Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17#include <linux/uio.h>
  18
  19#include "kernfs-internal.h"
  20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21struct kernfs_open_node {
  22	struct rcu_head		rcu_head;
  23	atomic_t		event;
  24	wait_queue_head_t	poll;
  25	struct list_head	files; /* goes through kernfs_open_file.list */
  26	unsigned int		nr_mmapped;
  27	unsigned int		nr_to_release;
  28};
  29
  30/*
  31 * kernfs_notify() may be called from any context and bounces notifications
  32 * through a work item.  To minimize space overhead in kernfs_node, the
  33 * pending queue is implemented as a singly linked list of kernfs_nodes.
  34 * The list is terminated with the self pointer so that whether a
  35 * kernfs_node is on the list or not can be determined by testing the next
  36 * pointer for %NULL.
  37 */
  38#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  39
  40static DEFINE_SPINLOCK(kernfs_notify_lock);
  41static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  42
  43static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
  44{
  45	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
  46
  47	return &kernfs_locks->open_file_mutex[idx];
  48}
  49
  50static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
  51{
  52	struct mutex *lock;
  53
  54	lock = kernfs_open_file_mutex_ptr(kn);
  55
  56	mutex_lock(lock);
  57
  58	return lock;
  59}
  60
  61/**
  62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file
  63 * @of: target kernfs_open_file
  64 *
  65 * Return: the kernfs_open_node of the kernfs_open_file
  66 */
  67static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
  68{
  69	return rcu_dereference_protected(of->kn->attr.open,
  70					 !list_empty(&of->list));
  71}
  72
  73/**
  74 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
  75 *
  76 * @kn: target kernfs_node.
  77 *
  78 * Fetch and return ->attr.open of @kn when caller holds the
  79 * kernfs_open_file_mutex_ptr(kn).
  80 *
  81 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
  82 * the caller guarantees that this mutex is being held, other updaters can't
  83 * change ->attr.open and this means that we can safely deref ->attr.open
  84 * outside RCU read-side critical section.
  85 *
  86 * The caller needs to make sure that kernfs_open_file_mutex is held.
  87 *
  88 * Return: @kn->attr.open when kernfs_open_file_mutex is held.
  89 */
  90static struct kernfs_open_node *
  91kernfs_deref_open_node_locked(struct kernfs_node *kn)
  92{
  93	return rcu_dereference_protected(kn->attr.open,
  94				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
  95}
  96
  97static struct kernfs_open_file *kernfs_of(struct file *file)
  98{
  99	return ((struct seq_file *)file->private_data)->private;
 100}
 101
 102/*
 103 * Determine the kernfs_ops for the given kernfs_node.  This function must
 104 * be called while holding an active reference.
 105 */
 106static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 107{
 108	if (kn->flags & KERNFS_LOCKDEP)
 109		lockdep_assert_held(kn);
 110	return kn->attr.ops;
 111}
 112
 113/*
 114 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 115 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 116 * a seq_file iteration which is fully initialized with an active reference
 117 * or an aborted kernfs_seq_start() due to get_active failure.  The
 118 * position pointer is the only context for each seq_file iteration and
 119 * thus the stop condition should be encoded in it.  As the return value is
 120 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 121 * choice to indicate get_active failure.
 122 *
 123 * Unfortunately, this is complicated due to the optional custom seq_file
 124 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 125 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 126 * custom seq_file operations and thus can't decide whether put_active
 127 * should be performed or not only on ERR_PTR(-ENODEV).
 128 *
 129 * This is worked around by factoring out the custom seq_stop() and
 130 * put_active part into kernfs_seq_stop_active(), skipping it from
 131 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 132 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 133 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 134 */
 135static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 136{
 137	struct kernfs_open_file *of = sf->private;
 138	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 139
 140	if (ops->seq_stop)
 141		ops->seq_stop(sf, v);
 142	kernfs_put_active(of->kn);
 143}
 144
 145static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 146{
 147	struct kernfs_open_file *of = sf->private;
 148	const struct kernfs_ops *ops;
 149
 150	/*
 151	 * @of->mutex nests outside active ref and is primarily to ensure that
 152	 * the ops aren't called concurrently for the same open file.
 153	 */
 154	mutex_lock(&of->mutex);
 155	if (!kernfs_get_active(of->kn))
 156		return ERR_PTR(-ENODEV);
 157
 158	ops = kernfs_ops(of->kn);
 159	if (ops->seq_start) {
 160		void *next = ops->seq_start(sf, ppos);
 161		/* see the comment above kernfs_seq_stop_active() */
 162		if (next == ERR_PTR(-ENODEV))
 163			kernfs_seq_stop_active(sf, next);
 164		return next;
 
 
 
 
 
