929 * class @tclass based on a SID pair (@ssid, @tsid).
1930 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1931 * if insufficient memory is available, or %0 if the new SID was
1932 * computed successfully.
1933 */
1934int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1935			    const struct qstr *qstr, u32 *out_sid)
1936{
1937	return security_compute_sid(ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    qstr ? qstr->name : NULL, out_sid, true);
1940}
1941
1942int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1943				 const char *objname, u32 *out_sid)
1944{
1945	return security_compute_sid(ssid, tsid, tclass,
1946				    AVTAB_TRANSITION,
1947				    objname, out_sid, false);
1948}
1949
1950/**
1951 * security_member_sid - Compute the SID for member selection.
1952 * @ssid: source security identifier
1953 * @tsid: target security identifier
1954 * @tclass: target security class
1955 * @out_sid: security identifier for selected member
1956 *
1957 * Compute a SID to use when selecting a member of a polyinstantiated
1958 * object of class @tclass based on a SID pair (@ssid, @tsid).
1959 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1960 * if insufficient memory is available, or %0 if the SID was
1961 * computed successfully.
1962 */
1963int security_member_sid(u32 ssid,
 
1964			u32 tsid,
1965			u16 tclass,
1966			u32 *out_sid)
1967{
1968	return security_compute_sid(ssid, tsid, tclass,
1969				    AVTAB_MEMBER, NULL,
1970				    out_sid, false);
1971}
1972
1973/**
1974 * security_change_sid - Compute the SID for object relabeling.
 
1975 * @ssid: source security identifier
1976 * @tsid: target security identifier
1977 * @tclass: target security class
1978 * @out_sid: security identifier for selected member
1979 *
1980 * Compute a SID to use for relabeling an object of class @tclass
1981 * based on a SID pair (@ssid, @tsid).
1982 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1983 * if insufficient memory is available, or %0 if the SID was
1984 * computed successfully.
1985 */
1986int security_change_sid(u32 ssid,
 
1987			u32 tsid,
1988			u16 tclass,
1989			u32 *out_sid)
1990{
1991	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
 
1996	struct policydb *policydb,
1997	struct context *context)
1998{
1999	char *s;
2000	u32 len;
2001
2002	if (enforcing_enabled())
2003		return -EINVAL;
2004
2005	if (!context_struct_to_string(policydb, context, &s, &len)) {
2006		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2007			s);
2008		kfree(s);
2009	}
2010	return 0;
2011}
2012
2013/**
2014 * services_convert_context - Convert a security context across policies.
2015 * @args: populated convert_context_args struct
2016 * @oldc: original context
2017 * @newc: converted context
2018 * @gfp_flags: allocation flags
2019 *
2020 * Convert the values in the security context structure @oldc from the values
2021 * specified in the policy @args->oldp to the values specified in the policy
2022 * @args->newp, storing the new context in @newc, and verifying that the
2023 * context is valid under the new policy.
2024 */
2025int services_convert_context(struct convert_context_args *args,
2026			     struct context *oldc, struct context *newc,
2027			     gfp_t gfp_flags)
2028{
 
2029	struct ocontext *oc;
2030	struct role_datum *role;
2031	struct type_datum *typdatum;
2032	struct user_datum *usrdatum;
2033	char *s;
2034	u32 len;
2035	int rc;
2036
 
 
2037	if (oldc->str) {
2038		s = kstrdup(oldc->str, gfp_flags);
2039		if (!s)
2040			return -ENOMEM;
2041
2042		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
 
2043		if (rc == -EINVAL) {
2044			/*
2045			 * Retain string representation for later mapping.
2046			 *
2047			 * IMPORTANT: We need to copy the contents of oldc->str
2048			 * back into s again because string_to_context_struct()
2049			 * may have garbled it.
2050			 */
2051			memcpy(s, oldc->str, oldc->len);
2052			context_init(newc);
2053			newc->str = s;
2054			newc->len = oldc->len;
2055			return 0;
2056		}
2057		kfree(s);
2058		if (rc) {
2059			/* Other error condition, e.g. ENOMEM. */
2060			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2061			       oldc->str, -rc);
2062			return rc;
2063		}
2064		pr_info("SELinux:  Context %s became valid (mapped).\n",
2065			oldc->str);
2066		return 0;
2067	}
2068
2069	context_init(newc);
2070
2071	/* Convert the user. */
2072	usrdatum = symtab_search(&args->newp->p_users,
2073				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2088	if (!typdatum)
2089		goto bad;
2090	newc->type = typdatum->value;
2091
2092	/* Convert the MLS fields if dealing with MLS policies */
2093	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2094		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2095		if (rc)
2096			goto bad;
2097	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2098		/*
2099		 * Switching between non-MLS and MLS policy:
2100		 * ensure that the MLS fields of the context for all
2101		 * existing entries in the sidtab are filled in with a
2102		 * suitable default value, likely taken from one of the
2103		 * initial SIDs.
2104		 */
2105		oc = args->newp->ocontexts[OCON_ISID];
2106		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2107			oc = oc->next;
2108		if (!oc) {
2109			pr_err("SELinux:  unable to look up"
2110				" the initial SIDs list\n");
2111			goto bad;
2112		}
2113		rc = mls_range_set(newc, &oc->context[0].range);
2114		if (rc)
2115			goto bad;
2116	}
2117
2118	/* Check the validity of the new context. */
2119	if (!policydb_context_isvalid(args->newp, newc)) {
2120		rc = convert_context_handle_invalid_context(args->oldp, oldc);
 
 
2121		if (rc)
2122			goto bad;
2123	}
2124
2125	return 0;
2126bad:
2127	/* Map old representation to string and save it. */
2128	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2129	if (rc)
2130		return rc;
2131	context_destroy(newc);
2132	newc->str = s;
2133	newc->len = len;
2134	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2135		newc->str);
2136	return 0;
2137}
2138
2139static void security_load_policycaps(struct selinux_policy *policy)
 
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2148		WRITE_ONCE(selinux_state.policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_load_state *load_state)
 
2185{
2186	struct selinux_state *state = &selinux_state;
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(u32 seqno)
 
2198{
2199	/* Flush external caches and notify userspace of policy load */
2200	avc_ss_reset(seqno);
2201	selnl_notify_policyload(seqno);
2202	selinux_status_update_policyload(seqno);
2203	selinux_netlbl_cache_invalidate();
2204	selinux_xfrm_notify_policyload();
2205	selinux_ima_measure_state_locked();
2206}
2207
2208void selinux_policy_commit(struct selinux_load_state *load_state)
 
2209{
2210	struct selinux_state *state = &selinux_state;
2211	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2212	unsigned long flags;
2213	u32 seqno;
2214
2215	oldpolicy = rcu_dereference_protected(state->policy,
2216					lockdep_is_held(&state->policy_mutex));
2217
2218	/* If switching between different policy types, log MLS status */
2219	if (oldpolicy) {
2220		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2221			pr_info("SELinux: Disabling MLS support...\n");
2222		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2223			pr_info("SELinux: Enabling MLS support...\n");
2224	}
2225
2226	/* Set latest granting seqno for new policy. */
2227	if (oldpolicy)
2228		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229	else
2230		newpolicy->latest_granting = 1;
2231	seqno = newpolicy->latest_granting;
2232
2233	/* Install the new policy. */
2234	if (oldpolicy) {
2235		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2236		rcu_assign_pointer(state->policy, newpolicy);
2237		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238	} else {
2239		rcu_assign_pointer(state->policy, newpolicy);
2240	}
2241
2242	/* Load the policycaps from the new policy */
2243	security_load_policycaps(newpolicy);
2244
2245	if (!selinux_initialized()) {
2246		/*
2247		 * After first policy load, the security server is
2248		 * marked as initialized and ready to handle requests and
2249		 * any objects created prior to policy load are then labeled.
2250		 */
2251		selinux_mark_initialized();
2252		selinux_complete_init();
2253	}
2254
2255	/* Free the old policy */
2256	synchronize_rcu();
2257	selinux_policy_free(oldpolicy);
2258	kfree(load_state->convert_data);
2259
2260	/* Notify others of the policy change */
2261	selinux_notify_policy_change(seqno);
2262}
2263
2264/**
2265 * security_load_policy - Load a security policy configuration.
 
2266 * @data: binary policy data
2267 * @len: length of data in bytes
2268 * @load_state: policy load state
2269 *
2270 * Load a new set of security policy configuration data,
2271 * validate it and convert the SID table as necessary.
2272 * This function will flush the access vector cache after
2273 * loading the new policy.
2274 */
2275int security_load_policy(void *data, size_t len,
2276			 struct selinux_load_state *load_state)
2277{
2278	struct selinux_state *state = &selinux_state;
2279	struct selinux_policy *newpolicy, *oldpolicy;
2280	struct selinux_policy_convert_data *convert_data;
2281	int rc = 0;
2282	struct policy_file file = { data, len }, *fp = &file;
2283
2284	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2285	if (!newpolicy)
2286		return -ENOMEM;
2287
2288	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2289	if (!newpolicy->sidtab) {
2290		rc = -ENOMEM;
2291		goto err_policy;
2292	}
2293
2294	rc = policydb_read(&newpolicy->policydb, fp);
2295	if (rc)
2296		goto err_sidtab;
2297
2298	newpolicy->policydb.len = len;
2299	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2300				&newpolicy->map);
2301	if (rc)
2302		goto err_policydb;
2303
2304	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2305	if (rc) {
2306		pr_err("SELinux:  unable to load the initial SIDs\n");
2307		goto err_mapping;
2308	}
2309
2310	if (!selinux_initialized()) {
2311		/* First policy load, so no need to preserve state from old policy */
2312		load_state->policy = newpolicy;
2313		load_state->convert_data = NULL;
2314		return 0;
2315	}
2316
2317	oldpolicy = rcu_dereference_protected(state->policy,
2318					lockdep_is_held(&state->policy_mutex));
2319
2320	/* Preserve active boolean values from the old policy */
2321	rc = security_preserve_bools(oldpolicy, newpolicy);
2322	if (rc) {
2323		pr_err("SELinux:  unable to preserve booleans\n");
2324		goto err_free_isids;
2325	}
2326
2327	/*
2328	 * Convert the internal representations of contexts
2329	 * in the new SID table.
2330	 */
2331
2332	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2333	if (!convert_data) {
2334		rc = -ENOMEM;
2335		goto err_free_isids;
2336	}
2337
 
 
 
 
 
2338	convert_data->args.oldp = &oldpolicy->policydb;
2339	convert_data->args.newp = &newpolicy->policydb;
2340
 
2341	convert_data->sidtab_params.args = &convert_data->args;
2342	convert_data->sidtab_params.target = newpolicy->sidtab;
2343
2344	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345	if (rc) {
2346		pr_err("SELinux:  unable to convert the internal"
2347			" representation of contexts in the new SID"
2348			" table\n");
2349		goto err_free_convert_data;
2350	}
2351
2352	load_state->policy = newpolicy;
2353	load_state->convert_data = convert_data;
2354	return 0;
2355
2356err_free_convert_data:
2357	kfree(convert_data);
2358err_free_isids:
2359	sidtab_destroy(newpolicy->sidtab);
2360err_mapping:
2361	kfree(newpolicy->map.mapping);
2362err_policydb:
2363	policydb_destroy(&newpolicy->policydb);
2364err_sidtab:
2365	kfree(newpolicy->sidtab);
2366err_policy:
2367	kfree(newpolicy);
2368
2369	return rc;
2370}
2371
2372/**
2373 * ocontext_to_sid - Helper to safely get sid for an ocontext
2374 * @sidtab: SID table
2375 * @c: ocontext structure
2376 * @index: index of the context entry (0 or 1)
2377 * @out_sid: pointer to the resulting SID value
2378 *
2379 * For all ocontexts except OCON_ISID the SID fields are populated
2380 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381 * operation, this helper must be used to do that safely.
2382 *
2383 * WARNING: This function may return -ESTALE, indicating that the caller
2384 * must retry the operation after re-acquiring the policy pointer!
2385 */
2386static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387			   size_t index, u32 *out_sid)
2388{
2389	int rc;
2390	u32 sid;
2391
2392	/* Ensure the associated sidtab entry is visible to this thread. */
2393	sid = smp_load_acquire(&c->sid[index]);
2394	if (!sid) {
2395		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2396		if (rc)
2397			return rc;
2398
2399		/*
2400		 * Ensure the new sidtab entry is visible to other threads
2401		 * when they see the SID.
2402		 */
2403		smp_store_release(&c->sid[index], sid);
2404	}
2405	*out_sid = sid;
2406	return 0;
2407}
2408
2409/**
2410 * security_port_sid - Obtain the SID for a port.
 
2411 * @protocol: protocol number
2412 * @port: port number
2413 * @out_sid: security identifier
2414 */
2415int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2416{
2417	struct selinux_policy *policy;
2418	struct policydb *policydb;
2419	struct sidtab *sidtab;
2420	struct ocontext *c;
2421	int rc;
2422
2423	if (!selinux_initialized()) {
2424		*out_sid = SECINITSID_PORT;
2425		return 0;
2426	}
2427
2428retry:
2429	rc = 0;
2430	rcu_read_lock();
2431	policy = rcu_dereference(selinux_state.policy);
2432	policydb = &policy->policydb;
2433	sidtab = policy->sidtab;
2434
2435	c = policydb->ocontexts[OCON_PORT];
2436	while (c) {
2437		if (c->u.port.protocol == protocol &&
2438		    c->u.port.low_port <= port &&
2439		    c->u.port.high_port >= port)
2440			break;
2441		c = c->next;
2442	}
2443
2444	if (c) {
2445		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2446		if (rc == -ESTALE) {
2447			rcu_read_unlock();
2448			goto retry;
 
 
 
 
 
2449		}
2450		if (rc)
2451			goto out;
2452	} else {
2453		*out_sid = SECINITSID_PORT;
2454	}
2455
2456out:
2457	rcu_read_unlock();
2458	return rc;
2459}
2460
2461/**
2462 * security_ib_pkey_sid - Obtain the SID for a pkey.
 
2463 * @subnet_prefix: Subnet Prefix
2464 * @pkey_num: pkey number
2465 * @out_sid: security identifier
2466 */
2467int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
 
2468{
2469	struct selinux_policy *policy;
2470	struct policydb *policydb;
2471	struct sidtab *sidtab;
2472	struct ocontext *c;
2473	int rc;
2474
2475	if (!selinux_initialized()) {
2476		*out_sid = SECINITSID_UNLABELED;
2477		return 0;
2478	}
2479
2480retry:
2481	rc = 0;
2482	rcu_read_lock();
2483	policy = rcu_dereference(selinux_state.policy);
2484	policydb = &policy->policydb;
2485	sidtab = policy->sidtab;
2486
2487	c = policydb->ocontexts[OCON_IBPKEY];
2488	while (c) {
2489		if (c->u.ibpkey.low_pkey <= pkey_num &&
2490		    c->u.ibpkey.high_pkey >= pkey_num &&
2491		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2492			break;
2493
2494		c = c->next;
2495	}
2496
2497	if (c) {
2498		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2499		if (rc == -ESTALE) {
2500			rcu_read_unlock();
2501			goto retry;
 
 
 
 
 
 
2502		}
2503		if (rc)
2504			goto out;
2505	} else
2506		*out_sid = SECINITSID_UNLABELED;
2507
2508out:
2509	rcu_read_unlock();
2510	return rc;
2511}
2512
2513/**
2514 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
 
2515 * @dev_name: device name
2516 * @port_num: port number
2517 * @out_sid: security identifier
2518 */
2519int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
 
2520{
2521	struct selinux_policy *policy;
2522	struct policydb *policydb;
2523	struct sidtab *sidtab;
2524	struct ocontext *c;
2525	int rc;
2526
2527	if (!selinux_initialized()) {
2528		*out_sid = SECINITSID_UNLABELED;
2529		return 0;
2530	}
2531
2532retry:
2533	rc = 0;
2534	rcu_read_lock();
2535	policy = rcu_dereference(selinux_state.policy);
2536	policydb = &policy->policydb;
2537	sidtab = policy->sidtab;
2538
2539	c = policydb->ocontexts[OCON_IBENDPORT];
2540	while (c) {
2541		if (c->u.ibendport.port == port_num &&
2542		    !strncmp(c->u.ibendport.dev_name,
2543			     dev_name,
2544			     IB_DEVICE_NAME_MAX))
2545			break;
2546
2547		c = c->next;
2548	}
2549
2550	if (c) {
2551		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2552		if (rc == -ESTALE) {
2553			rcu_read_unlock();
2554			goto retry;
 
 
 
 
 
2555		}
2556		if (rc)
2557			goto out;
2558	} else
2559		*out_sid = SECINITSID_UNLABELED;
2560
2561out:
2562	rcu_read_unlock();
2563	return rc;
2564}
2565
2566/**
2567 * security_netif_sid - Obtain the SID for a network interface.
 
