Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/syscore_ops.h>
  38#include <linux/vmcore_info.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
  48#include <linux/sched/clock.h>
  49#include <linux/sched/debug.h>
  50#include <linux/sched/task_stack.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/sections.h>
  54
  55#include <trace/events/initcall.h>
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/printk.h>
  58
  59#include "printk_ringbuffer.h"
  60#include "console_cmdline.h"
  61#include "braille.h"
  62#include "internal.h"
  63
  64int console_printk[4] = {
  65	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  66	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  67	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  68	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  69};
  70EXPORT_SYMBOL_GPL(console_printk);
  71
  72atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  73EXPORT_SYMBOL(ignore_console_lock_warning);
  74
  75EXPORT_TRACEPOINT_SYMBOL_GPL(console);
  76
  77/*
  78 * Low level drivers may need that to know if they can schedule in
  79 * their unblank() callback or not. So let's export it.
  80 */
  81int oops_in_progress;
  82EXPORT_SYMBOL(oops_in_progress);
  83
  84/*
  85 * console_mutex protects console_list updates and console->flags updates.
  86 * The flags are synchronized only for consoles that are registered, i.e.
  87 * accessible via the console list.
  88 */
  89static DEFINE_MUTEX(console_mutex);
  90
  91/*
  92 * console_sem protects updates to console->seq
  93 * and also provides serialization for console printing.
  94 */
  95static DEFINE_SEMAPHORE(console_sem, 1);
  96HLIST_HEAD(console_list);
  97EXPORT_SYMBOL_GPL(console_list);
  98DEFINE_STATIC_SRCU(console_srcu);
  99
 100/*
 101 * System may need to suppress printk message under certain
 102 * circumstances, like after kernel panic happens.
 103 */
 104int __read_mostly suppress_printk;
 105
 106#ifdef CONFIG_LOCKDEP
 107static struct lockdep_map console_lock_dep_map = {
 108	.name = "console_lock"
 109};
 110
 111void lockdep_assert_console_list_lock_held(void)
 112{
 113	lockdep_assert_held(&console_mutex);
 114}
 115EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
 116#endif
 117
 118#ifdef CONFIG_DEBUG_LOCK_ALLOC
 119bool console_srcu_read_lock_is_held(void)
 120{
 121	return srcu_read_lock_held(&console_srcu);
 122}
 123EXPORT_SYMBOL(console_srcu_read_lock_is_held);
 124#endif
 125
 126enum devkmsg_log_bits {
 127	__DEVKMSG_LOG_BIT_ON = 0,
 128	__DEVKMSG_LOG_BIT_OFF,
 129	__DEVKMSG_LOG_BIT_LOCK,
 130};
 131
 132enum devkmsg_log_masks {
 133	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 134	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 135	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 136};
 137
 138/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 139#define DEVKMSG_LOG_MASK_DEFAULT	0
 140
 141static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 142
 143static int __control_devkmsg(char *str)
 144{
 145	size_t len;
 146
 147	if (!str)
 148		return -EINVAL;
 149
 150	len = str_has_prefix(str, "on");
 151	if (len) {
 152		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 153		return len;
 154	}
 155
 156	len = str_has_prefix(str, "off");
 157	if (len) {
 158		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 159		return len;
 160	}
 161
 162	len = str_has_prefix(str, "ratelimit");
 163	if (len) {
 164		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 165		return len;
 166	}
 167
 168	return -EINVAL;
 169}
 170
 171static int __init control_devkmsg(char *str)
 172{
 173	if (__control_devkmsg(str) < 0) {
 174		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
 175		return 1;
 176	}
 177
 178	/*
 179	 * Set sysctl string accordingly:
 180	 */
 181	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 182		strscpy(devkmsg_log_str, "on");
 183	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 184		strscpy(devkmsg_log_str, "off");
 185	/* else "ratelimit" which is set by default. */
 186
 187	/*
 188	 * Sysctl cannot change it anymore. The kernel command line setting of
 189	 * this parameter is to force the setting to be permanent throughout the
 190	 * runtime of the system. This is a precation measure against userspace
 191	 * trying to be a smarta** and attempting to change it up on us.
 192	 */
 193	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 194
 195	return 1;
 196}
 197__setup("printk.devkmsg=", control_devkmsg);
 198
 199char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 200#if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
 201int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
 202			      void *buffer, size_t *lenp, loff_t *ppos)
 203{
 204	char old_str[DEVKMSG_STR_MAX_SIZE];
 205	unsigned int old;
 206	int err;
 207
 208	if (write) {
 209		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 210			return -EINVAL;
 211
 212		old = devkmsg_log;
 213		strscpy(old_str, devkmsg_log_str);
 214	}
 215
 216	err = proc_dostring(table, write, buffer, lenp, ppos);
 217	if (err)
 218		return err;
 219
 220	if (write) {
 221		err = __control_devkmsg(devkmsg_log_str);
 222
 223		/*
 224		 * Do not accept an unknown string OR a known string with
 225		 * trailing crap...
 226		 */
 227		if (err < 0 || (err + 1 != *lenp)) {
 228
 229			/* ... and restore old setting. */
 230			devkmsg_log = old;
 231			strscpy(devkmsg_log_str, old_str);
 232
 233			return -EINVAL;
 234		}
 235	}
 236
 237	return 0;
 238}
 239#endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
 240
 241/**
 242 * console_list_lock - Lock the console list
 243 *
 244 * For console list or console->flags updates
 245 */
 246void console_list_lock(void)
 247{
 248	/*
 249	 * In unregister_console() and console_force_preferred_locked(),
 250	 * synchronize_srcu() is called with the console_list_lock held.
 251	 * Therefore it is not allowed that the console_list_lock is taken
 252	 * with the srcu_lock held.
 253	 *
 254	 * Detecting if this context is really in the read-side critical
 255	 * section is only possible if the appropriate debug options are
 256	 * enabled.
 257	 */
 258	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
 259		     srcu_read_lock_held(&console_srcu));
 260
 261	mutex_lock(&console_mutex);
 262}
 263EXPORT_SYMBOL(console_list_lock);
 264
 265/**
 266 * console_list_unlock - Unlock the console list
 267 *
 268 * Counterpart to console_list_lock()
 269 */
 270void console_list_unlock(void)
 271{
 272	mutex_unlock(&console_mutex);
 273}
 274EXPORT_SYMBOL(console_list_unlock);
 275
 276/**
 277 * console_srcu_read_lock - Register a new reader for the
 278 *	SRCU-protected console list
 279 *
 280 * Use for_each_console_srcu() to iterate the console list
 281 *
 282 * Context: Any context.
 283 * Return: A cookie to pass to console_srcu_read_unlock().
 284 */
 285int console_srcu_read_lock(void)
 286	__acquires(&console_srcu)
 287{
 288	return srcu_read_lock_nmisafe(&console_srcu);
 289}
 290EXPORT_SYMBOL(console_srcu_read_lock);
 291
 292/**
 293 * console_srcu_read_unlock - Unregister an old reader from
 294 *	the SRCU-protected console list
 295 * @cookie: cookie returned from console_srcu_read_lock()
 296 *
 297 * Counterpart to console_srcu_read_lock()
 298 */
 299void console_srcu_read_unlock(int cookie)
 300	__releases(&console_srcu)
 301{
 302	srcu_read_unlock_nmisafe(&console_srcu, cookie);
 303}
 304EXPORT_SYMBOL(console_srcu_read_unlock);
 305
 306/*
 307 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 308 * macros instead of functions so that _RET_IP_ contains useful information.
 309 */
 310#define down_console_sem() do { \
 311	down(&console_sem);\
 312	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 313} while (0)
 314
 315static int __down_trylock_console_sem(unsigned long ip)
 316{
 317	int lock_failed;
 318	unsigned long flags;
 319
 320	/*
 321	 * Here and in __up_console_sem() we need to be in safe mode,
 322	 * because spindump/WARN/etc from under console ->lock will
 323	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 324	 */
 325	printk_safe_enter_irqsave(flags);
 326	lock_failed = down_trylock(&console_sem);
 327	printk_safe_exit_irqrestore(flags);
 328
 329	if (lock_failed)
 330		return 1;
 331	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 332	return 0;
 333}
 334#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 335
 336static void __up_console_sem(unsigned long ip)
 337{
 338	unsigned long flags;
 339
 340	mutex_release(&console_lock_dep_map, ip);
 341
 342	printk_safe_enter_irqsave(flags);
 343	up(&console_sem);
 344	printk_safe_exit_irqrestore(flags);
 345}
 346#define up_console_sem() __up_console_sem(_RET_IP_)
 347
 348static bool panic_in_progress(void)
 349{
 350	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
 351}
 352
 353/* Return true if a panic is in progress on the current CPU. */
 354bool this_cpu_in_panic(void)
 355{
 356	/*
 357	 * We can use raw_smp_processor_id() here because it is impossible for
 358	 * the task to be migrated to the panic_cpu, or away from it. If
 359	 * panic_cpu has already been set, and we're not currently executing on
 360	 * that CPU, then we never will be.
 361	 */
 362	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
 363}
 364
 365/*
 366 * Return true if a panic is in progress on a remote CPU.
 367 *
 368 * On true, the local CPU should immediately release any printing resources
 369 * that may be needed by the panic CPU.
 370 */
 371bool other_cpu_in_panic(void)
 372{
 373	return (panic_in_progress() && !this_cpu_in_panic());
 374}
 375
 376/*
 377 * This is used for debugging the mess that is the VT code by
 378 * keeping track if we have the console semaphore held. It's
 379 * definitely not the perfect debug tool (we don't know if _WE_
 380 * hold it and are racing, but it helps tracking those weird code
 381 * paths in the console code where we end up in places I want
 382 * locked without the console semaphore held).
 383 */
 384static int console_locked;
 
 
 
 
 
 385
 386/*
 387 *	Array of consoles built from command line options (console=)
 388 */
 389
 390#define MAX_CMDLINECONSOLES 8
 391
 392static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 393
 394static int preferred_console = -1;
 
 395int console_set_on_cmdline;
 396EXPORT_SYMBOL(console_set_on_cmdline);
 397
 398/* Flag: console code may call schedule() */
 399static int console_may_schedule;
 400
 401enum con_msg_format_flags {
 402	MSG_FORMAT_DEFAULT	= 0,
 403	MSG_FORMAT_SYSLOG	= (1 << 0),
 404};
 405
 406static int console_msg_format = MSG_FORMAT_DEFAULT;
 407
 408/*
 409 * The printk log buffer consists of a sequenced collection of records, each
 410 * containing variable length message text. Every record also contains its
 411 * own meta-data (@info).
 412 *
 413 * Every record meta-data carries the timestamp in microseconds, as well as
 414 * the standard userspace syslog level and syslog facility. The usual kernel
 415 * messages use LOG_KERN; userspace-injected messages always carry a matching
 416 * syslog facility, by default LOG_USER. The origin of every message can be
 417 * reliably determined that way.
 418 *
 419 * The human readable log message of a record is available in @text, the
 420 * length of the message text in @text_len. The stored message is not
 421 * terminated.
 422 *
 423 * Optionally, a record can carry a dictionary of properties (key/value
 424 * pairs), to provide userspace with a machine-readable message context.
 425 *
 426 * Examples for well-defined, commonly used property names are:
 427 *   DEVICE=b12:8               device identifier
 428 *                                b12:8         block dev_t
 429 *                                c127:3        char dev_t
 430 *                                n8            netdev ifindex
 431 *                                +sound:card0  subsystem:devname
 432 *   SUBSYSTEM=pci              driver-core subsystem name
 433 *
 434 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 435 * and values are terminated by a '\0' character.
 436 *
 437 * Example of record values:
 438 *   record.text_buf                = "it's a line" (unterminated)
 439 *   record.info.seq                = 56
 440 *   record.info.ts_nsec            = 36863
 441 *   record.info.text_len           = 11
 442 *   record.info.facility           = 0 (LOG_KERN)
 443 *   record.info.flags              = 0
 444 *   record.info.level              = 3 (LOG_ERR)
 445 *   record.info.caller_id          = 299 (task 299)
 446 *   record.info.dev_info.subsystem = "pci" (terminated)
 447 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 448 *
 449 * The 'struct printk_info' buffer must never be directly exported to
 450 * userspace, it is a kernel-private implementation detail that might
 451 * need to be changed in the future, when the requirements change.
 452 *
 453 * /dev/kmsg exports the structured data in the following line format:
 454 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 455 *
 456 * Users of the export format should ignore possible additional values
 457 * separated by ',', and find the message after the ';' character.
 458 *
 459 * The optional key/value pairs are attached as continuation lines starting
 460 * with a space character and terminated by a newline. All possible
 461 * non-prinatable characters are escaped in the "\xff" notation.
 462 */
 463
 464/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 465static DEFINE_MUTEX(syslog_lock);
 466
 467/*
 468 * Specifies if a legacy console is registered. If legacy consoles are
 469 * present, it is necessary to perform the console lock/unlock dance
 470 * whenever console flushing should occur.
 471 */
 472bool have_legacy_console;
 473
 474/*
 475 * Specifies if an nbcon console is registered. If nbcon consoles are present,
 476 * synchronous printing of legacy consoles will not occur during panic until
 477 * the backtrace has been stored to the ringbuffer.
 478 */
 479bool have_nbcon_console;
 480
 481/*
 482 * Specifies if a boot console is registered. If boot consoles are present,
 483 * nbcon consoles cannot print simultaneously and must be synchronized by
 484 * the console lock. This is because boot consoles and nbcon consoles may
 485 * have mapped the same hardware.
 486 */
 487bool have_boot_console;
 488
 489/* See printk_legacy_allow_panic_sync() for details. */
 490bool legacy_allow_panic_sync;
 491
 492#ifdef CONFIG_PRINTK
 493DECLARE_WAIT_QUEUE_HEAD(log_wait);
 494static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
 495/* All 3 protected by @syslog_lock. */
 496/* the next printk record to read by syslog(READ) or /proc/kmsg */
 497static u64 syslog_seq;
 498static size_t syslog_partial;
 499static bool syslog_time;
 500
 501/* True when _all_ printer threads are available for printing. */
 502bool printk_kthreads_running;
 
 
 
 503
 504struct latched_seq {
 505	seqcount_latch_t	latch;
 506	u64			val[2];
 507};
 508
 509/*
 510 * The next printk record to read after the last 'clear' command. There are
 511 * two copies (updated with seqcount_latch) so that reads can locklessly
 512 * access a valid value. Writers are synchronized by @syslog_lock.
 513 */
 514static struct latched_seq clear_seq = {
 515	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 516	.val[0]		= 0,
 517	.val[1]		= 0,
 518};
 519
 
 
 
 
 
 
 
 
 
 
 
 
 520#define LOG_LEVEL(v)		((v) & 0x07)
 521#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 522
 523/* record buffer */
 524#define LOG_ALIGN __alignof__(unsigned long)
 525#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 526#define LOG_BUF_LEN_MAX ((u32)1 << 31)
 527static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 528static char *log_buf = __log_buf;
 529static u32 log_buf_len = __LOG_BUF_LEN;
 530
 531/*
 532 * Define the average message size. This only affects the number of
 533 * descriptors that will be available. Underestimating is better than
 534 * overestimating (too many available descriptors is better than not enough).
 535 */
 536#define PRB_AVGBITS 5	/* 32 character average length */
 537
 538#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 539#error CONFIG_LOG_BUF_SHIFT value too small.
 540#endif
 541_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 542		 PRB_AVGBITS, &__log_buf[0]);
 543
 544static struct printk_ringbuffer printk_rb_dynamic;
 545
 546struct printk_ringbuffer *prb = &printk_rb_static;
 547
 548/*
 549 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 550 * per_cpu_areas are initialised. This variable is set to true when
 551 * it's safe to access per-CPU data.
 552 */
 553static bool __printk_percpu_data_ready __ro_after_init;
 554
 555bool printk_percpu_data_ready(void)
 556{
 557	return __printk_percpu_data_ready;
 558}
 559
 560/* Must be called under syslog_lock. */
 561static void latched_seq_write(struct latched_seq *ls, u64 val)
 562{
 563	write_seqcount_latch_begin(&ls->latch);
 564	ls->val[0] = val;
 565	write_seqcount_latch(&ls->latch);
 566	ls->val[1] = val;
 567	write_seqcount_latch_end(&ls->latch);
 568}
 569
 570/* Can be called from any context. */
 571static u64 latched_seq_read_nolock(struct latched_seq *ls)
 572{
 573	unsigned int seq;
 574	unsigned int idx;
 575	u64 val;
 576
 577	do {
 578		seq = read_seqcount_latch(&ls->latch);
 579		idx = seq & 0x1;
 580		val = ls->val[idx];
 581	} while (read_seqcount_latch_retry(&ls->latch, seq));
 582
 583	return val;
 584}
 585
 586/* Return log buffer address */
 587char *log_buf_addr_get(void)
 588{
 589	return log_buf;
 590}
 591
 592/* Return log buffer size */
 593u32 log_buf_len_get(void)
 594{
 595	return log_buf_len;
 596}
 597
 598/*
 599 * Define how much of the log buffer we could take at maximum. The value
 600 * must be greater than two. Note that only half of the buffer is available
 601 * when the index points to the middle.
 602 */
 603#define MAX_LOG_TAKE_PART 4
 604static const char trunc_msg[] = "<truncated>";
 605
 606static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 607{
 608	/*
 609	 * The message should not take the whole buffer. Otherwise, it might
 610	 * get removed too soon.
 611	 */
 612	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 613
 614	if (*text_len > max_text_len)
 615		*text_len = max_text_len;
 616
 617	/* enable the warning message (if there is room) */
 618	*trunc_msg_len = strlen(trunc_msg);
 619	if (*text_len >= *trunc_msg_len)
 620		*text_len -= *trunc_msg_len;
 621	else
 622		*trunc_msg_len = 0;
 623}
 624
 625int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 626
 627static int syslog_action_restricted(int type)
 628{
 629	if (dmesg_restrict)
 630		return 1;
 631	/*
 632	 * Unless restricted, we allow "read all" and "get buffer size"
 633	 * for everybody.
 634	 */
 635	return type != SYSLOG_ACTION_READ_ALL &&
 636	       type != SYSLOG_ACTION_SIZE_BUFFER;
 637}
 638
 639static int check_syslog_permissions(int type, int source)
 640{
 641	/*
 642	 * If this is from /proc/kmsg and we've already opened it, then we've
 643	 * already done the capabilities checks at open time.
 644	 */
 645	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 646		goto ok;
 647
 648	if (syslog_action_restricted(type)) {
 649		if (capable(CAP_SYSLOG))
 650			goto ok;
 
 
 
 
 
 
 
 
 
 
 
 651		return -EPERM;
 652	}
 653ok:
 654	return security_syslog(type);
 655}
 656
 657static void append_char(char **pp, char *e, char c)
 658{
 659	if (*pp < e)
 660		*(*pp)++ = c;
 661}
 662
 663static ssize_t info_print_ext_header(char *buf, size_t size,
 664				     struct printk_info *info)
 665{
 666	u64 ts_usec = info->ts_nsec;
 667	char caller[20];
 668#ifdef CONFIG_PRINTK_CALLER
 669	u32 id = info->caller_id;
 670
 671	snprintf(caller, sizeof(caller), ",caller=%c%u",
 672		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 673#else
 674	caller[0] = '\0';
 675#endif
 676
 677	do_div(ts_usec, 1000);
 678
 679	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 680			 (info->facility << 3) | info->level, info->seq,
 681			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 682}
 683
 684static ssize_t msg_add_ext_text(char *buf, size_t size,
 685				const char *text, size_t text_len,
 686				unsigned char endc)
 687{
 688	char *p = buf, *e = buf + size;
 689	size_t i;
 690
 691	/* escape non-printable characters */
 692	for (i = 0; i < text_len; i++) {
 693		unsigned char c = text[i];
 694
 695		if (c < ' ' || c >= 127 || c == '\\')
 696			p += scnprintf(p, e - p, "\\x%02x", c);
 697		else
 698			append_char(&p, e, c);
 699	}
 700	append_char(&p, e, endc);
 701
 702	return p - buf;
 703}
 704
 705static ssize_t msg_add_dict_text(char *buf, size_t size,
 706				 const char *key, const char *val)
 707{
 708	size_t val_len = strlen(val);
 709	ssize_t len;
 710
 711	if (!val_len)
 712		return 0;
 713
 714	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 715	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 716	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 717
 718	return len;
 719}
 720
 721static ssize_t msg_print_ext_body(char *buf, size_t size,
 722				  char *text, size_t text_len,
 723				  struct dev_printk_info *dev_info)
 724{
 725	ssize_t len;
 726
 727	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 728
 729	if (!dev_info)
 730		goto out;
 731
 732	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 733				 dev_info->subsystem);
 734	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 735				 dev_info->device);
 736out:
 737	return len;
 738}
 739
 740/* /dev/kmsg - userspace message inject/listen interface */
 741struct devkmsg_user {
 742	atomic64_t seq;
 743	struct ratelimit_state rs;
 744	struct mutex lock;
 745	struct printk_buffers pbufs;
 
 
 
 
 746};
 747
 748static __printf(3, 4) __cold
 749int devkmsg_emit(int facility, int level, const char *fmt, ...)
 750{
 751	va_list args;
 752	int r;
 753
 754	va_start(args, fmt);
 755	r = vprintk_emit(facility, level, NULL, fmt, args);
 756	va_end(args);
 757
 758	return r;
 759}
 760
 761static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 762{
 763	char *buf, *line;
 764	int level = default_message_loglevel;
 765	int facility = 1;	/* LOG_USER */
 766	struct file *file = iocb->ki_filp;
 767	struct devkmsg_user *user = file->private_data;
 768	size_t len = iov_iter_count(from);
 769	ssize_t ret = len;
 770
 771	if (len > PRINTKRB_RECORD_MAX)
 772		return -EINVAL;
 773
 774	/* Ignore when user logging is disabled. */
 775	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 776		return len;
 777
 778	/* Ratelimit when not explicitly enabled. */
 779	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 780		if (!___ratelimit(&user->rs, current->comm))
 781			return ret;
 782	}
 783
 784	buf = kmalloc(len+1, GFP_KERNEL);
 785	if (buf == NULL)
 786		return -ENOMEM;
 787
 788	buf[len] = '\0';
 789	if (!copy_from_iter_full(buf, len, from)) {
 790		kfree(buf);
 791		return -EFAULT;
 792	}
 793
 794	/*
 795	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 796	 * the decimal value represents 32bit, the lower 3 bit are the log
 797	 * level, the rest are the log facility.
 798	 *
 799	 * If no prefix or no userspace facility is specified, we
 800	 * enforce LOG_USER, to be able to reliably distinguish
 801	 * kernel-generated messages from userspace-injected ones.
 802	 */
 803	line = buf;
 804	if (line[0] == '<') {
 805		char *endp = NULL;
 806		unsigned int u;
 807
 808		u = simple_strtoul(line + 1, &endp, 10);
 809		if (endp && endp[0] == '>') {
 810			level = LOG_LEVEL(u);
 811			if (LOG_FACILITY(u) != 0)
 812				facility = LOG_FACILITY(u);
 813			endp++;
 814			line = endp;
 815		}
 816	}
 817
 818	devkmsg_emit(facility, level, "%s", line);
 819	kfree(buf);
 820	return ret;
 821}
 822
 823static ssize_t devkmsg_read(struct file *file, char __user *buf,
 824			    size_t count, loff_t *ppos)
 825{
 826	struct devkmsg_user *user = file->private_data;
 827	char *outbuf = &user->pbufs.outbuf[0];
 828	struct printk_message pmsg = {
 829		.pbufs = &user->pbufs,
 830	};
 831	ssize_t ret;
 832
 
 
 
 833	ret = mutex_lock_interruptible(&user->lock);
 834	if (ret)
 835		return ret;
 836
 837	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
 
 838		if (file->f_flags & O_NONBLOCK) {
 839			ret = -EAGAIN;
 
 840			goto out;
 841		}
 842
 843		/*
 844		 * Guarantee this task is visible on the waitqueue before
 845		 * checking the wake condition.
 846		 *
 847		 * The full memory barrier within set_current_state() of
 848		 * prepare_to_wait_event() pairs with the full memory barrier
 849		 * within wq_has_sleeper().
 850		 *
 851		 * This pairs with __wake_up_klogd:A.
 852		 */
 853		ret = wait_event_interruptible(log_wait,
 854				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
 855							false)); /* LMM(devkmsg_read:A) */
 856		if (ret)
 857			goto out;
 
 858	}
 859
 860	if (pmsg.dropped) {
 861		/* our last seen message is gone, return error and reset */
 862		atomic64_set(&user->seq, pmsg.seq);
 863		ret = -EPIPE;
 
 864		goto out;
 865	}
 866
 867	atomic64_set(&user->seq, pmsg.seq + 1);
 
 
 
 868
 869	if (pmsg.outbuf_len > count) {
 
 
 
 870		ret = -EINVAL;
 871		goto out;
 872	}
 873
 874	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
 875		ret = -EFAULT;
 876		goto out;
 877	}
 878	ret = pmsg.outbuf_len;
 879out:
 880	mutex_unlock(&user->lock);
 881	return ret;
 882}
 883
 884/*
 885 * Be careful when modifying this function!!!
 886 *
 887 * Only few operations are supported because the device works only with the
 888 * entire variable length messages (records). Non-standard values are
 889 * returned in the other cases and has been this way for quite some time.
 890 * User space applications might depend on this behavior.
 891 */
 892static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 893{
 894	struct devkmsg_user *user = file->private_data;
 895	loff_t ret = 0;
 896
 
 
 897	if (offset)
 898		return -ESPIPE;
 899
 
 900	switch (whence) {
 901	case SEEK_SET:
 902		/* the first record */
 903		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 904		break;
 905	case SEEK_DATA:
 906		/*
 907		 * The first record after the last SYSLOG_ACTION_CLEAR,
 908		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 909		 * changes no global state, and does not clear anything.
 910		 */
 911		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 912		break;
 913	case SEEK_END:
 914		/* after the last record */
 915		atomic64_set(&user->seq, prb_next_seq(prb));
 916		break;
 917	default:
 918		ret = -EINVAL;
 919	}
 
 920	return ret;
 921}
 922
 923static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 924{
 925	struct devkmsg_user *user = file->private_data;
 926	struct printk_info info;
 927	__poll_t ret = 0;
 928
 
 
 
 929	poll_wait(file, &log_wait, wait);
 930
 
 931	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 932		/* return error when data has vanished underneath us */
 933		if (info.seq != atomic64_read(&user->seq))
 934			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 935		else
 936			ret = EPOLLIN|EPOLLRDNORM;
 937	}
 
 938
 939	return ret;
 940}
 941
 942static int devkmsg_open(struct inode *inode, struct file *file)
 943{
 944	struct devkmsg_user *user;
 945	int err;
 946
 947	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 948		return -EPERM;
 949
 950	/* write-only does not need any file context */
 951	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 952		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 953					       SYSLOG_FROM_READER);
 954		if (err)
 955			return err;
 956	}
 957
 958	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 959	if (!user)
 960		return -ENOMEM;
 961
 962	ratelimit_default_init(&user->rs);
 963	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 964
 965	mutex_init(&user->lock);
 966
 
 
 
 
 967	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 968
 969	file->private_data = user;
 970	return 0;
 971}
 972
 973static int devkmsg_release(struct inode *inode, struct file *file)
 974{
 975	struct devkmsg_user *user = file->private_data;
 976
 
 
 
 977	ratelimit_state_exit(&user->rs);
 978
 979	mutex_destroy(&user->lock);
 980	kvfree(user);
 981	return 0;
 982}
 983
 984const struct file_operations kmsg_fops = {
 985	.open = devkmsg_open,
 986	.read = devkmsg_read,
 987	.write_iter = devkmsg_write,
 988	.llseek = devkmsg_llseek,
 989	.poll = devkmsg_poll,
 990	.release = devkmsg_release,
 991};
 992
 993#ifdef CONFIG_VMCORE_INFO
 994/*
 995 * This appends the listed symbols to /proc/vmcore
 996 *
 997 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 998 * obtain access to symbols that are otherwise very difficult to locate.  These
 999 * symbols are specifically used so that utilities can access and extract the
1000 * dmesg log from a vmcore file after a crash.
1001 */
1002void log_buf_vmcoreinfo_setup(void)
1003{
1004	struct dev_printk_info *dev_info = NULL;
1005
1006	VMCOREINFO_SYMBOL(prb);
1007	VMCOREINFO_SYMBOL(printk_rb_static);
1008	VMCOREINFO_SYMBOL(clear_seq);
1009
1010	/*
1011	 * Export struct size and field offsets. User space tools can
1012	 * parse it and detect any changes to structure down the line.
1013	 */
1014
1015	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1016	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1017	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1018	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1019
1020	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1021	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1022	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1023	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1024	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1025	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1026
1027	VMCOREINFO_STRUCT_SIZE(prb_desc);
1028	VMCOREINFO_OFFSET(prb_desc, state_var);
1029	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1030
1031	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1032	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1033	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1034
1035	VMCOREINFO_STRUCT_SIZE(printk_info);
1036	VMCOREINFO_OFFSET(printk_info, seq);
1037	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1038	VMCOREINFO_OFFSET(printk_info, text_len);
1039	VMCOREINFO_OFFSET(printk_info, caller_id);
1040	VMCOREINFO_OFFSET(printk_info, dev_info);
1041
1042	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1043	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1044	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1045	VMCOREINFO_OFFSET(dev_printk_info, device);
1046	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1047
1048	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1049	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1050	VMCOREINFO_OFFSET(prb_data_ring, data);
1051	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1052	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1053
1054	VMCOREINFO_SIZE(atomic_long_t);
1055	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1056
1057	VMCOREINFO_STRUCT_SIZE(latched_seq);
1058	VMCOREINFO_OFFSET(latched_seq, val);
1059}
1060#endif
1061
1062/* requested log_buf_len from kernel cmdline */
1063static unsigned long __initdata new_log_buf_len;
1064
1065/* we practice scaling the ring buffer by powers of 2 */
1066static void __init log_buf_len_update(u64 size)
1067{
1068	if (size > (u64)LOG_BUF_LEN_MAX) {
1069		size = (u64)LOG_BUF_LEN_MAX;
1070		pr_err("log_buf over 2G is not supported.\n");
1071	}
1072
1073	if (size)
1074		size = roundup_pow_of_two(size);
1075	if (size > log_buf_len)
1076		new_log_buf_len = (unsigned long)size;
1077}
1078
1079/* save requested log_buf_len since it's too early to process it */
1080static int __init log_buf_len_setup(char *str)
1081{
1082	u64 size;
1083
1084	if (!str)
1085		return -EINVAL;
1086
1087	size = memparse(str, &str);
1088
1089	log_buf_len_update(size);
1090
1091	return 0;
1092}
1093early_param("log_buf_len", log_buf_len_setup);
1094
1095#ifdef CONFIG_SMP
1096#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1097
1098static void __init log_buf_add_cpu(void)
1099{
1100	unsigned int cpu_extra;
1101
1102	/*
1103	 * archs should set up cpu_possible_bits properly with
1104	 * set_cpu_possible() after setup_arch() but just in
1105	 * case lets ensure this is valid.
1106	 */
1107	if (num_possible_cpus() == 1)
1108		return;
1109
1110	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1111
1112	/* by default this will only continue through for large > 64 CPUs */
1113	if (cpu_extra <= __LOG_BUF_LEN / 2)
1114		return;
1115
1116	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1117		__LOG_CPU_MAX_BUF_LEN);
1118	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1119		cpu_extra);
1120	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1121
1122	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1123}
1124#else /* !CONFIG_SMP */
1125static inline void log_buf_add_cpu(void) {}
1126#endif /* CONFIG_SMP */
1127
1128static void __init set_percpu_data_ready(void)
1129{
 
 
 
