Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51 bool need_sync;
52
53 const struct rfkill_ops *ops;
54 void *data;
55
56#ifdef CONFIG_RFKILL_LEDS
57 struct led_trigger led_trigger;
58 const char *ledtrigname;
59#endif
60
61 struct device dev;
62 struct list_head node;
63
64 struct delayed_work poll_work;
65 struct work_struct uevent_work;
66 struct work_struct sync_work;
67 char name[];
68};
69#define to_rfkill(d) container_of(d, struct rfkill, dev)
70
71struct rfkill_int_event {
72 struct list_head list;
73 struct rfkill_event_ext ev;
74};
75
76struct rfkill_data {
77 struct list_head list;
78 struct list_head events;
79 struct mutex mtx;
80 wait_queue_head_t read_wait;
81 bool input_handler;
82 u8 max_size;
83};
84
85
86MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
87MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
88MODULE_DESCRIPTION("RF switch support");
89MODULE_LICENSE("GPL");
90
91
92/*
93 * The locking here should be made much smarter, we currently have
94 * a bit of a stupid situation because drivers might want to register
95 * the rfkill struct under their own lock, and take this lock during
96 * rfkill method calls -- which will cause an AB-BA deadlock situation.
97 *
98 * To fix that, we need to rework this code here to be mostly lock-free
99 * and only use the mutex for list manipulations, not to protect the
100 * various other global variables. Then we can avoid holding the mutex
101 * around driver operations, and all is happy.
102 */
103static LIST_HEAD(rfkill_list); /* list of registered rf switches */
104static DEFINE_MUTEX(rfkill_global_mutex);
105static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
106
107static unsigned int rfkill_default_state = 1;
108module_param_named(default_state, rfkill_default_state, uint, 0444);
109MODULE_PARM_DESC(default_state,
110 "Default initial state for all radio types, 0 = radio off");
111
112static struct {
113 bool cur, sav;
114} rfkill_global_states[NUM_RFKILL_TYPES];
115
116static bool rfkill_epo_lock_active;
117
118
119#ifdef CONFIG_RFKILL_LEDS
120static void rfkill_led_trigger_event(struct rfkill *rfkill)
121{
122 struct led_trigger *trigger;
123
124 if (!rfkill->registered)
125 return;
126
127 trigger = &rfkill->led_trigger;
128
129 if (rfkill->state & RFKILL_BLOCK_ANY)
130 led_trigger_event(trigger, LED_OFF);
131 else
132 led_trigger_event(trigger, LED_FULL);
133}
134
135static int rfkill_led_trigger_activate(struct led_classdev *led)
136{
137 struct rfkill *rfkill;
138
139 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
140
141 rfkill_led_trigger_event(rfkill);
142
143 return 0;
144}
145
146const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
147{
148 return rfkill->led_trigger.name;
149}
150EXPORT_SYMBOL(rfkill_get_led_trigger_name);
151
152void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
153{
154 BUG_ON(!rfkill);
155
156 rfkill->ledtrigname = name;
157}
158EXPORT_SYMBOL(rfkill_set_led_trigger_name);
159
160static int rfkill_led_trigger_register(struct rfkill *rfkill)
161{
162 rfkill->led_trigger.name = rfkill->ledtrigname
163 ? : dev_name(&rfkill->dev);
164 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
165 return led_trigger_register(&rfkill->led_trigger);
166}
167
168static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
169{
170 led_trigger_unregister(&rfkill->led_trigger);
171}
172
173static struct led_trigger rfkill_any_led_trigger;
174static struct led_trigger rfkill_none_led_trigger;
175static struct work_struct rfkill_global_led_trigger_work;
176
177static void rfkill_global_led_trigger_worker(struct work_struct *work)
178{
179 enum led_brightness brightness = LED_OFF;
180 struct rfkill *rfkill;
181
182 mutex_lock(&rfkill_global_mutex);
183 list_for_each_entry(rfkill, &rfkill_list, node) {
184 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
185 brightness = LED_FULL;
186 break;
187 }
188 }
189 mutex_unlock(&rfkill_global_mutex);
190
191 led_trigger_event(&rfkill_any_led_trigger, brightness);
192 led_trigger_event(&rfkill_none_led_trigger,
193 brightness == LED_OFF ? LED_FULL : LED_OFF);
194}
195
196static void rfkill_global_led_trigger_event(void)
197{
198 schedule_work(&rfkill_global_led_trigger_work);
199}
200
201static int rfkill_global_led_trigger_register(void)
202{
203 int ret;
204
205 INIT_WORK(&rfkill_global_led_trigger_work,
206 rfkill_global_led_trigger_worker);
207
208 rfkill_any_led_trigger.name = "rfkill-any";
209 ret = led_trigger_register(&rfkill_any_led_trigger);
210 if (ret)
211 return ret;
212
213 rfkill_none_led_trigger.name = "rfkill-none";
214 ret = led_trigger_register(&rfkill_none_led_trigger);
215 if (ret)
216 led_trigger_unregister(&rfkill_any_led_trigger);
217 else
218 /* Delay activation until all global triggers are registered */
219 rfkill_global_led_trigger_event();
220
221 return ret;
222}
223
224static void rfkill_global_led_trigger_unregister(void)
225{
226 led_trigger_unregister(&rfkill_none_led_trigger);
227 led_trigger_unregister(&rfkill_any_led_trigger);
228 cancel_work_sync(&rfkill_global_led_trigger_work);
229}
230#else
231static void rfkill_led_trigger_event(struct rfkill *rfkill)
232{
233}
234
235static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
236{
237 return 0;
238}
239
240static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
241{
242}
243
244static void rfkill_global_led_trigger_event(void)
245{
246}
247
248static int rfkill_global_led_trigger_register(void)
249{
250 return 0;
251}
252
253static void rfkill_global_led_trigger_unregister(void)
254{
255}
256#endif /* CONFIG_RFKILL_LEDS */
257
258static void rfkill_fill_event(struct rfkill_event_ext *ev,
259 struct rfkill *rfkill,
260 enum rfkill_operation op)
261{
262 unsigned long flags;
263
264 ev->idx = rfkill->idx;
265 ev->type = rfkill->type;
266 ev->op = op;
267
268 spin_lock_irqsave(&rfkill->lock, flags);
269 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
270 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
271 RFKILL_BLOCK_SW_PREV));
272 ev->hard_block_reasons = rfkill->hard_block_reasons;
273 spin_unlock_irqrestore(&rfkill->lock, flags);
274}
275
276static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
277{
278 struct rfkill_data *data;
279 struct rfkill_int_event *ev;
280
281 list_for_each_entry(data, &rfkill_fds, list) {
282 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
283 if (!ev)
284 continue;
285 rfkill_fill_event(&ev->ev, rfkill, op);
286 mutex_lock(&data->mtx);
287 list_add_tail(&ev->list, &data->events);
288 mutex_unlock(&data->mtx);
289 wake_up_interruptible(&data->read_wait);
290 }
291}
292
293static void rfkill_event(struct rfkill *rfkill)
294{
295 if (!rfkill->registered)
296 return;
297
298 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
299
300 /* also send event to /dev/rfkill */
301 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
302}
303
304/**
305 * rfkill_set_block - wrapper for set_block method
306 *
307 * @rfkill: the rfkill struct to use
308 * @blocked: the new software state
309 *
310 * Calls the set_block method (when applicable) and handles notifications
311 * etc. as well.
312 */
313static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
314{
315 unsigned long flags;
316 bool prev, curr;
317 int err;
318
319 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
320 return;
321
322 /*
323 * Some platforms (...!) generate input events which affect the
324 * _hard_ kill state -- whenever something tries to change the
325 * current software state query the hardware state too.
326 */
327 if (rfkill->ops->query)
328 rfkill->ops->query(rfkill, rfkill->data);
329
330 spin_lock_irqsave(&rfkill->lock, flags);
331 prev = rfkill->state & RFKILL_BLOCK_SW;
332
333 if (prev)
334 rfkill->state |= RFKILL_BLOCK_SW_PREV;
335 else
336 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
337
338 if (blocked)
339 rfkill->state |= RFKILL_BLOCK_SW;
340 else
341 rfkill->state &= ~RFKILL_BLOCK_SW;
342
343 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
344 spin_unlock_irqrestore(&rfkill->lock, flags);
345
346 err = rfkill->ops->set_block(rfkill->data, blocked);
347
348 spin_lock_irqsave(&rfkill->lock, flags);
349 if (err) {
350 /*
351 * Failed -- reset status to _PREV, which may be different
352 * from what we have set _PREV to earlier in this function
353 * if rfkill_set_sw_state was invoked.
354 */
355 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
356 rfkill->state |= RFKILL_BLOCK_SW;
357 else
358 rfkill->state &= ~RFKILL_BLOCK_SW;
359 }
360 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
361 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
362 curr = rfkill->state & RFKILL_BLOCK_SW;
363 spin_unlock_irqrestore(&rfkill->lock, flags);
364
365 rfkill_led_trigger_event(rfkill);
366 rfkill_global_led_trigger_event();
367
368 if (prev != curr)
369 rfkill_event(rfkill);
370}
371
372static void rfkill_sync(struct rfkill *rfkill)
373{
374 lockdep_assert_held(&rfkill_global_mutex);
375
376 if (!rfkill->need_sync)
377 return;
378
379 rfkill_set_block(rfkill, rfkill_global_states[rfkill->type].cur);
380 rfkill->need_sync = false;
381}
382
383static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
384{
385 int i;
386
387 if (type != RFKILL_TYPE_ALL) {
388 rfkill_global_states[type].cur = blocked;
389 return;
390 }
391
392 for (i = 0; i < NUM_RFKILL_TYPES; i++)
393 rfkill_global_states[i].cur = blocked;
394}
395
396#ifdef CONFIG_RFKILL_INPUT
397static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
398
399/**
400 * __rfkill_switch_all - Toggle state of all switches of given type
401 * @type: type of interfaces to be affected
402 * @blocked: the new state
403 *
404 * This function sets the state of all switches of given type,
405 * unless a specific switch is suspended.
406 *
407 * Caller must have acquired rfkill_global_mutex.
