Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include "linux/spinlock.h"
   4#include <linux/minmax.h>
   5#include "misc.h"
   6#include "ctree.h"
   7#include "space-info.h"
   8#include "sysfs.h"
   9#include "volumes.h"
  10#include "free-space-cache.h"
  11#include "ordered-data.h"
  12#include "transaction.h"
  13#include "block-group.h"
  14#include "fs.h"
  15#include "accessors.h"
  16#include "extent-tree.h"
  17
  18/*
  19 * HOW DOES SPACE RESERVATION WORK
  20 *
  21 * If you want to know about delalloc specifically, there is a separate comment
  22 * for that with the delalloc code.  This comment is about how the whole system
  23 * works generally.
  24 *
  25 * BASIC CONCEPTS
  26 *
  27 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
  28 *   There's a description of the bytes_ fields with the struct declaration,
  29 *   refer to that for specifics on each field.  Suffice it to say that for
  30 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
  31 *   determining if there is space to make an allocation.  There is a space_info
  32 *   for METADATA, SYSTEM, and DATA areas.
  33 *
  34 *   2) block_rsv's.  These are basically buckets for every different type of
  35 *   metadata reservation we have.  You can see the comment in the block_rsv
  36 *   code on the rules for each type, but generally block_rsv->reserved is how
  37 *   much space is accounted for in space_info->bytes_may_use.
  38 *
  39 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
  40 *   on the number of items we will want to modify.  We have one for changing
  41 *   items, and one for inserting new items.  Generally we use these helpers to
  42 *   determine the size of the block reserves, and then use the actual bytes
  43 *   values to adjust the space_info counters.
  44 *
  45 * MAKING RESERVATIONS, THE NORMAL CASE
  46 *
  47 *   We call into either btrfs_reserve_data_bytes() or
  48 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
  49 *   num_bytes we want to reserve.
  50 *
  51 *   ->reserve
  52 *     space_info->bytes_may_reserve += num_bytes
  53 *
  54 *   ->extent allocation
  55 *     Call btrfs_add_reserved_bytes() which does
  56 *     space_info->bytes_may_reserve -= num_bytes
  57 *     space_info->bytes_reserved += extent_bytes
  58 *
  59 *   ->insert reference
  60 *     Call btrfs_update_block_group() which does
  61 *     space_info->bytes_reserved -= extent_bytes
  62 *     space_info->bytes_used += extent_bytes
  63 *
  64 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
  65 *
  66 *   Assume we are unable to simply make the reservation because we do not have
  67 *   enough space
  68 *
  69 *   -> __reserve_bytes
  70 *     create a reserve_ticket with ->bytes set to our reservation, add it to
  71 *     the tail of space_info->tickets, kick async flush thread
  72 *
  73 *   ->handle_reserve_ticket
  74 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
  75 *     on the ticket.
  76 *
  77 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
  78 *     Flushes various things attempting to free up space.
  79 *
  80 *   -> btrfs_try_granting_tickets()
  81 *     This is called by anything that either subtracts space from
  82 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
  83 *     space_info->total_bytes.  This loops through the ->priority_tickets and
  84 *     then the ->tickets list checking to see if the reservation can be
  85 *     completed.  If it can the space is added to space_info->bytes_may_use and
  86 *     the ticket is woken up.
  87 *
  88 *   -> ticket wakeup
  89 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
  90 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
  91 *     were interrupted.)
  92 *
  93 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
  94 *
  95 *   Same as the above, except we add ourselves to the
  96 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
  97 *   call flush_space() ourselves for the states that are safe for us to call
  98 *   without deadlocking and hope for the best.
  99 *
 100 * THE FLUSHING STATES
 101 *
 102 *   Generally speaking we will have two cases for each state, a "nice" state
 103 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
 104 *   reduce the locking over head on the various trees, and even to keep from
 105 *   doing any work at all in the case of delayed refs.  Each of these delayed
 106 *   things however hold reservations, and so letting them run allows us to
 107 *   reclaim space so we can make new reservations.
 108 *
 109 *   FLUSH_DELAYED_ITEMS
 110 *     Every inode has a delayed item to update the inode.  Take a simple write
 111 *     for example, we would update the inode item at write time to update the
 112 *     mtime, and then again at finish_ordered_io() time in order to update the
 113 *     isize or bytes.  We keep these delayed items to coalesce these operations
 114 *     into a single operation done on demand.  These are an easy way to reclaim
 115 *     metadata space.
 116 *
 117 *   FLUSH_DELALLOC
 118 *     Look at the delalloc comment to get an idea of how much space is reserved
 119 *     for delayed allocation.  We can reclaim some of this space simply by
 120 *     running delalloc, but usually we need to wait for ordered extents to
 121 *     reclaim the bulk of this space.
 122 *
 123 *   FLUSH_DELAYED_REFS
 124 *     We have a block reserve for the outstanding delayed refs space, and every
 125 *     delayed ref operation holds a reservation.  Running these is a quick way
 126 *     to reclaim space, but we want to hold this until the end because COW can
 127 *     churn a lot and we can avoid making some extent tree modifications if we
 128 *     are able to delay for as long as possible.
 129 *
 130 *   ALLOC_CHUNK
 131 *     We will skip this the first time through space reservation, because of
 132 *     overcommit and we don't want to have a lot of useless metadata space when
 133 *     our worst case reservations will likely never come true.
 134 *
 135 *   RUN_DELAYED_IPUTS
 136 *     If we're freeing inodes we're likely freeing checksums, file extent
 137 *     items, and extent tree items.  Loads of space could be freed up by these
 138 *     operations, however they won't be usable until the transaction commits.
 139 *
 140 *   COMMIT_TRANS
 141 *     This will commit the transaction.  Historically we had a lot of logic
 142 *     surrounding whether or not we'd commit the transaction, but this waits born
 143 *     out of a pre-tickets era where we could end up committing the transaction
 144 *     thousands of times in a row without making progress.  Now thanks to our
 145 *     ticketing system we know if we're not making progress and can error
 146 *     everybody out after a few commits rather than burning the disk hoping for
 147 *     a different answer.
 148 *
 149 * OVERCOMMIT
 150 *
 151 *   Because we hold so many reservations for metadata we will allow you to
 152 *   reserve more space than is currently free in the currently allocate
 153 *   metadata space.  This only happens with metadata, data does not allow
 154 *   overcommitting.
 155 *
 156 *   You can see the current logic for when we allow overcommit in
 157 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 158 *   is no unallocated space to be had, all reservations are kept within the
 159 *   free space in the allocated metadata chunks.
 160 *
 161 *   Because of overcommitting, you generally want to use the
 162 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 163 *   thing with or without extra unallocated space.
 164 */
 165
 166u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info,
 167			  bool may_use_included)
 168{
 169	ASSERT(s_info);
 170	return s_info->bytes_used + s_info->bytes_reserved +
 171		s_info->bytes_pinned + s_info->bytes_readonly +
 172		s_info->bytes_zone_unusable +
 173		(may_use_included ? s_info->bytes_may_use : 0);
 174}
 175
 176/*
 177 * after adding space to the filesystem, we need to clear the full flags
 178 * on all the space infos.
 179 */
 180void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 181{
 182	struct list_head *head = &info->space_info;
 183	struct btrfs_space_info *found;
 184
 185	list_for_each_entry(found, head, list)
 186		found->full = 0;
 187}
 188
 189/*
 190 * Block groups with more than this value (percents) of unusable space will be
 191 * scheduled for background reclaim.
 192 */
 193#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
 194
 195#define BTRFS_UNALLOC_BLOCK_GROUP_TARGET			(10ULL)
 196
 197/*
 198 * Calculate chunk size depending on volume type (regular or zoned).
 199 */
 200static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
 201{
 202	if (btrfs_is_zoned(fs_info))
 203		return fs_info->zone_size;
 204
 205	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
 206
 207	if (flags & BTRFS_BLOCK_GROUP_DATA)
 208		return BTRFS_MAX_DATA_CHUNK_SIZE;
 209	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
 210		return SZ_32M;
 211
 212	/* Handle BTRFS_BLOCK_GROUP_METADATA */
 213	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
 214		return SZ_1G;
 215
 216	return SZ_256M;
 217}
 218
 219/*
 220 * Update default chunk size.
 221 */
 222void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
 223					u64 chunk_size)
 224{
 225	WRITE_ONCE(space_info->chunk_size, chunk_size);
 226}
 227
 228static int create_space_info(struct btrfs_fs_info *info, u64 flags)
 229{
 230
 231	struct btrfs_space_info *space_info;
 232	int i;
 233	int ret;
 234
 235	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
 236	if (!space_info)
 237		return -ENOMEM;
 238
 239	space_info->fs_info = info;
 240	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 241		INIT_LIST_HEAD(&space_info->block_groups[i]);
 242	init_rwsem(&space_info->groups_sem);
 243	spin_lock_init(&space_info->lock);
 244	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 245	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 246	INIT_LIST_HEAD(&space_info->ro_bgs);
 247	INIT_LIST_HEAD(&space_info->tickets);
 248	INIT_LIST_HEAD(&space_info->priority_tickets);
 249	space_info->clamp = 1;
 250	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
 251
 252	if (btrfs_is_zoned(info))
 253		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
 254
 255	ret = btrfs_sysfs_add_space_info_type(info, space_info);
 256	if (ret)
 257		return ret;
 258
 259	list_add(&space_info->list, &info->space_info);
 260	if (flags & BTRFS_BLOCK_GROUP_DATA)
 261		info->data_sinfo = space_info;
 262
 263	return ret;
 264}
 265
 266int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 267{
 268	struct btrfs_super_block *disk_super;
 269	u64 features;
 270	u64 flags;
 271	int mixed = 0;
 272	int ret;
 273
 274	disk_super = fs_info->super_copy;
 275	if (!btrfs_super_root(disk_super))
 276		return -EINVAL;
 277
 278	features = btrfs_super_incompat_flags(disk_super);
 279	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 280		mixed = 1;
 281
 282	flags = BTRFS_BLOCK_GROUP_SYSTEM;
 283	ret = create_space_info(fs_info, flags);
 284	if (ret)
 285		goto out;
 286
 287	if (mixed) {
 288		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 289		ret = create_space_info(fs_info, flags);
 290	} else {
 291		flags = BTRFS_BLOCK_GROUP_METADATA;
 292		ret = create_space_info(fs_info, flags);
 293		if (ret)
 294			goto out;
 295
 296		flags = BTRFS_BLOCK_GROUP_DATA;
 297		ret = create_space_info(fs_info, flags);
 298	}
 299out:
 300	return ret;
 301}
 302
 303void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
 304				struct btrfs_block_group *block_group)
 
 
 305{
 306	struct btrfs_space_info *found;
 307	int factor, index;
 308
 309	factor = btrfs_bg_type_to_factor(block_group->flags);
 310
 311	found = btrfs_find_space_info(info, block_group->flags);
 312	ASSERT(found);
 313	spin_lock(&found->lock);
 314	found->total_bytes += block_group->length;
 315	found->disk_total += block_group->length * factor;
 316	found->bytes_used += block_group->used;
 317	found->disk_used += block_group->used * factor;
 318	found->bytes_readonly += block_group->bytes_super;
 319	btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable);
 320	if (block_group->length > 0)
 321		found->full = 0;
 322	btrfs_try_granting_tickets(info, found);
 323	spin_unlock(&found->lock);
 324
 325	block_group->space_info = found;
 326
 327	index = btrfs_bg_flags_to_raid_index(block_group->flags);
 328	down_write(&found->groups_sem);
 329	list_add_tail(&block_group->list, &found->block_groups[index]);
 330	up_write(&found->groups_sem);
 331}
 332
 333struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 334					       u64 flags)
 335{
 336	struct list_head *head = &info->space_info;
 337	struct btrfs_space_info *found;
 338
 339	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 340
 341	list_for_each_entry(found, head, list) {
 342		if (found->flags & flags)
 343			return found;
 344	}
 345	return NULL;
 346}
 347
 348static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
 349{
 350	struct btrfs_space_info *data_sinfo;
 351	u64 data_chunk_size;
 352
 353	/*
 354	 * Calculate the data_chunk_size, space_info->chunk_size is the
 355	 * "optimal" chunk size based on the fs size.  However when we actually
 356	 * allocate the chunk we will strip this down further, making it no
 357	 * more than 10% of the disk or 1G, whichever is smaller.
 358	 *
 359	 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
 360	 * as it is.
 361	 */
 362	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
 363	if (btrfs_is_zoned(fs_info))
 364		return data_sinfo->chunk_size;
 365	data_chunk_size = min(data_sinfo->chunk_size,
 366			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
 367	return min_t(u64, data_chunk_size, SZ_1G);
 368}
 369
 370static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
 371			  const struct btrfs_space_info *space_info,
 372			  enum btrfs_reserve_flush_enum flush)
 373{
 374	u64 profile;
 375	u64 avail;
 376	u64 data_chunk_size;
 377	int factor;
 378
 379	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 380		profile = btrfs_system_alloc_profile(fs_info);
 381	else
 382		profile = btrfs_metadata_alloc_profile(fs_info);
 383
 384	avail = atomic64_read(&fs_info->free_chunk_space);
 385
 386	/*
 387	 * If we have dup, raid1 or raid10 then only half of the free
 388	 * space is actually usable.  For raid56, the space info used
 389	 * doesn't include the parity drive, so we don't have to
 390	 * change the math
 391	 */
 392	factor = btrfs_bg_type_to_factor(profile);
 393	avail = div_u64(avail, factor);
 394	if (avail == 0)
 395		return 0;
 396
 397	data_chunk_size = calc_effective_data_chunk_size(fs_info);
 398
 399	/*
 400	 * Since data allocations immediately use block groups as part of the
 401	 * reservation, because we assume that data reservations will == actual
 402	 * usage, we could potentially overcommit and then immediately have that
 403	 * available space used by a data allocation, which could put us in a
 404	 * bind when we get close to filling the file system.
 405	 *
 406	 * To handle this simply remove the data_chunk_size from the available
 407	 * space.  If we are relatively empty this won't affect our ability to
 408	 * overcommit much, and if we're very close to full it'll keep us from
 409	 * getting into a position where we've given ourselves very little
 410	 * metadata wiggle room.
 411	 */
 412	if (avail <= data_chunk_size)
 413		return 0;
 414	avail -= data_chunk_size;
 415
 416	/*
 417	 * If we aren't flushing all things, let us overcommit up to
 418	 * 1/2th of the space. If we can flush, don't let us overcommit
 419	 * too much, let it overcommit up to 1/8 of the space.
 420	 */
 421	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 422		avail >>= 3;
 423	else
 424		avail >>= 1;
 425
 426	/*
 427	 * On the zoned mode, we always allocate one zone as one chunk.
 428	 * Returning non-zone size alingned bytes here will result in
 429	 * less pressure for the async metadata reclaim process, and it
 430	 * will over-commit too much leading to ENOSPC. Align down to the
 431	 * zone size to avoid that.
 432	 */
 433	if (btrfs_is_zoned(fs_info))
 434		avail = ALIGN_DOWN(avail, fs_info->zone_size);
 435
 436	return avail;
 437}
 438
 439int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
 440			 const struct btrfs_space_info *space_info, u64 bytes,
 441			 enum btrfs_reserve_flush_enum flush)
 442{
 443	u64 avail;
 444	u64 used;
 445
 446	/* Don't overcommit when in mixed mode */
 447	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 448		return 0;
 449
 450	used = btrfs_space_info_used(space_info, true);
 451	avail = calc_available_free_space(fs_info, space_info, flush);
 452
 453	if (used + bytes < space_info->total_bytes + avail)
 454		return 1;
 455	return 0;
 456}
 457
 458static void remove_ticket(struct btrfs_space_info *space_info,
 459			  struct reserve_ticket *ticket)
 460{
 461	if (!list_empty(&ticket->list)) {
 462		list_del_init(&ticket->list);
 463		ASSERT(space_info->reclaim_size >= ticket->bytes);
 464		space_info->reclaim_size -= ticket->bytes;
 465	}
 466}
 467
 468/*
 469 * This is for space we already have accounted in space_info->bytes_may_use, so
 470 * basically when we're returning space from block_rsv's.
 471 */
 472void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 473				struct btrfs_space_info *space_info)
 474{
 475	struct list_head *head;
 476	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 477
 478	lockdep_assert_held(&space_info->lock);
 479
 480	head = &space_info->priority_tickets;
 481again:
 482	while (!list_empty(head)) {
 483		struct reserve_ticket *ticket;
 484		u64 used = btrfs_space_info_used(space_info, true);
 485
 486		ticket = list_first_entry(head, struct reserve_ticket, list);
 487
 488		/* Check and see if our ticket can be satisfied now. */
 489		if ((used + ticket->bytes <= space_info->total_bytes) ||
 490		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
 491					 flush)) {
 492			btrfs_space_info_update_bytes_may_use(fs_info,
 493							      space_info,
 494							      ticket->bytes);
 495			remove_ticket(space_info, ticket);
 496			ticket->bytes = 0;
 497			space_info->tickets_id++;
 498			wake_up(&ticket->wait);
 499		} else {
 500			break;
 501		}
 502	}
 503
 504	if (head == &space_info->priority_tickets) {
 505		head = &space_info->tickets;
 506		flush = BTRFS_RESERVE_FLUSH_ALL;
 507		goto again;
 508	}
 509}
 510
 511#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 512do {									\
 513	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 514	spin_lock(&__rsv->lock);					\
 515	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 516		   __rsv->size, __rsv->reserved);			\
 517	spin_unlock(&__rsv->lock);					\
 518} while (0)
 519
 520static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
 