1130	__printk_percpu_data_ready = true;
1131}
1132
1133static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1134				     struct printk_record *r)
1135{
1136	struct prb_reserved_entry e;
1137	struct printk_record dest_r;
1138
1139	prb_rec_init_wr(&dest_r, r->info->text_len);
1140
1141	if (!prb_reserve(&e, rb, &dest_r))
1142		return 0;
1143
1144	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1145	dest_r.info->text_len = r->info->text_len;
1146	dest_r.info->facility = r->info->facility;
1147	dest_r.info->level = r->info->level;
1148	dest_r.info->flags = r->info->flags;
1149	dest_r.info->ts_nsec = r->info->ts_nsec;
1150	dest_r.info->caller_id = r->info->caller_id;
1151	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1152
1153	prb_final_commit(&e);
1154
1155	return prb_record_text_space(&e);
1156}
1157
1158static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1159
1160static void print_log_buf_usage_stats(void)
1161{
1162	unsigned int descs_count = log_buf_len >> PRB_AVGBITS;
1163	size_t meta_data_size;
1164
1165	meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info));
1166
1167	pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n",
1168		log_buf_len, meta_data_size, log_buf_len + meta_data_size);
1169}
1170
1171void __init setup_log_buf(int early)
1172{
1173	struct printk_info *new_infos;
1174	unsigned int new_descs_count;
1175	struct prb_desc *new_descs;
1176	struct printk_info info;
1177	struct printk_record r;
1178	unsigned int text_size;
1179	size_t new_descs_size;
1180	size_t new_infos_size;
1181	unsigned long flags;
1182	char *new_log_buf;
1183	unsigned int free;
1184	u64 seq;
1185
1186	/*
1187	 * Some archs call setup_log_buf() multiple times - first is very
1188	 * early, e.g. from setup_arch(), and second - when percpu_areas
1189	 * are initialised.
1190	 */
1191	if (!early)
1192		set_percpu_data_ready();
1193
1194	if (log_buf != __log_buf)
1195		return;
1196
1197	if (!early && !new_log_buf_len)
1198		log_buf_add_cpu();
1199
1200	if (!new_log_buf_len) {
1201		/* Show the memory stats only once. */
1202		if (!early)
1203			goto out;
1204
1205		return;
1206	}
1207
1208	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1209	if (new_descs_count == 0) {
1210		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1211		goto out;
1212	}
1213
1214	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1215	if (unlikely(!new_log_buf)) {
1216		pr_err("log_buf_len: %lu text bytes not available\n",
1217		       new_log_buf_len);
1218		goto out;
1219	}
1220
1221	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1222	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1223	if (unlikely(!new_descs)) {
1224		pr_err("log_buf_len: %zu desc bytes not available\n",
1225		       new_descs_size);
1226		goto err_free_log_buf;
1227	}
1228
1229	new_infos_size = new_descs_count * sizeof(struct printk_info);
1230	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1231	if (unlikely(!new_infos)) {
1232		pr_err("log_buf_len: %zu info bytes not available\n",
1233		       new_infos_size);
1234		goto err_free_descs;
1235	}
1236
1237	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1238
1239	prb_init(&printk_rb_dynamic,
1240		 new_log_buf, ilog2(new_log_buf_len),
1241		 new_descs, ilog2(new_descs_count),
1242		 new_infos);
1243
1244	local_irq_save(flags);
1245
1246	log_buf_len = new_log_buf_len;
1247	log_buf = new_log_buf;
1248	new_log_buf_len = 0;
1249
1250	free = __LOG_BUF_LEN;
1251	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1252		text_size = add_to_rb(&printk_rb_dynamic, &r);
1253		if (text_size > free)
1254			free = 0;
1255		else
1256			free -= text_size;
1257	}
1258
1259	prb = &printk_rb_dynamic;
1260
1261	local_irq_restore(flags);
1262
1263	/*
1264	 * Copy any remaining messages that might have appeared from
1265	 * NMI context after copying but before switching to the
1266	 * dynamic buffer.
1267	 */
1268	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1269		text_size = add_to_rb(&printk_rb_dynamic, &r);
1270		if (text_size > free)
1271			free = 0;
1272		else
1273			free -= text_size;
1274	}
1275
1276	if (seq != prb_next_seq(&printk_rb_static)) {
1277		pr_err("dropped %llu messages\n",
1278		       prb_next_seq(&printk_rb_static) - seq);
1279	}
1280
1281	print_log_buf_usage_stats();
1282	pr_info("early log buf free: %u(%u%%)\n",
1283		free, (free * 100) / __LOG_BUF_LEN);
1284	return;
1285
1286err_free_descs:
1287	memblock_free(new_descs, new_descs_size);
1288err_free_log_buf:
1289	memblock_free(new_log_buf, new_log_buf_len);
1290out:
1291	print_log_buf_usage_stats();
1292}
1293
1294static bool __read_mostly ignore_loglevel;
1295
1296static int __init ignore_loglevel_setup(char *str)
1297{
1298	ignore_loglevel = true;
1299	pr_info("debug: ignoring loglevel setting.\n");
1300
1301	return 0;
1302}
1303
1304early_param("ignore_loglevel", ignore_loglevel_setup);
1305module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1306MODULE_PARM_DESC(ignore_loglevel,
1307		 "ignore loglevel setting (prints all kernel messages to the console)");
1308
1309static bool suppress_message_printing(int level)
1310{
1311	return (level >= console_loglevel && !ignore_loglevel);
1312}
1313
1314#ifdef CONFIG_BOOT_PRINTK_DELAY
1315
1316static int boot_delay; /* msecs delay after each printk during bootup */
1317static unsigned long long loops_per_msec;	/* based on boot_delay */
1318
1319static int __init boot_delay_setup(char *str)
1320{
1321	unsigned long lpj;
1322
1323	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1324	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1325
1326	get_option(&str, &boot_delay);
1327	if (boot_delay > 10 * 1000)
1328		boot_delay = 0;
1329
1330	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1331		"HZ: %d, loops_per_msec: %llu\n",
1332		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1333	return 0;
1334}
1335early_param("boot_delay", boot_delay_setup);
1336
1337static void boot_delay_msec(int level)
1338{
1339	unsigned long long k;
1340	unsigned long timeout;
1341	bool suppress = !is_printk_force_console() &&
1342			suppress_message_printing(level);
1343
1344	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress)
 
1345		return;
 
1346
1347	k = (unsigned long long)loops_per_msec * boot_delay;
1348
1349	timeout = jiffies + msecs_to_jiffies(boot_delay);
1350	while (k) {
1351		k--;
1352		cpu_relax();
1353		/*
1354		 * use (volatile) jiffies to prevent
1355		 * compiler reduction; loop termination via jiffies
1356		 * is secondary and may or may not happen.
1357		 */
1358		if (time_after(jiffies, timeout))
1359			break;
1360		touch_nmi_watchdog();
1361	}
1362}
1363#else
1364static inline void boot_delay_msec(int level)
1365{
1366}
1367#endif
1368
1369static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1370module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1371
1372static size_t print_syslog(unsigned int level, char *buf)
1373{
1374	return sprintf(buf, "<%u>", level);
1375}
1376
1377static size_t print_time(u64 ts, char *buf)
1378{
1379	unsigned long rem_nsec = do_div(ts, 1000000000);
1380
1381	return sprintf(buf, "[%5lu.%06lu]",
1382		       (unsigned long)ts, rem_nsec / 1000);
1383}
1384
1385#ifdef CONFIG_PRINTK_CALLER
1386static size_t print_caller(u32 id, char *buf)
1387{
1388	char caller[12];
1389
1390	snprintf(caller, sizeof(caller), "%c%u",
1391		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1392	return sprintf(buf, "[%6s]", caller);
1393}
1394#else
1395#define print_caller(id, buf) 0
1396#endif
1397
1398static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1399				bool time, char *buf)
1400{
1401	size_t len = 0;
1402
1403	if (syslog)
1404		len = print_syslog((info->facility << 3) | info->level, buf);
1405
1406	if (time)
1407		len += print_time(info->ts_nsec, buf + len);
1408
1409	len += print_caller(info->caller_id, buf + len);
1410
1411	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1412		buf[len++] = ' ';
1413		buf[len] = '\0';
1414	}
1415
1416	return len;
1417}
1418
1419/*
1420 * Prepare the record for printing. The text is shifted within the given
1421 * buffer to avoid a need for another one. The following operations are
1422 * done:
1423 *
1424 *   - Add prefix for each line.
1425 *   - Drop truncated lines that no longer fit into the buffer.
1426 *   - Add the trailing newline that has been removed in vprintk_store().
1427 *   - Add a string terminator.
1428 *
1429 * Since the produced string is always terminated, the maximum possible
1430 * return value is @r->text_buf_size - 1;
1431 *
1432 * Return: The length of the updated/prepared text, including the added
1433 * prefixes and the newline. The terminator is not counted. The dropped
1434 * line(s) are not counted.
1435 */
1436static size_t record_print_text(struct printk_record *r, bool syslog,
1437				bool time)
1438{
1439	size_t text_len = r->info->text_len;
1440	size_t buf_size = r->text_buf_size;
1441	char *text = r->text_buf;
1442	char prefix[PRINTK_PREFIX_MAX];
1443	bool truncated = false;
1444	size_t prefix_len;
1445	size_t line_len;
1446	size_t len = 0;
1447	char *next;
1448
1449	/*
1450	 * If the message was truncated because the buffer was not large
1451	 * enough, treat the available text as if it were the full text.
1452	 */
1453	if (text_len > buf_size)
1454		text_len = buf_size;
1455
1456	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1457
1458	/*
1459	 * @text_len: bytes of unprocessed text
1460	 * @line_len: bytes of current line _without_ newline
1461	 * @text:     pointer to beginning of current line
1462	 * @len:      number of bytes prepared in r->text_buf
1463	 */
1464	for (;;) {
1465		next = memchr(text, '\n', text_len);
1466		if (next) {
1467			line_len = next - text;
1468		} else {
1469			/* Drop truncated line(s). */
1470			if (truncated)
1471				break;
1472			line_len = text_len;
1473		}
1474
1475		/*
1476		 * Truncate the text if there is not enough space to add the
1477		 * prefix and a trailing newline and a terminator.
1478		 */
1479		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1480			/* Drop even the current line if no space. */
1481			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1482				break;
1483
1484			text_len = buf_size - len - prefix_len - 1 - 1;
1485			truncated = true;
1486		}
1487
1488		memmove(text + prefix_len, text, text_len);
1489		memcpy(text, prefix, prefix_len);
1490
1491		/*
1492		 * Increment the prepared length to include the text and
1493		 * prefix that were just moved+copied. Also increment for the
1494		 * newline at the end of this line. If this is the last line,
1495		 * there is no newline, but it will be added immediately below.
1496		 */
1497		len += prefix_len + line_len + 1;
1498		if (text_len == line_len) {
1499			/*
1500			 * This is the last line. Add the trailing newline
1501			 * removed in vprintk_store().
1502			 */
1503			text[prefix_len + line_len] = '\n';
1504			break;
1505		}
1506
1507		/*
1508		 * Advance beyond the added prefix and the related line with
1509		 * its newline.
1510		 */
1511		text += prefix_len + line_len + 1;
1512
1513		/*
1514		 * The remaining text has only decreased by the line with its
1515		 * newline.
1516		 *
1517		 * Note that @text_len can become zero. It happens when @text
1518		 * ended with a newline (either due to truncation or the
1519		 * original string ending with "\n\n"). The loop is correctly
1520		 * repeated and (if not truncated) an empty line with a prefix
1521		 * will be prepared.
1522		 */
1523		text_len -= line_len + 1;
1524	}
1525
1526	/*
1527	 * If a buffer was provided, it will be terminated. Space for the
1528	 * string terminator is guaranteed to be available. The terminator is
1529	 * not counted in the return value.
1530	 */
1531	if (buf_size > 0)
1532		r->text_buf[len] = 0;
1533
1534	return len;
1535}
1536
1537static size_t get_record_print_text_size(struct printk_info *info,
1538					 unsigned int line_count,
1539					 bool syslog, bool time)
1540{
1541	char prefix[PRINTK_PREFIX_MAX];
1542	size_t prefix_len;
1543
1544	prefix_len = info_print_prefix(info, syslog, time, prefix);
1545
1546	/*
1547	 * Each line will be preceded with a prefix. The intermediate
1548	 * newlines are already within the text, but a final trailing
1549	 * newline will be added.
1550	 */
1551	return ((prefix_len * line_count) + info->text_len + 1);
1552}
1553
1554/*
1555 * Beginning with @start_seq, find the first record where it and all following
1556 * records up to (but not including) @max_seq fit into @size.
1557 *
1558 * @max_seq is simply an upper bound and does not need to exist. If the caller
1559 * does not require an upper bound, -1 can be used for @max_seq.
1560 */
1561static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1562				  bool syslog, bool time)
1563{
1564	struct printk_info info;
1565	unsigned int line_count;
1566	size_t len = 0;
1567	u64 seq;
1568
1569	/* Determine the size of the records up to @max_seq. */
1570	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1571		if (info.seq >= max_seq)
1572			break;
1573		len += get_record_print_text_size(&info, line_count, syslog, time);
1574	}
1575
1576	/*
1577	 * Adjust the upper bound for the next loop to avoid subtracting
1578	 * lengths that were never added.
1579	 */
1580	if (seq < max_seq)
1581		max_seq = seq;
1582
1583	/*
1584	 * Move first record forward until length fits into the buffer. Ignore
1585	 * newest messages that were not counted in the above cycle. Messages
1586	 * might appear and get lost in the meantime. This is a best effort
1587	 * that prevents an infinite loop that could occur with a retry.
1588	 */
1589	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1590		if (len <= size || info.seq >= max_seq)
1591			break;
1592		len -= get_record_print_text_size(&info, line_count, syslog, time);
1593	}
1594
1595	return seq;
1596}
1597
1598/* The caller is responsible for making sure @size is greater than 0. */
1599static int syslog_print(char __user *buf, int size)
1600{
1601	struct printk_info info;
1602	struct printk_record r;
1603	char *text;
1604	int len = 0;
1605	u64 seq;
1606
1607	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1608	if (!text)
1609		return -ENOMEM;
1610
1611	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1612
1613	mutex_lock(&syslog_lock);
1614
1615	/*
1616	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1617	 * change while waiting.
1618	 */
1619	do {
1620		seq = syslog_seq;
1621
1622		mutex_unlock(&syslog_lock);
1623		/*
1624		 * Guarantee this task is visible on the waitqueue before
1625		 * checking the wake condition.
1626		 *
1627		 * The full memory barrier within set_current_state() of
1628		 * prepare_to_wait_event() pairs with the full memory barrier
1629		 * within wq_has_sleeper().
1630		 *
1631		 * This pairs with __wake_up_klogd:A.
1632		 */
1633		len = wait_event_interruptible(log_wait,
1634				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1635		mutex_lock(&syslog_lock);
1636
1637		if (len)
1638			goto out;
1639	} while (syslog_seq != seq);
1640
1641	/*
1642	 * Copy records that fit into the buffer. The above cycle makes sure
1643	 * that the first record is always available.
1644	 */
1645	do {
1646		size_t n;
1647		size_t skip;
1648		int err;
1649
1650		if (!prb_read_valid(prb, syslog_seq, &r))
 
 
 
 
1651			break;
1652
1653		if (r.info->seq != syslog_seq) {
1654			/* message is gone, move to next valid one */
1655			syslog_seq = r.info->seq;
1656			syslog_partial = 0;
1657		}
1658
1659		/*
1660		 * To keep reading/counting partial line consistent,
1661		 * use printk_time value as of the beginning of a line.
1662		 */
1663		if (!syslog_partial)
1664			syslog_time = printk_time;
1665
1666		skip = syslog_partial;
1667		n = record_print_text(&r, true, syslog_time);
1668		if (n - syslog_partial <= size) {
1669			/* message fits into buffer, move forward */
1670			syslog_seq = r.info->seq + 1;
1671			n -= syslog_partial;
1672			syslog_partial = 0;
1673		} else if (!len){
1674			/* partial read(), remember position */
1675			n = size;
1676			syslog_partial += n;
1677		} else
1678			n = 0;
 
 
1679
1680		if (!n)
1681			break;
1682
1683		mutex_unlock(&syslog_lock);
1684		err = copy_to_user(buf, text + skip, n);
1685		mutex_lock(&syslog_lock);
1686
1687		if (err) {
1688			if (!len)
1689				len = -EFAULT;
1690			break;
1691		}
1692
1693		len += n;
1694		size -= n;
1695		buf += n;
1696	} while (size);
1697out:
1698	mutex_unlock(&syslog_lock);
1699	kfree(text);
1700	return len;
1701}
1702
1703static int syslog_print_all(char __user *buf, int size, bool clear)
1704{
1705	struct printk_info info;
1706	struct printk_record r;
1707	char *text;
1708	int len = 0;
1709	u64 seq;
1710	bool time;
1711
1712	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1713	if (!text)
1714		return -ENOMEM;
1715
1716	time = printk_time;
 
1717	/*
1718	 * Find first record that fits, including all following records,
1719	 * into the user-provided buffer for this dump.
1720	 */
1721	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1722				     size, true, time);
1723
1724	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1725
 
1726	prb_for_each_record(seq, prb, seq, &r) {
1727		int textlen;
1728
1729		textlen = record_print_text(&r, true, time);
1730
1731		if (len + textlen > size) {
1732			seq--;
1733			break;
1734		}
1735
 
1736		if (copy_to_user(buf + len, text, textlen))
1737			len = -EFAULT;
1738		else
1739			len += textlen;
 
1740
1741		if (len < 0)
1742			break;
1743	}
1744
1745	if (clear) {
1746		mutex_lock(&syslog_lock);
1747		latched_seq_write(&clear_seq, seq);
1748		mutex_unlock(&syslog_lock);
1749	}
 
1750
1751	kfree(text);
1752	return len;
1753}
1754
1755static void syslog_clear(void)
1756{
1757	mutex_lock(&syslog_lock);
 
1758	latched_seq_write(&clear_seq, prb_next_seq(prb));
1759	mutex_unlock(&syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1760}
1761
1762int do_syslog(int type, char __user *buf, int len, int source)
1763{
1764	struct printk_info info;
1765	bool clear = false;
1766	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1767	int error;
1768
1769	error = check_syslog_permissions(type, source);
1770	if (error)
1771		return error;
1772
1773	switch (type) {
1774	case SYSLOG_ACTION_CLOSE:	/* Close log */
1775		break;
1776	case SYSLOG_ACTION_OPEN:	/* Open log */
1777		break;
1778	case SYSLOG_ACTION_READ:	/* Read from log */
1779		if (!buf || len < 0)
1780			return -EINVAL;
1781		if (!len)
1782			return 0;
1783		if (!access_ok(buf, len))
1784			return -EFAULT;
 
 
 
 
 
1785		error = syslog_print(buf, len);
1786		break;
1787	/* Read/clear last kernel messages */
1788	case SYSLOG_ACTION_READ_CLEAR:
1789		clear = true;
1790		fallthrough;
1791	/* Read last kernel messages */
1792	case SYSLOG_ACTION_READ_ALL:
1793		if (!buf || len < 0)
1794			return -EINVAL;
1795		if (!len)
1796			return 0;
1797		if (!access_ok(buf, len))
1798			return -EFAULT;
1799		error = syslog_print_all(buf, len, clear);
1800		break;
1801	/* Clear ring buffer */
1802	case SYSLOG_ACTION_CLEAR:
1803		syslog_clear();
1804		break;
1805	/* Disable logging to console */
1806	case SYSLOG_ACTION_CONSOLE_OFF:
1807		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1808			saved_console_loglevel = console_loglevel;
1809		console_loglevel = minimum_console_loglevel;
1810		break;
1811	/* Enable logging to console */
1812	case SYSLOG_ACTION_CONSOLE_ON:
1813		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1814			console_loglevel = saved_console_loglevel;
1815			saved_console_loglevel = LOGLEVEL_DEFAULT;
1816		}
1817		break;
1818	/* Set level of messages printed to console */
1819	case SYSLOG_ACTION_CONSOLE_LEVEL:
1820		if (len < 1 || len > 8)
1821			return -EINVAL;
1822		if (len < minimum_console_loglevel)
1823			len = minimum_console_loglevel;
1824		console_loglevel = len;
1825		/* Implicitly re-enable logging to console */
1826		saved_console_loglevel = LOGLEVEL_DEFAULT;
1827		break;
1828	/* Number of chars in the log buffer */
1829	case SYSLOG_ACTION_SIZE_UNREAD:
1830		mutex_lock(&syslog_lock);
 
1831		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1832			/* No unread messages. */
1833			mutex_unlock(&syslog_lock);
 
1834			return 0;
1835		}
1836		if (info.seq != syslog_seq) {
1837			/* messages are gone, move to first one */
1838			syslog_seq = info.seq;
1839			syslog_partial = 0;
1840		}
1841		if (source == SYSLOG_FROM_PROC) {
1842			/*
1843			 * Short-cut for poll(/"proc/kmsg") which simply checks
1844			 * for pending data, not the size; return the count of
1845			 * records, not the length.
1846			 */
1847			error = prb_next_seq(prb) - syslog_seq;
1848		} else {
1849			bool time = syslog_partial ? syslog_time : printk_time;
1850			unsigned int line_count;
1851			u64 seq;
1852
1853			prb_for_each_info(syslog_seq, prb, seq, &info,
1854					  &line_count) {
1855				error += get_record_print_text_size(&info, line_count,
1856								    true, time);
1857				time = printk_time;
1858			}
1859			error -= syslog_partial;
1860		}
1861		mutex_unlock(&syslog_lock);
 
1862		break;
1863	/* Size of the log buffer */
1864	case SYSLOG_ACTION_SIZE_BUFFER:
1865		error = log_buf_len;
1866		break;
1867	default:
1868		error = -EINVAL;
1869		break;
1870	}
1871
1872	return error;
1873}
1874
1875SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1876{
1877	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1878}
1879
1880/*
1881 * Special console_lock variants that help to reduce the risk of soft-lockups.
1882 * They allow to pass console_lock to another printk() call using a busy wait.
1883 */
1884
1885#ifdef CONFIG_LOCKDEP
1886static struct lockdep_map console_owner_dep_map = {
1887	.name = "console_owner"
1888};
1889#endif
1890
1891static DEFINE_RAW_SPINLOCK(console_owner_lock);
1892static struct task_struct *console_owner;
1893static bool console_waiter;
1894
1895/**
1896 * console_lock_spinning_enable - mark beginning of code where another
1897 *	thread might safely busy wait
1898 *
1899 * This basically converts console_lock into a spinlock. This marks
1900 * the section where the console_lock owner can not sleep, because
1901 * there may be a waiter spinning (like a spinlock). Also it must be
1902 * ready to hand over the lock at the end of the section.
1903 */
1904void console_lock_spinning_enable(void)
1905{
1906	/*
1907	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1908	 * Non-panic CPUs abandon the flush anyway.
1909	 *
1910	 * Just keep the lockdep annotation. The panic-CPU should avoid
1911	 * taking console_owner_lock because it might cause a deadlock.
1912	 * This looks like the easiest way how to prevent false lockdep
1913	 * reports without handling races a lockless way.
1914	 */
1915	if (panic_in_progress())
1916		goto lockdep;
1917
1918	raw_spin_lock(&console_owner_lock);
1919	console_owner = current;
1920	raw_spin_unlock(&console_owner_lock);
1921
1922lockdep:
1923	/* The waiter may spin on us after setting console_owner */
1924	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1925}
1926
1927/**
1928 * console_lock_spinning_disable_and_check - mark end of code where another
1929 *	thread was able to busy wait and check if there is a waiter
1930 * @cookie: cookie returned from console_srcu_read_lock()
1931 *
1932 * This is called at the end of the section where spinning is allowed.
1933 * It has two functions. First, it is a signal that it is no longer
1934 * safe to start busy waiting for the lock. Second, it checks if
1935 * there is a busy waiter and passes the lock rights to her.
1936 *
1937 * Important: Callers lose both the console_lock and the SRCU read lock if
1938 *	there was a busy waiter. They must not touch items synchronized by
1939 *	console_lock or SRCU read lock in this case.
1940 *
1941 * Return: 1 if the lock rights were passed, 0 otherwise.
1942 */
1943int console_lock_spinning_disable_and_check(int cookie)
1944{
1945	int waiter;
1946
1947	/*
1948	 * Ignore spinning waiters during panic() because they might get stopped
1949	 * or blocked at any time,
1950	 *
1951	 * It is safe because nobody is allowed to start spinning during panic
1952	 * in the first place. If there has been a waiter then non panic CPUs
1953	 * might stay spinning. They would get stopped anyway. The panic context
1954	 * will never start spinning and an interrupted spin on panic CPU will
1955	 * never continue.
1956	 */
1957	if (panic_in_progress()) {
1958		/* Keep lockdep happy. */
1959		spin_release(&console_owner_dep_map, _THIS_IP_);
1960		return 0;
1961	}
1962
1963	raw_spin_lock(&console_owner_lock);
1964	waiter = READ_ONCE(console_waiter);
1965	console_owner = NULL;
1966	raw_spin_unlock(&console_owner_lock);
1967
1968	if (!waiter) {
1969		spin_release(&console_owner_dep_map, _THIS_IP_);
1970		return 0;
1971	}
1972
1973	/* The waiter is now free to continue */
1974	WRITE_ONCE(console_waiter, false);
1975
1976	spin_release(&console_owner_dep_map, _THIS_IP_);
1977
1978	/*
1979	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1980	 * releasing the console_lock.
1981	 */
1982	console_srcu_read_unlock(cookie);
1983
1984	/*
1985	 * Hand off console_lock to waiter. The waiter will perform
1986	 * the up(). After this, the waiter is the console_lock owner.
1987	 */
1988	mutex_release(&console_lock_dep_map, _THIS_IP_);
1989	return 1;
1990}
1991
1992/**
1993 * console_trylock_spinning - try to get console_lock by busy waiting
1994 *
1995 * This allows to busy wait for the console_lock when the current
1996 * owner is running in specially marked sections. It means that
1997 * the current owner is running and cannot reschedule until it
1998 * is ready to lose the lock.
1999 *
2000 * Return: 1 if we got the lock, 0 othrewise
2001 */
2002static int console_trylock_spinning(void)
2003{
2004	struct task_struct *owner = NULL;
2005	bool waiter;
2006	bool spin = false;
2007	unsigned long flags;
2008
2009	if (console_trylock())
2010		return 1;
2011
2012	/*
2013	 * It's unsafe to spin once a panic has begun. If we are the
2014	 * panic CPU, we may have already halted the owner of the
2015	 * console_sem. If we are not the panic CPU, then we should
2016	 * avoid taking console_sem, so the panic CPU has a better
2017	 * chance of cleanly acquiring it later.
2018	 */
2019	if (panic_in_progress())
2020		return 0;
2021
2022	printk_safe_enter_irqsave(flags);
2023
2024	raw_spin_lock(&console_owner_lock);
2025	owner = READ_ONCE(console_owner);
2026	waiter = READ_ONCE(console_waiter);
2027	if (!waiter && owner && owner != current) {
2028		WRITE_ONCE(console_waiter, true);
2029		spin = true;
2030	}
2031	raw_spin_unlock(&console_owner_lock);
2032
2033	/*
2034	 * If there is an active printk() writing to the
2035	 * consoles, instead of having it write our data too,
2036	 * see if we can offload that load from the active
2037	 * printer, and do some printing ourselves.
2038	 * Go into a spin only if there isn't already a waiter
2039	 * spinning, and there is an active printer, and
2040	 * that active printer isn't us (recursive printk?).
2041	 */
2042	if (!spin) {
2043		printk_safe_exit_irqrestore(flags);
2044		return 0;
2045	}
2046
2047	/* We spin waiting for the owner to release us */
2048	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
2049	/* Owner will clear console_waiter on hand off */
2050	while (READ_ONCE(console_waiter))
2051		cpu_relax();
2052	spin_release(&console_owner_dep_map, _THIS_IP_);
2053
2054	printk_safe_exit_irqrestore(flags);
2055	/*
2056	 * The owner passed the console lock to us.
2057	 * Since we did not spin on console lock, annotate
2058	 * this as a trylock. Otherwise lockdep will
2059	 * complain.
2060	 */
2061	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2062
2063	/*
2064	 * Update @console_may_schedule for trylock because the previous
2065	 * owner may have been schedulable.
2066	 */
2067	console_may_schedule = 0;
2068
2069	return 1;
2070}
2071
2072/*
2073 * Recursion is tracked separately on each CPU. If NMIs are supported, an
2074 * additional NMI context per CPU is also separately tracked. Until per-CPU
2075 * is available, a separate "early tracking" is performed.
2076 */
2077static DEFINE_PER_CPU(u8, printk_count);
2078static u8 printk_count_early;
2079#ifdef CONFIG_HAVE_NMI
2080static DEFINE_PER_CPU(u8, printk_count_nmi);
2081static u8 printk_count_nmi_early;
2082#endif
2083
2084/*
2085 * Recursion is limited to keep the output sane. printk() should not require
2086 * more than 1 level of recursion (allowing, for example, printk() to trigger
2087 * a WARN), but a higher value is used in case some printk-internal errors
2088 * exist, such as the ringbuffer validation checks failing.
2089 */
2090#define PRINTK_MAX_RECURSION 3
2091
2092/*
2093 * Return a pointer to the dedicated counter for the CPU+context of the
2094 * caller.
2095 */
2096static u8 *__printk_recursion_counter(void)
2097{
2098#ifdef CONFIG_HAVE_NMI
2099	if (in_nmi()) {
2100		if (printk_percpu_data_ready())
2101			return this_cpu_ptr(&printk_count_nmi);
2102		return &printk_count_nmi_early;
 
 
 
 
 
 
 
 
 
2103	}
2104#endif
2105	if (printk_percpu_data_ready())
2106		return this_cpu_ptr(&printk_count);
2107	return &printk_count_early;
2108}
2109
2110/*
2111 * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2112 * The caller must check the boolean return value to see if the recursion is
2113 * allowed. On failure, interrupts are not disabled.
2114 *
2115 * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2116 * that is passed to printk_exit_irqrestore().
2117 */
2118#define printk_enter_irqsave(recursion_ptr, flags)	\
2119({							\
2120	bool success = true;				\
2121							\
2122	typecheck(u8 *, recursion_ptr);			\
2123	local_irq_save(flags);				\
2124	(recursion_ptr) = __printk_recursion_counter();	\
2125	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2126		local_irq_restore(flags);		\
2127		success = false;			\
2128	} else {					\
2129		(*(recursion_ptr))++;			\
2130	}						\
2131	success;					\
2132})
2133
2134/* Exit recursion tracking, restoring interrupts. */
2135#define printk_exit_irqrestore(recursion_ptr, flags)	\
2136	do {						\
2137		typecheck(u8 *, recursion_ptr);		\
2138		(*(recursion_ptr))--;			\
2139		local_irq_restore(flags);		\
2140	} while (0)
2141
2142int printk_delay_msec __read_mostly;
2143
2144static inline void printk_delay(int level)
2145{
2146	boot_delay_msec(level);
2147
2148	if (unlikely(printk_delay_msec)) {
2149		int m = printk_delay_msec;
2150
2151		while (m--) {
2152			mdelay(1);
2153			touch_nmi_watchdog();
2154		}
2155	}
2156}
2157
2158static inline u32 printk_caller_id(void)
2159{
2160	return in_task() ? task_pid_nr(current) :
2161		0x80000000 + smp_processor_id();
2162}
2163
2164/**
2165 * printk_parse_prefix - Parse level and control flags.
2166 *
2167 * @text:     The terminated text message.
2168 * @level:    A pointer to the current level value, will be updated.
2169 * @flags:    A pointer to the current printk_info flags, will be updated.
2170 *
2171 * @level may be NULL if the caller is not interested in the parsed value.
2172 * Otherwise the variable pointed to by @level must be set to
2173 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2174 *
2175 * @flags may be NULL if the caller is not interested in the parsed value.
2176 * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2177 * value.
2178 *
2179 * Return: The length of the parsed level and control flags.
2180 */
2181u16 printk_parse_prefix(const char *text, int *level,
2182			enum printk_info_flags *flags)
2183{
2184	u16 prefix_len = 0;
2185	int kern_level;
2186
2187	while (*text) {
2188		kern_level = printk_get_level(text);
2189		if (!kern_level)
2190			break;
2191
2192		switch (kern_level) {
2193		case '0' ... '7':
2194			if (level && *level == LOGLEVEL_DEFAULT)
2195				*level = kern_level - '0';
2196			break;
2197		case 'c':	/* KERN_CONT */
2198			if (flags)
2199				*flags |= LOG_CONT;
2200		}
2201
2202		prefix_len += 2;
2203		text += 2;
2204	}
2205
2206	return prefix_len;
2207}
2208
2209__printf(5, 0)
2210static u16 printk_sprint(char *text, u16 size, int facility,
2211			 enum printk_info_flags *flags, const char *fmt,
2212			 va_list args)
2213{
2214	u16 text_len;
2215
2216	text_len = vscnprintf(text, size, fmt, args);
2217
2218	/* Mark and strip a trailing newline. */
2219	if (text_len && text[text_len - 1] == '\n') {
2220		text_len--;
2221		*flags |= LOG_NEWLINE;
2222	}
2223
2224	/* Strip log level and control flags. */
2225	if (facility == 0) {
2226		u16 prefix_len;
2227
2228		prefix_len = printk_parse_prefix(text, NULL, NULL);
2229		if (prefix_len) {
2230			text_len -= prefix_len;
2231			memmove(text, text + prefix_len, text_len);
2232		}
2233	}
2234
2235	trace_console(text, text_len);
2236
2237	return text_len;
2238}
2239
2240__printf(4, 0)
2241int vprintk_store(int facility, int level,
2242		  const struct dev_printk_info *dev_info,
2243		  const char *fmt, va_list args)
2244{
 