 
 165	}
 166	return single_start(sf, ppos);
 167}
 168
 169static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 170{
 171	struct kernfs_open_file *of = sf->private;
 172	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 173
 174	if (ops->seq_next) {
 175		void *next = ops->seq_next(sf, v, ppos);
 176		/* see the comment above kernfs_seq_stop_active() */
 177		if (next == ERR_PTR(-ENODEV))
 178			kernfs_seq_stop_active(sf, next);
 179		return next;
 180	} else {
 181		/*
 182		 * The same behavior and code as single_open(), always
 183		 * terminate after the initial read.
 184		 */
 185		++*ppos;
 186		return NULL;
 187	}
 188}
 189
 190static void kernfs_seq_stop(struct seq_file *sf, void *v)
 191{
 192	struct kernfs_open_file *of = sf->private;
 193
 194	if (v != ERR_PTR(-ENODEV))
 195		kernfs_seq_stop_active(sf, v);
 196	mutex_unlock(&of->mutex);
 197}
 198
 199static int kernfs_seq_show(struct seq_file *sf, void *v)
 200{
 201	struct kernfs_open_file *of = sf->private;
 202
 203	of->event = atomic_read(&of_on(of)->event);
 204
 205	return of->kn->attr.ops->seq_show(sf, v);
 206}
 207
 208static const struct seq_operations kernfs_seq_ops = {
 209	.start = kernfs_seq_start,
 210	.next = kernfs_seq_next,
 211	.stop = kernfs_seq_stop,
 212	.show = kernfs_seq_show,
 213};
 214
 215/*
 216 * As reading a bin file can have side-effects, the exact offset and bytes
 217 * specified in read(2) call should be passed to the read callback making
 218 * it difficult to use seq_file.  Implement simplistic custom buffering for
 219 * bin files.
 220 */
 221static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 222{
 223	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 224	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
 225	const struct kernfs_ops *ops;
 226	char *buf;
 227
 228	buf = of->prealloc_buf;
 229	if (buf)
 230		mutex_lock(&of->prealloc_mutex);
 231	else
 232		buf = kmalloc(len, GFP_KERNEL);
 233	if (!buf)
 234		return -ENOMEM;
 235
 236	/*
 237	 * @of->mutex nests outside active ref and is used both to ensure that
 238	 * the ops aren't called concurrently for the same open file.
 239	 */
 240	mutex_lock(&of->mutex);
 241	if (!kernfs_get_active(of->kn)) {
 242		len = -ENODEV;
 243		mutex_unlock(&of->mutex);
 244		goto out_free;
 245	}
 246
 247	of->event = atomic_read(&of_on(of)->event);
 248
 249	ops = kernfs_ops(of->kn);
 250	if (ops->read)
 251		len = ops->read(of, buf, len, iocb->ki_pos);
 252	else
 253		len = -EINVAL;
 254
 255	kernfs_put_active(of->kn);
 256	mutex_unlock(&of->mutex);
 257
 258	if (len < 0)
 259		goto out_free;
 260
 261	if (copy_to_iter(buf, len, iter) != len) {
 262		len = -EFAULT;
 263		goto out_free;
 264	}
 265
 266	iocb->ki_pos += len;
 267
 268 out_free:
 269	if (buf == of->prealloc_buf)
 270		mutex_unlock(&of->prealloc_mutex);
 271	else
 272		kfree(buf);
 273	return len;
 274}
 275
 276static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 277{
 278	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
 279		return seq_read_iter(iocb, iter);
 280	return kernfs_file_read_iter(iocb, iter);
 281}
 282
 283/*
 284 * Copy data in from userland and pass it to the matching kernfs write
 285 * operation.
 286 *
 287 * There is no easy way for us to know if userspace is only doing a partial
 288 * write, so we don't support them. We expect the entire buffer to come on
 289 * the first write.  Hint: if you're writing a value, first read the file,
 290 * modify only the value you're changing, then write entire buffer
 291 * back.
 292 */
 293static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
 294{
 295	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 296	ssize_t len = iov_iter_count(iter);
 297	const struct kernfs_ops *ops;
 298	char *buf;
 299
 300	if (of->atomic_write_len) {
 301		if (len > of->atomic_write_len)
 302			return -E2BIG;
 303	} else {
 304		len = min_t(size_t, len, PAGE_SIZE);
 305	}
 306
 307	buf = of->prealloc_buf;
 308	if (buf)
 309		mutex_lock(&of->prealloc_mutex);
 310	else
 311		buf = kmalloc(len + 1, GFP_KERNEL);
 312	if (!buf)
 313		return -ENOMEM;
 314
 315	if (copy_from_iter(buf, len, iter) != len) {
 316		len = -EFAULT;
 317		goto out_free;
 318	}
 319	buf[len] = '\0';	/* guarantee string termination */
 320
 321	/*
 322	 * @of->mutex nests outside active ref and is used both to ensure that
 323	 * the ops aren't called concurrently for the same open file.
 324	 */
 325	mutex_lock(&of->mutex);
 326	if (!kernfs_get_active(of->kn)) {
 327		mutex_unlock(&of->mutex);
 328		len = -ENODEV;
 329		goto out_free;
 330	}
 331
 332	ops = kernfs_ops(of->kn);
 333	if (ops->write)
 334		len = ops->write(of, buf, len, iocb->ki_pos);
 335	else
 336		len = -EINVAL;
 337
 338	kernfs_put_active(of->kn);
 339	mutex_unlock(&of->mutex);
 340
 341	if (len > 0)
 342		iocb->ki_pos += len;
 343
 344out_free:
 345	if (buf == of->prealloc_buf)
 346		mutex_unlock(&of->prealloc_mutex);
 347	else
 348		kfree(buf);
 349	return len;
 350}
 351
 352static void kernfs_vma_open(struct vm_area_struct *vma)
 353{
 354	struct file *file = vma->vm_file;
 355	struct kernfs_open_file *of = kernfs_of(file);
 356
 357	if (!of->vm_ops)
 358		return;
 359
 360	if (!kernfs_get_active(of->kn))
 361		return;
 362
 363	if (of->vm_ops->open)
 364		of->vm_ops->open(vma);
 365
 366	kernfs_put_active(of->kn);
 367}
 368
 369static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 370{
 371	struct file *file = vmf->vma->vm_file;
 372	struct kernfs_open_file *of = kernfs_of(file);
 373	vm_fault_t ret;
 374
 375	if (!of->vm_ops)
 376		return VM_FAULT_SIGBUS;
 377
 378	if (!kernfs_get_active(of->kn))
 379		return VM_FAULT_SIGBUS;
 380
 381	ret = VM_FAULT_SIGBUS;
 382	if (of->vm_ops->fault)
 383		ret = of->vm_ops->fault(vmf);
 384
 385	kernfs_put_active(of->kn);
 386	return ret;
 387}
 388
 389static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 390{
 391	struct file *file = vmf->vma->vm_file;
 392	struct kernfs_open_file *of = kernfs_of(file);
 393	vm_fault_t ret;
 394
 395	if (!of->vm_ops)
 396		return VM_FAULT_SIGBUS;
 397
 398	if (!kernfs_get_active(of->kn))
 399		return VM_FAULT_SIGBUS;
 400
 401	ret = 0;
 402	if (of->vm_ops->page_mkwrite)
 403		ret = of->vm_ops->page_mkwrite(vmf);
 404	else
 405		file_update_time(file);
 406
 407	kernfs_put_active(of->kn);
 408	return ret;
 409}
 410
 411static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 412			     void *buf, int len, int write)
 413{
 414	struct file *file = vma->vm_file;
 415	struct kernfs_open_file *of = kernfs_of(file);
 416	int ret;
 417
 418	if (!of->vm_ops)
 419		return -EINVAL;
 420
 421	if (!kernfs_get_active(of->kn))
 422		return -EINVAL;
 423
 424	ret = -EINVAL;
 425	if (of->vm_ops->access)
 426		ret = of->vm_ops->access(vma, addr, buf, len, write);
 427
 428	kernfs_put_active(of->kn);
 429	return ret;
 430}
 431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432static const struct vm_operations_struct kernfs_vm_ops = {
 433	.open		= kernfs_vma_open,
 434	.fault		= kernfs_vma_fault,
 435	.page_mkwrite	= kernfs_vma_page_mkwrite,
 436	.access		= kernfs_vma_access,
 
 
 
 
 437};
 438
 439static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 440{
 441	struct kernfs_open_file *of = kernfs_of(file);
 442	const struct kernfs_ops *ops;
 443	int rc;
 444
 445	/*
 446	 * mmap path and of->mutex are prone to triggering spurious lockdep
 447	 * warnings and we don't want to add spurious locking dependency
 448	 * between the two.  Check whether mmap is actually implemented
 449	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 450	 * comment in kernfs_fop_open() for more details.
 451	 */
 452	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 453		return -ENODEV;
 454
 455	mutex_lock(&of->mutex);
 456
 457	rc = -ENODEV;
 458	if (!kernfs_get_active(of->kn))
 459		goto out_unlock;
 460
 461	ops = kernfs_ops(of->kn);
 462	rc = ops->mmap(of, vma);
 463	if (rc)
 464		goto out_put;
 465
 466	/*
 467	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 468	 * to satisfy versions of X which crash if the mmap fails: that
 469	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 470	 */
 471	if (vma->vm_file != file)
 472		goto out_put;
 473
 474	rc = -EINVAL;
 475	if (of->mmapped && of->vm_ops != vma->vm_ops)
 476		goto out_put;
 477
 478	/*
 479	 * It is not possible to successfully wrap close.
 480	 * So error if someone is trying to use close.
 481	 */
 
 482	if (vma->vm_ops && vma->vm_ops->close)
 483		goto out_put;
 484
 485	rc = 0;
 486	if (!of->mmapped) {
 487		of->mmapped = true;
 488		of_on(of)->nr_mmapped++;
 489		of->vm_ops = vma->vm_ops;
 490	}
 491	vma->vm_ops = &kernfs_vm_ops;
 492out_put:
 493	kernfs_put_active(of->kn);
 494out_unlock:
 495	mutex_unlock(&of->mutex);
 496
 497	return rc;
 498}
 499
 500/**
 501 *	kernfs_get_open_node - get or create kernfs_open_node
 502 *	@kn: target kernfs_node
 503 *	@of: kernfs_open_file for this instance of open
 504 *
 505 *	If @kn->attr.open exists, increment its reference count; otherwise,
 506 *	create one.  @of is chained to the files list.
 507 *
 508 *	Locking:
 509 *	Kernel thread context (may sleep).
 510 *
 511 *	Return:
 512 *	%0 on success, -errno on failure.
 513 */
 514static int kernfs_get_open_node(struct kernfs_node *kn,
 515				struct kernfs_open_file *of)
 516{
 517	struct kernfs_open_node *on;
 518	struct mutex *mutex;
 519
 520	mutex = kernfs_open_file_mutex_lock(kn);
 521	on = kernfs_deref_open_node_locked(kn);
 
 522
 523	if (!on) {
 524		/* not there, initialize a new one */
 525		on = kzalloc(sizeof(*on), GFP_KERNEL);
 526		if (!on) {
 527			mutex_unlock(mutex);
 528			return -ENOMEM;
 529		}
 530		atomic_set(&on->event, 1);
 531		init_waitqueue_head(&on->poll);
 532		INIT_LIST_HEAD(&on->files);
 533		rcu_assign_pointer(kn->attr.open, on);
 534	}
 535
 536	list_add_tail(&of->list, &on->files);
 537	if (kn->flags & KERNFS_HAS_RELEASE)
 538		on->nr_to_release++;
 
