Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6#include <linux/init.h>
7#include <linux/fs.h>
8#include <linux/slab.h>
9#include <linux/rwsem.h>
10#include <linux/xattr.h>
11#include <linux/security.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/iversion.h>
14#include <linux/sched/mm.h>
15#include "ctree.h"
16#include "fs.h"
17#include "messages.h"
18#include "btrfs_inode.h"
19#include "transaction.h"
20#include "xattr.h"
21#include "disk-io.h"
22#include "props.h"
23#include "locking.h"
24#include "accessors.h"
25#include "dir-item.h"
26
27int btrfs_getxattr(const struct inode *inode, const char *name,
28 void *buffer, size_t size)
29{
30 struct btrfs_dir_item *di;
31 struct btrfs_root *root = BTRFS_I(inode)->root;
32 struct btrfs_path *path;
33 struct extent_buffer *leaf;
34 int ret = 0;
35 unsigned long data_ptr;
36
37 path = btrfs_alloc_path();
38 if (!path)
39 return -ENOMEM;
40
41 /* lookup the xattr by name */
42 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
43 name, strlen(name), 0);
44 if (!di) {
45 ret = -ENODATA;
46 goto out;
47 } else if (IS_ERR(di)) {
48 ret = PTR_ERR(di);
49 goto out;
50 }
51
52 leaf = path->nodes[0];
53 /* if size is 0, that means we want the size of the attr */
54 if (!size) {
55 ret = btrfs_dir_data_len(leaf, di);
56 goto out;
57 }
58
59 /* now get the data out of our dir_item */
60 if (btrfs_dir_data_len(leaf, di) > size) {
61 ret = -ERANGE;
62 goto out;
63 }
64
65 /*
66 * The way things are packed into the leaf is like this
67 * |struct btrfs_dir_item|name|data|
68 * where name is the xattr name, so security.foo, and data is the
69 * content of the xattr. data_ptr points to the location in memory
70 * where the data starts in the in memory leaf
71 */
72 data_ptr = (unsigned long)((char *)(di + 1) +
73 btrfs_dir_name_len(leaf, di));
74 read_extent_buffer(leaf, buffer, data_ptr,
75 btrfs_dir_data_len(leaf, di));
76 ret = btrfs_dir_data_len(leaf, di);
77
78out:
79 btrfs_free_path(path);
80 return ret;
81}
82
83int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
84 const char *name, const void *value, size_t size, int flags)
85{
86 struct btrfs_dir_item *di = NULL;
87 struct btrfs_root *root = BTRFS_I(inode)->root;
88 struct btrfs_path *path;
89 size_t name_len = strlen(name);
90 int ret = 0;
91
92 ASSERT(trans);
93
94 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
95 return -ENOSPC;
96
97 path = btrfs_alloc_path();
98 if (!path)
99 return -ENOMEM;
100 path->skip_release_on_error = 1;
101
102 if (!value) {
103 di = btrfs_lookup_xattr(trans, root, path,
104 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
105 if (!di && (flags & XATTR_REPLACE))
106 ret = -ENODATA;
107 else if (IS_ERR(di))
108 ret = PTR_ERR(di);
109 else if (di)
110 ret = btrfs_delete_one_dir_name(trans, root, path, di);
111 goto out;
112 }
113
114 /*
115 * For a replace we can't just do the insert blindly.
116 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
117 * doesn't exist. If it exists, fall down below to the insert/replace
118 * path - we can't race with a concurrent xattr delete, because the VFS
119 * locks the inode's i_mutex before calling setxattr or removexattr.
120 */
121 if (flags & XATTR_REPLACE) {
122 btrfs_assert_inode_locked(BTRFS_I(inode));
123 di = btrfs_lookup_xattr(NULL, root, path,
124 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
125 if (!di)
126 ret = -ENODATA;
127 else if (IS_ERR(di))
128 ret = PTR_ERR(di);
129 if (ret)
130 goto out;
131 btrfs_release_path(path);
132 di = NULL;
133 }
134
135 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
136 name, name_len, value, size);
137 if (ret == -EOVERFLOW) {
138 /*
139 * We have an existing item in a leaf, split_leaf couldn't
140 * expand it. That item might have or not a dir_item that
141 * matches our target xattr, so lets check.