2568 * @name: interface name
2569 * @if_sid: interface SID
2570 */
2571int security_netif_sid(char *name, u32 *if_sid)
 
2572{
2573	struct selinux_policy *policy;
2574	struct policydb *policydb;
2575	struct sidtab *sidtab;
2576	int rc;
2577	struct ocontext *c;
2578
2579	if (!selinux_initialized()) {
2580		*if_sid = SECINITSID_NETIF;
2581		return 0;
2582	}
2583
2584retry:
2585	rc = 0;
2586	rcu_read_lock();
2587	policy = rcu_dereference(selinux_state.policy);
2588	policydb = &policy->policydb;
2589	sidtab = policy->sidtab;
2590
2591	c = policydb->ocontexts[OCON_NETIF];
2592	while (c) {
2593		if (strcmp(name, c->u.name) == 0)
2594			break;
2595		c = c->next;
2596	}
2597
2598	if (c) {
2599		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2600		if (rc == -ESTALE) {
2601			rcu_read_unlock();
2602			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
2603		}
2604		if (rc)
2605			goto out;
2606	} else
2607		*if_sid = SECINITSID_NETIF;
2608
2609out:
2610	rcu_read_unlock();
2611	return rc;
2612}
2613
2614static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2615{
2616	int i, fail = 0;
2617
2618	for (i = 0; i < 4; i++)
2619		if (addr[i] != (input[i] & mask[i])) {
2620			fail = 1;
2621			break;
2622		}
2623
2624	return !fail;
2625}
2626
2627/**
2628 * security_node_sid - Obtain the SID for a node (host).
 
2629 * @domain: communication domain aka address family
2630 * @addrp: address
2631 * @addrlen: address length in bytes
2632 * @out_sid: security identifier
2633 */
2634int security_node_sid(u16 domain,
 
2635		      void *addrp,
2636		      u32 addrlen,
2637		      u32 *out_sid)
2638{
2639	struct selinux_policy *policy;
2640	struct policydb *policydb;
2641	struct sidtab *sidtab;
2642	int rc;
2643	struct ocontext *c;
2644
2645	if (!selinux_initialized()) {
2646		*out_sid = SECINITSID_NODE;
2647		return 0;
2648	}
2649
2650retry:
2651	rcu_read_lock();
2652	policy = rcu_dereference(selinux_state.policy);
2653	policydb = &policy->policydb;
2654	sidtab = policy->sidtab;
2655
2656	switch (domain) {
2657	case AF_INET: {
2658		u32 addr;
2659
2660		rc = -EINVAL;
2661		if (addrlen != sizeof(u32))
2662			goto out;
2663
2664		addr = *((u32 *)addrp);
2665
2666		c = policydb->ocontexts[OCON_NODE];
2667		while (c) {
2668			if (c->u.node.addr == (addr & c->u.node.mask))
2669				break;
2670			c = c->next;
2671		}
2672		break;
2673	}
2674
2675	case AF_INET6:
2676		rc = -EINVAL;
2677		if (addrlen != sizeof(u64) * 2)
2678			goto out;
2679		c = policydb->ocontexts[OCON_NODE6];
2680		while (c) {
2681			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2682						c->u.node6.mask))
2683				break;
2684			c = c->next;
2685		}
2686		break;
2687
2688	default:
2689		rc = 0;
2690		*out_sid = SECINITSID_NODE;
2691		goto out;
2692	}
2693
2694	if (c) {
2695		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2696		if (rc == -ESTALE) {
2697			rcu_read_unlock();
2698			goto retry;
 
 
 
 
 
 
2699		}
2700		if (rc)
2701			goto out;
2702	} else {
2703		*out_sid = SECINITSID_NODE;
2704	}
2705
2706	rc = 0;
2707out:
2708	rcu_read_unlock();
2709	return rc;
2710}
2711
2712#define SIDS_NEL 25
2713
2714/**
2715 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2716 * @fromsid: starting SID
2717 * @username: username
2718 * @sids: array of reachable SIDs for user
2719 * @nel: number of elements in @sids
2720 *
2721 * Generate the set of SIDs for legal security contexts
2722 * for a given user that can be reached by @fromsid.
2723 * Set *@sids to point to a dynamically allocated
2724 * array containing the set of SIDs.  Set *@nel to the
2725 * number of elements in the array.
2726 */
2727
2728int security_get_user_sids(u32 fromsid,
 
2729			   char *username,
2730			   u32 **sids,
2731			   u32 *nel)
2732{
2733	struct selinux_policy *policy;
2734	struct policydb *policydb;
2735	struct sidtab *sidtab;
2736	struct context *fromcon, usercon;
2737	u32 *mysids = NULL, *mysids2, sid;
2738	u32 i, j, mynel, maxnel = SIDS_NEL;
2739	struct user_datum *user;
2740	struct role_datum *role;
2741	struct ebitmap_node *rnode, *tnode;
2742	int rc;
2743
2744	*sids = NULL;
2745	*nel = 0;
2746
2747	if (!selinux_initialized())
2748		return 0;
2749
2750	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2751	if (!mysids)
2752		return -ENOMEM;
2753
2754retry:
2755	mynel = 0;
2756	rcu_read_lock();
2757	policy = rcu_dereference(selinux_state.policy);
2758	policydb = &policy->policydb;
2759	sidtab = policy->sidtab;
2760
2761	context_init(&usercon);
2762
2763	rc = -EINVAL;
2764	fromcon = sidtab_search(sidtab, fromsid);
2765	if (!fromcon)
2766		goto out_unlock;
2767
2768	rc = -EINVAL;
2769	user = symtab_search(&policydb->p_users, username);
2770	if (!user)
2771		goto out_unlock;
2772
2773	usercon.user = user->value;
2774
2775	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2776		role = policydb->role_val_to_struct[i];
2777		usercon.role = i + 1;
2778		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2779			usercon.type = j + 1;
2780
2781			if (mls_setup_user_range(policydb, fromcon, user,
2782						 &usercon))
2783				continue;
2784
2785			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2786			if (rc == -ESTALE) {
2787				rcu_read_unlock();
2788				goto retry;
2789			}
2790			if (rc)
2791				goto out_unlock;
2792			if (mynel < maxnel) {
2793				mysids[mynel++] = sid;
2794			} else {
2795				rc = -ENOMEM;
2796				maxnel += SIDS_NEL;
2797				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2798				if (!mysids2)
2799					goto out_unlock;
2800				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2801				kfree(mysids);
2802				mysids = mysids2;
2803				mysids[mynel++] = sid;
2804			}
2805		}
2806	}
2807	rc = 0;
2808out_unlock:
2809	rcu_read_unlock();
2810	if (rc || !mynel) {
2811		kfree(mysids);
2812		return rc;
2813	}
2814
2815	rc = -ENOMEM;
2816	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2817	if (!mysids2) {
2818		kfree(mysids);
2819		return rc;
2820	}
2821	for (i = 0, j = 0; i < mynel; i++) {
2822		struct av_decision dummy_avd;
2823		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2824					  SECCLASS_PROCESS, /* kernel value */
2825					  PROCESS__TRANSITION, AVC_STRICT,
2826					  &dummy_avd);
2827		if (!rc)
2828			mysids2[j++] = mysids[i];
2829		cond_resched();
2830	}
2831	kfree(mysids);
2832	*sids = mysids2;
2833	*nel = j;
2834	return 0;
2835}
2836
2837/**
2838 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2839 * @policy: policy
2840 * @fstype: filesystem type
2841 * @path: path from root of mount
2842 * @orig_sclass: file security class
2843 * @sid: SID for path
2844 *
2845 * Obtain a SID to use for a file in a filesystem that
2846 * cannot support xattr or use a fixed labeling behavior like
2847 * transition SIDs or task SIDs.
2848 *
2849 * WARNING: This function may return -ESTALE, indicating that the caller
2850 * must retry the operation after re-acquiring the policy pointer!
2851 */
2852static inline int __security_genfs_sid(struct selinux_policy *policy,
2853				       const char *fstype,
2854				       const char *path,
2855				       u16 orig_sclass,
2856				       u32 *sid)
2857{
2858	struct policydb *policydb = &policy->policydb;
2859	struct sidtab *sidtab = policy->sidtab;
 
2860	u16 sclass;
2861	struct genfs *genfs;
2862	struct ocontext *c;
2863	int cmp = 0;
2864
2865	while (path[0] == '/' && path[1] == '/')
2866		path++;
2867
2868	sclass = unmap_class(&policy->map, orig_sclass);
2869	*sid = SECINITSID_UNLABELED;
2870
2871	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2872		cmp = strcmp(fstype, genfs->fstype);
2873		if (cmp <= 0)
2874			break;
2875	}
2876
 
2877	if (!genfs || cmp)
2878		return -ENOENT;
2879
2880	for (c = genfs->head; c; c = c->next) {
2881		size_t len = strlen(c->u.name);
2882		if ((!c->v.sclass || sclass == c->v.sclass) &&
2883		    (strncmp(c->u.name, path, len) == 0))
2884			break;
2885	}
2886
 
2887	if (!c)
2888		return -ENOENT;
2889
2890	return ocontext_to_sid(sidtab, c, 0, sid);
 
 
 
 
 
 
 
 
 
2891}
2892
2893/**
2894 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2895 * @fstype: filesystem type
2896 * @path: path from root of mount
2897 * @orig_sclass: file security class
2898 * @sid: SID for path
2899 *
2900 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2901 * it afterward.
2902 */
2903int security_genfs_sid(const char *fstype,
2904		       const char *path,
 
2905		       u16 orig_sclass,
2906		       u32 *sid)
2907{
2908	struct selinux_policy *policy;
2909	int retval;
2910
2911	if (!selinux_initialized()) {
2912		*sid = SECINITSID_UNLABELED;
2913		return 0;
2914	}
2915
2916	do {
2917		rcu_read_lock();
2918		policy = rcu_dereference(selinux_state.policy);
2919		retval = __security_genfs_sid(policy, fstype, path,
2920					      orig_sclass, sid);
2921		rcu_read_unlock();
2922	} while (retval == -ESTALE);
2923	return retval;
2924}
2925
2926int selinux_policy_genfs_sid(struct selinux_policy *policy,
2927			const char *fstype,
2928			const char *path,
2929			u16 orig_sclass,
2930			u32 *sid)
2931{
2932	/* no lock required, policy is not yet accessible by other threads */
2933	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2934}
2935
2936/**
2937 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2938 * @sb: superblock in question
2939 */
2940int security_fs_use(struct super_block *sb)
2941{
2942	struct selinux_policy *policy;
2943	struct policydb *policydb;
2944	struct sidtab *sidtab;
2945	int rc;
2946	struct ocontext *c;
2947	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2948	const char *fstype = sb->s_type->name;
2949
2950	if (!selinux_initialized()) {
2951		sbsec->behavior = SECURITY_FS_USE_NONE;
2952		sbsec->sid = SECINITSID_UNLABELED;
2953		return 0;
2954	}
2955
2956retry:
 
2957	rcu_read_lock();
2958	policy = rcu_dereference(selinux_state.policy);
2959	policydb = &policy->policydb;
2960	sidtab = policy->sidtab;
2961
2962	c = policydb->ocontexts[OCON_FSUSE];
2963	while (c) {
2964		if (strcmp(fstype, c->u.name) == 0)
2965			break;
2966		c = c->next;
2967	}
2968
2969	if (c) {
2970		sbsec->behavior = c->v.behavior;
2971		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2972		if (rc == -ESTALE) {
2973			rcu_read_unlock();
2974			goto retry;
 
 
 
 
 
2975		}
2976		if (rc)
2977			goto out;
2978	} else {
2979		rc = __security_genfs_sid(policy, fstype, "/",
2980					SECCLASS_DIR, &sbsec->sid);
2981		if (rc == -ESTALE) {
2982			rcu_read_unlock();
2983			goto retry;
2984		}
2985		if (rc) {
2986			sbsec->behavior = SECURITY_FS_USE_NONE;
2987			rc = 0;
2988		} else {
2989			sbsec->behavior = SECURITY_FS_USE_GENFS;
2990		}
2991	}
2992
2993out:
2994	rcu_read_unlock();
2995	return rc;
2996}
2997
2998int security_get_bools(struct selinux_policy *policy,
2999		       u32 *len, char ***names, int **values)
3000{
3001	struct policydb *policydb;
3002	u32 i;
3003	int rc;
3004
3005	policydb = &policy->policydb;
3006
3007	*names = NULL;
3008	*values = NULL;
3009
3010	rc = 0;
3011	*len = policydb->p_bools.nprim;
3012	if (!*len)
3013		goto out;
3014
3015	rc = -ENOMEM;
3016	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3017	if (!*names)
3018		goto err;
3019
3020	rc = -ENOMEM;
3021	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3022	if (!*values)
3023		goto err;
3024
3025	for (i = 0; i < *len; i++) {
3026		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3027
3028		rc = -ENOMEM;
3029		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3030				      GFP_ATOMIC);
3031		if (!(*names)[i])
3032			goto err;
3033	}
3034	rc = 0;
3035out:
3036	return rc;
3037err:
3038	if (*names) {
3039		for (i = 0; i < *len; i++)
3040			kfree((*names)[i]);
3041		kfree(*names);
3042	}
3043	kfree(*values);
3044	*len = 0;
3045	*names = NULL;
3046	*values = NULL;
3047	goto out;
3048}
3049
3050
3051int security_set_bools(u32 len, int *values)
3052{
3053	struct selinux_state *state = &selinux_state;
3054	struct selinux_policy *newpolicy, *oldpolicy;
3055	int rc;
3056	u32 i, seqno = 0;
3057
3058	if (!selinux_initialized())
3059		return -EINVAL;
3060
3061	oldpolicy = rcu_dereference_protected(state->policy,
3062					lockdep_is_held(&state->policy_mutex));
3063
3064	/* Consistency check on number of booleans, should never fail */
3065	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3066		return -EINVAL;
3067
3068	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3069	if (!newpolicy)
3070		return -ENOMEM;
3071
3072	/*
3073	 * Deep copy only the parts of the policydb that might be
3074	 * modified as a result of changing booleans.
3075	 */
3076	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3077	if (rc) {
3078		kfree(newpolicy);
3079		return -ENOMEM;
3080	}
3081
3082	/* Update the boolean states in the copy */
3083	for (i = 0; i < len; i++) {
3084		int new_state = !!values[i];
3085		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3086
3087		if (new_state != old_state) {
3088			audit_log(audit_context(), GFP_ATOMIC,
3089				AUDIT_MAC_CONFIG_CHANGE,
3090				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3091				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3092				new_state,
3093				old_state,
3094				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3095				audit_get_sessionid(current));
3096			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3097		}
3098	}
3099
3100	/* Re-evaluate the conditional rules in the copy */
3101	evaluate_cond_nodes(&newpolicy->policydb);
3102
3103	/* Set latest granting seqno for new policy */
3104	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3105	seqno = newpolicy->latest_granting;
3106
3107	/* Install the new policy */
3108	rcu_assign_pointer(state->policy, newpolicy);
3109
3110	/*
3111	 * Free the conditional portions of the old policydb
3112	 * that were copied for the new policy, and the oldpolicy
3113	 * structure itself but not what it references.
3114	 */
3115	synchronize_rcu();
3116	selinux_policy_cond_free(oldpolicy);
3117
3118	/* Notify others of the policy change */
3119	selinux_notify_policy_change(seqno);
3120	return 0;
3121}
3122
3123int security_get_bool_value(u32 index)
 