 
 539
 540	mutex_unlock(mutex);
 541	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542}
 543
 544/**
 545 *	kernfs_unlink_open_file - Unlink @of from @kn.
 546 *
 547 *	@kn: target kernfs_node
 548 *	@of: associated kernfs_open_file
 549 *	@open_failed: ->open() failed, cancel ->release()
 550 *
 551 *	Unlink @of from list of @kn's associated open files. If list of
 552 *	associated open files becomes empty, disassociate and free
 553 *	kernfs_open_node.
 554 *
 555 *	LOCKING:
 556 *	None.
 557 */
 558static void kernfs_unlink_open_file(struct kernfs_node *kn,
 559				    struct kernfs_open_file *of,
 560				    bool open_failed)
 561{
 562	struct kernfs_open_node *on;
 563	struct mutex *mutex;
 564
 565	mutex = kernfs_open_file_mutex_lock(kn);
 566
 567	on = kernfs_deref_open_node_locked(kn);
 568	if (!on) {
 569		mutex_unlock(mutex);
 570		return;
 571	}
 572
 573	if (of) {
 574		if (kn->flags & KERNFS_HAS_RELEASE) {
 575			WARN_ON_ONCE(of->released == open_failed);
 576			if (open_failed)
 577				on->nr_to_release--;
 578		}
 579		if (of->mmapped)
 580			on->nr_mmapped--;
 581		list_del(&of->list);
 582	}
 583
 584	if (list_empty(&on->files)) {
 585		rcu_assign_pointer(kn->attr.open, NULL);
 586		kfree_rcu(on, rcu_head);
 587	}
 
 
 
 588
 589	mutex_unlock(mutex);
 590}
 591
 592static int kernfs_fop_open(struct inode *inode, struct file *file)
 593{
 594	struct kernfs_node *kn = inode->i_private;
 595	struct kernfs_root *root = kernfs_root(kn);
 596	const struct kernfs_ops *ops;
 597	struct kernfs_open_file *of;
 598	bool has_read, has_write, has_mmap;
 599	int error = -EACCES;
 600
 601	if (!kernfs_get_active(kn))
 602		return -ENODEV;
 603
 604	ops = kernfs_ops(kn);
 605
 606	has_read = ops->seq_show || ops->read || ops->mmap;
 607	has_write = ops->write || ops->mmap;
 608	has_mmap = ops->mmap;
 609
 610	/* see the flag definition for details */
 611	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 612		if ((file->f_mode & FMODE_WRITE) &&
 613		    (!(inode->i_mode & S_IWUGO) || !has_write))
 614			goto err_out;
 615
 616		if ((file->f_mode & FMODE_READ) &&
 617		    (!(inode->i_mode & S_IRUGO) || !has_read))
 618			goto err_out;
 619	}
 620
 621	/* allocate a kernfs_open_file for the file */
 622	error = -ENOMEM;
 623	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 624	if (!of)
 625		goto err_out;
 626
 627	/*
 628	 * The following is done to give a different lockdep key to
 629	 * @of->mutex for files which implement mmap.  This is a rather
 630	 * crude way to avoid false positive lockdep warning around
 631	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
 632	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 633	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
 634	 * open file has a separate mutex, it's okay as long as those don't
 635	 * happen on the same file.  At this point, we can't easily give
 636	 * each file a separate locking class.  Let's differentiate on
 637	 * whether the file has mmap or not for now.
 638	 *
 639	 * For similar reasons, writable and readonly files are given different
 640	 * lockdep key, because the writable file /sys/power/resume may call vfs
 641	 * lookup helpers for arbitrary paths and readonly files can be read by
 642	 * overlayfs from vfs helpers when sysfs is a lower layer of overalyfs.
 643	 *
 644	 * All three cases look the same.  They're supposed to
 645	 * look that way and give @of->mutex different static lockdep keys.
 646	 */
 647	if (has_mmap)
 648		mutex_init(&of->mutex);
 649	else if (file->f_mode & FMODE_WRITE)
 650		mutex_init(&of->mutex);
 651	else
 652		mutex_init(&of->mutex);
 653
 654	of->kn = kn;
 655	of->file = file;
 656
 657	/*
 658	 * Write path needs to atomic_write_len outside active reference.
 659	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
 660	 */
 661	of->atomic_write_len = ops->atomic_write_len;
 662
 663	error = -EINVAL;
 664	/*
 665	 * ->seq_show is incompatible with ->prealloc,
 666	 * as seq_read does its own allocation.
 667	 * ->read must be used instead.
 668	 */
 669	if (ops->prealloc && ops->seq_show)
 670		goto err_free;
 671	if (ops->prealloc) {
 672		int len = of->atomic_write_len ?: PAGE_SIZE;
 673		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 674		error = -ENOMEM;
 675		if (!of->prealloc_buf)
 676			goto err_free;
 677		mutex_init(&of->prealloc_mutex);
 678	}
 679
 680	/*
 681	 * Always instantiate seq_file even if read access doesn't use
 682	 * seq_file or is not requested.  This unifies private data access
 683	 * and readable regular files are the vast majority anyway.
 684	 */
 685	if (ops->seq_show)
 686		error = seq_open(file, &kernfs_seq_ops);
 687	else
 688		error = seq_open(file, NULL);
 689	if (error)
 690		goto err_free;
 691
 692	of->seq_file = file->private_data;
 693	of->seq_file->private = of;
 694
 695	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 696	if (file->f_mode & FMODE_WRITE)
 697		file->f_mode |= FMODE_PWRITE;
 698
 699	/* make sure we have open node struct */
 700	error = kernfs_get_open_node(kn, of);
 701	if (error)
 702		goto err_seq_release;
 703
 704	if (ops->open) {
 705		/* nobody has access to @of yet, skip @of->mutex */
 706		error = ops->open(of);
 707		if (error)
 708			goto err_put_node;
 709	}
 710
 711	/* open succeeded, put active references */
 712	kernfs_put_active(kn);
 713	return 0;
 714
 715err_put_node:
 716	kernfs_unlink_open_file(kn, of, true);
 717err_seq_release:
 718	seq_release(inode, file);
 719err_free:
 720	kfree(of->prealloc_buf);
 721	kfree(of);
 722err_out:
 723	kernfs_put_active(kn);
 724	return error;
 725}
 726
 727/* used from release/drain to ensure that ->release() is called exactly once */
 728static void kernfs_release_file(struct kernfs_node *kn,
 729				struct kernfs_open_file *of)
 730{
 731	/*
 732	 * @of is guaranteed to have no other file operations in flight and
 733	 * we just want to synchronize release and drain paths.
 734	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
 735	 * here because drain path may be called from places which can
 736	 * cause circular dependency.
 737	 */
 738	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
 739
 740	if (!of->released) {
 741		/*
 742		 * A file is never detached without being released and we
 743		 * need to be able to release files which are deactivated
 744		 * and being drained.  Don't use kernfs_ops().
 745		 */
 746		kn->attr.ops->release(of);
 747		of->released = true;
 748		of_on(of)->nr_to_release--;
 749	}
 750}
 751
 752static int kernfs_fop_release(struct inode *inode, struct file *filp)
 753{
 754	struct kernfs_node *kn = inode->i_private;
 755	struct kernfs_open_file *of = kernfs_of(filp);
 756
 757	if (kn->flags & KERNFS_HAS_RELEASE) {
 758		struct mutex *mutex;
 759
 760		mutex = kernfs_open_file_mutex_lock(kn);
 761		kernfs_release_file(kn, of);
 762		mutex_unlock(mutex);
 763	}
 764
 765	kernfs_unlink_open_file(kn, of, false);
 766	seq_release(inode, filp);
 767	kfree(of->prealloc_buf);
 768	kfree(of);
 769
 770	return 0;
 771}
 772
 773bool kernfs_should_drain_open_files(struct kernfs_node *kn)
 774{
 775	struct kernfs_open_node *on;
 776	bool ret;
 777
 778	/*
 779	 * @kn being deactivated guarantees that @kn->attr.open can't change
 780	 * beneath us making the lockless test below safe.
 781	 */
 782	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
 783
 784	rcu_read_lock();
 785	on = rcu_dereference(kn->attr.open);
 786	ret = on && (on->nr_mmapped || on->nr_to_release);
 787	rcu_read_unlock();
 788
 789	return ret;
 790}
 791
 792void kernfs_drain_open_files(struct kernfs_node *kn)
 793{
 794	struct kernfs_open_node *on;
 795	struct kernfs_open_file *of;
 796	struct mutex *mutex;
 797
 798	mutex = kernfs_open_file_mutex_lock(kn);
 799	on = kernfs_deref_open_node_locked(kn);
 800	if (!on) {
 801		mutex_unlock(mutex);
 802		return;
 803	}
 