142 */
143 ret = 0;
144 btrfs_assert_tree_write_locked(path->nodes[0]);
145 di = btrfs_match_dir_item_name(path, name, name_len);
146 if (!di && !(flags & XATTR_REPLACE)) {
147 ret = -ENOSPC;
148 goto out;
149 }
150 } else if (ret == -EEXIST) {
151 ret = 0;
152 di = btrfs_match_dir_item_name(path, name, name_len);
153 ASSERT(di); /* logic error */
154 } else if (ret) {
155 goto out;
156 }
157
158 if (di && (flags & XATTR_CREATE)) {
159 ret = -EEXIST;
160 goto out;
161 }
162
163 if (di) {
164 /*
165 * We're doing a replace, and it must be atomic, that is, at
166 * any point in time we have either the old or the new xattr
167 * value in the tree. We don't want readers (getxattr and
168 * listxattrs) to miss a value, this is specially important
169 * for ACLs.
170 */
171 const int slot = path->slots[0];
172 struct extent_buffer *leaf = path->nodes[0];
173 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
174 const u32 item_size = btrfs_item_size(leaf, slot);
175 const u32 data_size = sizeof(*di) + name_len + size;
176 unsigned long data_ptr;
177 char *ptr;
178
179 if (size > old_data_len) {
180 if (btrfs_leaf_free_space(leaf) <
181 (size - old_data_len)) {
182 ret = -ENOSPC;
183 goto out;
184 }
185 }
186
187 if (old_data_len + name_len + sizeof(*di) == item_size) {
188 /* No other xattrs packed in the same leaf item. */
189 if (size > old_data_len)
190 btrfs_extend_item(trans, path, size - old_data_len);
191 else if (size < old_data_len)
192 btrfs_truncate_item(trans, path, data_size, 1);
193 } else {
194 /* There are other xattrs packed in the same item. */
195 ret = btrfs_delete_one_dir_name(trans, root, path, di);
196 if (ret)
197 goto out;
198 btrfs_extend_item(trans, path, data_size);
199 }
200
201 ptr = btrfs_item_ptr(leaf, slot, char);
202 ptr += btrfs_item_size(leaf, slot) - data_size;
203 di = (struct btrfs_dir_item *)ptr;
204 btrfs_set_dir_data_len(leaf, di, size);
205 data_ptr = ((unsigned long)(di + 1)) + name_len;
206 write_extent_buffer(leaf, value, data_ptr, size);
207 btrfs_mark_buffer_dirty(trans, leaf);
208 } else {
209 /*
210 * Insert, and we had space for the xattr, so path->slots[0] is
211 * where our xattr dir_item is and btrfs_insert_xattr_item()
212 * filled it.
213 */
214 }
215out:
216 btrfs_free_path(path);
217 if (!ret) {
218 set_bit(BTRFS_INODE_COPY_EVERYTHING,
219 &BTRFS_I(inode)->runtime_flags);
220 clear_bit(BTRFS_INODE_NO_XATTRS, &BTRFS_I(inode)->runtime_flags);
221 }
222 return ret;
223}
224
225/*
226 * @value: "" makes the attribute to empty, NULL removes it
227 */
228int btrfs_setxattr_trans(struct inode *inode, const char *name,
229 const void *value, size_t size, int flags)
230{
231 struct btrfs_root *root = BTRFS_I(inode)->root;
232 struct btrfs_trans_handle *trans;
233 const bool start_trans = (current->journal_info == NULL);
234 int ret;
235
236 if (start_trans) {
237 /*
238 * 1 unit for inserting/updating/deleting the xattr
239 * 1 unit for the inode item update
240 */
241 trans = btrfs_start_transaction(root, 2);
242 if (IS_ERR(trans))
243 return PTR_ERR(trans);
244 } else {
245 /*
246 * This can happen when smack is enabled and a directory is being
247 * created. It happens through d_instantiate_new(), which calls
248 * smack_d_instantiate(), which in turn calls __vfs_setxattr() to
249 * set the transmute xattr (XATTR_NAME_SMACKTRANSMUTE) on the
250 * inode. We have already reserved space for the xattr and inode
251 * update at btrfs_mkdir(), so just use the transaction handle.
252 * We don't join or start a transaction, as that will reset the
253 * block_rsv of the handle and trigger a warning for the start
254 * case.