3124{
3125	struct selinux_policy *policy;
3126	struct policydb *policydb;
3127	int rc;
3128	u32 len;
3129
3130	if (!selinux_initialized())
3131		return 0;
3132
3133	rcu_read_lock();
3134	policy = rcu_dereference(selinux_state.policy);
3135	policydb = &policy->policydb;
3136
3137	rc = -EFAULT;
3138	len = policydb->p_bools.nprim;
3139	if (index >= len)
3140		goto out;
3141
3142	rc = policydb->bool_val_to_struct[index]->state;
3143out:
3144	rcu_read_unlock();
3145	return rc;
3146}
3147
3148static int security_preserve_bools(struct selinux_policy *oldpolicy,
3149				struct selinux_policy *newpolicy)
3150{
3151	int rc, *bvalues = NULL;
3152	char **bnames = NULL;
3153	struct cond_bool_datum *booldatum;
3154	u32 i, nbools = 0;
3155
3156	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3157	if (rc)
3158		goto out;
3159	for (i = 0; i < nbools; i++) {
3160		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3161					bnames[i]);
3162		if (booldatum)
3163			booldatum->state = bvalues[i];
3164	}
3165	evaluate_cond_nodes(&newpolicy->policydb);
3166
3167out:
3168	if (bnames) {
3169		for (i = 0; i < nbools; i++)
3170			kfree(bnames[i]);
3171	}
3172	kfree(bnames);
3173	kfree(bvalues);
3174	return rc;
3175}
3176
3177/*
3178 * security_sid_mls_copy() - computes a new sid based on the given
3179 * sid and the mls portion of mls_sid.
3180 */
3181int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
3182{
3183	struct selinux_policy *policy;
3184	struct policydb *policydb;
3185	struct sidtab *sidtab;
3186	struct context *context1;
3187	struct context *context2;
3188	struct context newcon;
3189	char *s;
3190	u32 len;
3191	int rc;
3192
3193	if (!selinux_initialized()) {
3194		*new_sid = sid;
3195		return 0;
3196	}
3197
3198retry:
3199	rc = 0;
3200	context_init(&newcon);
3201
3202	rcu_read_lock();
3203	policy = rcu_dereference(selinux_state.policy);
3204	policydb = &policy->policydb;
3205	sidtab = policy->sidtab;
3206
3207	if (!policydb->mls_enabled) {
3208		*new_sid = sid;
3209		goto out_unlock;
3210	}
3211
3212	rc = -EINVAL;
3213	context1 = sidtab_search(sidtab, sid);
3214	if (!context1) {
3215		pr_err("SELinux: %s:  unrecognized SID %d\n",
3216			__func__, sid);
3217		goto out_unlock;
3218	}
3219
3220	rc = -EINVAL;
3221	context2 = sidtab_search(sidtab, mls_sid);
3222	if (!context2) {
3223		pr_err("SELinux: %s:  unrecognized SID %d\n",
3224			__func__, mls_sid);
3225		goto out_unlock;
3226	}
3227
3228	newcon.user = context1->user;
3229	newcon.role = context1->role;
3230	newcon.type = context1->type;
3231	rc = mls_context_cpy(&newcon, context2);
3232	if (rc)
3233		goto out_unlock;
3234
3235	/* Check the validity of the new context. */
3236	if (!policydb_context_isvalid(policydb, &newcon)) {
3237		rc = convert_context_handle_invalid_context(policydb,
3238							&newcon);
3239		if (rc) {
3240			if (!context_struct_to_string(policydb, &newcon, &s,
3241						      &len)) {
3242				struct audit_buffer *ab;
3243
3244				ab = audit_log_start(audit_context(),
3245						     GFP_ATOMIC,
3246						     AUDIT_SELINUX_ERR);
3247				audit_log_format(ab,
3248						 "op=security_sid_mls_copy invalid_context=");
3249				/* don't record NUL with untrusted strings */
3250				audit_log_n_untrustedstring(ab, s, len - 1);
3251				audit_log_end(ab);
3252				kfree(s);
3253			}
3254			goto out_unlock;
3255		}
3256	}
3257	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3258	if (rc == -ESTALE) {
3259		rcu_read_unlock();
3260		context_destroy(&newcon);
3261		goto retry;
3262	}
3263out_unlock:
3264	rcu_read_unlock();
3265	context_destroy(&newcon);
3266	return rc;
3267}
3268
3269/**
3270 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
3271 * @nlbl_sid: NetLabel SID
3272 * @nlbl_type: NetLabel labeling protocol type
3273 * @xfrm_sid: XFRM SID
3274 * @peer_sid: network peer sid
3275 *
3276 * Description:
3277 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3278 * resolved into a single SID it is returned via @peer_sid and the function
3279 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3280 * returns a negative value.  A table summarizing the behavior is below:
3281 *
3282 *                                 | function return |      @sid
3283 *   ------------------------------+-----------------+-----------------
3284 *   no peer labels                |        0        |    SECSID_NULL
3285 *   single peer label             |        0        |    <peer_label>
3286 *   multiple, consistent labels   |        0        |    <peer_label>
3287 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3288 *
3289 */
3290int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
3291				 u32 xfrm_sid,
3292				 u32 *peer_sid)
3293{
3294	struct selinux_policy *policy;
3295	struct policydb *policydb;
3296	struct sidtab *sidtab;
3297	int rc;
3298	struct context *nlbl_ctx;
3299	struct context *xfrm_ctx;
3300
3301	*peer_sid = SECSID_NULL;
3302
3303	/* handle the common (which also happens to be the set of easy) cases
3304	 * right away, these two if statements catch everything involving a
3305	 * single or absent peer SID/label */
3306	if (xfrm_sid == SECSID_NULL) {
3307		*peer_sid = nlbl_sid;
3308		return 0;
3309	}
3310	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3311	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3312	 * is present */
3313	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3314		*peer_sid = xfrm_sid;
3315		return 0;
3316	}
3317
3318	if (!selinux_initialized())
3319		return 0;
3320
3321	rcu_read_lock();
3322	policy = rcu_dereference(selinux_state.policy);
3323	policydb = &policy->policydb;
3324	sidtab = policy->sidtab;
3325
3326	/*
3327	 * We don't need to check initialized here since the only way both
3328	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3329	 * security server was initialized and state->initialized was true.
3330	 */
3331	if (!policydb->mls_enabled) {
3332		rc = 0;
3333		goto out;
3334	}
3335
3336	rc = -EINVAL;
3337	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3338	if (!nlbl_ctx) {
3339		pr_err("SELinux: %s:  unrecognized SID %d\n",
3340		       __func__, nlbl_sid);
3341		goto out;
3342	}
3343	rc = -EINVAL;
3344	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3345	if (!xfrm_ctx) {
3346		pr_err("SELinux: %s:  unrecognized SID %d\n",
3347		       __func__, xfrm_sid);
3348		goto out;
3349	}
3350	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3351	if (rc)
3352		goto out;
3353
3354	/* at present NetLabel SIDs/labels really only carry MLS
3355	 * information so if the MLS portion of the NetLabel SID
3356	 * matches the MLS portion of the labeled XFRM SID/label
3357	 * then pass along the XFRM SID as it is the most
3358	 * expressive */
3359	*peer_sid = xfrm_sid;
3360out:
3361	rcu_read_unlock();
3362	return rc;
3363}
3364
3365static int get_classes_callback(void *k, void *d, void *args)
3366{
3367	struct class_datum *datum = d;
3368	char *name = k, **classes = args;
3369	u32 value = datum->value - 1;
3370
3371	classes[value] = kstrdup(name, GFP_ATOMIC);
3372	if (!classes[value])
3373		return -ENOMEM;
3374
3375	return 0;
3376}
3377
3378int security_get_classes(struct selinux_policy *policy,
3379			 char ***classes, u32 *nclasses)
3380{
3381	struct policydb *policydb;
3382	int rc;
3383
3384	policydb = &policy->policydb;
3385
3386	rc = -ENOMEM;
3387	*nclasses = policydb->p_classes.nprim;
3388	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3389	if (!*classes)
3390		goto out;
3391
3392	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3393			 *classes);
3394	if (rc) {
3395		u32 i;
3396
3397		for (i = 0; i < *nclasses; i++)
3398			kfree((*classes)[i]);
3399		kfree(*classes);
3400	}
3401
3402out:
3403	return rc;
3404}
3405
3406static int get_permissions_callback(void *k, void *d, void *args)
3407{
3408	struct perm_datum *datum = d;
3409	char *name = k, **perms = args;
3410	u32 value = datum->value - 1;
3411
3412	perms[value] = kstrdup(name, GFP_ATOMIC);
3413	if (!perms[value])
3414		return -ENOMEM;
3415
3416	return 0;
3417}
3418
3419int security_get_permissions(struct selinux_policy *policy,
3420			     const char *class, char ***perms, u32 *nperms)
3421{
3422	struct policydb *policydb;
3423	u32 i;
3424	int rc;
3425	struct class_datum *match;
3426
3427	policydb = &policy->policydb;
3428
3429	rc = -EINVAL;
3430	match = symtab_search(&policydb->p_classes, class);
3431	if (!match) {
3432		pr_err("SELinux: %s:  unrecognized class %s\n",
3433			__func__, class);
3434		goto out;
3435	}
3436
3437	rc = -ENOMEM;
3438	*nperms = match->permissions.nprim;
3439	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3440	if (!*perms)
3441		goto out;
3442
3443	if (match->comdatum) {
3444		rc = hashtab_map(&match->comdatum->permissions.table,
3445				 get_permissions_callback, *perms);
3446		if (rc)
3447			goto err;
3448	}
3449
3450	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3451			 *perms);
3452	if (rc)
3453		goto err;
3454
3455out:
3456	return rc;
3457
3458err:
3459	for (i = 0; i < *nperms; i++)
3460		kfree((*perms)[i]);
3461	kfree(*perms);
3462	return rc;
3463}
3464
3465int security_get_reject_unknown(void)
3466{
3467	struct selinux_policy *policy;
3468	int value;
3469
3470	if (!selinux_initialized())
3471		return 0;
3472
3473	rcu_read_lock();
3474	policy = rcu_dereference(selinux_state.policy);
3475	value = policy->policydb.reject_unknown;
3476	rcu_read_unlock();
3477	return value;
3478}
3479
3480int security_get_allow_unknown(void)
3481{
3482	struct selinux_policy *policy;
3483	int value;
3484
3485	if (!selinux_initialized())
3486		return 0;
3487
3488	rcu_read_lock();
3489	policy = rcu_dereference(selinux_state.policy);
3490	value = policy->policydb.allow_unknown;
3491	rcu_read_unlock();
3492	return value;
3493}
3494
3495/**
3496 * security_policycap_supported - Check for a specific policy capability
 
3497 * @req_cap: capability
3498 *
3499 * Description:
3500 * This function queries the currently loaded policy to see if it supports the
3501 * capability specified by @req_cap.  Returns true (1) if the capability is
3502 * supported, false (0) if it isn't supported.
3503 *
3504 */
3505int security_policycap_supported(unsigned int req_cap)
 
3506{
3507	struct selinux_policy *policy;
3508	int rc;
3509
3510	if (!selinux_initialized())
3511		return 0;
3512
3513	rcu_read_lock();
3514	policy = rcu_dereference(selinux_state.policy);
3515	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3516	rcu_read_unlock();
3517
3518	return rc;
3519}
3520
3521struct selinux_audit_rule {
3522	u32 au_seqno;
3523	struct context au_ctxt;
3524};
3525
3526void selinux_audit_rule_free(void *vrule)
3527{
3528	struct selinux_audit_rule *rule = vrule;
3529
3530	if (rule) {
3531		context_destroy(&rule->au_ctxt);
3532		kfree(rule);
3533	}
3534}
3535
3536int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3537			    gfp_t gfp)
3538{
3539	struct selinux_state *state = &selinux_state;
3540	struct selinux_policy *policy;
3541	struct policydb *policydb;
3542	struct selinux_audit_rule *tmprule;
3543	struct role_datum *roledatum;
3544	struct type_datum *typedatum;
3545	struct user_datum *userdatum;
3546	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3547	int rc = 0;
3548
3549	*rule = NULL;
3550
3551	if (!selinux_initialized())
3552		return -EOPNOTSUPP;
3553
3554	switch (field) {
3555	case AUDIT_SUBJ_USER:
3556	case AUDIT_SUBJ_ROLE:
3557	case AUDIT_SUBJ_TYPE:
3558	case AUDIT_OBJ_USER:
3559	case AUDIT_OBJ_ROLE:
3560	case AUDIT_OBJ_TYPE:
3561		/* only 'equals' and 'not equals' fit user, role, and type */
3562		if (op != Audit_equal && op != Audit_not_equal)
3563			return -EINVAL;
3564		break;
3565	case AUDIT_SUBJ_SEN:
3566	case AUDIT_SUBJ_CLR:
3567	case AUDIT_OBJ_LEV_LOW:
3568	case AUDIT_OBJ_LEV_HIGH:
3569		/* we do not allow a range, indicated by the presence of '-' */
3570		if (strchr(rulestr, '-'))
3571			return -EINVAL;
3572		break;
3573	default:
3574		/* only the above fields are valid */
3575		return -EINVAL;
3576	}
3577
3578	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3579	if (!tmprule)
3580		return -ENOMEM;
 
3581	context_init(&tmprule->au_ctxt);
3582
3583	rcu_read_lock();
3584	policy = rcu_dereference(state->policy);
3585	policydb = &policy->policydb;
 
3586	tmprule->au_seqno = policy->latest_granting;
 
3587	switch (field) {
3588	case AUDIT_SUBJ_USER:
3589	case AUDIT_OBJ_USER:
 
3590		userdatum = symtab_search(&policydb->p_users, rulestr);
3591		if (!userdatum) {
3592			rc = -EINVAL;
3593			goto err;
3594		}
3595		tmprule->au_ctxt.user = userdatum->value;
3596		break;
3597	case AUDIT_SUBJ_ROLE:
3598	case AUDIT_OBJ_ROLE:
 
3599		roledatum = symtab_search(&policydb->p_roles, rulestr);
3600		if (!roledatum) {
3601			rc = -EINVAL;
3602			goto err;
3603		}
3604		tmprule->au_ctxt.role = roledatum->value;
3605		break;
3606	case AUDIT_SUBJ_TYPE:
3607	case AUDIT_OBJ_TYPE:
 
3608		typedatum = symtab_search(&policydb->p_types, rulestr);
3609		if (!typedatum) {
3610			rc = -EINVAL;
3611			goto err;
3612		}
3613		tmprule->au_ctxt.type = typedatum->value;
3614		break;
3615	case AUDIT_SUBJ_SEN:
3616	case AUDIT_SUBJ_CLR:
3617	case AUDIT_OBJ_LEV_LOW:
3618	case AUDIT_OBJ_LEV_HIGH:
3619		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3620				     GFP_ATOMIC);
3621		if (rc)
3622			goto err;
3623		break;
3624	}
 
 
3625	rcu_read_unlock();
3626
 
 
 
 
 