408 */
409static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
410{
411 struct rfkill *rfkill;
412
413 rfkill_update_global_state(type, blocked);
414 list_for_each_entry(rfkill, &rfkill_list, node) {
415 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
416 continue;
417
418 rfkill_set_block(rfkill, blocked);
419 }
420}
421
422/**
423 * rfkill_switch_all - Toggle state of all switches of given type
424 * @type: type of interfaces to be affected
425 * @blocked: the new state
426 *
427 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
428 * Please refer to __rfkill_switch_all() for details.
429 *
430 * Does nothing if the EPO lock is active.
431 */
432void rfkill_switch_all(enum rfkill_type type, bool blocked)
433{
434 if (atomic_read(&rfkill_input_disabled))
435 return;
436
437 mutex_lock(&rfkill_global_mutex);
438
439 if (!rfkill_epo_lock_active)
440 __rfkill_switch_all(type, blocked);
441
442 mutex_unlock(&rfkill_global_mutex);
443}
444
445/**
446 * rfkill_epo - emergency power off all transmitters
447 *
448 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
449 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
450 *
451 * The global state before the EPO is saved and can be restored later
452 * using rfkill_restore_states().
453 */
454void rfkill_epo(void)
455{
456 struct rfkill *rfkill;
457 int i;
458
459 if (atomic_read(&rfkill_input_disabled))
460 return;
461
462 mutex_lock(&rfkill_global_mutex);
463
464 rfkill_epo_lock_active = true;
465 list_for_each_entry(rfkill, &rfkill_list, node)
466 rfkill_set_block(rfkill, true);
467
468 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
469 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
470 rfkill_global_states[i].cur = true;
471 }
472
473 mutex_unlock(&rfkill_global_mutex);
474}
475
476/**
477 * rfkill_restore_states - restore global states
478 *
479 * Restore (and sync switches to) the global state from the
480 * states in rfkill_default_states. This can undo the effects of
481 * a call to rfkill_epo().
482 */
483void rfkill_restore_states(void)
484{
485 int i;
486
487 if (atomic_read(&rfkill_input_disabled))
488 return;
489
490 mutex_lock(&rfkill_global_mutex);
491
492 rfkill_epo_lock_active = false;
493 for (i = 0; i < NUM_RFKILL_TYPES; i++)
494 __rfkill_switch_all(i, rfkill_global_states[i].sav);
495 mutex_unlock(&rfkill_global_mutex);
496}
497
498/**
499 * rfkill_remove_epo_lock - unlock state changes
500 *
501 * Used by rfkill-input manually unlock state changes, when
502 * the EPO switch is deactivated.
503 */
504void rfkill_remove_epo_lock(void)
505{
506 if (atomic_read(&rfkill_input_disabled))
507 return;
508
509 mutex_lock(&rfkill_global_mutex);
510 rfkill_epo_lock_active = false;
511 mutex_unlock(&rfkill_global_mutex);
512}
513
514/**
515 * rfkill_is_epo_lock_active - returns true EPO is active
516 *
517 * Returns 0 (false) if there is NOT an active EPO condition,
518 * and 1 (true) if there is an active EPO condition, which
519 * locks all radios in one of the BLOCKED states.
520 *
521 * Can be called in atomic context.
522 */
523bool rfkill_is_epo_lock_active(void)
524{
525 return rfkill_epo_lock_active;
526}
527
528/**
529 * rfkill_get_global_sw_state - returns global state for a type
530 * @type: the type to get the global state of
531 *
532 * Returns the current global state for a given wireless
533 * device type.
534 */
535bool rfkill_get_global_sw_state(const enum rfkill_type type)
536{
537 return rfkill_global_states[type].cur;
538}
539#endif
540
541bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
542 bool blocked,
543 enum rfkill_hard_block_reasons reason)
544{
545 unsigned long flags;
546 bool ret, prev;
547
548 BUG_ON(!rfkill);
549
550 spin_lock_irqsave(&rfkill->lock, flags);
551 prev = !!(rfkill->hard_block_reasons & reason);
552 if (blocked) {
553 rfkill->state |= RFKILL_BLOCK_HW;
554 rfkill->hard_block_reasons |= reason;
555 } else {
556 rfkill->hard_block_reasons &= ~reason;
557 if (!rfkill->hard_block_reasons)
558 rfkill->state &= ~RFKILL_BLOCK_HW;
559 }
560 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
561 spin_unlock_irqrestore(&rfkill->lock, flags);
562
563 rfkill_led_trigger_event(rfkill);
564 rfkill_global_led_trigger_event();
565
566 if (rfkill->registered && prev != blocked)
567 schedule_work(&rfkill->uevent_work);
568
569 return ret;
570}
571EXPORT_SYMBOL(rfkill_set_hw_state_reason);
572
573static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
574{
575 u32 bit = RFKILL_BLOCK_SW;
576
577 /* if in a ops->set_block right now, use other bit */
578 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
579 bit = RFKILL_BLOCK_SW_PREV;
580
581 if (blocked)
582 rfkill->state |= bit;
583 else
584 rfkill->state &= ~bit;
585}
586
587bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
588{
589 unsigned long flags;
590 bool prev, hwblock;
591
592 BUG_ON(!rfkill);
593
594 spin_lock_irqsave(&rfkill->lock, flags);
595 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
596 __rfkill_set_sw_state(rfkill, blocked);
597 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
598 blocked = blocked || hwblock;
599 spin_unlock_irqrestore(&rfkill->lock, flags);
600
601 if (!rfkill->registered)
602 return blocked;
603
604 if (prev != blocked && !hwblock)
605 schedule_work(&rfkill->uevent_work);
606
607 rfkill_led_trigger_event(rfkill);
608 rfkill_global_led_trigger_event();
609
610 return blocked;
611}
612EXPORT_SYMBOL(rfkill_set_sw_state);
613
614void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
615{
616 unsigned long flags;
617
618 BUG_ON(!rfkill);
619 BUG_ON(rfkill->registered);
620
621 spin_lock_irqsave(&rfkill->lock, flags);
622 __rfkill_set_sw_state(rfkill, blocked);
623 rfkill->persistent = true;
624 spin_unlock_irqrestore(&rfkill->lock, flags);
625}
626EXPORT_SYMBOL(rfkill_init_sw_state);
627
628void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
629{
630 unsigned long flags;
631 bool swprev, hwprev;
632
633 BUG_ON(!rfkill);
634
635 spin_lock_irqsave(&rfkill->lock, flags);
636
637 /*
638 * No need to care about prev/setblock ... this is for uevent only
639 * and that will get triggered by rfkill_set_block anyway.
640 */
641 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
642 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
643 __rfkill_set_sw_state(rfkill, sw);
644 if (hw)
645 rfkill->state |= RFKILL_BLOCK_HW;
646 else
647 rfkill->state &= ~RFKILL_BLOCK_HW;
648
649 spin_unlock_irqrestore(&rfkill->lock, flags);
650
651 if (!rfkill->registered) {
652 rfkill->persistent = true;
653 } else {
654 if (swprev != sw || hwprev != hw)
655 schedule_work(&rfkill->uevent_work);
656
657 rfkill_led_trigger_event(rfkill);
658 rfkill_global_led_trigger_event();
659 }
660}
661EXPORT_SYMBOL(rfkill_set_states);
662
663static const char * const rfkill_types[] = {
664 NULL, /* RFKILL_TYPE_ALL */
665 "wlan",
666 "bluetooth",
667 "ultrawideband",
668 "wimax",
669 "wwan",
670 "gps",
671 "fm",
672 "nfc",
673};
674
675enum rfkill_type rfkill_find_type(const char *name)
676{
677 int i;
678
679 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
680
681 if (!name)
682 return RFKILL_TYPE_ALL;
683
684 for (i = 1; i < NUM_RFKILL_TYPES; i++)
685 if (!strcmp(name, rfkill_types[i]))
686 return i;
687 return RFKILL_TYPE_ALL;
688}
689EXPORT_SYMBOL(rfkill_find_type);
690
691static ssize_t name_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sysfs_emit(buf, "%s\n", rfkill->name);
697}
698static DEVICE_ATTR_RO(name);
699
700static ssize_t type_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sysfs_emit(buf, "%s\n", rfkill_types[rfkill->type]);
706}
707static DEVICE_ATTR_RO(type);
708
709static ssize_t index_show(struct device *dev, struct device_attribute *attr,
