Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14};
15
16struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38};
39
40struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53#ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55#endif
56};
57
58static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60/************************ Governor internals ***********************/
61
62static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63{
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(sg_policy->limits_changed)) {
85 sg_policy->limits_changed = false;
86 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
87 return true;
88 }
89
90 delta_ns = time - sg_policy->last_freq_update_time;
91
92 return delta_ns >= sg_policy->freq_update_delay_ns;
93}
94
95static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96 unsigned int next_freq)
97{
98 if (sg_policy->need_freq_update)
99 sg_policy->need_freq_update = false;
100 else if (sg_policy->next_freq == next_freq)
101 return false;
102
103 sg_policy->next_freq = next_freq;
104 sg_policy->last_freq_update_time = time;
105
106 return true;
107}
108
109static void sugov_deferred_update(struct sugov_policy *sg_policy)
110{
111 if (!sg_policy->work_in_progress) {
112 sg_policy->work_in_progress = true;
113 irq_work_queue(&sg_policy->irq_work);
114 }
115}
116
117/**
118 * get_capacity_ref_freq - get the reference frequency that has been used to
119 * correlate frequency and compute capacity for a given cpufreq policy. We use
120 * the CPU managing it for the arch_scale_freq_ref() call in the function.
121 * @policy: the cpufreq policy of the CPU in question.
122 *
123 * Return: the reference CPU frequency to compute a capacity.
124 */
125static __always_inline
126unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127{
128 unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130 if (freq)
131 return freq;
132
133 if (arch_scale_freq_invariant())
134 return policy->cpuinfo.max_freq;
135
136 /*
137 * Apply a 25% margin so that we select a higher frequency than
138 * the current one before the CPU is fully busy:
139 */
140 return policy->cur + (policy->cur >> 2);
141}
142
143/**
144 * get_next_freq - Compute a new frequency for a given cpufreq policy.
145 * @sg_policy: schedutil policy object to compute the new frequency for.
146 * @util: Current CPU utilization.
147 * @max: CPU capacity.
148 *
149 * If the utilization is frequency-invariant, choose the new frequency to be
150 * proportional to it, that is
151 *
152 * next_freq = C * max_freq * util / max
153 *
154 * Otherwise, approximate the would-be frequency-invariant utilization by
155 * util_raw * (curr_freq / max_freq) which leads to
156 *
157 * next_freq = C * curr_freq * util_raw / max
158 *
159 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160 *
161 * The lowest driver-supported frequency which is equal or greater than the raw
162 * next_freq (as calculated above) is returned, subject to policy min/max and
163 * cpufreq driver limitations.
164 */
165static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166 unsigned long util, unsigned long max)
167{
168 struct cpufreq_policy *policy = sg_policy->policy;
169 unsigned int freq;
170
171 freq = get_capacity_ref_freq(policy);
172 freq = map_util_freq(util, freq, max);
173
174 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175 return sg_policy->next_freq;
176
177 sg_policy->cached_raw_freq = freq;
178 return cpufreq_driver_resolve_freq(policy, freq);
179}
180
181unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182 unsigned long min,
183 unsigned long max)
184{
185 /* Add dvfs headroom to actual utilization */
186 actual = map_util_perf(actual);
187 /* Actually we don't need to target the max performance */
188 if (actual < max)
189 max = actual;
190
191 /*
192 * Ensure at least minimum performance while providing more compute
193 * capacity when possible.
194 */
195 return max(min, max);
196}
197
198static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199{
200 unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
201
202 if (!scx_switched_all())
203 util += cpu_util_cfs_boost(sg_cpu->cpu);
204 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
205 util = max(util, boost);
206 sg_cpu->bw_min = min;
207 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
208}
209
210/**
211 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
212 * @sg_cpu: the sugov data for the CPU to boost
213 * @time: the update time from the caller
214 * @set_iowait_boost: true if an IO boost has been requested
215 *
216 * The IO wait boost of a task is disabled after a tick since the last update
217 * of a CPU. If a new IO wait boost is requested after more then a tick, then
218 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
219 * efficiency by ignoring sporadic wakeups from IO.
220 */
221static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
222 bool set_iowait_boost)
223{
224 s64 delta_ns = time - sg_cpu->last_update;
225
226 /* Reset boost only if a tick has elapsed since last request */
227 if (delta_ns <= TICK_NSEC)
228 return false;
229
230 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
231 sg_cpu->iowait_boost_pending = set_iowait_boost;
232
233 return true;
234}
235
236/**
237 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
238 * @sg_cpu: the sugov data for the CPU to boost
239 * @time: the update time from the caller
240 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
241 *
242 * Each time a task wakes up after an IO operation, the CPU utilization can be
243 * boosted to a certain utilization which doubles at each "frequent and
244 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
245 * of the maximum OPP.
246 *
247 * To keep doubling, an IO boost has to be requested at least once per tick,
248 * otherwise we restart from the utilization of the minimum OPP.
249 */
250static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
251 unsigned int flags)
252{
253 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
254
255 /* Reset boost if the CPU appears to have been idle enough */
256 if (sg_cpu->iowait_boost &&
257 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
258 return;
259
260 /* Boost only tasks waking up after IO */
261 if (!set_iowait_boost)
262 return;
263
264 /* Ensure boost doubles only one time at each request */
265 if (sg_cpu->iowait_boost_pending)
266 return;
267 sg_cpu->iowait_boost_pending = true;
268
269 /* Double the boost at each request */
270 if (sg_cpu->iowait_boost) {
271 sg_cpu->iowait_boost =
272 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
273 return;
274 }
275
276 /* First wakeup after IO: start with minimum boost */
277 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
278}
279
280/**
281 * sugov_iowait_apply() - Apply the IO boost to a CPU.