3627	*rule = tmprule;
3628	return 0;
3629
3630err:
3631	rcu_read_unlock();
3632	selinux_audit_rule_free(tmprule);
3633	*rule = NULL;
3634	return rc;
3635}
3636
3637/* Check to see if the rule contains any selinux fields */
3638int selinux_audit_rule_known(struct audit_krule *rule)
3639{
3640	u32 i;
3641
3642	for (i = 0; i < rule->field_count; i++) {
3643		struct audit_field *f = &rule->fields[i];
3644		switch (f->type) {
3645		case AUDIT_SUBJ_USER:
3646		case AUDIT_SUBJ_ROLE:
3647		case AUDIT_SUBJ_TYPE:
3648		case AUDIT_SUBJ_SEN:
3649		case AUDIT_SUBJ_CLR:
3650		case AUDIT_OBJ_USER:
3651		case AUDIT_OBJ_ROLE:
3652		case AUDIT_OBJ_TYPE:
3653		case AUDIT_OBJ_LEV_LOW:
3654		case AUDIT_OBJ_LEV_HIGH:
3655			return 1;
3656		}
3657	}
3658
3659	return 0;
3660}
3661
3662int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
3663{
3664	struct selinux_state *state = &selinux_state;
3665	struct selinux_policy *policy;
3666	struct context *ctxt;
3667	struct mls_level *level;
3668	struct selinux_audit_rule *rule = vrule;
3669	int match = 0;
3670
3671	if (unlikely(!rule)) {
3672		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3673		return -ENOENT;
3674	}
3675
3676	if (!selinux_initialized())
3677		return 0;
3678
3679	rcu_read_lock();
3680
3681	policy = rcu_dereference(state->policy);
3682
3683	if (rule->au_seqno < policy->latest_granting) {
3684		match = -ESTALE;
3685		goto out;
3686	}
3687
3688	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3689	if (unlikely(!ctxt)) {
3690		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3691			  prop->selinux.secid);
3692		match = -ENOENT;
3693		goto out;
3694	}
3695
3696	/* a field/op pair that is not caught here will simply fall through
3697	   without a match */
3698	switch (field) {
3699	case AUDIT_SUBJ_USER:
3700	case AUDIT_OBJ_USER:
3701		switch (op) {
3702		case Audit_equal:
3703			match = (ctxt->user == rule->au_ctxt.user);
3704			break;
3705		case Audit_not_equal:
3706			match = (ctxt->user != rule->au_ctxt.user);
3707			break;
3708		}
3709		break;
3710	case AUDIT_SUBJ_ROLE:
3711	case AUDIT_OBJ_ROLE:
3712		switch (op) {
3713		case Audit_equal:
3714			match = (ctxt->role == rule->au_ctxt.role);
3715			break;
3716		case Audit_not_equal:
3717			match = (ctxt->role != rule->au_ctxt.role);
3718			break;
3719		}
3720		break;
3721	case AUDIT_SUBJ_TYPE:
3722	case AUDIT_OBJ_TYPE:
3723		switch (op) {
3724		case Audit_equal:
3725			match = (ctxt->type == rule->au_ctxt.type);
3726			break;
3727		case Audit_not_equal:
3728			match = (ctxt->type != rule->au_ctxt.type);
3729			break;
3730		}
3731		break;
3732	case AUDIT_SUBJ_SEN:
3733	case AUDIT_SUBJ_CLR:
3734	case AUDIT_OBJ_LEV_LOW:
3735	case AUDIT_OBJ_LEV_HIGH:
3736		level = ((field == AUDIT_SUBJ_SEN ||
3737			  field == AUDIT_OBJ_LEV_LOW) ?
3738			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3739		switch (op) {
3740		case Audit_equal:
3741			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3742					     level);
3743			break;
3744		case Audit_not_equal:
3745			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3746					      level);
3747			break;
3748		case Audit_lt:
3749			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3750					       level) &&
3751				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3752					       level));
3753			break;
3754		case Audit_le:
3755			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3756					      level);
3757			break;
3758		case Audit_gt:
3759			match = (mls_level_dom(level,
3760					      &rule->au_ctxt.range.level[0]) &&
3761				 !mls_level_eq(level,
3762					       &rule->au_ctxt.range.level[0]));
3763			break;
3764		case Audit_ge:
3765			match = mls_level_dom(level,
3766					      &rule->au_ctxt.range.level[0]);
3767			break;
3768		}
3769	}
3770
3771out:
3772	rcu_read_unlock();
3773	return match;
3774}
3775
3776static int aurule_avc_callback(u32 event)
3777{
3778	if (event == AVC_CALLBACK_RESET)
3779		return audit_update_lsm_rules();
3780	return 0;
3781}
3782
3783static int __init aurule_init(void)
3784{
3785	int err;
3786
3787	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3788	if (err)
3789		panic("avc_add_callback() failed, error %d\n", err);
3790
3791	return err;
3792}
3793__initcall(aurule_init);
3794
3795#ifdef CONFIG_NETLABEL
3796/**
3797 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3798 * @secattr: the NetLabel packet security attributes
3799 * @sid: the SELinux SID
3800 *
3801 * Description:
3802 * Attempt to cache the context in @ctx, which was derived from the packet in
3803 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3804 * already been initialized.
3805 *
3806 */
3807static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3808				      u32 sid)
3809{
3810	u32 *sid_cache;
3811
3812	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3813	if (sid_cache == NULL)
3814		return;
3815	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3816	if (secattr->cache == NULL) {
3817		kfree(sid_cache);
3818		return;
3819	}
3820
3821	*sid_cache = sid;
3822	secattr->cache->free = kfree;
3823	secattr->cache->data = sid_cache;
3824	secattr->flags |= NETLBL_SECATTR_CACHE;
3825}
3826
3827/**
3828 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3829 * @secattr: the NetLabel packet security attributes
3830 * @sid: the SELinux SID
3831 *
3832 * Description:
3833 * Convert the given NetLabel security attributes in @secattr into a
3834 * SELinux SID.  If the @secattr field does not contain a full SELinux
3835 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3836 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3837 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3838 * conversion for future lookups.  Returns zero on success, negative values on
3839 * failure.
3840 *
3841 */
3842int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3843				   u32 *sid)
3844{
3845	struct selinux_policy *policy;
3846	struct policydb *policydb;
3847	struct sidtab *sidtab;
3848	int rc;
3849	struct context *ctx;
3850	struct context ctx_new;
3851
3852	if (!selinux_initialized()) {
3853		*sid = SECSID_NULL;
3854		return 0;
3855	}
3856
3857retry:
3858	rc = 0;
3859	rcu_read_lock();
3860	policy = rcu_dereference(selinux_state.policy);
3861	policydb = &policy->policydb;
3862	sidtab = policy->sidtab;
3863
3864	if (secattr->flags & NETLBL_SECATTR_CACHE)
3865		*sid = *(u32 *)secattr->cache->data;
3866	else if (secattr->flags & NETLBL_SECATTR_SECID)
3867		*sid = secattr->attr.secid;
3868	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3869		rc = -EIDRM;
3870		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3871		if (ctx == NULL)
3872			goto out;
3873
3874		context_init(&ctx_new);
3875		ctx_new.user = ctx->user;
3876		ctx_new.role = ctx->role;
3877		ctx_new.type = ctx->type;
3878		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3879		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3880			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3881			if (rc)
3882				goto out;
3883		}
3884		rc = -EIDRM;
3885		if (!mls_context_isvalid(policydb, &ctx_new)) {
3886			ebitmap_destroy(&ctx_new.range.level[0].cat);
3887			goto out;
3888		}
3889
3890		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3891		ebitmap_destroy(&ctx_new.range.level[0].cat);
3892		if (rc == -ESTALE) {
3893			rcu_read_unlock();
3894			goto retry;
3895		}
3896		if (rc)
3897			goto out;
3898
3899		security_netlbl_cache_add(secattr, *sid);
3900	} else
3901		*sid = SECSID_NULL;
3902
3903out:
3904	rcu_read_unlock();
3905	return rc;
3906}
3907
3908/**
3909 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3910 * @sid: the SELinux SID
3911 * @secattr: the NetLabel packet security attributes
3912 *
3913 * Description:
3914 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3915 * Returns zero on success, negative values on failure.
3916 *
3917 */
3918int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3919{
3920	struct selinux_policy *policy;
3921	struct policydb *policydb;
3922	int rc;
3923	struct context *ctx;
3924
3925	if (!selinux_initialized())
3926		return 0;
3927
3928	rcu_read_lock();
3929	policy = rcu_dereference(selinux_state.policy);
3930	policydb = &policy->policydb;
3931
3932	rc = -ENOENT;
3933	ctx = sidtab_search(policy->sidtab, sid);
3934	if (ctx == NULL)
3935		goto out;
3936
3937	rc = -ENOMEM;
3938	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3939				  GFP_ATOMIC);
3940	if (secattr->domain == NULL)
3941		goto out;
3942
3943	secattr->attr.secid = sid;
3944	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3945	mls_export_netlbl_lvl(policydb, ctx, secattr);
3946	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3947out:
3948	rcu_read_unlock();
3949	return rc;
3950}
3951#endif /* CONFIG_NETLABEL */
3952
3953/**
3954 * __security_read_policy - read the policy.
3955 * @policy: SELinux policy
3956 * @data: binary policy data
3957 * @len: length of data in bytes
3958 *
3959 */
3960static int __security_read_policy(struct selinux_policy *policy,
3961				  void *data, size_t *len)
3962{
3963	int rc;
3964	struct policy_file fp;
3965
3966	fp.data = data;
3967	fp.len = *len;
3968
3969	rc = policydb_write(&policy->policydb, &fp);
3970	if (rc)
3971		return rc;
3972
3973	*len = (unsigned long)fp.data - (unsigned long)data;
3974	return 0;
3975}
3976
3977/**
3978 * security_read_policy - read the policy.
 
3979 * @data: binary policy data
3980 * @len: length of data in bytes
3981 *
3982 */
3983int security_read_policy(void **data, size_t *len)
 
3984{
3985	struct selinux_state *state = &selinux_state;
3986	struct selinux_policy *policy;
3987
3988	policy = rcu_dereference_protected(
3989			state->policy, lockdep_is_held(&state->policy_mutex));
3990	if (!policy)
3991		return -EINVAL;
3992
3993	*len = policy->policydb.len;
3994	*data = vmalloc_user(*len);
3995	if (!*data)
3996		return -ENOMEM;
3997
3998	return __security_read_policy(policy, *data, len);
3999}
4000
4001/**
4002 * security_read_state_kernel - read the policy.
 
4003 * @data: binary policy data
4004 * @len: length of data in bytes
4005 *
4006 * Allocates kernel memory for reading SELinux policy.
4007 * This function is for internal use only and should not
4008 * be used for returning data to user space.
4009 *
4010 * This function must be called with policy_mutex held.
4011 */
4012int security_read_state_kernel(void **data, size_t *len)
 
4013{
4014	int err;
4015	struct selinux_state *state = &selinux_state;
4016	struct selinux_policy *policy;
4017
4018	policy = rcu_dereference_protected(
4019			state->policy, lockdep_is_held(&state->policy_mutex));
4020	if (!policy)
4021		return -EINVAL;
4022
4023	*len = policy->policydb.len;
4024	*data = vmalloc(*len);
4025	if (!*data)
4026		return -ENOMEM;
4027
4028	err = __security_read_policy(policy, *data, len);
4029	if (err) {
4030		vfree(*data);
4031		*data = NULL;
4032		*len = 0;
4033	}
4034	return err;
4035}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72	struct selinux_state *state;
  73	struct policydb *oldp;
  74	struct policydb *newp;
  75};
  76
  77struct selinux_policy_convert_data {
  78	struct convert_context_args args;
  79	struct sidtab_convert_params sidtab_params;
  80};
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84				    struct context *context,
  85				    char **scontext,
  86				    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89				  struct sidtab *sidtab,
  90				  struct sidtab_entry *entry,
  91				  char **scontext,
  92				  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 104{
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	int mls_enabled;
 247	struct selinux_policy *policy;
 248
 249	if (!selinux_initialized(state))
 250		return 0;
 251
 252	rcu_read_lock();
 253	policy = rcu_dereference(state->policy);
 254	mls_enabled = policy->policydb.mls_enabled;
 255	rcu_read_unlock();
 256	return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271				struct context *scontext,
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb->role_val_to_struct[val1 - 1];
 316				r2 = policydb->role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462				    struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(&common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(&tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(policydb, scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(policydb, tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(audit_context(),
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541				     struct context *scontext,
 542				     struct context *tcontext,
 543				     u16 tclass,
 544				     struct av_decision *avd)
 545{
 546	struct context lo_scontext;
 547	struct context lo_tcontext, *tcontextp = tcontext;
 548	struct av_decision lo_avd;
 549	struct type_datum *source;
 550	struct type_datum *target;
 551	u32 masked = 0;
 552
 553	source = policydb->type_val_to_struct[scontext->type - 1];
 554	BUG_ON(!source);
 555
 556	if (!source->bounds)
 557		return;
 558
 559	target = policydb->type_val_to_struct[tcontext->type - 1];
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 566
 567	if (target->bounds) {
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 
 
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 
 
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 
 
 
 
 
 
 
 610	}
 611
 612	xperms->len = 1;
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620				      struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd,
 624				      struct extended_perms *xperms)
 625{
 626	struct constraint_node *constraint;
 627	struct role_allow *ra;
 628	struct avtab_key avkey;
 629	struct avtab_node *node;
 630	struct class_datum *tclass_datum;
 631	struct ebitmap *sattr, *tattr;
 632	struct ebitmap_node *snode, *tnode;
 633	unsigned int i, j;
 634
 635	avd->allowed = 0;
 636	avd->auditallow = 0;
 637	avd->auditdeny = 0xffffffff;
 638	if (xperms) {
 639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640		xperms->len = 0;
 641	}
 642
 643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644		if (printk_ratelimit())
 645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725					struct selinux_policy *policy,
 726					struct sidtab_entry *oentry,
 727					struct sidtab_entry *nentry,
 728					struct sidtab_entry *tentry,
 729					u16 tclass)
 730{
 731	struct policydb *p = &policy->policydb;
 732	struct sidtab *sidtab = policy->sidtab;
 733	char *o = NULL, *n = NULL, *t = NULL;
 734	u32 olen, nlen, tlen;
 735
 736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739		goto out;
 740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741		goto out;
 742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743		  "op=security_validate_transition seresult=denied"
 744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747	kfree(o);
 748	kfree(n);
 749	kfree(t);
 750
 751	if (!enforcing_enabled(state))
 752		return 0;
 753	return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757					  u32 oldsid, u32 newsid, u32 tasksid,
 758					  u16 orig_tclass, bool user)
 759{
 760	struct selinux_policy *policy;
 761	struct policydb *policydb;
 762	struct sidtab *sidtab;
 763	struct sidtab_entry *oentry;
 764	struct sidtab_entry *nentry;
 765	struct sidtab_entry *tentry;
 766	struct class_datum *tclass_datum;
 767	struct constraint_node *constraint;
 768	u16 tclass;
 769	int rc = 0;
 770
 771
 772	if (!selinux_initialized(state))
 773		return 0;
 774
 775	rcu_read_lock();
 776
 777	policy = rcu_dereference(state->policy);
 778	policydb = &policy->policydb;
 779	sidtab = policy->sidtab;
 780
 781	if (!user)
 782		tclass = unmap_class(&policy->map, orig_tclass);
 783	else
 784		tclass = orig_tclass;
 785
 786	if (!tclass || tclass > policydb->p_classes.nprim) {
 787		rc = -EINVAL;
 788		goto out;
 789	}
 790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792	oentry = sidtab_search_entry(sidtab, oldsid);
 793	if (!oentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, oldsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	nentry = sidtab_search_entry(sidtab, newsid);
 801	if (!nentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, newsid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	tentry = sidtab_search_entry(sidtab, tasksid);
 809	if (!tentry) {
 810		pr_err("SELinux: %s:  unrecognized SID %d\n",
 811			__func__, tasksid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	constraint = tclass_datum->validatetrans;
 817	while (constraint) {
 818		if (!constraint_expr_eval(policydb, &oentry->context,
 819					  &nentry->context, &tentry->context,
 820					  constraint->expr)) {
 821			if (user)
 822				rc = -EPERM;
 823			else
 824				rc = security_validtrans_handle_fail(state,
 825								policy,
 826								oentry,
 827								nentry,
 828								tentry,
 829								tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	rcu_read_unlock();
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867				u32 old_sid, u32 new_sid)
 868{
 869	struct selinux_policy *policy;
 870	struct policydb *policydb;
 871	struct sidtab *sidtab;
 872	struct sidtab_entry *old_entry, *new_entry;
 873	struct type_datum *type;
 874	int index;
 875	int rc;
 876
 877	if (!selinux_initialized(state))
 878		return 0;
 879
 880	rcu_read_lock();
 881	policy = rcu_dereference(state->policy);
 882	policydb = &policy->policydb;
 883	sidtab = policy->sidtab;
 884
 885	rc = -EINVAL;
 886	old_entry = sidtab_search_entry(sidtab, old_sid);
 887	if (!old_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_entry = sidtab_search_entry(sidtab, new_sid);
 895	if (!new_entry) {
 896		pr_err("SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_entry->context.type == new_entry->context.type)
 904		goto out;
 905
 906	index = new_entry->context.type;
 907	while (true) {
 908		type = policydb->type_val_to_struct[index - 1];
 909		BUG_ON(!type);
 910
 911		/* not bounded anymore */
 912		rc = -EPERM;
 913		if (!type->bounds)
 914			break;
 915
 916		/* @newsid is bounded by @oldsid */
 917		rc = 0;
 918		if (type->bounds == old_entry->context.type)
 919			break;
 920
 921		index = type->bounds;
 922	}
 923
 924	if (rc) {
 925		char *old_name = NULL;
 926		char *new_name = NULL;
 927		u32 length;
 928
 929		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930					    &old_name, &length) &&
 931		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932					    &new_name, &length)) {
 933			audit_log(audit_context(),
 934				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935				  "op=security_bounded_transition "
 936				  "seresult=denied "
 937				  "oldcontext=%s newcontext=%s",
 938				  old_name, new_name);
 939		}
 940		kfree(new_name);
 941		kfree(old_name);
 942	}
 943out:
 944	rcu_read_unlock();
 945
 946	return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951	avd->allowed = 0;
 952	avd->auditallow = 0;
 953	avd->auditdeny = 0xffffffff;
 954	if (policy)
 955		avd->seqno = policy->latest_granting;
 956	else
 957		avd->seqno = 0;
 958	avd->flags = 0;
 959}
 960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962					struct avtab_node *node)
 963{
 964	unsigned int i;
 965
 966	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967		if (xpermd->driver != node->datum.u.xperms->driver)
 
 
 
 
 
 
 968			return;
 969	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971					xpermd->driver))
 
 972			return;
 973	} else {
 974		BUG();
 
 
 
 
 975	}
 976
 977	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978		xpermd->used |= XPERMS_ALLOWED;
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980			memset(xpermd->allowed->p, 0xff,
 981					sizeof(xpermd->allowed->p));
 982		}
 983		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985				xpermd->allowed->p[i] |=
 986					node->datum.u.xperms->perms.p[i];
 987		}
 988	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989		xpermd->used |= XPERMS_AUDITALLOW;
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991			memset(xpermd->auditallow->p, 0xff,
 992					sizeof(xpermd->auditallow->p));
 993		}
 994		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996				xpermd->auditallow->p[i] |=
 997					node->datum.u.xperms->perms.p[i];
 998		}
 999	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000		xpermd->used |= XPERMS_DONTAUDIT;
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002			memset(xpermd->dontaudit->p, 0xff,
1003					sizeof(xpermd->dontaudit->p));
1004		}
1005		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007				xpermd->dontaudit->p[i] |=
1008					node->datum.u.xperms->perms.p[i];
1009		}
1010	} else {
1011		BUG();
 
1012	}
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016				      u32 ssid,
1017				      u32 tsid,
1018				      u16 orig_tclass,
1019				      u8 driver,
 
1020				      struct extended_perms_decision *xpermd)
1021{
1022	struct selinux_policy *policy;
1023	struct policydb *policydb;
1024	struct sidtab *sidtab;
1025	u16 tclass;
1026	struct context *scontext, *tcontext;
1027	struct avtab_key avkey;
1028	struct avtab_node *node;
1029	struct ebitmap *sattr, *tattr;
1030	struct ebitmap_node *snode, *tnode;
1031	unsigned int i, j;
1032
 