 521{
 522	switch (space_info->flags) {
 523	case BTRFS_BLOCK_GROUP_SYSTEM:
 524		return "SYSTEM";
 525	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
 526		return "DATA+METADATA";
 527	case BTRFS_BLOCK_GROUP_DATA:
 528		return "DATA";
 529	case BTRFS_BLOCK_GROUP_METADATA:
 530		return "METADATA";
 531	default:
 532		return "UNKNOWN";
 533	}
 534}
 535
 536static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
 537{
 538	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 539	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 540	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 541	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 542	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 543}
 544
 545static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info,
 546				    const struct btrfs_space_info *info)
 547{
 548	const char *flag_str = space_info_flag_to_str(info);
 549	lockdep_assert_held(&info->lock);
 550
 551	/* The free space could be negative in case of overcommit */
 552	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
 553		   flag_str,
 554		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
 555		   info->full ? "" : "not ");
 556	btrfs_info(fs_info,
 557"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
 558		info->total_bytes, info->bytes_used, info->bytes_pinned,
 559		info->bytes_reserved, info->bytes_may_use,
 560		info->bytes_readonly, info->bytes_zone_unusable);
 
 
 
 
 
 
 
 561}
 562
 563void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 564			   struct btrfs_space_info *info, u64 bytes,
 565			   int dump_block_groups)
 566{
 567	struct btrfs_block_group *cache;
 568	u64 total_avail = 0;
 569	int index = 0;
 570
 571	spin_lock(&info->lock);
 572	__btrfs_dump_space_info(fs_info, info);
 573	dump_global_block_rsv(fs_info);
 574	spin_unlock(&info->lock);
 575
 576	if (!dump_block_groups)
 577		return;
 578
 579	down_read(&info->groups_sem);
 580again:
 581	list_for_each_entry(cache, &info->block_groups[index], list) {
 582		u64 avail;
 583
 584		spin_lock(&cache->lock);
 585		avail = cache->length - cache->used - cache->pinned -
 586			cache->reserved - cache->bytes_super - cache->zone_unusable;
 587		btrfs_info(fs_info,
 588"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
 589			   cache->start, cache->length, cache->used, cache->pinned,
 590			   cache->reserved, cache->delalloc_bytes,
 591			   cache->bytes_super, cache->zone_unusable,
 592			   avail, cache->ro ? "[readonly]" : "");
 593		spin_unlock(&cache->lock);
 594		btrfs_dump_free_space(cache, bytes);
 595		total_avail += avail;
 596	}
 597	if (++index < BTRFS_NR_RAID_TYPES)
 598		goto again;
 599	up_read(&info->groups_sem);
 600
 601	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
 602}
 603
 604static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
 605					u64 to_reclaim)
 606{
 607	u64 bytes;
 608	u64 nr;
 609
 610	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 611	nr = div64_u64(to_reclaim, bytes);
 612	if (!nr)
 613		nr = 1;
 614	return nr;
 615}
 616
 
 
 617/*
 618 * shrink metadata reservation for delalloc
 619 */
 620static void shrink_delalloc(struct btrfs_fs_info *fs_info,
 621			    struct btrfs_space_info *space_info,
 622			    u64 to_reclaim, bool wait_ordered,
 623			    bool for_preempt)
 624{
 625	struct btrfs_trans_handle *trans;
 626	u64 delalloc_bytes;
 627	u64 ordered_bytes;
 628	u64 items;
 629	long time_left;
 630	int loops;
 631
 632	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
 633	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
 634	if (delalloc_bytes == 0 && ordered_bytes == 0)
 635		return;
 636
 637	/* Calc the number of the pages we need flush for space reservation */
 638	if (to_reclaim == U64_MAX) {
 639		items = U64_MAX;
 640	} else {
 641		/*
 642		 * to_reclaim is set to however much metadata we need to
 643		 * reclaim, but reclaiming that much data doesn't really track
 644		 * exactly.  What we really want to do is reclaim full inode's
 645		 * worth of reservations, however that's not available to us
 646		 * here.  We will take a fraction of the delalloc bytes for our
 647		 * flushing loops and hope for the best.  Delalloc will expand
 648		 * the amount we write to cover an entire dirty extent, which
 649		 * will reclaim the metadata reservation for that range.  If
 650		 * it's not enough subsequent flush stages will be more
 651		 * aggressive.
 652		 */
 653		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
 654		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
 655	}
 656
 657	trans = current->journal_info;
 658
 659	/*
 660	 * If we are doing more ordered than delalloc we need to just wait on
 661	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 662	 * that likely won't give us the space back we need.
 663	 */
 664	if (ordered_bytes > delalloc_bytes && !for_preempt)
 665		wait_ordered = true;
 666
 667	loops = 0;
 668	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
 669		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 670		long nr_pages = min_t(u64, temp, LONG_MAX);
 671		int async_pages;
 672
 673		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
 674
 675		/*
 676		 * We need to make sure any outstanding async pages are now
 677		 * processed before we continue.  This is because things like
 678		 * sync_inode() try to be smart and skip writing if the inode is
 679		 * marked clean.  We don't use filemap_fwrite for flushing
 680		 * because we want to control how many pages we write out at a
 681		 * time, thus this is the only safe way to make sure we've
 682		 * waited for outstanding compressed workers to have started
 683		 * their jobs and thus have ordered extents set up properly.
 684		 *
 685		 * This exists because we do not want to wait for each
 686		 * individual inode to finish its async work, we simply want to
 687		 * start the IO on everybody, and then come back here and wait
 688		 * for all of the async work to catch up.  Once we're done with
 689		 * that we know we'll have ordered extents for everything and we
 690		 * can decide if we wait for that or not.
 691		 *
 692		 * If we choose to replace this in the future, make absolutely
 693		 * sure that the proper waiting is being done in the async case,
 694		 * as there have been bugs in that area before.
 695		 */
 696		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 697		if (!async_pages)
 698			goto skip_async;
 699
 700		/*
 701		 * We don't want to wait forever, if we wrote less pages in this
 702		 * loop than we have outstanding, only wait for that number of
 703		 * pages, otherwise we can wait for all async pages to finish
 704		 * before continuing.
 705		 */
 706		if (async_pages > nr_pages)
 707			async_pages -= nr_pages;
 708		else
 709			async_pages = 0;
 710		wait_event(fs_info->async_submit_wait,
 711			   atomic_read(&fs_info->async_delalloc_pages) <=
 712			   async_pages);
 713skip_async:
 714		loops++;
 715		if (wait_ordered && !trans) {
 716			btrfs_wait_ordered_roots(fs_info, items, NULL);
 717		} else {
 718			time_left = schedule_timeout_killable(1);
 719			if (time_left)
 720				break;
 721		}
 722
 723		/*
 724		 * If we are for preemption we just want a one-shot of delalloc
 725		 * flushing so we can stop flushing if we decide we don't need
 726		 * to anymore.
 727		 */
 728		if (for_preempt)
 729			break;
 730
 731		spin_lock(&space_info->lock);
 732		if (list_empty(&space_info->tickets) &&
 733		    list_empty(&space_info->priority_tickets)) {
 734			spin_unlock(&space_info->lock);
 735			break;
 736		}
 737		spin_unlock(&space_info->lock);
 738
 739		delalloc_bytes = percpu_counter_sum_positive(
 740						&fs_info->delalloc_bytes);
 741		ordered_bytes = percpu_counter_sum_positive(
 742						&fs_info->ordered_bytes);
 743	}
 744}
 745
 746/*
 747 * Try to flush some data based on policy set by @state. This is only advisory
 748 * and may fail for various reasons. The caller is supposed to examine the
 749 * state of @space_info to detect the outcome.
 750 */
 751static void flush_space(struct btrfs_fs_info *fs_info,
 752		       struct btrfs_space_info *space_info, u64 num_bytes,
 753		       enum btrfs_flush_state state, bool for_preempt)
 754{
 755	struct btrfs_root *root = fs_info->tree_root;
 756	struct btrfs_trans_handle *trans;
 757	int nr;
 758	int ret = 0;
 759
 760	switch (state) {
 761	case FLUSH_DELAYED_ITEMS_NR:
 762	case FLUSH_DELAYED_ITEMS:
 763		if (state == FLUSH_DELAYED_ITEMS_NR)
 764			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 765		else
 766			nr = -1;
 767
 768		trans = btrfs_join_transaction_nostart(root);
 769		if (IS_ERR(trans)) {
 770			ret = PTR_ERR(trans);
 771			if (ret == -ENOENT)
 772				ret = 0;
 773			break;
 774		}
 775		ret = btrfs_run_delayed_items_nr(trans, nr);
 776		btrfs_end_transaction(trans);
 777		break;
 778	case FLUSH_DELALLOC:
 779	case FLUSH_DELALLOC_WAIT:
 780	case FLUSH_DELALLOC_FULL:
 781		if (state == FLUSH_DELALLOC_FULL)
 782			num_bytes = U64_MAX;
 783		shrink_delalloc(fs_info, space_info, num_bytes,
 784				state != FLUSH_DELALLOC, for_preempt);
 785		break;
 786	case FLUSH_DELAYED_REFS_NR:
 787	case FLUSH_DELAYED_REFS:
 788		trans = btrfs_join_transaction_nostart(root);
 789		if (IS_ERR(trans)) {
 790			ret = PTR_ERR(trans);
 791			if (ret == -ENOENT)
 792				ret = 0;
 793			break;
 794		}
 795		if (state == FLUSH_DELAYED_REFS_NR)
 796			btrfs_run_delayed_refs(trans, num_bytes);
 797		else
 798			btrfs_run_delayed_refs(trans, 0);
 
 799		btrfs_end_transaction(trans);
 800		break;
 801	case ALLOC_CHUNK:
 802	case ALLOC_CHUNK_FORCE:
 803		trans = btrfs_join_transaction(root);
 804		if (IS_ERR(trans)) {
 805			ret = PTR_ERR(trans);
 806			break;
 807		}
 808		ret = btrfs_chunk_alloc(trans,
 809				btrfs_get_alloc_profile(fs_info, space_info->flags),
 810				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 811					CHUNK_ALLOC_FORCE);
 812		btrfs_end_transaction(trans);
 813
 814		if (ret > 0 || ret == -ENOSPC)
 815			ret = 0;
 816		break;
 817	case RUN_DELAYED_IPUTS:
 818		/*
 819		 * If we have pending delayed iputs then we could free up a
 820		 * bunch of pinned space, so make sure we run the iputs before
 821		 * we do our pinned bytes check below.
 822		 */
 823		btrfs_run_delayed_iputs(fs_info);
 824		btrfs_wait_on_delayed_iputs(fs_info);
 825		break;
 826	case COMMIT_TRANS:
 827		ASSERT(current->journal_info == NULL);
 828		/*
 829		 * We don't want to start a new transaction, just attach to the
 830		 * current one or wait it fully commits in case its commit is
 831		 * happening at the moment. Note: we don't use a nostart join
 832		 * because that does not wait for a transaction to fully commit
 833		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
 834		 */
 835		ret = btrfs_commit_current_transaction(root);
 836		break;
 837	default:
 838		ret = -ENOSPC;
 839		break;
 840	}
 841
 842	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 843				ret, for_preempt);
 844	return;
 845}
 846
 847static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 848					    const struct btrfs_space_info *space_info)
 