2245	struct prb_reserved_entry e;
2246	enum printk_info_flags flags = 0;
2247	struct printk_record r;
2248	unsigned long irqflags;
2249	u16 trunc_msg_len = 0;
2250	char prefix_buf[8];
2251	u8 *recursion_ptr;
2252	u16 reserve_size;
2253	va_list args2;
2254	u32 caller_id;
2255	u16 text_len;
2256	int ret = 0;
2257	u64 ts_nsec;
2258
2259	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2260		return 0;
2261
2262	/*
2263	 * Since the duration of printk() can vary depending on the message
2264	 * and state of the ringbuffer, grab the timestamp now so that it is
2265	 * close to the call of printk(). This provides a more deterministic
2266	 * timestamp with respect to the caller.
2267	 */
2268	ts_nsec = local_clock();
2269
2270	caller_id = printk_caller_id();
2271
2272	/*
2273	 * The sprintf needs to come first since the syslog prefix might be
2274	 * passed in as a parameter. An extra byte must be reserved so that
2275	 * later the vscnprintf() into the reserved buffer has room for the
2276	 * terminating '\0', which is not counted by vsnprintf().
2277	 */
2278	va_copy(args2, args);
2279	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2280	va_end(args2);
2281
2282	if (reserve_size > PRINTKRB_RECORD_MAX)
2283		reserve_size = PRINTKRB_RECORD_MAX;
2284
2285	/* Extract log level or control flags. */
2286	if (facility == 0)
2287		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2288
2289	if (level == LOGLEVEL_DEFAULT)
2290		level = default_message_loglevel;
2291
2292	if (dev_info)
2293		flags |= LOG_NEWLINE;
2294
2295	if (is_printk_force_console())
2296		flags |= LOG_FORCE_CON;
2297
2298	if (flags & LOG_CONT) {
2299		prb_rec_init_wr(&r, reserve_size);
2300		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2301			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2302						 facility, &flags, fmt, args);
2303			r.info->text_len += text_len;
2304
2305			if (flags & LOG_FORCE_CON)
2306				r.info->flags |= LOG_FORCE_CON;
2307
2308			if (flags & LOG_NEWLINE) {
2309				r.info->flags |= LOG_NEWLINE;
2310				prb_final_commit(&e);
2311			} else {
2312				prb_commit(&e);
2313			}
2314
2315			ret = text_len;
2316			goto out;
2317		}
2318	}
2319
2320	/*
2321	 * Explicitly initialize the record before every prb_reserve() call.
2322	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2323	 * structure when they fail.
2324	 */
2325	prb_rec_init_wr(&r, reserve_size);
2326	if (!prb_reserve(&e, prb, &r)) {
2327		/* truncate the message if it is too long for empty buffer */
2328		truncate_msg(&reserve_size, &trunc_msg_len);
2329
2330		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2331		if (!prb_reserve(&e, prb, &r))
2332			goto out;
2333	}
2334
2335	/* fill message */
2336	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2337	if (trunc_msg_len)
2338		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2339	r.info->text_len = text_len + trunc_msg_len;
2340	r.info->facility = facility;
2341	r.info->level = level & 7;
2342	r.info->flags = flags & 0x1f;
2343	r.info->ts_nsec = ts_nsec;
2344	r.info->caller_id = caller_id;
2345	if (dev_info)
2346		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2347
2348	/* A message without a trailing newline can be continued. */
2349	if (!(flags & LOG_NEWLINE))
2350		prb_commit(&e);
2351	else
2352		prb_final_commit(&e);
2353
2354	ret = text_len + trunc_msg_len;
2355out:
2356	printk_exit_irqrestore(recursion_ptr, irqflags);
2357	return ret;
2358}
2359
2360/*
2361 * This acts as a one-way switch to allow legacy consoles to print from
2362 * the printk() caller context on a panic CPU. It also attempts to flush
2363 * the legacy consoles in this context.
2364 */
2365void printk_legacy_allow_panic_sync(void)
2366{
2367	struct console_flush_type ft;
2368
2369	legacy_allow_panic_sync = true;
2370
2371	printk_get_console_flush_type(&ft);
2372	if (ft.legacy_direct) {
2373		if (console_trylock())
2374			console_unlock();
2375	}
2376}
2377
2378asmlinkage int vprintk_emit(int facility, int level,
2379			    const struct dev_printk_info *dev_info,
2380			    const char *fmt, va_list args)
2381{
2382	struct console_flush_type ft;
2383	int printed_len;
 
 
2384
2385	/* Suppress unimportant messages after panic happens */
2386	if (unlikely(suppress_printk))
2387		return 0;
2388
2389	/*
2390	 * The messages on the panic CPU are the most important. If
2391	 * non-panic CPUs are generating any messages, they will be
2392	 * silently dropped.
2393	 */
2394	if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace)
2395		return 0;
2396
2397	printk_get_console_flush_type(&ft);
2398
2399	/* If called from the scheduler, we can not call up(). */
2400	if (level == LOGLEVEL_SCHED) {
2401		level = LOGLEVEL_DEFAULT;
2402		ft.legacy_offload |= ft.legacy_direct;
2403		ft.legacy_direct = false;
2404	}
2405
2406	printk_delay(level);
 
2407
 
2408	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
 
2409
2410	if (ft.nbcon_atomic)
2411		nbcon_atomic_flush_pending();
2412
2413	if (ft.nbcon_offload)
2414		nbcon_kthreads_wake();
2415
2416	if (ft.legacy_direct) {
2417		/*
2418		 * The caller may be holding system-critical or
2419		 * timing-sensitive locks. Disable preemption during
2420		 * printing of all remaining records to all consoles so that
2421		 * this context can return as soon as possible. Hopefully
2422		 * another printk() caller will take over the printing.
2423		 */
2424		preempt_disable();
2425		/*
2426		 * Try to acquire and then immediately release the console
2427		 * semaphore. The release will print out buffers. With the
2428		 * spinning variant, this context tries to take over the
2429		 * printing from another printing context.
2430		 */
2431		if (console_trylock_spinning())
2432			console_unlock();
2433		preempt_enable();
2434	}
2435
2436	if (ft.legacy_offload)
2437		defer_console_output();
2438	else
2439		wake_up_klogd();
2440
2441	return printed_len;
2442}
2443EXPORT_SYMBOL(vprintk_emit);
2444
2445int vprintk_default(const char *fmt, va_list args)
2446{
2447	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2448}
2449EXPORT_SYMBOL_GPL(vprintk_default);
2450
2451asmlinkage __visible int _printk(const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452{
2453	va_list args;
2454	int r;
2455
2456	va_start(args, fmt);
2457	r = vprintk(fmt, args);
2458	va_end(args);
2459
2460	return r;
2461}
2462EXPORT_SYMBOL(_printk);
2463
2464static bool pr_flush(int timeout_ms, bool reset_on_progress);
2465static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2466
2467#else /* CONFIG_PRINTK */
2468
 
2469#define printk_time		false
2470
2471#define prb_read_valid(rb, seq, r)	false
2472#define prb_first_valid_seq(rb)		0
2473#define prb_next_seq(rb)		0
2474
2475static u64 syslog_seq;
 
 
 
2476
2477static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2478static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479
2480#endif /* CONFIG_PRINTK */
2481
2482#ifdef CONFIG_EARLY_PRINTK
2483struct console *early_console;
2484
2485asmlinkage __visible void early_printk(const char *fmt, ...)
2486{
2487	va_list ap;
2488	char buf[512];
2489	int n;
2490
2491	if (!early_console)
2492		return;
2493
2494	va_start(ap, fmt);
2495	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2496	va_end(ap);
2497
2498	early_console->write(early_console, buf, n);
2499}
2500#endif
2501
2502static void set_user_specified(struct console_cmdline *c, bool user_specified)
2503{
2504	if (!user_specified)
2505		return;
2506
2507	/*
2508	 * @c console was defined by the user on the command line.
2509	 * Do not clear when added twice also by SPCR or the device tree.
2510	 */
2511	c->user_specified = true;
2512	/* At least one console defined by the user on the command line. */
2513	console_set_on_cmdline = 1;
2514}
2515
2516static int __add_preferred_console(const char *name, const short idx,
2517				   const char *devname, char *options,
2518				   char *brl_options, bool user_specified)
2519{
2520	struct console_cmdline *c;
2521	int i;
2522
2523	if (!name && !devname)
2524		return -EINVAL;
2525
2526	/*
2527	 * We use a signed short index for struct console for device drivers to
2528	 * indicate a not yet assigned index or port. However, a negative index
2529	 * value is not valid when the console name and index are defined on
2530	 * the command line.
2531	 */
2532	if (name && idx < 0)
2533		return -EINVAL;
2534
2535	/*
2536	 *	See if this tty is not yet registered, and
2537	 *	if we have a slot free.
2538	 */
2539	for (i = 0, c = console_cmdline;
2540	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2541	     i++, c++) {
2542		if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2543		    (devname && strcmp(c->devname, devname) == 0)) {
2544			if (!brl_options)
2545				preferred_console = i;
2546			set_user_specified(c, user_specified);
 
2547			return 0;
2548		}
2549	}
2550	if (i == MAX_CMDLINECONSOLES)
2551		return -E2BIG;
2552	if (!brl_options)
2553		preferred_console = i;
2554	if (name)
2555		strscpy(c->name, name);
2556	if (devname)
2557		strscpy(c->devname, devname);
2558	c->options = options;
2559	set_user_specified(c, user_specified);
2560	braille_set_options(c, brl_options);
2561
2562	c->index = idx;
2563	return 0;
2564}
2565
2566static int __init console_msg_format_setup(char *str)
2567{
2568	if (!strcmp(str, "syslog"))
2569		console_msg_format = MSG_FORMAT_SYSLOG;
2570	if (!strcmp(str, "default"))
2571		console_msg_format = MSG_FORMAT_DEFAULT;
2572	return 1;
2573}
2574__setup("console_msg_format=", console_msg_format_setup);
2575
2576/*
2577 * Set up a console.  Called via do_early_param() in init/main.c
2578 * for each "console=" parameter in the boot command line.
2579 */
2580static int __init console_setup(char *str)
2581{
2582	static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2583	char buf[sizeof(console_cmdline[0].devname)];
2584	char *brl_options = NULL;
2585	char *ttyname = NULL;
2586	char *devname = NULL;
2587	char *options;
2588	char *s;
2589	int idx;
2590
2591	/*
2592	 * console="" or console=null have been suggested as a way to
2593	 * disable console output. Use ttynull that has been created
2594	 * for exactly this purpose.
2595	 */
2596	if (str[0] == 0 || strcmp(str, "null") == 0) {
2597		__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2598		return 1;
2599	}
2600
2601	if (_braille_console_setup(&str, &brl_options))
2602		return 1;
2603
2604	/* For a DEVNAME:0.0 style console the character device is unknown early */
2605	if (strchr(str, ':'))
2606		devname = buf;
2607	else
2608		ttyname = buf;
2609
2610	/*
2611	 * Decode str into name, index, options.
2612	 */
2613	if (ttyname && isdigit(str[0]))
2614		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2615	else
2616		strscpy(buf, str);
2617
 
 
2618	options = strchr(str, ',');
2619	if (options)
2620		*(options++) = 0;
2621
2622#ifdef __sparc__
2623	if (!strcmp(str, "ttya"))
2624		strscpy(buf, "ttyS0");
2625	if (!strcmp(str, "ttyb"))
2626		strscpy(buf, "ttyS1");
2627#endif
2628
2629	for (s = buf; *s; s++)
2630		if ((ttyname && isdigit(*s)) || *s == ',')
2631			break;
2632
2633	/* @idx will get defined when devname matches. */
2634	if (devname)
2635		idx = -1;
2636	else
2637		idx = simple_strtoul(s, NULL, 10);
2638
2639	*s = 0;
2640
2641	__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
 
2642	return 1;
2643}
2644__setup("console=", console_setup);
2645
2646/**
2647 * add_preferred_console - add a device to the list of preferred consoles.
2648 * @name: device name
2649 * @idx: device index
2650 * @options: options for this console
2651 *
2652 * The last preferred console added will be used for kernel messages
2653 * and stdin/out/err for init.  Normally this is used by console_setup
2654 * above to handle user-supplied console arguments; however it can also
2655 * be used by arch-specific code either to override the user or more
2656 * commonly to provide a default console (ie from PROM variables) when
2657 * the user has not supplied one.
2658 */
2659int add_preferred_console(const char *name, const short idx, char *options)
2660{
2661	return __add_preferred_console(name, idx, NULL, options, NULL, false);
2662}
2663
2664/**
2665 * match_devname_and_update_preferred_console - Update a preferred console
2666 *	when matching devname is found.
2667 * @devname: DEVNAME:0.0 style device name
2668 * @name: Name of the corresponding console driver, e.g. "ttyS"
2669 * @idx: Console index, e.g. port number.
2670 *
2671 * The function checks whether a device with the given @devname is
2672 * preferred via the console=DEVNAME:0.0 command line option.
2673 * It fills the missing console driver name and console index
2674 * so that a later register_console() call could find (match)
2675 * and enable this device.
2676 *
2677 * It might be used when a driver subsystem initializes particular
2678 * devices with already known DEVNAME:0.0 style names. And it
2679 * could predict which console driver name and index this device
2680 * would later get associated with.
2681 *
2682 * Return: 0 on success, negative error code on failure.
2683 */
2684int match_devname_and_update_preferred_console(const char *devname,
2685					       const char *name,
2686					       const short idx)
2687{
2688	struct console_cmdline *c = console_cmdline;
2689	int i;
2690
2691	if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2692		return -EINVAL;
2693
2694	for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2695	     i++, c++) {
2696		if (!strcmp(devname, c->devname)) {
2697			pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2698				devname, name, idx);
2699			strscpy(c->name, name);
2700			c->index = idx;
2701			return 0;
2702		}
2703	}
2704
2705	return -ENOENT;
2706}
2707EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
2708
2709bool console_suspend_enabled = true;
2710EXPORT_SYMBOL(console_suspend_enabled);
2711
2712static int __init console_suspend_disable(char *str)
2713{
2714	console_suspend_enabled = false;
2715	return 1;
2716}
2717__setup("no_console_suspend", console_suspend_disable);
2718module_param_named(console_suspend, console_suspend_enabled,
2719		bool, S_IRUGO | S_IWUSR);
2720MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2721	" and hibernate operations");
2722
2723static bool printk_console_no_auto_verbose;
2724
2725void console_verbose(void)
2726{
2727	if (console_loglevel && !printk_console_no_auto_verbose)
2728		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2729}
2730EXPORT_SYMBOL_GPL(console_verbose);
2731
2732module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2733MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2734
2735/**
2736 * suspend_console - suspend the console subsystem
2737 *
2738 * This disables printk() while we go into suspend states
2739 */
2740void suspend_console(void)
2741{
2742	struct console *con;
2743
2744	if (!console_suspend_enabled)
2745		return;
2746	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2747	pr_flush(1000, true);
2748
2749	console_list_lock();
2750	for_each_console(con)
2751		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2752	console_list_unlock();
2753
2754	/*
2755	 * Ensure that all SRCU list walks have completed. All printing
2756	 * contexts must be able to see that they are suspended so that it
2757	 * is guaranteed that all printing has stopped when this function
2758	 * completes.
2759	 */
2760	synchronize_srcu(&console_srcu);
2761}
2762
2763void resume_console(void)
2764{
2765	struct console_flush_type ft;
2766	struct console *con;
2767
2768	if (!console_suspend_enabled)
2769		return;
2770
2771	console_list_lock();
2772	for_each_console(con)
2773		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2774	console_list_unlock();
2775
2776	/*
2777	 * Ensure that all SRCU list walks have completed. All printing
2778	 * contexts must be able to see they are no longer suspended so
2779	 * that they are guaranteed to wake up and resume printing.
2780	 */
2781	synchronize_srcu(&console_srcu);
2782
2783	printk_get_console_flush_type(&ft);
2784	if (ft.nbcon_offload)
2785		nbcon_kthreads_wake();
2786	if (ft.legacy_offload)
2787		defer_console_output();
2788
2789	pr_flush(1000, true);
2790}
2791
2792/**
2793 * console_cpu_notify - print deferred console messages after CPU hotplug
2794 * @cpu: unused
2795 *
2796 * If printk() is called from a CPU that is not online yet, the messages
2797 * will be printed on the console only if there are CON_ANYTIME consoles.
2798 * This function is called when a new CPU comes online (or fails to come
2799 * up) or goes offline.
2800 */
2801static int console_cpu_notify(unsigned int cpu)
2802{
2803	struct console_flush_type ft;
2804
2805	if (!cpuhp_tasks_frozen) {
2806		printk_get_console_flush_type(&ft);
2807		if (ft.nbcon_atomic)
2808			nbcon_atomic_flush_pending();
2809		if (ft.legacy_direct) {
2810			if (console_trylock())
2811				console_unlock();
2812		}
2813	}
2814	return 0;
2815}
2816
2817/**
2818 * console_lock - block the console subsystem from printing
2819 *
2820 * Acquires a lock which guarantees that no consoles will
2821 * be in or enter their write() callback.
2822 *
2823 * Can sleep, returns nothing.
2824 */
2825void console_lock(void)
2826{
2827	might_sleep();
2828
2829	/* On panic, the console_lock must be left to the panic cpu. */
2830	while (other_cpu_in_panic())
2831		msleep(1000);
2832
2833	down_console_sem();
 
 
2834	console_locked = 1;
2835	console_may_schedule = 1;
2836}
2837EXPORT_SYMBOL(console_lock);
2838
2839/**
2840 * console_trylock - try to block the console subsystem from printing
2841 *
2842 * Try to acquire a lock which guarantees that no consoles will
2843 * be in or enter their write() callback.
2844 *
2845 * returns 1 on success, and 0 on failure to acquire the lock.
2846 */
2847int console_trylock(void)
2848{
2849	/* On panic, the console_lock must be left to the panic cpu. */
2850	if (other_cpu_in_panic())
2851		return 0;
2852	if (down_trylock_console_sem())
2853		return 0;
 
 
 
 
2854	console_locked = 1;
2855	console_may_schedule = 0;
2856	return 1;
2857}
2858EXPORT_SYMBOL(console_trylock);
2859
2860int is_console_locked(void)
2861{
2862	return console_locked;
2863}
2864EXPORT_SYMBOL(is_console_locked);
2865
2866static void __console_unlock(void)
2867{
2868	console_locked = 0;
2869	up_console_sem();
2870}
2871
2872#ifdef CONFIG_PRINTK
2873
2874/*
2875 * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
2876 * the existing message over and inserting the scratchbuf message.
2877 *
2878 * @pmsg is the original printk message.
2879 * @fmt is the printf format of the message which will prepend the existing one.
2880 *
2881 * If there is not enough space in @pmsg->pbufs->outbuf, the existing
2882 * message text will be sufficiently truncated.
2883 *
2884 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2885 */
2886__printf(2, 3)
2887static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
2888{
2889	struct printk_buffers *pbufs = pmsg->pbufs;
2890	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2891	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2892	char *scratchbuf = &pbufs->scratchbuf[0];
2893	char *outbuf = &pbufs->outbuf[0];
2894	va_list args;
2895	size_t len;
2896
2897	va_start(args, fmt);
2898	len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
2899	va_end(args);
2900
2901	/*
2902	 * Make sure outbuf is sufficiently large before prepending.
2903	 * Keep at least the prefix when the message must be truncated.
2904	 * It is a rather theoretical problem when someone tries to
2905	 * use a minimalist buffer.
2906	 */
2907	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2908		return;
2909
2910	if (pmsg->outbuf_len + len >= outbuf_sz) {
2911		/* Truncate the message, but keep it terminated. */
2912		pmsg->outbuf_len = outbuf_sz - (len + 1);
2913		outbuf[pmsg->outbuf_len] = 0;
2914	}
2915
2916	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2917	memcpy(outbuf, scratchbuf, len);
2918	pmsg->outbuf_len += len;
2919}
2920
2921/*
2922 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
2923 * @pmsg->outbuf_len is updated appropriately.
2924 *
2925 * @pmsg is the printk message to prepend.
2926 *
2927 * @dropped is the dropped count to report in the dropped message.
2928 */
2929void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2930{
2931	console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
2932}
2933
2934/*
2935 * Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
2936 * @pmsg->outbuf_len is updated appropriately.
2937 *
2938 * @pmsg is the printk message to prepend.
 
 
2939 */
2940void console_prepend_replay(struct printk_message *pmsg)
2941{
2942	console_prepend_message(pmsg, "** replaying previous printk message **\n");
2943}
2944
2945/*
2946 * Read and format the specified record (or a later record if the specified
2947 * record is not available).
2948 *
2949 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2950 * struct printk_buffers.
2951 *
2952 * @seq is the record to read and format. If it is not available, the next
2953 * valid record is read.
2954 *
2955 * @is_extended specifies if the message should be formatted for extended
2956 * console output.
 
2957 *
2958 * @may_supress specifies if records may be skipped based on loglevel.
2959 *
2960 * Returns false if no record is available. Otherwise true and all fields
2961 * of @pmsg are valid. (See the documentation of struct printk_message
2962 * for information about the @pmsg fields.)
2963 */
2964bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2965			     bool is_extended, bool may_suppress)
2966{
2967	struct printk_buffers *pbufs = pmsg->pbufs;
2968	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2969	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2970	char *scratchbuf = &pbufs->scratchbuf[0];
2971	char *outbuf = &pbufs->outbuf[0];
2972	struct printk_info info;
2973	struct printk_record r;
2974	size_t len = 0;
2975	bool force_con;
2976
2977	/*
2978	 * Formatting extended messages requires a separate buffer, so use the
2979	 * scratch buffer to read in the ringbuffer text.
2980	 *
2981	 * Formatting normal messages is done in-place, so read the ringbuffer
2982	 * text directly into the output buffer.
2983	 */
2984	if (is_extended)
2985		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2986	else
2987		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2988
2989	if (!prb_read_valid(prb, seq, &r))
2990		return false;
2991
2992	pmsg->seq = r.info->seq;
2993	pmsg->dropped = r.info->seq - seq;
2994	force_con = r.info->flags & LOG_FORCE_CON;
2995
2996	/*
2997	 * Skip records that are not forced to be printed on consoles and that
2998	 * has level above the console loglevel.
 
 
 
 
 
 
 
 
 
 
2999	 */
3000	if (!force_con && may_suppress && suppress_message_printing(r.info->level))
3001		goto out;
 
3002
3003	if (is_extended) {
3004		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
3005		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
3006					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
3007	} else {
3008		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
 
 
 
3009	}
3010out:
3011	pmsg->outbuf_len = len;
3012	return true;
3013}
3014
3015/*
3016 * Legacy console printing from printk() caller context does not respect
3017 * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
3018 * false positive. For PREEMPT_RT the false positive condition does not
3019 * occur.
3020 *
3021 * This map is used to temporarily establish LD_WAIT_SLEEP context for the
3022 * console write() callback when legacy printing to avoid false positive
3023 * lockdep complaints, thus allowing lockdep to continue to function for
3024 * real issues.
3025 */
3026#ifdef CONFIG_PREEMPT_RT
3027static inline void printk_legacy_allow_spinlock_enter(void) { }
3028static inline void printk_legacy_allow_spinlock_exit(void) { }
3029#else
3030static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
3031
3032static inline void printk_legacy_allow_spinlock_enter(void)
3033{
3034	lock_map_acquire_try(&printk_legacy_map);
3035}
3036
3037static inline void printk_legacy_allow_spinlock_exit(void)
3038{
3039	lock_map_release(&printk_legacy_map);
3040}
3041#endif /* CONFIG_PREEMPT_RT */
3042
3043/*
3044 * Used as the printk buffers for non-panic, serialized console printing.
3045 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
3046 * Its usage requires the console_lock held.
3047 */
3048struct printk_buffers printk_shared_pbufs;
3049
3050/*
3051 * Print one record for the given console. The record printed is whatever
3052 * record is the next available record for the given console.
3053 *
3054 * @handover will be set to true if a printk waiter has taken over the
3055 * console_lock, in which case the caller is no longer holding both the
3056 * console_lock and the SRCU read lock. Otherwise it is set to false.
3057 *
3058 * @cookie is the cookie from the SRCU read lock.
3059 *
3060 * Returns false if the given console has no next record to print, otherwise
3061 * true.
3062 *
3063 * Requires the console_lock and the SRCU read lock.
3064 */
3065static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3066{
3067	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
3068	char *outbuf = &printk_shared_pbufs.outbuf[0];
3069	struct printk_message pmsg = {
3070		.pbufs = &printk_shared_pbufs,
3071	};
3072	unsigned long flags;
3073
3074	*handover = false;
3075
3076	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
3077		return false;
3078
3079	con->dropped += pmsg.dropped;
 
 
 
3080
3081	/* Skip messages of formatted length 0. */
3082	if (pmsg.outbuf_len == 0) {
3083		con->seq = pmsg.seq + 1;
3084		goto skip;
3085	}
3086
3087	if (con->dropped && !is_extended) {
3088		console_prepend_dropped(&pmsg, con->dropped);
3089		con->dropped = 0;
3090	}
 
 
 
 
 
3091
3092	/* Write everything out to the hardware. */
 
 
 
 
3093
3094	if (force_legacy_kthread() && !panic_in_progress()) {
3095		/*
3096		 * With forced threading this function is in a task context
3097		 * (either legacy kthread or get_init_console_seq()). There
3098		 * is no need for concern about printk reentrance, handovers,
3099		 * or lockdep complaints.
3100		 */
 
 
 
 
 
 
 
 
 
 
 
 
3101
3102		con->write(con, outbuf, pmsg.outbuf_len);
3103		con->seq = pmsg.seq + 1;
3104	} else {
3105		/*
3106		 * While actively printing out messages, if another printk()
3107		 * were to occur on another CPU, it may wait for this one to
3108		 * finish. This task can not be preempted if there is a
3109		 * waiter waiting to take over.
3110		 *
3111		 * Interrupts are disabled because the hand over to a waiter
3112		 * must not be interrupted until the hand over is completed
3113		 * (@console_waiter is cleared).
3114		 */
3115		printk_safe_enter_irqsave(flags);
3116		console_lock_spinning_enable();
3117
3118		/* Do not trace print latency. */
3119		stop_critical_timings();
3120
3121		printk_legacy_allow_spinlock_enter();
3122		con->write(con, outbuf, pmsg.outbuf_len);
3123		printk_legacy_allow_spinlock_exit();
3124
3125		start_critical_timings();
3126
3127		con->seq = pmsg.seq + 1;
 
 
 