255 */
256 ASSERT(strncmp(name, XATTR_SECURITY_PREFIX,
257 XATTR_SECURITY_PREFIX_LEN) == 0);
258 trans = current->journal_info;
259 }
260
261 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
262 if (ret)
263 goto out;
264
265 inode_inc_iversion(inode);
266 inode_set_ctime_current(inode);
267 ret = btrfs_update_inode(trans, BTRFS_I(inode));
268 if (ret)
269 btrfs_abort_transaction(trans, ret);
270out:
271 if (start_trans)
272 btrfs_end_transaction(trans);
273 return ret;
274}
275
276ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
277{
278 struct btrfs_key found_key;
279 struct btrfs_key key;
280 struct inode *inode = d_inode(dentry);
281 struct btrfs_root *root = BTRFS_I(inode)->root;
282 struct btrfs_path *path;
283 int iter_ret = 0;
284 int ret = 0;
285 size_t total_size = 0, size_left = size;
286
287 /*
288 * ok we want all objects associated with this id.
289 * NOTE: we set key.offset = 0; because we want to start with the
290 * first xattr that we find and walk forward
291 */
292 key.objectid = btrfs_ino(BTRFS_I(inode));
293 key.type = BTRFS_XATTR_ITEM_KEY;
294 key.offset = 0;
295
296 path = btrfs_alloc_path();
297 if (!path)
298 return -ENOMEM;
299 path->reada = READA_FORWARD;
300
301 /* search for our xattrs */
302 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
303 struct extent_buffer *leaf;
304 int slot;
305 struct btrfs_dir_item *di;
306 u32 item_size;
307 u32 cur;
308
309 leaf = path->nodes[0];
310 slot = path->slots[0];
311
312 /* check to make sure this item is what we want */
313 if (found_key.objectid != key.objectid)
314 break;
315 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
316 break;
317 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
318 continue;
319
320 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
321 item_size = btrfs_item_size(leaf, slot);
322 cur = 0;
323 while (cur < item_size) {
324 u16 name_len = btrfs_dir_name_len(leaf, di);
325 u16 data_len = btrfs_dir_data_len(leaf, di);
326 u32 this_len = sizeof(*di) + name_len + data_len;
327 unsigned long name_ptr = (unsigned long)(di + 1);
328
329 total_size += name_len + 1;
330 /*
331 * We are just looking for how big our buffer needs to
332 * be.
333 */
334 if (!size)
335 goto next;
336
337 if (!buffer || (name_len + 1) > size_left) {
338 iter_ret = -ERANGE;
339 break;
340 }
341
342 read_extent_buffer(leaf, buffer, name_ptr, name_len);
343 buffer[name_len] = '\0';
344
345 size_left -= name_len + 1;
346 buffer += name_len + 1;
347next:
348 cur += this_len;
349 di = (struct btrfs_dir_item *)((char *)di + this_len);
350 }
351 }
352
353 if (iter_ret < 0)
354 ret = iter_ret;
355 else
356 ret = total_size;
357
358 btrfs_free_path(path);
359
360 return ret;
361}
362
363static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
364 struct dentry *unused, struct inode *inode,
365 const char *name, void *buffer, size_t size)
366{
367 name = xattr_full_name(handler, name);
368 return btrfs_getxattr(inode, name, buffer, size);
369}
370
371static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
372 struct mnt_idmap *idmap,
373 struct dentry *unused, struct inode *inode,
374 const char *name, const void *buffer,
375 size_t size, int flags)
376{
377 if (btrfs_root_readonly(BTRFS_I(inode)->root))
378 return -EROFS;
379
380 name = xattr_full_name(handler, name);
381 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
382}
383
384static int btrfs_xattr_handler_get_security(const struct xattr_handler *handler,
385 struct dentry *unused,
386 struct inode *inode,
387 const char *name, void *buffer,
388 size_t size)
389{
390 int ret;
391 bool is_cap = false;
392
393 name = xattr_full_name(handler, name);
394
395 /*
396 * security.capability doesn't cache the results, so calls into us
397 * constantly to see if there's a capability xattr. Cache the result
398 * here in order to avoid wasting time doing lookups for xattrs we know
399 * don't exist.