710 char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sysfs_emit(buf, "%d\n", rfkill->idx);
715}
716static DEVICE_ATTR_RO(index);
717
718static ssize_t persistent_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sysfs_emit(buf, "%d\n", rfkill->persistent);
724}
725static DEVICE_ATTR_RO(persistent);
726
727static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0);
733}
734static DEVICE_ATTR_RO(hard);
735
736static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
737 char *buf)
738{
739 struct rfkill *rfkill = to_rfkill(dev);
740
741 mutex_lock(&rfkill_global_mutex);
742 rfkill_sync(rfkill);
743 mutex_unlock(&rfkill_global_mutex);
744
745 return sysfs_emit(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0);
746}
747
748static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
749 const char *buf, size_t count)
750{
751 struct rfkill *rfkill = to_rfkill(dev);
752 unsigned long state;
753 int err;
754
755 if (!capable(CAP_NET_ADMIN))
756 return -EPERM;
757
758 err = kstrtoul(buf, 0, &state);
759 if (err)
760 return err;
761
762 if (state > 1 )
763 return -EINVAL;
764
765 mutex_lock(&rfkill_global_mutex);
766 rfkill_sync(rfkill);
767 rfkill_set_block(rfkill, state);
768 mutex_unlock(&rfkill_global_mutex);
769
770 return count;
771}
772static DEVICE_ATTR_RW(soft);
773
774static ssize_t hard_block_reasons_show(struct device *dev,
775 struct device_attribute *attr,
776 char *buf)
777{
778 struct rfkill *rfkill = to_rfkill(dev);
779
780 return sysfs_emit(buf, "0x%lx\n", rfkill->hard_block_reasons);
781}
782static DEVICE_ATTR_RO(hard_block_reasons);
783
784static u8 user_state_from_blocked(unsigned long state)
785{
786 if (state & RFKILL_BLOCK_HW)
787 return RFKILL_USER_STATE_HARD_BLOCKED;
788 if (state & RFKILL_BLOCK_SW)
789 return RFKILL_USER_STATE_SOFT_BLOCKED;
790
791 return RFKILL_USER_STATE_UNBLOCKED;
792}
793
794static ssize_t state_show(struct device *dev, struct device_attribute *attr,
795 char *buf)
796{
797 struct rfkill *rfkill = to_rfkill(dev);
798
799 mutex_lock(&rfkill_global_mutex);
800 rfkill_sync(rfkill);
801 mutex_unlock(&rfkill_global_mutex);
802
803 return sysfs_emit(buf, "%d\n", user_state_from_blocked(rfkill->state));
804}
805
806static ssize_t state_store(struct device *dev, struct device_attribute *attr,
807 const char *buf, size_t count)
808{
809 struct rfkill *rfkill = to_rfkill(dev);
810 unsigned long state;
811 int err;
812
813 if (!capable(CAP_NET_ADMIN))
814 return -EPERM;
815
816 err = kstrtoul(buf, 0, &state);
817 if (err)
818 return err;
819
820 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
821 state != RFKILL_USER_STATE_UNBLOCKED)
822 return -EINVAL;
823
824 mutex_lock(&rfkill_global_mutex);
825 rfkill_sync(rfkill);
826 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
827 mutex_unlock(&rfkill_global_mutex);
828
829 return count;
830}
831static DEVICE_ATTR_RW(state);
832
833static struct attribute *rfkill_dev_attrs[] = {
834 &dev_attr_name.attr,
835 &dev_attr_type.attr,
836 &dev_attr_index.attr,
837 &dev_attr_persistent.attr,
838 &dev_attr_state.attr,
839 &dev_attr_soft.attr,
840 &dev_attr_hard.attr,
841 &dev_attr_hard_block_reasons.attr,
842 NULL,
843};
844ATTRIBUTE_GROUPS(rfkill_dev);
845
846static void rfkill_release(struct device *dev)
847{
848 struct rfkill *rfkill = to_rfkill(dev);
849
850 kfree(rfkill);
851}
852
853static int rfkill_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
854{
855 struct rfkill *rfkill = to_rfkill(dev);
856 unsigned long flags;
857 unsigned long reasons;
858 u32 state;
859 int error;
860
861 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
862 if (error)
863 return error;
864 error = add_uevent_var(env, "RFKILL_TYPE=%s",
865 rfkill_types[rfkill->type]);
866 if (error)
867 return error;
868 spin_lock_irqsave(&rfkill->lock, flags);
869 state = rfkill->state;
870 reasons = rfkill->hard_block_reasons;
871 spin_unlock_irqrestore(&rfkill->lock, flags);
872 error = add_uevent_var(env, "RFKILL_STATE=%d",
873 user_state_from_blocked(state));
874 if (error)
875 return error;
876 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
877}
878
879void rfkill_pause_polling(struct rfkill *rfkill)
880{
881 BUG_ON(!rfkill);
882
883 if (!rfkill->ops->poll)
884 return;
885
886 rfkill->polling_paused = true;
887 cancel_delayed_work_sync(&rfkill->poll_work);
888}
889EXPORT_SYMBOL(rfkill_pause_polling);
890
891void rfkill_resume_polling(struct rfkill *rfkill)
892{
893 BUG_ON(!rfkill);
894
895 if (!rfkill->ops->poll)
896 return;
897
898 rfkill->polling_paused = false;
899
900 if (rfkill->suspended)
901 return;
902
903 queue_delayed_work(system_power_efficient_wq,
904 &rfkill->poll_work, 0);
905}
906EXPORT_SYMBOL(rfkill_resume_polling);
907
908#ifdef CONFIG_PM_SLEEP
909static int rfkill_suspend(struct device *dev)
910{
911 struct rfkill *rfkill = to_rfkill(dev);
912
913 rfkill->suspended = true;
914 cancel_delayed_work_sync(&rfkill->poll_work);
915
916 return 0;
917}
918
919static int rfkill_resume(struct device *dev)
920{
921 struct rfkill *rfkill = to_rfkill(dev);
922 bool cur;
923
924 rfkill->suspended = false;
925
926 if (!rfkill->registered)
927 return 0;
928
929 if (!rfkill->persistent) {
930 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
931 rfkill_set_block(rfkill, cur);
932 }
933
934 if (rfkill->ops->poll && !rfkill->polling_paused)
935 queue_delayed_work(system_power_efficient_wq,
936 &rfkill->poll_work, 0);
937
938 return 0;
939}
940
941static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
942#define RFKILL_PM_OPS (&rfkill_pm_ops)
943#else
944#define RFKILL_PM_OPS NULL
945#endif
946
947static struct class rfkill_class = {
948 .name = "rfkill",
949 .dev_release = rfkill_release,
950 .dev_groups = rfkill_dev_groups,
951 .dev_uevent = rfkill_dev_uevent,
952 .pm = RFKILL_PM_OPS,
953};
954
955bool rfkill_blocked(struct rfkill *rfkill)
956{
957 unsigned long flags;
958 u32 state;
959
960 spin_lock_irqsave(&rfkill->lock, flags);
961 state = rfkill->state;
962 spin_unlock_irqrestore(&rfkill->lock, flags);
963
964 return !!(state & RFKILL_BLOCK_ANY);
965}
966EXPORT_SYMBOL(rfkill_blocked);
967
968bool rfkill_soft_blocked(struct rfkill *rfkill)
969{
970 unsigned long flags;
971 u32 state;
972
973 spin_lock_irqsave(&rfkill->lock, flags);
974 state = rfkill->state;
975 spin_unlock_irqrestore(&rfkill->lock, flags);
976
977 return !!(state & RFKILL_BLOCK_SW);
978}
979EXPORT_SYMBOL(rfkill_soft_blocked);
980
981struct rfkill * __must_check rfkill_alloc(const char *name,
982 struct device *parent,
983 const enum rfkill_type type,
984 const struct rfkill_ops *ops,
985 void *ops_data)
986{
987 struct rfkill *rfkill;
988 struct device *dev;
989
990 if (WARN_ON(!ops))
991 return NULL;
992
993 if (WARN_ON(!ops->set_block))
994 return NULL;
995
996 if (WARN_ON(!name))
997 return NULL;
998
999 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
1000 return NULL;
1001
1002 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
1003 if (!rfkill)
1004 return NULL;
1005
1006 spin_lock_init(&rfkill->lock);
1007 INIT_LIST_HEAD(&rfkill->node);
1008 rfkill->type = type;
1009 strcpy(rfkill->name, name);
1010 rfkill->ops = ops;
1011 rfkill->data = ops_data;
1012
1013 dev = &rfkill->dev;
1014 dev->class = &rfkill_class;
1015 dev->parent = parent;
1016 device_initialize(dev);
1017
1018 return rfkill;
1019}
1020EXPORT_SYMBOL(rfkill_alloc);
1021
1022static void rfkill_poll(struct work_struct *work)
1023{
1024 struct rfkill *rfkill;
1025
1026 rfkill = container_of(work, struct rfkill, poll_work.work);
1027
1028 /*
1029 * Poll hardware state -- driver will use one of the
1030 * rfkill_set{,_hw,_sw}_state functions and use its
1031 * return value to update the current status.
