Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.13.7
 1// SPDX-License-Identifier: GPL-2.0-or-later
 2/*
 3 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
 4 */
 5
 6#include <linux/preempt.h>
 
 
 7#include <linux/kdb.h>
 8#include <linux/smp.h>
 9#include <linux/cpumask.h>
 
10#include <linux/printk.h>
11#include <linux/kprobes.h>
12
13#include "internal.h"
14
15/* Context where printk messages are never suppressed */
16static atomic_t force_con;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
18void printk_force_console_enter(void)
 
 
 
 
 
 
 
 
 
 
19{
20	atomic_inc(&force_con);
 
21}
22
23void printk_force_console_exit(void)
 
 
 
 
 
 
 
 
 
 
 
24{
25	atomic_dec(&force_con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26}
27
28bool is_printk_force_console(void)
29{
30	return atomic_read(&force_con);
 
 
 
 
 
 
31}
32
33static DEFINE_PER_CPU(int, printk_context);
34
35/* Can be preempted by NMI. */
36void __printk_safe_enter(void)
37{
38	this_cpu_inc(printk_context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39}
40
41/* Can be preempted by NMI. */
42void __printk_safe_exit(void)
43{
44	this_cpu_dec(printk_context);
 
 
 
45}
46
47void __printk_deferred_enter(void)
 
 
 
 
48{
49	cant_migrate();
50	__printk_safe_enter();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51}
52
53void __printk_deferred_exit(void)
 
 
 
 
 
 
 
54{
55	cant_migrate();
56	__printk_safe_exit();
 
 
 
 
 
 
57}
58
59bool is_printk_legacy_deferred(void)
 
 
 
 
 
 
 
 
 
 
60{
61	/*
62	 * The per-CPU variable @printk_context can be read safely in any
63	 * context. CPU migration is always disabled when set.
64	 *
65	 * A context holding the printk_cpu_sync must not spin waiting for
66	 * another CPU. For legacy printing, it could be the console_lock
67	 * or the port lock.
68	 */
69	return (force_legacy_kthread() ||
70		this_cpu_read(printk_context) ||
71		in_nmi() ||
72		is_printk_cpu_sync_owner());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73}
74
75asmlinkage int vprintk(const char *fmt, va_list args)
76{
77#ifdef CONFIG_KGDB_KDB
78	/* Allow to pass printk() to kdb but avoid a recursion. */
79	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
80		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
81#endif
82
83	/*
84	 * Use the main logbuf even in NMI. But avoid calling console
85	 * drivers that might have their own locks.
86	 */
87	if (is_printk_legacy_deferred())
88		return vprintk_deferred(fmt, args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
90	/* No obstacles. */
91	return vprintk_default(fmt, args);
92}
93EXPORT_SYMBOL(vprintk);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
  4 */
  5
  6#include <linux/preempt.h>
  7#include <linux/spinlock.h>
  8#include <linux/debug_locks.h>
  9#include <linux/kdb.h>
 10#include <linux/smp.h>
 11#include <linux/cpumask.h>
 12#include <linux/irq_work.h>
 13#include <linux/printk.h>
 14#include <linux/kprobes.h>
 15
 16#include "internal.h"
 17
 18/*
 19 * In NMI and safe mode, printk() avoids taking locks. Instead,
 20 * it uses an alternative implementation that temporary stores
 21 * the strings into a per-CPU buffer. The content of the buffer
 22 * is later flushed into the main ring buffer via IRQ work.
 23 *
 24 * The alternative implementation is chosen transparently
 25 * by examining current printk() context mask stored in @printk_context
 26 * per-CPU variable.
 27 *
 28 * The implementation allows to flush the strings also from another CPU.
 29 * There are situations when we want to make sure that all buffers
 30 * were handled or when IRQs are blocked.
 31 */
 32
 33#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
 34				sizeof(atomic_t) -			\
 35				sizeof(atomic_t) -			\
 36				sizeof(struct irq_work))
 37
 38struct printk_safe_seq_buf {
 39	atomic_t		len;	/* length of written data */
 40	atomic_t		message_lost;
 41	struct irq_work		work;	/* IRQ work that flushes the buffer */
 42	unsigned char		buffer[SAFE_LOG_BUF_LEN];
 43};
 44
 45static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
 46static DEFINE_PER_CPU(int, printk_context);
 47
 48static DEFINE_RAW_SPINLOCK(safe_read_lock);
 49
 50#ifdef CONFIG_PRINTK_NMI
 51static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
 52#endif
 53
 54/* Get flushed in a more safe context. */
 55static void queue_flush_work(struct printk_safe_seq_buf *s)
 56{
 57	if (printk_percpu_data_ready())
 58		irq_work_queue(&s->work);
 59}
 60
 61/*
 62 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
 63 * have dedicated buffers, because otherwise printk-safe preempted by
 64 * NMI-printk would have overwritten the NMI messages.
 65 *
 66 * The messages are flushed from irq work (or from panic()), possibly,
 67 * from other CPU, concurrently with printk_safe_log_store(). Should this
 68 * happen, printk_safe_log_store() will notice the buffer->len mismatch
 69 * and repeat the write.
 70 */
 71static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
 72						const char *fmt, va_list args)
 73{
 74	int add;
 75	size_t len;
 76	va_list ap;
 77
 78again:
 79	len = atomic_read(&s->len);
 80
 81	/* The trailing '\0' is not counted into len. */
 82	if (len >= sizeof(s->buffer) - 1) {
 83		atomic_inc(&s->message_lost);
 84		queue_flush_work(s);
 85		return 0;
 86	}
 87
 88	/*
 89	 * Make sure that all old data have been read before the buffer
 90	 * was reset. This is not needed when we just append data.
 91	 */
 92	if (!len)
 93		smp_rmb();
 94
 95	va_copy(ap, args);
 96	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
 97	va_end(ap);
 98	if (!add)
 99		return 0;
100
101	/*
102	 * Do it once again if the buffer has been flushed in the meantime.
103	 * Note that atomic_cmpxchg() is an implicit memory barrier that
104	 * makes sure that the data were written before updating s->len.
105	 */
106	if (atomic_cmpxchg(&s->len, len, len + add) != len)
107		goto again;
108
109	queue_flush_work(s);
110	return add;
111}
112
113static inline void printk_safe_flush_line(const char *text, int len)
114{
115	/*
116	 * Avoid any console drivers calls from here, because we may be
117	 * in NMI or printk_safe context (when in panic). The messages
118	 * must go only into the ring buffer at this stage.  Consoles will
119	 * get explicitly called later when a crashdump is not generated.
120	 */
121	printk_deferred("%.*s", len, text);
122}
123
124/* printk part of the temporary buffer line by line */
125static int printk_safe_flush_buffer(const char *start, size_t len)
 