1033	xpermd->driver = driver;
1034	xpermd->used = 0;
1035	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039	rcu_read_lock();
1040	if (!selinux_initialized(state))
1041		goto allow;
1042
1043	policy = rcu_dereference(state->policy);
1044	policydb = &policy->policydb;
1045	sidtab = policy->sidtab;
1046
1047	scontext = sidtab_search(sidtab, ssid);
1048	if (!scontext) {
1049		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050		       __func__, ssid);
1051		goto out;
1052	}
1053
1054	tcontext = sidtab_search(sidtab, tsid);
1055	if (!tcontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, tsid);
1058		goto out;
1059	}
1060
1061	tclass = unmap_class(&policy->map, orig_tclass);
1062	if (unlikely(orig_tclass && !tclass)) {
1063		if (policydb->allow_unknown)
1064			goto allow;
1065		goto out;
1066	}
1067
1068
1069	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071		goto out;
1072	}
1073
1074	avkey.target_class = tclass;
1075	avkey.specified = AVTAB_XPERMS;
1076	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080			avkey.source_type = i + 1;
1081			avkey.target_type = j + 1;
1082			for (node = avtab_search_node(&policydb->te_avtab,
1083						      &avkey);
1084			     node;
1085			     node = avtab_search_node_next(node, avkey.specified))
1086				services_compute_xperms_decision(xpermd, node);
1087
1088			cond_compute_xperms(&policydb->te_cond_avtab,
1089						&avkey, xpermd);
1090		}
1091	}
1092out:
1093	rcu_read_unlock();
1094	return;
1095allow:
1096	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097	goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113			 u32 ssid,
1114			 u32 tsid,
1115			 u16 orig_tclass,
1116			 struct av_decision *avd,
1117			 struct extended_perms *xperms)
1118{
1119	struct selinux_policy *policy;
1120	struct policydb *policydb;
1121	struct sidtab *sidtab;
1122	u16 tclass;
1123	struct context *scontext = NULL, *tcontext = NULL;
1124
1125	rcu_read_lock();
1126	policy = rcu_dereference(state->policy);
1127	avd_init(policy, avd);
1128	xperms->len = 0;
1129	if (!selinux_initialized(state))
1130		goto allow;
1131
1132	policydb = &policy->policydb;
1133	sidtab = policy->sidtab;
1134
1135	scontext = sidtab_search(sidtab, ssid);
1136	if (!scontext) {
1137		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138		       __func__, ssid);
1139		goto out;
1140	}
1141
1142	/* permissive domain? */
1143	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146	tcontext = sidtab_search(sidtab, tsid);
1147	if (!tcontext) {
1148		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149		       __func__, tsid);
1150		goto out;
1151	}
1152
1153	tclass = unmap_class(&policy->map, orig_tclass);
1154	if (unlikely(orig_tclass && !tclass)) {
1155		if (policydb->allow_unknown)
1156			goto allow;
1157		goto out;
1158	}
1159	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160				  xperms);
1161	map_decision(&policy->map, orig_tclass, avd,
1162		     policydb->allow_unknown);
1163out:
1164	rcu_read_unlock();
1165	return;
1166allow:
1167	avd->allowed = 0xffffffff;
1168	goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172			      u32 ssid,
1173			      u32 tsid,
1174			      u16 tclass,
1175			      struct av_decision *avd)
1176{
1177	struct selinux_policy *policy;
1178	struct policydb *policydb;
1179	struct sidtab *sidtab;
1180	struct context *scontext = NULL, *tcontext = NULL;
1181
1182	rcu_read_lock();
1183	policy = rcu_dereference(state->policy);
1184	avd_init(policy, avd);
1185	if (!selinux_initialized(state))
1186		goto allow;
1187
1188	policydb = &policy->policydb;
1189	sidtab = policy->sidtab;
1190
1191	scontext = sidtab_search(sidtab, ssid);
1192	if (!scontext) {
1193		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194		       __func__, ssid);
1195		goto out;
1196	}
1197
1198	/* permissive domain? */
1199	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202	tcontext = sidtab_search(sidtab, tsid);
1203	if (!tcontext) {
1204		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205		       __func__, tsid);
1206		goto out;
1207	}
1208
1209	if (unlikely(!tclass)) {
1210		if (policydb->allow_unknown)
1211			goto allow;
1212		goto out;
1213	}
1214
1215	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216				  NULL);
1217 out:
1218	rcu_read_unlock();
1219	return;
1220allow:
1221	avd->allowed = 0xffffffff;
1222	goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233				    struct context *context,
1234				    char **scontext, u32 *scontext_len)
1235{
1236	char *scontextp;
1237
1238	if (scontext)
1239		*scontext = NULL;
1240	*scontext_len = 0;
1241
1242	if (context->len) {
1243		*scontext_len = context->len;
1244		if (scontext) {
1245			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246			if (!(*scontext))
1247				return -ENOMEM;
1248		}
1249		return 0;
1250	}
1251
1252	/* Compute the size of the context. */
1253	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256	*scontext_len += mls_compute_context_len(p, context);
1257
1258	if (!scontext)
1259		return 0;
1260
1261	/* Allocate space for the context; caller must free this space. */
1262	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263	if (!scontextp)
1264		return -ENOMEM;
1265	*scontext = scontextp;
1266
1267	/*
1268	 * Copy the user name, role name and type name into the context.
1269	 */
1270	scontextp += sprintf(scontextp, "%s:%s:%s",
1271		sym_name(p, SYM_USERS, context->user - 1),
1272		sym_name(p, SYM_ROLES, context->role - 1),
1273		sym_name(p, SYM_TYPES, context->type - 1));
1274
1275	mls_sid_to_context(p, context, &scontextp);
1276
1277	*scontextp = 0;
1278
1279	return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283				  struct sidtab *sidtab,
1284				  struct sidtab_entry *entry,
1285				  char **scontext, u32 *scontext_len)
1286{
1287	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289	if (rc != -ENOENT)
1290		return rc;
1291
1292	rc = context_struct_to_string(p, &entry->context, scontext,
1293				      scontext_len);
1294	if (!rc && scontext)
1295		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296	return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303	struct selinux_policy *policy;
1304	int rc;
1305
1306	if (!selinux_initialized(state)) {
1307		pr_err("SELinux: %s:  called before initial load_policy\n",
1308		       __func__);
1309		return -EINVAL;
1310	}
1311
1312	rcu_read_lock();
1313	policy = rcu_dereference(state->policy);
1314	rc = sidtab_hash_stats(policy->sidtab, page);
1315	rcu_read_unlock();
1316
1317	return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322	if (unlikely(sid > SECINITSID_NUM))
1323		return NULL;
1324	return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328					u32 sid, char **scontext,
1329					u32 *scontext_len, int force,
1330					int only_invalid)
1331{
1332	struct selinux_policy *policy;
1333	struct policydb *policydb;
1334	struct sidtab *sidtab;
1335	struct sidtab_entry *entry;
1336	int rc = 0;
1337
1338	if (scontext)
1339		*scontext = NULL;
1340	*scontext_len  = 0;
1341
1342	if (!selinux_initialized(state)) {
1343		if (sid <= SECINITSID_NUM) {
1344			char *scontextp;
1345			const char *s = initial_sid_to_string[sid];
 
 
 
 
 
 
 
 
 
 
1346
 
1347			if (!s)
1348				return -EINVAL;
1349			*scontext_len = strlen(s) + 1;
1350			if (!scontext)
1351				return 0;
1352			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353			if (!scontextp)
1354				return -ENOMEM;
1355			*scontext = scontextp;
1356			return 0;
1357		}
1358		pr_err("SELinux: %s:  called before initial "
1359		       "load_policy on unknown SID %d\n", __func__, sid);
1360		return -EINVAL;
1361	}
1362	rcu_read_lock();
1363	policy = rcu_dereference(state->policy);
1364	policydb = &policy->policydb;
1365	sidtab = policy->sidtab;
1366
1367	if (force)
1368		entry = sidtab_search_entry_force(sidtab, sid);
1369	else
1370		entry = sidtab_search_entry(sidtab, sid);
1371	if (!entry) {
1372		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373			__func__, sid);
1374		rc = -EINVAL;
1375		goto out_unlock;
1376	}
1377	if (only_invalid && !entry->context.len)
1378		goto out_unlock;
1379
1380	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381				    scontext_len);
1382
1383out_unlock:
1384	rcu_read_unlock();
1385	return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401			    u32 sid, char **scontext, u32 *scontext_len)
1402{
1403	return security_sid_to_context_core(state, sid, scontext,
1404					    scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408				  char **scontext, u32 *scontext_len)
1409{
1410	return security_sid_to_context_core(state, sid, scontext,
1411					    scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429				  char **scontext, u32 *scontext_len)
1430{
1431	return security_sid_to_context_core(state, sid, scontext,
1432					    scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439				    struct sidtab *sidtabp,
1440				    char *scontext,
1441				    struct context *ctx,
1442				    u32 def_sid)
1443{
1444	struct role_datum *role;
1445	struct type_datum *typdatum;
1446	struct user_datum *usrdatum;
1447	char *scontextp, *p, oldc;
1448	int rc = 0;
1449
1450	context_init(ctx);
1451
1452	/* Parse the security context. */
1453
1454	rc = -EINVAL;
1455	scontextp = (char *) scontext;
1456
1457	/* Extract the user. */
1458	p = scontextp;
1459	while (*p && *p != ':')
1460		p++;
1461
1462	if (*p == 0)
1463		goto out;
1464
1465	*p++ = 0;
1466
1467	usrdatum = symtab_search(&pol->p_users, scontextp);
1468	if (!usrdatum)
1469		goto out;
1470
1471	ctx->user = usrdatum->value;
1472
1473	/* Extract role. */
1474	scontextp = p;
1475	while (*p && *p != ':')
1476		p++;
1477
1478	if (*p == 0)
1479		goto out;
1480
1481	*p++ = 0;
1482
1483	role = symtab_search(&pol->p_roles, scontextp);
1484	if (!role)
1485		goto out;
1486	ctx->role = role->value;
1487
1488	/* Extract type. */
1489	scontextp = p;
1490	while (*p && *p != ':')
1491		p++;
1492	oldc = *p;
1493	*p++ = 0;
1494
1495	typdatum = symtab_search(&pol->p_types, scontextp);
1496	if (!typdatum || typdatum->attribute)
1497		goto out;
1498
1499	ctx->type = typdatum->value;
1500
1501	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502	if (rc)
1503		goto out;
1504
1505	/* Check the validity of the new context. */
1506	rc = -EINVAL;
1507	if (!policydb_context_isvalid(pol, ctx))
1508		goto out;
1509	rc = 0;
1510out:
1511	if (rc)
1512		context_destroy(ctx);
1513	return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517					const char *scontext, u32 scontext_len,
1518					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519					int force)
1520{
1521	struct selinux_policy *policy;
1522	struct policydb *policydb;
1523	struct sidtab *sidtab;
1524	char *scontext2, *str = NULL;
1525	struct context context;
1526	int rc = 0;
1527
1528	/* An empty security context is never valid. */
1529	if (!scontext_len)
1530		return -EINVAL;
1531
1532	/* Copy the string to allow changes and ensure a NUL terminator */
1533	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534	if (!scontext2)
1535		return -ENOMEM;
1536
1537	if (!selinux_initialized(state)) {
1538		int i;
1539
1540		for (i = 1; i < SECINITSID_NUM; i++) {
1541			const char *s = initial_sid_to_string[i];
1542
1543			if (s && !strcmp(s, scontext2)) {
1544				*sid = i;
1545				goto out;
1546			}
1547		}
1548		*sid = SECINITSID_KERNEL;
1549		goto out;
1550	}
1551	*sid = SECSID_NULL;
1552
1553	if (force) {
1554		/* Save another copy for storing in uninterpreted form */
1555		rc = -ENOMEM;
1556		str = kstrdup(scontext2, gfp_flags);
1557		if (!str)
1558			goto out;
1559	}
1560retry:
1561	rcu_read_lock();
1562	policy = rcu_dereference(state->policy);
1563	policydb = &policy->policydb;
1564	sidtab = policy->sidtab;
1565	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566				      &context, def_sid);
1567	if (rc == -EINVAL && force) {
1568		context.str = str;
1569		context.len = strlen(str) + 1;
1570		str = NULL;
1571	} else if (rc)
1572		goto out_unlock;
1573	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574	if (rc == -ESTALE) {
1575		rcu_read_unlock();
1576		if (context.str) {
1577			str = context.str;
1578			context.str = NULL;
1579		}
1580		context_destroy(&context);
1581		goto retry;
1582	}
1583	context_destroy(&context);
1584out_unlock:
1585	rcu_read_unlock();
1586out:
1587	kfree(scontext2);
1588	kfree(str);
1589	return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606			    const char *scontext, u32 scontext_len, u32 *sid,
1607			    gfp_t gfp)
1608{
1609	return security_context_to_sid_core(state, scontext, scontext_len,
1610					    sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614				const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616	return security_context_to_sid(state, scontext, strlen(scontext),
1617				       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
 
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640				    const char *scontext, u32 scontext_len,
1641				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643	return security_context_to_sid_core(state, scontext, scontext_len,
1644					    sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648				  const char *scontext, u32 scontext_len,
1649				  u32 *sid)
1650{
1651	return security_context_to_sid_core(state, scontext, scontext_len,
1652					    sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656	struct selinux_state *state,
1657	struct selinux_policy *policy,
1658	struct sidtab_entry *sentry,
1659	struct sidtab_entry *tentry,
1660	u16 tclass,
1661	struct context *newcontext)
1662{
1663	struct policydb *policydb = &policy->policydb;
1664	struct sidtab *sidtab = policy->sidtab;
1665	char *s = NULL, *t = NULL, *n = NULL;
1666	u32 slen, tlen, nlen;
1667	struct audit_buffer *ab;
1668
1669	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670		goto out;
1671	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672		goto out;
1673	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674		goto out;
1675	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
1676	audit_log_format(ab,
1677			 "op=security_compute_sid invalid_context=");
1678	/* no need to record the NUL with untrusted strings */
1679	audit_log_n_untrustedstring(ab, n, nlen - 1);
1680	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682	audit_log_end(ab);
1683out:
1684	kfree(s);
1685	kfree(t);
1686	kfree(n);
1687	if (!enforcing_enabled(state))
1688		return 0;
1689	return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693				  struct context *newcontext,
1694				  u32 stype, u32 ttype, u16 tclass,
1695				  const char *objname)
1696{
1697	struct filename_trans_key ft;
1698	struct filename_trans_datum *datum;
1699
1700	/*
1701	 * Most filename trans rules are going to live in specific directories
1702	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703	 * if the ttype does not contain any rules.
1704	 */
1705	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706		return;
1707
1708	ft.ttype = ttype;
1709	ft.tclass = tclass;
1710	ft.name = objname;
1711
1712	datum = policydb_filenametr_search(policydb, &ft);
1713	while (datum) {
1714		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715			newcontext->type = datum->otype;
1716			return;
1717		}
1718		datum = datum->next;
1719	}
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723				u32 ssid,
1724				u32 tsid,
1725				u16 orig_tclass,
1726				u32 specified,
1727				const char *objname,
1728				u32 *out_sid,
1729				bool kern)
1730{
1731	struct selinux_policy *policy;
1732	struct policydb *policydb;
1733	struct sidtab *sidtab;
1734	struct class_datum *cladatum;
1735	struct context *scontext, *tcontext, newcontext;
1736	struct sidtab_entry *sentry, *tentry;
1737	struct avtab_key avkey;
1738	struct avtab_datum *avdatum;
1739	struct avtab_node *node;
1740	u16 tclass;
1741	int rc = 0;
1742	bool sock;
1743
1744	if (!selinux_initialized(state)) {
1745		switch (orig_tclass) {
1746		case SECCLASS_PROCESS: /* kernel value */
1747			*out_sid = ssid;
1748			break;
1749		default:
1750			*out_sid = tsid;
1751			break;
1752		}
1753		goto out;
1754	}
1755
1756retry:
1757	cladatum = NULL;
1758	context_init(&newcontext);
1759
1760	rcu_read_lock();
1761
1762	policy = rcu_dereference(state->policy);
1763
1764	if (kern) {
1765		tclass = unmap_class(&policy->map, orig_tclass);
1766		sock = security_is_socket_class(orig_tclass);
1767	} else {
1768		tclass = orig_tclass;
1769		sock = security_is_socket_class(map_class(&policy->map,
1770							  tclass));
1771	}
1772
1773	policydb = &policy->policydb;
1774	sidtab = policy->sidtab;
1775
1776	sentry = sidtab_search_entry(sidtab, ssid);
1777	if (!sentry) {
1778		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779		       __func__, ssid);
1780		rc = -EINVAL;
1781		goto out_unlock;
1782	}
1783	tentry = sidtab_search_entry(sidtab, tsid);
1784	if (!tentry) {
1785		pr_err("SELinux: %s:  unrecognized SID %d\n",
1786		       __func__, tsid);
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	scontext = &sentry->context;
1792	tcontext = &tentry->context;
1793
1794	if (tclass && tclass <= policydb->p_classes.nprim)
1795		cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797	/* Set the user identity. */
1798	switch (specified) {
1799	case AVTAB_TRANSITION:
1800	case AVTAB_CHANGE:
1801		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802			newcontext.user = tcontext->user;
1803		} else {
1804			/* notice this gets both DEFAULT_SOURCE and unset */
1805			/* Use the process user identity. */
1806			newcontext.user = scontext->user;
1807		}
1808		break;
1809	case AVTAB_MEMBER:
1810		/* Use the related object owner. */
1811		newcontext.user = tcontext->user;
1812		break;
1813	}
1814
1815	/* Set the role to default values. */
1816	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817		newcontext.role = scontext->role;
1818	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819		newcontext.role = tcontext->role;
1820	} else {
1821		if ((tclass == policydb->process_class) || sock)
1822			newcontext.role = scontext->role;
1823		else
1824			newcontext.role = OBJECT_R_VAL;
1825	}
1826
1827	/* Set the type to default values. */
1828	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829		newcontext.type = scontext->type;
1830	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831		newcontext.type = tcontext->type;
1832	} else {
1833		if ((tclass == policydb->process_class) || sock) {
1834			/* Use the type of process. */
1835			newcontext.type = scontext->type;
1836		} else {
1837			/* Use the type of the related object. */
1838			newcontext.type = tcontext->type;
1839		}
1840	}
1841
1842	/* Look for a type transition/member/change rule. */
1843	avkey.source_type = scontext->type;
1844	avkey.target_type = tcontext->type;
1845	avkey.target_class = tclass;
1846	avkey.specified = specified;
1847	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849	/* If no permanent rule, also check for enabled conditional rules */
1850	if (!avdatum) {
1851		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852		for (; node; node = avtab_search_node_next(node, specified)) {
1853			if (node->key.specified & AVTAB_ENABLED) {
1854				avdatum = &node->datum;
1855				break;
1856			}
1857		}
1858	}
1859
1860	if (avdatum) {
1861		/* Use the type from the type transition/member/change rule. */
1862		newcontext.type = avdatum->u.data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863	}
1864
1865	/* if we have a objname this is a file trans check so check those rules */
1866	if (objname)
1867		filename_compute_type(policydb, &newcontext, scontext->type,
1868				      tcontext->type, tclass, objname);
1869
1870	/* Check for class-specific changes. */
1871	if (specified & AVTAB_TRANSITION) {
1872		/* Look for a role transition rule. */
1873		struct role_trans_datum *rtd;
1874		struct role_trans_key rtk = {
1875			.role = scontext->role,
1876			.type = tcontext->type,
1877			.tclass = tclass,
1878		};
1879
1880		rtd = policydb_roletr_search(policydb, &rtk);
1881		if (rtd)
1882			newcontext.role = rtd->new_role;
1883	}
1884
1885	/* Set the MLS attributes.
1886	   This is done last because it may allocate memory. */
1887	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888			     &newcontext, sock);
1889	if (rc)
1890		goto out_unlock;
1891
1892	/* Check the validity of the context. */
1893	if (!policydb_context_isvalid(policydb, &newcontext)) {
1894		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895							tentry, tclass,
1896							&newcontext);
1897		if (rc)
1898			goto out_unlock;
1899	}
1900	/* Obtain the sid for the context. */
1901	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902	if (rc == -ESTALE) {
1903		rcu_read_unlock();
1904		context_destroy(&newcontext);
1905		goto retry;
1906	}
1907out_unlock:
1908	rcu_read_unlock();
1909	context_destroy(&newcontext);
1910out:
1911	return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
 