1032 */
1033 rfkill->ops->poll(rfkill, rfkill->data);
1034
1035 queue_delayed_work(system_power_efficient_wq,
1036 &rfkill->poll_work,
1037 round_jiffies_relative(POLL_INTERVAL));
1038}
1039
1040static void rfkill_uevent_work(struct work_struct *work)
1041{
1042 struct rfkill *rfkill;
1043
1044 rfkill = container_of(work, struct rfkill, uevent_work);
1045
1046 mutex_lock(&rfkill_global_mutex);
1047 rfkill_event(rfkill);
1048 mutex_unlock(&rfkill_global_mutex);
1049}
1050
1051static void rfkill_sync_work(struct work_struct *work)
1052{
1053 struct rfkill *rfkill = container_of(work, struct rfkill, sync_work);
1054
1055 mutex_lock(&rfkill_global_mutex);
1056 rfkill_sync(rfkill);
1057 mutex_unlock(&rfkill_global_mutex);
1058}
1059
1060int __must_check rfkill_register(struct rfkill *rfkill)
1061{
1062 static unsigned long rfkill_no;
1063 struct device *dev;
1064 int error;
1065
1066 if (!rfkill)
1067 return -EINVAL;
1068
1069 dev = &rfkill->dev;
1070
1071 mutex_lock(&rfkill_global_mutex);
1072
1073 if (rfkill->registered) {
1074 error = -EALREADY;
1075 goto unlock;
1076 }
1077
1078 rfkill->idx = rfkill_no;
1079 dev_set_name(dev, "rfkill%lu", rfkill_no);
1080 rfkill_no++;
1081
1082 list_add_tail(&rfkill->node, &rfkill_list);
1083
1084 error = device_add(dev);
1085 if (error)
1086 goto remove;
1087
1088 error = rfkill_led_trigger_register(rfkill);
1089 if (error)
1090 goto devdel;
1091
1092 rfkill->registered = true;
1093
1094 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1095 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1096 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1097
1098 if (rfkill->ops->poll)
1099 queue_delayed_work(system_power_efficient_wq,
1100 &rfkill->poll_work,
1101 round_jiffies_relative(POLL_INTERVAL));
1102
1103 if (!rfkill->persistent || rfkill_epo_lock_active) {
1104 rfkill->need_sync = true;
1105 schedule_work(&rfkill->sync_work);
1106 } else {
1107#ifdef CONFIG_RFKILL_INPUT
1108 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1109
1110 if (!atomic_read(&rfkill_input_disabled))
1111 __rfkill_switch_all(rfkill->type, soft_blocked);
1112#endif
1113 }
1114
1115 rfkill_global_led_trigger_event();
1116 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1117
1118 mutex_unlock(&rfkill_global_mutex);
1119 return 0;
1120
1121 devdel:
1122 device_del(&rfkill->dev);
1123 remove:
1124 list_del_init(&rfkill->node);
1125 unlock:
1126 mutex_unlock(&rfkill_global_mutex);
1127 return error;
1128}
1129EXPORT_SYMBOL(rfkill_register);
1130
1131void rfkill_unregister(struct rfkill *rfkill)
1132{
1133 BUG_ON(!rfkill);
1134
1135 if (rfkill->ops->poll)
1136 cancel_delayed_work_sync(&rfkill->poll_work);
1137
1138 cancel_work_sync(&rfkill->uevent_work);
1139 cancel_work_sync(&rfkill->sync_work);
1140
1141 rfkill->registered = false;
1142
1143 device_del(&rfkill->dev);
1144
1145 mutex_lock(&rfkill_global_mutex);
1146 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1147 list_del_init(&rfkill->node);
1148 rfkill_global_led_trigger_event();
1149 mutex_unlock(&rfkill_global_mutex);
1150
1151 rfkill_led_trigger_unregister(rfkill);
1152}
1153EXPORT_SYMBOL(rfkill_unregister);
1154
1155void rfkill_destroy(struct rfkill *rfkill)
1156{
1157 if (rfkill)
1158 put_device(&rfkill->dev);
1159}
1160EXPORT_SYMBOL(rfkill_destroy);
1161
1162static int rfkill_fop_open(struct inode *inode, struct file *file)
1163{
1164 struct rfkill_data *data;
1165 struct rfkill *rfkill;
1166 struct rfkill_int_event *ev, *tmp;
1167
1168 data = kzalloc(sizeof(*data), GFP_KERNEL);
1169 if (!data)
1170 return -ENOMEM;
1171
1172 data->max_size = RFKILL_EVENT_SIZE_V1;
1173
1174 INIT_LIST_HEAD(&data->events);
1175 mutex_init(&data->mtx);
1176 init_waitqueue_head(&data->read_wait);
1177
1178 mutex_lock(&rfkill_global_mutex);
1179 /*
1180 * start getting events from elsewhere but hold mtx to get
1181 * startup events added first
1182 */
1183
1184 list_for_each_entry(rfkill, &rfkill_list, node) {
1185 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1186 if (!ev)
1187 goto free;
1188 rfkill_sync(rfkill);
1189 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1190 mutex_lock(&data->mtx);
1191 list_add_tail(&ev->list, &data->events);
1192 mutex_unlock(&data->mtx);
1193 }
1194 list_add(&data->list, &rfkill_fds);
1195 mutex_unlock(&rfkill_global_mutex);
1196
1197 file->private_data = data;
1198
1199 return stream_open(inode, file);
1200
1201 free:
1202 mutex_unlock(&rfkill_global_mutex);
1203 mutex_destroy(&data->mtx);
1204 list_for_each_entry_safe(ev, tmp, &data->events, list)
1205 kfree(ev);
1206 kfree(data);
1207 return -ENOMEM;
1208}
1209
1210static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1211{
1212 struct rfkill_data *data = file->private_data;
1213 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1214
1215 poll_wait(file, &data->read_wait, wait);
1216
1217 mutex_lock(&data->mtx);
1218 if (!list_empty(&data->events))
1219 res = EPOLLIN | EPOLLRDNORM;
1220 mutex_unlock(&data->mtx);
1221
1222 return res;
1223}
1224
1225static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1226 size_t count, loff_t *pos)
1227{
1228 struct rfkill_data *data = file->private_data;
1229 struct rfkill_int_event *ev;
1230 unsigned long sz;
1231 int ret;
1232
1233 mutex_lock(&data->mtx);
1234
1235 while (list_empty(&data->events)) {
1236 if (file->f_flags & O_NONBLOCK) {
1237 ret = -EAGAIN;
1238 goto out;
1239 }
1240 mutex_unlock(&data->mtx);
1241 /* since we re-check and it just compares pointers,
1242 * using !list_empty() without locking isn't a problem
1243 */
1244 ret = wait_event_interruptible(data->read_wait,
1245 !list_empty(&data->events));
1246 mutex_lock(&data->mtx);
1247
1248 if (ret)
1249 goto out;
1250 }
1251
1252 ev = list_first_entry(&data->events, struct rfkill_int_event,
1253 list);
1254
1255 sz = min_t(unsigned long, sizeof(ev->ev), count);
1256 sz = min_t(unsigned long, sz, data->max_size);
1257 ret = sz;
1258 if (copy_to_user(buf, &ev->ev, sz))
1259 ret = -EFAULT;
1260
1261 list_del(&ev->list);
1262 kfree(ev);
1263 out:
1264 mutex_unlock(&data->mtx);
1265 return ret;
1266}
1267
1268static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1269 size_t count, loff_t *pos)
1270{
1271 struct rfkill_data *data = file->private_data;
1272 struct rfkill *rfkill;
1273 struct rfkill_event_ext ev;
1274 int ret;
1275
1276 /* we don't need the 'hard' variable but accept it */
1277 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1278 return -EINVAL;
1279
1280 /*
1281 * Copy as much data as we can accept into our 'ev' buffer,
1282 * but tell userspace how much we've copied so it can determine
1283 * our API version even in a write() call, if it cares.
1284 */
1285 count = min(count, sizeof(ev));
1286 count = min_t(size_t, count, data->max_size);
1287 if (copy_from_user(&ev, buf, count))
1288 return -EFAULT;
1289
1290 if (ev.type >= NUM_RFKILL_TYPES)
1291 return -EINVAL;
1292
1293 mutex_lock(&rfkill_global_mutex);
1294
1295 switch (ev.op) {
1296 case RFKILL_OP_CHANGE_ALL:
1297 rfkill_update_global_state(ev.type, ev.soft);
1298 list_for_each_entry(rfkill, &rfkill_list, node)
1299 if (rfkill->type == ev.type ||
1300 ev.type == RFKILL_TYPE_ALL)
1301 rfkill_set_block(rfkill, ev.soft);
1302 ret = 0;
1303 break;
1304 case RFKILL_OP_CHANGE:
1305 list_for_each_entry(rfkill, &rfkill_list, node)
1306 if (rfkill->idx == ev.idx &&
1307 (rfkill->type == ev.type ||
1308 ev.type == RFKILL_TYPE_ALL))
1309 rfkill_set_block(rfkill, ev.soft);
1310 ret = 0;
1311 break;
1312 default:
1313 ret = -EINVAL;
1314 break;
1315 }
1316
1317 mutex_unlock(&rfkill_global_mutex);
1318
1319 return ret ?: count;
1320}
1321
1322static int rfkill_fop_release(struct inode *inode, struct file *file)
1323{
1324 struct rfkill_data *data = file->private_data;
1325 struct rfkill_int_event *ev, *tmp;
1326
1327 mutex_lock(&rfkill_global_mutex);
1328 list_del(&data->list);
1329 mutex_unlock(&rfkill_global_mutex);
1330
1331 mutex_destroy(&data->mtx);
1332 list_for_each_entry_safe(ev, tmp, &data->events, list)
1333 kfree(ev);
1334
1335#ifdef CONFIG_RFKILL_INPUT
1336 if (data->input_handler)
1337 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1338 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1339#endif
1340
1341 kfree(data);
1342
1343 return 0;
1344}
1345
1346static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1347 unsigned long arg)
1348{
1349 struct rfkill_data *data = file->private_data;
1350 int ret = -ENOTTY;
1351 u32 size;
1352
1353 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1354 return -ENOTTY;
1355
1356 mutex_lock(&data->mtx);
1357 switch (_IOC_NR(cmd)) {
1358#ifdef CONFIG_RFKILL_INPUT
1359 case RFKILL_IOC_NOINPUT:
1360 if (!data->input_handler) {
1361 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1362 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1363 data->input_handler = true;
1364 }
1365 ret = 0;
1366 break;
1367#endif
1368 case RFKILL_IOC_MAX_SIZE:
1369 if (get_user(size, (__u32 __user *)arg)) {
1370 ret = -EFAULT;
1371 break;
1372 }
1373 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1374 ret = -EINVAL;
1375 break;
1376 }
1377 data->max_size = size;
1378 ret = 0;
1379 break;
1380 default:
1381 break;
1382 }
1383 mutex_unlock(&data->mtx);
1384
1385 return ret;
1386}
1387
1388static const struct file_operations rfkill_fops = {
1389 .owner = THIS_MODULE,
1390 .open = rfkill_fop_open,
1391 .read = rfkill_fop_read,
1392 .write = rfkill_fop_write,
1393 .poll = rfkill_fop_poll,
1394 .release = rfkill_fop_release,
1395 .unlocked_ioctl = rfkill_fop_ioctl,
1396 .compat_ioctl = compat_ptr_ioctl,
1397};
1398
1399#define RFKILL_NAME "rfkill"
1400
1401static struct miscdevice rfkill_miscdev = {
1402 .fops = &rfkill_fops,
1403 .name = RFKILL_NAME,
1404 .minor = RFKILL_MINOR,
1405};
1406
1407static int __init rfkill_init(void)
1408{
1409 int error;
1410
1411 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1412
1413 error = class_register(&rfkill_class);
1414 if (error)
1415 goto error_class;
1416
1417 error = misc_register(&rfkill_miscdev);
1418 if (error)
1419 goto error_misc;
1420
1421 error = rfkill_global_led_trigger_register();
1422 if (error)
1423 goto error_led_trigger;
1424
1425#ifdef CONFIG_RFKILL_INPUT
1426 error = rfkill_handler_init();
1427 if (error)
1428 goto error_input;
1429#endif
1430
1431 return 0;
1432
1433#ifdef CONFIG_RFKILL_INPUT
1434error_input:
1435 rfkill_global_led_trigger_unregister();
1436#endif
1437error_led_trigger:
1438 misc_deregister(&rfkill_miscdev);
1439error_misc:
1440 class_unregister(&rfkill_class);
1441error_class:
1442 return error;
1443}
1444subsys_initcall(rfkill_init);
1445
1446static void __exit rfkill_exit(void)
1447{
1448#ifdef CONFIG_RFKILL_INPUT
1449 rfkill_handler_exit();
1450#endif
1451 rfkill_global_led_trigger_unregister();
1452 misc_deregister(&rfkill_miscdev);
1453 class_unregister(&rfkill_class);
1454}
1455module_exit(rfkill_exit);
1456
1457MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1458MODULE_ALIAS("devname:" RFKILL_NAME);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2006 - 2007 Ivo van Doorn
4 * Copyright (C) 2007 Dmitry Torokhov
5 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/workqueue.h>
12#include <linux/capability.h>
13#include <linux/list.h>
14#include <linux/mutex.h>
15#include <linux/rfkill.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <linux/device.h>
19#include <linux/miscdevice.h>
20#include <linux/wait.h>
21#include <linux/poll.h>
22#include <linux/fs.h>
23#include <linux/slab.h>
24
25#include "rfkill.h"
26
27#define POLL_INTERVAL (5 * HZ)
28
29#define RFKILL_BLOCK_HW BIT(0)
30#define RFKILL_BLOCK_SW BIT(1)
31#define RFKILL_BLOCK_SW_PREV BIT(2)
32#define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
33 RFKILL_BLOCK_SW |\
34 RFKILL_BLOCK_SW_PREV)
35#define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37struct rfkill {
38 spinlock_t lock;
39
40 enum rfkill_type type;
41
42 unsigned long state;
43 unsigned long hard_block_reasons;
44
45 u32 idx;
46
47 bool registered;
48 bool persistent;
49 bool polling_paused;
50 bool suspended;
51
52 const struct rfkill_ops *ops;
53 void *data;
54
55#ifdef CONFIG_RFKILL_LEDS
56 struct led_trigger led_trigger;
57 const char *ledtrigname;
58#endif
59
60 struct device dev;
61 struct list_head node;
62
63 struct delayed_work poll_work;
64 struct work_struct uevent_work;
65 struct work_struct sync_work;
66 char name[];
67};
68#define to_rfkill(d) container_of(d, struct rfkill, dev)
69
70struct rfkill_int_event {
71 struct list_head list;
72 struct rfkill_event_ext ev;
73};
74
75struct rfkill_data {
76 struct list_head list;
77 struct list_head events;
78 struct mutex mtx;
79 wait_queue_head_t read_wait;
80 bool input_handler;
81};
82
83
84MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
85MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
86MODULE_DESCRIPTION("RF switch support");
87MODULE_LICENSE("GPL");
88
89
90/*
91 * The locking here should be made much smarter, we currently have
92 * a bit of a stupid situation because drivers might want to register
93 * the rfkill struct under their own lock, and take this lock during
94 * rfkill method calls -- which will cause an AB-BA deadlock situation.
