Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3/*
  4 * Linux-specific definitions for managing interactions with Microsoft's
  5 * Hyper-V hypervisor. The definitions in this file are architecture
  6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
  7 * that are specific to architecture <arch>.
  8 *
  9 * Definitions that are specified in the Hyper-V Top Level Functional
 10 * Spec (TLFS) should not go in this file, but should instead go in
 11 * hyperv-tlfs.h.
 12 *
 13 * Copyright (C) 2019, Microsoft, Inc.
 14 *
 15 * Author : Michael Kelley <mikelley@microsoft.com>
 16 */
 17
 18#ifndef _ASM_GENERIC_MSHYPERV_H
 19#define _ASM_GENERIC_MSHYPERV_H
 20
 21#include <linux/types.h>
 22#include <linux/atomic.h>
 23#include <linux/bitops.h>
 24#include <acpi/acpi_numa.h>
 25#include <linux/cpumask.h>
 26#include <linux/nmi.h>
 27#include <asm/ptrace.h>
 28#include <asm/hyperv-tlfs.h>
 29
 30#define VTPM_BASE_ADDRESS 0xfed40000
 31
 32struct ms_hyperv_info {
 33	u32 features;
 34	u32 priv_high;
 35	u32 misc_features;
 36	u32 hints;
 37	u32 nested_features;
 38	u32 max_vp_index;
 39	u32 max_lp_index;
 40	u8 vtl;
 41	union {
 42		u32 isolation_config_a;
 43		struct {
 44			u32 paravisor_present : 1;
 45			u32 reserved_a1 : 31;
 46		};
 47	};
 48	union {
 49		u32 isolation_config_b;
 50		struct {
 51			u32 cvm_type : 4;
 52			u32 reserved_b1 : 1;
 53			u32 shared_gpa_boundary_active : 1;
 54			u32 shared_gpa_boundary_bits : 6;
 55			u32 reserved_b2 : 20;
 56		};
 57	};
 58	u64 shared_gpa_boundary;
 59};
 60extern struct ms_hyperv_info ms_hyperv;
 61extern bool hv_nested;
 62
 63extern void * __percpu *hyperv_pcpu_input_arg;
 64extern void * __percpu *hyperv_pcpu_output_arg;
 65
 66extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
 67extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
 68bool hv_isolation_type_snp(void);
 69bool hv_isolation_type_tdx(void);
 70
 71static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
 72{
 73	struct hv_proximity_domain_info pxm_info = {};
 74
 75	if (node != NUMA_NO_NODE) {
 76		pxm_info.domain_id = node_to_pxm(node);
 77		pxm_info.flags.proximity_info_valid = 1;
 78		pxm_info.flags.proximity_preferred = 1;
 79	}
 80
 81	return pxm_info;
 82}
 83
 84/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
 85static inline int hv_result(u64 status)
 86{
 87	return status & HV_HYPERCALL_RESULT_MASK;
 88}
 89
 90static inline bool hv_result_success(u64 status)
 91{
 92	return hv_result(status) == HV_STATUS_SUCCESS;
 93}
 94
 95static inline unsigned int hv_repcomp(u64 status)
 96{
 97	/* Bits [43:32] of status have 'Reps completed' data. */
 98	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
 99			 HV_HYPERCALL_REP_COMP_OFFSET;
100}
101
102/*
103 * Rep hypercalls. Callers of this functions are supposed to ensure that
104 * rep_count and varhead_size comply with Hyper-V hypercall definition.
105 */
106static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
107				      void *input, void *output)
108{
109	u64 control = code;
110	u64 status;
111	u16 rep_comp;
112
113	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
114	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
115
116	do {
117		status = hv_do_hypercall(control, input, output);
118		if (!hv_result_success(status))
119			return status;
120
121		rep_comp = hv_repcomp(status);
122
123		control &= ~HV_HYPERCALL_REP_START_MASK;
124		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
125
126		touch_nmi_watchdog();
127	} while (rep_comp < rep_count);
128
129	return status;
130}
131
132/* Generate the guest OS identifier as described in the Hyper-V TLFS */
133static inline u64 hv_generate_guest_id(u64 kernel_version)
 
134{
135	u64 guest_id;
136
137	guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
 
138	guest_id |= (kernel_version << 16);
 