282 * @sg_cpu: the sugov data for the cpu to boost
283 * @time: the update time from the caller
284 * @max_cap: the max CPU capacity
285 *
286 * A CPU running a task which woken up after an IO operation can have its
287 * utilization boosted to speed up the completion of those IO operations.
288 * The IO boost value is increased each time a task wakes up from IO, in
289 * sugov_iowait_apply(), and it's instead decreased by this function,
290 * each time an increase has not been requested (!iowait_boost_pending).
291 *
292 * A CPU which also appears to have been idle for at least one tick has also
293 * its IO boost utilization reset.
294 *
295 * This mechanism is designed to boost high frequently IO waiting tasks, while
296 * being more conservative on tasks which does sporadic IO operations.
297 */
298static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
299 unsigned long max_cap)
300{
301 /* No boost currently required */
302 if (!sg_cpu->iowait_boost)
303 return 0;
304
305 /* Reset boost if the CPU appears to have been idle enough */
306 if (sugov_iowait_reset(sg_cpu, time, false))
307 return 0;
308
309 if (!sg_cpu->iowait_boost_pending) {
310 /*
311 * No boost pending; reduce the boost value.
312 */
313 sg_cpu->iowait_boost >>= 1;
314 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
315 sg_cpu->iowait_boost = 0;
316 return 0;
317 }
318 }
319
320 sg_cpu->iowait_boost_pending = false;
321
322 /*
323 * sg_cpu->util is already in capacity scale; convert iowait_boost
324 * into the same scale so we can compare.
325 */
326 return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
327}
328
329#ifdef CONFIG_NO_HZ_COMMON
330static bool sugov_hold_freq(struct sugov_cpu *sg_cpu)
331{
332 unsigned long idle_calls;
333 bool ret;
334
335 /*
336 * The heuristics in this function is for the fair class. For SCX, the
337 * performance target comes directly from the BPF scheduler. Let's just
338 * follow it.
339 */
340 if (scx_switched_all())
341 return false;
342
343 /* if capped by uclamp_max, always update to be in compliance */
344 if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)))
345 return false;
346
347 /*
348 * Maintain the frequency if the CPU has not been idle recently, as
349 * reduction is likely to be premature.
350 */
351 idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
352 ret = idle_calls == sg_cpu->saved_idle_calls;
353
354 sg_cpu->saved_idle_calls = idle_calls;
355 return ret;
356}
357#else
358static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
359#endif /* CONFIG_NO_HZ_COMMON */
360
361/*
362 * Make sugov_should_update_freq() ignore the rate limit when DL
363 * has increased the utilization.
364 */
365static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
366{
367 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
368 sg_cpu->sg_policy->limits_changed = true;
369}
370
371static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
372 u64 time, unsigned long max_cap,
373 unsigned int flags)
374{
375 unsigned long boost;
376
377 sugov_iowait_boost(sg_cpu, time, flags);
378 sg_cpu->last_update = time;
379
380 ignore_dl_rate_limit(sg_cpu);
381
382 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
383 return false;
384
385 boost = sugov_iowait_apply(sg_cpu, time, max_cap);
386 sugov_get_util(sg_cpu, boost);
387
388 return true;
389}
390
391static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
392 unsigned int flags)
393{
394 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
395 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
396 unsigned int cached_freq = sg_policy->cached_raw_freq;
397 unsigned long max_cap;
398 unsigned int next_f;
399
400 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
401
402 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
403 return;
404
405 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
406
407 if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq &&
408 !sg_policy->need_freq_update) {
409 next_f = sg_policy->next_freq;
410
411 /* Restore cached freq as next_freq has changed */
412 sg_policy->cached_raw_freq = cached_freq;
413 }
414
415 if (!sugov_update_next_freq(sg_policy, time, next_f))
416 return;
417
418 /*
419 * This code runs under rq->lock for the target CPU, so it won't run
420 * concurrently on two different CPUs for the same target and it is not
421 * necessary to acquire the lock in the fast switch case.
422 */
423 if (sg_policy->policy->fast_switch_enabled) {
424 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
425 } else {
426 raw_spin_lock(&sg_policy->update_lock);
427 sugov_deferred_update(sg_policy);
428 raw_spin_unlock(&sg_policy->update_lock);
429 }
430}
431
432static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
433 unsigned int flags)
434{
435 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
436 unsigned long prev_util = sg_cpu->util;
437 unsigned long max_cap;
438
439 /*
440 * Fall back to the "frequency" path if frequency invariance is not
441 * supported, because the direct mapping between the utilization and
442 * the performance levels depends on the frequency invariance.
443 */
444 if (!arch_scale_freq_invariant()) {
445 sugov_update_single_freq(hook, time, flags);
446 return;
447 }
448
449 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
450
451 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
452 return;
453
454 if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util)
455 sg_cpu->util = prev_util;
456
457 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
458 sg_cpu->util, max_cap);
459
460 sg_cpu->sg_policy->last_freq_update_time = time;
461}
462
463static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
464{
465 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466 struct cpufreq_policy *policy = sg_policy->policy;
467 unsigned long util = 0, max_cap;
468 unsigned int j;
469
470 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
471
472 for_each_cpu(j, policy->cpus) {
473 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
474 unsigned long boost;
475
476 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
477 sugov_get_util(j_sg_cpu, boost);
478
479 util = max(j_sg_cpu->util, util);
480 }
481
482 return get_next_freq(sg_policy, util, max_cap);
483}
484
485static void
486sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
487{
488 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
489 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
490 unsigned int next_f;
491
492 raw_spin_lock(&sg_policy->update_lock);
493
494 sugov_iowait_boost(sg_cpu, time, flags);
495 sg_cpu->last_update = time;
496
497 ignore_dl_rate_limit(sg_cpu);
498
499 if (sugov_should_update_freq(sg_policy, time)) {
500 next_f = sugov_next_freq_shared(sg_cpu, time);
501
502 if (!sugov_update_next_freq(sg_policy, time, next_f))
503 goto unlock;
504
505 if (sg_policy->policy->fast_switch_enabled)
506 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
507 else
508 sugov_deferred_update(sg_policy);
509 }
510unlock:
511 raw_spin_unlock(&sg_policy->update_lock);
512}
513
514static void sugov_work(struct kthread_work *work)
515{
516 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
517 unsigned int freq;
518 unsigned long flags;
519
520 /*
521 * Hold sg_policy->update_lock shortly to handle the case where:
522 * in case sg_policy->next_freq is read here, and then updated by
523 * sugov_deferred_update() just before work_in_progress is set to false
524 * here, we may miss queueing the new update.