95 *
96 * To fix that, we need to rework this code here to be mostly lock-free
97 * and only use the mutex for list manipulations, not to protect the
98 * various other global variables. Then we can avoid holding the mutex
99 * around driver operations, and all is happy.
100 */
101static LIST_HEAD(rfkill_list); /* list of registered rf switches */
102static DEFINE_MUTEX(rfkill_global_mutex);
103static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
104
105static unsigned int rfkill_default_state = 1;
106module_param_named(default_state, rfkill_default_state, uint, 0444);
107MODULE_PARM_DESC(default_state,
108 "Default initial state for all radio types, 0 = radio off");
109
110static struct {
111 bool cur, sav;
112} rfkill_global_states[NUM_RFKILL_TYPES];
113
114static bool rfkill_epo_lock_active;
115
116
117#ifdef CONFIG_RFKILL_LEDS
118static void rfkill_led_trigger_event(struct rfkill *rfkill)
119{
120 struct led_trigger *trigger;
121
122 if (!rfkill->registered)
123 return;
124
125 trigger = &rfkill->led_trigger;
126
127 if (rfkill->state & RFKILL_BLOCK_ANY)
128 led_trigger_event(trigger, LED_OFF);
129 else
130 led_trigger_event(trigger, LED_FULL);
131}
132
133static int rfkill_led_trigger_activate(struct led_classdev *led)
134{
135 struct rfkill *rfkill;
136
137 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
138
139 rfkill_led_trigger_event(rfkill);
140
141 return 0;
142}
143
144const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
145{
146 return rfkill->led_trigger.name;
147}
148EXPORT_SYMBOL(rfkill_get_led_trigger_name);
149
150void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
151{
152 BUG_ON(!rfkill);
153
154 rfkill->ledtrigname = name;
155}
156EXPORT_SYMBOL(rfkill_set_led_trigger_name);
157
158static int rfkill_led_trigger_register(struct rfkill *rfkill)
159{
160 rfkill->led_trigger.name = rfkill->ledtrigname
161 ? : dev_name(&rfkill->dev);
162 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
163 return led_trigger_register(&rfkill->led_trigger);
164}
165
166static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
167{
168 led_trigger_unregister(&rfkill->led_trigger);
169}
170
171static struct led_trigger rfkill_any_led_trigger;
172static struct led_trigger rfkill_none_led_trigger;
173static struct work_struct rfkill_global_led_trigger_work;
174
175static void rfkill_global_led_trigger_worker(struct work_struct *work)
176{
177 enum led_brightness brightness = LED_OFF;
178 struct rfkill *rfkill;
179
180 mutex_lock(&rfkill_global_mutex);
181 list_for_each_entry(rfkill, &rfkill_list, node) {
182 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
183 brightness = LED_FULL;
184 break;
185 }
186 }
187 mutex_unlock(&rfkill_global_mutex);
188
189 led_trigger_event(&rfkill_any_led_trigger, brightness);
190 led_trigger_event(&rfkill_none_led_trigger,
191 brightness == LED_OFF ? LED_FULL : LED_OFF);
192}
193
194static void rfkill_global_led_trigger_event(void)
195{
196 schedule_work(&rfkill_global_led_trigger_work);
197}
198
199static int rfkill_global_led_trigger_register(void)
200{
201 int ret;
202
203 INIT_WORK(&rfkill_global_led_trigger_work,
204 rfkill_global_led_trigger_worker);
205
206 rfkill_any_led_trigger.name = "rfkill-any";
207 ret = led_trigger_register(&rfkill_any_led_trigger);
208 if (ret)
209 return ret;
210
211 rfkill_none_led_trigger.name = "rfkill-none";
212 ret = led_trigger_register(&rfkill_none_led_trigger);
213 if (ret)
214 led_trigger_unregister(&rfkill_any_led_trigger);
215 else
216 /* Delay activation until all global triggers are registered */
217 rfkill_global_led_trigger_event();
218
219 return ret;
220}
221
222static void rfkill_global_led_trigger_unregister(void)
223{
224 led_trigger_unregister(&rfkill_none_led_trigger);
225 led_trigger_unregister(&rfkill_any_led_trigger);
226 cancel_work_sync(&rfkill_global_led_trigger_work);
227}
228#else
229static void rfkill_led_trigger_event(struct rfkill *rfkill)
230{
231}
232
233static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
234{
235 return 0;
236}
237
238static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
239{
240}
241
242static void rfkill_global_led_trigger_event(void)
243{
244}
245
246static int rfkill_global_led_trigger_register(void)
247{
248 return 0;
249}
250
251static void rfkill_global_led_trigger_unregister(void)
252{
253}
254#endif /* CONFIG_RFKILL_LEDS */
255
256static void rfkill_fill_event(struct rfkill_event_ext *ev,
257 struct rfkill *rfkill,
258 enum rfkill_operation op)
259{
260 unsigned long flags;
261
262 ev->idx = rfkill->idx;
263 ev->type = rfkill->type;
264 ev->op = op;
265
266 spin_lock_irqsave(&rfkill->lock, flags);
267 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
268 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
269 RFKILL_BLOCK_SW_PREV));
270 ev->hard_block_reasons = rfkill->hard_block_reasons;
271 spin_unlock_irqrestore(&rfkill->lock, flags);
272}
273
274static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
275{
276 struct rfkill_data *data;
277 struct rfkill_int_event *ev;
278
279 list_for_each_entry(data, &rfkill_fds, list) {
280 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
281 if (!ev)
282 continue;
283 rfkill_fill_event(&ev->ev, rfkill, op);
284 mutex_lock(&data->mtx);
285 list_add_tail(&ev->list, &data->events);
286 mutex_unlock(&data->mtx);
287 wake_up_interruptible(&data->read_wait);
288 }
289}
290
291static void rfkill_event(struct rfkill *rfkill)
292{
293 if (!rfkill->registered)
294 return;
295
296 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
297
298 /* also send event to /dev/rfkill */
299 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
300}
301
302/**
303 * rfkill_set_block - wrapper for set_block method
304 *
305 * @rfkill: the rfkill struct to use
306 * @blocked: the new software state
307 *
308 * Calls the set_block method (when applicable) and handles notifications
309 * etc. as well.
310 */
311static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
312{
313 unsigned long flags;
314 bool prev, curr;
315 int err;
316
317 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
318 return;
319
320 /*
321 * Some platforms (...!) generate input events which affect the
322 * _hard_ kill state -- whenever something tries to change the
323 * current software state query the hardware state too.
324 */
325 if (rfkill->ops->query)
326 rfkill->ops->query(rfkill, rfkill->data);
327
328 spin_lock_irqsave(&rfkill->lock, flags);
329 prev = rfkill->state & RFKILL_BLOCK_SW;
330
331 if (prev)
332 rfkill->state |= RFKILL_BLOCK_SW_PREV;
333 else
334 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
335
336 if (blocked)
337 rfkill->state |= RFKILL_BLOCK_SW;
338 else
339 rfkill->state &= ~RFKILL_BLOCK_SW;
340
341 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
342 spin_unlock_irqrestore(&rfkill->lock, flags);
343
344 err = rfkill->ops->set_block(rfkill->data, blocked);
345
346 spin_lock_irqsave(&rfkill->lock, flags);
347 if (err) {
348 /*
349 * Failed -- reset status to _PREV, which may be different
350 * from what we have set _PREV to earlier in this function
351 * if rfkill_set_sw_state was invoked.