139
140	return guest_id;
141}
142
143/* Free the message slot and signal end-of-message if required */
144static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
145{
146	/*
147	 * On crash we're reading some other CPU's message page and we need
148	 * to be careful: this other CPU may already had cleared the header
149	 * and the host may already had delivered some other message there.
150	 * In case we blindly write msg->header.message_type we're going
151	 * to lose it. We can still lose a message of the same type but
152	 * we count on the fact that there can only be one
153	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
154	 * on crash.
155	 */
156	if (cmpxchg(&msg->header.message_type, old_msg_type,
157		    HVMSG_NONE) != old_msg_type)
158		return;
159
160	/*
161	 * The cmxchg() above does an implicit memory barrier to
162	 * ensure the write to MessageType (ie set to
163	 * HVMSG_NONE) happens before we read the
164	 * MessagePending and EOMing. Otherwise, the EOMing
165	 * will not deliver any more messages since there is
166	 * no empty slot
167	 */
168	if (msg->header.message_flags.msg_pending) {
169		/*
170		 * This will cause message queue rescan to
171		 * possibly deliver another msg from the
172		 * hypervisor
173		 */
174		hv_set_msr(HV_MSR_EOM, 0);
175	}
176}
177
178int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
179
180void hv_setup_vmbus_handler(void (*handler)(void));
181void hv_remove_vmbus_handler(void);
182void hv_setup_stimer0_handler(void (*handler)(void));
183void hv_remove_stimer0_handler(void);
184
185void hv_setup_kexec_handler(void (*handler)(void));
186void hv_remove_kexec_handler(void);
187void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
188void hv_remove_crash_handler(void);
189
190extern int vmbus_interrupt;
191extern int vmbus_irq;
192
193extern bool hv_root_partition;
194
195#if IS_ENABLED(CONFIG_HYPERV)
196/*
197 * Hypervisor's notion of virtual processor ID is different from
198 * Linux' notion of CPU ID. This information can only be retrieved
199 * in the context of the calling CPU. Setup a map for easy access
200 * to this information.
201 */
202extern u32 *hv_vp_index;
203extern u32 hv_max_vp_index;
204
205extern u64 (*hv_read_reference_counter)(void);
206
207/* Sentinel value for an uninitialized entry in hv_vp_index array */
208#define VP_INVAL	U32_MAX
209
210int __init hv_common_init(void);
211void __init hv_common_free(void);
212void __init ms_hyperv_late_init(void);
213int hv_common_cpu_init(unsigned int cpu);
214int hv_common_cpu_die(unsigned int cpu);
215
216void *hv_alloc_hyperv_page(void);
217void *hv_alloc_hyperv_zeroed_page(void);
218void hv_free_hyperv_page(void *addr);
219
220/**
221 * hv_cpu_number_to_vp_number() - Map CPU to VP.
222 * @cpu_number: CPU number in Linux terms
223 *
224 * This function returns the mapping between the Linux processor
225 * number and the hypervisor's virtual processor number, useful
226 * in making hypercalls and such that talk about specific
227 * processors.
228 *
229 * Return: Virtual processor number in Hyper-V terms
230 */
231static inline int hv_cpu_number_to_vp_number(int cpu_number)
232{
233	return hv_vp_index[cpu_number];
234}
235
236static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
237				    const struct cpumask *cpus,
238				    bool (*func)(int cpu))
239{
240	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
241	int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
242
243	/* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
244	if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
245		return 0;
246
247	/*
248	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
249	 * structs are not cleared between calls, we risk flushing unneeded
250	 * vCPUs otherwise.
251	 */
252	for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
253		vpset->bank_contents[vcpu_bank] = 0;
254
255	/*
256	 * Some banks may end up being empty but this is acceptable.
257	 */
258	for_each_cpu(cpu, cpus) {
259		if (func && func(cpu))
260			continue;
261		vcpu = hv_cpu_number_to_vp_number(cpu);
262		if (vcpu == VP_INVAL)
263			return -1;
264		vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
265		vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
266		__set_bit(vcpu_offset, (unsigned long *)
267			  &vpset->bank_contents[vcpu_bank]);
268		if (vcpu_bank >= nr_bank)
269			nr_bank = vcpu_bank + 1;
270	}
271	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
272	return nr_bank;
273}
274
275/*
276 * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
277 * 'func' is called for each CPU present in cpumask.  If 'func' returns
278 * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
279 * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
280 * skipped.
281 */
282static inline int cpumask_to_vpset(struct hv_vpset *vpset,
283				    const struct cpumask *cpus)
284{
285	return __cpumask_to_vpset(vpset, cpus, NULL);
286}
287
288static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
289				    const struct cpumask *cpus,
290				    bool (*func)(int cpu))
291{
292	return __cpumask_to_vpset(vpset, cpus, func);
293}
294
295void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
296bool hv_is_hyperv_initialized(void);
297bool hv_is_hibernation_supported(void);
298enum hv_isolation_type hv_get_isolation_type(void);
299bool hv_is_isolation_supported(void);
300bool hv_isolation_type_snp(void);
301u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
302u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
303void hyperv_cleanup(void);
304bool hv_query_ext_cap(u64 cap_query);
305void hv_setup_dma_ops(struct device *dev, bool coherent);
306#else /* CONFIG_HYPERV */
307static inline bool hv_is_hyperv_initialized(void) { return false; }
308static inline bool hv_is_hibernation_supported(void) { return false; }
309static inline void hyperv_cleanup(void) {}
310static inline void ms_hyperv_late_init(void) {}
311static inline bool hv_is_isolation_supported(void) { return false; }
312static inline enum hv_isolation_type hv_get_isolation_type(void)
313{
314	return HV_ISOLATION_TYPE_NONE;
315}
316#endif /* CONFIG_HYPERV */
317
318#endif
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2
  3/*
  4 * Linux-specific definitions for managing interactions with Microsoft's
  5 * Hyper-V hypervisor. The definitions in this file are architecture
  6 * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
  7 * that are specific to architecture <arch>.
  8 *
  9 * Definitions that are specified in the Hyper-V Top Level Functional
 10 * Spec (TLFS) should not go in this file, but should instead go in
 11 * hyperv-tlfs.h.
 12 *
 13 * Copyright (C) 2019, Microsoft, Inc.
 14 *
 15 * Author : Michael Kelley <mikelley@microsoft.com>
 16 */
 17
 18#ifndef _ASM_GENERIC_MSHYPERV_H
 19#define _ASM_GENERIC_MSHYPERV_H
 20
 21#include <linux/types.h>
 22#include <linux/atomic.h>
 23#include <linux/bitops.h>
 