 849{
 850	u64 used;
 851	u64 avail;
 852	u64 to_reclaim = space_info->reclaim_size;
 853
 854	lockdep_assert_held(&space_info->lock);
 855
 856	avail = calc_available_free_space(fs_info, space_info,
 857					  BTRFS_RESERVE_FLUSH_ALL);
 858	used = btrfs_space_info_used(space_info, true);
 859
 860	/*
 861	 * We may be flushing because suddenly we have less space than we had
 862	 * before, and now we're well over-committed based on our current free
 863	 * space.  If that's the case add in our overage so we make sure to put
 864	 * appropriate pressure on the flushing state machine.
 865	 */
 866	if (space_info->total_bytes + avail < used)
 867		to_reclaim += used - (space_info->total_bytes + avail);
 868
 869	return to_reclaim;
 870}
 871
 872static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
 873				    const struct btrfs_space_info *space_info)
 874{
 875	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
 876	u64 ordered, delalloc;
 877	u64 thresh;
 878	u64 used;
 879
 880	thresh = mult_perc(space_info->total_bytes, 90);
 881
 882	lockdep_assert_held(&space_info->lock);
 883
 884	/* If we're just plain full then async reclaim just slows us down. */
 885	if ((space_info->bytes_used + space_info->bytes_reserved +
 886	     global_rsv_size) >= thresh)
 887		return false;
 888
 889	used = space_info->bytes_may_use + space_info->bytes_pinned;
 890
 891	/* The total flushable belongs to the global rsv, don't flush. */
 892	if (global_rsv_size >= used)
 893		return false;
 894
 895	/*
 896	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
 897	 * that devoted to other reservations then there's no sense in flushing,
 898	 * we don't have a lot of things that need flushing.
 899	 */
 900	if (used - global_rsv_size <= SZ_128M)
 901		return false;
 902
 903	/*
 904	 * We have tickets queued, bail so we don't compete with the async
 905	 * flushers.
 906	 */
 907	if (space_info->reclaim_size)
 908		return false;
 909
 910	/*
 911	 * If we have over half of the free space occupied by reservations or
 912	 * pinned then we want to start flushing.
 913	 *
 914	 * We do not do the traditional thing here, which is to say
 915	 *
 916	 *   if (used >= ((total_bytes + avail) / 2))
 917	 *     return 1;
 918	 *
 919	 * because this doesn't quite work how we want.  If we had more than 50%
 920	 * of the space_info used by bytes_used and we had 0 available we'd just
 921	 * constantly run the background flusher.  Instead we want it to kick in
 922	 * if our reclaimable space exceeds our clamped free space.
 923	 *
 924	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
 925	 * the following:
 926	 *
 927	 * Amount of RAM        Minimum threshold       Maximum threshold
 928	 *
 929	 *        256GiB                     1GiB                  128GiB
 930	 *        128GiB                   512MiB                   64GiB
 931	 *         64GiB                   256MiB                   32GiB
 932	 *         32GiB                   128MiB                   16GiB
 933	 *         16GiB                    64MiB                    8GiB
 934	 *
 935	 * These are the range our thresholds will fall in, corresponding to how
 936	 * much delalloc we need for the background flusher to kick in.
 937	 */
 938
 939	thresh = calc_available_free_space(fs_info, space_info,
 940					   BTRFS_RESERVE_FLUSH_ALL);
 941	used = space_info->bytes_used + space_info->bytes_reserved +
 942	       space_info->bytes_readonly + global_rsv_size;
 943	if (used < space_info->total_bytes)
 944		thresh += space_info->total_bytes - used;
 945	thresh >>= space_info->clamp;
 946
 947	used = space_info->bytes_pinned;
 948
 949	/*
 950	 * If we have more ordered bytes than delalloc bytes then we're either
 951	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
 952	 * around.  Preemptive flushing is only useful in that it can free up
 953	 * space before tickets need to wait for things to finish.  In the case
 954	 * of ordered extents, preemptively waiting on ordered extents gets us
 955	 * nothing, if our reservations are tied up in ordered extents we'll
 956	 * simply have to slow down writers by forcing them to wait on ordered
 957	 * extents.
 958	 *
 959	 * In the case that ordered is larger than delalloc, only include the
 960	 * block reserves that we would actually be able to directly reclaim
 961	 * from.  In this case if we're heavy on metadata operations this will
 962	 * clearly be heavy enough to warrant preemptive flushing.  In the case
 963	 * of heavy DIO or ordered reservations, preemptive flushing will just
 964	 * waste time and cause us to slow down.
 965	 *
 966	 * We want to make sure we truly are maxed out on ordered however, so
 967	 * cut ordered in half, and if it's still higher than delalloc then we
 968	 * can keep flushing.  This is to avoid the case where we start
 969	 * flushing, and now delalloc == ordered and we stop preemptively
 970	 * flushing when we could still have several gigs of delalloc to flush.
 971	 */
 972	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
 973	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
 974	if (ordered >= delalloc)
 975		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
 976			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
 977	else
 978		used += space_info->bytes_may_use - global_rsv_size;
 979
 980	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 981		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 982}
 983
 984static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
 985				  struct btrfs_space_info *space_info,
 986				  struct reserve_ticket *ticket)
 987{
 988	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 989	u64 min_bytes;
 990
 991	if (!ticket->steal)
 992		return false;
 993
 994	if (global_rsv->space_info != space_info)
 995		return false;
 996
 997	spin_lock(&global_rsv->lock);
 998	min_bytes = mult_perc(global_rsv->size, 10);
 999	if (global_rsv->reserved < min_bytes + ticket->bytes) {
1000		spin_unlock(&global_rsv->lock);
1001		return false;
1002	}
1003	global_rsv->reserved -= ticket->bytes;
1004	remove_ticket(space_info, ticket);
1005	ticket->bytes = 0;
1006	wake_up(&ticket->wait);
1007	space_info->tickets_id++;
1008	if (global_rsv->reserved < global_rsv->size)
1009		global_rsv->full = 0;
1010	spin_unlock(&global_rsv->lock);
1011
1012	return true;
1013}
1014
1015/*
1016 * We've exhausted our flushing, start failing tickets.
1017 *
1018 * @fs_info - fs_info for this fs
1019 * @space_info - the space info we were flushing
1020 *
1021 * We call this when we've exhausted our flushing ability and haven't made
1022 * progress in satisfying tickets.  The reservation code handles tickets in
1023 * order, so if there is a large ticket first and then smaller ones we could
1024 * very well satisfy the smaller tickets.  This will attempt to wake up any
1025 * tickets in the list to catch this case.
1026 *
1027 * This function returns true if it was able to make progress by clearing out
1028 * other tickets, or if it stumbles across a ticket that was smaller than the
1029 * first ticket.
1030 */
1031static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1032				   struct btrfs_space_info *space_info)
1033{
1034	struct reserve_ticket *ticket;
1035	u64 tickets_id = space_info->tickets_id;
1036	const bool aborted = BTRFS_FS_ERROR(fs_info);
1037
1038	trace_btrfs_fail_all_tickets(fs_info, space_info);
1039
1040	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1041		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1042		__btrfs_dump_space_info(fs_info, space_info);
1043	}
1044
1045	while (!list_empty(&space_info->tickets) &&
1046	       tickets_id == space_info->tickets_id) {
1047		ticket = list_first_entry(&space_info->tickets,
1048					  struct reserve_ticket, list);
1049
1050		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
 
1051			return true;
1052
1053		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1054			btrfs_info(fs_info, "failing ticket with %llu bytes",
1055				   ticket->bytes);
1056
1057		remove_ticket(space_info, ticket);
1058		if (aborted)
1059			ticket->error = -EIO;
1060		else
1061			ticket->error = -ENOSPC;
1062		wake_up(&ticket->wait);
1063
1064		/*
1065		 * We're just throwing tickets away, so more flushing may not
1066		 * trip over btrfs_try_granting_tickets, so we need to call it
1067		 * here to see if we can make progress with the next ticket in
1068		 * the list.
1069		 */
1070		if (!aborted)
1071			btrfs_try_granting_tickets(fs_info, space_info);
1072	}
1073	return (tickets_id != space_info->tickets_id);
1074}
1075
1076/*
1077 * This is for normal flushers, we can wait all goddamned day if we want to.  We
1078 * will loop and continuously try to flush as long as we are making progress.
1079 * We count progress as clearing off tickets each time we have to loop.
1080 */
1081static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1082{
1083	struct btrfs_fs_info *fs_info;
1084	struct btrfs_space_info *space_info;
1085	u64 to_reclaim;
1086	enum btrfs_flush_state flush_state;
1087	int commit_cycles = 0;
1088	u64 last_tickets_id;
1089
1090	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1091	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1092
1093	spin_lock(&space_info->lock);
1094	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1095	if (!to_reclaim) {
1096		space_info->flush = 0;
1097		spin_unlock(&space_info->lock);
1098		return;
1099	}
1100	last_tickets_id = space_info->tickets_id;
1101	spin_unlock(&space_info->lock);
1102
1103	flush_state = FLUSH_DELAYED_ITEMS_NR;
1104	do {
1105		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1106		spin_lock(&space_info->lock);
1107		if (list_empty(&space_info->tickets)) {
1108			space_info->flush = 0;
1109			spin_unlock(&space_info->lock);
1110			return;
1111		}
1112		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1113							      space_info);
1114		if (last_tickets_id == space_info->tickets_id) {
1115			flush_state++;
1116		} else {
1117			last_tickets_id = space_info->tickets_id;
1118			flush_state = FLUSH_DELAYED_ITEMS_NR;
1119			if (commit_cycles)
1120				commit_cycles--;
1121		}
1122
1123		/*
1124		 * We do not want to empty the system of delalloc unless we're
1125		 * under heavy pressure, so allow one trip through the flushing
1126		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1127		 */
1128		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1129			flush_state++;
1130
1131		/*
1132		 * We don't want to force a chunk allocation until we've tried
1133		 * pretty hard to reclaim space.  Think of the case where we
1134		 * freed up a bunch of space and so have a lot of pinned space
1135		 * to reclaim.  We would rather use that than possibly create a
1136		 * underutilized metadata chunk.  So if this is our first run
1137		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1138		 * commit the transaction.  If nothing has changed the next go
1139		 * around then we can force a chunk allocation.
1140		 */
1141		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1142			flush_state++;
1143
1144		if (flush_state > COMMIT_TRANS) {
1145			commit_cycles++;
1146			if (commit_cycles > 2) {
1147				if (maybe_fail_all_tickets(fs_info, space_info)) {
1148					flush_state = FLUSH_DELAYED_ITEMS_NR;
1149					commit_cycles--;
1150				} else {
1151					space_info->flush = 0;
1152				}
1153			} else {
1154				flush_state = FLUSH_DELAYED_ITEMS_NR;
1155			}
1156		}
1157		spin_unlock(&space_info->lock);
1158	} while (flush_state <= COMMIT_TRANS);
1159}
1160
1161/*
1162 * This handles pre-flushing of metadata space before we get to the point that
1163 * we need to start blocking threads on tickets.  The logic here is different
1164 * from the other flush paths because it doesn't rely on tickets to tell us how
1165 * much we need to flush, instead it attempts to keep us below the 80% full
1166 * watermark of space by flushing whichever reservation pool is currently the
1167 * largest.
1168 */
1169static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1170{
1171	struct btrfs_fs_info *fs_info;
1172	struct btrfs_space_info *space_info;
1173	struct btrfs_block_rsv *delayed_block_rsv;
1174	struct btrfs_block_rsv *delayed_refs_rsv;
1175	struct btrfs_block_rsv *global_rsv;
1176	struct btrfs_block_rsv *trans_rsv;
1177	int loops = 0;
1178
1179	fs_info = container_of(work, struct btrfs_fs_info,
1180			       preempt_reclaim_work);
1181	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1182	delayed_block_rsv = &fs_info->delayed_block_rsv;
1183	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1184	global_rsv = &fs_info->global_block_rsv;
1185	trans_rsv = &fs_info->trans_block_rsv;
1186
1187	spin_lock(&space_info->lock);
1188	while (need_preemptive_reclaim(fs_info, space_info)) {
1189		enum btrfs_flush_state flush;
1190		u64 delalloc_size = 0;
1191		u64 to_reclaim, block_rsv_size;
1192		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1193
1194		loops++;
1195
1196		/*
1197		 * We don't have a precise counter for the metadata being
1198		 * reserved for delalloc, so we'll approximate it by subtracting
1199		 * out the block rsv's space from the bytes_may_use.  If that
1200		 * amount is higher than the individual reserves, then we can
1201		 * assume it's tied up in delalloc reservations.
1202		 */
1203		block_rsv_size = global_rsv_size +
1204			btrfs_block_rsv_reserved(delayed_block_rsv) +
1205			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1206			btrfs_block_rsv_reserved(trans_rsv);
1207		if (block_rsv_size < space_info->bytes_may_use)
1208			delalloc_size = space_info->bytes_may_use - block_rsv_size;
 
1209
1210		/*
1211		 * We don't want to include the global_rsv in our calculation,
1212		 * because that's space we can't touch.  Subtract it from the
1213		 * block_rsv_size for the next checks.
1214		 */
1215		block_rsv_size -= global_rsv_size;
1216
1217		/*
1218		 * We really want to avoid flushing delalloc too much, as it
1219		 * could result in poor allocation patterns, so only flush it if
1220		 * it's larger than the rest of the pools combined.
1221		 */
1222		if (delalloc_size > block_rsv_size) {
1223			to_reclaim = delalloc_size;
1224			flush = FLUSH_DELALLOC;
1225		} else if (space_info->bytes_pinned >
1226			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1227			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1228			to_reclaim = space_info->bytes_pinned;
1229			flush = COMMIT_TRANS;
1230		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1231			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1232			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1233			flush = FLUSH_DELAYED_ITEMS_NR;
1234		} else {
1235			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1236			flush = FLUSH_DELAYED_REFS_NR;
1237		}
1238
1239		spin_unlock(&space_info->lock);
1240
1241		/*
1242		 * We don't want to reclaim everything, just a portion, so scale
1243		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1244		 * reclaim 1 items worth.
1245		 */
1246		to_reclaim >>= 2;
1247		if (!to_reclaim)
1248			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1249		flush_space(fs_info, space_info, to_reclaim, flush, true);
1250		cond_resched();
1251		spin_lock(&space_info->lock);
1252	}
1253
1254	/* We only went through once, back off our clamping. */
1255	if (loops == 1 && !space_info->reclaim_size)
1256		space_info->clamp = max(1, space_info->clamp - 1);
1257	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1258	spin_unlock(&space_info->lock);
1259}
1260
1261/*
1262 * FLUSH_DELALLOC_WAIT:
1263 *   Space is freed from flushing delalloc in one of two ways.
1264 *
1265 *   1) compression is on and we allocate less space than we reserved
1266 *   2) we are overwriting existing space
1267 *
1268 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1269 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1270 *   length to ->bytes_reserved, and subtracts the reserved space from
1271 *   ->bytes_may_use.
1272 *
1273 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1274 *   extent in the range we are overwriting, which creates a delayed ref for
1275 *   that freed extent.  This however is not reclaimed until the transaction
1276 *   commits, thus the next stages.
1277 *
1278 * RUN_DELAYED_IPUTS
1279 *   If we are freeing inodes, we want to make sure all delayed iputs have
1280 *   completed, because they could have been on an inode with i_nlink == 0, and
1281 *   thus have been truncated and freed up space.  But again this space is not
1282 *   immediately reusable, it comes in the form of a delayed ref, which must be
1283 *   run and then the transaction must be committed.
1284 *
1285 * COMMIT_TRANS
1286 *   This is where we reclaim all of the pinned space generated by running the
1287 *   iputs
1288 *
1289 * ALLOC_CHUNK_FORCE
1290 *   For data we start with alloc chunk force, however we could have been full
1291 *   before, and then the transaction commit could have freed new block groups,
1292 *   so if we now have space to allocate do the force chunk allocation.
1293 */
1294static const enum btrfs_flush_state data_flush_states[] = {
1295	FLUSH_DELALLOC_FULL,
1296	RUN_DELAYED_IPUTS,
1297	COMMIT_TRANS,
1298	ALLOC_CHUNK_FORCE,
1299};
1300
1301static void btrfs_async_reclaim_data_space(struct work_struct *work)
1302{
1303	struct btrfs_fs_info *fs_info;
1304	struct btrfs_space_info *space_info;
1305	u64 last_tickets_id;
1306	enum btrfs_flush_state flush_state = 0;
1307
1308	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1309	space_info = fs_info->data_sinfo;
1310
1311	spin_lock(&space_info->lock);
1312	if (list_empty(&space_info->tickets)) {
1313		space_info->flush = 0;
1314		spin_unlock(&space_info->lock);
1315		return;
1316	}
1317	last_tickets_id = space_info->tickets_id;
1318	spin_unlock(&space_info->lock);
1319
1320	while (!space_info->full) {
1321		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1322		spin_lock(&space_info->lock);
1323		if (list_empty(&space_info->tickets)) {
1324			space_info->flush = 0;
1325			spin_unlock(&space_info->lock);
1326			return;
1327		}
1328
1329		/* Something happened, fail everything and bail. */
1330		if (BTRFS_FS_ERROR(fs_info))
1331			goto aborted_fs;
1332		last_tickets_id = space_info->tickets_id;
1333		spin_unlock(&space_info->lock);
1334	}
1335
1336	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1337		flush_space(fs_info, space_info, U64_MAX,
1338			    data_flush_states[flush_state], false);
1339		spin_lock(&space_info->lock);
1340		if (list_empty(&space_info->tickets)) {
1341			space_info->flush = 0;
1342			spin_unlock(&space_info->lock);
1343			return;
1344		}
1345
1346		if (last_tickets_id == space_info->tickets_id) {
1347			flush_state++;
1348		} else {
1349			last_tickets_id = space_info->tickets_id;
1350			flush_state = 0;
1351		}
1352
1353		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1354			if (space_info->full) {
1355				if (maybe_fail_all_tickets(fs_info, space_info))
1356					flush_state = 0;
1357				else
1358					space_info->flush = 0;
1359			} else {
1360				flush_state = 0;
1361			}
1362
1363			/* Something happened, fail everything and bail. */
1364			if (BTRFS_FS_ERROR(fs_info))
1365				goto aborted_fs;
1366
1367		}
1368		spin_unlock(&space_info->lock);
1369	}
1370	return;
1371
1372aborted_fs:
1373	maybe_fail_all_tickets(fs_info, space_info);
1374	space_info->flush = 0;
1375	spin_unlock(&space_info->lock);
1376}
1377
1378void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1379{
1380	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1381	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1382	INIT_WORK(&fs_info->preempt_reclaim_work,
1383		  btrfs_preempt_reclaim_metadata_space);
1384}
1385
1386static const enum btrfs_flush_state priority_flush_states[] = {
1387	FLUSH_DELAYED_ITEMS_NR,
1388	FLUSH_DELAYED_ITEMS,
1389	ALLOC_CHUNK,
1390};
1391
1392static const enum btrfs_flush_state evict_flush_states[] = {
1393	FLUSH_DELAYED_ITEMS_NR,
1394	FLUSH_DELAYED_ITEMS,
1395	FLUSH_DELAYED_REFS_NR,
1396	FLUSH_DELAYED_REFS,
1397	FLUSH_DELALLOC,
1398	FLUSH_DELALLOC_WAIT,
1399	FLUSH_DELALLOC_FULL,
1400	ALLOC_CHUNK,
1401	COMMIT_TRANS,
1402};
1403
1404static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1405				struct btrfs_space_info *space_info,
1406				struct reserve_ticket *ticket,
1407				const enum btrfs_flush_state *states,
1408				int states_nr)
1409{
1410	u64 to_reclaim;
1411	int flush_state = 0;
1412
1413	spin_lock(&space_info->lock);
1414	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1415	/*
1416	 * This is the priority reclaim path, so to_reclaim could be >0 still
1417	 * because we may have only satisfied the priority tickets and still
1418	 * left non priority tickets on the list.  We would then have
1419	 * to_reclaim but ->bytes == 0.
1420	 */
1421	if (ticket->bytes == 0) {
1422		spin_unlock(&space_info->lock);
1423		return;
1424	}
 