525 *
526 * Note: If a work was queued after the update_lock is released,
527 * sugov_work() will just be called again by kthread_work code; and the
528 * request will be proceed before the sugov thread sleeps.
529 */
530 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
531 freq = sg_policy->next_freq;
532 sg_policy->work_in_progress = false;
533 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
534
535 mutex_lock(&sg_policy->work_lock);
536 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
537 mutex_unlock(&sg_policy->work_lock);
538}
539
540static void sugov_irq_work(struct irq_work *irq_work)
541{
542 struct sugov_policy *sg_policy;
543
544 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
545
546 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
547}
548
549/************************** sysfs interface ************************/
550
551static struct sugov_tunables *global_tunables;
552static DEFINE_MUTEX(global_tunables_lock);
553
554static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
555{
556 return container_of(attr_set, struct sugov_tunables, attr_set);
557}
558
559static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
560{
561 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562
563 return sprintf(buf, "%u\n", tunables->rate_limit_us);
564}
565
566static ssize_t
567rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
568{
569 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
570 struct sugov_policy *sg_policy;
571 unsigned int rate_limit_us;
572
573 if (kstrtouint(buf, 10, &rate_limit_us))
574 return -EINVAL;
575
576 tunables->rate_limit_us = rate_limit_us;
577
578 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
579 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
580
581 return count;
582}
583
584static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
585
586static struct attribute *sugov_attrs[] = {
587 &rate_limit_us.attr,
588 NULL
589};
590ATTRIBUTE_GROUPS(sugov);
591
592static void sugov_tunables_free(struct kobject *kobj)
593{
594 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
595
596 kfree(to_sugov_tunables(attr_set));
597}
598
599static const struct kobj_type sugov_tunables_ktype = {
600 .default_groups = sugov_groups,
601 .sysfs_ops = &governor_sysfs_ops,
602 .release = &sugov_tunables_free,
603};
604
605/********************** cpufreq governor interface *********************/
606
607#ifdef CONFIG_ENERGY_MODEL
608static void rebuild_sd_workfn(struct work_struct *work)
609{
610 rebuild_sched_domains_energy();
611}
612
613static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
614
615/*
616 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
617 * on governor changes to make sure the scheduler knows about it.
618 */
619static void sugov_eas_rebuild_sd(void)
620{
621 /*
622 * When called from the cpufreq_register_driver() path, the
623 * cpu_hotplug_lock is already held, so use a work item to
624 * avoid nested locking in rebuild_sched_domains().
625 */
626 schedule_work(&rebuild_sd_work);
627}
628#else
629static inline void sugov_eas_rebuild_sd(void) { };
630#endif
631
632struct cpufreq_governor schedutil_gov;
633
634static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
635{
636 struct sugov_policy *sg_policy;
637
638 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
639 if (!sg_policy)
640 return NULL;
641
642 sg_policy->policy = policy;
643 raw_spin_lock_init(&sg_policy->update_lock);
644 return sg_policy;
645}
646
647static void sugov_policy_free(struct sugov_policy *sg_policy)
648{
649 kfree(sg_policy);
650}
651
652static int sugov_kthread_create(struct sugov_policy *sg_policy)
653{
654 struct task_struct *thread;
655 struct sched_attr attr = {
656 .size = sizeof(struct sched_attr),
657 .sched_policy = SCHED_DEADLINE,
658 .sched_flags = SCHED_FLAG_SUGOV,
659 .sched_nice = 0,
660 .sched_priority = 0,
661 /*
662 * Fake (unused) bandwidth; workaround to "fix"
663 * priority inheritance.