400 */
401 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
402 is_cap = true;
403 if (test_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags))
404 return -ENODATA;
405 }
406
407 ret = btrfs_getxattr(inode, name, buffer, size);
408 if (ret == -ENODATA && is_cap)
409 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
410 return ret;
411}
412
413static int btrfs_xattr_handler_set_security(const struct xattr_handler *handler,
414 struct mnt_idmap *idmap,
415 struct dentry *unused,
416 struct inode *inode,
417 const char *name,
418 const void *buffer,
419 size_t size, int flags)
420{
421 if (btrfs_root_readonly(BTRFS_I(inode)->root))
422 return -EROFS;
423
424 name = xattr_full_name(handler, name);
425 if (strcmp(name, XATTR_NAME_CAPS) == 0)
426 clear_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
427
428 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
429}
430
431static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
432 struct mnt_idmap *idmap,
433 struct dentry *unused, struct inode *inode,
434 const char *name, const void *value,
435 size_t size, int flags)
436{
437 int ret;
438 struct btrfs_trans_handle *trans;
439 struct btrfs_root *root = BTRFS_I(inode)->root;
440
441 name = xattr_full_name(handler, name);
442 ret = btrfs_validate_prop(BTRFS_I(inode), name, value, size);
443 if (ret)
444 return ret;
445
446 if (btrfs_ignore_prop(BTRFS_I(inode), name))
447 return 0;
448
449 trans = btrfs_start_transaction(root, 2);
450 if (IS_ERR(trans))
451 return PTR_ERR(trans);
452
453 ret = btrfs_set_prop(trans, BTRFS_I(inode), name, value, size, flags);
454 if (!ret) {
455 inode_inc_iversion(inode);
456 inode_set_ctime_current(inode);
457 ret = btrfs_update_inode(trans, BTRFS_I(inode));
458 if (ret)
459 btrfs_abort_transaction(trans, ret);
460 }
461
462 btrfs_end_transaction(trans);
463
464 return ret;
465}
466
467static const struct xattr_handler btrfs_security_xattr_handler = {
468 .prefix = XATTR_SECURITY_PREFIX,
469 .get = btrfs_xattr_handler_get_security,
470 .set = btrfs_xattr_handler_set_security,
471};
472
473static const struct xattr_handler btrfs_trusted_xattr_handler = {
474 .prefix = XATTR_TRUSTED_PREFIX,
475 .get = btrfs_xattr_handler_get,
476 .set = btrfs_xattr_handler_set,
477};
478
479static const struct xattr_handler btrfs_user_xattr_handler = {
480 .prefix = XATTR_USER_PREFIX,
481 .get = btrfs_xattr_handler_get,
482 .set = btrfs_xattr_handler_set,
483};
484
485static const struct xattr_handler btrfs_btrfs_xattr_handler = {
486 .prefix = XATTR_BTRFS_PREFIX,
487 .get = btrfs_xattr_handler_get,
488 .set = btrfs_xattr_handler_set_prop,
489};
490
491const struct xattr_handler * const btrfs_xattr_handlers[] = {
492 &btrfs_security_xattr_handler,
493 &btrfs_trusted_xattr_handler,
494 &btrfs_user_xattr_handler,
495 &btrfs_btrfs_xattr_handler,
496 NULL,
497};
498
499static int btrfs_initxattrs(struct inode *inode,
500 const struct xattr *xattr_array, void *fs_private)
501{
502 struct btrfs_trans_handle *trans = fs_private;
503 const struct xattr *xattr;
504 unsigned int nofs_flag;
505 char *name;
506 int ret = 0;
507
508 /*
509 * We're holding a transaction handle, so use a NOFS memory allocation
510 * context to avoid deadlock if reclaim happens.
511 */
512 nofs_flag = memalloc_nofs_save();
513 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
514 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
515 strlen(xattr->name) + 1, GFP_KERNEL);
516 if (!name) {
517 ret = -ENOMEM;
518 break;
519 }
520 strcpy(name, XATTR_SECURITY_PREFIX);
521 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
522
523 if (strcmp(name, XATTR_NAME_CAPS) == 0)
524 clear_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
525
526 ret = btrfs_setxattr(trans, inode, name, xattr->value,
527 xattr->value_len, 0);
528 kfree(name);
529 if (ret < 0)
530 break;
531 }
532 memalloc_nofs_restore(nofs_flag);
533 return ret;
534}
535
536int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
537 struct inode *inode, struct inode *dir,
538 const struct qstr *qstr)
539{
540 return security_inode_init_security(inode, dir, qstr,
541 &btrfs_initxattrs, trans);
542}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Red Hat. All rights reserved.