352 */
353 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
354 rfkill->state |= RFKILL_BLOCK_SW;
355 else
356 rfkill->state &= ~RFKILL_BLOCK_SW;
357 }
358 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
359 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
360 curr = rfkill->state & RFKILL_BLOCK_SW;
361 spin_unlock_irqrestore(&rfkill->lock, flags);
362
363 rfkill_led_trigger_event(rfkill);
364 rfkill_global_led_trigger_event();
365
366 if (prev != curr)
367 rfkill_event(rfkill);
368}
369
370static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
371{
372 int i;
373
374 if (type != RFKILL_TYPE_ALL) {
375 rfkill_global_states[type].cur = blocked;
376 return;
377 }
378
379 for (i = 0; i < NUM_RFKILL_TYPES; i++)
380 rfkill_global_states[i].cur = blocked;
381}
382
383#ifdef CONFIG_RFKILL_INPUT
384static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
385
386/**
387 * __rfkill_switch_all - Toggle state of all switches of given type
388 * @type: type of interfaces to be affected
389 * @blocked: the new state
390 *
391 * This function sets the state of all switches of given type,
392 * unless a specific switch is suspended.
393 *
394 * Caller must have acquired rfkill_global_mutex.
395 */
396static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
397{
398 struct rfkill *rfkill;
399
400 rfkill_update_global_state(type, blocked);
401 list_for_each_entry(rfkill, &rfkill_list, node) {
402 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
403 continue;
404
405 rfkill_set_block(rfkill, blocked);
406 }
407}
408
409/**
410 * rfkill_switch_all - Toggle state of all switches of given type
411 * @type: type of interfaces to be affected
412 * @blocked: the new state
413 *
414 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
415 * Please refer to __rfkill_switch_all() for details.
416 *
417 * Does nothing if the EPO lock is active.
418 */
419void rfkill_switch_all(enum rfkill_type type, bool blocked)
420{
421 if (atomic_read(&rfkill_input_disabled))
422 return;
423
424 mutex_lock(&rfkill_global_mutex);
425
426 if (!rfkill_epo_lock_active)
427 __rfkill_switch_all(type, blocked);
428
429 mutex_unlock(&rfkill_global_mutex);
430}
431
432/**
433 * rfkill_epo - emergency power off all transmitters
434 *
435 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
436 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
437 *
438 * The global state before the EPO is saved and can be restored later
439 * using rfkill_restore_states().
440 */
441void rfkill_epo(void)
442{
443 struct rfkill *rfkill;
444 int i;
445
446 if (atomic_read(&rfkill_input_disabled))
447 return;
448
449 mutex_lock(&rfkill_global_mutex);
450
451 rfkill_epo_lock_active = true;
452 list_for_each_entry(rfkill, &rfkill_list, node)
453 rfkill_set_block(rfkill, true);
454
455 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
456 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
457 rfkill_global_states[i].cur = true;
458 }
459
460 mutex_unlock(&rfkill_global_mutex);
461}
462
463/**
464 * rfkill_restore_states - restore global states
465 *
466 * Restore (and sync switches to) the global state from the
467 * states in rfkill_default_states. This can undo the effects of
468 * a call to rfkill_epo().
469 */
470void rfkill_restore_states(void)
471{
472 int i;
473
474 if (atomic_read(&rfkill_input_disabled))
475 return;
476
477 mutex_lock(&rfkill_global_mutex);
478
479 rfkill_epo_lock_active = false;
480 for (i = 0; i < NUM_RFKILL_TYPES; i++)
481 __rfkill_switch_all(i, rfkill_global_states[i].sav);
482 mutex_unlock(&rfkill_global_mutex);
483}
484
485/**
486 * rfkill_remove_epo_lock - unlock state changes
487 *
488 * Used by rfkill-input manually unlock state changes, when
489 * the EPO switch is deactivated.
490 */
491void rfkill_remove_epo_lock(void)
492{
493 if (atomic_read(&rfkill_input_disabled))
494 return;
495
496 mutex_lock(&rfkill_global_mutex);
497 rfkill_epo_lock_active = false;
498 mutex_unlock(&rfkill_global_mutex);
499}
500
501/**
502 * rfkill_is_epo_lock_active - returns true EPO is active
503 *
504 * Returns 0 (false) if there is NOT an active EPO condition,
505 * and 1 (true) if there is an active EPO condition, which
506 * locks all radios in one of the BLOCKED states.
507 *
508 * Can be called in atomic context.
509 */
510bool rfkill_is_epo_lock_active(void)
511{
512 return rfkill_epo_lock_active;
513}
514
515/**
516 * rfkill_get_global_sw_state - returns global state for a type
517 * @type: the type to get the global state of
518 *
519 * Returns the current global state for a given wireless
520 * device type.
521 */
522bool rfkill_get_global_sw_state(const enum rfkill_type type)
523{
524 return rfkill_global_states[type].cur;
525}
526#endif
527
528bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
529 bool blocked, unsigned long reason)
530{
531 unsigned long flags;
532 bool ret, prev;
533
534 BUG_ON(!rfkill);
535
536 if (WARN(reason &
537 ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
538 "hw_state reason not supported: 0x%lx", reason))
539 return blocked;
540
541 spin_lock_irqsave(&rfkill->lock, flags);
542 prev = !!(rfkill->hard_block_reasons & reason);
543 if (blocked) {
544 rfkill->state |= RFKILL_BLOCK_HW;
545 rfkill->hard_block_reasons |= reason;
546 } else {
547 rfkill->hard_block_reasons &= ~reason;
548 if (!rfkill->hard_block_reasons)
549 rfkill->state &= ~RFKILL_BLOCK_HW;
550 }
551 ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
552 spin_unlock_irqrestore(&rfkill->lock, flags);
553
554 rfkill_led_trigger_event(rfkill);
555 rfkill_global_led_trigger_event();
556
557 if (rfkill->registered && prev != blocked)
558 schedule_work(&rfkill->uevent_work);
559
560 return ret;
561}
562EXPORT_SYMBOL(rfkill_set_hw_state_reason);
563
564static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
565{
566 u32 bit = RFKILL_BLOCK_SW;
567
568 /* if in a ops->set_block right now, use other bit */
569 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
570 bit = RFKILL_BLOCK_SW_PREV;
571
572 if (blocked)
573 rfkill->state |= bit;
574 else
575 rfkill->state &= ~bit;
576}
577
578bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
579{
580 unsigned long flags;
581 bool prev, hwblock;
582
583 BUG_ON(!rfkill);
584
585 spin_lock_irqsave(&rfkill->lock, flags);
586 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
587 __rfkill_set_sw_state(rfkill, blocked);
588 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
589 blocked = blocked || hwblock;
590 spin_unlock_irqrestore(&rfkill->lock, flags);
591
592 if (!rfkill->registered)
593 return blocked;
594
595 if (prev != blocked && !hwblock)
596 schedule_work(&rfkill->uevent_work);
597
598 rfkill_led_trigger_event(rfkill);
599 rfkill_global_led_trigger_event();
600
601 return blocked;
602}
603EXPORT_SYMBOL(rfkill_set_sw_state);
604
605void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
606{
607 unsigned long flags;
608
609 BUG_ON(!rfkill);
610 BUG_ON(rfkill->registered);
611
612 spin_lock_irqsave(&rfkill->lock, flags);
613 __rfkill_set_sw_state(rfkill, blocked);
614 rfkill->persistent = true;
615 spin_unlock_irqrestore(&rfkill->lock, flags);
616}
617EXPORT_SYMBOL(rfkill_init_sw_state);
618
619void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
620{
621 unsigned long flags;
622 bool swprev, hwprev;
623
624 BUG_ON(!rfkill);
625
626 spin_lock_irqsave(&rfkill->lock, flags);
627
628 /*
629 * No need to care about prev/setblock ... this is for uevent only
630 * and that will get triggered by rfkill_set_block anyway.