3128
3129		*handover = console_lock_spinning_disable_and_check(cookie);
3130		printk_safe_exit_irqrestore(flags);
3131	}
3132skip:
3133	return true;
3134}
3135
3136#else
3137
3138static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3139{
3140	*handover = false;
3141	return false;
3142}
3143
3144static inline void printk_kthreads_check_locked(void) { }
3145
3146#endif /* CONFIG_PRINTK */
3147
3148/*
3149 * Print out all remaining records to all consoles.
3150 *
3151 * @do_cond_resched is set by the caller. It can be true only in schedulable
3152 * context.
3153 *
3154 * @next_seq is set to the sequence number after the last available record.
3155 * The value is valid only when this function returns true. It means that all
3156 * usable consoles are completely flushed.
3157 *
3158 * @handover will be set to true if a printk waiter has taken over the
3159 * console_lock, in which case the caller is no longer holding the
3160 * console_lock. Otherwise it is set to false.
3161 *
3162 * Returns true when there was at least one usable console and all messages
3163 * were flushed to all usable consoles. A returned false informs the caller
3164 * that everything was not flushed (either there were no usable consoles or
3165 * another context has taken over printing or it is a panic situation and this
3166 * is not the panic CPU). Regardless the reason, the caller should assume it
3167 * is not useful to immediately try again.
3168 *
3169 * Requires the console_lock.
3170 */
3171static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3172{
3173	struct console_flush_type ft;
3174	bool any_usable = false;
3175	struct console *con;
3176	bool any_progress;
3177	int cookie;
3178
3179	*next_seq = 0;
3180	*handover = false;
3181
3182	do {
3183		any_progress = false;
3184
3185		printk_get_console_flush_type(&ft);
3186
3187		cookie = console_srcu_read_lock();
3188		for_each_console_srcu(con) {
3189			short flags = console_srcu_read_flags(con);
3190			u64 printk_seq;
3191			bool progress;
3192
3193			/*
3194			 * console_flush_all() is only responsible for nbcon
3195			 * consoles when the nbcon consoles cannot print via
3196			 * their atomic or threaded flushing.
3197			 */
3198			if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3199				continue;
3200
3201			if (!console_is_usable(con, flags, !do_cond_resched))
3202				continue;
3203			any_usable = true;
3204
3205			if (flags & CON_NBCON) {
3206				progress = nbcon_legacy_emit_next_record(con, handover, cookie,
3207									 !do_cond_resched);
3208				printk_seq = nbcon_seq_read(con);
3209			} else {
3210				progress = console_emit_next_record(con, handover, cookie);
3211				printk_seq = con->seq;
3212			}
3213
3214			/*
3215			 * If a handover has occurred, the SRCU read lock
3216			 * is already released.
3217			 */
3218			if (*handover)
3219				return false;
3220
3221			/* Track the next of the highest seq flushed. */
3222			if (printk_seq > *next_seq)
3223				*next_seq = printk_seq;
3224
3225			if (!progress)
3226				continue;
3227			any_progress = true;
3228
3229			/* Allow panic_cpu to take over the consoles safely. */
3230			if (other_cpu_in_panic())
3231				goto abandon;
3232
3233			if (do_cond_resched)
3234				cond_resched();
3235		}
3236		console_srcu_read_unlock(cookie);
3237	} while (any_progress);
3238
3239	return any_usable;
3240
3241abandon:
3242	console_srcu_read_unlock(cookie);
3243	return false;
3244}
3245
3246static void __console_flush_and_unlock(void)
3247{
3248	bool do_cond_resched;
3249	bool handover;
3250	bool flushed;
3251	u64 next_seq;
3252
3253	/*
3254	 * Console drivers are called with interrupts disabled, so
3255	 * @console_may_schedule should be cleared before; however, we may
3256	 * end up dumping a lot of lines, for example, if called from
3257	 * console registration path, and should invoke cond_resched()
3258	 * between lines if allowable.  Not doing so can cause a very long
3259	 * scheduling stall on a slow console leading to RCU stall and
3260	 * softlockup warnings which exacerbate the issue with more
3261	 * messages practically incapacitating the system. Therefore, create
3262	 * a local to use for the printing loop.
3263	 */
3264	do_cond_resched = console_may_schedule;
3265
3266	do {
3267		console_may_schedule = 0;
3268
3269		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3270		if (!handover)
3271			__console_unlock();
3272
3273		/*
3274		 * Abort if there was a failure to flush all messages to all
3275		 * usable consoles. Either it is not possible to flush (in
3276		 * which case it would be an infinite loop of retrying) or
3277		 * another context has taken over printing.
3278		 */
3279		if (!flushed)
3280			break;
3281
3282		/*
3283		 * Some context may have added new records after
3284		 * console_flush_all() but before unlocking the console.
3285		 * Re-check if there is a new record to flush. If the trylock
3286		 * fails, another context is already handling the printing.
3287		 */
3288	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3289}
3290
3291/**
3292 * console_unlock - unblock the legacy console subsystem from printing
3293 *
3294 * Releases the console_lock which the caller holds to block printing of
3295 * the legacy console subsystem.
3296 *
3297 * While the console_lock was held, console output may have been buffered
3298 * by printk(). If this is the case, console_unlock() emits the output on
3299 * legacy consoles prior to releasing the lock.
3300 *
3301 * console_unlock(); may be called from any context.
3302 */
3303void console_unlock(void)
3304{
3305	struct console_flush_type ft;
3306
3307	printk_get_console_flush_type(&ft);
3308	if (ft.legacy_direct)
3309		__console_flush_and_unlock();
3310	else
3311		__console_unlock();
3312}
3313EXPORT_SYMBOL(console_unlock);
3314
3315/**
3316 * console_conditional_schedule - yield the CPU if required
3317 *
3318 * If the console code is currently allowed to sleep, and
3319 * if this CPU should yield the CPU to another task, do
3320 * so here.
3321 *
3322 * Must be called within console_lock();.
3323 */
3324void __sched console_conditional_schedule(void)
3325{
3326	if (console_may_schedule)
3327		cond_resched();
3328}
3329EXPORT_SYMBOL(console_conditional_schedule);
3330
3331void console_unblank(void)
3332{
3333	bool found_unblank = false;
3334	struct console *c;
3335	int cookie;
3336
3337	/*
3338	 * First check if there are any consoles implementing the unblank()
3339	 * callback. If not, there is no reason to continue and take the
3340	 * console lock, which in particular can be dangerous if
3341	 * @oops_in_progress is set.
3342	 */
3343	cookie = console_srcu_read_lock();
3344	for_each_console_srcu(c) {
3345		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3346			found_unblank = true;
3347			break;
3348		}
3349	}
3350	console_srcu_read_unlock(cookie);
3351	if (!found_unblank)
3352		return;
3353
3354	/*
3355	 * Stop console printing because the unblank() callback may
3356	 * assume the console is not within its write() callback.
3357	 *
3358	 * If @oops_in_progress is set, this may be an atomic context.
3359	 * In that case, attempt a trylock as best-effort.
3360	 */
3361	if (oops_in_progress) {
3362		/* Semaphores are not NMI-safe. */
3363		if (in_nmi())
3364			return;
3365
3366		/*
3367		 * Attempting to trylock the console lock can deadlock
3368		 * if another CPU was stopped while modifying the
3369		 * semaphore. "Hope and pray" that this is not the
3370		 * current situation.
3371		 */
3372		if (down_trylock_console_sem() != 0)
3373			return;
3374	} else
3375		console_lock();
3376
3377	console_locked = 1;
3378	console_may_schedule = 0;
3379
3380	cookie = console_srcu_read_lock();
3381	for_each_console_srcu(c) {
3382		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3383			c->unblank();
3384	}
3385	console_srcu_read_unlock(cookie);
3386
3387	console_unlock();
3388
3389	if (!oops_in_progress)
3390		pr_flush(1000, true);
3391}
3392
3393/*
3394 * Rewind all consoles to the oldest available record.
3395 *
3396 * IMPORTANT: The function is safe only when called under
3397 *            console_lock(). It is not enforced because
3398 *            it is used as a best effort in panic().
3399 */
3400static void __console_rewind_all(void)
3401{
3402	struct console *c;
3403	short flags;
3404	int cookie;
3405	u64 seq;
3406
3407	seq = prb_first_valid_seq(prb);
3408
3409	cookie = console_srcu_read_lock();
3410	for_each_console_srcu(c) {
3411		flags = console_srcu_read_flags(c);
3412
3413		if (flags & CON_NBCON) {
3414			nbcon_seq_force(c, seq);
3415		} else {
3416			/*
3417			 * This assignment is safe only when called under
3418			 * console_lock(). On panic, legacy consoles are
3419			 * only best effort.
3420			 */
3421			c->seq = seq;
3422		}
3423	}
3424	console_srcu_read_unlock(cookie);
3425}
3426
3427/**
3428 * console_flush_on_panic - flush console content on panic
3429 * @mode: flush all messages in buffer or just the pending ones
3430 *
3431 * Immediately output all pending messages no matter what.
3432 */
3433void console_flush_on_panic(enum con_flush_mode mode)
3434{
3435	struct console_flush_type ft;
3436	bool handover;
3437	u64 next_seq;
3438
3439	/*
3440	 * Ignore the console lock and flush out the messages. Attempting a
3441	 * trylock would not be useful because:
3442	 *
3443	 *   - if it is contended, it must be ignored anyway
3444	 *   - console_lock() and console_trylock() block and fail
3445	 *     respectively in panic for non-panic CPUs
3446	 *   - semaphores are not NMI-safe
3447	 */
3448
3449	/*
3450	 * If another context is holding the console lock,
3451	 * @console_may_schedule might be set. Clear it so that
3452	 * this context does not call cond_resched() while flushing.
3453	 */
 
3454	console_may_schedule = 0;
3455
3456	if (mode == CONSOLE_REPLAY_ALL)
3457		__console_rewind_all();
3458
3459	printk_get_console_flush_type(&ft);
3460	if (ft.nbcon_atomic)
3461		nbcon_atomic_flush_pending();
3462
3463	/* Flush legacy consoles once allowed, even when dangerous. */
3464	if (legacy_allow_panic_sync)
3465		console_flush_all(false, &next_seq, &handover);
3466}
3467
3468/*
3469 * Return the console tty driver structure and its associated index
3470 */
3471struct tty_driver *console_device(int *index)
3472{
3473	struct console *c;
3474	struct tty_driver *driver = NULL;
3475	int cookie;
3476
3477	/*
3478	 * Take console_lock to serialize device() callback with
3479	 * other console operations. For example, fg_console is
3480	 * modified under console_lock when switching vt.
3481	 */
3482	console_lock();
3483
3484	cookie = console_srcu_read_lock();
3485	for_each_console_srcu(c) {
3486		if (!c->device)
3487			continue;
3488		driver = c->device(c, index);
3489		if (driver)
3490			break;
3491	}
3492	console_srcu_read_unlock(cookie);
3493
3494	console_unlock();
3495	return driver;
3496}
3497
3498/*
3499 * Prevent further output on the passed console device so that (for example)
3500 * serial drivers can disable console output before suspending a port, and can
3501 * re-enable output afterwards.
3502 */
3503void console_stop(struct console *console)
3504{
3505	__pr_flush(console, 1000, true);
3506	console_list_lock();
3507	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3508	console_list_unlock();
3509
3510	/*
3511	 * Ensure that all SRCU list walks have completed. All contexts must
3512	 * be able to see that this console is disabled so that (for example)
3513	 * the caller can suspend the port without risk of another context
3514	 * using the port.
3515	 */
3516	synchronize_srcu(&console_srcu);
3517}
3518EXPORT_SYMBOL(console_stop);
3519
3520void console_start(struct console *console)
3521{
3522	struct console_flush_type ft;
3523	bool is_nbcon;
3524
3525	console_list_lock();
3526	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3527	is_nbcon = console->flags & CON_NBCON;
3528	console_list_unlock();
3529
3530	/*
3531	 * Ensure that all SRCU list walks have completed. The related
3532	 * printing context must be able to see it is enabled so that
3533	 * it is guaranteed to wake up and resume printing.
3534	 */
3535	synchronize_srcu(&console_srcu);
3536
3537	printk_get_console_flush_type(&ft);
3538	if (is_nbcon && ft.nbcon_offload)
3539		nbcon_kthread_wake(console);
3540	else if (ft.legacy_offload)
3541		defer_console_output();
3542
3543	__pr_flush(console, 1000, true);
3544}
3545EXPORT_SYMBOL(console_start);
3546
3547#ifdef CONFIG_PRINTK
3548static int unregister_console_locked(struct console *console);
3549
3550/* True when system boot is far enough to create printer threads. */
3551static bool printk_kthreads_ready __ro_after_init;
3552
3553static struct task_struct *printk_legacy_kthread;
3554
3555static bool legacy_kthread_should_wakeup(void)
3556{
3557	struct console_flush_type ft;
3558	struct console *con;
3559	bool ret = false;
3560	int cookie;
3561
3562	if (kthread_should_stop())
3563		return true;
3564
3565	printk_get_console_flush_type(&ft);
3566
3567	cookie = console_srcu_read_lock();
3568	for_each_console_srcu(con) {
3569		short flags = console_srcu_read_flags(con);
3570		u64 printk_seq;
3571
3572		/*
3573		 * The legacy printer thread is only responsible for nbcon
3574		 * consoles when the nbcon consoles cannot print via their
3575		 * atomic or threaded flushing.
3576		 */
3577		if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3578			continue;
3579
3580		if (!console_is_usable(con, flags, false))
3581			continue;
3582
3583		if (flags & CON_NBCON) {
3584			printk_seq = nbcon_seq_read(con);
3585		} else {
3586			/*
3587			 * It is safe to read @seq because only this
3588			 * thread context updates @seq.
3589			 */
3590			printk_seq = con->seq;
3591		}
3592
3593		if (prb_read_valid(prb, printk_seq, NULL)) {
3594			ret = true;
3595			break;
3596		}
3597	}
3598	console_srcu_read_unlock(cookie);
3599
3600	return ret;
3601}
3602
3603static int legacy_kthread_func(void *unused)
3604{
3605	for (;;) {
3606		wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
3607
3608		if (kthread_should_stop())
3609			break;
3610
3611		console_lock();
3612		__console_flush_and_unlock();
3613	}
3614
3615	return 0;
3616}
3617
3618static bool legacy_kthread_create(void)
3619{
3620	struct task_struct *kt;
3621
3622	lockdep_assert_console_list_lock_held();
3623
3624	kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
3625	if (WARN_ON(IS_ERR(kt))) {
3626		pr_err("failed to start legacy printing thread\n");
3627		return false;
3628	}
3629
3630	printk_legacy_kthread = kt;
3631
3632	/*
3633	 * It is important that console printing threads are scheduled
3634	 * shortly after a printk call and with generous runtime budgets.
3635	 */
3636	sched_set_normal(printk_legacy_kthread, -20);
3637
3638	return true;
3639}
3640
3641/**
3642 * printk_kthreads_shutdown - shutdown all threaded printers
3643 *
3644 * On system shutdown all threaded printers are stopped. This allows printk
3645 * to transition back to atomic printing, thus providing a robust mechanism
3646 * for the final shutdown/reboot messages to be output.
3647 */
3648static void printk_kthreads_shutdown(void)
3649{
3650	struct console *con;
3651
3652	console_list_lock();
3653	if (printk_kthreads_running) {
3654		printk_kthreads_running = false;
3655
3656		for_each_console(con) {
3657			if (con->flags & CON_NBCON)
3658				nbcon_kthread_stop(con);
3659		}
3660
3661		/*
3662		 * The threads may have been stopped while printing a
3663		 * backlog. Flush any records left over.
3664		 */
3665		nbcon_atomic_flush_pending();
3666	}
3667	console_list_unlock();
3668}
3669
3670static struct syscore_ops printk_syscore_ops = {
3671	.shutdown = printk_kthreads_shutdown,
3672};
3673
3674/*
3675 * If appropriate, start nbcon kthreads and set @printk_kthreads_running.
3676 * If any kthreads fail to start, those consoles are unregistered.
3677 *
3678 * Must be called under console_list_lock().
3679 */
3680static void printk_kthreads_check_locked(void)
3681{
3682	struct hlist_node *tmp;
3683	struct console *con;
3684
3685	lockdep_assert_console_list_lock_held();
3686
3687	if (!printk_kthreads_ready)
3688		return;
3689
3690	if (have_legacy_console || have_boot_console) {
3691		if (!printk_legacy_kthread &&
3692		    force_legacy_kthread() &&
3693		    !legacy_kthread_create()) {
3694			/*
3695			 * All legacy consoles must be unregistered. If there
3696			 * are any nbcon consoles, they will set up their own
3697			 * kthread.
3698			 */
3699			hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3700				if (con->flags & CON_NBCON)
3701					continue;
3702
3703				unregister_console_locked(con);
3704			}
3705		}
3706	} else if (printk_legacy_kthread) {
3707		kthread_stop(printk_legacy_kthread);
3708		printk_legacy_kthread = NULL;
3709	}
3710
3711	/*
3712	 * Printer threads cannot be started as long as any boot console is
3713	 * registered because there is no way to synchronize the hardware
3714	 * registers between boot console code and regular console code.
3715	 * It can only be known that there will be no new boot consoles when
3716	 * an nbcon console is registered.
3717	 */
3718	if (have_boot_console || !have_nbcon_console) {
3719		/* Clear flag in case all nbcon consoles unregistered. */
3720		printk_kthreads_running = false;
3721		return;
3722	}
3723
3724	if (printk_kthreads_running)
3725		return;
3726
3727	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3728		if (!(con->flags & CON_NBCON))
3729			continue;
3730
3731		if (!nbcon_kthread_create(con))
3732			unregister_console_locked(con);
3733	}
3734
3735	printk_kthreads_running = true;
3736}
3737
3738static int __init printk_set_kthreads_ready(void)
3739{
3740	register_syscore_ops(&printk_syscore_ops);
3741
3742	console_list_lock();
3743	printk_kthreads_ready = true;
3744	printk_kthreads_check_locked();
3745	console_list_unlock();
3746
3747	return 0;
3748}
3749early_initcall(printk_set_kthreads_ready);
3750#endif /* CONFIG_PRINTK */
3751
3752static int __read_mostly keep_bootcon;
3753
3754static int __init keep_bootcon_setup(char *str)
3755{
3756	keep_bootcon = 1;
3757	pr_info("debug: skip boot console de-registration.\n");
3758
3759	return 0;
3760}
3761
3762early_param("keep_bootcon", keep_bootcon_setup);
3763
3764static int console_call_setup(struct console *newcon, char *options)
3765{
3766	int err;
3767
3768	if (!newcon->setup)
3769		return 0;
3770
3771	/* Synchronize with possible boot console. */
3772	console_lock();
3773	err = newcon->setup(newcon, options);
3774	console_unlock();
3775
3776	return err;
3777}
3778
3779/*
3780 * This is called by register_console() to try to match
3781 * the newly registered console with any of the ones selected
3782 * by either the command line or add_preferred_console() and
3783 * setup/enable it.
3784 *
3785 * Care need to be taken with consoles that are statically
3786 * enabled such as netconsole
3787 */
3788static int try_enable_preferred_console(struct console *newcon,
3789					bool user_specified)
3790{
3791	struct console_cmdline *c;
3792	int i, err;
3793
3794	for (i = 0, c = console_cmdline;
3795	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3796	     i++, c++) {
3797		/* Console not yet initialized? */
3798		if (!c->name[0])
3799			continue;
3800		if (c->user_specified != user_specified)
3801			continue;
3802		if (!newcon->match ||
3803		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3804			/* default matching */
3805			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3806			if (strcmp(c->name, newcon->name) != 0)
3807				continue;
3808			if (newcon->index >= 0 &&
3809			    newcon->index != c->index)
3810				continue;
3811			if (newcon->index < 0)
3812				newcon->index = c->index;
3813
3814			if (_braille_register_console(newcon, c))
3815				return 0;
3816
3817			err = console_call_setup(newcon, c->options);
3818			if (err)
3819				return err;
3820		}
3821		newcon->flags |= CON_ENABLED;
3822		if (i == preferred_console)
3823			newcon->flags |= CON_CONSDEV;
 
 
3824		return 0;
3825	}
3826
3827	/*
3828	 * Some consoles, such as pstore and netconsole, can be enabled even
3829	 * without matching. Accept the pre-enabled consoles only when match()
3830	 * and setup() had a chance to be called.
3831	 */
3832	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3833		return 0;
3834
3835	return -ENOENT;
3836}
3837
3838/* Try to enable the console unconditionally */
3839static void try_enable_default_console(struct console *newcon)
3840{
3841	if (newcon->index < 0)
3842		newcon->index = 0;
3843
3844	if (console_call_setup(newcon, NULL) != 0)
3845		return;
3846
3847	newcon->flags |= CON_ENABLED;
3848
3849	if (newcon->device)
3850		newcon->flags |= CON_CONSDEV;
3851}
3852
3853/* Return the starting sequence number for a newly registered console. */
3854static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
3855{
3856	struct console *con;
3857	bool handover;
3858	u64 init_seq;
3859
3860	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3861		/* Get a consistent copy of @syslog_seq. */
3862		mutex_lock(&syslog_lock);
3863		init_seq = syslog_seq;
3864		mutex_unlock(&syslog_lock);
3865	} else {
3866		/* Begin with next message added to ringbuffer. */
3867		init_seq = prb_next_seq(prb);
3868
3869		/*
3870		 * If any enabled boot consoles are due to be unregistered
3871		 * shortly, some may not be caught up and may be the same
3872		 * device as @newcon. Since it is not known which boot console
3873		 * is the same device, flush all consoles and, if necessary,
3874		 * start with the message of the enabled boot console that is
3875		 * the furthest behind.
3876		 */
3877		if (bootcon_registered && !keep_bootcon) {
3878			/*
3879			 * Hold the console_lock to stop console printing and
3880			 * guarantee safe access to console->seq.
3881			 */
3882			console_lock();
3883
3884			/*
3885			 * Flush all consoles and set the console to start at
3886			 * the next unprinted sequence number.
3887			 */
3888			if (!console_flush_all(true, &init_seq, &handover)) {
3889				/*
3890				 * Flushing failed. Just choose the lowest
3891				 * sequence of the enabled boot consoles.
3892				 */
3893
3894				/*
3895				 * If there was a handover, this context no
3896				 * longer holds the console_lock.
3897				 */
3898				if (handover)
3899					console_lock();
3900
3901				init_seq = prb_next_seq(prb);
3902				for_each_console(con) {
3903					u64 seq;
3904
3905					if (!(con->flags & CON_BOOT) ||
3906					    !(con->flags & CON_ENABLED)) {
3907						continue;
3908					}
3909
3910					if (con->flags & CON_NBCON)
3911						seq = nbcon_seq_read(con);
3912					else
3913						seq = con->seq;
3914
3915					if (seq < init_seq)
3916						init_seq = seq;
3917				}
3918			}
3919
3920			console_unlock();
3921		}
3922	}
3923
3924	return init_seq;
3925}
3926
3927#define console_first()				\
3928	hlist_entry(console_list.first, struct console, node)
3929
3930static int unregister_console_locked(struct console *console);
3931
3932/*
3933 * The console driver calls this routine during kernel initialization
3934 * to register the console printing procedure with printk() and to
3935 * print any messages that were printed by the kernel before the
3936 * console driver was initialized.
3937 *
3938 * This can happen pretty early during the boot process (because of
3939 * early_printk) - sometimes before setup_arch() completes - be careful
3940 * of what kernel features are used - they may not be initialised yet.
3941 *
3942 * There are two types of consoles - bootconsoles (early_printk) and
3943 * "real" consoles (everything which is not a bootconsole) which are
3944 * handled differently.
3945 *  - Any number of bootconsoles can be registered at any time.
3946 *  - As soon as a "real" console is registered, all bootconsoles
3947 *    will be unregistered automatically.
3948 *  - Once a "real" console is registered, any attempt to register a
3949 *    bootconsoles will be rejected
3950 */
3951void register_console(struct console *newcon)
3952{
3953	bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
3954	bool bootcon_registered = false;
3955	bool realcon_registered = false;
3956	struct console *con;
3957	unsigned long flags;
3958	u64 init_seq;
3959	int err;
3960
3961	console_list_lock();
 
 
 
 
3962
3963	for_each_console(con) {
3964		if (WARN(con == newcon, "console '%s%d' already registered\n",
3965					 con->name, con->index)) {
3966			goto unlock;
 
 
 
 
 
 
 
3967		}
3968
3969		if (con->flags & CON_BOOT)
3970			bootcon_registered = true;
3971		else
3972			realcon_registered = true;
3973	}
3974
3975	/* Do not register boot consoles when there already is a real one. */
3976	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3977		pr_info("Too late to register bootconsole %s%d\n",
3978			newcon->name, newcon->index);
3979		goto unlock;
3980	}
3981
3982	if (newcon->flags & CON_NBCON) {
3983		/*
3984		 * Ensure the nbcon console buffers can be allocated
3985		 * before modifying any global data.
3986		 */
3987		if (!nbcon_alloc(newcon))
3988			goto unlock;
3989	}
3990
3991	/*
3992	 * See if we want to enable this console driver by default.
3993	 *
3994	 * Nope when a console is preferred by the command line, device
3995	 * tree, or SPCR.
3996	 *
3997	 * The first real console with tty binding (driver) wins. More
3998	 * consoles might get enabled before the right one is found.
3999	 *
4000	 * Note that a console with tty binding will have CON_CONSDEV
4001	 * flag set and will be first in the list.
4002	 */
4003	if (preferred_console < 0) {
4004		if (hlist_empty(&console_list) || !console_first()->device ||
4005		    console_first()->flags & CON_BOOT) {
4006			try_enable_default_console(newcon);
4007		}
4008	}
4009
4010	/* See if this console matches one we selected on the command line */
4011	err = try_enable_preferred_console(newcon, true);
4012
4013	/* If not, try to match against the platform default(s) */
4014	if (err == -ENOENT)
4015		err = try_enable_preferred_console(newcon, false);
4016
4017	/* printk() messages are not printed to the Braille console. */
4018	if (err || newcon->flags & CON_BRL) {
4019		if (newcon->flags & CON_NBCON)
4020			nbcon_free(newcon);
4021		goto unlock;
4022	}
4023
4024	/*
4025	 * If we have a bootconsole, and are switching to a real console,
4026	 * don't print everything out again, since when the boot console, and
4027	 * the real console are the same physical device, it's annoying to
4028	 * see the beginning boot messages twice
4029	 */
4030	if (bootcon_registered &&
4031	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
4032		newcon->flags &= ~CON_PRINTBUFFER;
4033	}
4034
4035	newcon->dropped = 0;
4036	init_seq = get_init_console_seq(newcon, bootcon_registered);
4037
4038	if (newcon->flags & CON_NBCON) {
4039		have_nbcon_console = true;
4040		nbcon_seq_force(newcon, init_seq);
4041	} else {
4042		have_legacy_console = true;
4043		newcon->seq = init_seq;
4044	}
4045
4046	if (newcon->flags & CON_BOOT)
4047		have_boot_console = true;
4048
4049	/*
4050	 * If another context is actively using the hardware of this new
4051	 * console, it will not be aware of the nbcon synchronization. This
4052	 * is a risk that two contexts could access the hardware
4053	 * simultaneously if this new console is used for atomic printing
4054	 * and the other context is still using the hardware.
4055	 *
4056	 * Use the driver synchronization to ensure that the hardware is not
4057	 * in use while this new console transitions to being registered.
4058	 */
4059	if (use_device_lock)
4060		newcon->device_lock(newcon, &flags);
4061
4062	/*
4063	 * Put this console in the list - keep the
4064	 * preferred driver at the head of the list.
4065	 */
4066	if (hlist_empty(&console_list)) {
4067		/* Ensure CON_CONSDEV is always set for the head. */
4068		newcon->flags |= CON_CONSDEV;
4069		hlist_add_head_rcu(&newcon->node, &console_list);
4070
4071	} else if (newcon->flags & CON_CONSDEV) {
4072		/* Only the new head can have CON_CONSDEV set. */
4073		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
4074		hlist_add_head_rcu(&newcon->node, &console_list);
4075
4076	} else {
4077		hlist_add_behind_rcu(&newcon->node, console_list.first);
 
4078	}
4079
4080	/*
4081	 * No need to synchronize SRCU here! The caller does not rely
4082	 * on all contexts being able to see the new console before
4083	 * register_console() completes.
4084	 */
4085
4086	/* This new console is now registered. */
4087	if (use_device_lock)
4088		newcon->device_unlock(newcon, flags);
 
 
 
 
 
 
 
 
 
 
 
 
4089
 
 
 
 
 
 
4090	console_sysfs_notify();
4091
4092	/*
4093	 * By unregistering the bootconsoles after we enable the real console
4094	 * we get the "console xxx enabled" message on all the consoles -
4095	 * boot consoles, real consoles, etc - this is to ensure that end
4096	 * users know there might be something in the kernel's log buffer that
4097	 * went to the bootconsole (that they do not see on the real console)
4098	 */
4099	con_printk(KERN_INFO, newcon, "enabled\n");
4100	if (bootcon_registered &&
 
 
4101	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
4102	    !keep_bootcon) {
4103		struct hlist_node *tmp;
4104
4105		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4106			if (con->flags & CON_BOOT)
4107				unregister_console_locked(con);
4108		}
4109	}
4110
4111	/* Changed console list, may require printer threads to start/stop. */
4112	printk_kthreads_check_locked();
4113unlock:
4114	console_list_unlock();
4115}
4116EXPORT_SYMBOL(register_console);
4117
4118/* Must be called under console_list_lock(). */
4119static int unregister_console_locked(struct console *console)
4120{
4121	bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
4122	bool found_legacy_con = false;
4123	bool found_nbcon_con = false;
4124	bool found_boot_con = false;
4125	unsigned long flags;
4126	struct console *c;
4127	int res;
4128
4129	lockdep_assert_console_list_lock_held();
4130
4131	con_printk(KERN_INFO, console, "disabled\n");
4132
4133	res = _braille_unregister_console(console);
4134	if (res < 0)
4135		return res;
4136	if (res > 0)
4137		return 0;
4138
4139	if (!console_is_registered_locked(console))
4140		res = -ENODEV;
4141	else if (console_is_usable(console, console->flags, true))
4142		__pr_flush(console, 1000, true);
4143
4144	/* Disable it unconditionally */
4145	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
4146
4147	if (res < 0)
4148		return res;
4149
4150	/*
4151	 * Use the driver synchronization to ensure that the hardware is not
4152	 * in use while this console transitions to being unregistered.
4153	 */
4154	if (use_device_lock)
4155		console->device_lock(console, &flags);
4156
4157	hlist_del_init_rcu(&console->node);
 
4158
4159	if (use_device_lock)
4160		console->device_unlock(console, flags);
4161
4162	/*
4163	 * <HISTORICAL>
4164	 * If this isn't the last console and it has CON_CONSDEV set, we
4165	 * need to set it on the next preferred console.
4166	 * </HISTORICAL>
4167	 *
4168	 * The above makes no sense as there is no guarantee that the next
4169	 * console has any device attached. Oh well....
4170	 */
4171	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
4172		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
4173
4174	/*
4175	 * Ensure that all SRCU list walks have completed. All contexts
4176	 * must not be able to see this console in the list so that any
4177	 * exit/cleanup routines can be performed safely.
4178	 */
4179	synchronize_srcu(&console_srcu);
4180
4181	if (console->flags & CON_NBCON)
4182		nbcon_free(console);
4183
 