4 */
5
6#include <linux/init.h>
7#include <linux/fs.h>
8#include <linux/slab.h>
9#include <linux/rwsem.h>
10#include <linux/xattr.h>
11#include <linux/security.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/iversion.h>
14#include <linux/sched/mm.h>
15#include "ctree.h"
16#include "btrfs_inode.h"
17#include "transaction.h"
18#include "xattr.h"
19#include "disk-io.h"
20#include "props.h"
21#include "locking.h"
22
23int btrfs_getxattr(struct inode *inode, const char *name,
24 void *buffer, size_t size)
25{
26 struct btrfs_dir_item *di;
27 struct btrfs_root *root = BTRFS_I(inode)->root;
28 struct btrfs_path *path;
29 struct extent_buffer *leaf;
30 int ret = 0;
31 unsigned long data_ptr;
32
33 path = btrfs_alloc_path();
34 if (!path)
35 return -ENOMEM;
36
37 /* lookup the xattr by name */
38 di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(BTRFS_I(inode)),
39 name, strlen(name), 0);
40 if (!di) {
41 ret = -ENODATA;
42 goto out;
43 } else if (IS_ERR(di)) {
44 ret = PTR_ERR(di);
45 goto out;
46 }
47
48 leaf = path->nodes[0];
49 /* if size is 0, that means we want the size of the attr */
50 if (!size) {
51 ret = btrfs_dir_data_len(leaf, di);
52 goto out;
53 }
54
55 /* now get the data out of our dir_item */
56 if (btrfs_dir_data_len(leaf, di) > size) {
57 ret = -ERANGE;
58 goto out;
59 }
60
61 /*
62 * The way things are packed into the leaf is like this
63 * |struct btrfs_dir_item|name|data|
64 * where name is the xattr name, so security.foo, and data is the
65 * content of the xattr. data_ptr points to the location in memory
66 * where the data starts in the in memory leaf
67 */
68 data_ptr = (unsigned long)((char *)(di + 1) +
69 btrfs_dir_name_len(leaf, di));
70 read_extent_buffer(leaf, buffer, data_ptr,
71 btrfs_dir_data_len(leaf, di));
72 ret = btrfs_dir_data_len(leaf, di);
73
74out:
75 btrfs_free_path(path);
76 return ret;
77}
78
79int btrfs_setxattr(struct btrfs_trans_handle *trans, struct inode *inode,
80 const char *name, const void *value, size_t size, int flags)
81{
82 struct btrfs_dir_item *di = NULL;
83 struct btrfs_root *root = BTRFS_I(inode)->root;
84 struct btrfs_fs_info *fs_info = root->fs_info;
85 struct btrfs_path *path;
86 size_t name_len = strlen(name);
87 int ret = 0;
88
89 ASSERT(trans);
90
91 if (name_len + size > BTRFS_MAX_XATTR_SIZE(root->fs_info))
92 return -ENOSPC;
93
94 path = btrfs_alloc_path();
95 if (!path)
96 return -ENOMEM;
97 path->skip_release_on_error = 1;
98
99 if (!value) {
100 di = btrfs_lookup_xattr(trans, root, path,
101 btrfs_ino(BTRFS_I(inode)), name, name_len, -1);
102 if (!di && (flags & XATTR_REPLACE))
103 ret = -ENODATA;
104 else if (IS_ERR(di))
105 ret = PTR_ERR(di);
106 else if (di)
107 ret = btrfs_delete_one_dir_name(trans, root, path, di);
108 goto out;
109 }
110
111 /*
112 * For a replace we can't just do the insert blindly.
113 * Do a lookup first (read-only btrfs_search_slot), and return if xattr
114 * doesn't exist. If it exists, fall down below to the insert/replace
115 * path - we can't race with a concurrent xattr delete, because the VFS
116 * locks the inode's i_mutex before calling setxattr or removexattr.