1425
1426	while (flush_state < states_nr) {
1427		spin_unlock(&space_info->lock);
1428		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1429			    false);
1430		flush_state++;
1431		spin_lock(&space_info->lock);
1432		if (ticket->bytes == 0) {
1433			spin_unlock(&space_info->lock);
1434			return;
1435		}
1436	}
1437
1438	/*
1439	 * Attempt to steal from the global rsv if we can, except if the fs was
1440	 * turned into error mode due to a transaction abort when flushing space
1441	 * above, in that case fail with the abort error instead of returning
1442	 * success to the caller if we can steal from the global rsv - this is
1443	 * just to have caller fail immeditelly instead of later when trying to
1444	 * modify the fs, making it easier to debug -ENOSPC problems.
1445	 */
1446	if (BTRFS_FS_ERROR(fs_info)) {
1447		ticket->error = BTRFS_FS_ERROR(fs_info);
1448		remove_ticket(space_info, ticket);
1449	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1450		ticket->error = -ENOSPC;
1451		remove_ticket(space_info, ticket);
1452	}
1453
1454	/*
1455	 * We must run try_granting_tickets here because we could be a large
1456	 * ticket in front of a smaller ticket that can now be satisfied with
1457	 * the available space.
1458	 */
1459	btrfs_try_granting_tickets(fs_info, space_info);
1460	spin_unlock(&space_info->lock);
1461}
1462
1463static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1464					struct btrfs_space_info *space_info,
1465					struct reserve_ticket *ticket)
1466{
1467	spin_lock(&space_info->lock);
1468
1469	/* We could have been granted before we got here. */
1470	if (ticket->bytes == 0) {
1471		spin_unlock(&space_info->lock);
1472		return;
1473	}
1474
1475	while (!space_info->full) {
1476		spin_unlock(&space_info->lock);
1477		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1478		spin_lock(&space_info->lock);
1479		if (ticket->bytes == 0) {
1480			spin_unlock(&space_info->lock);
1481			return;
1482		}
 
1483	}
1484
1485	ticket->error = -ENOSPC;
1486	remove_ticket(space_info, ticket);
1487	btrfs_try_granting_tickets(fs_info, space_info);
1488	spin_unlock(&space_info->lock);
1489}
1490
1491static void wait_reserve_ticket(struct btrfs_space_info *space_info,
 
1492				struct reserve_ticket *ticket)
1493
1494{
1495	DEFINE_WAIT(wait);
1496	int ret = 0;
1497
1498	spin_lock(&space_info->lock);
1499	while (ticket->bytes > 0 && ticket->error == 0) {
1500		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1501		if (ret) {
1502			/*
1503			 * Delete us from the list. After we unlock the space
1504			 * info, we don't want the async reclaim job to reserve
1505			 * space for this ticket. If that would happen, then the
1506			 * ticket's task would not known that space was reserved
1507			 * despite getting an error, resulting in a space leak
1508			 * (bytes_may_use counter of our space_info).
1509			 */
1510			remove_ticket(space_info, ticket);
1511			ticket->error = -EINTR;
1512			break;
1513		}
1514		spin_unlock(&space_info->lock);
1515
1516		schedule();
1517
1518		finish_wait(&ticket->wait, &wait);
1519		spin_lock(&space_info->lock);
1520	}
1521	spin_unlock(&space_info->lock);
1522}
1523
1524/*
1525 * Do the appropriate flushing and waiting for a ticket.
1526 *
1527 * @fs_info:    the filesystem
1528 * @space_info: space info for the reservation
1529 * @ticket:     ticket for the reservation
1530 * @start_ns:   timestamp when the reservation started
1531 * @orig_bytes: amount of bytes originally reserved
1532 * @flush:      how much we can flush
1533 *
1534 * This does the work of figuring out how to flush for the ticket, waiting for
1535 * the reservation, and returning the appropriate error if there is one.
1536 */
1537static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1538				 struct btrfs_space_info *space_info,
1539				 struct reserve_ticket *ticket,
1540				 u64 start_ns, u64 orig_bytes,
1541				 enum btrfs_reserve_flush_enum flush)
1542{
1543	int ret;
1544
1545	switch (flush) {
1546	case BTRFS_RESERVE_FLUSH_DATA:
1547	case BTRFS_RESERVE_FLUSH_ALL:
1548	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1549		wait_reserve_ticket(space_info, ticket);
1550		break;
1551	case BTRFS_RESERVE_FLUSH_LIMIT:
1552		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1553						priority_flush_states,
1554						ARRAY_SIZE(priority_flush_states));
1555		break;
1556	case BTRFS_RESERVE_FLUSH_EVICT:
1557		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1558						evict_flush_states,
1559						ARRAY_SIZE(evict_flush_states));
1560		break;
1561	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1562		priority_reclaim_data_space(fs_info, space_info, ticket);
1563		break;
1564	default:
1565		ASSERT(0);
1566		break;
1567	}
1568
 
1569	ret = ticket->error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	ASSERT(list_empty(&ticket->list));
1571	/*
1572	 * Check that we can't have an error set if the reservation succeeded,
1573	 * as that would confuse tasks and lead them to error out without
1574	 * releasing reserved space (if an error happens the expectation is that
1575	 * space wasn't reserved at all).
1576	 */
1577	ASSERT(!(ticket->bytes == 0 && ticket->error));
1578	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1579				   start_ns, flush, ticket->error);
1580	return ret;
1581}
1582
1583/*
1584 * This returns true if this flush state will go through the ordinary flushing
1585 * code.
1586 */
1587static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1588{
1589	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1590		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1591}
1592
1593static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1594				       struct btrfs_space_info *space_info)
1595{
1596	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1597	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1598
1599	/*
1600	 * If we're heavy on ordered operations then clamping won't help us.  We
1601	 * need to clamp specifically to keep up with dirty'ing buffered
1602	 * writers, because there's not a 1:1 correlation of writing delalloc
1603	 * and freeing space, like there is with flushing delayed refs or
1604	 * delayed nodes.  If we're already more ordered than delalloc then
1605	 * we're keeping up, otherwise we aren't and should probably clamp.
1606	 */
1607	if (ordered < delalloc)
1608		space_info->clamp = min(space_info->clamp + 1, 8);
1609}
1610
1611static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1612{
1613	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1614		flush == BTRFS_RESERVE_FLUSH_EVICT);
1615}
1616
1617/*
1618 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1619 * fail as quickly as possible.
1620 */
1621static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1622{
1623	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1624		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1625}
1626
1627/*
1628 * Try to reserve bytes from the block_rsv's space.
1629 *
1630 * @fs_info:    the filesystem
1631 * @space_info: space info we want to allocate from
1632 * @orig_bytes: number of bytes we want
1633 * @flush:      whether or not we can flush to make our reservation
1634 *
1635 * This will reserve orig_bytes number of bytes from the space info associated
1636 * with the block_rsv.  If there is not enough space it will make an attempt to
1637 * flush out space to make room.  It will do this by flushing delalloc if
1638 * possible or committing the transaction.  If flush is 0 then no attempts to
1639 * regain reservations will be made and this will fail if there is not enough
1640 * space already.
1641 */
1642static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1643			   struct btrfs_space_info *space_info, u64 orig_bytes,
1644			   enum btrfs_reserve_flush_enum flush)
1645{
1646	struct work_struct *async_work;
1647	struct reserve_ticket ticket;
1648	u64 start_ns = 0;
1649	u64 used;
1650	int ret = -ENOSPC;
1651	bool pending_tickets;
1652
1653	ASSERT(orig_bytes);
1654	/*
1655	 * If have a transaction handle (current->journal_info != NULL), then
1656	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1657	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1658	 * flushing methods can trigger transaction commits.
1659	 */
1660	if (current->journal_info) {
1661		/* One assert per line for easier debugging. */
1662		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1663		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1664		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1665	}
1666
1667	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1668		async_work = &fs_info->async_data_reclaim_work;
1669	else
1670		async_work = &fs_info->async_reclaim_work;
1671
1672	spin_lock(&space_info->lock);
 
1673	used = btrfs_space_info_used(space_info, true);
1674
1675	/*
1676	 * We don't want NO_FLUSH allocations to jump everybody, they can
1677	 * generally handle ENOSPC in a different way, so treat them the same as
1678	 * normal flushers when it comes to skipping pending tickets.
1679	 */
1680	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1681		pending_tickets = !list_empty(&space_info->tickets) ||
1682			!list_empty(&space_info->priority_tickets);
1683	else
1684		pending_tickets = !list_empty(&space_info->priority_tickets);
1685
1686	/*
1687	 * Carry on if we have enough space (short-circuit) OR call
1688	 * can_overcommit() to ensure we can overcommit to continue.
1689	 */
1690	if (!pending_tickets &&
1691	    ((used + orig_bytes <= space_info->total_bytes) ||
1692	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1693		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1694						      orig_bytes);
1695		ret = 0;
1696	}
1697
1698	/*
1699	 * Things are dire, we need to make a reservation so we don't abort.  We
1700	 * will let this reservation go through as long as we have actual space
1701	 * left to allocate for the block.
1702	 */
1703	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1704		used = btrfs_space_info_used(space_info, false);
1705		if (used + orig_bytes <= space_info->total_bytes) {
1706			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1707							      orig_bytes);
1708			ret = 0;
1709		}
1710	}
1711
1712	/*
1713	 * If we couldn't make a reservation then setup our reservation ticket
1714	 * and kick the async worker if it's not already running.
1715	 *
1716	 * If we are a priority flusher then we just need to add our ticket to
1717	 * the list and we will do our own flushing further down.
1718	 */
1719	if (ret && can_ticket(flush)) {
1720		ticket.bytes = orig_bytes;
1721		ticket.error = 0;
1722		space_info->reclaim_size += ticket.bytes;
1723		init_waitqueue_head(&ticket.wait);
1724		ticket.steal = can_steal(flush);
1725		if (trace_btrfs_reserve_ticket_enabled())
1726			start_ns = ktime_get_ns();
1727
1728		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1729		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1730		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1731			list_add_tail(&ticket.list, &space_info->tickets);
1732			if (!space_info->flush) {
1733				/*
1734				 * We were forced to add a reserve ticket, so
1735				 * our preemptive flushing is unable to keep
1736				 * up.  Clamp down on the threshold for the
1737				 * preemptive flushing in order to keep up with
1738				 * the workload.
1739				 */
1740				maybe_clamp_preempt(fs_info, space_info);
1741
1742				space_info->flush = 1;
1743				trace_btrfs_trigger_flush(fs_info,
1744							  space_info->flags,
1745							  orig_bytes, flush,
1746							  "enospc");
1747				queue_work(system_unbound_wq, async_work);
1748			}
1749		} else {
1750			list_add_tail(&ticket.list,
1751				      &space_info->priority_tickets);
1752		}
1753	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
 
1754		/*
1755		 * We will do the space reservation dance during log replay,
1756		 * which means we won't have fs_info->fs_root set, so don't do
1757		 * the async reclaim as we will panic.
1758		 */
1759		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1760		    !work_busy(&fs_info->preempt_reclaim_work) &&
1761		    need_preemptive_reclaim(fs_info, space_info)) {
1762			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1763						  orig_bytes, flush, "preempt");
1764			queue_work(system_unbound_wq,
1765				   &fs_info->preempt_reclaim_work);
1766		}
1767	}
1768	spin_unlock(&space_info->lock);
1769	if (!ret || !can_ticket(flush))
1770		return ret;
1771
1772	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1773				     orig_bytes, flush);
1774}
1775
1776/*
1777 * Try to reserve metadata bytes from the block_rsv's space.
1778 *
1779 * @fs_info:    the filesystem
1780 * @space_info: the space_info we're allocating for
1781 * @orig_bytes: number of bytes we want
1782 * @flush:      whether or not we can flush to make our reservation
1783 *
1784 * This will reserve orig_bytes number of bytes from the space info associated
1785 * with the block_rsv.  If there is not enough space it will make an attempt to
1786 * flush out space to make room.  It will do this by flushing delalloc if
1787 * possible or committing the transaction.  If flush is 0 then no attempts to
1788 * regain reservations will be made and this will fail if there is not enough
1789 * space already.
1790 */
1791int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1792				 struct btrfs_space_info *space_info,
1793				 u64 orig_bytes,
1794				 enum btrfs_reserve_flush_enum flush)
1795{
 
 
1796	int ret;
1797
1798	ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
 
 
 
 
 
 
1799	if (ret == -ENOSPC) {
1800		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1801					      space_info->flags, orig_bytes, 1);
 
1802
1803		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1804			btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
 