631 */
632 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
633 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
634 __rfkill_set_sw_state(rfkill, sw);
635 if (hw)
636 rfkill->state |= RFKILL_BLOCK_HW;
637 else
638 rfkill->state &= ~RFKILL_BLOCK_HW;
639
640 spin_unlock_irqrestore(&rfkill->lock, flags);
641
642 if (!rfkill->registered) {
643 rfkill->persistent = true;
644 } else {
645 if (swprev != sw || hwprev != hw)
646 schedule_work(&rfkill->uevent_work);
647
648 rfkill_led_trigger_event(rfkill);
649 rfkill_global_led_trigger_event();
650 }
651}
652EXPORT_SYMBOL(rfkill_set_states);
653
654static const char * const rfkill_types[] = {
655 NULL, /* RFKILL_TYPE_ALL */
656 "wlan",
657 "bluetooth",
658 "ultrawideband",
659 "wimax",
660 "wwan",
661 "gps",
662 "fm",
663 "nfc",
664};
665
666enum rfkill_type rfkill_find_type(const char *name)
667{
668 int i;
669
670 BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
671
672 if (!name)
673 return RFKILL_TYPE_ALL;
674
675 for (i = 1; i < NUM_RFKILL_TYPES; i++)
676 if (!strcmp(name, rfkill_types[i]))
677 return i;
678 return RFKILL_TYPE_ALL;
679}
680EXPORT_SYMBOL(rfkill_find_type);
681
682static ssize_t name_show(struct device *dev, struct device_attribute *attr,
683 char *buf)
684{
685 struct rfkill *rfkill = to_rfkill(dev);
686
687 return sprintf(buf, "%s\n", rfkill->name);
688}
689static DEVICE_ATTR_RO(name);
690
691static ssize_t type_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
697}
698static DEVICE_ATTR_RO(type);
699
700static ssize_t index_show(struct device *dev, struct device_attribute *attr,
701 char *buf)
702{
703 struct rfkill *rfkill = to_rfkill(dev);
704
705 return sprintf(buf, "%d\n", rfkill->idx);
706}
707static DEVICE_ATTR_RO(index);
708
709static ssize_t persistent_show(struct device *dev,
710 struct device_attribute *attr, char *buf)
711{
712 struct rfkill *rfkill = to_rfkill(dev);
713
714 return sprintf(buf, "%d\n", rfkill->persistent);
715}
716static DEVICE_ATTR_RO(persistent);
717
718static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
719 char *buf)
720{
721 struct rfkill *rfkill = to_rfkill(dev);
722
723 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
724}
725static DEVICE_ATTR_RO(hard);
726
727static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
728 char *buf)
729{
730 struct rfkill *rfkill = to_rfkill(dev);
731
732 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
733}
734
735static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
736 const char *buf, size_t count)
737{
738 struct rfkill *rfkill = to_rfkill(dev);
739 unsigned long state;
740 int err;
741
742 if (!capable(CAP_NET_ADMIN))
743 return -EPERM;
744
745 err = kstrtoul(buf, 0, &state);
746 if (err)
747 return err;
748
749 if (state > 1 )
750 return -EINVAL;
751
752 mutex_lock(&rfkill_global_mutex);
753 rfkill_set_block(rfkill, state);
754 mutex_unlock(&rfkill_global_mutex);
755
756 return count;
757}
758static DEVICE_ATTR_RW(soft);
759
760static ssize_t hard_block_reasons_show(struct device *dev,
761 struct device_attribute *attr,
762 char *buf)
763{
764 struct rfkill *rfkill = to_rfkill(dev);
765
766 return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
767}
768static DEVICE_ATTR_RO(hard_block_reasons);
769
770static u8 user_state_from_blocked(unsigned long state)
771{
772 if (state & RFKILL_BLOCK_HW)
773 return RFKILL_USER_STATE_HARD_BLOCKED;
774 if (state & RFKILL_BLOCK_SW)
775 return RFKILL_USER_STATE_SOFT_BLOCKED;
776
777 return RFKILL_USER_STATE_UNBLOCKED;
778}
779
780static ssize_t state_show(struct device *dev, struct device_attribute *attr,
781 char *buf)
782{
783 struct rfkill *rfkill = to_rfkill(dev);
784
785 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
786}
787
788static ssize_t state_store(struct device *dev, struct device_attribute *attr,
789 const char *buf, size_t count)
790{
791 struct rfkill *rfkill = to_rfkill(dev);
792 unsigned long state;
793 int err;
794
795 if (!capable(CAP_NET_ADMIN))
796 return -EPERM;
797
798 err = kstrtoul(buf, 0, &state);
799 if (err)
800 return err;
801
802 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
803 state != RFKILL_USER_STATE_UNBLOCKED)
804 return -EINVAL;
805
806 mutex_lock(&rfkill_global_mutex);
807 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
808 mutex_unlock(&rfkill_global_mutex);
809
810 return count;
811}
812static DEVICE_ATTR_RW(state);
813
814static struct attribute *rfkill_dev_attrs[] = {
815 &dev_attr_name.attr,
816 &dev_attr_type.attr,
817 &dev_attr_index.attr,
818 &dev_attr_persistent.attr,
819 &dev_attr_state.attr,
820 &dev_attr_soft.attr,
821 &dev_attr_hard.attr,
822 &dev_attr_hard_block_reasons.attr,
823 NULL,
824};
825ATTRIBUTE_GROUPS(rfkill_dev);
826
827static void rfkill_release(struct device *dev)
828{
829 struct rfkill *rfkill = to_rfkill(dev);
830
831 kfree(rfkill);
832}
833
834static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
835{
836 struct rfkill *rfkill = to_rfkill(dev);
837 unsigned long flags;
838 unsigned long reasons;
839 u32 state;
840 int error;
841
842 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
843 if (error)
844 return error;
845 error = add_uevent_var(env, "RFKILL_TYPE=%s",
846 rfkill_types[rfkill->type]);
847 if (error)
848 return error;
849 spin_lock_irqsave(&rfkill->lock, flags);
850 state = rfkill->state;
851 reasons = rfkill->hard_block_reasons;
852 spin_unlock_irqrestore(&rfkill->lock, flags);
853 error = add_uevent_var(env, "RFKILL_STATE=%d",
854 user_state_from_blocked(state));
855 if (error)
856 return error;
857 return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
858}
859
860void rfkill_pause_polling(struct rfkill *rfkill)
861{
862 BUG_ON(!rfkill);
863
864 if (!rfkill->ops->poll)
865 return;
866
867 rfkill->polling_paused = true;
868 cancel_delayed_work_sync(&rfkill->poll_work);
869}
870EXPORT_SYMBOL(rfkill_pause_polling);
871
872void rfkill_resume_polling(struct rfkill *rfkill)
873{
874 BUG_ON(!rfkill);
875
876 if (!rfkill->ops->poll)
877 return;
878
879 rfkill->polling_paused = false;
880
881 if (rfkill->suspended)
882 return;
883
884 queue_delayed_work(system_power_efficient_wq,
885 &rfkill->poll_work, 0);
886}
887EXPORT_SYMBOL(rfkill_resume_polling);
888
889#ifdef CONFIG_PM_SLEEP
890static int rfkill_suspend(struct device *dev)
891{
892 struct rfkill *rfkill = to_rfkill(dev);
893
894 rfkill->suspended = true;
895 cancel_delayed_work_sync(&rfkill->poll_work);
896
897 return 0;
898}
899
900static int rfkill_resume(struct device *dev)
901{
902 struct rfkill *rfkill = to_rfkill(dev);
903 bool cur;
904
905 rfkill->suspended = false;
906
907 if (!rfkill->registered)
908 return 0;
909
910 if (!rfkill->persistent) {
911 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
912 rfkill_set_block(rfkill, cur);
913 }
914
915 if (rfkill->ops->poll && !rfkill->polling_paused)
916 queue_delayed_work(system_power_efficient_wq,
917 &rfkill->poll_work, 0);
918
919 return 0;
920}
921
922static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
923#define RFKILL_PM_OPS (&rfkill_pm_ops)
924#else
925#define RFKILL_PM_OPS NULL
926#endif
927
928static struct class rfkill_class = {
929 .name = "rfkill",
930 .dev_release = rfkill_release,
931 .dev_groups = rfkill_dev_groups,
932 .dev_uevent = rfkill_dev_uevent,
933 .pm = RFKILL_PM_OPS,
934};
935
936bool rfkill_blocked(struct rfkill *rfkill)
937{
938 unsigned long flags;
939 u32 state;
940
941 spin_lock_irqsave(&rfkill->lock, flags);
942 state = rfkill->state;
943 spin_unlock_irqrestore(&rfkill->lock, flags);
944
945 return !!(state & RFKILL_BLOCK_ANY);
946}
947EXPORT_SYMBOL(rfkill_blocked);
948
949
950struct rfkill * __must_check rfkill_alloc(const char *name,
951 struct device *parent,
952 const enum rfkill_type type,
953 const struct rfkill_ops *ops,
954 void *ops_data)
955{
956 struct rfkill *rfkill;
957 struct device *dev;
958
959 if (WARN_ON(!ops))
960 return NULL;
961
962 if (WARN_ON(!ops->set_block))
963 return NULL;
964
965 if (WARN_ON(!name))
966 return NULL;
967
968 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
969 return NULL;
970
971 rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
972 if (!rfkill)
973 return NULL;
974
975 spin_lock_init(&rfkill->lock);
976 INIT_LIST_HEAD(&rfkill->node);
977 rfkill->type = type;
978 strcpy(rfkill->name, name);
979 rfkill->ops = ops;
980 rfkill->data = ops_data;
981
982 dev = &rfkill->dev;
983 dev->class = &rfkill_class;
984 dev->parent = parent;
985 device_initialize(dev);
986
987 return rfkill;
988}
989EXPORT_SYMBOL(rfkill_alloc);
990
991static void rfkill_poll(struct work_struct *work)
992{
993 struct rfkill *rfkill;
994
995 rfkill = container_of(work, struct rfkill, poll_work.work);
996
997 /*
998 * Poll hardware state -- driver will use one of the
999 * rfkill_set{,_hw,_sw}_state functions and use its
1000 * return value to update the current status.