664 */
665 .sched_runtime = NSEC_PER_MSEC,
666 .sched_deadline = 10 * NSEC_PER_MSEC,
667 .sched_period = 10 * NSEC_PER_MSEC,
668 };
669 struct cpufreq_policy *policy = sg_policy->policy;
670 int ret;
671
672 /* kthread only required for slow path */
673 if (policy->fast_switch_enabled)
674 return 0;
675
676 kthread_init_work(&sg_policy->work, sugov_work);
677 kthread_init_worker(&sg_policy->worker);
678 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
679 "sugov:%d",
680 cpumask_first(policy->related_cpus));
681 if (IS_ERR(thread)) {
682 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
683 return PTR_ERR(thread);
684 }
685
686 ret = sched_setattr_nocheck(thread, &attr);
687 if (ret) {
688 kthread_stop(thread);
689 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
690 return ret;
691 }
692
693 sg_policy->thread = thread;
694 kthread_bind_mask(thread, policy->related_cpus);
695 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
696 mutex_init(&sg_policy->work_lock);
697
698 wake_up_process(thread);
699
700 return 0;
701}
702
703static void sugov_kthread_stop(struct sugov_policy *sg_policy)
704{
705 /* kthread only required for slow path */
706 if (sg_policy->policy->fast_switch_enabled)
707 return;
708
709 kthread_flush_worker(&sg_policy->worker);
710 kthread_stop(sg_policy->thread);
711 mutex_destroy(&sg_policy->work_lock);
712}
713
714static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
715{
716 struct sugov_tunables *tunables;
717
718 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
719 if (tunables) {
720 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
721 if (!have_governor_per_policy())
722 global_tunables = tunables;
723 }
724 return tunables;
725}
726
727static void sugov_clear_global_tunables(void)
728{
729 if (!have_governor_per_policy())
730 global_tunables = NULL;
731}
732
733static int sugov_init(struct cpufreq_policy *policy)
734{
735 struct sugov_policy *sg_policy;
736 struct sugov_tunables *tunables;
737 int ret = 0;
738
739 /* State should be equivalent to EXIT */
740 if (policy->governor_data)
741 return -EBUSY;
742
743 cpufreq_enable_fast_switch(policy);
744
745 sg_policy = sugov_policy_alloc(policy);
746 if (!sg_policy) {
747 ret = -ENOMEM;
748 goto disable_fast_switch;
749 }
750
751 ret = sugov_kthread_create(sg_policy);
752 if (ret)
753 goto free_sg_policy;
754
755 mutex_lock(&global_tunables_lock);
756
757 if (global_tunables) {
758 if (WARN_ON(have_governor_per_policy())) {
759 ret = -EINVAL;
760 goto stop_kthread;
761 }
762 policy->governor_data = sg_policy;
763 sg_policy->tunables = global_tunables;
764
765 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
766 goto out;
767 }
768
769 tunables = sugov_tunables_alloc(sg_policy);
770 if (!tunables) {
771 ret = -ENOMEM;
772 goto stop_kthread;
773 }
774
775 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
776
777 policy->governor_data = sg_policy;
778 sg_policy->tunables = tunables;
779
780 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
781 get_governor_parent_kobj(policy), "%s",
782 schedutil_gov.name);
783 if (ret)
784 goto fail;
785
786out:
787 sugov_eas_rebuild_sd();
788 mutex_unlock(&global_tunables_lock);
789 return 0;
790
791fail:
792 kobject_put(&tunables->attr_set.kobj);
793 policy->governor_data = NULL;
794 sugov_clear_global_tunables();
795
796stop_kthread:
797 sugov_kthread_stop(sg_policy);
798 mutex_unlock(&global_tunables_lock);
799
800free_sg_policy:
801 sugov_policy_free(sg_policy);
802
803disable_fast_switch:
804 cpufreq_disable_fast_switch(policy);
805
806 pr_err("initialization failed (error %d)\n", ret);
807 return ret;
808}
809
810static void sugov_exit(struct cpufreq_policy *policy)
811{
812 struct sugov_policy *sg_policy = policy->governor_data;
813 struct sugov_tunables *tunables = sg_policy->tunables;
814 unsigned int count;
815
816 mutex_lock(&global_tunables_lock);
817
818 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
819 policy->governor_data = NULL;
820 if (!count)
821 sugov_clear_global_tunables();
822
823 mutex_unlock(&global_tunables_lock);
824
825 sugov_kthread_stop(sg_policy);
826 sugov_policy_free(sg_policy);
827 cpufreq_disable_fast_switch(policy);
828
829 sugov_eas_rebuild_sd();
830}
831
832static int sugov_start(struct cpufreq_policy *policy)
833{
834 struct sugov_policy *sg_policy = policy->governor_data;
835 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
836 unsigned int cpu;
837
838 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
839 sg_policy->last_freq_update_time = 0;
840 sg_policy->next_freq = 0;
841 sg_policy->work_in_progress = false;
842 sg_policy->limits_changed = false;
843 sg_policy->cached_raw_freq = 0;
844
845 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
846
847 if (policy_is_shared(policy))
848 uu = sugov_update_shared;
849 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
850 uu = sugov_update_single_perf;
851 else
852 uu = sugov_update_single_freq;
853
854 for_each_cpu(cpu, policy->cpus) {
855 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
856
857 memset(sg_cpu, 0, sizeof(*sg_cpu));
858 sg_cpu->cpu = cpu;
859 sg_cpu->sg_policy = sg_policy;
860 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
861 }
862 return 0;
863}
864
865static void sugov_stop(struct cpufreq_policy *policy)
866{
867 struct sugov_policy *sg_policy = policy->governor_data;
868 unsigned int cpu;
869
870 for_each_cpu(cpu, policy->cpus)
871 cpufreq_remove_update_util_hook(cpu);
872
873 synchronize_rcu();
874
875 if (!policy->fast_switch_enabled) {
876 irq_work_sync(&sg_policy->irq_work);
877 kthread_cancel_work_sync(&sg_policy->work);
878 }
879}
880
881static void sugov_limits(struct cpufreq_policy *policy)
882{
883 struct sugov_policy *sg_policy = policy->governor_data;
884
885 if (!policy->fast_switch_enabled) {
886 mutex_lock(&sg_policy->work_lock);
887 cpufreq_policy_apply_limits(policy);
888 mutex_unlock(&sg_policy->work_lock);
889 }
890
891 sg_policy->limits_changed = true;
892}
893
894struct cpufreq_governor schedutil_gov = {
895 .name = "schedutil",
896 .owner = THIS_MODULE,
897 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
898 .init = sugov_init,
899 .exit = sugov_exit,
900 .start = sugov_start,
901 .stop = sugov_stop,
902 .limits = sugov_limits,
903};
904
905#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906struct cpufreq_governor *cpufreq_default_governor(void)
907{
908 return &schedutil_gov;
909}
910#endif
911
912cpufreq_governor_init(schedutil_gov);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include "sched.h"
12
13#include <linux/sched/cpufreq.h>
14#include <trace/events/power.h>
15
16#define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
17
18struct sugov_tunables {
19 struct gov_attr_set attr_set;
20 unsigned int rate_limit_us;
21};
22
23struct sugov_policy {
24 struct cpufreq_policy *policy;
25
26 struct sugov_tunables *tunables;
27 struct list_head tunables_hook;
28
29 raw_spinlock_t update_lock;
30 u64 last_freq_update_time;
31 s64 freq_update_delay_ns;
32 unsigned int next_freq;
33 unsigned int cached_raw_freq;
34
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work;
37 struct kthread_work work;
38 struct mutex work_lock;
39 struct kthread_worker worker;
40 struct task_struct *thread;
41 bool work_in_progress;
42
43 bool limits_changed;
44 bool need_freq_update;
45};
46
47struct sugov_cpu {
48 struct update_util_data update_util;
49 struct sugov_policy *sg_policy;
50 unsigned int cpu;
51
52 bool iowait_boost_pending;
53 unsigned int iowait_boost;
54 u64 last_update;
55
56 unsigned long util;
57 unsigned long bw_dl;
58 unsigned long max;
59
60 /* The field below is for single-CPU policies only: */
61#ifdef CONFIG_NO_HZ_COMMON
62 unsigned long saved_idle_calls;
63#endif
64};
65
66static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67
68/************************ Governor internals ***********************/
69
70static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71{
72 s64 delta_ns;
73
74 /*
75 * Since cpufreq_update_util() is called with rq->lock held for
76 * the @target_cpu, our per-CPU data is fully serialized.