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929			    u32 ssid, u32 tsid, u16 tclass,
1930			    const struct qstr *qstr, u32 *out_sid)
1931{
1932	return security_compute_sid(state, ssid, tsid, tclass,
1933				    AVTAB_TRANSITION,
1934				    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938				 u32 ssid, u32 tsid, u16 tclass,
1939				 const char *objname, u32 *out_sid)
1940{
1941	return security_compute_sid(state, ssid, tsid, tclass,
1942				    AVTAB_TRANSITION,
1943				    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960			u32 ssid,
1961			u32 tsid,
1962			u16 tclass,
1963			u32 *out_sid)
1964{
1965	return security_compute_sid(state, ssid, tsid, tclass,
1966				    AVTAB_MEMBER, NULL,
1967				    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985			u32 ssid,
1986			u32 tsid,
1987			u16 tclass,
1988			u32 *out_sid)
1989{
1990	return security_compute_sid(state,
1991				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996	struct selinux_state *state,
1997	struct policydb *policydb,
1998	struct context *context)
1999{
2000	char *s;
2001	u32 len;
2002
2003	if (enforcing_enabled(state))
2004		return -EINVAL;
2005
2006	if (!context_struct_to_string(policydb, context, &s, &len)) {
2007		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008			s);
2009		kfree(s);
2010	}
2011	return 0;
2012}
2013
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
 
 
 
 
2023{
2024	struct convert_context_args *args;
2025	struct ocontext *oc;
2026	struct role_datum *role;
2027	struct type_datum *typdatum;
2028	struct user_datum *usrdatum;
2029	char *s;
2030	u32 len;
2031	int rc;
2032
2033	args = p;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, GFP_KERNEL);
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s,
2041					      newc, SECSID_NULL);
2042		if (rc == -EINVAL) {
2043			/*
2044			 * Retain string representation for later mapping.
2045			 *
2046			 * IMPORTANT: We need to copy the contents of oldc->str
2047			 * back into s again because string_to_context_struct()
2048			 * may have garbled it.
2049			 */
2050			memcpy(s, oldc->str, oldc->len);
2051			context_init(newc);
2052			newc->str = s;
2053			newc->len = oldc->len;
2054			return 0;
2055		}
2056		kfree(s);
2057		if (rc) {
2058			/* Other error condition, e.g. ENOMEM. */
2059			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060			       oldc->str, -rc);
2061			return rc;
2062		}
2063		pr_info("SELinux:  Context %s became valid (mapped).\n",
2064			oldc->str);
2065		return 0;
2066	}
2067
2068	context_init(newc);
2069
2070	/* Convert the user. */
2071	usrdatum = symtab_search(&args->newp->p_users,
2072				 sym_name(args->oldp,
2073					  SYM_USERS, oldc->user - 1));
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp,
2088					  SYM_TYPES, oldc->type - 1));
2089	if (!typdatum)
2090		goto bad;
2091	newc->type = typdatum->value;
2092
2093	/* Convert the MLS fields if dealing with MLS policies */
2094	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096		if (rc)
2097			goto bad;
2098	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099		/*
2100		 * Switching between non-MLS and MLS policy:
2101		 * ensure that the MLS fields of the context for all
2102		 * existing entries in the sidtab are filled in with a
2103		 * suitable default value, likely taken from one of the
2104		 * initial SIDs.
2105		 */
2106		oc = args->newp->ocontexts[OCON_ISID];
2107		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108			oc = oc->next;
2109		if (!oc) {
2110			pr_err("SELinux:  unable to look up"
2111				" the initial SIDs list\n");
2112			goto bad;
2113		}
2114		rc = mls_range_set(newc, &oc->context[0].range);
2115		if (rc)
2116			goto bad;
2117	}
2118
2119	/* Check the validity of the new context. */
2120	if (!policydb_context_isvalid(args->newp, newc)) {
2121		rc = convert_context_handle_invalid_context(args->state,
2122							args->oldp,
2123							oldc);
2124		if (rc)
2125			goto bad;
2126	}
2127
2128	return 0;
2129bad:
2130	/* Map old representation to string and save it. */
2131	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132	if (rc)
2133		return rc;
2134	context_destroy(newc);
2135	newc->str = s;
2136	newc->len = len;
2137	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138		newc->str);
2139	return 0;
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143				struct selinux_policy *policy)
2144{
2145	struct policydb *p;
2146	unsigned int i;
2147	struct ebitmap_node *node;
2148
2149	p = &policy->policydb;
2150
2151	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152		WRITE_ONCE(state->policycap[i],
2153			ebitmap_get_bit(&p->policycaps, i));
2154
2155	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156		pr_info("SELinux:  policy capability %s=%d\n",
2157			selinux_policycap_names[i],
2158			ebitmap_get_bit(&p->policycaps, i));
2159
2160	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162			pr_info("SELinux:  unknown policy capability %u\n",
2163				i);
2164	}
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168				struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172	if (!policy)
2173		return;
2174
2175	sidtab_destroy(policy->sidtab);
2176	kfree(policy->map.mapping);
2177	policydb_destroy(&policy->policydb);
2178	kfree(policy->sidtab);
2179	kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184	cond_policydb_destroy_dup(&policy->policydb);
2185	kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189			   struct selinux_load_state *load_state)
2190{
 
2191	struct selinux_policy *oldpolicy;
2192
2193	oldpolicy = rcu_dereference_protected(state->policy,
2194					lockdep_is_held(&state->policy_mutex));
2195
2196	sidtab_cancel_convert(oldpolicy->sidtab);
2197	selinux_policy_free(load_state->policy);
2198	kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202					u32 seqno)
2203{
2204	/* Flush external caches and notify userspace of policy load */
2205	avc_ss_reset(state->avc, seqno);
2206	selnl_notify_policyload(seqno);
2207	selinux_status_update_policyload(state, seqno);
2208	selinux_netlbl_cache_invalidate();
2209	selinux_xfrm_notify_policyload();
2210	selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214			   struct selinux_load_state *load_state)
2215{
 
2216	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217	unsigned long flags;
2218	u32 seqno;
2219
2220	oldpolicy = rcu_dereference_protected(state->policy,
2221					lockdep_is_held(&state->policy_mutex));
2222
2223	/* If switching between different policy types, log MLS status */
2224	if (oldpolicy) {
2225		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226			pr_info("SELinux: Disabling MLS support...\n");
2227		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228			pr_info("SELinux: Enabling MLS support...\n");
2229	}
2230
2231	/* Set latest granting seqno for new policy. */
2232	if (oldpolicy)
2233		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234	else
2235		newpolicy->latest_granting = 1;
2236	seqno = newpolicy->latest_granting;
2237
2238	/* Install the new policy. */
2239	if (oldpolicy) {
2240		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241		rcu_assign_pointer(state->policy, newpolicy);
2242		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243	} else {
2244		rcu_assign_pointer(state->policy, newpolicy);
2245	}
2246
2247	/* Load the policycaps from the new policy */
2248	security_load_policycaps(state, newpolicy);
2249
2250	if (!selinux_initialized(state)) {
2251		/*
2252		 * After first policy load, the security server is
2253		 * marked as initialized and ready to handle requests and
2254		 * any objects created prior to policy load are then labeled.
2255		 */
2256		selinux_mark_initialized(state);
2257		selinux_complete_init();
2258	}
2259
2260	/* Free the old policy */
2261	synchronize_rcu();
2262	selinux_policy_free(oldpolicy);
2263	kfree(load_state->convert_data);
2264
2265	/* Notify others of the policy change */
2266	selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
 
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281			 struct selinux_load_state *load_state)
2282{
 
2283	struct selinux_policy *newpolicy, *oldpolicy;
2284	struct selinux_policy_convert_data *convert_data;
2285	int rc = 0;
2286	struct policy_file file = { data, len }, *fp = &file;
2287
2288	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289	if (!newpolicy)
2290		return -ENOMEM;
2291
2292	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293	if (!newpolicy->sidtab) {
2294		rc = -ENOMEM;
2295		goto err_policy;
2296	}
2297
2298	rc = policydb_read(&newpolicy->policydb, fp);
2299	if (rc)
2300		goto err_sidtab;
2301
2302	newpolicy->policydb.len = len;
2303	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304				&newpolicy->map);
2305	if (rc)
2306		goto err_policydb;
2307
2308	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309	if (rc) {
2310		pr_err("SELinux:  unable to load the initial SIDs\n");
2311		goto err_mapping;
2312	}
2313
2314	if (!selinux_initialized(state)) {
2315		/* First policy load, so no need to preserve state from old policy */
2316		load_state->policy = newpolicy;
2317		load_state->convert_data = NULL;
2318		return 0;
2319	}
2320
2321	oldpolicy = rcu_dereference_protected(state->policy,
2322					lockdep_is_held(&state->policy_mutex));
2323
2324	/* Preserve active boolean values from the old policy */
2325	rc = security_preserve_bools(oldpolicy, newpolicy);
2326	if (rc) {
2327		pr_err("SELinux:  unable to preserve booleans\n");
2328		goto err_free_isids;
2329	}
2330
 
 
 
 
 
2331	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332	if (!convert_data) {
2333		rc = -ENOMEM;
2334		goto err_free_isids;
2335	}
2336
2337	/*
2338	 * Convert the internal representations of contexts
2339	 * in the new SID table.
2340	 */
2341	convert_data->args.state = state;
2342	convert_data->args.oldp = &oldpolicy->policydb;
2343	convert_data->args.newp = &newpolicy->policydb;
2344
2345	convert_data->sidtab_params.func = convert_context;
2346	convert_data->sidtab_params.args = &convert_data->args;
2347	convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350	if (rc) {
2351		pr_err("SELinux:  unable to convert the internal"
2352			" representation of contexts in the new SID"
2353			" table\n");
2354		goto err_free_convert_data;
2355	}
2356
2357	load_state->policy = newpolicy;
2358	load_state->convert_data = convert_data;
2359	return 0;
2360
2361err_free_convert_data:
2362	kfree(convert_data);
2363err_free_isids:
2364	sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366	kfree(newpolicy->map.mapping);
2367err_policydb:
2368	policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370	kfree(newpolicy->sidtab);
2371err_policy:
2372	kfree(newpolicy);
2373
2374	return rc;
2375}
2376
2377/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385		      u8 protocol, u16 port, u32 *out_sid)
2386{
2387	struct selinux_policy *policy;
2388	struct policydb *policydb;
2389	struct sidtab *sidtab;
2390	struct ocontext *c;
2391	int rc;
2392
2393	if (!selinux_initialized(state)) {
2394		*out_sid = SECINITSID_PORT;
2395		return 0;
2396	}
2397
2398retry:
2399	rc = 0;
2400	rcu_read_lock();
2401	policy = rcu_dereference(state->policy);
2402	policydb = &policy->policydb;
2403	sidtab = policy->sidtab;
2404
2405	c = policydb->ocontexts[OCON_PORT];
2406	while (c) {
2407		if (c->u.port.protocol == protocol &&
2408		    c->u.port.low_port <= port &&
2409		    c->u.port.high_port >= port)
2410			break;
2411		c = c->next;
2412	}
2413
2414	if (c) {
2415		if (!c->sid[0]) {
2416			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2417						   &c->sid[0]);
2418			if (rc == -ESTALE) {
2419				rcu_read_unlock();
2420				goto retry;
2421			}
2422			if (rc)
2423				goto out;
2424		}
2425		*out_sid = c->sid[0];
 
2426	} else {
2427		*out_sid = SECINITSID_PORT;
2428	}
2429
2430out:
2431	rcu_read_unlock();
2432	return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445	struct selinux_policy *policy;
2446	struct policydb *policydb;
2447	struct sidtab *sidtab;
2448	struct ocontext *c;
2449	int rc;
2450
2451	if (!selinux_initialized(state)) {
2452		*out_sid = SECINITSID_UNLABELED;
2453		return 0;
2454	}
2455
2456retry:
2457	rc = 0;
2458	rcu_read_lock();
2459	policy = rcu_dereference(state->policy);
2460	policydb = &policy->policydb;
2461	sidtab = policy->sidtab;
2462
2463	c = policydb->ocontexts[OCON_IBPKEY];
2464	while (c) {
2465		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466		    c->u.ibpkey.high_pkey >= pkey_num &&
2467		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468			break;
2469
2470		c = c->next;
2471	}
2472
2473	if (c) {
2474		if (!c->sid[0]) {
2475			rc = sidtab_context_to_sid(sidtab,
2476						   &c->context[0],
2477						   &c->sid[0]);
2478			if (rc == -ESTALE) {
2479				rcu_read_unlock();
2480				goto retry;
2481			}
2482			if (rc)
2483				goto out;
2484		}
2485		*out_sid = c->sid[0];
 
2486	} else
2487		*out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490	rcu_read_unlock();
2491	return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502			    const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504	struct selinux_policy *policy;
2505	struct policydb *policydb;
2506	struct sidtab *sidtab;
2507	struct ocontext *c;
2508	int rc;
2509
2510	if (!selinux_initialized(state)) {
2511		*out_sid = SECINITSID_UNLABELED;
2512		return 0;
2513	}
2514
2515retry:
2516	rc = 0;
2517	rcu_read_lock();
2518	policy = rcu_dereference(state->policy);
2519	policydb = &policy->policydb;
2520	sidtab = policy->sidtab;
2521
2522	c = policydb->ocontexts[OCON_IBENDPORT];
2523	while (c) {
2524		if (c->u.ibendport.port == port_num &&
2525		    !strncmp(c->u.ibendport.dev_name,
2526			     dev_name,
2527			     IB_DEVICE_NAME_MAX))
2528			break;
2529
2530		c = c->next;
2531	}
2532
2533	if (c) {
2534		if (!c->sid[0]) {
2535			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2536						   &c->sid[0]);
2537			if (rc == -ESTALE) {
2538				rcu_read_unlock();
2539				goto retry;
2540			}
2541			if (rc)
2542				goto out;
2543		}
2544		*out_sid = c->sid[0];
 