 24#include <linux/cpumask.h>
 
 25#include <asm/ptrace.h>
 26#include <asm/hyperv-tlfs.h>
 27
 
 
 28struct ms_hyperv_info {
 29	u32 features;
 30	u32 priv_high;
 31	u32 misc_features;
 32	u32 hints;
 33	u32 nested_features;
 34	u32 max_vp_index;
 35	u32 max_lp_index;
 36	u32 isolation_config_a;
 37	u32 isolation_config_b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38};
 39extern struct ms_hyperv_info ms_hyperv;
 
 
 
 
 40
 41extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
 42extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44/* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
 45static inline int hv_result(u64 status)
 46{
 47	return status & HV_HYPERCALL_RESULT_MASK;
 48}
 49
 50static inline bool hv_result_success(u64 status)
 51{
 52	return hv_result(status) == HV_STATUS_SUCCESS;
 53}
 54
 55static inline unsigned int hv_repcomp(u64 status)
 56{
 57	/* Bits [43:32] of status have 'Reps completed' data. */
 58	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
 59			 HV_HYPERCALL_REP_COMP_OFFSET;
 60}
 61
 62/*
 63 * Rep hypercalls. Callers of this functions are supposed to ensure that
 64 * rep_count and varhead_size comply with Hyper-V hypercall definition.
 65 */
 66static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
 67				      void *input, void *output)
 68{
 69	u64 control = code;
 70	u64 status;
 71	u16 rep_comp;
 72
 73	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
 74	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
 75
 76	do {
 77		status = hv_do_hypercall(control, input, output);
 78		if (!hv_result_success(status))
 79			return status;
 80
 81		rep_comp = hv_repcomp(status);
 82
 83		control &= ~HV_HYPERCALL_REP_START_MASK;
 84		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
 85
 86		touch_nmi_watchdog();
 87	} while (rep_comp < rep_count);
 88
 89	return status;
 90}
 91
 92/* Generate the guest OS identifier as described in the Hyper-V TLFS */
 93static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
 94				       __u64 d_info2)
 95{
 96	__u64 guest_id = 0;
 97
 98	guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
 99	guest_id |= (d_info1 << 48);
100	guest_id |= (kernel_version << 16);
101	guest_id |= d_info2;
102
103	return guest_id;
104}
105
106/* Free the message slot and signal end-of-message if required */
107static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
108{
109	/*
110	 * On crash we're reading some other CPU's message page and we need
111	 * to be careful: this other CPU may already had cleared the header
112	 * and the host may already had delivered some other message there.
113	 * In case we blindly write msg->header.message_type we're going
114	 * to lose it. We can still lose a message of the same type but
115	 * we count on the fact that there can only be one
116	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
117	 * on crash.
118	 */
119	if (cmpxchg(&msg->header.message_type, old_msg_type,
120		    HVMSG_NONE) != old_msg_type)
121		return;
122
123	/*
124	 * The cmxchg() above does an implicit memory barrier to
125	 * ensure the write to MessageType (ie set to
126	 * HVMSG_NONE) happens before we read the
127	 * MessagePending and EOMing. Otherwise, the EOMing
128	 * will not deliver any more messages since there is
129	 * no empty slot
130	 */
131	if (msg->header.message_flags.msg_pending) {
132		/*
133		 * This will cause message queue rescan to
134		 * possibly deliver another msg from the
135		 * hypervisor
136		 */
137		hv_set_register(HV_REGISTER_EOM, 0);
138	}
139}
140
 