 
 
 
 
 
 
 
 
 804
 805	list_for_each_entry(of, &on->files, list) {
 806		struct inode *inode = file_inode(of->file);
 807
 808		if (of->mmapped) {
 809			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 810			of->mmapped = false;
 811			on->nr_mmapped--;
 812		}
 813
 814		if (kn->flags & KERNFS_HAS_RELEASE)
 815			kernfs_release_file(kn, of);
 816	}
 817
 818	WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
 819	mutex_unlock(mutex);
 
 820}
 821
 822/*
 823 * Kernfs attribute files are pollable.  The idea is that you read
 824 * the content and then you use 'poll' or 'select' to wait for
 825 * the content to change.  When the content changes (assuming the
 826 * manager for the kobject supports notification), poll will
 827 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 828 * it is waiting for read, write, or exceptions.
 829 * Once poll/select indicates that the value has changed, you
 830 * need to close and re-open the file, or seek to 0 and read again.
 831 * Reminder: this only works for attributes which actively support
 832 * it, and it is not possible to test an attribute from userspace
 833 * to see if it supports poll (Neither 'poll' nor 'select' return
 834 * an appropriate error code).  When in doubt, set a suitable timeout value.
 835 */
 836__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 837{
 838	struct kernfs_open_node *on = of_on(of);
 
 839
 840	poll_wait(of->file, &on->poll, wait);
 841
 842	if (of->event != atomic_read(&on->event))
 843		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 844
 845	return DEFAULT_POLLMASK;
 846}
 847
 848static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 849{
 850	struct kernfs_open_file *of = kernfs_of(filp);
 851	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 852	__poll_t ret;
 853
 854	if (!kernfs_get_active(kn))
 855		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 856
 857	if (kn->attr.ops->poll)
 858		ret = kn->attr.ops->poll(of, wait);
 859	else
 860		ret = kernfs_generic_poll(of, wait);
 861
 862	kernfs_put_active(kn);
 863	return ret;
 864}
 865
 866static loff_t kernfs_fop_llseek(struct file *file, loff_t offset, int whence)
 867{
 868	struct kernfs_open_file *of = kernfs_of(file);
 869	const struct kernfs_ops *ops;
 870	loff_t ret;
 871
 872	/*
 873	 * @of->mutex nests outside active ref and is primarily to ensure that
 874	 * the ops aren't called concurrently for the same open file.
 875	 */
 876	mutex_lock(&of->mutex);
 877	if (!kernfs_get_active(of->kn)) {
 878		mutex_unlock(&of->mutex);
 879		return -ENODEV;
 880	}
 881
 882	ops = kernfs_ops(of->kn);
 883	if (ops->llseek)
 884		ret = ops->llseek(of, offset, whence);
 885	else
 886		ret = generic_file_llseek(file, offset, whence);
 887
 888	kernfs_put_active(of->kn);
 889	mutex_unlock(&of->mutex);
 890	return ret;
 891}
 892
 893static void kernfs_notify_workfn(struct work_struct *work)
 894{
 895	struct kernfs_node *kn;
 896	struct kernfs_super_info *info;
 897	struct kernfs_root *root;
 898repeat:
 899	/* pop one off the notify_list */
 900	spin_lock_irq(&kernfs_notify_lock);
 901	kn = kernfs_notify_list;
 902	if (kn == KERNFS_NOTIFY_EOL) {
 903		spin_unlock_irq(&kernfs_notify_lock);
 904		return;
 905	}
 906	kernfs_notify_list = kn->attr.notify_next;
 907	kn->attr.notify_next = NULL;
 908	spin_unlock_irq(&kernfs_notify_lock);
 909
 910	root = kernfs_root(kn);
 911	/* kick fsnotify */
 
 912
 913	down_read(&root->kernfs_supers_rwsem);
 914	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 915		struct kernfs_node *parent;
 916		struct inode *p_inode = NULL;
 917		struct inode *inode;
 918		struct qstr name;
 919
 920		/*
 921		 * We want fsnotify_modify() on @kn but as the
 922		 * modifications aren't originating from userland don't
 923		 * have the matching @file available.  Look up the inodes
 924		 * and generate the events manually.
 925		 */
 926		inode = ilookup(info->sb, kernfs_ino(kn));
 927		if (!inode)
 928			continue;
 929
 930		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 931		parent = kernfs_get_parent(kn);
 932		if (parent) {
 933			p_inode = ilookup(info->sb, kernfs_ino(parent));
 934			if (p_inode) {
 935				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
 936					 inode, FSNOTIFY_EVENT_INODE,
 937					 p_inode, &name, inode, 0);
 938				iput(p_inode);
 939			}
 940
 941			kernfs_put(parent);
 942		}
 943
 944		if (!p_inode)
 945			fsnotify_inode(inode, FS_MODIFY);
 946
 947		iput(inode);
 948	}
 949
 950	up_read(&root->kernfs_supers_rwsem);
 951	kernfs_put(kn);
 952	goto repeat;
 953}
 954
 955/**
 956 * kernfs_notify - notify a kernfs file
 957 * @kn: file to notify
 958 *
 959 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 960 * context.
 961 */
 962void kernfs_notify(struct kernfs_node *kn)
 963{
 964	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 965	unsigned long flags;
 966	struct kernfs_open_node *on;
 967
 968	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 969		return;
 970
 971	/* kick poll immediately */
 972	rcu_read_lock();
 973	on = rcu_dereference(kn->attr.open);
 974	if (on) {
 975		atomic_inc(&on->event);
 976		wake_up_interruptible(&on->poll);
 977	}
 978	rcu_read_unlock();
 979
 980	/* schedule work to kick fsnotify */
 981	spin_lock_irqsave(&kernfs_notify_lock, flags);
 982	if (!kn->attr.notify_next) {
 983		kernfs_get(kn);
 984		kn->attr.notify_next = kernfs_notify_list;
 985		kernfs_notify_list = kn;
 986		schedule_work(&kernfs_notify_work);
 987	}
 988	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 989}
 990EXPORT_SYMBOL_GPL(kernfs_notify);
 991
 992const struct file_operations kernfs_file_fops = {
 993	.read_iter	= kernfs_fop_read_iter,
 994	.write_iter	= kernfs_fop_write_iter,
 995	.llseek		= kernfs_fop_llseek,
 996	.mmap		= kernfs_fop_mmap,
 997	.open		= kernfs_fop_open,
 998	.release	= kernfs_fop_release,
 999	.poll		= kernfs_fop_poll,
1000	.fsync		= noop_fsync,
1001	.splice_read	= copy_splice_read,
1002	.splice_write	= iter_file_splice_write,
1003};
1004
1005/**
1006 * __kernfs_create_file - kernfs internal function to create a file
1007 * @parent: directory to create the file in
1008 * @name: name of the file
1009 * @mode: mode of the file
1010 * @uid: uid of the file
1011 * @gid: gid of the file
1012 * @size: size of the file
1013 * @ops: kernfs operations for the file
1014 * @priv: private data for the file
1015 * @ns: optional namespace tag of the file
1016 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1017 *
1018 * Return: the created node on success, ERR_PTR() value on error.
1019 */
1020struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1021					 const char *name,
1022					 umode_t mode, kuid_t uid, kgid_t gid,
1023					 loff_t size,
1024					 const struct kernfs_ops *ops,
1025					 void *priv, const void *ns,
1026					 struct lock_class_key *key)
1027{
1028	struct kernfs_node *kn;
1029	unsigned flags;
1030	int rc;
1031
1032	flags = KERNFS_FILE;
1033
1034	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1035			     uid, gid, flags);
1036	if (!kn)
1037		return ERR_PTR(-ENOMEM);
1038
1039	kn->attr.ops = ops;
1040	kn->attr.size = size;
1041	kn->ns = ns;
1042	kn->priv = priv;
1043
1044#ifdef CONFIG_DEBUG_LOCK_ALLOC
1045	if (key) {
1046		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1047		kn->flags |= KERNFS_LOCKDEP;
1048	}
1049#endif
1050
1051	/*
1052	 * kn->attr.ops is accessible only while holding active ref.  We
1053	 * need to know whether some ops are implemented outside active
1054	 * ref.  Cache their existence in flags.
1055	 */
1056	if (ops->seq_show)
1057		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1058	if (ops->mmap)
1059		kn->flags |= KERNFS_HAS_MMAP;
1060	if (ops->release)
1061		kn->flags |= KERNFS_HAS_RELEASE;
1062
1063	rc = kernfs_add_one(kn);
1064	if (rc) {
1065		kernfs_put(kn);
1066		return ERR_PTR(rc);
1067	}
1068	return kn;
1069}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17#include <linux/uio.h>
  18
  19#include "kernfs-internal.h"
  20
  21/*
  22 * There's one kernfs_open_file for each open file and one kernfs_open_node
  23 * for each kernfs_node with one or more open files.
  24 *
  25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  26 * protected by kernfs_open_node_lock.
  27 *
  28 * filp->private_data points to seq_file whose ->private points to
  29 * kernfs_open_file.  kernfs_open_files are chained at
  30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  31 */
  32static DEFINE_SPINLOCK(kernfs_open_node_lock);
  33static DEFINE_MUTEX(kernfs_open_file_mutex);
  34
  35struct kernfs_open_node {
  36	atomic_t		refcnt;
  37	atomic_t		event;
  38	wait_queue_head_t	poll;
  39	struct list_head	files; /* goes through kernfs_open_file.list */
 