117 */
118 if (flags & XATTR_REPLACE) {
119 ASSERT(inode_is_locked(inode));
120 di = btrfs_lookup_xattr(NULL, root, path,
121 btrfs_ino(BTRFS_I(inode)), name, name_len, 0);
122 if (!di)
123 ret = -ENODATA;
124 else if (IS_ERR(di))
125 ret = PTR_ERR(di);
126 if (ret)
127 goto out;
128 btrfs_release_path(path);
129 di = NULL;
130 }
131
132 ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(BTRFS_I(inode)),
133 name, name_len, value, size);
134 if (ret == -EOVERFLOW) {
135 /*
136 * We have an existing item in a leaf, split_leaf couldn't
137 * expand it. That item might have or not a dir_item that
138 * matches our target xattr, so lets check.
139 */
140 ret = 0;
141 btrfs_assert_tree_locked(path->nodes[0]);
142 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
143 if (!di && !(flags & XATTR_REPLACE)) {
144 ret = -ENOSPC;
145 goto out;
146 }
147 } else if (ret == -EEXIST) {
148 ret = 0;
149 di = btrfs_match_dir_item_name(fs_info, path, name, name_len);
150 ASSERT(di); /* logic error */
151 } else if (ret) {
152 goto out;
153 }
154
155 if (di && (flags & XATTR_CREATE)) {
156 ret = -EEXIST;
157 goto out;
158 }
159
160 if (di) {
161 /*
162 * We're doing a replace, and it must be atomic, that is, at
163 * any point in time we have either the old or the new xattr
164 * value in the tree. We don't want readers (getxattr and
165 * listxattrs) to miss a value, this is specially important
166 * for ACLs.
167 */
168 const int slot = path->slots[0];
169 struct extent_buffer *leaf = path->nodes[0];
170 const u16 old_data_len = btrfs_dir_data_len(leaf, di);
171 const u32 item_size = btrfs_item_size_nr(leaf, slot);
172 const u32 data_size = sizeof(*di) + name_len + size;
173 struct btrfs_item *item;
174 unsigned long data_ptr;
175 char *ptr;
176
177 if (size > old_data_len) {
178 if (btrfs_leaf_free_space(leaf) <
179 (size - old_data_len)) {
180 ret = -ENOSPC;
181 goto out;
182 }
183 }
184
185 if (old_data_len + name_len + sizeof(*di) == item_size) {
186 /* No other xattrs packed in the same leaf item. */
187 if (size > old_data_len)
188 btrfs_extend_item(path, size - old_data_len);
189 else if (size < old_data_len)
190 btrfs_truncate_item(path, data_size, 1);
191 } else {
192 /* There are other xattrs packed in the same item. */
193 ret = btrfs_delete_one_dir_name(trans, root, path, di);
194 if (ret)
195 goto out;
196 btrfs_extend_item(path, data_size);
197 }
198
199 item = btrfs_item_nr(slot);
200 ptr = btrfs_item_ptr(leaf, slot, char);
201 ptr += btrfs_item_size(leaf, item) - data_size;
202 di = (struct btrfs_dir_item *)ptr;
203 btrfs_set_dir_data_len(leaf, di, size);
204 data_ptr = ((unsigned long)(di + 1)) + name_len;
205 write_extent_buffer(leaf, value, data_ptr, size);
206 btrfs_mark_buffer_dirty(leaf);
207 } else {
208 /*
209 * Insert, and we had space for the xattr, so path->slots[0] is
210 * where our xattr dir_item is and btrfs_insert_xattr_item()
211 * filled it.
212 */
213 }
214out:
215 btrfs_free_path(path);
216 if (!ret) {
217 set_bit(BTRFS_INODE_COPY_EVERYTHING,
218 &BTRFS_I(inode)->runtime_flags);
219 clear_bit(BTRFS_INODE_NO_XATTRS, &BTRFS_I(inode)->runtime_flags);
220 }
221 return ret;
222}
223
224/*
225 * @value: "" makes the attribute to empty, NULL removes it
226 */
227int btrfs_setxattr_trans(struct inode *inode, const char *name,
228 const void *value, size_t size, int flags)
229{
230 struct btrfs_root *root = BTRFS_I(inode)->root;
231 struct btrfs_trans_handle *trans;
232 const bool start_trans = (current->journal_info == NULL);
233 int ret;
234
235 if (start_trans) {
236 /*
237 * 1 unit for inserting/updating/deleting the xattr
238 * 1 unit for the inode item update
239 */
240 trans = btrfs_start_transaction(root, 2);
241 if (IS_ERR(trans))
242 return PTR_ERR(trans);
243 } else {
244 /*
245 * This can happen when smack is enabled and a directory is being
246 * created. It happens through d_instantiate_new(), which calls
247 * smack_d_instantiate(), which in turn calls __vfs_setxattr() to
248 * set the transmute xattr (XATTR_NAME_SMACKTRANSMUTE) on the
249 * inode. We have already reserved space for the xattr and inode
250 * update at btrfs_mkdir(), so just use the transaction handle.