77 *
78 * However, drivers cannot in general deal with cross-CPU
79 * requests, so while get_next_freq() will work, our
80 * sugov_update_commit() call may not for the fast switching platforms.
81 *
82 * Hence stop here for remote requests if they aren't supported
83 * by the hardware, as calculating the frequency is pointless if
84 * we cannot in fact act on it.
85 *
86 * This is needed on the slow switching platforms too to prevent CPUs
87 * going offline from leaving stale IRQ work items behind.
88 */
89 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 return false;
91
92 if (unlikely(sg_policy->limits_changed)) {
93 sg_policy->limits_changed = false;
94 sg_policy->need_freq_update = true;
95 return true;
96 }
97
98 delta_ns = time - sg_policy->last_freq_update_time;
99
100 return delta_ns >= sg_policy->freq_update_delay_ns;
101}
102
103static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 unsigned int next_freq)
105{
106 if (sg_policy->need_freq_update)
107 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
108 else if (sg_policy->next_freq == next_freq)
109 return false;
110
111 sg_policy->next_freq = next_freq;
112 sg_policy->last_freq_update_time = time;
113
114 return true;
115}
116
117static void sugov_deferred_update(struct sugov_policy *sg_policy)
118{
119 if (!sg_policy->work_in_progress) {
120 sg_policy->work_in_progress = true;
121 irq_work_queue(&sg_policy->irq_work);
122 }
123}
124
125/**
126 * get_next_freq - Compute a new frequency for a given cpufreq policy.
127 * @sg_policy: schedutil policy object to compute the new frequency for.
128 * @util: Current CPU utilization.
129 * @max: CPU capacity.
130 *
131 * If the utilization is frequency-invariant, choose the new frequency to be
132 * proportional to it, that is
133 *
134 * next_freq = C * max_freq * util / max
135 *
136 * Otherwise, approximate the would-be frequency-invariant utilization by
137 * util_raw * (curr_freq / max_freq) which leads to
138 *
139 * next_freq = C * curr_freq * util_raw / max
140 *
141 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
142 *
143 * The lowest driver-supported frequency which is equal or greater than the raw
144 * next_freq (as calculated above) is returned, subject to policy min/max and
145 * cpufreq driver limitations.
146 */
147static unsigned int get_next_freq(struct sugov_policy *sg_policy,
148 unsigned long util, unsigned long max)
149{
150 struct cpufreq_policy *policy = sg_policy->policy;
151 unsigned int freq = arch_scale_freq_invariant() ?
152 policy->cpuinfo.max_freq : policy->cur;
153
154 util = map_util_perf(util);
155 freq = map_util_freq(util, freq, max);
156
157 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
158 return sg_policy->next_freq;
159
160 sg_policy->cached_raw_freq = freq;
161 return cpufreq_driver_resolve_freq(policy, freq);
162}
163
164static void sugov_get_util(struct sugov_cpu *sg_cpu)
165{
166 struct rq *rq = cpu_rq(sg_cpu->cpu);
167 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
168
169 sg_cpu->max = max;
170 sg_cpu->bw_dl = cpu_bw_dl(rq);
171 sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max,
172 FREQUENCY_UTIL, NULL);
173}
174
175/**
176 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
177 * @sg_cpu: the sugov data for the CPU to boost
178 * @time: the update time from the caller
179 * @set_iowait_boost: true if an IO boost has been requested
180 *
181 * The IO wait boost of a task is disabled after a tick since the last update
182 * of a CPU. If a new IO wait boost is requested after more then a tick, then
183 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
184 * efficiency by ignoring sporadic wakeups from IO.
185 */
186static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
187 bool set_iowait_boost)
188{
189 s64 delta_ns = time - sg_cpu->last_update;
190
191 /* Reset boost only if a tick has elapsed since last request */
192 if (delta_ns <= TICK_NSEC)
193 return false;
194
195 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
196 sg_cpu->iowait_boost_pending = set_iowait_boost;
197
198 return true;
199}
200
201/**
202 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
203 * @sg_cpu: the sugov data for the CPU to boost
204 * @time: the update time from the caller
205 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
206 *
207 * Each time a task wakes up after an IO operation, the CPU utilization can be
208 * boosted to a certain utilization which doubles at each "frequent and
209 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
210 * of the maximum OPP.
211 *
212 * To keep doubling, an IO boost has to be requested at least once per tick,
213 * otherwise we restart from the utilization of the minimum OPP.