 
141void hv_setup_vmbus_handler(void (*handler)(void));
142void hv_remove_vmbus_handler(void);
143void hv_setup_stimer0_handler(void (*handler)(void));
144void hv_remove_stimer0_handler(void);
145
146void hv_setup_kexec_handler(void (*handler)(void));
147void hv_remove_kexec_handler(void);
148void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
149void hv_remove_crash_handler(void);
150
151extern int vmbus_interrupt;
152extern int vmbus_irq;
153
 
 
154#if IS_ENABLED(CONFIG_HYPERV)
155/*
156 * Hypervisor's notion of virtual processor ID is different from
157 * Linux' notion of CPU ID. This information can only be retrieved
158 * in the context of the calling CPU. Setup a map for easy access
159 * to this information.
160 */
161extern u32 *hv_vp_index;
162extern u32 hv_max_vp_index;
163
 
 
164/* Sentinel value for an uninitialized entry in hv_vp_index array */
165#define VP_INVAL	U32_MAX
166
 
 
 
 
 
 
167void *hv_alloc_hyperv_page(void);
168void *hv_alloc_hyperv_zeroed_page(void);
169void hv_free_hyperv_page(unsigned long addr);
170
171/**
172 * hv_cpu_number_to_vp_number() - Map CPU to VP.
173 * @cpu_number: CPU number in Linux terms
174 *
175 * This function returns the mapping between the Linux processor
176 * number and the hypervisor's virtual processor number, useful
177 * in making hypercalls and such that talk about specific
178 * processors.
179 *
180 * Return: Virtual processor number in Hyper-V terms
181 */
182static inline int hv_cpu_number_to_vp_number(int cpu_number)
183{
184	return hv_vp_index[cpu_number];
185}
186
187static inline int cpumask_to_vpset(struct hv_vpset *vpset,
188				    const struct cpumask *cpus)
 
189{
190	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
 
191
192	/* valid_bank_mask can represent up to 64 banks */
193	if (hv_max_vp_index / 64 >= 64)
194		return 0;
195
196	/*
197	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
198	 * structs are not cleared between calls, we risk flushing unneeded
199	 * vCPUs otherwise.
200	 */
201	for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
202		vpset->bank_contents[vcpu_bank] = 0;
203
204	/*
205	 * Some banks may end up being empty but this is acceptable.
206	 */
207	for_each_cpu(cpu, cpus) {
 
 
208		vcpu = hv_cpu_number_to_vp_number(cpu);
209		if (vcpu == VP_INVAL)
210			return -1;
211		vcpu_bank = vcpu / 64;
212		vcpu_offset = vcpu % 64;
213		__set_bit(vcpu_offset, (unsigned long *)
214			  &vpset->bank_contents[vcpu_bank]);
215		if (vcpu_bank >= nr_bank)
216			nr_bank = vcpu_bank + 1;
217	}
218	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
219	return nr_bank;
220}
221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
223bool hv_is_hyperv_initialized(void);
224bool hv_is_hibernation_supported(void);
225enum hv_isolation_type hv_get_isolation_type(void);
226bool hv_is_isolation_supported(void);
 
 
 
227void hyperv_cleanup(void);
228bool hv_query_ext_cap(u64 cap_query);
 
229#else /* CONFIG_HYPERV */
230static inline bool hv_is_hyperv_initialized(void) { return false; }
231static inline bool hv_is_hibernation_supported(void) { return false; }
232static inline void hyperv_cleanup(void) {}
 
 
 
 
 
 
233#endif /* CONFIG_HYPERV */
234
235#endif