251 * We don't join or start a transaction, as that will reset the
252 * block_rsv of the handle and trigger a warning for the start
253 * case.
254 */
255 ASSERT(strncmp(name, XATTR_SECURITY_PREFIX,
256 XATTR_SECURITY_PREFIX_LEN) == 0);
257 trans = current->journal_info;
258 }
259
260 ret = btrfs_setxattr(trans, inode, name, value, size, flags);
261 if (ret)
262 goto out;
263
264 inode_inc_iversion(inode);
265 inode->i_ctime = current_time(inode);
266 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
267 BUG_ON(ret);
268out:
269 if (start_trans)
270 btrfs_end_transaction(trans);
271 return ret;
272}
273
274ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size)
275{
276 struct btrfs_key key;
277 struct inode *inode = d_inode(dentry);
278 struct btrfs_root *root = BTRFS_I(inode)->root;
279 struct btrfs_path *path;
280 int ret = 0;
281 size_t total_size = 0, size_left = size;
282
283 /*
284 * ok we want all objects associated with this id.
285 * NOTE: we set key.offset = 0; because we want to start with the
286 * first xattr that we find and walk forward
287 */
288 key.objectid = btrfs_ino(BTRFS_I(inode));
289 key.type = BTRFS_XATTR_ITEM_KEY;
290 key.offset = 0;
291
292 path = btrfs_alloc_path();
293 if (!path)
294 return -ENOMEM;
295 path->reada = READA_FORWARD;
296
297 /* search for our xattrs */
298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
299 if (ret < 0)
300 goto err;
301
302 while (1) {
303 struct extent_buffer *leaf;
304 int slot;
305 struct btrfs_dir_item *di;
306 struct btrfs_key found_key;
307 u32 item_size;
308 u32 cur;
309
310 leaf = path->nodes[0];
311 slot = path->slots[0];
312
313 /* this is where we start walking through the path */
314 if (slot >= btrfs_header_nritems(leaf)) {
315 /*
316 * if we've reached the last slot in this leaf we need
317 * to go to the next leaf and reset everything
318 */
319 ret = btrfs_next_leaf(root, path);
320 if (ret < 0)
321 goto err;
322 else if (ret > 0)
323 break;
324 continue;
325 }
326
327 btrfs_item_key_to_cpu(leaf, &found_key, slot);
328
329 /* check to make sure this item is what we want */
330 if (found_key.objectid != key.objectid)
331 break;
332 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
333 break;
334 if (found_key.type < BTRFS_XATTR_ITEM_KEY)
335 goto next_item;
336
337 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
338 item_size = btrfs_item_size_nr(leaf, slot);
339 cur = 0;
340 while (cur < item_size) {
341 u16 name_len = btrfs_dir_name_len(leaf, di);
342 u16 data_len = btrfs_dir_data_len(leaf, di);
343 u32 this_len = sizeof(*di) + name_len + data_len;
344 unsigned long name_ptr = (unsigned long)(di + 1);
345
346 total_size += name_len + 1;
347 /*
348 * We are just looking for how big our buffer needs to
349 * be.