2545	} else
2546		*out_sid = SECINITSID_UNLABELED;
2547
2548out:
2549	rcu_read_unlock();
2550	return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560		       char *name, u32 *if_sid)
2561{
2562	struct selinux_policy *policy;
2563	struct policydb *policydb;
2564	struct sidtab *sidtab;
2565	int rc;
2566	struct ocontext *c;
2567
2568	if (!selinux_initialized(state)) {
2569		*if_sid = SECINITSID_NETIF;
2570		return 0;
2571	}
2572
2573retry:
2574	rc = 0;
2575	rcu_read_lock();
2576	policy = rcu_dereference(state->policy);
2577	policydb = &policy->policydb;
2578	sidtab = policy->sidtab;
2579
2580	c = policydb->ocontexts[OCON_NETIF];
2581	while (c) {
2582		if (strcmp(name, c->u.name) == 0)
2583			break;
2584		c = c->next;
2585	}
2586
2587	if (c) {
2588		if (!c->sid[0] || !c->sid[1]) {
2589			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590						   &c->sid[0]);
2591			if (rc == -ESTALE) {
2592				rcu_read_unlock();
2593				goto retry;
2594			}
2595			if (rc)
2596				goto out;
2597			rc = sidtab_context_to_sid(sidtab, &c->context[1],
2598						   &c->sid[1]);
2599			if (rc == -ESTALE) {
2600				rcu_read_unlock();
2601				goto retry;
2602			}
2603			if (rc)
2604				goto out;
2605		}
2606		*if_sid = c->sid[0];
 
2607	} else
2608		*if_sid = SECINITSID_NETIF;
2609
2610out:
2611	rcu_read_unlock();
2612	return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617	int i, fail = 0;
2618
2619	for (i = 0; i < 4; i++)
2620		if (addr[i] != (input[i] & mask[i])) {
2621			fail = 1;
2622			break;
2623		}
2624
2625	return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637		      u16 domain,
2638		      void *addrp,
2639		      u32 addrlen,
2640		      u32 *out_sid)
2641{
2642	struct selinux_policy *policy;
2643	struct policydb *policydb;
2644	struct sidtab *sidtab;
2645	int rc;
2646	struct ocontext *c;
2647
2648	if (!selinux_initialized(state)) {
2649		*out_sid = SECINITSID_NODE;
2650		return 0;
2651	}
2652
2653retry:
2654	rcu_read_lock();
2655	policy = rcu_dereference(state->policy);
2656	policydb = &policy->policydb;
2657	sidtab = policy->sidtab;
2658
2659	switch (domain) {
2660	case AF_INET: {
2661		u32 addr;
2662
2663		rc = -EINVAL;
2664		if (addrlen != sizeof(u32))
2665			goto out;
2666
2667		addr = *((u32 *)addrp);
2668
2669		c = policydb->ocontexts[OCON_NODE];
2670		while (c) {
2671			if (c->u.node.addr == (addr & c->u.node.mask))
2672				break;
2673			c = c->next;
2674		}
2675		break;
2676	}
2677
2678	case AF_INET6:
2679		rc = -EINVAL;
2680		if (addrlen != sizeof(u64) * 2)
2681			goto out;
2682		c = policydb->ocontexts[OCON_NODE6];
2683		while (c) {
2684			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685						c->u.node6.mask))
2686				break;
2687			c = c->next;
2688		}
2689		break;
2690
2691	default:
2692		rc = 0;
2693		*out_sid = SECINITSID_NODE;
2694		goto out;
2695	}
2696
2697	if (c) {
2698		if (!c->sid[0]) {
2699			rc = sidtab_context_to_sid(sidtab,
2700						   &c->context[0],
2701						   &c->sid[0]);
2702			if (rc == -ESTALE) {
2703				rcu_read_unlock();
2704				goto retry;
2705			}
2706			if (rc)
2707				goto out;
2708		}
2709		*out_sid = c->sid[0];
 
2710	} else {
2711		*out_sid = SECINITSID_NODE;
2712	}
2713
2714	rc = 0;
2715out:
2716	rcu_read_unlock();
2717	return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738			   u32 fromsid,
2739			   char *username,
2740			   u32 **sids,
2741			   u32 *nel)
2742{
2743	struct selinux_policy *policy;
2744	struct policydb *policydb;
2745	struct sidtab *sidtab;
2746	struct context *fromcon, usercon;
2747	u32 *mysids = NULL, *mysids2, sid;
2748	u32 i, j, mynel, maxnel = SIDS_NEL;
2749	struct user_datum *user;
2750	struct role_datum *role;
2751	struct ebitmap_node *rnode, *tnode;
2752	int rc;
2753
2754	*sids = NULL;
2755	*nel = 0;
2756
2757	if (!selinux_initialized(state))
2758		return 0;
2759
2760	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761	if (!mysids)
2762		return -ENOMEM;
2763
2764retry:
2765	mynel = 0;
2766	rcu_read_lock();
2767	policy = rcu_dereference(state->policy);
2768	policydb = &policy->policydb;
2769	sidtab = policy->sidtab;
2770
2771	context_init(&usercon);
2772
2773	rc = -EINVAL;
2774	fromcon = sidtab_search(sidtab, fromsid);
2775	if (!fromcon)
2776		goto out_unlock;
2777
2778	rc = -EINVAL;
2779	user = symtab_search(&policydb->p_users, username);
2780	if (!user)
2781		goto out_unlock;
2782
2783	usercon.user = user->value;
2784
2785	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786		role = policydb->role_val_to_struct[i];
2787		usercon.role = i + 1;
2788		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789			usercon.type = j + 1;
2790
2791			if (mls_setup_user_range(policydb, fromcon, user,
2792						 &usercon))
2793				continue;
2794
2795			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796			if (rc == -ESTALE) {
2797				rcu_read_unlock();
2798				goto retry;
2799			}
2800			if (rc)
2801				goto out_unlock;
2802			if (mynel < maxnel) {
2803				mysids[mynel++] = sid;
2804			} else {
2805				rc = -ENOMEM;
2806				maxnel += SIDS_NEL;
2807				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808				if (!mysids2)
2809					goto out_unlock;
2810				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811				kfree(mysids);
2812				mysids = mysids2;
2813				mysids[mynel++] = sid;
2814			}
2815		}
2816	}
2817	rc = 0;
2818out_unlock:
2819	rcu_read_unlock();
2820	if (rc || !mynel) {
2821		kfree(mysids);
2822		return rc;
2823	}
2824
2825	rc = -ENOMEM;
2826	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827	if (!mysids2) {
2828		kfree(mysids);
2829		return rc;
2830	}
2831	for (i = 0, j = 0; i < mynel; i++) {
2832		struct av_decision dummy_avd;
2833		rc = avc_has_perm_noaudit(state,
2834					  fromsid, mysids[i],
2835					  SECCLASS_PROCESS, /* kernel value */
2836					  PROCESS__TRANSITION, AVC_STRICT,
2837					  &dummy_avd);
2838		if (!rc)
2839			mysids2[j++] = mysids[i];
2840		cond_resched();
2841	}
2842	kfree(mysids);
2843	*sids = mysids2;
2844	*nel = j;
2845	return 0;
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
 
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863				       const char *fstype,
2864				       char *path,
2865				       u16 orig_sclass,
2866				       u32 *sid)
2867{
2868	struct policydb *policydb = &policy->policydb;
2869	struct sidtab *sidtab = policy->sidtab;
2870	int len;
2871	u16 sclass;
2872	struct genfs *genfs;
2873	struct ocontext *c;
2874	int rc, cmp = 0;
2875
2876	while (path[0] == '/' && path[1] == '/')
2877		path++;
2878
2879	sclass = unmap_class(&policy->map, orig_sclass);
2880	*sid = SECINITSID_UNLABELED;
2881
2882	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883		cmp = strcmp(fstype, genfs->fstype);
2884		if (cmp <= 0)
2885			break;
2886	}
2887
2888	rc = -ENOENT;
2889	if (!genfs || cmp)
2890		goto out;
2891
2892	for (c = genfs->head; c; c = c->next) {
2893		len = strlen(c->u.name);
2894		if ((!c->v.sclass || sclass == c->v.sclass) &&
2895		    (strncmp(c->u.name, path, len) == 0))
2896			break;
2897	}
2898
2899	rc = -ENOENT;
2900	if (!c)
2901		goto out;
2902
2903	if (!c->sid[0]) {
2904		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905		if (rc)
2906			goto out;
2907	}
2908
2909	*sid = c->sid[0];
2910	rc = 0;
2911out:
2912	return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927		       const char *fstype,
2928		       char *path,
2929		       u16 orig_sclass,
2930		       u32 *sid)
2931{
2932	struct selinux_policy *policy;
2933	int retval;
2934
2935	if (!selinux_initialized(state)) {
2936		*sid = SECINITSID_UNLABELED;
2937		return 0;
2938	}
2939
2940	do {
2941		rcu_read_lock();
2942		policy = rcu_dereference(state->policy);
2943		retval = __security_genfs_sid(policy, fstype, path,
2944					      orig_sclass, sid);
2945		rcu_read_unlock();
2946	} while (retval == -ESTALE);
2947	return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951			const char *fstype,
2952			char *path,
2953			u16 orig_sclass,
2954			u32 *sid)
2955{
2956	/* no lock required, policy is not yet accessible by other threads */
2957	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967	struct selinux_policy *policy;
2968	struct policydb *policydb;
2969	struct sidtab *sidtab;
2970	int rc;
2971	struct ocontext *c;
2972	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973	const char *fstype = sb->s_type->name;
2974
2975	if (!selinux_initialized(state)) {
2976		sbsec->behavior = SECURITY_FS_USE_NONE;
2977		sbsec->sid = SECINITSID_UNLABELED;
2978		return 0;
2979	}
2980
2981retry:
2982	rc = 0;
2983	rcu_read_lock();
2984	policy = rcu_dereference(state->policy);
2985	policydb = &policy->policydb;
2986	sidtab = policy->sidtab;
2987
2988	c = policydb->ocontexts[OCON_FSUSE];
2989	while (c) {
2990		if (strcmp(fstype, c->u.name) == 0)
2991			break;
2992		c = c->next;
2993	}
2994
2995	if (c) {
2996		sbsec->behavior = c->v.behavior;
2997		if (!c->sid[0]) {
2998			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999						   &c->sid[0]);
3000			if (rc == -ESTALE) {
3001				rcu_read_unlock();
3002				goto retry;
3003			}
3004			if (rc)
3005				goto out;
3006		}
3007		sbsec->sid = c->sid[0];
 
3008	} else {
3009		rc = __security_genfs_sid(policy, fstype, "/",
3010					SECCLASS_DIR, &sbsec->sid);
3011		if (rc == -ESTALE) {
3012			rcu_read_unlock();
3013			goto retry;
3014		}
3015		if (rc) {
3016			sbsec->behavior = SECURITY_FS_USE_NONE;
3017			rc = 0;
3018		} else {
3019			sbsec->behavior = SECURITY_FS_USE_GENFS;
3020		}
3021	}
3022
3023out:
3024	rcu_read_unlock();
3025	return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029		       u32 *len, char ***names, int **values)
3030{
3031	struct policydb *policydb;
3032	u32 i;
3033	int rc;
3034
3035	policydb = &policy->policydb;
3036
3037	*names = NULL;
3038	*values = NULL;
3039
3040	rc = 0;
3041	*len = policydb->p_bools.nprim;
3042	if (!*len)
3043		goto out;
3044
3045	rc = -ENOMEM;
3046	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047	if (!*names)
3048		goto err;
3049
3050	rc = -ENOMEM;
3051	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052	if (!*values)
3053		goto err;
3054
3055	for (i = 0; i < *len; i++) {
3056		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3057
3058		rc = -ENOMEM;
3059		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060				      GFP_ATOMIC);
3061		if (!(*names)[i])
3062			goto err;
3063	}
3064	rc = 0;
3065out:
3066	return rc;
3067err:
3068	if (*names) {
3069		for (i = 0; i < *len; i++)
3070			kfree((*names)[i]);
3071		kfree(*names);
3072	}
3073	kfree(*values);
3074	*len = 0;
3075	*names = NULL;
3076	*values = NULL;
3077	goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
 
3083	struct selinux_policy *newpolicy, *oldpolicy;
3084	int rc;
3085	u32 i, seqno = 0;
3086
3087	if (!selinux_initialized(state))
3088		return -EINVAL;
3089
3090	oldpolicy = rcu_dereference_protected(state->policy,
3091					lockdep_is_held(&state->policy_mutex));
3092
3093	/* Consistency check on number of booleans, should never fail */
3094	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095		return -EINVAL;
3096
3097	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098	if (!newpolicy)
3099		return -ENOMEM;
3100
3101	/*
3102	 * Deep copy only the parts of the policydb that might be
3103	 * modified as a result of changing booleans.
3104	 */
3105	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106	if (rc) {
3107		kfree(newpolicy);
3108		return -ENOMEM;
3109	}
3110
3111	/* Update the boolean states in the copy */
3112	for (i = 0; i < len; i++) {
3113		int new_state = !!values[i];
3114		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116		if (new_state != old_state) {
3117			audit_log(audit_context(), GFP_ATOMIC,
3118				AUDIT_MAC_CONFIG_CHANGE,
3119				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3120				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121				new_state,
3122				old_state,
3123				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124				audit_get_sessionid(current));
3125			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126		}
3127	}
3128
3129	/* Re-evaluate the conditional rules in the copy */
3130	evaluate_cond_nodes(&newpolicy->policydb);
3131
3132	/* Set latest granting seqno for new policy */
3133	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134	seqno = newpolicy->latest_granting;
3135
3136	/* Install the new policy */
3137	rcu_assign_pointer(state->policy, newpolicy);
3138
3139	/*
3140	 * Free the conditional portions of the old policydb
3141	 * that were copied for the new policy, and the oldpolicy
3142	 * structure itself but not what it references.
3143	 */
3144	synchronize_rcu();
3145	selinux_policy_cond_free(oldpolicy);
3146
3147	/* Notify others of the policy change */
3148	selinux_notify_policy_change(state, seqno);
3149	return 0;
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153			    u32 index)
3154{
3155	struct selinux_policy *policy;
3156	struct policydb *policydb;
3157	int rc;
3158	u32 len;
3159
3160	if (!selinux_initialized(state))
3161		return 0;
3162
3163	rcu_read_lock();
3164	policy = rcu_dereference(state->policy);
3165	policydb = &policy->policydb;
3166
3167	rc = -EFAULT;
3168	len = policydb->p_bools.nprim;
3169	if (index >= len)
3170		goto out;
3171
3172	rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174	rcu_read_unlock();
3175	return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179				struct selinux_policy *newpolicy)
3180{
3181	int rc, *bvalues = NULL;
3182	char **bnames = NULL;
3183	struct cond_bool_datum *booldatum;
3184	u32 i, nbools = 0;
3185
3186	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187	if (rc)
3188		goto out;
3189	for (i = 0; i < nbools; i++) {
3190		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191					bnames[i]);
3192		if (booldatum)
3193			booldatum->state = bvalues[i];
3194	}
3195	evaluate_cond_nodes(&newpolicy->policydb);
3196
3197out:
3198	if (bnames) {
3199		for (i = 0; i < nbools; i++)
3200			kfree(bnames[i]);
3201	}
3202	kfree(bnames);
3203	kfree(bvalues);
3204	return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212			  u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214	struct selinux_policy *policy;
3215	struct policydb *policydb;
3216	struct sidtab *sidtab;
3217	struct context *context1;
3218	struct context *context2;
3219	struct context newcon;
3220	char *s;
3221	u32 len;
3222	int rc;
3223
3224	if (!selinux_initialized(state)) {
3225		*new_sid = sid;
3226		return 0;
3227	}
3228
3229retry:
3230	rc = 0;
3231	context_init(&newcon);
3232
3233	rcu_read_lock();
3234	policy = rcu_dereference(state->policy);
3235	policydb = &policy->policydb;
3236	sidtab = policy->sidtab;
3237
3238	if (!policydb->mls_enabled) {
3239		*new_sid = sid;
3240		goto out_unlock;
3241	}
3242
3243	rc = -EINVAL;
3244	context1 = sidtab_search(sidtab, sid);
3245	if (!context1) {
3246		pr_err("SELinux: %s:  unrecognized SID %d\n",
3247			__func__, sid);
3248		goto out_unlock;
3249	}
3250
3251	rc = -EINVAL;
3252	context2 = sidtab_search(sidtab, mls_sid);
3253	if (!context2) {
3254		pr_err("SELinux: %s:  unrecognized SID %d\n",
3255			__func__, mls_sid);
3256		goto out_unlock;
3257	}
3258
3259	newcon.user = context1->user;
3260	newcon.role = context1->role;
3261	newcon.type = context1->type;
3262	rc = mls_context_cpy(&newcon, context2);
3263	if (rc)
3264		goto out_unlock;
3265
3266	/* Check the validity of the new context. */
3267	if (!policydb_context_isvalid(policydb, &newcon)) {
3268		rc = convert_context_handle_invalid_context(state, policydb,
3269							&newcon);
3270		if (rc) {
3271			if (!context_struct_to_string(policydb, &newcon, &s,
3272						      &len)) {
3273				struct audit_buffer *ab;
3274
3275				ab = audit_log_start(audit_context(),
3276						     GFP_ATOMIC,
3277						     AUDIT_SELINUX_ERR);
3278				audit_log_format(ab,
3279						 "op=security_sid_mls_copy invalid_context=");
3280				/* don't record NUL with untrusted strings */
3281				audit_log_n_untrustedstring(ab, s, len - 1);
3282				audit_log_end(ab);
3283				kfree(s);
3284			}
3285			goto out_unlock;
3286		}
3287	}
3288	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289	if (rc == -ESTALE) {
3290		rcu_read_unlock();
3291		context_destroy(&newcon);
3292		goto retry;
3293	}
3294out_unlock:
3295	rcu_read_unlock();
3296	context_destroy(&newcon);
3297	return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
 