 
4184	console_sysfs_notify();
4185
4186	if (console->exit)
4187		res = console->exit(console);
4188
4189	/*
4190	 * With this console gone, the global flags tracking registered
4191	 * console types may have changed. Update them.
4192	 */
4193	for_each_console(c) {
4194		if (c->flags & CON_BOOT)
4195			found_boot_con = true;
4196
4197		if (c->flags & CON_NBCON)
4198			found_nbcon_con = true;
4199		else
4200			found_legacy_con = true;
4201	}
4202	if (!found_boot_con)
4203		have_boot_console = found_boot_con;
4204	if (!found_legacy_con)
4205		have_legacy_console = found_legacy_con;
4206	if (!found_nbcon_con)
4207		have_nbcon_console = found_nbcon_con;
4208
4209	/* Changed console list, may require printer threads to start/stop. */
4210	printk_kthreads_check_locked();
4211
4212	return res;
4213}
4214
4215int unregister_console(struct console *console)
4216{
4217	int res;
4218
4219	console_list_lock();
4220	res = unregister_console_locked(console);
4221	console_list_unlock();
4222	return res;
4223}
4224EXPORT_SYMBOL(unregister_console);
4225
4226/**
4227 * console_force_preferred_locked - force a registered console preferred
4228 * @con: The registered console to force preferred.
4229 *
4230 * Must be called under console_list_lock().
4231 */
4232void console_force_preferred_locked(struct console *con)
4233{
4234	struct console *cur_pref_con;
4235
4236	if (!console_is_registered_locked(con))
4237		return;
4238
4239	cur_pref_con = console_first();
4240
4241	/* Already preferred? */
4242	if (cur_pref_con == con)
4243		return;
4244
4245	/*
4246	 * Delete, but do not re-initialize the entry. This allows the console
4247	 * to continue to appear registered (via any hlist_unhashed_lockless()
4248	 * checks), even though it was briefly removed from the console list.
4249	 */
4250	hlist_del_rcu(&con->node);
4251
4252	/*
4253	 * Ensure that all SRCU list walks have completed so that the console
4254	 * can be added to the beginning of the console list and its forward
4255	 * list pointer can be re-initialized.
4256	 */
4257	synchronize_srcu(&console_srcu);
4258
4259	con->flags |= CON_CONSDEV;
4260	WARN_ON(!con->device);
4261
4262	/* Only the new head can have CON_CONSDEV set. */
4263	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
4264	hlist_add_head_rcu(&con->node, &console_list);
4265}
4266EXPORT_SYMBOL(console_force_preferred_locked);
4267
4268/*
4269 * Initialize the console device. This is called *early*, so
4270 * we can't necessarily depend on lots of kernel help here.
4271 * Just do some early initializations, and do the complex setup
4272 * later.
4273 */
4274void __init console_init(void)
4275{
4276	int ret;
4277	initcall_t call;
4278	initcall_entry_t *ce;
4279
4280	/* Setup the default TTY line discipline. */
4281	n_tty_init();
4282
4283	/*
4284	 * set up the console device so that later boot sequences can
4285	 * inform about problems etc..
4286	 */
4287	ce = __con_initcall_start;
4288	trace_initcall_level("console");
4289	while (ce < __con_initcall_end) {
4290		call = initcall_from_entry(ce);
4291		trace_initcall_start(call);
4292		ret = call();
4293		trace_initcall_finish(call, ret);
4294		ce++;
4295	}
4296}
4297
4298/*
4299 * Some boot consoles access data that is in the init section and which will
4300 * be discarded after the initcalls have been run. To make sure that no code
4301 * will access this data, unregister the boot consoles in a late initcall.
4302 *
4303 * If for some reason, such as deferred probe or the driver being a loadable
4304 * module, the real console hasn't registered yet at this point, there will
4305 * be a brief interval in which no messages are logged to the console, which
4306 * makes it difficult to diagnose problems that occur during this time.
4307 *
4308 * To mitigate this problem somewhat, only unregister consoles whose memory
4309 * intersects with the init section. Note that all other boot consoles will
4310 * get unregistered when the real preferred console is registered.
4311 */
4312static int __init printk_late_init(void)
4313{
4314	struct hlist_node *tmp;
4315	struct console *con;
4316	int ret;
4317
4318	console_list_lock();
4319	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4320		if (!(con->flags & CON_BOOT))
4321			continue;
4322
4323		/* Check addresses that might be used for enabled consoles. */
4324		if (init_section_intersects(con, sizeof(*con)) ||
4325		    init_section_contains(con->write, 0) ||
4326		    init_section_contains(con->read, 0) ||
4327		    init_section_contains(con->device, 0) ||
4328		    init_section_contains(con->unblank, 0) ||
4329		    init_section_contains(con->data, 0)) {
4330			/*
4331			 * Please, consider moving the reported consoles out
4332			 * of the init section.
4333			 */
4334			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
4335				con->name, con->index);
4336			unregister_console_locked(con);
4337		}
4338	}
4339	console_list_unlock();
4340
4341	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
4342					console_cpu_notify);
4343	WARN_ON(ret < 0);
4344	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
4345					console_cpu_notify, NULL);
4346	WARN_ON(ret < 0);
4347	printk_sysctl_init();
4348	return 0;
4349}
4350late_initcall(printk_late_init);
4351
4352#if defined CONFIG_PRINTK
4353/* If @con is specified, only wait for that console. Otherwise wait for all. */
4354static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
4355{
4356	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
4357	unsigned long remaining_jiffies = timeout_jiffies;
4358	struct console_flush_type ft;
4359	struct console *c;
4360	u64 last_diff = 0;
4361	u64 printk_seq;
4362	short flags;
4363	int cookie;
4364	u64 diff;
4365	u64 seq;
4366
4367	/* Sorry, pr_flush() will not work this early. */
4368	if (system_state < SYSTEM_SCHEDULING)
4369		return false;
4370
4371	might_sleep();
4372
4373	seq = prb_next_reserve_seq(prb);
4374
4375	/* Flush the consoles so that records up to @seq are printed. */
4376	printk_get_console_flush_type(&ft);
4377	if (ft.nbcon_atomic)
4378		nbcon_atomic_flush_pending();
4379	if (ft.legacy_direct) {
4380		console_lock();
4381		console_unlock();
4382	}
4383
4384	for (;;) {
4385		unsigned long begin_jiffies;
4386		unsigned long slept_jiffies;
4387
4388		diff = 0;
4389
4390		/*
4391		 * Hold the console_lock to guarantee safe access to
4392		 * console->seq. Releasing console_lock flushes more
4393		 * records in case @seq is still not printed on all
4394		 * usable consoles.
4395		 *
4396		 * Holding the console_lock is not necessary if there
4397		 * are no legacy or boot consoles. However, such a
4398		 * console could register at any time. Always hold the
4399		 * console_lock as a precaution rather than
4400		 * synchronizing against register_console().
4401		 */
4402		console_lock();
4403
4404		cookie = console_srcu_read_lock();
4405		for_each_console_srcu(c) {
4406			if (con && con != c)
4407				continue;
4408
4409			flags = console_srcu_read_flags(c);
4410
4411			/*
4412			 * If consoles are not usable, it cannot be expected
4413			 * that they make forward progress, so only increment
4414			 * @diff for usable consoles.
4415			 */
4416			if (!console_is_usable(c, flags, true) &&
4417			    !console_is_usable(c, flags, false)) {
4418				continue;
4419			}
4420
4421			if (flags & CON_NBCON) {
4422				printk_seq = nbcon_seq_read(c);
4423			} else {
4424				printk_seq = c->seq;
4425			}
4426
4427			if (printk_seq < seq)
4428				diff += seq - printk_seq;
4429		}
4430		console_srcu_read_unlock(cookie);
4431
4432		if (diff != last_diff && reset_on_progress)
4433			remaining_jiffies = timeout_jiffies;
4434
4435		console_unlock();
4436
4437		/* Note: @diff is 0 if there are no usable consoles. */
4438		if (diff == 0 || remaining_jiffies == 0)
4439			break;
4440
4441		/* msleep(1) might sleep much longer. Check time by jiffies. */
4442		begin_jiffies = jiffies;
4443		msleep(1);
4444		slept_jiffies = jiffies - begin_jiffies;
4445
4446		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
4447
4448		last_diff = diff;
4449	}
4450
4451	return (diff == 0);
4452}
4453
4454/**
4455 * pr_flush() - Wait for printing threads to catch up.
4456 *
4457 * @timeout_ms:        The maximum time (in ms) to wait.
4458 * @reset_on_progress: Reset the timeout if forward progress is seen.
4459 *
4460 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
4461 * represents infinite waiting.
4462 *
4463 * If @reset_on_progress is true, the timeout will be reset whenever any
4464 * printer has been seen to make some forward progress.
4465 *
4466 * Context: Process context. May sleep while acquiring console lock.
4467 * Return: true if all usable printers are caught up.
4468 */
4469static bool pr_flush(int timeout_ms, bool reset_on_progress)
4470{
4471	return __pr_flush(NULL, timeout_ms, reset_on_progress);
4472}
4473
4474/*
4475 * Delayed printk version, for scheduler-internal messages:
4476 */
4477#define PRINTK_PENDING_WAKEUP	0x01
4478#define PRINTK_PENDING_OUTPUT	0x02
4479
4480static DEFINE_PER_CPU(int, printk_pending);
4481
4482static void wake_up_klogd_work_func(struct irq_work *irq_work)
4483{
4484	int pending = this_cpu_xchg(printk_pending, 0);
4485
4486	if (pending & PRINTK_PENDING_OUTPUT) {
4487		if (force_legacy_kthread()) {
4488			if (printk_legacy_kthread)
4489				wake_up_interruptible(&legacy_wait);
4490		} else {
4491			if (console_trylock())
4492				console_unlock();
4493		}
4494	}
4495
4496	if (pending & PRINTK_PENDING_WAKEUP)
4497		wake_up_interruptible(&log_wait);
4498}
4499
4500static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
4501	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
4502
4503static void __wake_up_klogd(int val)
4504{
4505	if (!printk_percpu_data_ready())
4506		return;
4507
4508	preempt_disable();
4509	/*
4510	 * Guarantee any new records can be seen by tasks preparing to wait
4511	 * before this context checks if the wait queue is empty.
4512	 *
4513	 * The full memory barrier within wq_has_sleeper() pairs with the full
4514	 * memory barrier within set_current_state() of
4515	 * prepare_to_wait_event(), which is called after ___wait_event() adds
4516	 * the waiter but before it has checked the wait condition.
4517	 *
4518	 * This pairs with devkmsg_read:A and syslog_print:A.
4519	 */
4520	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4521	    (val & PRINTK_PENDING_OUTPUT)) {
4522		this_cpu_or(printk_pending, val);
4523		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4524	}
4525	preempt_enable();
4526}
4527
4528/**
4529 * wake_up_klogd - Wake kernel logging daemon
4530 *
4531 * Use this function when new records have been added to the ringbuffer
4532 * and the console printing of those records has already occurred or is
4533 * known to be handled by some other context. This function will only
4534 * wake the logging daemon.
4535 *
4536 * Context: Any context.
4537 */
4538void wake_up_klogd(void)
4539{
4540	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
4541}
4542
4543/**
4544 * defer_console_output - Wake kernel logging daemon and trigger
4545 *	console printing in a deferred context
4546 *
4547 * Use this function when new records have been added to the ringbuffer,
4548 * this context is responsible for console printing those records, but
4549 * the current context is not allowed to perform the console printing.
4550 * Trigger an irq_work context to perform the console printing. This
4551 * function also wakes the logging daemon.
4552 *
4553 * Context: Any context.
4554 */
4555void defer_console_output(void)
4556{
4557	/*
4558	 * New messages may have been added directly to the ringbuffer
4559	 * using vprintk_store(), so wake any waiters as well.
4560	 */
4561	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4562}
4563
4564void printk_trigger_flush(void)
4565{
4566	defer_console_output();
 
4567}
4568
4569int vprintk_deferred(const char *fmt, va_list args)
4570{
4571	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
 
 
 
 
 
4572}
4573
4574int _printk_deferred(const char *fmt, ...)
4575{
4576	va_list args;
4577	int r;
4578
4579	va_start(args, fmt);
4580	r = vprintk_deferred(fmt, args);
4581	va_end(args);
4582
4583	return r;
4584}
4585
4586/*
4587 * printk rate limiting, lifted from the networking subsystem.
4588 *
4589 * This enforces a rate limit: not more than 10 kernel messages
4590 * every 5s to make a denial-of-service attack impossible.
4591 */
4592DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4593
4594int __printk_ratelimit(const char *func)
4595{
4596	return ___ratelimit(&printk_ratelimit_state, func);
4597}
4598EXPORT_SYMBOL(__printk_ratelimit);
4599
4600/**
4601 * printk_timed_ratelimit - caller-controlled printk ratelimiting
4602 * @caller_jiffies: pointer to caller's state
4603 * @interval_msecs: minimum interval between prints
4604 *
4605 * printk_timed_ratelimit() returns true if more than @interval_msecs
4606 * milliseconds have elapsed since the last time printk_timed_ratelimit()
4607 * returned true.
4608 */
4609bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4610			unsigned int interval_msecs)
4611{
4612	unsigned long elapsed = jiffies - *caller_jiffies;
4613
4614	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4615		return false;
4616
4617	*caller_jiffies = jiffies;
4618	return true;
4619}
4620EXPORT_SYMBOL(printk_timed_ratelimit);
4621
4622static DEFINE_SPINLOCK(dump_list_lock);
4623static LIST_HEAD(dump_list);
4624
4625/**
4626 * kmsg_dump_register - register a kernel log dumper.
4627 * @dumper: pointer to the kmsg_dumper structure
4628 *
4629 * Adds a kernel log dumper to the system. The dump callback in the
4630 * structure will be called when the kernel oopses or panics and must be
4631 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4632 */
4633int kmsg_dump_register(struct kmsg_dumper *dumper)
4634{
4635	unsigned long flags;
4636	int err = -EBUSY;
4637
4638	/* The dump callback needs to be set */
4639	if (!dumper->dump)
4640		return -EINVAL;
4641
4642	spin_lock_irqsave(&dump_list_lock, flags);
4643	/* Don't allow registering multiple times */
4644	if (!dumper->registered) {
4645		dumper->registered = 1;
4646		list_add_tail_rcu(&dumper->list, &dump_list);
4647		err = 0;
4648	}
4649	spin_unlock_irqrestore(&dump_list_lock, flags);
4650
4651	return err;
4652}
4653EXPORT_SYMBOL_GPL(kmsg_dump_register);
4654
4655/**
4656 * kmsg_dump_unregister - unregister a kmsg dumper.
4657 * @dumper: pointer to the kmsg_dumper structure
4658 *
4659 * Removes a dump device from the system. Returns zero on success and
4660 * %-EINVAL otherwise.
4661 */
4662int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4663{
4664	unsigned long flags;
4665	int err = -EINVAL;
4666
4667	spin_lock_irqsave(&dump_list_lock, flags);
4668	if (dumper->registered) {
4669		dumper->registered = 0;
4670		list_del_rcu(&dumper->list);
4671		err = 0;
4672	}
4673	spin_unlock_irqrestore(&dump_list_lock, flags);
4674	synchronize_rcu();
4675
4676	return err;
4677}
4678EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4679
4680static bool always_kmsg_dump;
4681module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4682
4683const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4684{
4685	switch (reason) {
4686	case KMSG_DUMP_PANIC:
4687		return "Panic";
4688	case KMSG_DUMP_OOPS:
4689		return "Oops";
4690	case KMSG_DUMP_EMERG:
4691		return "Emergency";
4692	case KMSG_DUMP_SHUTDOWN:
4693		return "Shutdown";
4694	default:
4695		return "Unknown";
4696	}
4697}
4698EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4699
4700/**
4701 * kmsg_dump_desc - dump kernel log to kernel message dumpers.
4702 * @reason: the reason (oops, panic etc) for dumping
4703 * @desc: a short string to describe what caused the panic or oops. Can be NULL
4704 * if no additional description is available.
4705 *
4706 * Call each of the registered dumper's dump() callback, which can
4707 * retrieve the kmsg records with kmsg_dump_get_line() or
4708 * kmsg_dump_get_buffer().
4709 */
4710void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
4711{
4712	struct kmsg_dumper *dumper;
4713	struct kmsg_dump_detail detail = {
4714		.reason = reason,
4715		.description = desc};
4716
4717	rcu_read_lock();
4718	list_for_each_entry_rcu(dumper, &dump_list, list) {
4719		enum kmsg_dump_reason max_reason = dumper->max_reason;
4720
4721		/*
4722		 * If client has not provided a specific max_reason, default
4723		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4724		 */
4725		if (max_reason == KMSG_DUMP_UNDEF) {
4726			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4727							KMSG_DUMP_OOPS;
4728		}
4729		if (reason > max_reason)
4730			continue;
4731
4732		/* invoke dumper which will iterate over records */
4733		dumper->dump(dumper, &detail);
4734	}
4735	rcu_read_unlock();
4736}
4737
4738/**
4739 * kmsg_dump_get_line - retrieve one kmsg log line
4740 * @iter: kmsg dump iterator
4741 * @syslog: include the "<4>" prefixes
4742 * @line: buffer to copy the line to
4743 * @size: maximum size of the buffer
4744 * @len: length of line placed into buffer
4745 *
4746 * Start at the beginning of the kmsg buffer, with the oldest kmsg
4747 * record, and copy one record into the provided buffer.
4748 *
4749 * Consecutive calls will return the next available record moving
4750 * towards the end of the buffer with the youngest messages.
4751 *
4752 * A return value of FALSE indicates that there are no more records to
4753 * read.
4754 */
4755bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4756			char *line, size_t size, size_t *len)
4757{
4758	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4759	struct printk_info info;
4760	unsigned int line_count;
4761	struct printk_record r;
 
4762	size_t l = 0;
4763	bool ret = false;
4764
4765	if (iter->cur_seq < min_seq)
4766		iter->cur_seq = min_seq;
4767
 
4768	prb_rec_init_rd(&r, &info, line, size);
4769
4770	/* Read text or count text lines? */
4771	if (line) {
4772		if (!prb_read_valid(prb, iter->cur_seq, &r))
4773			goto out;
4774		l = record_print_text(&r, syslog, printk_time);
4775	} else {
4776		if (!prb_read_valid_info(prb, iter->cur_seq,
4777					 &info, &line_count)) {
4778			goto out;
4779		}
4780		l = get_record_print_text_size(&info, line_count, syslog,
4781					       printk_time);
4782
4783	}
4784
4785	iter->cur_seq = r.info->seq + 1;
4786	ret = true;
4787out:
 
4788	if (len)
4789		*len = l;
4790	return ret;
4791}
4792EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4793
4794/**
4795 * kmsg_dump_get_buffer - copy kmsg log lines
4796 * @iter: kmsg dump iterator
4797 * @syslog: include the "<4>" prefixes
4798 * @buf: buffer to copy the line to
4799 * @size: maximum size of the buffer
4800 * @len_out: length of line placed into buffer
4801 *
4802 * Start at the end of the kmsg buffer and fill the provided buffer
4803 * with as many of the *youngest* kmsg records that fit into it.
4804 * If the buffer is large enough, all available kmsg records will be
4805 * copied with a single call.
4806 *
4807 * Consecutive calls will fill the buffer with the next block of
4808 * available older records, not including the earlier retrieved ones.
4809 *
4810 * A return value of FALSE indicates that there are no more records to
4811 * read.
4812 */
4813bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4814			  char *buf, size_t size, size_t *len_out)
4815{
4816	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4817	struct printk_info info;
4818	struct printk_record r;
 
4819	u64 seq;
4820	u64 next_seq;
4821	size_t len = 0;
4822	bool ret = false;
4823	bool time = printk_time;
4824
4825	if (!buf || !size)
4826		goto out;
4827
4828	if (iter->cur_seq < min_seq)
4829		iter->cur_seq = min_seq;
4830
 
4831	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4832		if (info.seq != iter->cur_seq) {
4833			/* messages are gone, move to first available one */
4834			iter->cur_seq = info.seq;
4835		}
4836	}
4837
4838	/* last entry */
4839	if (iter->cur_seq >= iter->next_seq)
 
4840		goto out;
 
4841
4842	/*
4843	 * Find first record that fits, including all following records,
4844	 * into the user-provided buffer for this dump. Pass in size-1
4845	 * because this function (by way of record_print_text()) will
4846	 * not write more than size-1 bytes of text into @buf.
4847	 */
4848	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4849				     size - 1, syslog, time);
4850
4851	/*
4852	 * Next kmsg_dump_get_buffer() invocation will dump block of
4853	 * older records stored right before this one.
4854	 */
4855	next_seq = seq;
4856
4857	prb_rec_init_rd(&r, &info, buf, size);
4858
 
4859	prb_for_each_record(seq, prb, seq, &r) {
4860		if (r.info->seq >= iter->next_seq)
4861			break;
4862
4863		len += record_print_text(&r, syslog, time);
4864
4865		/* Adjust record to store to remaining buffer space. */
4866		prb_rec_init_rd(&r, &info, buf + len, size - len);
4867	}
4868
4869	iter->next_seq = next_seq;
4870	ret = true;
 
4871out:
4872	if (len_out)
4873		*len_out = len;
4874	return ret;
4875}
4876EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4877
4878/**
4879 * kmsg_dump_rewind - reset the iterator
4880 * @iter: kmsg dump iterator
4881 *
4882 * Reset the dumper's iterator so that kmsg_dump_get_line() and
4883 * kmsg_dump_get_buffer() can be called again and used multiple
4884 * times within the same dumper.dump() callback.
4885 */
4886void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4887{
 
 
 
4888	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4889	iter->next_seq = prb_next_seq(prb);
 
4890}
4891EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4892
4893/**
4894 * console_try_replay_all - try to replay kernel log on consoles
4895 *
4896 * Try to obtain lock on console subsystem and replay all
4897 * available records in printk buffer on the consoles.
4898 * Does nothing if lock is not obtained.
4899 *
4900 * Context: Any, except for NMI.
4901 */
4902void console_try_replay_all(void)
4903{
4904	struct console_flush_type ft;
4905
4906	printk_get_console_flush_type(&ft);
4907	if (console_trylock()) {
4908		__console_rewind_all();
4909		if (ft.nbcon_atomic)
4910			nbcon_atomic_flush_pending();
4911		if (ft.nbcon_offload)
4912			nbcon_kthreads_wake();
4913		if (ft.legacy_offload)
4914			defer_console_output();
4915		/* Consoles are flushed as part of console_unlock(). */
4916		console_unlock();
4917	}
4918}
4919#endif
4920
4921#ifdef CONFIG_SMP
4922static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4923static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4924
4925bool is_printk_cpu_sync_owner(void)
4926{
4927	return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id());
4928}
4929
4930/**
4931 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4932 *                            spinning lock is not owned by any CPU.
4933 *
4934 * Context: Any context.
4935 */
4936void __printk_cpu_sync_wait(void)
4937{
4938	do {
4939		cpu_relax();
4940	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4941}
4942EXPORT_SYMBOL(__printk_cpu_sync_wait);
4943
4944/**
4945 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4946 *                               spinning lock.
4947 *
4948 * If no processor has the lock, the calling processor takes the lock and
4949 * becomes the owner. If the calling processor is already the owner of the
4950 * lock, this function succeeds immediately.
4951 *
4952 * Context: Any context. Expects interrupts to be disabled.
4953 * Return: 1 on success, otherwise 0.
4954 */
4955int __printk_cpu_sync_try_get(void)
4956{
4957	int cpu;
4958	int old;
4959
4960	cpu = smp_processor_id();
4961
4962	/*
4963	 * Guarantee loads and stores from this CPU when it is the lock owner
4964	 * are _not_ visible to the previous lock owner. This pairs with
4965	 * __printk_cpu_sync_put:B.
4966	 *
4967	 * Memory barrier involvement:
4968	 *
4969	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4970	 * then __printk_cpu_sync_put:A can never read from
4971	 * __printk_cpu_sync_try_get:B.
4972	 *
4973	 * Relies on:
4974	 *
4975	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4976	 * of the previous CPU
4977	 *    matching
4978	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4979	 * __printk_cpu_sync_try_get:B of this CPU
4980	 */
4981	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4982				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4983	if (old == -1) {
4984		/*
4985		 * This CPU is now the owner and begins loading/storing
4986		 * data: LMM(__printk_cpu_sync_try_get:B)
4987		 */
4988		return 1;
4989
4990	} else if (old == cpu) {
4991		/* This CPU is already the owner. */
4992		atomic_inc(&printk_cpu_sync_nested);
4993		return 1;
4994	}
4995
4996	return 0;
4997}
4998EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4999
5000/**
5001 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
5002 *
5003 * The calling processor must be the owner of the lock.
5004 *
5005 * Context: Any context. Expects interrupts to be disabled.
5006 */
5007void __printk_cpu_sync_put(void)
5008{
5009	if (atomic_read(&printk_cpu_sync_nested)) {
5010		atomic_dec(&printk_cpu_sync_nested);
5011		return;
5012	}
5013
5014	/*
5015	 * This CPU is finished loading/storing data:
5016	 * LMM(__printk_cpu_sync_put:A)
5017	 */
5018
5019	/*
5020	 * Guarantee loads and stores from this CPU when it was the
5021	 * lock owner are visible to the next lock owner. This pairs
5022	 * with __printk_cpu_sync_try_get:A.
5023	 *
5024	 * Memory barrier involvement:
5025	 *
5026	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
5027	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
5028	 *
5029	 * Relies on:
5030	 *
5031	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
5032	 * of this CPU
5033	 *    matching
5034	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5035	 * __printk_cpu_sync_try_get:B of the next CPU
5036	 */
5037	atomic_set_release(&printk_cpu_sync_owner,
5038			   -1); /* LMM(__printk_cpu_sync_put:B) */
5039}
5040EXPORT_SYMBOL(__printk_cpu_sync_put);
5041#endif /* CONFIG_SMP */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
 
 
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
 
 
 
 
 
 
 
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98	.name = "console_lock"
  99};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100#endif
 101
 102enum devkmsg_log_bits {
 103	__DEVKMSG_LOG_BIT_ON = 0,
 104	__DEVKMSG_LOG_BIT_OFF,
 105	__DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT	0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121	size_t len;
 122
 123	if (!str)
 124		return -EINVAL;
 125
 126	len = str_has_prefix(str, "on");
 127	if (len) {
 128		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129		return len;
 130	}
 131
 132	len = str_has_prefix(str, "off");
 133	if (len) {
 134		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135		return len;
 136	}
 137
 138	len = str_has_prefix(str, "ratelimit");
 139	if (len) {
 140		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141		return len;
 142	}
 143
 144	return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149	if (__control_devkmsg(str) < 0)
 
 150		return 1;
 
 151
 152	/*
 153	 * Set sysctl string accordingly:
 154	 */
 155	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156		strcpy(devkmsg_log_str, "on");
 157	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158		strcpy(devkmsg_log_str, "off");
 159	/* else "ratelimit" which is set by default. */
 160
 161	/*
 162	 * Sysctl cannot change it anymore. The kernel command line setting of
 163	 * this parameter is to force the setting to be permanent throughout the
 164	 * runtime of the system. This is a precation measure against userspace
 165	 * trying to be a smarta** and attempting to change it up on us.
 166	 */
 167	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169	return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176			      void *buffer, size_t *lenp, loff_t *ppos)
 177{
 178	char old_str[DEVKMSG_STR_MAX_SIZE];
 179	unsigned int old;
 180	int err;
 181
 182	if (write) {
 183		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184			return -EINVAL;
 185
 186		old = devkmsg_log;
 187		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188	}
 189
 190	err = proc_dostring(table, write, buffer, lenp, ppos);
 191	if (err)
 192		return err;
 193
 194	if (write) {
 195		err = __control_devkmsg(devkmsg_log_str);
 196
 197		/*
 198		 * Do not accept an unknown string OR a known string with
 199		 * trailing crap...
 200		 */
 201		if (err < 0 || (err + 1 != *lenp)) {
 202
 203			/* ... and restore old setting. */
 204			devkmsg_log = old;
 205			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207			return -EINVAL;
 208		}
 209	}
 210
 211	return 0;
 212}
 
 213
 214/* Number of registered extended console drivers. */
 215static int nr_ext_console_drivers;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222	down(&console_sem);\
 223	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228	int lock_failed;
 229	unsigned long flags;
 230
 231	/*
 232	 * Here and in __up_console_sem() we need to be in safe mode,
 233	 * because spindump/WARN/etc from under console ->lock will
 234	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 235	 */
 236	printk_safe_enter_irqsave(flags);
 237	lock_failed = down_trylock(&console_sem);
 238	printk_safe_exit_irqrestore(flags);
 239
 240	if (lock_failed)
 241		return 1;
 242	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243	return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249	unsigned long flags;
 250
 251	mutex_release(&console_lock_dep_map, ip);
 252
 253	printk_safe_enter_irqsave(flags);
 254	up(&console_sem);
 255	printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console semaphore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *	Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 282static int preferred_console = -1;
 283static bool has_preferred_console;
 284int console_set_on_cmdline;
 285EXPORT_SYMBOL(console_set_on_cmdline);
 286
 287/* Flag: console code may call schedule() */
 288static int console_may_schedule;
 289
 290enum con_msg_format_flags {
 291	MSG_FORMAT_DEFAULT	= 0,
 292	MSG_FORMAT_SYSLOG	= (1 << 0),
 293};
 294
 295static int console_msg_format = MSG_FORMAT_DEFAULT;
 296
 297/*
 298 * The printk log buffer consists of a sequenced collection of records, each
 299 * containing variable length message text. Every record also contains its
 300 * own meta-data (@info).
 301 *
 302 * Every record meta-data carries the timestamp in microseconds, as well as
 303 * the standard userspace syslog level and syslog facility. The usual kernel
 304 * messages use LOG_KERN; userspace-injected messages always carry a matching
 305 * syslog facility, by default LOG_USER. The origin of every message can be
 306 * reliably determined that way.
 307 *
 308 * The human readable log message of a record is available in @text, the
 309 * length of the message text in @text_len. The stored message is not
 310 * terminated.
 311 *
 312 * Optionally, a record can carry a dictionary of properties (key/value
 313 * pairs), to provide userspace with a machine-readable message context.
 314 *
 315 * Examples for well-defined, commonly used property names are:
 316 *   DEVICE=b12:8               device identifier
 317 *                                b12:8         block dev_t
 318 *                                c127:3        char dev_t
 319 *                                n8            netdev ifindex
 320 *                                +sound:card0  subsystem:devname
 321 *   SUBSYSTEM=pci              driver-core subsystem name
 322 *
 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 324 * and values are terminated by a '\0' character.
 325 *
 326 * Example of record values:
 327 *   record.text_buf                = "it's a line" (unterminated)
 328 *   record.info.seq                = 56
 329 *   record.info.ts_nsec            = 36863
 330 *   record.info.text_len           = 11
 331 *   record.info.facility           = 0 (LOG_KERN)
 332 *   record.info.flags              = 0
 333 *   record.info.level              = 3 (LOG_ERR)
 334 *   record.info.caller_id          = 299 (task 299)
 335 *   record.info.dev_info.subsystem = "pci" (terminated)
 336 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 337 *
 338 * The 'struct printk_info' buffer must never be directly exported to
 339 * userspace, it is a kernel-private implementation detail that might
 340 * need to be changed in the future, when the requirements change.
 341 *
 342 * /dev/kmsg exports the structured data in the following line format:
 343 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 344 *
 345 * Users of the export format should ignore possible additional values
 346 * separated by ',', and find the message after the ';' character.
 347 *
 348 * The optional key/value pairs are attached as continuation lines starting
 349 * with a space character and terminated by a newline. All possible
 350 * non-prinatable characters are escaped in the "\xff" notation.
 351 */
 352
 353enum log_flags {
 354	LOG_NEWLINE	= 2,	/* text ended with a newline */
 355	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 356};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357
 358/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 359static DEFINE_RAW_SPINLOCK(syslog_lock);
 360
 361#ifdef CONFIG_PRINTK
 362DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 363/* All 3 protected by @syslog_lock. */
 364/* the next printk record to read by syslog(READ) or /proc/kmsg */
 365static u64 syslog_seq;
 366static size_t syslog_partial;
 367static bool syslog_time;
 368
 369/* All 3 protected by @console_sem. */
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u64 exclusive_console_stop_seq;
 373static unsigned long console_dropped;
 374
 375struct latched_seq {
 376	seqcount_latch_t	latch;
 377	u64			val[2];
 378};
 379
 380/*
 381 * The next printk record to read after the last 'clear' command. There are
 382 * two copies (updated with seqcount_latch) so that reads can locklessly
 383 * access a valid value. Writers are synchronized by @syslog_lock.
 384 */
 385static struct latched_seq clear_seq = {
 386	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 387	.val[0]		= 0,
 388	.val[1]		= 0,
 389};
 390
 391#ifdef CONFIG_PRINTK_CALLER
 392#define PREFIX_MAX		48
 393#else
 394#define PREFIX_MAX		32
 395#endif
 396
 397/* the maximum size of a formatted record (i.e. with prefix added per line) */
 398#define CONSOLE_LOG_MAX		1024
 399
 400/* the maximum size allowed to be reserved for a record */
 401#define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
 402
 403#define LOG_LEVEL(v)		((v) & 0x07)
 404#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 405
 406/* record buffer */
 407#define LOG_ALIGN __alignof__(unsigned long)
 408#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 409#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 410static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 411static char *log_buf = __log_buf;
 412static u32 log_buf_len = __LOG_BUF_LEN;
 413
 414/*
 415 * Define the average message size. This only affects the number of
 416 * descriptors that will be available. Underestimating is better than
 417 * overestimating (too many available descriptors is better than not enough).
 418 */
 419#define PRB_AVGBITS 5	/* 32 character average length */
 420
 421#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 422#error CONFIG_LOG_BUF_SHIFT value too small.
 423#endif
 424_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 425		 PRB_AVGBITS, &__log_buf[0]);
 426
 427static struct printk_ringbuffer printk_rb_dynamic;
 428
 429static struct printk_ringbuffer *prb = &printk_rb_static;
 430
 431/*
 432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 433 * per_cpu_areas are initialised. This variable is set to true when
 434 * it's safe to access per-CPU data.
 435 */
 436static bool __printk_percpu_data_ready __read_mostly;
 437
 438bool printk_percpu_data_ready(void)
 439{
 440	return __printk_percpu_data_ready;
 441}
 442
 443/* Must be called under syslog_lock. */
 444static void latched_seq_write(struct latched_seq *ls, u64 val)
 445{
 446	raw_write_seqcount_latch(&ls->latch);
 447	ls->val[0] = val;
 448	raw_write_seqcount_latch(&ls->latch);
 449	ls->val[1] = val;
 