1805	}
1806	return ret;
1807}
1808
1809/*
1810 * Try to reserve data bytes for an allocation.
1811 *
1812 * @fs_info: the filesystem
1813 * @bytes:   number of bytes we need
1814 * @flush:   how we are allowed to flush
1815 *
1816 * This will reserve bytes from the data space info.  If there is not enough
1817 * space then we will attempt to flush space as specified by flush.
1818 */
1819int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1820			     enum btrfs_reserve_flush_enum flush)
1821{
1822	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1823	int ret;
1824
1825	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1826	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1827	       flush == BTRFS_RESERVE_NO_FLUSH);
1828	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1829
1830	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1831	if (ret == -ENOSPC) {
1832		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1833					      data_sinfo->flags, bytes, 1);
1834		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1835			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1836	}
1837	return ret;
1838}
1839
1840/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1841__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1842{
1843	struct btrfs_space_info *space_info;
1844
1845	btrfs_info(fs_info, "dumping space info:");
1846	list_for_each_entry(space_info, &fs_info->space_info, list) {
1847		spin_lock(&space_info->lock);
1848		__btrfs_dump_space_info(fs_info, space_info);
1849		spin_unlock(&space_info->lock);
1850	}
1851	dump_global_block_rsv(fs_info);
1852}
1853
1854/*
1855 * Account the unused space of all the readonly block group in the space_info.
1856 * takes mirrors into account.
1857 */
1858u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1859{
1860	struct btrfs_block_group *block_group;
1861	u64 free_bytes = 0;
1862	int factor;
1863
1864	/* It's df, we don't care if it's racy */
1865	if (list_empty(&sinfo->ro_bgs))
1866		return 0;
1867
1868	spin_lock(&sinfo->lock);
1869	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1870		spin_lock(&block_group->lock);
1871
1872		if (!block_group->ro) {
1873			spin_unlock(&block_group->lock);
1874			continue;
1875		}
1876
1877		factor = btrfs_bg_type_to_factor(block_group->flags);
1878		free_bytes += (block_group->length -
1879			       block_group->used) * factor;
1880
1881		spin_unlock(&block_group->lock);
1882	}
1883	spin_unlock(&sinfo->lock);
1884
1885	return free_bytes;
1886}
1887
1888static u64 calc_pct_ratio(u64 x, u64 y)
1889{
1890	int err;
1891
1892	if (!y)
1893		return 0;
1894again:
1895	err = check_mul_overflow(100, x, &x);
1896	if (err)
1897		goto lose_precision;
1898	return div64_u64(x, y);
1899lose_precision:
1900	x >>= 10;
1901	y >>= 10;
1902	if (!y)
1903		y = 1;
1904	goto again;
1905}
1906
1907/*
1908 * A reasonable buffer for unallocated space is 10 data block_groups.
1909 * If we claw this back repeatedly, we can still achieve efficient
1910 * utilization when near full, and not do too much reclaim while
1911 * always maintaining a solid buffer for workloads that quickly
1912 * allocate and pressure the unallocated space.
1913 */
1914static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
1915{
1916	u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
1917
1918	return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
1919}
1920
1921/*
1922 * The fundamental goal of automatic reclaim is to protect the filesystem's
1923 * unallocated space and thus minimize the probability of the filesystem going
1924 * read only when a metadata allocation failure causes a transaction abort.
1925 *
1926 * However, relocations happen into the space_info's unused space, therefore
1927 * automatic reclaim must also back off as that space runs low. There is no
1928 * value in doing trivial "relocations" of re-writing the same block group
1929 * into a fresh one.
1930 *
1931 * Furthermore, we want to avoid doing too much reclaim even if there are good
1932 * candidates. This is because the allocator is pretty good at filling up the
1933 * holes with writes. So we want to do just enough reclaim to try and stay
1934 * safe from running out of unallocated space but not be wasteful about it.
1935 *
1936 * Therefore, the dynamic reclaim threshold is calculated as follows:
1937 * - calculate a target unallocated amount of 5 block group sized chunks
1938 * - ratchet up the intensity of reclaim depending on how far we are from
1939 *   that target by using a formula of unalloc / target to set the threshold.
1940 *
1941 * Typically with 10 block groups as the target, the discrete values this comes
1942 * out to are 0, 10, 20, ... , 80, 90, and 99.
1943 */
1944static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
1945{
1946	struct btrfs_fs_info *fs_info = space_info->fs_info;
1947	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1948	u64 target = calc_unalloc_target(fs_info);
1949	u64 alloc = space_info->total_bytes;
1950	u64 used = btrfs_space_info_used(space_info, false);
1951	u64 unused = alloc - used;
1952	u64 want = target > unalloc ? target - unalloc : 0;
1953	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1954
1955	/* If we have no unused space, don't bother, it won't work anyway. */
1956	if (unused < data_chunk_size)
1957		return 0;
1958
1959	/* Cast to int is OK because want <= target. */
1960	return calc_pct_ratio(want, target);
1961}
1962
1963int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
1964{
1965	lockdep_assert_held(&space_info->lock);
1966
1967	if (READ_ONCE(space_info->dynamic_reclaim))
1968		return calc_dynamic_reclaim_threshold(space_info);
1969	return READ_ONCE(space_info->bg_reclaim_threshold);
1970}
1971
1972/*
1973 * Under "urgent" reclaim, we will reclaim even fresh block groups that have
1974 * recently seen successful allocations, as we are desperate to reclaim
1975 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
1976 */
1977static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
1978{
1979	struct btrfs_fs_info *fs_info = space_info->fs_info;
1980	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
1981	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
1982
1983	return unalloc < data_chunk_size;
1984}
1985
1986static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
1987{
1988	struct btrfs_block_group *bg;
1989	int thresh_pct;
1990	bool try_again = true;
1991	bool urgent;
1992
1993	spin_lock(&space_info->lock);
1994	urgent = is_reclaim_urgent(space_info);
1995	thresh_pct = btrfs_calc_reclaim_threshold(space_info);
1996	spin_unlock(&space_info->lock);
1997
1998	down_read(&space_info->groups_sem);
1999again:
2000	list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2001		u64 thresh;
2002		bool reclaim = false;
2003
2004		btrfs_get_block_group(bg);
2005		spin_lock(&bg->lock);
2006		thresh = mult_perc(bg->length, thresh_pct);
2007		if (bg->used < thresh && bg->reclaim_mark) {
2008			try_again = false;
2009			reclaim = true;
2010		}
2011		bg->reclaim_mark++;
2012		spin_unlock(&bg->lock);
2013		if (reclaim)
2014			btrfs_mark_bg_to_reclaim(bg);
2015		btrfs_put_block_group(bg);
2016	}
2017
2018	/*
2019	 * In situations where we are very motivated to reclaim (low unalloc)
2020	 * use two passes to make the reclaim mark check best effort.
2021	 *
2022	 * If we have any staler groups, we don't touch the fresher ones, but if we
2023	 * really need a block group, do take a fresh one.
2024	 */
2025	if (try_again && urgent) {
2026		try_again = false;
2027		goto again;
2028	}
2029
2030	up_read(&space_info->groups_sem);
2031}
2032
2033void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2034{
2035	u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2036
2037	lockdep_assert_held(&space_info->lock);
2038	space_info->reclaimable_bytes += bytes;
2039
2040	if (space_info->reclaimable_bytes >= chunk_sz)
2041		btrfs_set_periodic_reclaim_ready(space_info, true);
2042}
2043
2044void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2045{
2046	lockdep_assert_held(&space_info->lock);
2047	if (!READ_ONCE(space_info->periodic_reclaim))
2048		return;
2049	if (ready != space_info->periodic_reclaim_ready) {
2050		space_info->periodic_reclaim_ready = ready;
2051		if (!ready)
2052			space_info->reclaimable_bytes = 0;
2053	}
2054}
2055
2056bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2057{
2058	bool ret;
2059
2060	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2061		return false;
2062	if (!READ_ONCE(space_info->periodic_reclaim))
2063		return false;
2064
2065	spin_lock(&space_info->lock);
2066	ret = space_info->periodic_reclaim_ready;
2067	btrfs_set_periodic_reclaim_ready(space_info, false);
2068	spin_unlock(&space_info->lock);
2069
2070	return ret;
2071}
2072
2073void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2074{
2075	int raid;
2076	struct btrfs_space_info *space_info;
2077
2078	list_for_each_entry(space_info, &fs_info->space_info, list) {
2079		if (!btrfs_should_periodic_reclaim(space_info))
2080			continue;
2081		for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2082			do_reclaim_sweep(space_info, raid);
2083	}
2084}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
 
 
   3#include "misc.h"
   4#include "ctree.h"
   5#include "space-info.h"
   6#include "sysfs.h"
   7#include "volumes.h"
   8#include "free-space-cache.h"
   9#include "ordered-data.h"
  10#include "transaction.h"
  11#include "block-group.h"
 
 
 
  12
  13/*
  14 * HOW DOES SPACE RESERVATION WORK
  15 *
  16 * If you want to know about delalloc specifically, there is a separate comment
  17 * for that with the delalloc code.  This comment is about how the whole system
  18 * works generally.
  19 *
  20 * BASIC CONCEPTS
  21 *
  22 *   1) space_info.  This is the ultimate arbiter of how much space we can use.
  23 *   There's a description of the bytes_ fields with the struct declaration,
  24 *   refer to that for specifics on each field.  Suffice it to say that for
  25 *   reservations we care about total_bytes - SUM(space_info->bytes_) when
  26 *   determining if there is space to make an allocation.  There is a space_info
  27 *   for METADATA, SYSTEM, and DATA areas.
  28 *
  29 *   2) block_rsv's.  These are basically buckets for every different type of
  30 *   metadata reservation we have.  You can see the comment in the block_rsv
  31 *   code on the rules for each type, but generally block_rsv->reserved is how
  32 *   much space is accounted for in space_info->bytes_may_use.
  33 *
  34 *   3) btrfs_calc*_size.  These are the worst case calculations we used based
  35 *   on the number of items we will want to modify.  We have one for changing
  36 *   items, and one for inserting new items.  Generally we use these helpers to
  37 *   determine the size of the block reserves, and then use the actual bytes
  38 *   values to adjust the space_info counters.
  39 *
  40 * MAKING RESERVATIONS, THE NORMAL CASE
  41 *
  42 *   We call into either btrfs_reserve_data_bytes() or
  43 *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
  44 *   num_bytes we want to reserve.
  45 *
  46 *   ->reserve
  47 *     space_info->bytes_may_reserve += num_bytes
  48 *
  49 *   ->extent allocation
  50 *     Call btrfs_add_reserved_bytes() which does
  51 *     space_info->bytes_may_reserve -= num_bytes
  52 *     space_info->bytes_reserved += extent_bytes
  53 *
  54 *   ->insert reference
  55 *     Call btrfs_update_block_group() which does
  56 *     space_info->bytes_reserved -= extent_bytes
  57 *     space_info->bytes_used += extent_bytes
  58 *
  59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
  60 *
  61 *   Assume we are unable to simply make the reservation because we do not have
  62 *   enough space
  63 *
  64 *   -> __reserve_bytes
  65 *     create a reserve_ticket with ->bytes set to our reservation, add it to
  66 *     the tail of space_info->tickets, kick async flush thread
  67 *
  68 *   ->handle_reserve_ticket
  69 *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
  70 *     on the ticket.
  71 *
  72 *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
  73 *     Flushes various things attempting to free up space.
  74 *
  75 *   -> btrfs_try_granting_tickets()
  76 *     This is called by anything that either subtracts space from
  77 *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
  78 *     space_info->total_bytes.  This loops through the ->priority_tickets and
  79 *     then the ->tickets list checking to see if the reservation can be
  80 *     completed.  If it can the space is added to space_info->bytes_may_use and
  81 *     the ticket is woken up.
  82 *
  83 *   -> ticket wakeup
  84 *     Check if ->bytes == 0, if it does we got our reservation and we can carry
  85 *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
  86 *     were interrupted.)
  87 *
  88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
  89 *
  90 *   Same as the above, except we add ourselves to the
  91 *   space_info->priority_tickets, and we do not use ticket->wait, we simply
  92 *   call flush_space() ourselves for the states that are safe for us to call
  93 *   without deadlocking and hope for the best.
  94 *
  95 * THE FLUSHING STATES
  96 *
  97 *   Generally speaking we will have two cases for each state, a "nice" state
  98 *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
  99 *   reduce the locking over head on the various trees, and even to keep from
 100 *   doing any work at all in the case of delayed refs.  Each of these delayed
 101 *   things however hold reservations, and so letting them run allows us to
 102 *   reclaim space so we can make new reservations.
 103 *
 104 *   FLUSH_DELAYED_ITEMS
 105 *     Every inode has a delayed item to update the inode.  Take a simple write
 106 *     for example, we would update the inode item at write time to update the
 107 *     mtime, and then again at finish_ordered_io() time in order to update the
 108 *     isize or bytes.  We keep these delayed items to coalesce these operations
 109 *     into a single operation done on demand.  These are an easy way to reclaim
 110 *     metadata space.
 111 *
 112 *   FLUSH_DELALLOC
 113 *     Look at the delalloc comment to get an idea of how much space is reserved
 114 *     for delayed allocation.  We can reclaim some of this space simply by
 115 *     running delalloc, but usually we need to wait for ordered extents to
 116 *     reclaim the bulk of this space.
 117 *
 118 *   FLUSH_DELAYED_REFS
 119 *     We have a block reserve for the outstanding delayed refs space, and every
 120 *     delayed ref operation holds a reservation.  Running these is a quick way
 121 *     to reclaim space, but we want to hold this until the end because COW can
 122 *     churn a lot and we can avoid making some extent tree modifications if we
 123 *     are able to delay for as long as possible.
 124 *
 125 *   ALLOC_CHUNK
 126 *     We will skip this the first time through space reservation, because of
 127 *     overcommit and we don't want to have a lot of useless metadata space when
 128 *     our worst case reservations will likely never come true.
 129 *
 130 *   RUN_DELAYED_IPUTS
 131 *     If we're freeing inodes we're likely freeing checksums, file extent
 132 *     items, and extent tree items.  Loads of space could be freed up by these
 133 *     operations, however they won't be usable until the transaction commits.
 134 *
 135 *   COMMIT_TRANS
 136 *     This will commit the transaction.  Historically we had a lot of logic
 137 *     surrounding whether or not we'd commit the transaction, but this waits born
 138 *     out of a pre-tickets era where we could end up committing the transaction
 139 *     thousands of times in a row without making progress.  Now thanks to our
 140 *     ticketing system we know if we're not making progress and can error
 141 *     everybody out after a few commits rather than burning the disk hoping for
 142 *     a different answer.
 143 *
 144 * OVERCOMMIT
 145 *
 146 *   Because we hold so many reservations for metadata we will allow you to
 147 *   reserve more space than is currently free in the currently allocate
 148 *   metadata space.  This only happens with metadata, data does not allow
 149 *   overcommitting.
 150 *
 151 *   You can see the current logic for when we allow overcommit in
 152 *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
 153 *   is no unallocated space to be had, all reservations are kept within the
 154 *   free space in the allocated metadata chunks.
 155 *
 156 *   Because of overcommitting, you generally want to use the
 157 *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
 158 *   thing with or without extra unallocated space.
 159 */
 160
 161u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
 162			  bool may_use_included)
 163{
 164	ASSERT(s_info);
 165	return s_info->bytes_used + s_info->bytes_reserved +
 166		s_info->bytes_pinned + s_info->bytes_readonly +
 167		s_info->bytes_zone_unusable +
 168		(may_use_included ? s_info->bytes_may_use : 0);
 169}
 170
 171/*
 172 * after adding space to the filesystem, we need to clear the full flags
 173 * on all the space infos.
 174 */
 175void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 176{
 177	struct list_head *head = &info->space_info;
 178	struct btrfs_space_info *found;
 179
 180	list_for_each_entry(found, head, list)
 181		found->full = 0;
 182}
 183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184static int create_space_info(struct btrfs_fs_info *info, u64 flags)
 185{
 186
 187	struct btrfs_space_info *space_info;
 188	int i;
 189	int ret;
 190
 191	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
 192	if (!space_info)
 193		return -ENOMEM;
 194
 