 
126{
127	const char *c, *end;
128	bool header;
129
130	c = start;
131	end = start + len;
132	header = true;
133
134	/* Print line by line. */
135	while (c < end) {
136		if (*c == '\n') {
137			printk_safe_flush_line(start, c - start + 1);
138			start = ++c;
139			header = true;
140			continue;
141		}
142
143		/* Handle continuous lines or missing new line. */
144		if ((c + 1 < end) && printk_get_level(c)) {
145			if (header) {
146				c = printk_skip_level(c);
147				continue;
148			}
149
150			printk_safe_flush_line(start, c - start);
151			start = c++;
152			header = true;
153			continue;
154		}
155
156		header = false;
157		c++;
158	}
159
160	/* Check if there was a partial line. Ignore pure header. */
161	if (start < end && !header) {
162		static const char newline[] = KERN_CONT "\n";
163
164		printk_safe_flush_line(start, end - start);
165		printk_safe_flush_line(newline, strlen(newline));
166	}
167
168	return len;
169}
170
171static void report_message_lost(struct printk_safe_seq_buf *s)
 
172{
173	int lost = atomic_xchg(&s->message_lost, 0);
174
175	if (lost)
176		printk_deferred("Lost %d message(s)!\n", lost);
177}
178
179/*
180 * Flush data from the associated per-CPU buffer. The function
181 * can be called either via IRQ work or independently.
182 */
183static void __printk_safe_flush(struct irq_work *work)
184{
185	struct printk_safe_seq_buf *s =
186		container_of(work, struct printk_safe_seq_buf, work);
187	unsigned long flags;
188	size_t len;
189	int i;
190
191	/*
192	 * The lock has two functions. First, one reader has to flush all
193	 * available message to make the lockless synchronization with
194	 * writers easier. Second, we do not want to mix messages from
195	 * different CPUs. This is especially important when printing
196	 * a backtrace.
197	 */
198	raw_spin_lock_irqsave(&safe_read_lock, flags);
199
200	i = 0;
201more:
202	len = atomic_read(&s->len);
203
204	/*
205	 * This is just a paranoid check that nobody has manipulated
206	 * the buffer an unexpected way. If we printed something then
207	 * @len must only increase. Also it should never overflow the
208	 * buffer size.
209	 */
210	if ((i && i >= len) || len > sizeof(s->buffer)) {
211		const char *msg = "printk_safe_flush: internal error\n";
212
213		printk_safe_flush_line(msg, strlen(msg));
214		len = 0;
215	}
216
217	if (!len)
218		goto out; /* Someone else has already flushed the buffer. */
219
220	/* Make sure that data has been written up to the @len */
221	smp_rmb();
222	i += printk_safe_flush_buffer(s->buffer + i, len - i);
223
224	/*
225	 * Check that nothing has got added in the meantime and truncate
226	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
227	 * barrier that makes sure that the data were copied before
228	 * updating s->len.
229	 */
230	if (atomic_cmpxchg(&s->len, len, 0) != len)
231		goto more;
232
233out:
234	report_message_lost(s);
235	raw_spin_unlock_irqrestore(&safe_read_lock, flags);
236}
237
238/**
239 * printk_safe_flush - flush all per-cpu nmi buffers.
240 *
241 * The buffers are flushed automatically via IRQ work. This function
242 * is useful only when someone wants to be sure that all buffers have
243 * been flushed at some point.
244 */
245void printk_safe_flush(void)
246{
247	int cpu;
248
249	for_each_possible_cpu(cpu) {
250#ifdef CONFIG_PRINTK_NMI
251		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
252#endif
253		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
254	}
255}
256
257/**
258 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
259 *	goes down.
260 *
261 * Similar to printk_safe_flush() but it can be called even in NMI context when
262 * the system goes down. It does the best effort to get NMI messages into
263 * the main ring buffer.
264 *
265 * Note that it could try harder when there is only one CPU online.
266 */
267void printk_safe_flush_on_panic(void)
268{
269	/*
270	 * Make sure that we could access the safe buffers.
271	 * Do not risk a double release when more CPUs are up.
 