 
  40};
  41
  42/*
  43 * kernfs_notify() may be called from any context and bounces notifications
  44 * through a work item.  To minimize space overhead in kernfs_node, the
  45 * pending queue is implemented as a singly linked list of kernfs_nodes.
  46 * The list is terminated with the self pointer so that whether a
  47 * kernfs_node is on the list or not can be determined by testing the next
  48 * pointer for NULL.
  49 */
  50#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  51
  52static DEFINE_SPINLOCK(kernfs_notify_lock);
  53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55static struct kernfs_open_file *kernfs_of(struct file *file)
  56{
  57	return ((struct seq_file *)file->private_data)->private;
  58}
  59
  60/*
  61 * Determine the kernfs_ops for the given kernfs_node.  This function must
  62 * be called while holding an active reference.
  63 */
  64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  65{
  66	if (kn->flags & KERNFS_LOCKDEP)
  67		lockdep_assert_held(kn);
  68	return kn->attr.ops;
  69}
  70
  71/*
  72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  74 * a seq_file iteration which is fully initialized with an active reference
  75 * or an aborted kernfs_seq_start() due to get_active failure.  The
  76 * position pointer is the only context for each seq_file iteration and
  77 * thus the stop condition should be encoded in it.  As the return value is
  78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  79 * choice to indicate get_active failure.
  80 *
  81 * Unfortunately, this is complicated due to the optional custom seq_file
  82 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  84 * custom seq_file operations and thus can't decide whether put_active
  85 * should be performed or not only on ERR_PTR(-ENODEV).
  86 *
  87 * This is worked around by factoring out the custom seq_stop() and
  88 * put_active part into kernfs_seq_stop_active(), skipping it from
  89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  92 */
  93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  94{
  95	struct kernfs_open_file *of = sf->private;
  96	const struct kernfs_ops *ops = kernfs_ops(of->kn);
  97
  98	if (ops->seq_stop)
  99		ops->seq_stop(sf, v);
 100	kernfs_put_active(of->kn);
 101}
 102
 103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 104{
 105	struct kernfs_open_file *of = sf->private;
 106	const struct kernfs_ops *ops;
 107
 108	/*
 109	 * @of->mutex nests outside active ref and is primarily to ensure that
 110	 * the ops aren't called concurrently for the same open file.
 111	 */
 112	mutex_lock(&of->mutex);
 113	if (!kernfs_get_active(of->kn))
 114		return ERR_PTR(-ENODEV);
 115
 116	ops = kernfs_ops(of->kn);
 117	if (ops->seq_start) {
 118		void *next = ops->seq_start(sf, ppos);
 119		/* see the comment above kernfs_seq_stop_active() */
 120		if (next == ERR_PTR(-ENODEV))
 121			kernfs_seq_stop_active(sf, next);
 122		return next;
 123	} else {
 124		/*
 125		 * The same behavior and code as single_open().  Returns
 126		 * !NULL if pos is at the beginning; otherwise, NULL.
 127		 */
 128		return NULL + !*ppos;
 129	}
 
 130}
 131
 132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 133{
 134	struct kernfs_open_file *of = sf->private;
 135	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 136
 137	if (ops->seq_next) {
 138		void *next = ops->seq_next(sf, v, ppos);
 139		/* see the comment above kernfs_seq_stop_active() */
 140		if (next == ERR_PTR(-ENODEV))
 141			kernfs_seq_stop_active(sf, next);
 142		return next;
 143	} else {
 144		/*
 145		 * The same behavior and code as single_open(), always
 146		 * terminate after the initial read.
 147		 */
 148		++*ppos;
 149		return NULL;
 150	}
 151}
 152
 153static void kernfs_seq_stop(struct seq_file *sf, void *v)
 154{
 155	struct kernfs_open_file *of = sf->private;
 156
 157	if (v != ERR_PTR(-ENODEV))
 158		kernfs_seq_stop_active(sf, v);
 159	mutex_unlock(&of->mutex);
 160}
 161
 162static int kernfs_seq_show(struct seq_file *sf, void *v)
 163{
 164	struct kernfs_open_file *of = sf->private;
 165
 166	of->event = atomic_read(&of->kn->attr.open->event);
 167
 168	return of->kn->attr.ops->seq_show(sf, v);
 169}
 170
 171static const struct seq_operations kernfs_seq_ops = {
 172	.start = kernfs_seq_start,
 173	.next = kernfs_seq_next,
 174	.stop = kernfs_seq_stop,
 175	.show = kernfs_seq_show,
 176};
 177
 178/*
 179 * As reading a bin file can have side-effects, the exact offset and bytes
 180 * specified in read(2) call should be passed to the read callback making
 181 * it difficult to use seq_file.  Implement simplistic custom buffering for
 182 * bin files.
 183 */
 184static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 185{
 186	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 187	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
 188	const struct kernfs_ops *ops;
 189	char *buf;
 190
 191	buf = of->prealloc_buf;
 192	if (buf)
 193		mutex_lock(&of->prealloc_mutex);
 194	else
 195		buf = kmalloc(len, GFP_KERNEL);
 196	if (!buf)
 197		return -ENOMEM;
 198
 199	/*
 200	 * @of->mutex nests outside active ref and is used both to ensure that
 201	 * the ops aren't called concurrently for the same open file.
 202	 */
 203	mutex_lock(&of->mutex);
 204	if (!kernfs_get_active(of->kn)) {
 205		len = -ENODEV;
 206		mutex_unlock(&of->mutex);
 207		goto out_free;
 208	}
 209
 210	of->event = atomic_read(&of->kn->attr.open->event);
 