214 */
215static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
216 unsigned int flags)
217{
218 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
219
220 /* Reset boost if the CPU appears to have been idle enough */
221 if (sg_cpu->iowait_boost &&
222 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
223 return;
224
225 /* Boost only tasks waking up after IO */
226 if (!set_iowait_boost)
227 return;
228
229 /* Ensure boost doubles only one time at each request */
230 if (sg_cpu->iowait_boost_pending)
231 return;
232 sg_cpu->iowait_boost_pending = true;
233
234 /* Double the boost at each request */
235 if (sg_cpu->iowait_boost) {
236 sg_cpu->iowait_boost =
237 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
238 return;
239 }
240
241 /* First wakeup after IO: start with minimum boost */
242 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
243}
244
245/**
246 * sugov_iowait_apply() - Apply the IO boost to a CPU.
247 * @sg_cpu: the sugov data for the cpu to boost
248 * @time: the update time from the caller
249 *
250 * A CPU running a task which woken up after an IO operation can have its
251 * utilization boosted to speed up the completion of those IO operations.
252 * The IO boost value is increased each time a task wakes up from IO, in
253 * sugov_iowait_apply(), and it's instead decreased by this function,
254 * each time an increase has not been requested (!iowait_boost_pending).
255 *
256 * A CPU which also appears to have been idle for at least one tick has also
257 * its IO boost utilization reset.
258 *
259 * This mechanism is designed to boost high frequently IO waiting tasks, while
260 * being more conservative on tasks which does sporadic IO operations.
261 */
262static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
263{
264 unsigned long boost;
265
266 /* No boost currently required */
267 if (!sg_cpu->iowait_boost)
268 return;
269
270 /* Reset boost if the CPU appears to have been idle enough */
271 if (sugov_iowait_reset(sg_cpu, time, false))
272 return;
273
274 if (!sg_cpu->iowait_boost_pending) {
275 /*
276 * No boost pending; reduce the boost value.
277 */
278 sg_cpu->iowait_boost >>= 1;
279 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
280 sg_cpu->iowait_boost = 0;
281 return;
282 }
283 }
284
285 sg_cpu->iowait_boost_pending = false;
286
287 /*
288 * sg_cpu->util is already in capacity scale; convert iowait_boost
289 * into the same scale so we can compare.
290 */
291 boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
292 if (sg_cpu->util < boost)
293 sg_cpu->util = boost;
294}
295
296#ifdef CONFIG_NO_HZ_COMMON
297static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
298{
299 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
300 bool ret = idle_calls == sg_cpu->saved_idle_calls;
301
302 sg_cpu->saved_idle_calls = idle_calls;
303 return ret;
304}
305#else
306static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
307#endif /* CONFIG_NO_HZ_COMMON */
308
309/*
310 * Make sugov_should_update_freq() ignore the rate limit when DL
311 * has increased the utilization.
312 */
313static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
314{
315 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
316 sg_cpu->sg_policy->limits_changed = true;
317}
318
319static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
320 u64 time, unsigned int flags)
321{
322 sugov_iowait_boost(sg_cpu, time, flags);
323 sg_cpu->last_update = time;
324
325 ignore_dl_rate_limit(sg_cpu);
326
327 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
328 return false;
329
330 sugov_get_util(sg_cpu);
331 sugov_iowait_apply(sg_cpu, time);
332
333 return true;
334}
335
336static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
337 unsigned int flags)
338{
339 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
340 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
341 unsigned int cached_freq = sg_policy->cached_raw_freq;
342 unsigned int next_f;
343
344 if (!sugov_update_single_common(sg_cpu, time, flags))
345 return;
346
347 next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
348 /*
349 * Do not reduce the frequency if the CPU has not been idle
350 * recently, as the reduction is likely to be premature then.
351 */
352 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
353 next_f = sg_policy->next_freq;
354
355 /* Restore cached freq as next_freq has changed */
356 sg_policy->cached_raw_freq = cached_freq;
357 }
358
359 if (!sugov_update_next_freq(sg_policy, time, next_f))
360 return;
361
362 /*
363 * This code runs under rq->lock for the target CPU, so it won't run
364 * concurrently on two different CPUs for the same target and it is not
365 * necessary to acquire the lock in the fast switch case.
366 */
367 if (sg_policy->policy->fast_switch_enabled) {
368 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
369 } else {
370 raw_spin_lock(&sg_policy->update_lock);
371 sugov_deferred_update(sg_policy);
372 raw_spin_unlock(&sg_policy->update_lock);
373 }
374}
375
376static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
377 unsigned int flags)
378{
379 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
380 unsigned long prev_util = sg_cpu->util;
381
382 /*
383 * Fall back to the "frequency" path if frequency invariance is not
384 * supported, because the direct mapping between the utilization and
385 * the performance levels depends on the frequency invariance.
386 */
387 if (!arch_scale_freq_invariant()) {
388 sugov_update_single_freq(hook, time, flags);
389 return;
390 }
391
392 if (!sugov_update_single_common(sg_cpu, time, flags))
393 return;
394
395 /*
396 * Do not reduce the target performance level if the CPU has not been
397 * idle recently, as the reduction is likely to be premature then.