350 */
351 if (!size)
352 goto next;
353
354 if (!buffer || (name_len + 1) > size_left) {
355 ret = -ERANGE;
356 goto err;
357 }
358
359 read_extent_buffer(leaf, buffer, name_ptr, name_len);
360 buffer[name_len] = '\0';
361
362 size_left -= name_len + 1;
363 buffer += name_len + 1;
364next:
365 cur += this_len;
366 di = (struct btrfs_dir_item *)((char *)di + this_len);
367 }
368next_item:
369 path->slots[0]++;
370 }
371 ret = total_size;
372
373err:
374 btrfs_free_path(path);
375
376 return ret;
377}
378
379static int btrfs_xattr_handler_get(const struct xattr_handler *handler,
380 struct dentry *unused, struct inode *inode,
381 const char *name, void *buffer, size_t size)
382{
383 name = xattr_full_name(handler, name);
384 return btrfs_getxattr(inode, name, buffer, size);
385}
386
387static int btrfs_xattr_handler_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *unused, struct inode *inode,
390 const char *name, const void *buffer,
391 size_t size, int flags)
392{
393 name = xattr_full_name(handler, name);
394 return btrfs_setxattr_trans(inode, name, buffer, size, flags);
395}
396
397static int btrfs_xattr_handler_set_prop(const struct xattr_handler *handler,
398 struct user_namespace *mnt_userns,
399 struct dentry *unused, struct inode *inode,
400 const char *name, const void *value,
401 size_t size, int flags)
402{
403 int ret;
404 struct btrfs_trans_handle *trans;
405 struct btrfs_root *root = BTRFS_I(inode)->root;
406
407 name = xattr_full_name(handler, name);
408 ret = btrfs_validate_prop(name, value, size);
409 if (ret)
410 return ret;
411
412 trans = btrfs_start_transaction(root, 2);
413 if (IS_ERR(trans))
414 return PTR_ERR(trans);
415
416 ret = btrfs_set_prop(trans, inode, name, value, size, flags);
417 if (!ret) {
418 inode_inc_iversion(inode);
419 inode->i_ctime = current_time(inode);
420 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
421 BUG_ON(ret);
422 }
423
424 btrfs_end_transaction(trans);
425
426 return ret;
427}
428
429static const struct xattr_handler btrfs_security_xattr_handler = {
430 .prefix = XATTR_SECURITY_PREFIX,
431 .get = btrfs_xattr_handler_get,
432 .set = btrfs_xattr_handler_set,
433};
434
435static const struct xattr_handler btrfs_trusted_xattr_handler = {
436 .prefix = XATTR_TRUSTED_PREFIX,
437 .get = btrfs_xattr_handler_get,
438 .set = btrfs_xattr_handler_set,
439};
440
441static const struct xattr_handler btrfs_user_xattr_handler = {
442 .prefix = XATTR_USER_PREFIX,
443 .get = btrfs_xattr_handler_get,
444 .set = btrfs_xattr_handler_set,
445};
446
447static const struct xattr_handler btrfs_btrfs_xattr_handler = {
448 .prefix = XATTR_BTRFS_PREFIX,
449 .get = btrfs_xattr_handler_get,
450 .set = btrfs_xattr_handler_set_prop,
451};
452
453const struct xattr_handler *btrfs_xattr_handlers[] = {
454 &btrfs_security_xattr_handler,
455#ifdef CONFIG_BTRFS_FS_POSIX_ACL
456 &posix_acl_access_xattr_handler,
457 &posix_acl_default_xattr_handler,
458#endif
459 &btrfs_trusted_xattr_handler,
460 &btrfs_user_xattr_handler,
461 &btrfs_btrfs_xattr_handler,
462 NULL,
463};
464
465static int btrfs_initxattrs(struct inode *inode,
466 const struct xattr *xattr_array, void *fs_private)
467{
468 struct btrfs_trans_handle *trans = fs_private;
469 const struct xattr *xattr;
470 unsigned int nofs_flag;
471 char *name;
472 int err = 0;
473
474 /*
475 * We're holding a transaction handle, so use a NOFS memory allocation
476 * context to avoid deadlock if reclaim happens.
477 */
478 nofs_flag = memalloc_nofs_save();
479 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
480 name = kmalloc(XATTR_SECURITY_PREFIX_LEN +
481 strlen(xattr->name) + 1, GFP_KERNEL);
482 if (!name) {
483 err = -ENOMEM;
484 break;
485 }
486 strcpy(name, XATTR_SECURITY_PREFIX);
487 strcpy(name + XATTR_SECURITY_PREFIX_LEN, xattr->name);
488 err = btrfs_setxattr(trans, inode, name, xattr->value,
489 xattr->value_len, 0);
490 kfree(name);
491 if (err < 0)
492 break;
493 }
494 memalloc_nofs_restore(nofs_flag);
495 return err;
496}
497
498int btrfs_xattr_security_init(struct btrfs_trans_handle *trans,
499 struct inode *inode, struct inode *dir,
500 const struct qstr *qstr)
501{
502 return security_inode_init_security(inode, dir, qstr,
503 &btrfs_initxattrs, trans);
504}