 211	ops = kernfs_ops(of->kn);
 212	if (ops->read)
 213		len = ops->read(of, buf, len, iocb->ki_pos);
 214	else
 215		len = -EINVAL;
 216
 217	kernfs_put_active(of->kn);
 218	mutex_unlock(&of->mutex);
 219
 220	if (len < 0)
 221		goto out_free;
 222
 223	if (copy_to_iter(buf, len, iter) != len) {
 224		len = -EFAULT;
 225		goto out_free;
 226	}
 227
 228	iocb->ki_pos += len;
 229
 230 out_free:
 231	if (buf == of->prealloc_buf)
 232		mutex_unlock(&of->prealloc_mutex);
 233	else
 234		kfree(buf);
 235	return len;
 236}
 237
 238static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 239{
 240	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
 241		return seq_read_iter(iocb, iter);
 242	return kernfs_file_read_iter(iocb, iter);
 243}
 244
 245/*
 246 * Copy data in from userland and pass it to the matching kernfs write
 247 * operation.
 248 *
 249 * There is no easy way for us to know if userspace is only doing a partial
 250 * write, so we don't support them. We expect the entire buffer to come on
 251 * the first write.  Hint: if you're writing a value, first read the file,
 252 * modify only the the value you're changing, then write entire buffer
 253 * back.
 254 */
 255static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
 256{
 257	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 258	ssize_t len = iov_iter_count(iter);
 259	const struct kernfs_ops *ops;
 260	char *buf;
 261
 262	if (of->atomic_write_len) {
 263		if (len > of->atomic_write_len)
 264			return -E2BIG;
 265	} else {
 266		len = min_t(size_t, len, PAGE_SIZE);
 267	}
 268
 269	buf = of->prealloc_buf;
 270	if (buf)
 271		mutex_lock(&of->prealloc_mutex);
 272	else
 273		buf = kmalloc(len + 1, GFP_KERNEL);
 274	if (!buf)
 275		return -ENOMEM;
 276
 277	if (copy_from_iter(buf, len, iter) != len) {
 278		len = -EFAULT;
 279		goto out_free;
 280	}
 281	buf[len] = '\0';	/* guarantee string termination */
 282
 283	/*
 284	 * @of->mutex nests outside active ref and is used both to ensure that
 285	 * the ops aren't called concurrently for the same open file.
 286	 */
 287	mutex_lock(&of->mutex);
 288	if (!kernfs_get_active(of->kn)) {
 289		mutex_unlock(&of->mutex);
 290		len = -ENODEV;
 291		goto out_free;
 292	}
 293
 294	ops = kernfs_ops(of->kn);
 295	if (ops->write)
 296		len = ops->write(of, buf, len, iocb->ki_pos);
 297	else
 298		len = -EINVAL;
 299
 300	kernfs_put_active(of->kn);
 301	mutex_unlock(&of->mutex);
 302
 303	if (len > 0)
 304		iocb->ki_pos += len;
 305
 306out_free:
 307	if (buf == of->prealloc_buf)
 308		mutex_unlock(&of->prealloc_mutex);
 309	else
 310		kfree(buf);
 311	return len;
 312}
 313
 314static void kernfs_vma_open(struct vm_area_struct *vma)
 315{
 316	struct file *file = vma->vm_file;
 317	struct kernfs_open_file *of = kernfs_of(file);
 318
 319	if (!of->vm_ops)
 320		return;
 321
 322	if (!kernfs_get_active(of->kn))
 323		return;
 324
 325	if (of->vm_ops->open)
 326		of->vm_ops->open(vma);
 327
 328	kernfs_put_active(of->kn);
 329}
 330
 331static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 332{
 333	struct file *file = vmf->vma->vm_file;
 334	struct kernfs_open_file *of = kernfs_of(file);
 335	vm_fault_t ret;
 336
 337	if (!of->vm_ops)
 338		return VM_FAULT_SIGBUS;
 339
 340	if (!kernfs_get_active(of->kn))
 341		return VM_FAULT_SIGBUS;
 342
 343	ret = VM_FAULT_SIGBUS;
 344	if (of->vm_ops->fault)
 345		ret = of->vm_ops->fault(vmf);
 346
 347	kernfs_put_active(of->kn);
 348	return ret;
 349}
 350
 351static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 352{
 353	struct file *file = vmf->vma->vm_file;
 354	struct kernfs_open_file *of = kernfs_of(file);
 355	vm_fault_t ret;
 356
 357	if (!of->vm_ops)
 358		return VM_FAULT_SIGBUS;
 359
 360	if (!kernfs_get_active(of->kn))
 361		return VM_FAULT_SIGBUS;
 362
 363	ret = 0;
 364	if (of->vm_ops->page_mkwrite)
 365		ret = of->vm_ops->page_mkwrite(vmf);
 366	else
 367		file_update_time(file);
 368
 369	kernfs_put_active(of->kn);
 370	return ret;
 371}
 372
 373static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 374			     void *buf, int len, int write)
 375{
 376	struct file *file = vma->vm_file;
 377	struct kernfs_open_file *of = kernfs_of(file);
 378	int ret;
 379
 380	if (!of->vm_ops)
 381		return -EINVAL;
 382
 383	if (!kernfs_get_active(of->kn))
 384		return -EINVAL;
 385
 386	ret = -EINVAL;
 387	if (of->vm_ops->access)
 388		ret = of->vm_ops->access(vma, addr, buf, len, write);
 389
 390	kernfs_put_active(of->kn);
 391	return ret;
 392}
 393
 394#ifdef CONFIG_NUMA
 395static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 396				 struct mempolicy *new)
 397{
 398	struct file *file = vma->vm_file;
 399	struct kernfs_open_file *of = kernfs_of(file);
 400	int ret;
 401
 402	if (!of->vm_ops)
 403		return 0;
 404
 405	if (!kernfs_get_active(of->kn))
 406		return -EINVAL;
 407
 408	ret = 0;
 409	if (of->vm_ops->set_policy)
 410		ret = of->vm_ops->set_policy(vma, new);
 411
 412	kernfs_put_active(of->kn);
 413	return ret;
 414}
 415
 416static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 417					       unsigned long addr)
 418{
 419	struct file *file = vma->vm_file;
 420	struct kernfs_open_file *of = kernfs_of(file);
 421	struct mempolicy *pol;
 422
 423	if (!of->vm_ops)
 424		return vma->vm_policy;
 425
 426	if (!kernfs_get_active(of->kn))
 427		return vma->vm_policy;
 428
 429	pol = vma->vm_policy;
 430	if (of->vm_ops->get_policy)
 431		pol = of->vm_ops->get_policy(vma, addr);
 432
 433	kernfs_put_active(of->kn);
 434	return pol;
 435}
 436
 437#endif
 438
 439static const struct vm_operations_struct kernfs_vm_ops = {
 440	.open		= kernfs_vma_open,
 441	.fault		= kernfs_vma_fault,
 442	.page_mkwrite	= kernfs_vma_page_mkwrite,
 443	.access		= kernfs_vma_access,
 444#ifdef CONFIG_NUMA
 445	.set_policy	= kernfs_vma_set_policy,
 446	.get_policy	= kernfs_vma_get_policy,
 447#endif
 448};
 449
 450static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 451{
 452	struct kernfs_open_file *of = kernfs_of(file);
 453	const struct kernfs_ops *ops;
 454	int rc;
 455
 456	/*
 457	 * mmap path and of->mutex are prone to triggering spurious lockdep
 458	 * warnings and we don't want to add spurious locking dependency
 459	 * between the two.  Check whether mmap is actually implemented
 460	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 461	 * comment in kernfs_file_open() for more details.
 462	 */
 463	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 464		return -ENODEV;
 465
 466	mutex_lock(&of->mutex);
 467
 468	rc = -ENODEV;
 469	if (!kernfs_get_active(of->kn))
 470		goto out_unlock;
 471
 472	ops = kernfs_ops(of->kn);
 473	rc = ops->mmap(of, vma);
 474	if (rc)
 475		goto out_put;
 476
 477	/*
 478	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 479	 * to satisfy versions of X which crash if the mmap fails: that
 480	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 481	 */
 482	if (vma->vm_file != file)
 483		goto out_put;
 484
 485	rc = -EINVAL;
 486	if (of->mmapped && of->vm_ops != vma->vm_ops)
 487		goto out_put;
 488
 489	/*
 490	 * It is not possible to successfully wrap close.
 491	 * So error if someone is trying to use close.
 492	 */
 493	rc = -EINVAL;
 494	if (vma->vm_ops && vma->vm_ops->close)
 495		goto out_put;
 496
 497	rc = 0;
 498	of->mmapped = true;
 499	of->vm_ops = vma->vm_ops;
 
 
 
 500	vma->vm_ops = &kernfs_vm_ops;
 501out_put:
 502	kernfs_put_active(of->kn);
 503out_unlock:
 504	mutex_unlock(&of->mutex);
 505
 506	return rc;
 507}
 508
 509/**
 510 *	kernfs_get_open_node - get or create kernfs_open_node
 511 *	@kn: target kernfs_node
 512 *	@of: kernfs_open_file for this instance of open
 513 *
 514 *	If @kn->attr.open exists, increment its reference count; otherwise,
 515 *	create one.  @of is chained to the files list.
 516 *
 517 *	LOCKING:
 518 *	Kernel thread context (may sleep).
 519 *
 520 *	RETURNS:
 521 *	0 on success, -errno on failure.
 522 */
 523static int kernfs_get_open_node(struct kernfs_node *kn,
 524				struct kernfs_open_file *of)
 525{
 526	struct kernfs_open_node *on, *new_on = NULL;
 