1001 */
1002 rfkill->ops->poll(rfkill, rfkill->data);
1003
1004 queue_delayed_work(system_power_efficient_wq,
1005 &rfkill->poll_work,
1006 round_jiffies_relative(POLL_INTERVAL));
1007}
1008
1009static void rfkill_uevent_work(struct work_struct *work)
1010{
1011 struct rfkill *rfkill;
1012
1013 rfkill = container_of(work, struct rfkill, uevent_work);
1014
1015 mutex_lock(&rfkill_global_mutex);
1016 rfkill_event(rfkill);
1017 mutex_unlock(&rfkill_global_mutex);
1018}
1019
1020static void rfkill_sync_work(struct work_struct *work)
1021{
1022 struct rfkill *rfkill;
1023 bool cur;
1024
1025 rfkill = container_of(work, struct rfkill, sync_work);
1026
1027 mutex_lock(&rfkill_global_mutex);
1028 cur = rfkill_global_states[rfkill->type].cur;
1029 rfkill_set_block(rfkill, cur);
1030 mutex_unlock(&rfkill_global_mutex);
1031}
1032
1033int __must_check rfkill_register(struct rfkill *rfkill)
1034{
1035 static unsigned long rfkill_no;
1036 struct device *dev;
1037 int error;
1038
1039 if (!rfkill)
1040 return -EINVAL;
1041
1042 dev = &rfkill->dev;
1043
1044 mutex_lock(&rfkill_global_mutex);
1045
1046 if (rfkill->registered) {
1047 error = -EALREADY;
1048 goto unlock;
1049 }
1050
1051 rfkill->idx = rfkill_no;
1052 dev_set_name(dev, "rfkill%lu", rfkill_no);
1053 rfkill_no++;
1054
1055 list_add_tail(&rfkill->node, &rfkill_list);
1056
1057 error = device_add(dev);
1058 if (error)
1059 goto remove;
1060
1061 error = rfkill_led_trigger_register(rfkill);
1062 if (error)
1063 goto devdel;
1064
1065 rfkill->registered = true;
1066
1067 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1068 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1069 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1070
1071 if (rfkill->ops->poll)
1072 queue_delayed_work(system_power_efficient_wq,
1073 &rfkill->poll_work,
1074 round_jiffies_relative(POLL_INTERVAL));
1075
1076 if (!rfkill->persistent || rfkill_epo_lock_active) {
1077 schedule_work(&rfkill->sync_work);
1078 } else {
1079#ifdef CONFIG_RFKILL_INPUT
1080 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1081
1082 if (!atomic_read(&rfkill_input_disabled))
1083 __rfkill_switch_all(rfkill->type, soft_blocked);
1084#endif
1085 }
1086
1087 rfkill_global_led_trigger_event();
1088 rfkill_send_events(rfkill, RFKILL_OP_ADD);
1089
1090 mutex_unlock(&rfkill_global_mutex);
1091 return 0;
1092
1093 devdel:
1094 device_del(&rfkill->dev);
1095 remove:
1096 list_del_init(&rfkill->node);
1097 unlock:
1098 mutex_unlock(&rfkill_global_mutex);
1099 return error;
1100}
1101EXPORT_SYMBOL(rfkill_register);
1102
1103void rfkill_unregister(struct rfkill *rfkill)
1104{
1105 BUG_ON(!rfkill);
1106
1107 if (rfkill->ops->poll)
1108 cancel_delayed_work_sync(&rfkill->poll_work);
1109
1110 cancel_work_sync(&rfkill->uevent_work);
1111 cancel_work_sync(&rfkill->sync_work);
1112
1113 rfkill->registered = false;
1114
1115 device_del(&rfkill->dev);
1116
1117 mutex_lock(&rfkill_global_mutex);
1118 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1119 list_del_init(&rfkill->node);
1120 rfkill_global_led_trigger_event();
1121 mutex_unlock(&rfkill_global_mutex);
1122
1123 rfkill_led_trigger_unregister(rfkill);
1124}
1125EXPORT_SYMBOL(rfkill_unregister);
1126
1127void rfkill_destroy(struct rfkill *rfkill)
1128{
1129 if (rfkill)
1130 put_device(&rfkill->dev);
1131}
1132EXPORT_SYMBOL(rfkill_destroy);
1133
1134static int rfkill_fop_open(struct inode *inode, struct file *file)
1135{
1136 struct rfkill_data *data;
1137 struct rfkill *rfkill;
1138 struct rfkill_int_event *ev, *tmp;
1139
1140 data = kzalloc(sizeof(*data), GFP_KERNEL);
1141 if (!data)
1142 return -ENOMEM;
1143
1144 INIT_LIST_HEAD(&data->events);
1145 mutex_init(&data->mtx);
1146 init_waitqueue_head(&data->read_wait);
1147
1148 mutex_lock(&rfkill_global_mutex);
1149 mutex_lock(&data->mtx);
1150 /*
1151 * start getting events from elsewhere but hold mtx to get
1152 * startup events added first
1153 */
1154
1155 list_for_each_entry(rfkill, &rfkill_list, node) {
1156 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1157 if (!ev)
1158 goto free;
1159 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1160 list_add_tail(&ev->list, &data->events);
1161 }
1162 list_add(&data->list, &rfkill_fds);
1163 mutex_unlock(&data->mtx);
1164 mutex_unlock(&rfkill_global_mutex);
1165
1166 file->private_data = data;
1167
1168 return stream_open(inode, file);
1169
1170 free:
1171 mutex_unlock(&data->mtx);
1172 mutex_unlock(&rfkill_global_mutex);
1173 mutex_destroy(&data->mtx);
1174 list_for_each_entry_safe(ev, tmp, &data->events, list)
1175 kfree(ev);
1176 kfree(data);
1177 return -ENOMEM;
1178}
1179
1180static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1181{
1182 struct rfkill_data *data = file->private_data;
1183 __poll_t res = EPOLLOUT | EPOLLWRNORM;
1184
1185 poll_wait(file, &data->read_wait, wait);
1186
1187 mutex_lock(&data->mtx);
1188 if (!list_empty(&data->events))
1189 res = EPOLLIN | EPOLLRDNORM;
1190 mutex_unlock(&data->mtx);
1191
1192 return res;
1193}
1194
1195static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1196 size_t count, loff_t *pos)
1197{
1198 struct rfkill_data *data = file->private_data;
1199 struct rfkill_int_event *ev;
1200 unsigned long sz;
1201 int ret;
1202
1203 mutex_lock(&data->mtx);
1204
1205 while (list_empty(&data->events)) {
1206 if (file->f_flags & O_NONBLOCK) {
1207 ret = -EAGAIN;
1208 goto out;
1209 }
1210 mutex_unlock(&data->mtx);
1211 /* since we re-check and it just compares pointers,
1212 * using !list_empty() without locking isn't a problem
1213 */
1214 ret = wait_event_interruptible(data->read_wait,
1215 !list_empty(&data->events));
1216 mutex_lock(&data->mtx);
1217
1218 if (ret)
1219 goto out;
1220 }
1221
1222 ev = list_first_entry(&data->events, struct rfkill_int_event,
1223 list);
1224
1225 sz = min_t(unsigned long, sizeof(ev->ev), count);
1226 ret = sz;
1227 if (copy_to_user(buf, &ev->ev, sz))
1228 ret = -EFAULT;
1229
1230 list_del(&ev->list);
1231 kfree(ev);
1232 out:
1233 mutex_unlock(&data->mtx);
1234 return ret;
1235}
1236
1237static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1238 size_t count, loff_t *pos)
1239{
1240 struct rfkill *rfkill;
1241 struct rfkill_event_ext ev;
1242 int ret;
1243
1244 /* we don't need the 'hard' variable but accept it */
1245 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1246 return -EINVAL;
1247
1248 /*
1249 * Copy as much data as we can accept into our 'ev' buffer,
1250 * but tell userspace how much we've copied so it can determine
1251 * our API version even in a write() call, if it cares.
1252 */
1253 count = min(count, sizeof(ev));
1254 if (copy_from_user(&ev, buf, count))
1255 return -EFAULT;
1256
1257 if (ev.type >= NUM_RFKILL_TYPES)
1258 return -EINVAL;
1259
1260 mutex_lock(&rfkill_global_mutex);
1261
1262 switch (ev.op) {
1263 case RFKILL_OP_CHANGE_ALL:
1264 rfkill_update_global_state(ev.type, ev.soft);
1265 list_for_each_entry(rfkill, &rfkill_list, node)
1266 if (rfkill->type == ev.type ||
1267 ev.type == RFKILL_TYPE_ALL)
1268 rfkill_set_block(rfkill, ev.soft);
1269 ret = 0;
1270 break;
1271 case RFKILL_OP_CHANGE:
1272 list_for_each_entry(rfkill, &rfkill_list, node)
1273 if (rfkill->idx == ev.idx &&
1274 (rfkill->type == ev.type ||
1275 ev.type == RFKILL_TYPE_ALL))
1276 rfkill_set_block(rfkill, ev.soft);
1277 ret = 0;
1278 break;
1279 default:
1280 ret = -EINVAL;
1281 break;
1282 }
1283
1284 mutex_unlock(&rfkill_global_mutex);
1285
1286 return ret ?: count;
1287}
1288
1289static int rfkill_fop_release(struct inode *inode, struct file *file)
1290{
1291 struct rfkill_data *data = file->private_data;
1292 struct rfkill_int_event *ev, *tmp;
1293
1294 mutex_lock(&rfkill_global_mutex);
1295 list_del(&data->list);
1296 mutex_unlock(&rfkill_global_mutex);
1297
1298 mutex_destroy(&data->mtx);
1299 list_for_each_entry_safe(ev, tmp, &data->events, list)
1300 kfree(ev);
1301
1302#ifdef CONFIG_RFKILL_INPUT
1303 if (data->input_handler)
1304 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1305 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1306#endif
1307
1308 kfree(data);
1309
1310 return 0;
1311}
1312
1313#ifdef CONFIG_RFKILL_INPUT
1314static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1315 unsigned long arg)
1316{
1317 struct rfkill_data *data = file->private_data;
1318
1319 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1320 return -ENOSYS;
1321
1322 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1323 return -ENOSYS;
1324
1325 mutex_lock(&data->mtx);
1326
1327 if (!data->input_handler) {
1328 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1329 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1330 data->input_handler = true;
1331 }
1332
1333 mutex_unlock(&data->mtx);
1334
1335 return 0;
1336}
1337#endif
1338
1339static const struct file_operations rfkill_fops = {
1340 .owner = THIS_MODULE,
1341 .open = rfkill_fop_open,
1342 .read = rfkill_fop_read,
1343 .write = rfkill_fop_write,
1344 .poll = rfkill_fop_poll,
1345 .release = rfkill_fop_release,
1346#ifdef CONFIG_RFKILL_INPUT
1347 .unlocked_ioctl = rfkill_fop_ioctl,
1348 .compat_ioctl = compat_ptr_ioctl,
1349#endif
1350 .llseek = no_llseek,
1351};
1352
1353#define RFKILL_NAME "rfkill"
1354
1355static struct miscdevice rfkill_miscdev = {
1356 .fops = &rfkill_fops,
1357 .name = RFKILL_NAME,
1358 .minor = RFKILL_MINOR,
1359};
1360
1361static int __init rfkill_init(void)
1362{
1363 int error;
1364
1365 rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1366
1367 error = class_register(&rfkill_class);
1368 if (error)
1369 goto error_class;
1370
1371 error = misc_register(&rfkill_miscdev);
1372 if (error)
1373 goto error_misc;
1374
1375 error = rfkill_global_led_trigger_register();
1376 if (error)
1377 goto error_led_trigger;
1378
1379#ifdef CONFIG_RFKILL_INPUT
1380 error = rfkill_handler_init();
1381 if (error)
1382 goto error_input;
1383#endif
1384
1385 return 0;
1386
1387#ifdef CONFIG_RFKILL_INPUT
1388error_input:
1389 rfkill_global_led_trigger_unregister();
1390#endif
1391error_led_trigger:
1392 misc_deregister(&rfkill_miscdev);
1393error_misc:
1394 class_unregister(&rfkill_class);
1395error_class:
1396 return error;
1397}
1398subsys_initcall(rfkill_init);
1399
1400static void __exit rfkill_exit(void)
1401{
1402#ifdef CONFIG_RFKILL_INPUT
1403 rfkill_handler_exit();
1404#endif
1405 rfkill_global_led_trigger_unregister();
1406 misc_deregister(&rfkill_miscdev);
1407 class_unregister(&rfkill_class);
1408}
1409module_exit(rfkill_exit);
1410
1411MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1412MODULE_ALIAS("devname:" RFKILL_NAME);