398 */
399 if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
400 sg_cpu->util = prev_util;
401
402 cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
403 map_util_perf(sg_cpu->util), sg_cpu->max);
404
405 sg_cpu->sg_policy->last_freq_update_time = time;
406}
407
408static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
409{
410 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
411 struct cpufreq_policy *policy = sg_policy->policy;
412 unsigned long util = 0, max = 1;
413 unsigned int j;
414
415 for_each_cpu(j, policy->cpus) {
416 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
417 unsigned long j_util, j_max;
418
419 sugov_get_util(j_sg_cpu);
420 sugov_iowait_apply(j_sg_cpu, time);
421 j_util = j_sg_cpu->util;
422 j_max = j_sg_cpu->max;
423
424 if (j_util * max > j_max * util) {
425 util = j_util;
426 max = j_max;
427 }
428 }
429
430 return get_next_freq(sg_policy, util, max);
431}
432
433static void
434sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
435{
436 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438 unsigned int next_f;
439
440 raw_spin_lock(&sg_policy->update_lock);
441
442 sugov_iowait_boost(sg_cpu, time, flags);
443 sg_cpu->last_update = time;
444
445 ignore_dl_rate_limit(sg_cpu);
446
447 if (sugov_should_update_freq(sg_policy, time)) {
448 next_f = sugov_next_freq_shared(sg_cpu, time);
449
450 if (!sugov_update_next_freq(sg_policy, time, next_f))
451 goto unlock;
452
453 if (sg_policy->policy->fast_switch_enabled)
454 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
455 else
456 sugov_deferred_update(sg_policy);
457 }
458unlock:
459 raw_spin_unlock(&sg_policy->update_lock);
460}
461
462static void sugov_work(struct kthread_work *work)
463{
464 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
465 unsigned int freq;
466 unsigned long flags;
467
468 /*
469 * Hold sg_policy->update_lock shortly to handle the case where:
470 * in case sg_policy->next_freq is read here, and then updated by
471 * sugov_deferred_update() just before work_in_progress is set to false
472 * here, we may miss queueing the new update.
473 *
474 * Note: If a work was queued after the update_lock is released,
475 * sugov_work() will just be called again by kthread_work code; and the
476 * request will be proceed before the sugov thread sleeps.
477 */
478 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
479 freq = sg_policy->next_freq;
480 sg_policy->work_in_progress = false;
481 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
482
483 mutex_lock(&sg_policy->work_lock);
484 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
485 mutex_unlock(&sg_policy->work_lock);
486}
487
488static void sugov_irq_work(struct irq_work *irq_work)
489{
490 struct sugov_policy *sg_policy;
491
492 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
493
494 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
495}
496
497/************************** sysfs interface ************************/
498
499static struct sugov_tunables *global_tunables;
500static DEFINE_MUTEX(global_tunables_lock);
501
502static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
503{
504 return container_of(attr_set, struct sugov_tunables, attr_set);
505}
506
507static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
508{
509 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
510
511 return sprintf(buf, "%u\n", tunables->rate_limit_us);
512}
513
514static ssize_t
515rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
516{
517 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
518 struct sugov_policy *sg_policy;
519 unsigned int rate_limit_us;
520
521 if (kstrtouint(buf, 10, &rate_limit_us))
522 return -EINVAL;
523
524 tunables->rate_limit_us = rate_limit_us;
525
526 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
527 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
528
529 return count;
530}
531
532static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
533
534static struct attribute *sugov_attrs[] = {
535 &rate_limit_us.attr,
536 NULL
537};
538ATTRIBUTE_GROUPS(sugov);
539
540static void sugov_tunables_free(struct kobject *kobj)
541{
542 struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
543
544 kfree(to_sugov_tunables(attr_set));
545}
546
547static struct kobj_type sugov_tunables_ktype = {
548 .default_groups = sugov_groups,
549 .sysfs_ops = &governor_sysfs_ops,
550 .release = &sugov_tunables_free,
551};
552
553/********************** cpufreq governor interface *********************/
554
555struct cpufreq_governor schedutil_gov;
556
557static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
558{
559 struct sugov_policy *sg_policy;
560
561 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
562 if (!sg_policy)
563 return NULL;
564
565 sg_policy->policy = policy;
566 raw_spin_lock_init(&sg_policy->update_lock);
567 return sg_policy;
568}
569
570static void sugov_policy_free(struct sugov_policy *sg_policy)
571{
572 kfree(sg_policy);
573}
574
575static int sugov_kthread_create(struct sugov_policy *sg_policy)
576{
577 struct task_struct *thread;
578 struct sched_attr attr = {
579 .size = sizeof(struct sched_attr),
580 .sched_policy = SCHED_DEADLINE,
581 .sched_flags = SCHED_FLAG_SUGOV,
582 .sched_nice = 0,
583 .sched_priority = 0,
584 /*
585 * Fake (unused) bandwidth; workaround to "fix"
586 * priority inheritance.