 527
 528 retry:
 529	mutex_lock(&kernfs_open_file_mutex);
 530	spin_lock_irq(&kernfs_open_node_lock);
 531
 532	if (!kn->attr.open && new_on) {
 533		kn->attr.open = new_on;
 534		new_on = NULL;
 
 
 
 
 
 
 
 
 535	}
 536
 537	on = kn->attr.open;
 538	if (on) {
 539		atomic_inc(&on->refcnt);
 540		list_add_tail(&of->list, &on->files);
 541	}
 542
 543	spin_unlock_irq(&kernfs_open_node_lock);
 544	mutex_unlock(&kernfs_open_file_mutex);
 545
 546	if (on) {
 547		kfree(new_on);
 548		return 0;
 549	}
 550
 551	/* not there, initialize a new one and retry */
 552	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 553	if (!new_on)
 554		return -ENOMEM;
 555
 556	atomic_set(&new_on->refcnt, 0);
 557	atomic_set(&new_on->event, 1);
 558	init_waitqueue_head(&new_on->poll);
 559	INIT_LIST_HEAD(&new_on->files);
 560	goto retry;
 561}
 562
 563/**
 564 *	kernfs_put_open_node - put kernfs_open_node
 565 *	@kn: target kernfs_nodet
 
 566 *	@of: associated kernfs_open_file
 
 567 *
 568 *	Put @kn->attr.open and unlink @of from the files list.  If
 569 *	reference count reaches zero, disassociate and free it.
 
 570 *
 571 *	LOCKING:
 572 *	None.
 573 */
 574static void kernfs_put_open_node(struct kernfs_node *kn,
 575				 struct kernfs_open_file *of)
 
 576{
 577	struct kernfs_open_node *on = kn->attr.open;
 578	unsigned long flags;
 
 
 579
 580	mutex_lock(&kernfs_open_file_mutex);
 581	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 
 
 
 582
 583	if (of)
 
 
 
 
 
 
 
 584		list_del(&of->list);
 
 585
 586	if (atomic_dec_and_test(&on->refcnt))
 587		kn->attr.open = NULL;
 588	else
 589		on = NULL;
 590
 591	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 592	mutex_unlock(&kernfs_open_file_mutex);
 593
 594	kfree(on);
 595}
 596
 597static int kernfs_fop_open(struct inode *inode, struct file *file)
 598{
 599	struct kernfs_node *kn = inode->i_private;
 600	struct kernfs_root *root = kernfs_root(kn);
 601	const struct kernfs_ops *ops;
 602	struct kernfs_open_file *of;
 603	bool has_read, has_write, has_mmap;
 604	int error = -EACCES;
 605
 606	if (!kernfs_get_active(kn))
 607		return -ENODEV;
 608
 609	ops = kernfs_ops(kn);
 610
 611	has_read = ops->seq_show || ops->read || ops->mmap;
 612	has_write = ops->write || ops->mmap;
 613	has_mmap = ops->mmap;
 614
 615	/* see the flag definition for details */
 616	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 617		if ((file->f_mode & FMODE_WRITE) &&
 618		    (!(inode->i_mode & S_IWUGO) || !has_write))
 619			goto err_out;
 620
 621		if ((file->f_mode & FMODE_READ) &&
 622		    (!(inode->i_mode & S_IRUGO) || !has_read))
 623			goto err_out;
 624	}
 625
 626	/* allocate a kernfs_open_file for the file */
 627	error = -ENOMEM;
 628	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 629	if (!of)
 630		goto err_out;
 631
 632	/*
 633	 * The following is done to give a different lockdep key to
 634	 * @of->mutex for files which implement mmap.  This is a rather
 635	 * crude way to avoid false positive lockdep warning around
 636	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
 637	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 638	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
 639	 * open file has a separate mutex, it's okay as long as those don't
 640	 * happen on the same file.  At this point, we can't easily give
 641	 * each file a separate locking class.  Let's differentiate on
 642	 * whether the file has mmap or not for now.
 643	 *
 644	 * Both paths of the branch look the same.  They're supposed to
 
 
 
 
 
 645	 * look that way and give @of->mutex different static lockdep keys.
 646	 */
 647	if (has_mmap)
 648		mutex_init(&of->mutex);
 
 
 649	else
 650		mutex_init(&of->mutex);
 651
 652	of->kn = kn;
 653	of->file = file;
 654
 655	/*
 656	 * Write path needs to atomic_write_len outside active reference.
 657	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
 658	 */
 659	of->atomic_write_len = ops->atomic_write_len;
 660
 661	error = -EINVAL;
 662	/*
 663	 * ->seq_show is incompatible with ->prealloc,
 664	 * as seq_read does its own allocation.
 665	 * ->read must be used instead.
 666	 */
 667	if (ops->prealloc && ops->seq_show)
 668		goto err_free;
 669	if (ops->prealloc) {
 670		int len = of->atomic_write_len ?: PAGE_SIZE;
 671		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 672		error = -ENOMEM;
 673		if (!of->prealloc_buf)
 674			goto err_free;
 675		mutex_init(&of->prealloc_mutex);
 676	}
 677
 678	/*
 679	 * Always instantiate seq_file even if read access doesn't use
 680	 * seq_file or is not requested.  This unifies private data access
 681	 * and readable regular files are the vast majority anyway.
 682	 */
 683	if (ops->seq_show)
 684		error = seq_open(file, &kernfs_seq_ops);
 685	else
 686		error = seq_open(file, NULL);
 687	if (error)
 688		goto err_free;
 689
 690	of->seq_file = file->private_data;
 691	of->seq_file->private = of;
 692
 693	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 694	if (file->f_mode & FMODE_WRITE)
 695		file->f_mode |= FMODE_PWRITE;
 696
 697	/* make sure we have open node struct */
 698	error = kernfs_get_open_node(kn, of);
 699	if (error)
 700		goto err_seq_release;
 701
 702	if (ops->open) {
 703		/* nobody has access to @of yet, skip @of->mutex */
 704		error = ops->open(of);
 705		if (error)
 706			goto err_put_node;
 707	}
 708
 709	/* open succeeded, put active references */
 710	kernfs_put_active(kn);
 711	return 0;
 712
 713err_put_node:
 714	kernfs_put_open_node(kn, of);
 715err_seq_release:
 716	seq_release(inode, file);
 717err_free:
 718	kfree(of->prealloc_buf);
 719	kfree(of);
 720err_out:
 721	kernfs_put_active(kn);
 722	return error;
 723}
 724
 725/* used from release/drain to ensure that ->release() is called exactly once */
 726static void kernfs_release_file(struct kernfs_node *kn,
 727				struct kernfs_open_file *of)
 728{
 729	/*
 730	 * @of is guaranteed to have no other file operations in flight and
 731	 * we just want to synchronize release and drain paths.
 732	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
 733	 * here because drain path may be called from places which can
 734	 * cause circular dependency.
 735	 */
 736	lockdep_assert_held(&kernfs_open_file_mutex);
 737
 738	if (!of->released) {
 739		/*
 740		 * A file is never detached without being released and we
 741		 * need to be able to release files which are deactivated
 742		 * and being drained.  Don't use kernfs_ops().
 743		 */
 744		kn->attr.ops->release(of);
 745		of->released = true;
 
 746	}
 747}
 748
 749static int kernfs_fop_release(struct inode *inode, struct file *filp)
 750{
 751	struct kernfs_node *kn = inode->i_private;
 752	struct kernfs_open_file *of = kernfs_of(filp);
 753
 754	if (kn->flags & KERNFS_HAS_RELEASE) {
 755		mutex_lock(&kernfs_open_file_mutex);
 
 
 756		kernfs_release_file(kn, of);
 757		mutex_unlock(&kernfs_open_file_mutex);
 758	}
 759
 760	kernfs_put_open_node(kn, of);
 761	seq_release(inode, filp);
 762	kfree(of->prealloc_buf);
 763	kfree(of);
 764
 765	return 0;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768void kernfs_drain_open_files(struct kernfs_node *kn)
 769{
 770	struct kernfs_open_node *on;
 771	struct kernfs_open_file *of;
 