 450}
 451
 452/* Can be called from any context. */
 453static u64 latched_seq_read_nolock(struct latched_seq *ls)
 454{
 455	unsigned int seq;
 456	unsigned int idx;
 457	u64 val;
 458
 459	do {
 460		seq = raw_read_seqcount_latch(&ls->latch);
 461		idx = seq & 0x1;
 462		val = ls->val[idx];
 463	} while (read_seqcount_latch_retry(&ls->latch, seq));
 464
 465	return val;
 466}
 467
 468/* Return log buffer address */
 469char *log_buf_addr_get(void)
 470{
 471	return log_buf;
 472}
 473
 474/* Return log buffer size */
 475u32 log_buf_len_get(void)
 476{
 477	return log_buf_len;
 478}
 479
 480/*
 481 * Define how much of the log buffer we could take at maximum. The value
 482 * must be greater than two. Note that only half of the buffer is available
 483 * when the index points to the middle.
 484 */
 485#define MAX_LOG_TAKE_PART 4
 486static const char trunc_msg[] = "<truncated>";
 487
 488static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 489{
 490	/*
 491	 * The message should not take the whole buffer. Otherwise, it might
 492	 * get removed too soon.
 493	 */
 494	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 495
 496	if (*text_len > max_text_len)
 497		*text_len = max_text_len;
 498
 499	/* enable the warning message (if there is room) */
 500	*trunc_msg_len = strlen(trunc_msg);
 501	if (*text_len >= *trunc_msg_len)
 502		*text_len -= *trunc_msg_len;
 503	else
 504		*trunc_msg_len = 0;
 505}
 506
 507int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 508
 509static int syslog_action_restricted(int type)
 510{
 511	if (dmesg_restrict)
 512		return 1;
 513	/*
 514	 * Unless restricted, we allow "read all" and "get buffer size"
 515	 * for everybody.
 516	 */
 517	return type != SYSLOG_ACTION_READ_ALL &&
 518	       type != SYSLOG_ACTION_SIZE_BUFFER;
 519}
 520
 521static int check_syslog_permissions(int type, int source)
 522{
 523	/*
 524	 * If this is from /proc/kmsg and we've already opened it, then we've
 525	 * already done the capabilities checks at open time.
 526	 */
 527	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 528		goto ok;
 529
 530	if (syslog_action_restricted(type)) {
 531		if (capable(CAP_SYSLOG))
 532			goto ok;
 533		/*
 534		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 535		 * a warning.
 536		 */
 537		if (capable(CAP_SYS_ADMIN)) {
 538			pr_warn_once("%s (%d): Attempt to access syslog with "
 539				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 540				     "(deprecated).\n",
 541				 current->comm, task_pid_nr(current));
 542			goto ok;
 543		}
 544		return -EPERM;
 545	}
 546ok:
 547	return security_syslog(type);
 548}
 549
 550static void append_char(char **pp, char *e, char c)
 551{
 552	if (*pp < e)
 553		*(*pp)++ = c;
 554}
 555
 556static ssize_t info_print_ext_header(char *buf, size_t size,
 557				     struct printk_info *info)
 558{
 559	u64 ts_usec = info->ts_nsec;
 560	char caller[20];
 561#ifdef CONFIG_PRINTK_CALLER
 562	u32 id = info->caller_id;
 563
 564	snprintf(caller, sizeof(caller), ",caller=%c%u",
 565		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 566#else
 567	caller[0] = '\0';
 568#endif
 569
 570	do_div(ts_usec, 1000);
 571
 572	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 573			 (info->facility << 3) | info->level, info->seq,
 574			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 575}
 576
 577static ssize_t msg_add_ext_text(char *buf, size_t size,
 578				const char *text, size_t text_len,
 579				unsigned char endc)
 580{
 581	char *p = buf, *e = buf + size;
 582	size_t i;
 583
 584	/* escape non-printable characters */
 585	for (i = 0; i < text_len; i++) {
 586		unsigned char c = text[i];
 587
 588		if (c < ' ' || c >= 127 || c == '\\')
 589			p += scnprintf(p, e - p, "\\x%02x", c);
 590		else
 591			append_char(&p, e, c);
 592	}
 593	append_char(&p, e, endc);
 594
 595	return p - buf;
 596}
 597
 598static ssize_t msg_add_dict_text(char *buf, size_t size,
 599				 const char *key, const char *val)
 600{
 601	size_t val_len = strlen(val);
 602	ssize_t len;
 603
 604	if (!val_len)
 605		return 0;
 606
 607	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 608	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 609	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 610
 611	return len;
 612}
 613
 614static ssize_t msg_print_ext_body(char *buf, size_t size,
 615				  char *text, size_t text_len,
 616				  struct dev_printk_info *dev_info)
 617{
 618	ssize_t len;
 619
 620	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 621
 622	if (!dev_info)
 623		goto out;
 624
 625	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 626				 dev_info->subsystem);
 627	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 628				 dev_info->device);
 629out:
 630	return len;
 631}
 632
 633/* /dev/kmsg - userspace message inject/listen interface */
 634struct devkmsg_user {
 635	atomic64_t seq;
 636	struct ratelimit_state rs;
 637	struct mutex lock;
 638	char buf[CONSOLE_EXT_LOG_MAX];
 639
 640	struct printk_info info;
 641	char text_buf[CONSOLE_EXT_LOG_MAX];
 642	struct printk_record record;
 643};
 644
 645static __printf(3, 4) __cold
 646int devkmsg_emit(int facility, int level, const char *fmt, ...)
 647{
 648	va_list args;
 649	int r;
 650
 651	va_start(args, fmt);
 652	r = vprintk_emit(facility, level, NULL, fmt, args);
 653	va_end(args);
 654
 655	return r;
 656}
 657
 658static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 659{
 660	char *buf, *line;
 661	int level = default_message_loglevel;
 662	int facility = 1;	/* LOG_USER */
 663	struct file *file = iocb->ki_filp;
 664	struct devkmsg_user *user = file->private_data;
 665	size_t len = iov_iter_count(from);
 666	ssize_t ret = len;
 667
 668	if (!user || len > LOG_LINE_MAX)
 669		return -EINVAL;
 670
 671	/* Ignore when user logging is disabled. */
 672	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 673		return len;
 674
 675	/* Ratelimit when not explicitly enabled. */
 676	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 677		if (!___ratelimit(&user->rs, current->comm))
 678			return ret;
 679	}
 680
 681	buf = kmalloc(len+1, GFP_KERNEL);
 682	if (buf == NULL)
 683		return -ENOMEM;
 684
 685	buf[len] = '\0';
 686	if (!copy_from_iter_full(buf, len, from)) {
 687		kfree(buf);
 688		return -EFAULT;
 689	}
 690
 691	/*
 692	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 693	 * the decimal value represents 32bit, the lower 3 bit are the log
 694	 * level, the rest are the log facility.
 695	 *
 696	 * If no prefix or no userspace facility is specified, we
 697	 * enforce LOG_USER, to be able to reliably distinguish
 698	 * kernel-generated messages from userspace-injected ones.
 699	 */
 700	line = buf;
 701	if (line[0] == '<') {
 702		char *endp = NULL;
 703		unsigned int u;
 704
 705		u = simple_strtoul(line + 1, &endp, 10);
 706		if (endp && endp[0] == '>') {
 707			level = LOG_LEVEL(u);
 708			if (LOG_FACILITY(u) != 0)
 709				facility = LOG_FACILITY(u);
 710			endp++;
 711			line = endp;
 712		}
 713	}
 714
 715	devkmsg_emit(facility, level, "%s", line);
 716	kfree(buf);
 717	return ret;
 718}
 719
 720static ssize_t devkmsg_read(struct file *file, char __user *buf,
 721			    size_t count, loff_t *ppos)
 722{
 723	struct devkmsg_user *user = file->private_data;
 724	struct printk_record *r = &user->record;
 725	size_t len;
 
 
 726	ssize_t ret;
 727
 728	if (!user)
 729		return -EBADF;
 730
 731	ret = mutex_lock_interruptible(&user->lock);
 732	if (ret)
 733		return ret;
 734
 735	printk_safe_enter_irq();
 736	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
 737		if (file->f_flags & O_NONBLOCK) {
 738			ret = -EAGAIN;
 739			printk_safe_exit_irq();
 740			goto out;
 741		}
 742
 743		printk_safe_exit_irq();
 
 
 
 
 
 
 
 
 
 744		ret = wait_event_interruptible(log_wait,
 745				prb_read_valid(prb, atomic64_read(&user->seq), r));
 
 746		if (ret)
 747			goto out;
 748		printk_safe_enter_irq();
 749	}
 750
 751	if (r->info->seq != atomic64_read(&user->seq)) {
 752		/* our last seen message is gone, return error and reset */
 753		atomic64_set(&user->seq, r->info->seq);
 754		ret = -EPIPE;
 755		printk_safe_exit_irq();
 756		goto out;
 757	}
 758
 759	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
 760	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 761				  &r->text_buf[0], r->info->text_len,
 762				  &r->info->dev_info);
 763
 764	atomic64_set(&user->seq, r->info->seq + 1);
 765	printk_safe_exit_irq();
 766
 767	if (len > count) {
 768		ret = -EINVAL;
 769		goto out;
 770	}
 771
 772	if (copy_to_user(buf, user->buf, len)) {
 773		ret = -EFAULT;
 774		goto out;
 775	}
 776	ret = len;
 777out:
 778	mutex_unlock(&user->lock);
 779	return ret;
 780}
 781
 782/*
 783 * Be careful when modifying this function!!!
 784 *
 785 * Only few operations are supported because the device works only with the
 786 * entire variable length messages (records). Non-standard values are
 787 * returned in the other cases and has been this way for quite some time.
 788 * User space applications might depend on this behavior.
 789 */
 790static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 791{
 792	struct devkmsg_user *user = file->private_data;
 793	loff_t ret = 0;
 794
 795	if (!user)
 796		return -EBADF;
 797	if (offset)
 798		return -ESPIPE;
 799
 800	printk_safe_enter_irq();
 801	switch (whence) {
 802	case SEEK_SET:
 803		/* the first record */
 804		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 805		break;
 806	case SEEK_DATA:
 807		/*
 808		 * The first record after the last SYSLOG_ACTION_CLEAR,
 809		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 810		 * changes no global state, and does not clear anything.
 811		 */
 812		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 813		break;
 814	case SEEK_END:
 815		/* after the last record */
 816		atomic64_set(&user->seq, prb_next_seq(prb));
 817		break;
 818	default:
 819		ret = -EINVAL;
 820	}
 821	printk_safe_exit_irq();
 822	return ret;
 823}
 824
 825static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 826{
 827	struct devkmsg_user *user = file->private_data;
 828	struct printk_info info;
 829	__poll_t ret = 0;
 830
 831	if (!user)
 832		return EPOLLERR|EPOLLNVAL;
 833
 834	poll_wait(file, &log_wait, wait);
 835
 836	printk_safe_enter_irq();
 837	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 838		/* return error when data has vanished underneath us */
 839		if (info.seq != atomic64_read(&user->seq))
 840			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 841		else
 842			ret = EPOLLIN|EPOLLRDNORM;
 843	}
 844	printk_safe_exit_irq();
 845
 846	return ret;
 847}
 848
 849static int devkmsg_open(struct inode *inode, struct file *file)
 850{
 851	struct devkmsg_user *user;
 852	int err;
 853
 854	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 855		return -EPERM;
 856
 857	/* write-only does not need any file context */
 858	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 859		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 860					       SYSLOG_FROM_READER);
 861		if (err)
 862			return err;
 863	}
 864
 865	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 866	if (!user)
 867		return -ENOMEM;
 868
 869	ratelimit_default_init(&user->rs);
 870	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 871
 872	mutex_init(&user->lock);
 873
 874	prb_rec_init_rd(&user->record, &user->info,
 875			&user->text_buf[0], sizeof(user->text_buf));
 876
 877	printk_safe_enter_irq();
 878	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 879	printk_safe_exit_irq();
 880
 881	file->private_data = user;
 882	return 0;
 883}
 884
 885static int devkmsg_release(struct inode *inode, struct file *file)
 886{
 887	struct devkmsg_user *user = file->private_data;
 888
 889	if (!user)
 890		return 0;
 891
 892	ratelimit_state_exit(&user->rs);
 893
 894	mutex_destroy(&user->lock);
 895	kfree(user);
 896	return 0;
 897}
 898
 899const struct file_operations kmsg_fops = {
 900	.open = devkmsg_open,
 901	.read = devkmsg_read,
 902	.write_iter = devkmsg_write,
 903	.llseek = devkmsg_llseek,
 904	.poll = devkmsg_poll,
 905	.release = devkmsg_release,
 906};
 907
 908#ifdef CONFIG_CRASH_CORE
 909/*
 910 * This appends the listed symbols to /proc/vmcore
 911 *
 912 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 913 * obtain access to symbols that are otherwise very difficult to locate.  These
 914 * symbols are specifically used so that utilities can access and extract the
 915 * dmesg log from a vmcore file after a crash.
 916 */
 917void log_buf_vmcoreinfo_setup(void)
 918{
 919	struct dev_printk_info *dev_info = NULL;
 920
 921	VMCOREINFO_SYMBOL(prb);
 922	VMCOREINFO_SYMBOL(printk_rb_static);
 923	VMCOREINFO_SYMBOL(clear_seq);
 924
 925	/*
 926	 * Export struct size and field offsets. User space tools can
 927	 * parse it and detect any changes to structure down the line.
 928	 */
 929
 930	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 931	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 932	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 933	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 934
 935	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 936	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 937	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 938	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 939	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 940	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 941
 942	VMCOREINFO_STRUCT_SIZE(prb_desc);
 943	VMCOREINFO_OFFSET(prb_desc, state_var);
 944	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 945
 946	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 947	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 948	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 949
 950	VMCOREINFO_STRUCT_SIZE(printk_info);
 951	VMCOREINFO_OFFSET(printk_info, seq);
 952	VMCOREINFO_OFFSET(printk_info, ts_nsec);
 953	VMCOREINFO_OFFSET(printk_info, text_len);
 954	VMCOREINFO_OFFSET(printk_info, caller_id);
 955	VMCOREINFO_OFFSET(printk_info, dev_info);
 956
 957	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
 958	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
 959	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
 960	VMCOREINFO_OFFSET(dev_printk_info, device);
 961	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
 962
 963	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
 964	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
 965	VMCOREINFO_OFFSET(prb_data_ring, data);
 966	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
 967	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
 968
 969	VMCOREINFO_SIZE(atomic_long_t);
 970	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
 971
 972	VMCOREINFO_STRUCT_SIZE(latched_seq);
 973	VMCOREINFO_OFFSET(latched_seq, val);
 974}
 975#endif
 976
 977/* requested log_buf_len from kernel cmdline */
 978static unsigned long __initdata new_log_buf_len;
 979
 980/* we practice scaling the ring buffer by powers of 2 */
 981static void __init log_buf_len_update(u64 size)
 982{
 983	if (size > (u64)LOG_BUF_LEN_MAX) {
 984		size = (u64)LOG_BUF_LEN_MAX;
 985		pr_err("log_buf over 2G is not supported.\n");
 986	}
 987
 988	if (size)
 989		size = roundup_pow_of_two(size);
 990	if (size > log_buf_len)
 991		new_log_buf_len = (unsigned long)size;
 992}
 993
 994/* save requested log_buf_len since it's too early to process it */
 995static int __init log_buf_len_setup(char *str)
 996{
 997	u64 size;
 998
 999	if (!str)
1000		return -EINVAL;
1001
1002	size = memparse(str, &str);
1003
1004	log_buf_len_update(size);
1005
1006	return 0;
1007}
1008early_param("log_buf_len", log_buf_len_setup);
1009
1010#ifdef CONFIG_SMP
1011#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1012
1013static void __init log_buf_add_cpu(void)
1014{
1015	unsigned int cpu_extra;
1016
1017	/*
1018	 * archs should set up cpu_possible_bits properly with
1019	 * set_cpu_possible() after setup_arch() but just in
1020	 * case lets ensure this is valid.
1021	 */
1022	if (num_possible_cpus() == 1)
1023		return;
1024
1025	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1026
1027	/* by default this will only continue through for large > 64 CPUs */
1028	if (cpu_extra <= __LOG_BUF_LEN / 2)
1029		return;
1030
1031	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1032		__LOG_CPU_MAX_BUF_LEN);
1033	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1034		cpu_extra);
1035	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1036
1037	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1038}
1039#else /* !CONFIG_SMP */
1040static inline void log_buf_add_cpu(void) {}
1041#endif /* CONFIG_SMP */
1042
1043static void __init set_percpu_data_ready(void)
1044{
1045	printk_safe_init();
1046	/* Make sure we set this flag only after printk_safe() init is done */
1047	barrier();
1048	__printk_percpu_data_ready = true;
1049}
1050
1051static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052				     struct printk_record *r)
1053{
1054	struct prb_reserved_entry e;
1055	struct printk_record dest_r;
1056
1057	prb_rec_init_wr(&dest_r, r->info->text_len);
1058
1059	if (!prb_reserve(&e, rb, &dest_r))
1060		return 0;
1061
1062	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063	dest_r.info->text_len = r->info->text_len;
1064	dest_r.info->facility = r->info->facility;
1065	dest_r.info->level = r->info->level;
1066	dest_r.info->flags = r->info->flags;
1067	dest_r.info->ts_nsec = r->info->ts_nsec;
1068	dest_r.info->caller_id = r->info->caller_id;
1069	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070
1071	prb_final_commit(&e);
1072
1073	return prb_record_text_space(&e);
1074}
1075
1076static char setup_text_buf[LOG_LINE_MAX] __initdata;
 
 
 
 
 
 
 
 
 
 
 
1077
1078void __init setup_log_buf(int early)
1079{
1080	struct printk_info *new_infos;
1081	unsigned int new_descs_count;
1082	struct prb_desc *new_descs;
1083	struct printk_info info;
1084	struct printk_record r;
 
1085	size_t new_descs_size;
1086	size_t new_infos_size;
1087	unsigned long flags;
1088	char *new_log_buf;
1089	unsigned int free;
1090	u64 seq;
1091
1092	/*
1093	 * Some archs call setup_log_buf() multiple times - first is very
1094	 * early, e.g. from setup_arch(), and second - when percpu_areas
1095	 * are initialised.
1096	 */
1097	if (!early)
1098		set_percpu_data_ready();
1099
1100	if (log_buf != __log_buf)
1101		return;
1102
1103	if (!early && !new_log_buf_len)
1104		log_buf_add_cpu();
1105
1106	if (!new_log_buf_len)
 
 
 
 
1107		return;
 
1108
1109	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1110	if (new_descs_count == 0) {
1111		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1112		return;
1113	}
1114
1115	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1116	if (unlikely(!new_log_buf)) {
1117		pr_err("log_buf_len: %lu text bytes not available\n",
1118		       new_log_buf_len);
1119		return;
1120	}
1121
1122	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1123	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1124	if (unlikely(!new_descs)) {
1125		pr_err("log_buf_len: %zu desc bytes not available\n",
1126		       new_descs_size);
1127		goto err_free_log_buf;
1128	}
1129
1130	new_infos_size = new_descs_count * sizeof(struct printk_info);
1131	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1132	if (unlikely(!new_infos)) {
1133		pr_err("log_buf_len: %zu info bytes not available\n",
1134		       new_infos_size);
1135		goto err_free_descs;
1136	}
1137
1138	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1139
1140	prb_init(&printk_rb_dynamic,
1141		 new_log_buf, ilog2(new_log_buf_len),
1142		 new_descs, ilog2(new_descs_count),
1143		 new_infos);
1144
1145	printk_safe_enter_irqsave(flags);
1146
1147	log_buf_len = new_log_buf_len;
1148	log_buf = new_log_buf;
1149	new_log_buf_len = 0;
1150
1151	free = __LOG_BUF_LEN;
1152	prb_for_each_record(0, &printk_rb_static, seq, &r)
1153		free -= add_to_rb(&printk_rb_dynamic, &r);
 
 
 
 
 
 
 
 
 
1154
1155	/*
1156	 * This is early enough that everything is still running on the
1157	 * boot CPU and interrupts are disabled. So no new messages will
1158	 * appear during the transition to the dynamic buffer.
1159	 */
1160	prb = &printk_rb_dynamic;
1161
1162	printk_safe_exit_irqrestore(flags);
 
 
 
 
1163
1164	if (seq != prb_next_seq(&printk_rb_static)) {
1165		pr_err("dropped %llu messages\n",
1166		       prb_next_seq(&printk_rb_static) - seq);
1167	}
1168
1169	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170	pr_info("early log buf free: %u(%u%%)\n",
1171		free, (free * 100) / __LOG_BUF_LEN);
1172	return;
1173
1174err_free_descs:
1175	memblock_free(__pa(new_descs), new_descs_size);
1176err_free_log_buf:
1177	memblock_free(__pa(new_log_buf), new_log_buf_len);
 
 
1178}
1179
1180static bool __read_mostly ignore_loglevel;
1181
1182static int __init ignore_loglevel_setup(char *str)
1183{
1184	ignore_loglevel = true;
1185	pr_info("debug: ignoring loglevel setting.\n");
1186
1187	return 0;
1188}
1189
1190early_param("ignore_loglevel", ignore_loglevel_setup);
1191module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1192MODULE_PARM_DESC(ignore_loglevel,
1193		 "ignore loglevel setting (prints all kernel messages to the console)");
1194
1195static bool suppress_message_printing(int level)
1196{
1197	return (level >= console_loglevel && !ignore_loglevel);
1198}
1199
1200#ifdef CONFIG_BOOT_PRINTK_DELAY
1201
1202static int boot_delay; /* msecs delay after each printk during bootup */
1203static unsigned long long loops_per_msec;	/* based on boot_delay */
1204
1205static int __init boot_delay_setup(char *str)
1206{
1207	unsigned long lpj;
1208
1209	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1210	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1211
1212	get_option(&str, &boot_delay);
1213	if (boot_delay > 10 * 1000)
1214		boot_delay = 0;
1215
1216	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1217		"HZ: %d, loops_per_msec: %llu\n",
1218		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1219	return 0;
1220}
1221early_param("boot_delay", boot_delay_setup);
1222
1223static void boot_delay_msec(int level)
1224{
1225	unsigned long long k;
1226	unsigned long timeout;
 
 
1227
1228	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1229		|| suppress_message_printing(level)) {
1230		return;
1231	}
1232
1233	k = (unsigned long long)loops_per_msec * boot_delay;
1234
1235	timeout = jiffies + msecs_to_jiffies(boot_delay);
1236	while (k) {
1237		k--;
1238		cpu_relax();
1239		/*
1240		 * use (volatile) jiffies to prevent
1241		 * compiler reduction; loop termination via jiffies
1242		 * is secondary and may or may not happen.
1243		 */
1244		if (time_after(jiffies, timeout))
1245			break;
1246		touch_nmi_watchdog();
1247	}
1248}
1249#else
1250static inline void boot_delay_msec(int level)
1251{
1252}
1253#endif
1254
1255static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1256module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1257
1258static size_t print_syslog(unsigned int level, char *buf)
1259{
1260	return sprintf(buf, "<%u>", level);
1261}
1262
1263static size_t print_time(u64 ts, char *buf)
1264{
1265	unsigned long rem_nsec = do_div(ts, 1000000000);
1266
1267	return sprintf(buf, "[%5lu.%06lu]",
1268		       (unsigned long)ts, rem_nsec / 1000);
1269}
1270
1271#ifdef CONFIG_PRINTK_CALLER
1272static size_t print_caller(u32 id, char *buf)
1273{
1274	char caller[12];
1275
1276	snprintf(caller, sizeof(caller), "%c%u",
1277		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1278	return sprintf(buf, "[%6s]", caller);
1279}
1280#else
1281#define print_caller(id, buf) 0
1282#endif
1283
1284static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1285				bool time, char *buf)
1286{
1287	size_t len = 0;
1288
1289	if (syslog)
1290		len = print_syslog((info->facility << 3) | info->level, buf);
1291
1292	if (time)
1293		len += print_time(info->ts_nsec, buf + len);
1294
1295	len += print_caller(info->caller_id, buf + len);
1296
1297	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1298		buf[len++] = ' ';
1299		buf[len] = '\0';
1300	}
1301
1302	return len;
1303}
1304
1305/*
1306 * Prepare the record for printing. The text is shifted within the given
1307 * buffer to avoid a need for another one. The following operations are
1308 * done:
1309 *
1310 *   - Add prefix for each line.
1311 *   - Drop truncated lines that no longer fit into the buffer.
1312 *   - Add the trailing newline that has been removed in vprintk_store().
1313 *   - Add a string terminator.
1314 *
1315 * Since the produced string is always terminated, the maximum possible
1316 * return value is @r->text_buf_size - 1;
1317 *
1318 * Return: The length of the updated/prepared text, including the added
1319 * prefixes and the newline. The terminator is not counted. The dropped
1320 * line(s) are not counted.
1321 */
1322static size_t record_print_text(struct printk_record *r, bool syslog,
1323				bool time)
1324{
1325	size_t text_len = r->info->text_len;
1326	size_t buf_size = r->text_buf_size;
1327	char *text = r->text_buf;
1328	char prefix[PREFIX_MAX];
1329	bool truncated = false;
1330	size_t prefix_len;
1331	size_t line_len;
1332	size_t len = 0;
1333	char *next;
1334
1335	/*
1336	 * If the message was truncated because the buffer was not large
1337	 * enough, treat the available text as if it were the full text.
1338	 */
1339	if (text_len > buf_size)
1340		text_len = buf_size;
1341
1342	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1343
1344	/*
1345	 * @text_len: bytes of unprocessed text
1346	 * @line_len: bytes of current line _without_ newline
1347	 * @text:     pointer to beginning of current line
1348	 * @len:      number of bytes prepared in r->text_buf
1349	 */
1350	for (;;) {
1351		next = memchr(text, '\n', text_len);
1352		if (next) {
1353			line_len = next - text;
1354		} else {
1355			/* Drop truncated line(s). */
1356			if (truncated)
1357				break;
1358			line_len = text_len;
1359		}
1360
1361		/*
1362		 * Truncate the text if there is not enough space to add the
1363		 * prefix and a trailing newline and a terminator.
1364		 */
1365		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1366			/* Drop even the current line if no space. */
1367			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1368				break;
1369
1370			text_len = buf_size - len - prefix_len - 1 - 1;
1371			truncated = true;
1372		}
1373
1374		memmove(text + prefix_len, text, text_len);
1375		memcpy(text, prefix, prefix_len);
1376
1377		/*
1378		 * Increment the prepared length to include the text and
1379		 * prefix that were just moved+copied. Also increment for the
1380		 * newline at the end of this line. If this is the last line,
1381		 * there is no newline, but it will be added immediately below.
1382		 */
1383		len += prefix_len + line_len + 1;
1384		if (text_len == line_len) {
1385			/*
1386			 * This is the last line. Add the trailing newline
1387			 * removed in vprintk_store().
1388			 */
1389			text[prefix_len + line_len] = '\n';
1390			break;
1391		}
1392
1393		/*
1394		 * Advance beyond the added prefix and the related line with
1395		 * its newline.
1396		 */
1397		text += prefix_len + line_len + 1;
1398
1399		/*
1400		 * The remaining text has only decreased by the line with its
1401		 * newline.
1402		 *
1403		 * Note that @text_len can become zero. It happens when @text
1404		 * ended with a newline (either due to truncation or the
1405		 * original string ending with "\n\n"). The loop is correctly
1406		 * repeated and (if not truncated) an empty line with a prefix
1407		 * will be prepared.
1408		 */
1409		text_len -= line_len + 1;
1410	}
1411
1412	/*
1413	 * If a buffer was provided, it will be terminated. Space for the
1414	 * string terminator is guaranteed to be available. The terminator is
1415	 * not counted in the return value.
1416	 */
1417	if (buf_size > 0)
1418		r->text_buf[len] = 0;
1419
1420	return len;
1421}
1422
1423static size_t get_record_print_text_size(struct printk_info *info,
1424					 unsigned int line_count,
1425					 bool syslog, bool time)
1426{
1427	char prefix[PREFIX_MAX];
1428	size_t prefix_len;
1429
1430	prefix_len = info_print_prefix(info, syslog, time, prefix);
1431
1432	/*
1433	 * Each line will be preceded with a prefix. The intermediate
1434	 * newlines are already within the text, but a final trailing
1435	 * newline will be added.
1436	 */
1437	return ((prefix_len * line_count) + info->text_len + 1);
1438}
1439
1440/*
1441 * Beginning with @start_seq, find the first record where it and all following
1442 * records up to (but not including) @max_seq fit into @size.
1443 *
1444 * @max_seq is simply an upper bound and does not need to exist. If the caller
1445 * does not require an upper bound, -1 can be used for @max_seq.
1446 */
1447static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1448				  bool syslog, bool time)
1449{
1450	struct printk_info info;
1451	unsigned int line_count;
1452	size_t len = 0;
1453	u64 seq;
1454
1455	/* Determine the size of the records up to @max_seq. */
1456	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1457		if (info.seq >= max_seq)
1458			break;
1459		len += get_record_print_text_size(&info, line_count, syslog, time);
1460	}
1461
1462	/*
1463	 * Adjust the upper bound for the next loop to avoid subtracting
1464	 * lengths that were never added.
1465	 */
1466	if (seq < max_seq)
1467		max_seq = seq;
1468
1469	/*
1470	 * Move first record forward until length fits into the buffer. Ignore
1471	 * newest messages that were not counted in the above cycle. Messages
1472	 * might appear and get lost in the meantime. This is a best effort
1473	 * that prevents an infinite loop that could occur with a retry.
1474	 */
1475	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476		if (len <= size || info.seq >= max_seq)
1477			break;
1478		len -= get_record_print_text_size(&info, line_count, syslog, time);
1479	}
1480
1481	return seq;
1482}
1483
 
1484static int syslog_print(char __user *buf, int size)
1485{
1486	struct printk_info info;
1487	struct printk_record r;
1488	char *text;
1489	int len = 0;
 
1490
1491	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1492	if (!text)
1493		return -ENOMEM;
1494
1495	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496
1497	while (size > 0) {
 
 
 
 
 
 
 
 
1498		size_t n;
1499		size_t skip;
 
1500
1501		printk_safe_enter_irq();
1502		raw_spin_lock(&syslog_lock);
1503		if (!prb_read_valid(prb, syslog_seq, &r)) {
1504			raw_spin_unlock(&syslog_lock);
1505			printk_safe_exit_irq();
1506			break;
1507		}
1508		if (r.info->seq != syslog_seq) {
1509			/* message is gone, move to next valid one */
1510			syslog_seq = r.info->seq;
1511			syslog_partial = 0;
1512		}
1513
1514		/*
1515		 * To keep reading/counting partial line consistent,
1516		 * use printk_time value as of the beginning of a line.
1517		 */
1518		if (!syslog_partial)
1519			syslog_time = printk_time;
1520
1521		skip = syslog_partial;
1522		n = record_print_text(&r, true, syslog_time);
1523		if (n - syslog_partial <= size) {
1524			/* message fits into buffer, move forward */
1525			syslog_seq = r.info->seq + 1;
1526			n -= syslog_partial;
1527			syslog_partial = 0;
1528		} else if (!len){
1529			/* partial read(), remember position */
1530			n = size;
1531			syslog_partial += n;
1532		} else
1533			n = 0;
1534		raw_spin_unlock(&syslog_lock);
1535		printk_safe_exit_irq();
1536
1537		if (!n)
1538			break;
1539
1540		if (copy_to_user(buf, text + skip, n)) {
 
 
 
 
1541			if (!len)
1542				len = -EFAULT;
1543			break;
1544		}
1545
1546		len += n;
1547		size -= n;
1548		buf += n;
1549	}
1550
 