587 */
588 .sched_runtime = 1000000,
589 .sched_deadline = 10000000,
590 .sched_period = 10000000,
591 };
592 struct cpufreq_policy *policy = sg_policy->policy;
593 int ret;
594
595 /* kthread only required for slow path */
596 if (policy->fast_switch_enabled)
597 return 0;
598
599 kthread_init_work(&sg_policy->work, sugov_work);
600 kthread_init_worker(&sg_policy->worker);
601 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
602 "sugov:%d",
603 cpumask_first(policy->related_cpus));
604 if (IS_ERR(thread)) {
605 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
606 return PTR_ERR(thread);
607 }
608
609 ret = sched_setattr_nocheck(thread, &attr);
610 if (ret) {
611 kthread_stop(thread);
612 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
613 return ret;
614 }
615
616 sg_policy->thread = thread;
617 kthread_bind_mask(thread, policy->related_cpus);
618 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
619 mutex_init(&sg_policy->work_lock);
620
621 wake_up_process(thread);
622
623 return 0;
624}
625
626static void sugov_kthread_stop(struct sugov_policy *sg_policy)
627{
628 /* kthread only required for slow path */
629 if (sg_policy->policy->fast_switch_enabled)
630 return;
631
632 kthread_flush_worker(&sg_policy->worker);
633 kthread_stop(sg_policy->thread);
634 mutex_destroy(&sg_policy->work_lock);
635}
636
637static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
638{
639 struct sugov_tunables *tunables;
640
641 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
642 if (tunables) {
643 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
644 if (!have_governor_per_policy())
645 global_tunables = tunables;
646 }
647 return tunables;
648}
649
650static void sugov_clear_global_tunables(void)
651{
652 if (!have_governor_per_policy())
653 global_tunables = NULL;
654}
655
656static int sugov_init(struct cpufreq_policy *policy)
657{
658 struct sugov_policy *sg_policy;
659 struct sugov_tunables *tunables;
660 int ret = 0;
661
662 /* State should be equivalent to EXIT */
663 if (policy->governor_data)
664 return -EBUSY;
665
666 cpufreq_enable_fast_switch(policy);
667
668 sg_policy = sugov_policy_alloc(policy);
669 if (!sg_policy) {
670 ret = -ENOMEM;
671 goto disable_fast_switch;
672 }
673
674 ret = sugov_kthread_create(sg_policy);
675 if (ret)
676 goto free_sg_policy;
677
678 mutex_lock(&global_tunables_lock);
679
680 if (global_tunables) {
681 if (WARN_ON(have_governor_per_policy())) {
682 ret = -EINVAL;
683 goto stop_kthread;
684 }
685 policy->governor_data = sg_policy;
686 sg_policy->tunables = global_tunables;
687
688 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
689 goto out;
690 }
691
692 tunables = sugov_tunables_alloc(sg_policy);
693 if (!tunables) {
694 ret = -ENOMEM;
695 goto stop_kthread;
696 }
697
698 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
699
700 policy->governor_data = sg_policy;
701 sg_policy->tunables = tunables;
702
703 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
704 get_governor_parent_kobj(policy), "%s",
705 schedutil_gov.name);
706 if (ret)
707 goto fail;
708
709out:
710 mutex_unlock(&global_tunables_lock);
711 return 0;
712
713fail:
714 kobject_put(&tunables->attr_set.kobj);
715 policy->governor_data = NULL;
716 sugov_clear_global_tunables();
717
718stop_kthread:
719 sugov_kthread_stop(sg_policy);
720 mutex_unlock(&global_tunables_lock);
721
722free_sg_policy:
723 sugov_policy_free(sg_policy);
724
725disable_fast_switch:
726 cpufreq_disable_fast_switch(policy);
727
728 pr_err("initialization failed (error %d)\n", ret);
729 return ret;
730}
731
732static void sugov_exit(struct cpufreq_policy *policy)
733{
734 struct sugov_policy *sg_policy = policy->governor_data;
735 struct sugov_tunables *tunables = sg_policy->tunables;
736 unsigned int count;
737
738 mutex_lock(&global_tunables_lock);
739
740 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
741 policy->governor_data = NULL;
742 if (!count)
743 sugov_clear_global_tunables();
744
745 mutex_unlock(&global_tunables_lock);
746
747 sugov_kthread_stop(sg_policy);
748 sugov_policy_free(sg_policy);
749 cpufreq_disable_fast_switch(policy);
750}
751
752static int sugov_start(struct cpufreq_policy *policy)
753{
754 struct sugov_policy *sg_policy = policy->governor_data;
755 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
756 unsigned int cpu;
757
758 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
759 sg_policy->last_freq_update_time = 0;
760 sg_policy->next_freq = 0;
761 sg_policy->work_in_progress = false;
762 sg_policy->limits_changed = false;
763 sg_policy->cached_raw_freq = 0;
764
765 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
766
767 for_each_cpu(cpu, policy->cpus) {
768 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
769
770 memset(sg_cpu, 0, sizeof(*sg_cpu));
771 sg_cpu->cpu = cpu;
772 sg_cpu->sg_policy = sg_policy;
773 }
774
775 if (policy_is_shared(policy))
776 uu = sugov_update_shared;
777 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
778 uu = sugov_update_single_perf;
779 else
780 uu = sugov_update_single_freq;
781
782 for_each_cpu(cpu, policy->cpus) {
783 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
784
785 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
786 }
787 return 0;
788}
789
790static void sugov_stop(struct cpufreq_policy *policy)
791{
792 struct sugov_policy *sg_policy = policy->governor_data;
793 unsigned int cpu;
794
795 for_each_cpu(cpu, policy->cpus)
796 cpufreq_remove_update_util_hook(cpu);
797
798 synchronize_rcu();
799
800 if (!policy->fast_switch_enabled) {
801 irq_work_sync(&sg_policy->irq_work);
802 kthread_cancel_work_sync(&sg_policy->work);
803 }
804}
805
806static void sugov_limits(struct cpufreq_policy *policy)
807{
808 struct sugov_policy *sg_policy = policy->governor_data;
809
810 if (!policy->fast_switch_enabled) {
811 mutex_lock(&sg_policy->work_lock);
812 cpufreq_policy_apply_limits(policy);
813 mutex_unlock(&sg_policy->work_lock);
814 }
815
816 sg_policy->limits_changed = true;
817}
818
819struct cpufreq_governor schedutil_gov = {
820 .name = "schedutil",
821 .owner = THIS_MODULE,
822 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
823 .init = sugov_init,
824 .exit = sugov_exit,
825 .start = sugov_start,
826 .stop = sugov_stop,
827 .limits = sugov_limits,
828};
829
830#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
831struct cpufreq_governor *cpufreq_default_governor(void)
832{
833 return &schedutil_gov;
834}
835#endif
836
837cpufreq_governor_init(schedutil_gov);
838
839#ifdef CONFIG_ENERGY_MODEL
840static void rebuild_sd_workfn(struct work_struct *work)
841{
842 rebuild_sched_domains_energy();
843}
844static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
845
846/*
847 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
848 * on governor changes to make sure the scheduler knows about it.
849 */
850void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
851 struct cpufreq_governor *old_gov)
852{
853 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
854 /*
855 * When called from the cpufreq_register_driver() path, the
856 * cpu_hotplug_lock is already held, so use a work item to
857 * avoid nested locking in rebuild_sched_domains().
858 */
859 schedule_work(&rebuild_sd_work);
860 }
861
862}
863#endif