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322				 u32 nlbl_sid, u32 nlbl_type,
3323				 u32 xfrm_sid,
3324				 u32 *peer_sid)
3325{
3326	struct selinux_policy *policy;
3327	struct policydb *policydb;
3328	struct sidtab *sidtab;
3329	int rc;
3330	struct context *nlbl_ctx;
3331	struct context *xfrm_ctx;
3332
3333	*peer_sid = SECSID_NULL;
3334
3335	/* handle the common (which also happens to be the set of easy) cases
3336	 * right away, these two if statements catch everything involving a
3337	 * single or absent peer SID/label */
3338	if (xfrm_sid == SECSID_NULL) {
3339		*peer_sid = nlbl_sid;
3340		return 0;
3341	}
3342	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344	 * is present */
3345	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346		*peer_sid = xfrm_sid;
3347		return 0;
3348	}
3349
3350	if (!selinux_initialized(state))
3351		return 0;
3352
3353	rcu_read_lock();
3354	policy = rcu_dereference(state->policy);
3355	policydb = &policy->policydb;
3356	sidtab = policy->sidtab;
3357
3358	/*
3359	 * We don't need to check initialized here since the only way both
3360	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361	 * security server was initialized and state->initialized was true.
3362	 */
3363	if (!policydb->mls_enabled) {
3364		rc = 0;
3365		goto out;
3366	}
3367
3368	rc = -EINVAL;
3369	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370	if (!nlbl_ctx) {
3371		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372		       __func__, nlbl_sid);
3373		goto out;
3374	}
3375	rc = -EINVAL;
3376	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377	if (!xfrm_ctx) {
3378		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379		       __func__, xfrm_sid);
3380		goto out;
3381	}
3382	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383	if (rc)
3384		goto out;
3385
3386	/* at present NetLabel SIDs/labels really only carry MLS
3387	 * information so if the MLS portion of the NetLabel SID
3388	 * matches the MLS portion of the labeled XFRM SID/label
3389	 * then pass along the XFRM SID as it is the most
3390	 * expressive */
3391	*peer_sid = xfrm_sid;
3392out:
3393	rcu_read_unlock();
3394	return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399	struct class_datum *datum = d;
3400	char *name = k, **classes = args;
3401	int value = datum->value - 1;
3402
3403	classes[value] = kstrdup(name, GFP_ATOMIC);
3404	if (!classes[value])
3405		return -ENOMEM;
3406
3407	return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411			 char ***classes, int *nclasses)
3412{
3413	struct policydb *policydb;
3414	int rc;
3415
3416	policydb = &policy->policydb;
3417
3418	rc = -ENOMEM;
3419	*nclasses = policydb->p_classes.nprim;
3420	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421	if (!*classes)
3422		goto out;
3423
3424	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425			 *classes);
3426	if (rc) {
3427		int i;
 
3428		for (i = 0; i < *nclasses; i++)
3429			kfree((*classes)[i]);
3430		kfree(*classes);
3431	}
3432
3433out:
3434	return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439	struct perm_datum *datum = d;
3440	char *name = k, **perms = args;
3441	int value = datum->value - 1;
3442
3443	perms[value] = kstrdup(name, GFP_ATOMIC);
3444	if (!perms[value])
3445		return -ENOMEM;
3446
3447	return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451			     char *class, char ***perms, int *nperms)
3452{
3453	struct policydb *policydb;
3454	int rc, i;
 
3455	struct class_datum *match;
3456
3457	policydb = &policy->policydb;
3458
3459	rc = -EINVAL;
3460	match = symtab_search(&policydb->p_classes, class);
3461	if (!match) {
3462		pr_err("SELinux: %s:  unrecognized class %s\n",
3463			__func__, class);
3464		goto out;
3465	}
3466
3467	rc = -ENOMEM;
3468	*nperms = match->permissions.nprim;
3469	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470	if (!*perms)
3471		goto out;
3472
3473	if (match->comdatum) {
3474		rc = hashtab_map(&match->comdatum->permissions.table,
3475				 get_permissions_callback, *perms);
3476		if (rc)
3477			goto err;
3478	}
3479
3480	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481			 *perms);
3482	if (rc)
3483		goto err;
3484
3485out:
3486	return rc;
3487
3488err:
3489	for (i = 0; i < *nperms; i++)
3490		kfree((*perms)[i]);
3491	kfree(*perms);
3492	return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497	struct selinux_policy *policy;
3498	int value;
3499
3500	if (!selinux_initialized(state))
3501		return 0;
3502
3503	rcu_read_lock();
3504	policy = rcu_dereference(state->policy);
3505	value = policy->policydb.reject_unknown;
3506	rcu_read_unlock();
3507	return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512	struct selinux_policy *policy;
3513	int value;
3514
3515	if (!selinux_initialized(state))
3516		return 0;
3517
3518	rcu_read_lock();
3519	policy = rcu_dereference(state->policy);
3520	value = policy->policydb.allow_unknown;
3521	rcu_read_unlock();
3522	return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537				 unsigned int req_cap)
3538{
3539	struct selinux_policy *policy;
3540	int rc;
3541
3542	if (!selinux_initialized(state))
3543		return 0;
3544
3545	rcu_read_lock();
3546	policy = rcu_dereference(state->policy);
3547	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548	rcu_read_unlock();
3549
3550	return rc;
3551}
3552
3553struct selinux_audit_rule {
3554	u32 au_seqno;
3555	struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560	struct selinux_audit_rule *rule = vrule;
3561
3562	if (rule) {
3563		context_destroy(&rule->au_ctxt);
3564		kfree(rule);
3565	}
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
 
3569{
3570	struct selinux_state *state = &selinux_state;
3571	struct selinux_policy *policy;
3572	struct policydb *policydb;
3573	struct selinux_audit_rule *tmprule;
3574	struct role_datum *roledatum;
3575	struct type_datum *typedatum;
3576	struct user_datum *userdatum;
3577	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578	int rc = 0;
3579
3580	*rule = NULL;
3581
3582	if (!selinux_initialized(state))
3583		return -EOPNOTSUPP;
3584
3585	switch (field) {
3586	case AUDIT_SUBJ_USER:
3587	case AUDIT_SUBJ_ROLE:
3588	case AUDIT_SUBJ_TYPE:
3589	case AUDIT_OBJ_USER:
3590	case AUDIT_OBJ_ROLE:
3591	case AUDIT_OBJ_TYPE:
3592		/* only 'equals' and 'not equals' fit user, role, and type */
3593		if (op != Audit_equal && op != Audit_not_equal)
3594			return -EINVAL;
3595		break;
3596	case AUDIT_SUBJ_SEN:
3597	case AUDIT_SUBJ_CLR:
3598	case AUDIT_OBJ_LEV_LOW:
3599	case AUDIT_OBJ_LEV_HIGH:
3600		/* we do not allow a range, indicated by the presence of '-' */
3601		if (strchr(rulestr, '-'))
3602			return -EINVAL;
3603		break;
3604	default:
3605		/* only the above fields are valid */
3606		return -EINVAL;
3607	}
3608
3609	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610	if (!tmprule)
3611		return -ENOMEM;
3612
3613	context_init(&tmprule->au_ctxt);
3614
3615	rcu_read_lock();
3616	policy = rcu_dereference(state->policy);
3617	policydb = &policy->policydb;
3618
3619	tmprule->au_seqno = policy->latest_granting;
3620
3621	switch (field) {
3622	case AUDIT_SUBJ_USER:
3623	case AUDIT_OBJ_USER:
3624		rc = -EINVAL;
3625		userdatum = symtab_search(&policydb->p_users, rulestr);
3626		if (!userdatum)
3627			goto out;
 
 
3628		tmprule->au_ctxt.user = userdatum->value;
3629		break;
3630	case AUDIT_SUBJ_ROLE:
3631	case AUDIT_OBJ_ROLE:
3632		rc = -EINVAL;
3633		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634		if (!roledatum)
3635			goto out;
 
 
3636		tmprule->au_ctxt.role = roledatum->value;
3637		break;
3638	case AUDIT_SUBJ_TYPE:
3639	case AUDIT_OBJ_TYPE:
3640		rc = -EINVAL;
3641		typedatum = symtab_search(&policydb->p_types, rulestr);
3642		if (!typedatum)
3643			goto out;
 
 
3644		tmprule->au_ctxt.type = typedatum->value;
3645		break;
3646	case AUDIT_SUBJ_SEN:
3647	case AUDIT_SUBJ_CLR:
3648	case AUDIT_OBJ_LEV_LOW:
3649	case AUDIT_OBJ_LEV_HIGH:
3650		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651				     GFP_ATOMIC);
3652		if (rc)
3653			goto out;
3654		break;
3655	}
3656	rc = 0;
3657out:
3658	rcu_read_unlock();
3659
3660	if (rc) {
3661		selinux_audit_rule_free(tmprule);
3662		tmprule = NULL;
3663	}
3664
3665	*rule = tmprule;
 
3666
 
 
 
 
3667	return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673	int i;
3674
3675	for (i = 0; i < rule->field_count; i++) {
3676		struct audit_field *f = &rule->fields[i];
3677		switch (f->type) {
3678		case AUDIT_SUBJ_USER:
3679		case AUDIT_SUBJ_ROLE:
3680		case AUDIT_SUBJ_TYPE:
3681		case AUDIT_SUBJ_SEN:
3682		case AUDIT_SUBJ_CLR:
3683		case AUDIT_OBJ_USER:
3684		case AUDIT_OBJ_ROLE:
3685		case AUDIT_OBJ_TYPE:
3686		case AUDIT_OBJ_LEV_LOW:
3687		case AUDIT_OBJ_LEV_HIGH:
3688			return 1;
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3696{
3697	struct selinux_state *state = &selinux_state;
3698	struct selinux_policy *policy;
3699	struct context *ctxt;
3700	struct mls_level *level;
3701	struct selinux_audit_rule *rule = vrule;
3702	int match = 0;
3703
3704	if (unlikely(!rule)) {
3705		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706		return -ENOENT;
3707	}
3708
3709	if (!selinux_initialized(state))
3710		return 0;
3711
3712	rcu_read_lock();
3713
3714	policy = rcu_dereference(state->policy);
3715
3716	if (rule->au_seqno < policy->latest_granting) {
3717		match = -ESTALE;
3718		goto out;
3719	}
3720
3721	ctxt = sidtab_search(policy->sidtab, sid);
3722	if (unlikely(!ctxt)) {
3723		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724			  sid);
3725		match = -ENOENT;
3726		goto out;
3727	}
3728
3729	/* a field/op pair that is not caught here will simply fall through
3730	   without a match */
3731	switch (field) {
3732	case AUDIT_SUBJ_USER:
3733	case AUDIT_OBJ_USER:
3734		switch (op) {
3735		case Audit_equal:
3736			match = (ctxt->user == rule->au_ctxt.user);
3737			break;
3738		case Audit_not_equal:
3739			match = (ctxt->user != rule->au_ctxt.user);
3740			break;
3741		}
3742		break;
3743	case AUDIT_SUBJ_ROLE:
3744	case AUDIT_OBJ_ROLE:
3745		switch (op) {
3746		case Audit_equal:
3747			match = (ctxt->role == rule->au_ctxt.role);
3748			break;
3749		case Audit_not_equal:
3750			match = (ctxt->role != rule->au_ctxt.role);
3751			break;
3752		}
3753		break;
3754	case AUDIT_SUBJ_TYPE:
3755	case AUDIT_OBJ_TYPE:
3756		switch (op) {
3757		case Audit_equal:
3758			match = (ctxt->type == rule->au_ctxt.type);
3759			break;
3760		case Audit_not_equal:
3761			match = (ctxt->type != rule->au_ctxt.type);
3762			break;
3763		}
3764		break;
3765	case AUDIT_SUBJ_SEN:
3766	case AUDIT_SUBJ_CLR:
3767	case AUDIT_OBJ_LEV_LOW:
3768	case AUDIT_OBJ_LEV_HIGH:
3769		level = ((field == AUDIT_SUBJ_SEN ||
3770			  field == AUDIT_OBJ_LEV_LOW) ?
3771			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772		switch (op) {
3773		case Audit_equal:
3774			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775					     level);
3776			break;
3777		case Audit_not_equal:
3778			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_lt:
3782			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783					       level) &&
3784				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785					       level));
3786			break;
3787		case Audit_le:
3788			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789					      level);
3790			break;
3791		case Audit_gt:
3792			match = (mls_level_dom(level,
3793					      &rule->au_ctxt.range.level[0]) &&
3794				 !mls_level_eq(level,
3795					       &rule->au_ctxt.range.level[0]));
3796			break;
3797		case Audit_ge:
3798			match = mls_level_dom(level,
3799					      &rule->au_ctxt.range.level[0]);
3800			break;
3801		}
3802	}
3803
3804out:
3805	rcu_read_unlock();
3806	return match;
3807}
3808
3809static int aurule_avc_callback(u32 event)
3810{
3811	if (event == AVC_CALLBACK_RESET)
3812		return audit_update_lsm_rules();
3813	return 0;
3814}
3815
3816static int __init aurule_init(void)
3817{
3818	int err;
3819
3820	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821	if (err)
3822		panic("avc_add_callback() failed, error %d\n", err);
3823
3824	return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841				      u32 sid)
3842{
3843	u32 *sid_cache;
3844
3845	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846	if (sid_cache == NULL)
3847		return;
3848	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849	if (secattr->cache == NULL) {
3850		kfree(sid_cache);
3851		return;
3852	}
3853
3854	*sid_cache = sid;
3855	secattr->cache->free = kfree;
3856	secattr->cache->data = sid_cache;
3857	secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877				   struct netlbl_lsm_secattr *secattr,
3878				   u32 *sid)
3879{
3880	struct selinux_policy *policy;
3881	struct policydb *policydb;
3882	struct sidtab *sidtab;
3883	int rc;
3884	struct context *ctx;
3885	struct context ctx_new;
3886
3887	if (!selinux_initialized(state)) {
3888		*sid = SECSID_NULL;
3889		return 0;
3890	}
3891
3892retry:
3893	rc = 0;
3894	rcu_read_lock();
3895	policy = rcu_dereference(state->policy);
3896	policydb = &policy->policydb;
3897	sidtab = policy->sidtab;
3898
3899	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900		*sid = *(u32 *)secattr->cache->data;
3901	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902		*sid = secattr->attr.secid;
3903	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904		rc = -EIDRM;
3905		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906		if (ctx == NULL)
3907			goto out;
3908
3909		context_init(&ctx_new);
3910		ctx_new.user = ctx->user;
3911		ctx_new.role = ctx->role;
3912		ctx_new.type = ctx->type;
3913		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916			if (rc)
3917				goto out;
3918		}
3919		rc = -EIDRM;
3920		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922			goto out;
3923		}
3924
3925		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927		if (rc == -ESTALE) {
3928			rcu_read_unlock();
3929			goto retry;
3930		}
3931		if (rc)
3932			goto out;
3933
3934		security_netlbl_cache_add(secattr, *sid);
3935	} else
3936		*sid = SECSID_NULL;
3937
3938out:
3939	rcu_read_unlock();
3940	return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957	struct selinux_policy *policy;
3958	struct policydb *policydb;
3959	int rc;
3960	struct context *ctx;
3961
3962	if (!selinux_initialized(state))
3963		return 0;
3964
3965	rcu_read_lock();
3966	policy = rcu_dereference(state->policy);
3967	policydb = &policy->policydb;
3968
3969	rc = -ENOENT;
3970	ctx = sidtab_search(policy->sidtab, sid);
3971	if (ctx == NULL)
3972		goto out;
3973
3974	rc = -ENOMEM;
3975	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976				  GFP_ATOMIC);
3977	if (secattr->domain == NULL)
3978		goto out;
3979
3980	secattr->attr.secid = sid;
3981	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985	rcu_read_unlock();
3986	return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998				  void *data, size_t *len)
3999{
4000	int rc;
4001	struct policy_file fp;
4002
4003	fp.data = data;
4004	fp.len = *len;
4005
4006	rc = policydb_write(&policy->policydb, &fp);
4007	if (rc)
4008		return rc;
4009
4010	*len = (unsigned long)fp.data - (unsigned long)data;
4011	return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022			 void **data, size_t *len)
4023{
 
4024	struct selinux_policy *policy;
4025
4026	policy = rcu_dereference_protected(
4027			state->policy, lockdep_is_held(&state->policy_mutex));
4028	if (!policy)
4029		return -EINVAL;
4030
4031	*len = policy->policydb.len;
4032	*data = vmalloc_user(*len);
4033	if (!*data)
4034		return -ENOMEM;
4035
4036	return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052			       void **data, size_t *len)
4053{
 
 
4054	struct selinux_policy *policy;
4055
4056	policy = rcu_dereference_protected(
4057			state->policy, lockdep_is_held(&state->policy_mutex));
4058	if (!policy)
4059		return -EINVAL;
4060
4061	*len = policy->policydb.len;
4062	*data = vmalloc(*len);
4063	if (!*data)
4064		return -ENOMEM;
4065
4066	return __security_read_policy(policy, *data, len);
 
 
 
 
 
 
4067}