1551	kfree(text);
1552	return len;
1553}
1554
1555static int syslog_print_all(char __user *buf, int size, bool clear)
1556{
1557	struct printk_info info;
1558	struct printk_record r;
1559	char *text;
1560	int len = 0;
1561	u64 seq;
1562	bool time;
1563
1564	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1565	if (!text)
1566		return -ENOMEM;
1567
1568	time = printk_time;
1569	printk_safe_enter_irq();
1570	/*
1571	 * Find first record that fits, including all following records,
1572	 * into the user-provided buffer for this dump.
1573	 */
1574	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1575				     size, true, time);
1576
1577	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1578
1579	len = 0;
1580	prb_for_each_record(seq, prb, seq, &r) {
1581		int textlen;
1582
1583		textlen = record_print_text(&r, true, time);
1584
1585		if (len + textlen > size) {
1586			seq--;
1587			break;
1588		}
1589
1590		printk_safe_exit_irq();
1591		if (copy_to_user(buf + len, text, textlen))
1592			len = -EFAULT;
1593		else
1594			len += textlen;
1595		printk_safe_enter_irq();
1596
1597		if (len < 0)
1598			break;
1599	}
1600
1601	if (clear) {
1602		raw_spin_lock(&syslog_lock);
1603		latched_seq_write(&clear_seq, seq);
1604		raw_spin_unlock(&syslog_lock);
1605	}
1606	printk_safe_exit_irq();
1607
1608	kfree(text);
1609	return len;
1610}
1611
1612static void syslog_clear(void)
1613{
1614	printk_safe_enter_irq();
1615	raw_spin_lock(&syslog_lock);
1616	latched_seq_write(&clear_seq, prb_next_seq(prb));
1617	raw_spin_unlock(&syslog_lock);
1618	printk_safe_exit_irq();
1619}
1620
1621/* Return a consistent copy of @syslog_seq. */
1622static u64 read_syslog_seq_irq(void)
1623{
1624	u64 seq;
1625
1626	raw_spin_lock_irq(&syslog_lock);
1627	seq = syslog_seq;
1628	raw_spin_unlock_irq(&syslog_lock);
1629
1630	return seq;
1631}
1632
1633int do_syslog(int type, char __user *buf, int len, int source)
1634{
1635	struct printk_info info;
1636	bool clear = false;
1637	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1638	int error;
1639
1640	error = check_syslog_permissions(type, source);
1641	if (error)
1642		return error;
1643
1644	switch (type) {
1645	case SYSLOG_ACTION_CLOSE:	/* Close log */
1646		break;
1647	case SYSLOG_ACTION_OPEN:	/* Open log */
1648		break;
1649	case SYSLOG_ACTION_READ:	/* Read from log */
1650		if (!buf || len < 0)
1651			return -EINVAL;
1652		if (!len)
1653			return 0;
1654		if (!access_ok(buf, len))
1655			return -EFAULT;
1656
1657		error = wait_event_interruptible(log_wait,
1658				prb_read_valid(prb, read_syslog_seq_irq(), NULL));
1659		if (error)
1660			return error;
1661		error = syslog_print(buf, len);
1662		break;
1663	/* Read/clear last kernel messages */
1664	case SYSLOG_ACTION_READ_CLEAR:
1665		clear = true;
1666		fallthrough;
1667	/* Read last kernel messages */
1668	case SYSLOG_ACTION_READ_ALL:
1669		if (!buf || len < 0)
1670			return -EINVAL;
1671		if (!len)
1672			return 0;
1673		if (!access_ok(buf, len))
1674			return -EFAULT;
1675		error = syslog_print_all(buf, len, clear);
1676		break;
1677	/* Clear ring buffer */
1678	case SYSLOG_ACTION_CLEAR:
1679		syslog_clear();
1680		break;
1681	/* Disable logging to console */
1682	case SYSLOG_ACTION_CONSOLE_OFF:
1683		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1684			saved_console_loglevel = console_loglevel;
1685		console_loglevel = minimum_console_loglevel;
1686		break;
1687	/* Enable logging to console */
1688	case SYSLOG_ACTION_CONSOLE_ON:
1689		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1690			console_loglevel = saved_console_loglevel;
1691			saved_console_loglevel = LOGLEVEL_DEFAULT;
1692		}
1693		break;
1694	/* Set level of messages printed to console */
1695	case SYSLOG_ACTION_CONSOLE_LEVEL:
1696		if (len < 1 || len > 8)
1697			return -EINVAL;
1698		if (len < minimum_console_loglevel)
1699			len = minimum_console_loglevel;
1700		console_loglevel = len;
1701		/* Implicitly re-enable logging to console */
1702		saved_console_loglevel = LOGLEVEL_DEFAULT;
1703		break;
1704	/* Number of chars in the log buffer */
1705	case SYSLOG_ACTION_SIZE_UNREAD:
1706		printk_safe_enter_irq();
1707		raw_spin_lock(&syslog_lock);
1708		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1709			/* No unread messages. */
1710			raw_spin_unlock(&syslog_lock);
1711			printk_safe_exit_irq();
1712			return 0;
1713		}
1714		if (info.seq != syslog_seq) {
1715			/* messages are gone, move to first one */
1716			syslog_seq = info.seq;
1717			syslog_partial = 0;
1718		}
1719		if (source == SYSLOG_FROM_PROC) {
1720			/*
1721			 * Short-cut for poll(/"proc/kmsg") which simply checks
1722			 * for pending data, not the size; return the count of
1723			 * records, not the length.
1724			 */
1725			error = prb_next_seq(prb) - syslog_seq;
1726		} else {
1727			bool time = syslog_partial ? syslog_time : printk_time;
1728			unsigned int line_count;
1729			u64 seq;
1730
1731			prb_for_each_info(syslog_seq, prb, seq, &info,
1732					  &line_count) {
1733				error += get_record_print_text_size(&info, line_count,
1734								    true, time);
1735				time = printk_time;
1736			}
1737			error -= syslog_partial;
1738		}
1739		raw_spin_unlock(&syslog_lock);
1740		printk_safe_exit_irq();
1741		break;
1742	/* Size of the log buffer */
1743	case SYSLOG_ACTION_SIZE_BUFFER:
1744		error = log_buf_len;
1745		break;
1746	default:
1747		error = -EINVAL;
1748		break;
1749	}
1750
1751	return error;
1752}
1753
1754SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1755{
1756	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1757}
1758
1759/*
1760 * Special console_lock variants that help to reduce the risk of soft-lockups.
1761 * They allow to pass console_lock to another printk() call using a busy wait.
1762 */
1763
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map console_owner_dep_map = {
1766	.name = "console_owner"
1767};
1768#endif
1769
1770static DEFINE_RAW_SPINLOCK(console_owner_lock);
1771static struct task_struct *console_owner;
1772static bool console_waiter;
1773
1774/**
1775 * console_lock_spinning_enable - mark beginning of code where another
1776 *	thread might safely busy wait
1777 *
1778 * This basically converts console_lock into a spinlock. This marks
1779 * the section where the console_lock owner can not sleep, because
1780 * there may be a waiter spinning (like a spinlock). Also it must be
1781 * ready to hand over the lock at the end of the section.
1782 */
1783static void console_lock_spinning_enable(void)
1784{
 
 
 
 
 
 
 
 
 
 
 
 
1785	raw_spin_lock(&console_owner_lock);
1786	console_owner = current;
1787	raw_spin_unlock(&console_owner_lock);
1788
 
1789	/* The waiter may spin on us after setting console_owner */
1790	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1791}
1792
1793/**
1794 * console_lock_spinning_disable_and_check - mark end of code where another
1795 *	thread was able to busy wait and check if there is a waiter
 
1796 *
1797 * This is called at the end of the section where spinning is allowed.
1798 * It has two functions. First, it is a signal that it is no longer
1799 * safe to start busy waiting for the lock. Second, it checks if
1800 * there is a busy waiter and passes the lock rights to her.
1801 *
1802 * Important: Callers lose the lock if there was a busy waiter.
1803 *	They must not touch items synchronized by console_lock
1804 *	in this case.
1805 *
1806 * Return: 1 if the lock rights were passed, 0 otherwise.
1807 */
1808static int console_lock_spinning_disable_and_check(void)
1809{
1810	int waiter;
1811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	raw_spin_lock(&console_owner_lock);
1813	waiter = READ_ONCE(console_waiter);
1814	console_owner = NULL;
1815	raw_spin_unlock(&console_owner_lock);
1816
1817	if (!waiter) {
1818		spin_release(&console_owner_dep_map, _THIS_IP_);
1819		return 0;
1820	}
1821
1822	/* The waiter is now free to continue */
1823	WRITE_ONCE(console_waiter, false);
1824
1825	spin_release(&console_owner_dep_map, _THIS_IP_);
1826
1827	/*
 
 
 
 
 
 
1828	 * Hand off console_lock to waiter. The waiter will perform
1829	 * the up(). After this, the waiter is the console_lock owner.
1830	 */
1831	mutex_release(&console_lock_dep_map, _THIS_IP_);
1832	return 1;
1833}
1834
1835/**
1836 * console_trylock_spinning - try to get console_lock by busy waiting
1837 *
1838 * This allows to busy wait for the console_lock when the current
1839 * owner is running in specially marked sections. It means that
1840 * the current owner is running and cannot reschedule until it
1841 * is ready to lose the lock.
1842 *
1843 * Return: 1 if we got the lock, 0 othrewise
1844 */
1845static int console_trylock_spinning(void)
1846{
1847	struct task_struct *owner = NULL;
1848	bool waiter;
1849	bool spin = false;
1850	unsigned long flags;
1851
1852	if (console_trylock())
1853		return 1;
1854
 
 
 
 
 
 
 
 
 
 
1855	printk_safe_enter_irqsave(flags);
1856
1857	raw_spin_lock(&console_owner_lock);
1858	owner = READ_ONCE(console_owner);
1859	waiter = READ_ONCE(console_waiter);
1860	if (!waiter && owner && owner != current) {
1861		WRITE_ONCE(console_waiter, true);
1862		spin = true;
1863	}
1864	raw_spin_unlock(&console_owner_lock);
1865
1866	/*
1867	 * If there is an active printk() writing to the
1868	 * consoles, instead of having it write our data too,
1869	 * see if we can offload that load from the active
1870	 * printer, and do some printing ourselves.
1871	 * Go into a spin only if there isn't already a waiter
1872	 * spinning, and there is an active printer, and
1873	 * that active printer isn't us (recursive printk?).
1874	 */
1875	if (!spin) {
1876		printk_safe_exit_irqrestore(flags);
1877		return 0;
1878	}
1879
1880	/* We spin waiting for the owner to release us */
1881	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1882	/* Owner will clear console_waiter on hand off */
1883	while (READ_ONCE(console_waiter))
1884		cpu_relax();
1885	spin_release(&console_owner_dep_map, _THIS_IP_);
1886
1887	printk_safe_exit_irqrestore(flags);
1888	/*
1889	 * The owner passed the console lock to us.
1890	 * Since we did not spin on console lock, annotate
1891	 * this as a trylock. Otherwise lockdep will
1892	 * complain.
1893	 */
1894	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1895
 
 
 
 
 
 
1896	return 1;
1897}
1898
1899/*
1900 * Call the console drivers, asking them to write out
1901 * log_buf[start] to log_buf[end - 1].
1902 * The console_lock must be held.
 
 
 
 
 
 
 
 
 
 
 
 
 
1903 */
1904static void call_console_drivers(const char *ext_text, size_t ext_len,
1905				 const char *text, size_t len)
 
 
 
 
 
1906{
1907	static char dropped_text[64];
1908	size_t dropped_len = 0;
1909	struct console *con;
1910
1911	trace_console_rcuidle(text, len);
1912
1913	if (!console_drivers)
1914		return;
1915
1916	if (console_dropped) {
1917		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1918				       "** %lu printk messages dropped **\n",
1919				       console_dropped);
1920		console_dropped = 0;
1921	}
 
 
 
 
 
1922
1923	for_each_console(con) {
1924		if (exclusive_console && con != exclusive_console)
1925			continue;
1926		if (!(con->flags & CON_ENABLED))
1927			continue;
1928		if (!con->write)
1929			continue;
1930		if (!cpu_online(smp_processor_id()) &&
1931		    !(con->flags & CON_ANYTIME))
1932			continue;
1933		if (con->flags & CON_EXTENDED)
1934			con->write(con, ext_text, ext_len);
1935		else {
1936			if (dropped_len)
1937				con->write(con, dropped_text, dropped_len);
1938			con->write(con, text, len);
1939		}
1940	}
1941}
 
 
 
 
 
 
 
 
 
 
 
 
1942
1943int printk_delay_msec __read_mostly;
1944
1945static inline void printk_delay(void)
1946{
 
 
1947	if (unlikely(printk_delay_msec)) {
1948		int m = printk_delay_msec;
1949
1950		while (m--) {
1951			mdelay(1);
1952			touch_nmi_watchdog();
1953		}
1954	}
1955}
1956
1957static inline u32 printk_caller_id(void)
1958{
1959	return in_task() ? task_pid_nr(current) :
1960		0x80000000 + raw_smp_processor_id();
1961}
1962
1963/**
1964 * parse_prefix - Parse level and control flags.
1965 *
1966 * @text:     The terminated text message.
1967 * @level:    A pointer to the current level value, will be updated.
1968 * @lflags:   A pointer to the current log flags, will be updated.
1969 *
1970 * @level may be NULL if the caller is not interested in the parsed value.
1971 * Otherwise the variable pointed to by @level must be set to
1972 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1973 *
1974 * @lflags may be NULL if the caller is not interested in the parsed value.
1975 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1976 * value.
1977 *
1978 * Return: The length of the parsed level and control flags.
1979 */
1980static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
 
1981{
1982	u16 prefix_len = 0;
1983	int kern_level;
1984
1985	while (*text) {
1986		kern_level = printk_get_level(text);
1987		if (!kern_level)
1988			break;
1989
1990		switch (kern_level) {
1991		case '0' ... '7':
1992			if (level && *level == LOGLEVEL_DEFAULT)
1993				*level = kern_level - '0';
1994			break;
1995		case 'c':	/* KERN_CONT */
1996			if (lflags)
1997				*lflags |= LOG_CONT;
1998		}
1999
2000		prefix_len += 2;
2001		text += 2;
2002	}
2003
2004	return prefix_len;
2005}
2006
2007static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
2008			 const char *fmt, va_list args)
 
 
2009{
2010	u16 text_len;
2011
2012	text_len = vscnprintf(text, size, fmt, args);
2013
2014	/* Mark and strip a trailing newline. */
2015	if (text_len && text[text_len - 1] == '\n') {
2016		text_len--;
2017		*lflags |= LOG_NEWLINE;
2018	}
2019
2020	/* Strip log level and control flags. */
2021	if (facility == 0) {
2022		u16 prefix_len;
2023
2024		prefix_len = parse_prefix(text, NULL, NULL);
2025		if (prefix_len) {
2026			text_len -= prefix_len;
2027			memmove(text, text + prefix_len, text_len);
2028		}
2029	}
2030
 
 
2031	return text_len;
2032}
2033
2034__printf(4, 0)
2035int vprintk_store(int facility, int level,
2036		  const struct dev_printk_info *dev_info,
2037		  const char *fmt, va_list args)
2038{
2039	const u32 caller_id = printk_caller_id();
2040	struct prb_reserved_entry e;
2041	enum log_flags lflags = 0;
2042	struct printk_record r;
 
2043	u16 trunc_msg_len = 0;
2044	char prefix_buf[8];
 
2045	u16 reserve_size;
2046	va_list args2;
 
2047	u16 text_len;
 
2048	u64 ts_nsec;
2049
 
 
 
2050	/*
2051	 * Since the duration of printk() can vary depending on the message
2052	 * and state of the ringbuffer, grab the timestamp now so that it is
2053	 * close to the call of printk(). This provides a more deterministic
2054	 * timestamp with respect to the caller.
2055	 */
2056	ts_nsec = local_clock();
2057
 
 
2058	/*
2059	 * The sprintf needs to come first since the syslog prefix might be
2060	 * passed in as a parameter. An extra byte must be reserved so that
2061	 * later the vscnprintf() into the reserved buffer has room for the
2062	 * terminating '\0', which is not counted by vsnprintf().
2063	 */
2064	va_copy(args2, args);
2065	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2066	va_end(args2);
2067
2068	if (reserve_size > LOG_LINE_MAX)
2069		reserve_size = LOG_LINE_MAX;
2070
2071	/* Extract log level or control flags. */
2072	if (facility == 0)
2073		parse_prefix(&prefix_buf[0], &level, &lflags);
2074
2075	if (level == LOGLEVEL_DEFAULT)
2076		level = default_message_loglevel;
2077
2078	if (dev_info)
2079		lflags |= LOG_NEWLINE;
2080
2081	if (lflags & LOG_CONT) {
 
 
 
2082		prb_rec_init_wr(&r, reserve_size);
2083		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2084			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2085						 facility, &lflags, fmt, args);
2086			r.info->text_len += text_len;
2087
2088			if (lflags & LOG_NEWLINE) {
 
 
 
2089				r.info->flags |= LOG_NEWLINE;
2090				prb_final_commit(&e);
2091			} else {
2092				prb_commit(&e);
2093			}
2094
2095			return text_len;
 
2096		}
2097	}
2098
2099	/*
2100	 * Explicitly initialize the record before every prb_reserve() call.
2101	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2102	 * structure when they fail.
2103	 */
2104	prb_rec_init_wr(&r, reserve_size);
2105	if (!prb_reserve(&e, prb, &r)) {
2106		/* truncate the message if it is too long for empty buffer */
2107		truncate_msg(&reserve_size, &trunc_msg_len);
2108
2109		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2110		if (!prb_reserve(&e, prb, &r))
2111			return 0;
2112	}
2113
2114	/* fill message */
2115	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2116	if (trunc_msg_len)
2117		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2118	r.info->text_len = text_len + trunc_msg_len;
2119	r.info->facility = facility;
2120	r.info->level = level & 7;
2121	r.info->flags = lflags & 0x1f;
2122	r.info->ts_nsec = ts_nsec;
2123	r.info->caller_id = caller_id;
2124	if (dev_info)
2125		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2126
2127	/* A message without a trailing newline can be continued. */
2128	if (!(lflags & LOG_NEWLINE))
2129		prb_commit(&e);
2130	else
2131		prb_final_commit(&e);
2132
2133	return (text_len + trunc_msg_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134}
2135
2136asmlinkage int vprintk_emit(int facility, int level,
2137			    const struct dev_printk_info *dev_info,
2138			    const char *fmt, va_list args)
2139{
 
2140	int printed_len;
2141	bool in_sched = false;
2142	unsigned long flags;
2143
2144	/* Suppress unimportant messages after panic happens */
2145	if (unlikely(suppress_printk))
2146		return 0;
2147
 
 
 
 
 
 
 
 
 
 
 
2148	if (level == LOGLEVEL_SCHED) {
2149		level = LOGLEVEL_DEFAULT;
2150		in_sched = true;
 
2151	}
2152
2153	boot_delay_msec(level);
2154	printk_delay();
2155
2156	printk_safe_enter_irqsave(flags);
2157	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2158	printk_safe_exit_irqrestore(flags);
2159
2160	/* If called from the scheduler, we can not call up(). */
2161	if (!in_sched) {
 
 
 
 
 
2162		/*
2163		 * Disable preemption to avoid being preempted while holding
2164		 * console_sem which would prevent anyone from printing to
2165		 * console
 
 
2166		 */
2167		preempt_disable();
2168		/*
2169		 * Try to acquire and then immediately release the console
2170		 * semaphore.  The release will print out buffers and wake up
2171		 * /dev/kmsg and syslog() users.
 
2172		 */
2173		if (console_trylock_spinning())
2174			console_unlock();
2175		preempt_enable();
2176	}
2177
2178	wake_up_klogd();
 
 
 
 
2179	return printed_len;
2180}
2181EXPORT_SYMBOL(vprintk_emit);
2182
2183int vprintk_default(const char *fmt, va_list args)
2184{
2185	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2186}
2187EXPORT_SYMBOL_GPL(vprintk_default);
2188
2189/**
2190 * printk - print a kernel message
2191 * @fmt: format string
2192 *
2193 * This is printk(). It can be called from any context. We want it to work.
2194 *
2195 * We try to grab the console_lock. If we succeed, it's easy - we log the
2196 * output and call the console drivers.  If we fail to get the semaphore, we
2197 * place the output into the log buffer and return. The current holder of
2198 * the console_sem will notice the new output in console_unlock(); and will
2199 * send it to the consoles before releasing the lock.
2200 *
2201 * One effect of this deferred printing is that code which calls printk() and
2202 * then changes console_loglevel may break. This is because console_loglevel
2203 * is inspected when the actual printing occurs.
2204 *
2205 * See also:
2206 * printf(3)
2207 *
2208 * See the vsnprintf() documentation for format string extensions over C99.
2209 */
2210asmlinkage __visible int printk(const char *fmt, ...)
2211{
2212	va_list args;
2213	int r;
2214
2215	va_start(args, fmt);
2216	r = vprintk(fmt, args);
2217	va_end(args);
2218
2219	return r;
2220}
2221EXPORT_SYMBOL(printk);
 
 
 
2222
2223#else /* CONFIG_PRINTK */
2224
2225#define CONSOLE_LOG_MAX		0
2226#define printk_time		false
2227
2228#define prb_read_valid(rb, seq, r)	false
2229#define prb_first_valid_seq(rb)		0
 
2230
2231static u64 syslog_seq;
2232static u64 console_seq;
2233static u64 exclusive_console_stop_seq;
2234static unsigned long console_dropped;
2235
2236static size_t record_print_text(const struct printk_record *r,
2237				bool syslog, bool time)
2238{
2239	return 0;
2240}
2241static ssize_t info_print_ext_header(char *buf, size_t size,
2242				     struct printk_info *info)
2243{
2244	return 0;
2245}
2246static ssize_t msg_print_ext_body(char *buf, size_t size,
2247				  char *text, size_t text_len,
2248				  struct dev_printk_info *dev_info) { return 0; }
2249static void console_lock_spinning_enable(void) { }
2250static int console_lock_spinning_disable_and_check(void) { return 0; }
2251static void call_console_drivers(const char *ext_text, size_t ext_len,
2252				 const char *text, size_t len) {}
2253static bool suppress_message_printing(int level) { return false; }
2254
2255#endif /* CONFIG_PRINTK */
2256
2257#ifdef CONFIG_EARLY_PRINTK
2258struct console *early_console;
2259
2260asmlinkage __visible void early_printk(const char *fmt, ...)
2261{
2262	va_list ap;
2263	char buf[512];
2264	int n;
2265
2266	if (!early_console)
2267		return;
2268
2269	va_start(ap, fmt);
2270	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2271	va_end(ap);
2272
2273	early_console->write(early_console, buf, n);
2274}
2275#endif
2276
2277static int __add_preferred_console(char *name, int idx, char *options,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278				   char *brl_options, bool user_specified)
2279{
2280	struct console_cmdline *c;
2281	int i;
2282
 
 
 
 
 
 
 
 
 
 
 
 
2283	/*
2284	 *	See if this tty is not yet registered, and
2285	 *	if we have a slot free.
2286	 */
2287	for (i = 0, c = console_cmdline;
2288	     i < MAX_CMDLINECONSOLES && c->name[0];
2289	     i++, c++) {
2290		if (strcmp(c->name, name) == 0 && c->index == idx) {
 
2291			if (!brl_options)
2292				preferred_console = i;
2293			if (user_specified)
2294				c->user_specified = true;
2295			return 0;
2296		}
2297	}
2298	if (i == MAX_CMDLINECONSOLES)
2299		return -E2BIG;
2300	if (!brl_options)
2301		preferred_console = i;
2302	strlcpy(c->name, name, sizeof(c->name));
 
 
 
2303	c->options = options;
2304	c->user_specified = user_specified;
2305	braille_set_options(c, brl_options);
2306
2307	c->index = idx;
2308	return 0;
2309}
2310
2311static int __init console_msg_format_setup(char *str)
2312{
2313	if (!strcmp(str, "syslog"))
2314		console_msg_format = MSG_FORMAT_SYSLOG;
2315	if (!strcmp(str, "default"))
2316		console_msg_format = MSG_FORMAT_DEFAULT;
2317	return 1;
2318}
2319__setup("console_msg_format=", console_msg_format_setup);
2320
2321/*
2322 * Set up a console.  Called via do_early_param() in init/main.c
2323 * for each "console=" parameter in the boot command line.
2324 */
2325static int __init console_setup(char *str)
2326{
2327	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2328	char *s, *options, *brl_options = NULL;
 
 
 
 
 
2329	int idx;
2330
2331	/*
2332	 * console="" or console=null have been suggested as a way to
2333	 * disable console output. Use ttynull that has been created
2334	 * for exactly this purpose.
2335	 */
2336	if (str[0] == 0 || strcmp(str, "null") == 0) {
2337		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2338		return 1;
2339	}
2340
2341	if (_braille_console_setup(&str, &brl_options))
2342		return 1;
2343
 
 
 
 
 
 
2344	/*
2345	 * Decode str into name, index, options.
2346	 */
2347	if (str[0] >= '0' && str[0] <= '9') {
2348		strcpy(buf, "ttyS");
2349		strncpy(buf + 4, str, sizeof(buf) - 5);
2350	} else {
2351		strncpy(buf, str, sizeof(buf) - 1);
2352	}
2353	buf[sizeof(buf) - 1] = 0;
2354	options = strchr(str, ',');
2355	if (options)
2356		*(options++) = 0;
 
2357#ifdef __sparc__
2358	if (!strcmp(str, "ttya"))
2359		strcpy(buf, "ttyS0");
2360	if (!strcmp(str, "ttyb"))
2361		strcpy(buf, "ttyS1");
2362#endif
 
2363	for (s = buf; *s; s++)
2364		if (isdigit(*s) || *s == ',')
2365			break;
2366	idx = simple_strtoul(s, NULL, 10);
 
 
 
 
 
 
2367	*s = 0;
2368
2369	__add_preferred_console(buf, idx, options, brl_options, true);
2370	console_set_on_cmdline = 1;
2371	return 1;
2372}
2373__setup("console=", console_setup);
2374
2375/**
2376 * add_preferred_console - add a device to the list of preferred consoles.
2377 * @name: device name
2378 * @idx: device index
2379 * @options: options for this console
2380 *
2381 * The last preferred console added will be used for kernel messages
2382 * and stdin/out/err for init.  Normally this is used by console_setup
2383 * above to handle user-supplied console arguments; however it can also
2384 * be used by arch-specific code either to override the user or more
2385 * commonly to provide a default console (ie from PROM variables) when
2386 * the user has not supplied one.
2387 */
2388int add_preferred_console(char *name, int idx, char *options)
2389{
2390	return __add_preferred_console(name, idx, options, NULL, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391}
 
2392
2393bool console_suspend_enabled = true;
2394EXPORT_SYMBOL(console_suspend_enabled);
2395
2396static int __init console_suspend_disable(char *str)
2397{
2398	console_suspend_enabled = false;
2399	return 1;
2400}
2401__setup("no_console_suspend", console_suspend_disable);
2402module_param_named(console_suspend, console_suspend_enabled,
2403		bool, S_IRUGO | S_IWUSR);
2404MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2405	" and hibernate operations");
2406
 
 
 
 
 
 
 
 
 
 
 
 
2407/**
2408 * suspend_console - suspend the console subsystem
2409 *
2410 * This disables printk() while we go into suspend states
2411 */
2412void suspend_console(void)
2413{
 
 
2414	if (!console_suspend_enabled)
2415		return;
2416	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2417	console_lock();
2418	console_suspended = 1;
2419	up_console_sem();
 
 
 
 
 
 
 
 
 
 
 
2420}
2421
2422void resume_console(void)
2423{
 
 
 
2424	if (!console_suspend_enabled)
2425		return;
2426	down_console_sem();
2427	console_suspended = 0;
2428	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429}
2430
2431/**
2432 * console_cpu_notify - print deferred console messages after CPU hotplug
2433 * @cpu: unused
2434 *
2435 * If printk() is called from a CPU that is not online yet, the messages
2436 * will be printed on the console only if there are CON_ANYTIME consoles.
2437 * This function is called when a new CPU comes online (or fails to come
2438 * up) or goes offline.
2439 */
2440static int console_cpu_notify(unsigned int cpu)
2441{
 
 
2442	if (!cpuhp_tasks_frozen) {
2443		/* If trylock fails, someone else is doing the printing */
2444		if (console_trylock())
2445			console_unlock();
 
 
 
 
2446	}
2447	return 0;
2448}
2449
2450/**
2451 * console_lock - lock the console system for exclusive use.
2452 *
2453 * Acquires a lock which guarantees that the caller has
2454 * exclusive access to the console system and the console_drivers list.
2455 *
2456 * Can sleep, returns nothing.
2457 */
2458void console_lock(void)
2459{
2460	might_sleep();
2461
 
 
 
 
2462	down_console_sem();
2463	if (console_suspended)
2464		return;
2465	console_locked = 1;
2466	console_may_schedule = 1;
2467}
2468EXPORT_SYMBOL(console_lock);
2469
2470/**
2471 * console_trylock - try to lock the console system for exclusive use.
2472 *
2473 * Try to acquire a lock which guarantees that the caller has exclusive
2474 * access to the console system and the console_drivers list.
2475 *
2476 * returns 1 on success, and 0 on failure to acquire the lock.
2477 */
2478int console_trylock(void)
2479{
 
 
 
2480	if (down_trylock_console_sem())
2481		return 0;
2482	if (console_suspended) {
2483		up_console_sem();
2484		return 0;
2485	}
2486	console_locked = 1;
2487	console_may_schedule = 0;
2488	return 1;
2489}
2490EXPORT_SYMBOL(console_trylock);
2491
2492int is_console_locked(void)
2493{
2494	return console_locked;
2495}
2496EXPORT_SYMBOL(is_console_locked);
2497
 
 
 
 
 
 
 
 
2498/*
2499 * Check if we have any console that is capable of printing while cpu is
2500 * booting or shutting down. Requires console_sem.
 
 
 
 
 
 
 
 
2501 */
2502static int have_callable_console(void)
 
2503{
2504	struct console *con;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2505
2506	for_each_console(con)
2507		if ((con->flags & CON_ENABLED) &&
2508				(con->flags & CON_ANYTIME))
2509			return 1;
2510
2511	return 0;
 
 
 
 
 
 
 
 
 
 
2512}
2513
2514/*
2515 * Can we actually use the console at this time on this cpu?
 
2516 *
2517 * Console drivers may assume that per-cpu resources have been allocated. So
2518 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2519 * call them until this CPU is officially up.
2520 */
2521static inline int can_use_console(void)
2522{
2523	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2524}
2525
2526/**
2527 * console_unlock - unlock the console system
 
 
 
 
2528 *
2529 * Releases the console_lock which the caller holds on the console system
2530 * and the console driver list.
2531 *
2532 * While the console_lock was held, console output may have been buffered
2533 * by printk().  If this is the case, console_unlock(); emits
2534 * the output prior to releasing the lock.
2535 *
2536 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2537 *
2538 * console_unlock(); may be called from any context.
 
 
2539 */
2540void console_unlock(void)
 
2541{
2542	static char ext_text[CONSOLE_EXT_LOG_MAX];
2543	static char text[CONSOLE_LOG_MAX];
2544	unsigned long flags;
2545	bool do_cond_resched, retry;
 
2546	struct printk_info info;
2547	struct printk_record r;
2548	u64 __maybe_unused next_seq;
 
2549
2550	if (console_suspended) {
2551		up_console_sem();
2552		return;
2553	}
 
 
 
 
 
 
 
 
 
 
2554
2555	prb_rec_init_rd(&r, &info, text, sizeof(text));
 
 
2556
2557	/*
2558	 * Console drivers are called with interrupts disabled, so
2559	 * @console_may_schedule should be cleared before; however, we may
2560	 * end up dumping a lot of lines, for example, if called from
2561	 * console registration path, and should invoke cond_resched()
2562	 * between lines if allowable.  Not doing so can cause a very long
2563	 * scheduling stall on a slow console leading to RCU stall and
2564	 * softlockup warnings which exacerbate the issue with more
2565	 * messages practically incapacitating the system.
2566	 *
2567	 * console_trylock() is not able to detect the preemptive
2568	 * context reliably. Therefore the value must be stored before
2569	 * and cleared after the "again" goto label.
2570	 */
2571	do_cond_resched = console_may_schedule;
2572again:
2573	console_may_schedule = 0;
2574
2575	/*
2576	 * We released the console_sem lock, so we need to recheck if
2577	 * cpu is online and (if not) is there at least one CON_ANYTIME
2578	 * console.
2579	 */
2580	if (!can_use_console()) {
2581		console_locked = 0;
2582		up_console_sem();
2583		return;
2584	}
 
 
 
 
2585
2586	for (;;) {
2587		size_t ext_len = 0;
2588		size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589
2590		printk_safe_enter_irqsave(flags);
2591skip:
2592		if (!prb_read_valid(prb, console_seq, &r))
2593			break;
2594
2595		if (console_seq != r.info->seq) {
2596			console_dropped += r.info->seq - console_seq;
2597			console_seq = r.info->seq;
2598		}
 
2599
2600		if (suppress_message_printing(r.info->level)) {
2601			/*
2602			 * Skip record we have buffered and already printed
2603			 * directly to the console when we received it, and
2604			 * record that has level above the console loglevel.
2605			 */
2606			console_seq++;
2607			goto skip;
2608		}
2609
2610		/* Output to all consoles once old messages replayed. */
2611		if (unlikely(exclusive_console &&
2612			     console_seq >= exclusive_console_stop_seq)) {
2613			exclusive_console = NULL;
2614		}
2615
 
2616		/*
2617		 * Handle extended console text first because later
2618		 * record_print_text() will modify the record buffer in-place.
2619		 */
2620		if (nr_ext_console_drivers) {
2621			ext_len = info_print_ext_header(ext_text,
2622						sizeof(ext_text),
2623						r.info);
2624			ext_len += msg_print_ext_body(ext_text + ext_len,
2625						sizeof(ext_text) - ext_len,
2626						&r.text_buf[0],
2627						r.info->text_len,
2628						&r.info->dev_info);
2629		}
2630		len = record_print_text(&r,
2631				console_msg_format & MSG_FORMAT_SYSLOG,
2632				printk_time);
2633		console_seq++;
2634
 
 
 
2635		/*
2636		 * While actively printing out messages, if another printk()
2637		 * were to occur on another CPU, it may wait for this one to
2638		 * finish. This task can not be preempted if there is a
2639		 * waiter waiting to take over.
 