 195	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 196		INIT_LIST_HEAD(&space_info->block_groups[i]);
 197	init_rwsem(&space_info->groups_sem);
 198	spin_lock_init(&space_info->lock);
 199	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
 200	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
 201	INIT_LIST_HEAD(&space_info->ro_bgs);
 202	INIT_LIST_HEAD(&space_info->tickets);
 203	INIT_LIST_HEAD(&space_info->priority_tickets);
 204	space_info->clamp = 1;
 
 
 
 
 205
 206	ret = btrfs_sysfs_add_space_info_type(info, space_info);
 207	if (ret)
 208		return ret;
 209
 210	list_add(&space_info->list, &info->space_info);
 211	if (flags & BTRFS_BLOCK_GROUP_DATA)
 212		info->data_sinfo = space_info;
 213
 214	return ret;
 215}
 216
 217int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
 218{
 219	struct btrfs_super_block *disk_super;
 220	u64 features;
 221	u64 flags;
 222	int mixed = 0;
 223	int ret;
 224
 225	disk_super = fs_info->super_copy;
 226	if (!btrfs_super_root(disk_super))
 227		return -EINVAL;
 228
 229	features = btrfs_super_incompat_flags(disk_super);
 230	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
 231		mixed = 1;
 232
 233	flags = BTRFS_BLOCK_GROUP_SYSTEM;
 234	ret = create_space_info(fs_info, flags);
 235	if (ret)
 236		goto out;
 237
 238	if (mixed) {
 239		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
 240		ret = create_space_info(fs_info, flags);
 241	} else {
 242		flags = BTRFS_BLOCK_GROUP_METADATA;
 243		ret = create_space_info(fs_info, flags);
 244		if (ret)
 245			goto out;
 246
 247		flags = BTRFS_BLOCK_GROUP_DATA;
 248		ret = create_space_info(fs_info, flags);
 249	}
 250out:
 251	return ret;
 252}
 253
 254void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
 255			     u64 total_bytes, u64 bytes_used,
 256			     u64 bytes_readonly, u64 bytes_zone_unusable,
 257			     struct btrfs_space_info **space_info)
 258{
 259	struct btrfs_space_info *found;
 260	int factor;
 261
 262	factor = btrfs_bg_type_to_factor(flags);
 263
 264	found = btrfs_find_space_info(info, flags);
 265	ASSERT(found);
 266	spin_lock(&found->lock);
 267	found->total_bytes += total_bytes;
 268	found->disk_total += total_bytes * factor;
 269	found->bytes_used += bytes_used;
 270	found->disk_used += bytes_used * factor;
 271	found->bytes_readonly += bytes_readonly;
 272	found->bytes_zone_unusable += bytes_zone_unusable;
 273	if (total_bytes > 0)
 274		found->full = 0;
 275	btrfs_try_granting_tickets(info, found);
 276	spin_unlock(&found->lock);
 277	*space_info = found;
 
 
 
 
 
 
 278}
 279
 280struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
 281					       u64 flags)
 282{
 283	struct list_head *head = &info->space_info;
 284	struct btrfs_space_info *found;
 285
 286	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 287
 288	list_for_each_entry(found, head, list) {
 289		if (found->flags & flags)
 290			return found;
 291	}
 292	return NULL;
 293}
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
 296			  struct btrfs_space_info *space_info,
 297			  enum btrfs_reserve_flush_enum flush)
 298{
 299	u64 profile;
 300	u64 avail;
 
 301	int factor;
 302
 303	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 304		profile = btrfs_system_alloc_profile(fs_info);
 305	else
 306		profile = btrfs_metadata_alloc_profile(fs_info);
 307
 308	avail = atomic64_read(&fs_info->free_chunk_space);
 309
 310	/*
 311	 * If we have dup, raid1 or raid10 then only half of the free
 312	 * space is actually usable.  For raid56, the space info used
 313	 * doesn't include the parity drive, so we don't have to
 314	 * change the math
 315	 */
 316	factor = btrfs_bg_type_to_factor(profile);
 317	avail = div_u64(avail, factor);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	/*
 320	 * If we aren't flushing all things, let us overcommit up to
 321	 * 1/2th of the space. If we can flush, don't let us overcommit
 322	 * too much, let it overcommit up to 1/8 of the space.
 323	 */
 324	if (flush == BTRFS_RESERVE_FLUSH_ALL)
 325		avail >>= 3;
 326	else
 327		avail >>= 1;
 
 
 
 
 
 
 
 
 
 
 
 328	return avail;
 329}
 330
 331int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
 332			 struct btrfs_space_info *space_info, u64 bytes,
 333			 enum btrfs_reserve_flush_enum flush)
 334{
 335	u64 avail;
 336	u64 used;
 337
 338	/* Don't overcommit when in mixed mode */
 339	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
 340		return 0;
 341
 342	used = btrfs_space_info_used(space_info, true);
 343	avail = calc_available_free_space(fs_info, space_info, flush);
 344
 345	if (used + bytes < space_info->total_bytes + avail)
 346		return 1;
 347	return 0;
 348}
 349
 350static void remove_ticket(struct btrfs_space_info *space_info,
 351			  struct reserve_ticket *ticket)
 352{
 353	if (!list_empty(&ticket->list)) {
 354		list_del_init(&ticket->list);
 355		ASSERT(space_info->reclaim_size >= ticket->bytes);
 356		space_info->reclaim_size -= ticket->bytes;
 357	}
 358}
 359
 360/*
 361 * This is for space we already have accounted in space_info->bytes_may_use, so
 362 * basically when we're returning space from block_rsv's.
 363 */
 364void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
 365				struct btrfs_space_info *space_info)
 366{
 367	struct list_head *head;
 368	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
 369
 370	lockdep_assert_held(&space_info->lock);
 371
 372	head = &space_info->priority_tickets;
 373again:
 374	while (!list_empty(head)) {
 375		struct reserve_ticket *ticket;
 376		u64 used = btrfs_space_info_used(space_info, true);
 377
 378		ticket = list_first_entry(head, struct reserve_ticket, list);
 379
 380		/* Check and see if our ticket can be satisfied now. */
 381		if ((used + ticket->bytes <= space_info->total_bytes) ||
 382		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
 383					 flush)) {
 384			btrfs_space_info_update_bytes_may_use(fs_info,
 385							      space_info,
 386							      ticket->bytes);
 387			remove_ticket(space_info, ticket);
 388			ticket->bytes = 0;
 389			space_info->tickets_id++;
 390			wake_up(&ticket->wait);
 391		} else {
 392			break;
 393		}
 394	}
 395
 396	if (head == &space_info->priority_tickets) {
 397		head = &space_info->tickets;
 398		flush = BTRFS_RESERVE_FLUSH_ALL;
 399		goto again;
 400	}
 401}
 402
 403#define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
 404do {									\
 405	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
 406	spin_lock(&__rsv->lock);					\
 407	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
 408		   __rsv->size, __rsv->reserved);			\
 409	spin_unlock(&__rsv->lock);					\
 410} while (0)
 411
 412static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 413				    struct btrfs_space_info *info)
 414{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415	lockdep_assert_held(&info->lock);
 416
 417	/* The free space could be negative in case of overcommit */
 418	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
 419		   info->flags,
 420		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
 421		   info->full ? "" : "not ");
 422	btrfs_info(fs_info,
 423		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
 424		info->total_bytes, info->bytes_used, info->bytes_pinned,
 425		info->bytes_reserved, info->bytes_may_use,
 426		info->bytes_readonly, info->bytes_zone_unusable);
 427
 428	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
 429	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
 430	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
 431	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
 432	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
 433
 434}
 435
 436void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
 437			   struct btrfs_space_info *info, u64 bytes,
 438			   int dump_block_groups)
 439{
 440	struct btrfs_block_group *cache;
 
 441	int index = 0;
 442
 443	spin_lock(&info->lock);
 444	__btrfs_dump_space_info(fs_info, info);
 
 445	spin_unlock(&info->lock);
 446
 447	if (!dump_block_groups)
 448		return;
 449
 450	down_read(&info->groups_sem);
 451again:
 452	list_for_each_entry(cache, &info->block_groups[index], list) {
 
 
 453		spin_lock(&cache->lock);
 
 
 454		btrfs_info(fs_info,
 455			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
 456			cache->start, cache->length, cache->used, cache->pinned,
 457			cache->reserved, cache->zone_unusable,
 458			cache->ro ? "[readonly]" : "");
 
 459		spin_unlock(&cache->lock);
 460		btrfs_dump_free_space(cache, bytes);
 
 461	}
 462	if (++index < BTRFS_NR_RAID_TYPES)
 463		goto again;
 464	up_read(&info->groups_sem);
 
 
 465}
 466
 467static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
 468					u64 to_reclaim)
 469{
 470	u64 bytes;
 471	u64 nr;
 472
 473	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 474	nr = div64_u64(to_reclaim, bytes);
 475	if (!nr)
 476		nr = 1;
 477	return nr;
 478}
 479
 480#define EXTENT_SIZE_PER_ITEM	SZ_256K
 481
 482/*
 483 * shrink metadata reservation for delalloc
 484 */
 485static void shrink_delalloc(struct btrfs_fs_info *fs_info,
 486			    struct btrfs_space_info *space_info,
 487			    u64 to_reclaim, bool wait_ordered,
 488			    bool for_preempt)
 489{
 490	struct btrfs_trans_handle *trans;
 491	u64 delalloc_bytes;
 492	u64 ordered_bytes;
 493	u64 items;
 494	long time_left;
 495	int loops;
 496
 497	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
 498	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
 499	if (delalloc_bytes == 0 && ordered_bytes == 0)
 500		return;
 501
 502	/* Calc the number of the pages we need flush for space reservation */
 503	if (to_reclaim == U64_MAX) {
 504		items = U64_MAX;
 505	} else {
 506		/*
 507		 * to_reclaim is set to however much metadata we need to
 508		 * reclaim, but reclaiming that much data doesn't really track
 509		 * exactly.  What we really want to do is reclaim full inode's
 510		 * worth of reservations, however that's not available to us
 511		 * here.  We will take a fraction of the delalloc bytes for our
 512		 * flushing loops and hope for the best.  Delalloc will expand
 513		 * the amount we write to cover an entire dirty extent, which
 514		 * will reclaim the metadata reservation for that range.  If
 515		 * it's not enough subsequent flush stages will be more
 516		 * aggressive.
 517		 */
 518		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
 519		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
 520	}
 521
 522	trans = (struct btrfs_trans_handle *)current->journal_info;
 523
 524	/*
 525	 * If we are doing more ordered than delalloc we need to just wait on
 526	 * ordered extents, otherwise we'll waste time trying to flush delalloc
 527	 * that likely won't give us the space back we need.
 528	 */
 529	if (ordered_bytes > delalloc_bytes && !for_preempt)
 530		wait_ordered = true;
 531
 532	loops = 0;
 533	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
 534		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
 535		long nr_pages = min_t(u64, temp, LONG_MAX);
 536		int async_pages;
 537
 538		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
 539
 540		/*
 541		 * We need to make sure any outstanding async pages are now
 542		 * processed before we continue.  This is because things like
 543		 * sync_inode() try to be smart and skip writing if the inode is
 544		 * marked clean.  We don't use filemap_fwrite for flushing
 545		 * because we want to control how many pages we write out at a
 546		 * time, thus this is the only safe way to make sure we've
 547		 * waited for outstanding compressed workers to have started
 548		 * their jobs and thus have ordered extents set up properly.
 549		 *
 550		 * This exists because we do not want to wait for each
 551		 * individual inode to finish its async work, we simply want to
 552		 * start the IO on everybody, and then come back here and wait
 553		 * for all of the async work to catch up.  Once we're done with
 554		 * that we know we'll have ordered extents for everything and we
 555		 * can decide if we wait for that or not.
 556		 *
 557		 * If we choose to replace this in the future, make absolutely
 558		 * sure that the proper waiting is being done in the async case,
 559		 * as there have been bugs in that area before.
 560		 */
 561		async_pages = atomic_read(&fs_info->async_delalloc_pages);
 562		if (!async_pages)
 563			goto skip_async;
 564
 565		/*
 566		 * We don't want to wait forever, if we wrote less pages in this
 567		 * loop than we have outstanding, only wait for that number of
 568		 * pages, otherwise we can wait for all async pages to finish
 569		 * before continuing.
 570		 */
 571		if (async_pages > nr_pages)
 572			async_pages -= nr_pages;
 573		else
 574			async_pages = 0;
 575		wait_event(fs_info->async_submit_wait,
 576			   atomic_read(&fs_info->async_delalloc_pages) <=
 577			   async_pages);
 578skip_async:
 579		loops++;
 580		if (wait_ordered && !trans) {
 581			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
 582		} else {
 583			time_left = schedule_timeout_killable(1);
 584			if (time_left)
 585				break;
 586		}
 587
 588		/*
 589		 * If we are for preemption we just want a one-shot of delalloc
 590		 * flushing so we can stop flushing if we decide we don't need
 591		 * to anymore.
 592		 */
 593		if (for_preempt)
 594			break;
 595
 596		spin_lock(&space_info->lock);
 597		if (list_empty(&space_info->tickets) &&
 598		    list_empty(&space_info->priority_tickets)) {
 599			spin_unlock(&space_info->lock);
 600			break;
 601		}
 602		spin_unlock(&space_info->lock);
 603
 604		delalloc_bytes = percpu_counter_sum_positive(
 605						&fs_info->delalloc_bytes);
 606		ordered_bytes = percpu_counter_sum_positive(
 607						&fs_info->ordered_bytes);
 608	}
 609}
 610
 611/*
 612 * Try to flush some data based on policy set by @state. This is only advisory
 613 * and may fail for various reasons. The caller is supposed to examine the
 614 * state of @space_info to detect the outcome.
 615 */
 616static void flush_space(struct btrfs_fs_info *fs_info,
 617		       struct btrfs_space_info *space_info, u64 num_bytes,
 618		       enum btrfs_flush_state state, bool for_preempt)
 619{
 620	struct btrfs_root *root = fs_info->extent_root;
 621	struct btrfs_trans_handle *trans;
 622	int nr;
 623	int ret = 0;
 624
 625	switch (state) {
 626	case FLUSH_DELAYED_ITEMS_NR:
 627	case FLUSH_DELAYED_ITEMS:
 628		if (state == FLUSH_DELAYED_ITEMS_NR)
 629			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
 630		else
 631			nr = -1;
 632
 633		trans = btrfs_join_transaction(root);
 634		if (IS_ERR(trans)) {
 635			ret = PTR_ERR(trans);
 
 
 636			break;
 637		}
 638		ret = btrfs_run_delayed_items_nr(trans, nr);
 639		btrfs_end_transaction(trans);
 640		break;
 641	case FLUSH_DELALLOC:
 642	case FLUSH_DELALLOC_WAIT:
 643	case FLUSH_DELALLOC_FULL:
 644		if (state == FLUSH_DELALLOC_FULL)
 645			num_bytes = U64_MAX;
 646		shrink_delalloc(fs_info, space_info, num_bytes,
 647				state != FLUSH_DELALLOC, for_preempt);
 648		break;
 649	case FLUSH_DELAYED_REFS_NR:
 650	case FLUSH_DELAYED_REFS:
 651		trans = btrfs_join_transaction(root);
 652		if (IS_ERR(trans)) {
 653			ret = PTR_ERR(trans);
 