 
 
 
272	 */
273	if (raw_spin_is_locked(&safe_read_lock)) {
274		if (num_online_cpus() > 1)
275			return;
276
277		debug_locks_off();
278		raw_spin_lock_init(&safe_read_lock);
279	}
280
281	printk_safe_flush();
282}
283
284#ifdef CONFIG_PRINTK_NMI
285/*
286 * Safe printk() for NMI context. It uses a per-CPU buffer to
287 * store the message. NMIs are not nested, so there is always only
288 * one writer running. But the buffer might get flushed from another
289 * CPU, so we need to be careful.
290 */
291static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
292{
293	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
294
295	return printk_safe_log_store(s, fmt, args);
296}
297
298void noinstr printk_nmi_enter(void)
299{
300	this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
301}
302
303void noinstr printk_nmi_exit(void)
304{
305	this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
306}
307
308/*
309 * Marks a code that might produce many messages in NMI context
310 * and the risk of losing them is more critical than eventual
311 * reordering.
312 *
313 * It has effect only when called in NMI context. Then printk()
314 * will store the messages into the main logbuf directly.
315 */
316void printk_nmi_direct_enter(void)
317{
318	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
319		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
320}
321
322void printk_nmi_direct_exit(void)
323{
324	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
325}
326
327#else
328
329static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
330{
331	return 0;
332}
333
334#endif /* CONFIG_PRINTK_NMI */
335
336/*
337 * Lock-less printk(), to avoid deadlocks should the printk() recurse
338 * into itself. It uses a per-CPU buffer to store the message, just like
339 * NMI.
340 */
341static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
342{
343	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
344
345	return printk_safe_log_store(s, fmt, args);
346}
347
348/* Can be preempted by NMI. */
349void __printk_safe_enter(void)
350{
351	this_cpu_inc(printk_context);
352}
353
354/* Can be preempted by NMI. */
355void __printk_safe_exit(void)
356{
357	this_cpu_dec(printk_context);
358}
359
360asmlinkage int vprintk(const char *fmt, va_list args)
361{
362#ifdef CONFIG_KGDB_KDB
363	/* Allow to pass printk() to kdb but avoid a recursion. */
364	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
365		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
366#endif
367
368	/*
369	 * Use the main logbuf even in NMI. But avoid calling console
370	 * drivers that might have their own locks.
371	 */
372	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK)) {
373		unsigned long flags;
374		int len;
375
376		printk_safe_enter_irqsave(flags);
377		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
378		printk_safe_exit_irqrestore(flags);
379		defer_console_output();
380		return len;
381	}
382
383	/* Use extra buffer in NMI. */
384	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
385		return vprintk_nmi(fmt, args);
386
387	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
388	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
389		return vprintk_safe(fmt, args);
390
391	/* No obstacles. */
392	return vprintk_default(fmt, args);
393}
394EXPORT_SYMBOL(vprintk);
395
396void __init printk_safe_init(void)
397{
398	int cpu;
399
400	for_each_possible_cpu(cpu) {
401		struct printk_safe_seq_buf *s;
402
403		s = &per_cpu(safe_print_seq, cpu);
404		init_irq_work(&s->work, __printk_safe_flush);
405
406#ifdef CONFIG_PRINTK_NMI
407		s = &per_cpu(nmi_print_seq, cpu);
408		init_irq_work(&s->work, __printk_safe_flush);
409#endif
410	}
411
412	/* Flush pending messages that did not have scheduled IRQ works. */
413	printk_safe_flush();
414}