 
 
 
2640		 */
 
2641		console_lock_spinning_enable();
2642
2643		stop_critical_timings();	/* don't trace print latency */
2644		call_console_drivers(ext_text, ext_len, text, len);
 
 
 
 
 
2645		start_critical_timings();
2646
2647		if (console_lock_spinning_disable_and_check()) {
2648			printk_safe_exit_irqrestore(flags);
2649			return;
2650		}
2651
 
2652		printk_safe_exit_irqrestore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653
2654		if (do_cond_resched)
2655			cond_resched();
2656	}
 
 
 
 
2657
2658	/* Get consistent value of the next-to-be-used sequence number. */
2659	next_seq = console_seq;
 
 
2660
2661	console_locked = 0;
2662	up_console_sem();
 
 
 
 
2663
2664	/*
2665	 * Someone could have filled up the buffer again, so re-check if there's
2666	 * something to flush. In case we cannot trylock the console_sem again,
2667	 * there's a new owner and the console_unlock() from them will do the
2668	 * flush, no worries.
 
 
 
 
 
2669	 */
2670	retry = prb_read_valid(prb, next_seq, NULL);
2671	printk_safe_exit_irqrestore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2672
2673	if (retry && console_trylock())
2674		goto again;
 
 
 
2675}
2676EXPORT_SYMBOL(console_unlock);
2677
2678/**
2679 * console_conditional_schedule - yield the CPU if required
2680 *
2681 * If the console code is currently allowed to sleep, and
2682 * if this CPU should yield the CPU to another task, do
2683 * so here.
2684 *
2685 * Must be called within console_lock();.
2686 */
2687void __sched console_conditional_schedule(void)
2688{
2689	if (console_may_schedule)
2690		cond_resched();
2691}
2692EXPORT_SYMBOL(console_conditional_schedule);
2693
2694void console_unblank(void)
2695{
 
2696	struct console *c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2697
2698	/*
2699	 * console_unblank can no longer be called in interrupt context unless
2700	 * oops_in_progress is set to 1..
 
 
 
2701	 */
2702	if (oops_in_progress) {
 
 
 
 
 
 
 
 
 
 
2703		if (down_trylock_console_sem() != 0)
2704			return;
2705	} else
2706		console_lock();
2707
2708	console_locked = 1;
2709	console_may_schedule = 0;
2710	for_each_console(c)
2711		if ((c->flags & CON_ENABLED) && c->unblank)
 
 
2712			c->unblank();
 
 
 
2713	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714}
2715
2716/**
2717 * console_flush_on_panic - flush console content on panic
2718 * @mode: flush all messages in buffer or just the pending ones
2719 *
2720 * Immediately output all pending messages no matter what.
2721 */
2722void console_flush_on_panic(enum con_flush_mode mode)
2723{
 
 
 
 
2724	/*
2725	 * If someone else is holding the console lock, trylock will fail
2726	 * and may_schedule may be set.  Ignore and proceed to unlock so
2727	 * that messages are flushed out.  As this can be called from any
2728	 * context and we don't want to get preempted while flushing,
2729	 * ensure may_schedule is cleared.
 
 
 
 
 
 
 
 
2730	 */
2731	console_trylock();
2732	console_may_schedule = 0;
2733
2734	if (mode == CONSOLE_REPLAY_ALL) {
2735		unsigned long flags;
2736
2737		printk_safe_enter_irqsave(flags);
2738		console_seq = prb_first_valid_seq(prb);
2739		printk_safe_exit_irqrestore(flags);
2740	}
2741	console_unlock();
 
 
2742}
2743
2744/*
2745 * Return the console tty driver structure and its associated index
2746 */
2747struct tty_driver *console_device(int *index)
2748{
2749	struct console *c;
2750	struct tty_driver *driver = NULL;
 
2751
 
 
 
 
 
2752	console_lock();
2753	for_each_console(c) {
 
 
2754		if (!c->device)
2755			continue;
2756		driver = c->device(c, index);
2757		if (driver)
2758			break;
2759	}
 
 
2760	console_unlock();
2761	return driver;
2762}
2763
2764/*
2765 * Prevent further output on the passed console device so that (for example)
2766 * serial drivers can disable console output before suspending a port, and can
2767 * re-enable output afterwards.
2768 */
2769void console_stop(struct console *console)
2770{
2771	console_lock();
2772	console->flags &= ~CON_ENABLED;
2773	console_unlock();
 
 
 
 
 
 
 
 
 
2774}
2775EXPORT_SYMBOL(console_stop);
2776
2777void console_start(struct console *console)
2778{
2779	console_lock();
2780	console->flags |= CON_ENABLED;
2781	console_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2782}
2783EXPORT_SYMBOL(console_start);
2784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785static int __read_mostly keep_bootcon;
2786
2787static int __init keep_bootcon_setup(char *str)
2788{
2789	keep_bootcon = 1;
2790	pr_info("debug: skip boot console de-registration.\n");
2791
2792	return 0;
2793}
2794
2795early_param("keep_bootcon", keep_bootcon_setup);
2796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797/*
2798 * This is called by register_console() to try to match
2799 * the newly registered console with any of the ones selected
2800 * by either the command line or add_preferred_console() and
2801 * setup/enable it.
2802 *
2803 * Care need to be taken with consoles that are statically
2804 * enabled such as netconsole
2805 */
2806static int try_enable_new_console(struct console *newcon, bool user_specified)
 
2807{
2808	struct console_cmdline *c;
2809	int i, err;
2810
2811	for (i = 0, c = console_cmdline;
2812	     i < MAX_CMDLINECONSOLES && c->name[0];
2813	     i++, c++) {
 
 
 
2814		if (c->user_specified != user_specified)
2815			continue;
2816		if (!newcon->match ||
2817		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2818			/* default matching */
2819			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2820			if (strcmp(c->name, newcon->name) != 0)
2821				continue;
2822			if (newcon->index >= 0 &&
2823			    newcon->index != c->index)
2824				continue;
2825			if (newcon->index < 0)
2826				newcon->index = c->index;
2827
2828			if (_braille_register_console(newcon, c))
2829				return 0;
2830
2831			if (newcon->setup &&
2832			    (err = newcon->setup(newcon, c->options)) != 0)
2833				return err;
2834		}
2835		newcon->flags |= CON_ENABLED;
2836		if (i == preferred_console) {
2837			newcon->flags |= CON_CONSDEV;
2838			has_preferred_console = true;
2839		}
2840		return 0;
2841	}
2842
2843	/*
2844	 * Some consoles, such as pstore and netconsole, can be enabled even
2845	 * without matching. Accept the pre-enabled consoles only when match()
2846	 * and setup() had a chance to be called.
2847	 */
2848	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2849		return 0;
2850
2851	return -ENOENT;
2852}
2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854/*
2855 * The console driver calls this routine during kernel initialization
2856 * to register the console printing procedure with printk() and to
2857 * print any messages that were printed by the kernel before the
2858 * console driver was initialized.
2859 *
2860 * This can happen pretty early during the boot process (because of
2861 * early_printk) - sometimes before setup_arch() completes - be careful
2862 * of what kernel features are used - they may not be initialised yet.
2863 *
2864 * There are two types of consoles - bootconsoles (early_printk) and
2865 * "real" consoles (everything which is not a bootconsole) which are
2866 * handled differently.
2867 *  - Any number of bootconsoles can be registered at any time.
2868 *  - As soon as a "real" console is registered, all bootconsoles
2869 *    will be unregistered automatically.
2870 *  - Once a "real" console is registered, any attempt to register a
2871 *    bootconsoles will be rejected
2872 */
2873void register_console(struct console *newcon)
2874{
 
 
 
 
2875	unsigned long flags;
2876	struct console *bcon = NULL;
2877	int err;
2878
2879	for_each_console(bcon) {
2880		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2881					 bcon->name, bcon->index))
2882			return;
2883	}
2884
2885	/*
2886	 * before we register a new CON_BOOT console, make sure we don't
2887	 * already have a valid console
2888	 */
2889	if (newcon->flags & CON_BOOT) {
2890		for_each_console(bcon) {
2891			if (!(bcon->flags & CON_BOOT)) {
2892				pr_info("Too late to register bootconsole %s%d\n",
2893					newcon->name, newcon->index);
2894				return;
2895			}
2896		}
 
 
 
 
 
2897	}
2898
2899	if (console_drivers && console_drivers->flags & CON_BOOT)
2900		bcon = console_drivers;
 
 
 
 
2901
2902	if (!has_preferred_console || bcon || !console_drivers)
2903		has_preferred_console = preferred_console >= 0;
 
 
 
 
 
 
2904
2905	/*
2906	 *	See if we want to use this console driver. If we
2907	 *	didn't select a console we take the first one
2908	 *	that registers here.
2909	 */
2910	if (!has_preferred_console) {
2911		if (newcon->index < 0)
2912			newcon->index = 0;
2913		if (newcon->setup == NULL ||
2914		    newcon->setup(newcon, NULL) == 0) {
2915			newcon->flags |= CON_ENABLED;
2916			if (newcon->device) {
2917				newcon->flags |= CON_CONSDEV;
2918				has_preferred_console = true;
2919			}
 
2920		}
2921	}
2922
2923	/* See if this console matches one we selected on the command line */
2924	err = try_enable_new_console(newcon, true);
2925
2926	/* If not, try to match against the platform default(s) */
2927	if (err == -ENOENT)
2928		err = try_enable_new_console(newcon, false);
2929
2930	/* printk() messages are not printed to the Braille console. */
2931	if (err || newcon->flags & CON_BRL)
2932		return;
 
 
 
2933
2934	/*
2935	 * If we have a bootconsole, and are switching to a real console,
2936	 * don't print everything out again, since when the boot console, and
2937	 * the real console are the same physical device, it's annoying to
2938	 * see the beginning boot messages twice
2939	 */
2940	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
 
2941		newcon->flags &= ~CON_PRINTBUFFER;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942
2943	/*
2944	 *	Put this console in the list - keep the
2945	 *	preferred driver at the head of the list.
 
 
 
 
 
 
2946	 */
2947	console_lock();
2948	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2949		newcon->next = console_drivers;
2950		console_drivers = newcon;
2951		if (newcon->next)
2952			newcon->next->flags &= ~CON_CONSDEV;
2953		/* Ensure this flag is always set for the head of the list */
 
 
2954		newcon->flags |= CON_CONSDEV;
 
 
 
 
 
 
 
2955	} else {
2956		newcon->next = console_drivers->next;
2957		console_drivers->next = newcon;
2958	}
2959
2960	if (newcon->flags & CON_EXTENDED)
2961		nr_ext_console_drivers++;
 
 
 
2962
2963	if (newcon->flags & CON_PRINTBUFFER) {
2964		/*
2965		 * console_unlock(); will print out the buffered messages
2966		 * for us.
2967		 *
2968		 * We're about to replay the log buffer.  Only do this to the
2969		 * just-registered console to avoid excessive message spam to
2970		 * the already-registered consoles.
2971		 *
2972		 * Set exclusive_console with disabled interrupts to reduce
2973		 * race window with eventual console_flush_on_panic() that
2974		 * ignores console_lock.
2975		 */
2976		exclusive_console = newcon;
2977		exclusive_console_stop_seq = console_seq;
2978
2979		/* Get a consistent copy of @syslog_seq. */
2980		raw_spin_lock_irqsave(&syslog_lock, flags);
2981		console_seq = syslog_seq;
2982		raw_spin_unlock_irqrestore(&syslog_lock, flags);
2983	}
2984	console_unlock();
2985	console_sysfs_notify();
2986
2987	/*
2988	 * By unregistering the bootconsoles after we enable the real console
2989	 * we get the "console xxx enabled" message on all the consoles -
2990	 * boot consoles, real consoles, etc - this is to ensure that end
2991	 * users know there might be something in the kernel's log buffer that
2992	 * went to the bootconsole (that they do not see on the real console)
2993	 */
2994	pr_info("%sconsole [%s%d] enabled\n",
2995		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2996		newcon->name, newcon->index);
2997	if (bcon &&
2998	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2999	    !keep_bootcon) {
3000		/* We need to iterate through all boot consoles, to make
3001		 * sure we print everything out, before we unregister them.
3002		 */
3003		for_each_console(bcon)
3004			if (bcon->flags & CON_BOOT)
3005				unregister_console(bcon);
3006	}
 
 
 
 
 
3007}
3008EXPORT_SYMBOL(register_console);
3009
3010int unregister_console(struct console *console)
 
3011{
3012	struct console *con;
 
 
 
 
 
3013	int res;
3014
3015	pr_info("%sconsole [%s%d] disabled\n",
3016		(console->flags & CON_BOOT) ? "boot" : "" ,
3017		console->name, console->index);
3018
3019	res = _braille_unregister_console(console);
3020	if (res < 0)
3021		return res;
3022	if (res > 0)
3023		return 0;
3024
3025	res = -ENODEV;
3026	console_lock();
3027	if (console_drivers == console) {
3028		console_drivers=console->next;
3029		res = 0;
3030	} else {
3031		for_each_console(con) {
3032			if (con->next == console) {
3033				con->next = console->next;
3034				res = 0;
3035				break;
3036			}
3037		}
3038	}
 
 
 
3039
3040	if (res)
3041		goto out_disable_unlock;
3042
3043	if (console->flags & CON_EXTENDED)
3044		nr_ext_console_drivers--;
3045
3046	/*
 
3047	 * If this isn't the last console and it has CON_CONSDEV set, we
3048	 * need to set it on the next preferred console.
 
 
 
 
3049	 */
3050	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3051		console_drivers->flags |= CON_CONSDEV;
 
 
 
 
 
 
 
 
 
 
3052
3053	console->flags &= ~CON_ENABLED;
3054	console_unlock();
3055	console_sysfs_notify();
3056
3057	if (console->exit)
3058		res = console->exit(console);
3059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060	return res;
 
3061
3062out_disable_unlock:
3063	console->flags &= ~CON_ENABLED;
3064	console_unlock();
3065
 
 
 
3066	return res;
3067}
3068EXPORT_SYMBOL(unregister_console);
3069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070/*
3071 * Initialize the console device. This is called *early*, so
3072 * we can't necessarily depend on lots of kernel help here.
3073 * Just do some early initializations, and do the complex setup
3074 * later.
3075 */
3076void __init console_init(void)
3077{
3078	int ret;
3079	initcall_t call;
3080	initcall_entry_t *ce;
3081
3082	/* Setup the default TTY line discipline. */
3083	n_tty_init();
3084
3085	/*
3086	 * set up the console device so that later boot sequences can
3087	 * inform about problems etc..
3088	 */
3089	ce = __con_initcall_start;
3090	trace_initcall_level("console");
3091	while (ce < __con_initcall_end) {
3092		call = initcall_from_entry(ce);
3093		trace_initcall_start(call);
3094		ret = call();
3095		trace_initcall_finish(call, ret);
3096		ce++;
3097	}
3098}
3099
3100/*
3101 * Some boot consoles access data that is in the init section and which will
3102 * be discarded after the initcalls have been run. To make sure that no code
3103 * will access this data, unregister the boot consoles in a late initcall.
3104 *
3105 * If for some reason, such as deferred probe or the driver being a loadable
3106 * module, the real console hasn't registered yet at this point, there will
3107 * be a brief interval in which no messages are logged to the console, which
3108 * makes it difficult to diagnose problems that occur during this time.
3109 *
3110 * To mitigate this problem somewhat, only unregister consoles whose memory
3111 * intersects with the init section. Note that all other boot consoles will
3112 * get unregistered when the real preferred console is registered.
3113 */
3114static int __init printk_late_init(void)
3115{
 
3116	struct console *con;
3117	int ret;
3118
3119	for_each_console(con) {
 
3120		if (!(con->flags & CON_BOOT))
3121			continue;
3122
3123		/* Check addresses that might be used for enabled consoles. */
3124		if (init_section_intersects(con, sizeof(*con)) ||
3125		    init_section_contains(con->write, 0) ||
3126		    init_section_contains(con->read, 0) ||
3127		    init_section_contains(con->device, 0) ||
3128		    init_section_contains(con->unblank, 0) ||
3129		    init_section_contains(con->data, 0)) {
3130			/*
3131			 * Please, consider moving the reported consoles out
3132			 * of the init section.
3133			 */
3134			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3135				con->name, con->index);
3136			unregister_console(con);
3137		}
3138	}
 
 
3139	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3140					console_cpu_notify);
3141	WARN_ON(ret < 0);
3142	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3143					console_cpu_notify, NULL);
3144	WARN_ON(ret < 0);
 
3145	return 0;
3146}
3147late_initcall(printk_late_init);
3148
3149#if defined CONFIG_PRINTK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3150/*
3151 * Delayed printk version, for scheduler-internal messages:
3152 */
3153#define PRINTK_PENDING_WAKEUP	0x01
3154#define PRINTK_PENDING_OUTPUT	0x02
3155
3156static DEFINE_PER_CPU(int, printk_pending);
3157
3158static void wake_up_klogd_work_func(struct irq_work *irq_work)
3159{
3160	int pending = __this_cpu_xchg(printk_pending, 0);
3161
3162	if (pending & PRINTK_PENDING_OUTPUT) {
3163		/* If trylock fails, someone else is doing the printing */
3164		if (console_trylock())
3165			console_unlock();
 
 
 
 
3166	}
3167
3168	if (pending & PRINTK_PENDING_WAKEUP)
3169		wake_up_interruptible(&log_wait);
3170}
3171
3172static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3173	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3174
3175void wake_up_klogd(void)
3176{
3177	if (!printk_percpu_data_ready())
3178		return;
3179
3180	preempt_disable();
3181	if (waitqueue_active(&log_wait)) {
3182		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
 
 
 
 
 
 
 
 
 
 
 
 
3183		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3184	}
3185	preempt_enable();
3186}
3187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3188void defer_console_output(void)
3189{
3190	if (!printk_percpu_data_ready())
3191		return;
 
 
 
 
3192
3193	preempt_disable();
3194	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3195	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3196	preempt_enable();
3197}
3198
3199int vprintk_deferred(const char *fmt, va_list args)
3200{
3201	int r;
3202
3203	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3204	defer_console_output();
3205
3206	return r;
3207}
3208
3209int printk_deferred(const char *fmt, ...)
3210{
3211	va_list args;
3212	int r;
3213
3214	va_start(args, fmt);
3215	r = vprintk_deferred(fmt, args);
3216	va_end(args);
3217
3218	return r;
3219}
3220
3221/*
3222 * printk rate limiting, lifted from the networking subsystem.
3223 *
3224 * This enforces a rate limit: not more than 10 kernel messages
3225 * every 5s to make a denial-of-service attack impossible.
3226 */
3227DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3228
3229int __printk_ratelimit(const char *func)
3230{
3231	return ___ratelimit(&printk_ratelimit_state, func);
3232}
3233EXPORT_SYMBOL(__printk_ratelimit);
3234
3235/**
3236 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3237 * @caller_jiffies: pointer to caller's state
3238 * @interval_msecs: minimum interval between prints
3239 *
3240 * printk_timed_ratelimit() returns true if more than @interval_msecs
3241 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3242 * returned true.
3243 */
3244bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3245			unsigned int interval_msecs)
3246{
3247	unsigned long elapsed = jiffies - *caller_jiffies;
3248
3249	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3250		return false;
3251
3252	*caller_jiffies = jiffies;
3253	return true;
3254}
3255EXPORT_SYMBOL(printk_timed_ratelimit);
3256
3257static DEFINE_SPINLOCK(dump_list_lock);
3258static LIST_HEAD(dump_list);
3259
3260/**
3261 * kmsg_dump_register - register a kernel log dumper.
3262 * @dumper: pointer to the kmsg_dumper structure
3263 *
3264 * Adds a kernel log dumper to the system. The dump callback in the
3265 * structure will be called when the kernel oopses or panics and must be
3266 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3267 */
3268int kmsg_dump_register(struct kmsg_dumper *dumper)
3269{
3270	unsigned long flags;
3271	int err = -EBUSY;
3272
3273	/* The dump callback needs to be set */
3274	if (!dumper->dump)
3275		return -EINVAL;
3276
3277	spin_lock_irqsave(&dump_list_lock, flags);
3278	/* Don't allow registering multiple times */
3279	if (!dumper->registered) {
3280		dumper->registered = 1;
3281		list_add_tail_rcu(&dumper->list, &dump_list);
3282		err = 0;
3283	}
3284	spin_unlock_irqrestore(&dump_list_lock, flags);
3285
3286	return err;
3287}
3288EXPORT_SYMBOL_GPL(kmsg_dump_register);
3289
3290/**
3291 * kmsg_dump_unregister - unregister a kmsg dumper.
3292 * @dumper: pointer to the kmsg_dumper structure
3293 *
3294 * Removes a dump device from the system. Returns zero on success and
3295 * %-EINVAL otherwise.
3296 */
3297int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3298{
3299	unsigned long flags;
3300	int err = -EINVAL;
3301
3302	spin_lock_irqsave(&dump_list_lock, flags);
3303	if (dumper->registered) {
3304		dumper->registered = 0;
3305		list_del_rcu(&dumper->list);
3306		err = 0;
3307	}
3308	spin_unlock_irqrestore(&dump_list_lock, flags);
3309	synchronize_rcu();
3310
3311	return err;
3312}
3313EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3314
3315static bool always_kmsg_dump;
3316module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3317
3318const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3319{
3320	switch (reason) {
3321	case KMSG_DUMP_PANIC:
3322		return "Panic";
3323	case KMSG_DUMP_OOPS:
3324		return "Oops";
3325	case KMSG_DUMP_EMERG:
3326		return "Emergency";
3327	case KMSG_DUMP_SHUTDOWN:
3328		return "Shutdown";
3329	default:
3330		return "Unknown";
3331	}
3332}
3333EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3334
3335/**
3336 * kmsg_dump - dump kernel log to kernel message dumpers.
3337 * @reason: the reason (oops, panic etc) for dumping
 
 
3338 *
3339 * Call each of the registered dumper's dump() callback, which can
3340 * retrieve the kmsg records with kmsg_dump_get_line() or
3341 * kmsg_dump_get_buffer().
3342 */
3343void kmsg_dump(enum kmsg_dump_reason reason)
3344{
3345	struct kmsg_dumper *dumper;
 
 
 
3346
3347	rcu_read_lock();
3348	list_for_each_entry_rcu(dumper, &dump_list, list) {
3349		enum kmsg_dump_reason max_reason = dumper->max_reason;
3350
3351		/*
3352		 * If client has not provided a specific max_reason, default
3353		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3354		 */
3355		if (max_reason == KMSG_DUMP_UNDEF) {
3356			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3357							KMSG_DUMP_OOPS;
3358		}
3359		if (reason > max_reason)
3360			continue;
3361
3362		/* invoke dumper which will iterate over records */
3363		dumper->dump(dumper, reason);
3364	}
3365	rcu_read_unlock();
3366}
3367
3368/**
3369 * kmsg_dump_get_line - retrieve one kmsg log line
3370 * @iter: kmsg dump iterator
3371 * @syslog: include the "<4>" prefixes
3372 * @line: buffer to copy the line to
3373 * @size: maximum size of the buffer
3374 * @len: length of line placed into buffer
3375 *
3376 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3377 * record, and copy one record into the provided buffer.
3378 *
3379 * Consecutive calls will return the next available record moving
3380 * towards the end of the buffer with the youngest messages.
3381 *
3382 * A return value of FALSE indicates that there are no more records to
3383 * read.
3384 */
3385bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3386			char *line, size_t size, size_t *len)
3387{
3388	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3389	struct printk_info info;
3390	unsigned int line_count;
3391	struct printk_record r;
3392	unsigned long flags;
3393	size_t l = 0;
3394	bool ret = false;
3395
3396	if (iter->cur_seq < min_seq)
3397		iter->cur_seq = min_seq;
3398
3399	printk_safe_enter_irqsave(flags);
3400	prb_rec_init_rd(&r, &info, line, size);
3401
3402	/* Read text or count text lines? */
3403	if (line) {
3404		if (!prb_read_valid(prb, iter->cur_seq, &r))
3405			goto out;
3406		l = record_print_text(&r, syslog, printk_time);
3407	} else {
3408		if (!prb_read_valid_info(prb, iter->cur_seq,
3409					 &info, &line_count)) {
3410			goto out;
3411		}
3412		l = get_record_print_text_size(&info, line_count, syslog,
3413					       printk_time);
3414
3415	}
3416
3417	iter->cur_seq = r.info->seq + 1;
3418	ret = true;
3419out:
3420	printk_safe_exit_irqrestore(flags);
3421	if (len)
3422		*len = l;
3423	return ret;
3424}
3425EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3426
3427/**
3428 * kmsg_dump_get_buffer - copy kmsg log lines
3429 * @iter: kmsg dump iterator
3430 * @syslog: include the "<4>" prefixes
3431 * @buf: buffer to copy the line to
3432 * @size: maximum size of the buffer
3433 * @len_out: length of line placed into buffer
3434 *
3435 * Start at the end of the kmsg buffer and fill the provided buffer
3436 * with as many of the *youngest* kmsg records that fit into it.
3437 * If the buffer is large enough, all available kmsg records will be
3438 * copied with a single call.
3439 *
3440 * Consecutive calls will fill the buffer with the next block of
3441 * available older records, not including the earlier retrieved ones.
3442 *
3443 * A return value of FALSE indicates that there are no more records to
3444 * read.
3445 */
3446bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3447			  char *buf, size_t size, size_t *len_out)
3448{
3449	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3450	struct printk_info info;
3451	struct printk_record r;
3452	unsigned long flags;
3453	u64 seq;
3454	u64 next_seq;
3455	size_t len = 0;
3456	bool ret = false;
3457	bool time = printk_time;
3458
3459	if (!buf || !size)
3460		goto out;
3461
3462	if (iter->cur_seq < min_seq)
3463		iter->cur_seq = min_seq;
3464
3465	printk_safe_enter_irqsave(flags);
3466	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3467		if (info.seq != iter->cur_seq) {
3468			/* messages are gone, move to first available one */
3469			iter->cur_seq = info.seq;
3470		}
3471	}
3472
3473	/* last entry */
3474	if (iter->cur_seq >= iter->next_seq) {
3475		printk_safe_exit_irqrestore(flags);
3476		goto out;
3477	}
3478
3479	/*
3480	 * Find first record that fits, including all following records,
3481	 * into the user-provided buffer for this dump. Pass in size-1
3482	 * because this function (by way of record_print_text()) will
3483	 * not write more than size-1 bytes of text into @buf.
3484	 */
3485	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3486				     size - 1, syslog, time);
3487
3488	/*
3489	 * Next kmsg_dump_get_buffer() invocation will dump block of
3490	 * older records stored right before this one.
3491	 */
3492	next_seq = seq;
3493
3494	prb_rec_init_rd(&r, &info, buf, size);
3495
3496	len = 0;
3497	prb_for_each_record(seq, prb, seq, &r) {
3498		if (r.info->seq >= iter->next_seq)
3499			break;
3500
3501		len += record_print_text(&r, syslog, time);
3502
3503		/* Adjust record to store to remaining buffer space. */
3504		prb_rec_init_rd(&r, &info, buf + len, size - len);
3505	}
3506
3507	iter->next_seq = next_seq;
3508	ret = true;
3509	printk_safe_exit_irqrestore(flags);
3510out:
3511	if (len_out)
3512		*len_out = len;
3513	return ret;
3514}
3515EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3516
3517/**
3518 * kmsg_dump_rewind - reset the iterator
3519 * @iter: kmsg dump iterator
3520 *
3521 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3522 * kmsg_dump_get_buffer() can be called again and used multiple
3523 * times within the same dumper.dump() callback.
3524 */
3525void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3526{
3527	unsigned long flags;
3528
3529	printk_safe_enter_irqsave(flags);
3530	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3531	iter->next_seq = prb_next_seq(prb);
3532	printk_safe_exit_irqrestore(flags);
3533}
3534EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3536#endif
3537
3538#ifdef CONFIG_SMP
3539static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3540static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
 
 
 
 
 
3541
3542/**
3543 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3544 *                               spinning lock is not owned by any CPU.
3545 *
3546 * Context: Any context.
3547 */
3548void __printk_wait_on_cpu_lock(void)
3549{
3550	do {
3551		cpu_relax();
3552	} while (atomic_read(&printk_cpulock_owner) != -1);
3553}
3554EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3555
3556/**
3557 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3558 *                          spinning lock.
3559 *
3560 * If no processor has the lock, the calling processor takes the lock and
3561 * becomes the owner. If the calling processor is already the owner of the
3562 * lock, this function succeeds immediately.
3563 *
3564 * Context: Any context. Expects interrupts to be disabled.
3565 * Return: 1 on success, otherwise 0.
3566 */
3567int __printk_cpu_trylock(void)
3568{
3569	int cpu;
3570	int old;
3571
3572	cpu = smp_processor_id();
3573
3574	/*
3575	 * Guarantee loads and stores from this CPU when it is the lock owner
3576	 * are _not_ visible to the previous lock owner. This pairs with
3577	 * __printk_cpu_unlock:B.
3578	 *
3579	 * Memory barrier involvement:
3580	 *
3581	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3582	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
 
3583	 *
3584	 * Relies on:
3585	 *
3586	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3587	 * of the previous CPU
3588	 *    matching
3589	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3590	 * of this CPU
3591	 */
3592	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3593				     cpu); /* LMM(__printk_cpu_trylock:A) */
3594	if (old == -1) {
3595		/*
3596		 * This CPU is now the owner and begins loading/storing
3597		 * data: LMM(__printk_cpu_trylock:B)
3598		 */
3599		return 1;
3600
3601	} else if (old == cpu) {
3602		/* This CPU is already the owner. */
3603		atomic_inc(&printk_cpulock_nested);
3604		return 1;
3605	}
3606
3607	return 0;
3608}
3609EXPORT_SYMBOL(__printk_cpu_trylock);
3610
3611/**
3612 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3613 *
3614 * The calling processor must be the owner of the lock.
3615 *
3616 * Context: Any context. Expects interrupts to be disabled.
3617 */
3618void __printk_cpu_unlock(void)
3619{
3620	if (atomic_read(&printk_cpulock_nested)) {
3621		atomic_dec(&printk_cpulock_nested);
3622		return;
3623	}
3624
3625	/*
3626	 * This CPU is finished loading/storing data:
3627	 * LMM(__printk_cpu_unlock:A)
3628	 */
3629
3630	/*
3631	 * Guarantee loads and stores from this CPU when it was the
3632	 * lock owner are visible to the next lock owner. This pairs
3633	 * with __printk_cpu_trylock:A.
3634	 *
3635	 * Memory barrier involvement:
3636	 *
3637	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3638	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3639	 *
3640	 * Relies on:
3641	 *
3642	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3643	 * of this CPU
3644	 *    matching
3645	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3646	 * of the next CPU
3647	 */
3648	atomic_set_release(&printk_cpulock_owner,
3649			   -1); /* LMM(__printk_cpu_unlock:B) */
3650}
3651EXPORT_SYMBOL(__printk_cpu_unlock);
3652#endif /* CONFIG_SMP */