 772
 773	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
 
 
 
 774		return;
 775
 776	spin_lock_irq(&kernfs_open_node_lock);
 777	on = kn->attr.open;
 778	if (on)
 779		atomic_inc(&on->refcnt);
 780	spin_unlock_irq(&kernfs_open_node_lock);
 781	if (!on)
 782		return;
 783
 784	mutex_lock(&kernfs_open_file_mutex);
 785
 786	list_for_each_entry(of, &on->files, list) {
 787		struct inode *inode = file_inode(of->file);
 788
 789		if (kn->flags & KERNFS_HAS_MMAP)
 790			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 
 
 
 791
 792		if (kn->flags & KERNFS_HAS_RELEASE)
 793			kernfs_release_file(kn, of);
 794	}
 795
 796	mutex_unlock(&kernfs_open_file_mutex);
 797
 798	kernfs_put_open_node(kn, NULL);
 799}
 800
 801/*
 802 * Kernfs attribute files are pollable.  The idea is that you read
 803 * the content and then you use 'poll' or 'select' to wait for
 804 * the content to change.  When the content changes (assuming the
 805 * manager for the kobject supports notification), poll will
 806 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 807 * it is waiting for read, write, or exceptions.
 808 * Once poll/select indicates that the value has changed, you
 809 * need to close and re-open the file, or seek to 0 and read again.
 810 * Reminder: this only works for attributes which actively support
 811 * it, and it is not possible to test an attribute from userspace
 812 * to see if it supports poll (Neither 'poll' nor 'select' return
 813 * an appropriate error code).  When in doubt, set a suitable timeout value.
 814 */
 815__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 816{
 817	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
 818	struct kernfs_open_node *on = kn->attr.open;
 819
 820	poll_wait(of->file, &on->poll, wait);
 821
 822	if (of->event != atomic_read(&on->event))
 823		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 824
 825	return DEFAULT_POLLMASK;
 826}
 827
 828static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 829{
 830	struct kernfs_open_file *of = kernfs_of(filp);
 831	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 832	__poll_t ret;
 833
 834	if (!kernfs_get_active(kn))
 835		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 836
 837	if (kn->attr.ops->poll)
 838		ret = kn->attr.ops->poll(of, wait);
 839	else
 840		ret = kernfs_generic_poll(of, wait);
 841
 842	kernfs_put_active(kn);
 843	return ret;
 844}
 845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846static void kernfs_notify_workfn(struct work_struct *work)
 847{
 848	struct kernfs_node *kn;
 849	struct kernfs_super_info *info;
 
 850repeat:
 851	/* pop one off the notify_list */
 852	spin_lock_irq(&kernfs_notify_lock);
 853	kn = kernfs_notify_list;
 854	if (kn == KERNFS_NOTIFY_EOL) {
 855		spin_unlock_irq(&kernfs_notify_lock);
 856		return;
 857	}
 858	kernfs_notify_list = kn->attr.notify_next;
 859	kn->attr.notify_next = NULL;
 860	spin_unlock_irq(&kernfs_notify_lock);
 861
 
 862	/* kick fsnotify */
 863	mutex_lock(&kernfs_mutex);
 864
 
 865	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 866		struct kernfs_node *parent;
 867		struct inode *p_inode = NULL;
 868		struct inode *inode;
 869		struct qstr name;
 870
 871		/*
 872		 * We want fsnotify_modify() on @kn but as the
 873		 * modifications aren't originating from userland don't
 874		 * have the matching @file available.  Look up the inodes
 875		 * and generate the events manually.
 876		 */
 877		inode = ilookup(info->sb, kernfs_ino(kn));
 878		if (!inode)
 879			continue;
 880
 881		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 882		parent = kernfs_get_parent(kn);
 883		if (parent) {
 884			p_inode = ilookup(info->sb, kernfs_ino(parent));
 885			if (p_inode) {
 886				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
 887					 inode, FSNOTIFY_EVENT_INODE,
 888					 p_inode, &name, inode, 0);
 889				iput(p_inode);
 890			}
 891
 892			kernfs_put(parent);
 893		}
 894
 895		if (!p_inode)
 896			fsnotify_inode(inode, FS_MODIFY);
 897
 898		iput(inode);
 899	}
 900
 901	mutex_unlock(&kernfs_mutex);
 902	kernfs_put(kn);
 903	goto repeat;
 904}
 905
 906/**
 907 * kernfs_notify - notify a kernfs file
 908 * @kn: file to notify
 909 *
 910 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 911 * context.
 912 */
 913void kernfs_notify(struct kernfs_node *kn)
 914{
 915	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 916	unsigned long flags;
 917	struct kernfs_open_node *on;
 918
 919	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 920		return;
 921
 922	/* kick poll immediately */
 923	spin_lock_irqsave(&kernfs_open_node_lock, flags);
 924	on = kn->attr.open;
 925	if (on) {
 926		atomic_inc(&on->event);
 927		wake_up_interruptible(&on->poll);
 928	}
 929	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 930
 931	/* schedule work to kick fsnotify */
 932	spin_lock_irqsave(&kernfs_notify_lock, flags);
 933	if (!kn->attr.notify_next) {
 934		kernfs_get(kn);
 935		kn->attr.notify_next = kernfs_notify_list;
 936		kernfs_notify_list = kn;
 937		schedule_work(&kernfs_notify_work);
 938	}
 939	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 940}
 941EXPORT_SYMBOL_GPL(kernfs_notify);
 942
 943const struct file_operations kernfs_file_fops = {
 944	.read_iter	= kernfs_fop_read_iter,
 945	.write_iter	= kernfs_fop_write_iter,
 946	.llseek		= generic_file_llseek,
 947	.mmap		= kernfs_fop_mmap,
 948	.open		= kernfs_fop_open,
 949	.release	= kernfs_fop_release,
 950	.poll		= kernfs_fop_poll,
 951	.fsync		= noop_fsync,
 952	.splice_read	= generic_file_splice_read,
 953	.splice_write	= iter_file_splice_write,
 954};
 955
 956/**
 957 * __kernfs_create_file - kernfs internal function to create a file
 958 * @parent: directory to create the file in
 959 * @name: name of the file
 960 * @mode: mode of the file
 961 * @uid: uid of the file
 962 * @gid: gid of the file
 963 * @size: size of the file
 964 * @ops: kernfs operations for the file
 965 * @priv: private data for the file
 966 * @ns: optional namespace tag of the file
 967 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 968 *
 969 * Returns the created node on success, ERR_PTR() value on error.
 970 */
 971struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 972					 const char *name,
 973					 umode_t mode, kuid_t uid, kgid_t gid,
 974					 loff_t size,
 975					 const struct kernfs_ops *ops,
 976					 void *priv, const void *ns,
 977					 struct lock_class_key *key)
 978{
 979	struct kernfs_node *kn;
 980	unsigned flags;
 981	int rc;
 982
 983	flags = KERNFS_FILE;
 984
 985	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
 986			     uid, gid, flags);
 987	if (!kn)
 988		return ERR_PTR(-ENOMEM);
 989
 990	kn->attr.ops = ops;
 991	kn->attr.size = size;
 992	kn->ns = ns;
 993	kn->priv = priv;
 994
 995#ifdef CONFIG_DEBUG_LOCK_ALLOC
 996	if (key) {
 997		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
 998		kn->flags |= KERNFS_LOCKDEP;
 999	}
1000#endif
1001
1002	/*
1003	 * kn->attr.ops is accesible only while holding active ref.  We
1004	 * need to know whether some ops are implemented outside active
1005	 * ref.  Cache their existence in flags.
1006	 */
1007	if (ops->seq_show)
1008		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1009	if (ops->mmap)
1010		kn->flags |= KERNFS_HAS_MMAP;
1011	if (ops->release)
1012		kn->flags |= KERNFS_HAS_RELEASE;
1013
1014	rc = kernfs_add_one(kn);
1015	if (rc) {
1016		kernfs_put(kn);
1017		return ERR_PTR(rc);
1018	}
1019	return kn;
1020}