 
 654			break;
 655		}
 656		if (state == FLUSH_DELAYED_REFS_NR)
 657			nr = calc_reclaim_items_nr(fs_info, num_bytes);
 658		else
 659			nr = 0;
 660		btrfs_run_delayed_refs(trans, nr);
 661		btrfs_end_transaction(trans);
 662		break;
 663	case ALLOC_CHUNK:
 664	case ALLOC_CHUNK_FORCE:
 665		trans = btrfs_join_transaction(root);
 666		if (IS_ERR(trans)) {
 667			ret = PTR_ERR(trans);
 668			break;
 669		}
 670		ret = btrfs_chunk_alloc(trans,
 671				btrfs_get_alloc_profile(fs_info, space_info->flags),
 672				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
 673					CHUNK_ALLOC_FORCE);
 674		btrfs_end_transaction(trans);
 
 675		if (ret > 0 || ret == -ENOSPC)
 676			ret = 0;
 677		break;
 678	case RUN_DELAYED_IPUTS:
 679		/*
 680		 * If we have pending delayed iputs then we could free up a
 681		 * bunch of pinned space, so make sure we run the iputs before
 682		 * we do our pinned bytes check below.
 683		 */
 684		btrfs_run_delayed_iputs(fs_info);
 685		btrfs_wait_on_delayed_iputs(fs_info);
 686		break;
 687	case COMMIT_TRANS:
 688		ASSERT(current->journal_info == NULL);
 689		trans = btrfs_join_transaction(root);
 690		if (IS_ERR(trans)) {
 691			ret = PTR_ERR(trans);
 692			break;
 693		}
 694		ret = btrfs_commit_transaction(trans);
 
 
 695		break;
 696	default:
 697		ret = -ENOSPC;
 698		break;
 699	}
 700
 701	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
 702				ret, for_preempt);
 703	return;
 704}
 705
 706static inline u64
 707btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
 708				 struct btrfs_space_info *space_info)
 709{
 710	u64 used;
 711	u64 avail;
 712	u64 to_reclaim = space_info->reclaim_size;
 713
 714	lockdep_assert_held(&space_info->lock);
 715
 716	avail = calc_available_free_space(fs_info, space_info,
 717					  BTRFS_RESERVE_FLUSH_ALL);
 718	used = btrfs_space_info_used(space_info, true);
 719
 720	/*
 721	 * We may be flushing because suddenly we have less space than we had
 722	 * before, and now we're well over-committed based on our current free
 723	 * space.  If that's the case add in our overage so we make sure to put
 724	 * appropriate pressure on the flushing state machine.
 725	 */
 726	if (space_info->total_bytes + avail < used)
 727		to_reclaim += used - (space_info->total_bytes + avail);
 728
 729	return to_reclaim;
 730}
 731
 732static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
 733				    struct btrfs_space_info *space_info)
 734{
 735	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
 736	u64 ordered, delalloc;
 737	u64 thresh = div_factor_fine(space_info->total_bytes, 90);
 738	u64 used;
 739
 
 
 
 
 740	/* If we're just plain full then async reclaim just slows us down. */
 741	if ((space_info->bytes_used + space_info->bytes_reserved +
 742	     global_rsv_size) >= thresh)
 743		return false;
 744
 745	used = space_info->bytes_may_use + space_info->bytes_pinned;
 746
 747	/* The total flushable belongs to the global rsv, don't flush. */
 748	if (global_rsv_size >= used)
 749		return false;
 750
 751	/*
 752	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
 753	 * that devoted to other reservations then there's no sense in flushing,
 754	 * we don't have a lot of things that need flushing.
 755	 */
 756	if (used - global_rsv_size <= SZ_128M)
 757		return false;
 758
 759	/*
 760	 * We have tickets queued, bail so we don't compete with the async
 761	 * flushers.
 762	 */
 763	if (space_info->reclaim_size)
 764		return false;
 765
 766	/*
 767	 * If we have over half of the free space occupied by reservations or
 768	 * pinned then we want to start flushing.
 769	 *
 770	 * We do not do the traditional thing here, which is to say
 771	 *
 772	 *   if (used >= ((total_bytes + avail) / 2))
 773	 *     return 1;
 774	 *
 775	 * because this doesn't quite work how we want.  If we had more than 50%
 776	 * of the space_info used by bytes_used and we had 0 available we'd just
 777	 * constantly run the background flusher.  Instead we want it to kick in
 778	 * if our reclaimable space exceeds our clamped free space.
 779	 *
 780	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
 781	 * the following:
 782	 *
 783	 * Amount of RAM        Minimum threshold       Maximum threshold
 784	 *
 785	 *        256GiB                     1GiB                  128GiB
 786	 *        128GiB                   512MiB                   64GiB
 787	 *         64GiB                   256MiB                   32GiB
 788	 *         32GiB                   128MiB                   16GiB
 789	 *         16GiB                    64MiB                    8GiB
 790	 *
 791	 * These are the range our thresholds will fall in, corresponding to how
 792	 * much delalloc we need for the background flusher to kick in.
 793	 */
 794
 795	thresh = calc_available_free_space(fs_info, space_info,
 796					   BTRFS_RESERVE_FLUSH_ALL);
 797	used = space_info->bytes_used + space_info->bytes_reserved +
 798	       space_info->bytes_readonly + global_rsv_size;
 799	if (used < space_info->total_bytes)
 800		thresh += space_info->total_bytes - used;
 801	thresh >>= space_info->clamp;
 802
 803	used = space_info->bytes_pinned;
 804
 805	/*
 806	 * If we have more ordered bytes than delalloc bytes then we're either
 807	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
 808	 * around.  Preemptive flushing is only useful in that it can free up
 809	 * space before tickets need to wait for things to finish.  In the case
 810	 * of ordered extents, preemptively waiting on ordered extents gets us
 811	 * nothing, if our reservations are tied up in ordered extents we'll
 812	 * simply have to slow down writers by forcing them to wait on ordered
 813	 * extents.
 814	 *
 815	 * In the case that ordered is larger than delalloc, only include the
 816	 * block reserves that we would actually be able to directly reclaim
 817	 * from.  In this case if we're heavy on metadata operations this will
 818	 * clearly be heavy enough to warrant preemptive flushing.  In the case
 819	 * of heavy DIO or ordered reservations, preemptive flushing will just
 820	 * waste time and cause us to slow down.
 821	 *
 822	 * We want to make sure we truly are maxed out on ordered however, so
 823	 * cut ordered in half, and if it's still higher than delalloc then we
 824	 * can keep flushing.  This is to avoid the case where we start
 825	 * flushing, and now delalloc == ordered and we stop preemptively
 826	 * flushing when we could still have several gigs of delalloc to flush.
 827	 */
 828	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
 829	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
 830	if (ordered >= delalloc)
 831		used += fs_info->delayed_refs_rsv.reserved +
 832			fs_info->delayed_block_rsv.reserved;
 833	else
 834		used += space_info->bytes_may_use - global_rsv_size;
 835
 836	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
 837		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
 838}
 839
 840static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
 841				  struct btrfs_space_info *space_info,
 842				  struct reserve_ticket *ticket)
 843{
 844	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
 845	u64 min_bytes;
 846
 
 
 
 847	if (global_rsv->space_info != space_info)
 848		return false;
 849
 850	spin_lock(&global_rsv->lock);
 851	min_bytes = div_factor(global_rsv->size, 1);
 852	if (global_rsv->reserved < min_bytes + ticket->bytes) {
 853		spin_unlock(&global_rsv->lock);
 854		return false;
 855	}
 856	global_rsv->reserved -= ticket->bytes;
 857	remove_ticket(space_info, ticket);
 858	ticket->bytes = 0;
 859	wake_up(&ticket->wait);
 860	space_info->tickets_id++;
 861	if (global_rsv->reserved < global_rsv->size)
 862		global_rsv->full = 0;
 863	spin_unlock(&global_rsv->lock);
 864
 865	return true;
 866}
 867
 868/*
 869 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
 
 870 * @fs_info - fs_info for this fs
 871 * @space_info - the space info we were flushing
 872 *
 873 * We call this when we've exhausted our flushing ability and haven't made
 874 * progress in satisfying tickets.  The reservation code handles tickets in
 875 * order, so if there is a large ticket first and then smaller ones we could
 876 * very well satisfy the smaller tickets.  This will attempt to wake up any
 877 * tickets in the list to catch this case.
 878 *
 879 * This function returns true if it was able to make progress by clearing out
 880 * other tickets, or if it stumbles across a ticket that was smaller than the
 881 * first ticket.
 882 */
 883static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
 884				   struct btrfs_space_info *space_info)
 885{
 886	struct reserve_ticket *ticket;
 887	u64 tickets_id = space_info->tickets_id;
 
 
 
 888
 889	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
 890		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
 891		__btrfs_dump_space_info(fs_info, space_info);
 892	}
 893
 894	while (!list_empty(&space_info->tickets) &&
 895	       tickets_id == space_info->tickets_id) {
 896		ticket = list_first_entry(&space_info->tickets,
 897					  struct reserve_ticket, list);
 898
 899		if (ticket->steal &&
 900		    steal_from_global_rsv(fs_info, space_info, ticket))
 901			return true;
 902
 903		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
 904			btrfs_info(fs_info, "failing ticket with %llu bytes",
 905				   ticket->bytes);
 906
 907		remove_ticket(space_info, ticket);
 908		ticket->error = -ENOSPC;
 
 
 
 909		wake_up(&ticket->wait);
 910
 911		/*
 912		 * We're just throwing tickets away, so more flushing may not
 913		 * trip over btrfs_try_granting_tickets, so we need to call it
 914		 * here to see if we can make progress with the next ticket in
 915		 * the list.
 916		 */
 917		btrfs_try_granting_tickets(fs_info, space_info);
 
 918	}
 919	return (tickets_id != space_info->tickets_id);
 920}
 921
 922/*
 923 * This is for normal flushers, we can wait all goddamned day if we want to.  We
 924 * will loop and continuously try to flush as long as we are making progress.
 925 * We count progress as clearing off tickets each time we have to loop.
 926 */
 927static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
 928{
 929	struct btrfs_fs_info *fs_info;
 930	struct btrfs_space_info *space_info;
 931	u64 to_reclaim;
 932	enum btrfs_flush_state flush_state;
 933	int commit_cycles = 0;
 934	u64 last_tickets_id;
 935
 936	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
 937	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
 938
 939	spin_lock(&space_info->lock);
 940	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
 941	if (!to_reclaim) {
 942		space_info->flush = 0;
 943		spin_unlock(&space_info->lock);
 944		return;
 945	}
 946	last_tickets_id = space_info->tickets_id;
 947	spin_unlock(&space_info->lock);
 948
 949	flush_state = FLUSH_DELAYED_ITEMS_NR;
 950	do {
 951		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
 952		spin_lock(&space_info->lock);
 953		if (list_empty(&space_info->tickets)) {
 954			space_info->flush = 0;
 955			spin_unlock(&space_info->lock);
 956			return;
 957		}
 958		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
 959							      space_info);
 960		if (last_tickets_id == space_info->tickets_id) {
 961			flush_state++;
 962		} else {
 963			last_tickets_id = space_info->tickets_id;
 964			flush_state = FLUSH_DELAYED_ITEMS_NR;
 965			if (commit_cycles)
 966				commit_cycles--;
 967		}
 968
 969		/*
 970		 * We do not want to empty the system of delalloc unless we're
 971		 * under heavy pressure, so allow one trip through the flushing
 972		 * logic before we start doing a FLUSH_DELALLOC_FULL.
 973		 */
 974		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
 975			flush_state++;
 976
 977		/*
 978		 * We don't want to force a chunk allocation until we've tried
 979		 * pretty hard to reclaim space.  Think of the case where we
 980		 * freed up a bunch of space and so have a lot of pinned space
 981		 * to reclaim.  We would rather use that than possibly create a
 982		 * underutilized metadata chunk.  So if this is our first run
 983		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
 984		 * commit the transaction.  If nothing has changed the next go
 985		 * around then we can force a chunk allocation.
 986		 */
 987		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
 988			flush_state++;
 989
 990		if (flush_state > COMMIT_TRANS) {
 991			commit_cycles++;
 992			if (commit_cycles > 2) {
 993				if (maybe_fail_all_tickets(fs_info, space_info)) {
 994					flush_state = FLUSH_DELAYED_ITEMS_NR;
 995					commit_cycles--;
 996				} else {
 997					space_info->flush = 0;
 998				}
 999			} else {
1000				flush_state = FLUSH_DELAYED_ITEMS_NR;
1001			}
1002		}
1003		spin_unlock(&space_info->lock);
1004	} while (flush_state <= COMMIT_TRANS);
1005}
1006
1007/*
1008 * This handles pre-flushing of metadata space before we get to the point that
1009 * we need to start blocking threads on tickets.  The logic here is different
1010 * from the other flush paths because it doesn't rely on tickets to tell us how
1011 * much we need to flush, instead it attempts to keep us below the 80% full
1012 * watermark of space by flushing whichever reservation pool is currently the
1013 * largest.
1014 */
1015static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1016{
1017	struct btrfs_fs_info *fs_info;
1018	struct btrfs_space_info *space_info;
1019	struct btrfs_block_rsv *delayed_block_rsv;
1020	struct btrfs_block_rsv *delayed_refs_rsv;
1021	struct btrfs_block_rsv *global_rsv;
1022	struct btrfs_block_rsv *trans_rsv;
1023	int loops = 0;
1024
1025	fs_info = container_of(work, struct btrfs_fs_info,
1026			       preempt_reclaim_work);
1027	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1028	delayed_block_rsv = &fs_info->delayed_block_rsv;
1029	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1030	global_rsv = &fs_info->global_block_rsv;
1031	trans_rsv = &fs_info->trans_block_rsv;
1032
1033	spin_lock(&space_info->lock);
1034	while (need_preemptive_reclaim(fs_info, space_info)) {
1035		enum btrfs_flush_state flush;
1036		u64 delalloc_size = 0;
1037		u64 to_reclaim, block_rsv_size;
1038		u64 global_rsv_size = global_rsv->reserved;
1039
1040		loops++;
1041
1042		/*
1043		 * We don't have a precise counter for the metadata being
1044		 * reserved for delalloc, so we'll approximate it by subtracting
1045		 * out the block rsv's space from the bytes_may_use.  If that
1046		 * amount is higher than the individual reserves, then we can
1047		 * assume it's tied up in delalloc reservations.
1048		 */
1049		block_rsv_size = global_rsv_size +
1050			delayed_block_rsv->reserved +
1051			delayed_refs_rsv->reserved +
1052			trans_rsv->reserved;
1053		if (block_rsv_size < space_info->bytes_may_use)
1054			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1055		spin_unlock(&space_info->lock);
1056
1057		/*
1058		 * We don't want to include the global_rsv in our calculation,
1059		 * because that's space we can't touch.  Subtract it from the
1060		 * block_rsv_size for the next checks.
1061		 */
1062		block_rsv_size -= global_rsv_size;
1063
1064		/*
1065		 * We really want to avoid flushing delalloc too much, as it
1066		 * could result in poor allocation patterns, so only flush it if
1067		 * it's larger than the rest of the pools combined.
1068		 */
1069		if (delalloc_size > block_rsv_size) {
1070			to_reclaim = delalloc_size;
1071			flush = FLUSH_DELALLOC;
1072		} else if (space_info->bytes_pinned >
1073			   (delayed_block_rsv->reserved +
1074			    delayed_refs_rsv->reserved)) {
1075			to_reclaim = space_info->bytes_pinned;
1076			flush = COMMIT_TRANS;
1077		} else if (delayed_block_rsv->reserved >
1078			   delayed_refs_rsv->reserved) {
1079			to_reclaim = delayed_block_rsv->reserved;
1080			flush = FLUSH_DELAYED_ITEMS_NR;
1081		} else {
1082			to_reclaim = delayed_refs_rsv->reserved;
1083			flush = FLUSH_DELAYED_REFS_NR;
1084		}
1085
 
 
1086		/*
1087		 * We don't want to reclaim everything, just a portion, so scale
1088		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1089		 * reclaim 1 items worth.
1090		 */
1091		to_reclaim >>= 2;
1092		if (!to_reclaim)
1093			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1094		flush_space(fs_info, space_info, to_reclaim, flush, true);
1095		cond_resched();
1096		spin_lock(&space_info->lock);
1097	}
1098
1099	/* We only went through once, back off our clamping. */
1100	if (loops == 1 && !space_info->reclaim_size)
1101		space_info->clamp = max(1, space_info->clamp - 1);
1102	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1103	spin_unlock(&space_info->lock);
1104}
1105
1106/*
1107 * FLUSH_DELALLOC_WAIT:
1108 *   Space is freed from flushing delalloc in one of two ways.
1109 *
1110 *   1) compression is on and we allocate less space than we reserved
1111 *   2) we are overwriting existing space
1112 *
1113 *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1114 *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1115 *   length to ->bytes_reserved, and subtracts the reserved space from
1116 *   ->bytes_may_use.
1117 *
1118 *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1119 *   extent in the range we are overwriting, which creates a delayed ref for
1120 *   that freed extent.  This however is not reclaimed until the transaction
1121 *   commits, thus the next stages.
1122 *
1123 * RUN_DELAYED_IPUTS
1124 *   If we are freeing inodes, we want to make sure all delayed iputs have
1125 *   completed, because they could have been on an inode with i_nlink == 0, and
1126 *   thus have been truncated and freed up space.  But again this space is not
1127 *   immediately re-usable, it comes in the form of a delayed ref, which must be
1128 *   run and then the transaction must be committed.
1129 *
1130 * COMMIT_TRANS
1131 *   This is where we reclaim all of the pinned space generated by running the
1132 *   iputs
1133 *
1134 * ALLOC_CHUNK_FORCE
1135 *   For data we start with alloc chunk force, however we could have been full
1136 *   before, and then the transaction commit could have freed new block groups,
1137 *   so if we now have space to allocate do the force chunk allocation.
1138 */
1139static const enum btrfs_flush_state data_flush_states[] = {
1140	FLUSH_DELALLOC_FULL,
1141	RUN_DELAYED_IPUTS,
1142	COMMIT_TRANS,
1143	ALLOC_CHUNK_FORCE,
1144};
1145
1146static void btrfs_async_reclaim_data_space(struct work_struct *work)
1147{
1148	struct btrfs_fs_info *fs_info;
1149	struct btrfs_space_info *space_info;
1150	u64 last_tickets_id;
1151	enum btrfs_flush_state flush_state = 0;
1152
1153	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1154	space_info = fs_info->data_sinfo;
1155
1156	spin_lock(&space_info->lock);
1157	if (list_empty(&space_info->tickets)) {
1158		space_info->flush = 0;
1159		spin_unlock(&space_info->lock);
1160		return;
1161	}
1162	last_tickets_id = space_info->tickets_id;
1163	spin_unlock(&space_info->lock);
1164
1165	while (!space_info->full) {
1166		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1167		spin_lock(&space_info->lock);
1168		if (list_empty(&space_info->tickets)) {
1169			space_info->flush = 0;
1170			spin_unlock(&space_info->lock);
1171			return;
1172		}
 
 
 
 
1173		last_tickets_id = space_info->tickets_id;
1174		spin_unlock(&space_info->lock);
1175	}
1176
1177	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1178		flush_space(fs_info, space_info, U64_MAX,
1179			    data_flush_states[flush_state], false);
1180		spin_lock(&space_info->lock);
1181		if (list_empty(&space_info->tickets)) {
1182			space_info->flush = 0;
1183			spin_unlock(&space_info->lock);
1184			return;
1185		}
1186
1187		if (last_tickets_id == space_info->tickets_id) {
1188			flush_state++;
1189		} else {
1190			last_tickets_id = space_info->tickets_id;
1191			flush_state = 0;
1192		}
1193
1194		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1195			if (space_info->full) {
1196				if (maybe_fail_all_tickets(fs_info, space_info))
1197					flush_state = 0;
1198				else
1199					space_info->flush = 0;
1200			} else {
1201				flush_state = 0;
1202			}
 
 
 
 
 
1203		}
1204		spin_unlock(&space_info->lock);
1205	}
 
 
 
 
 
 
1206}
1207
1208void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1209{
1210	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1211	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1212	INIT_WORK(&fs_info->preempt_reclaim_work,
1213		  btrfs_preempt_reclaim_metadata_space);
1214}
1215
1216static const enum btrfs_flush_state priority_flush_states[] = {
1217	FLUSH_DELAYED_ITEMS_NR,
1218	FLUSH_DELAYED_ITEMS,
1219	ALLOC_CHUNK,
1220};
1221
1222static const enum btrfs_flush_state evict_flush_states[] = {
1223	FLUSH_DELAYED_ITEMS_NR,
1224	FLUSH_DELAYED_ITEMS,
1225	FLUSH_DELAYED_REFS_NR,
1226	FLUSH_DELAYED_REFS,
1227	FLUSH_DELALLOC,
1228	FLUSH_DELALLOC_WAIT,
1229	FLUSH_DELALLOC_FULL,
1230	ALLOC_CHUNK,
1231	COMMIT_TRANS,
1232};
1233
1234static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1235				struct btrfs_space_info *space_info,
1236				struct reserve_ticket *ticket,
1237				const enum btrfs_flush_state *states,
1238				int states_nr)
1239{
1240	u64 to_reclaim;
1241	int flush_state;
1242
1243	spin_lock(&space_info->lock);
1244	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1245	if (!to_reclaim) {
 
 
 
 
 
 
1246		spin_unlock(&space_info->lock);
1247		return;
1248	}
1249	spin_unlock(&space_info->lock);
1250
1251	flush_state = 0;
1252	do {
1253		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1254			    false);
1255		flush_state++;
1256		spin_lock(&space_info->lock);
1257		if (ticket->bytes == 0) {
1258			spin_unlock(&space_info->lock);
1259			return;
1260		}
1261		spin_unlock(&space_info->lock);
1262	} while (flush_state < states_nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263}
1264
1265static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1266					struct btrfs_space_info *space_info,
1267					struct reserve_ticket *ticket)
1268{
 
 
 
 
 
 
 
 
1269	while (!space_info->full) {
 
1270		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1271		spin_lock(&space_info->lock);
1272		if (ticket->bytes == 0) {
1273			spin_unlock(&space_info->lock);
1274			return;
1275		}
1276		spin_unlock(&space_info->lock);
1277	}
 
 
 
 
 
1278}
1279
1280static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1281				struct btrfs_space_info *space_info,
1282				struct reserve_ticket *ticket)
1283
1284{
1285	DEFINE_WAIT(wait);
1286	int ret = 0;
1287
1288	spin_lock(&space_info->lock);
1289	while (ticket->bytes > 0 && ticket->error == 0) {
1290		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1291		if (ret) {
1292			/*
1293			 * Delete us from the list. After we unlock the space
1294			 * info, we don't want the async reclaim job to reserve
1295			 * space for this ticket. If that would happen, then the
1296			 * ticket's task would not known that space was reserved
1297			 * despite getting an error, resulting in a space leak
1298			 * (bytes_may_use counter of our space_info).
1299			 */
1300			remove_ticket(space_info, ticket);
1301			ticket->error = -EINTR;
1302			break;
1303		}
1304		spin_unlock(&space_info->lock);
1305
1306		schedule();
1307
1308		finish_wait(&ticket->wait, &wait);
1309		spin_lock(&space_info->lock);
1310	}
1311	spin_unlock(&space_info->lock);
1312}
1313
1314/**
1315 * Do the appropriate flushing and waiting for a ticket
1316 *
1317 * @fs_info:    the filesystem
1318 * @space_info: space info for the reservation
1319 * @ticket:     ticket for the reservation
1320 * @start_ns:   timestamp when the reservation started
1321 * @orig_bytes: amount of bytes originally reserved
1322 * @flush:      how much we can flush
1323 *
1324 * This does the work of figuring out how to flush for the ticket, waiting for
1325 * the reservation, and returning the appropriate error if there is one.
1326 */
1327static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1328				 struct btrfs_space_info *space_info,
1329				 struct reserve_ticket *ticket,
1330				 u64 start_ns, u64 orig_bytes,
1331				 enum btrfs_reserve_flush_enum flush)
1332{
1333	int ret;
1334
1335	switch (flush) {
1336	case BTRFS_RESERVE_FLUSH_DATA:
1337	case BTRFS_RESERVE_FLUSH_ALL:
1338	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1339		wait_reserve_ticket(fs_info, space_info, ticket);
1340		break;
1341	case BTRFS_RESERVE_FLUSH_LIMIT:
1342		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1343						priority_flush_states,
1344						ARRAY_SIZE(priority_flush_states));
1345		break;
1346	case BTRFS_RESERVE_FLUSH_EVICT:
1347		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1348						evict_flush_states,
1349						ARRAY_SIZE(evict_flush_states));
1350		break;
1351	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1352		priority_reclaim_data_space(fs_info, space_info, ticket);
1353		break;
1354	default:
1355		ASSERT(0);
1356		break;
1357	}
1358
1359	spin_lock(&space_info->lock);
1360	ret = ticket->error;
1361	if (ticket->bytes || ticket->error) {
1362		/*
1363		 * We were a priority ticket, so we need to delete ourselves
1364		 * from the list.  Because we could have other priority tickets
1365		 * behind us that require less space, run
1366		 * btrfs_try_granting_tickets() to see if their reservations can
1367		 * now be made.
1368		 */
1369		if (!list_empty(&ticket->list)) {
1370			remove_ticket(space_info, ticket);
1371			btrfs_try_granting_tickets(fs_info, space_info);
1372		}
1373
1374		if (!ret)
1375			ret = -ENOSPC;
1376	}
1377	spin_unlock(&space_info->lock);
1378	ASSERT(list_empty(&ticket->list));
1379	/*
1380	 * Check that we can't have an error set if the reservation succeeded,
1381	 * as that would confuse tasks and lead them to error out without
1382	 * releasing reserved space (if an error happens the expectation is that
1383	 * space wasn't reserved at all).
1384	 */
1385	ASSERT(!(ticket->bytes == 0 && ticket->error));
1386	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1387				   start_ns, flush, ticket->error);
1388	return ret;
1389}
1390
1391/*
1392 * This returns true if this flush state will go through the ordinary flushing
1393 * code.
1394 */
1395static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1396{
1397	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1398		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1399}
1400
1401static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1402				       struct btrfs_space_info *space_info)
1403{
1404	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1405	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1406
1407	/*
1408	 * If we're heavy on ordered operations then clamping won't help us.  We
1409	 * need to clamp specifically to keep up with dirty'ing buffered
1410	 * writers, because there's not a 1:1 correlation of writing delalloc
1411	 * and freeing space, like there is with flushing delayed refs or
1412	 * delayed nodes.  If we're already more ordered than delalloc then
1413	 * we're keeping up, otherwise we aren't and should probably clamp.
1414	 */
1415	if (ordered < delalloc)
1416		space_info->clamp = min(space_info->clamp + 1, 8);
1417}
1418
1419/**
1420 * Try to reserve bytes from the block_rsv's space
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421 *
1422 * @fs_info:    the filesystem
1423 * @space_info: space info we want to allocate from
1424 * @orig_bytes: number of bytes we want
1425 * @flush:      whether or not we can flush to make our reservation
1426 *
1427 * This will reserve orig_bytes number of bytes from the space info associated
1428 * with the block_rsv.  If there is not enough space it will make an attempt to
1429 * flush out space to make room.  It will do this by flushing delalloc if
1430 * possible or committing the transaction.  If flush is 0 then no attempts to
1431 * regain reservations will be made and this will fail if there is not enough
1432 * space already.
1433 */
1434static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1435			   struct btrfs_space_info *space_info, u64 orig_bytes,
1436			   enum btrfs_reserve_flush_enum flush)
1437{
1438	struct work_struct *async_work;
1439	struct reserve_ticket ticket;
1440	u64 start_ns = 0;
1441	u64 used;
1442	int ret = 0;
1443	bool pending_tickets;
1444
1445	ASSERT(orig_bytes);
1446	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
 
 
 
 
 
 
 
 
 
 
 
1447
1448	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1449		async_work = &fs_info->async_data_reclaim_work;
1450	else
1451		async_work = &fs_info->async_reclaim_work;
1452
1453	spin_lock(&space_info->lock);
1454	ret = -ENOSPC;
1455	used = btrfs_space_info_used(space_info, true);
1456
1457	/*
1458	 * We don't want NO_FLUSH allocations to jump everybody, they can
1459	 * generally handle ENOSPC in a different way, so treat them the same as
1460	 * normal flushers when it comes to skipping pending tickets.
1461	 */
1462	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1463		pending_tickets = !list_empty(&space_info->tickets) ||
1464			!list_empty(&space_info->priority_tickets);
1465	else
1466		pending_tickets = !list_empty(&space_info->priority_tickets);
1467
1468	/*
1469	 * Carry on if we have enough space (short-circuit) OR call
1470	 * can_overcommit() to ensure we can overcommit to continue.
1471	 */
1472	if (!pending_tickets &&
1473	    ((used + orig_bytes <= space_info->total_bytes) ||
1474	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1475		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1476						      orig_bytes);
1477		ret = 0;
1478	}
1479
1480	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481	 * If we couldn't make a reservation then setup our reservation ticket
1482	 * and kick the async worker if it's not already running.
1483	 *
1484	 * If we are a priority flusher then we just need to add our ticket to
1485	 * the list and we will do our own flushing further down.
1486	 */
1487	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1488		ticket.bytes = orig_bytes;
1489		ticket.error = 0;
1490		space_info->reclaim_size += ticket.bytes;
1491		init_waitqueue_head(&ticket.wait);
1492		ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1493		if (trace_btrfs_reserve_ticket_enabled())
1494			start_ns = ktime_get_ns();
1495
1496		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1497		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1498		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1499			list_add_tail(&ticket.list, &space_info->tickets);
1500			if (!space_info->flush) {
1501				/*
1502				 * We were forced to add a reserve ticket, so
1503				 * our preemptive flushing is unable to keep
1504				 * up.  Clamp down on the threshold for the
1505				 * preemptive flushing in order to keep up with
1506				 * the workload.
1507				 */
1508				maybe_clamp_preempt(fs_info, space_info);
1509
1510				space_info->flush = 1;
1511				trace_btrfs_trigger_flush(fs_info,
1512							  space_info->flags,
1513							  orig_bytes, flush,
1514							  "enospc");
1515				queue_work(system_unbound_wq, async_work);
1516			}
1517		} else {
1518			list_add_tail(&ticket.list,
1519				      &space_info->priority_tickets);
1520		}
1521	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1522		used += orig_bytes;
1523		/*
1524		 * We will do the space reservation dance during log replay,
1525		 * which means we won't have fs_info->fs_root set, so don't do
1526		 * the async reclaim as we will panic.
1527		 */
1528		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1529		    !work_busy(&fs_info->preempt_reclaim_work) &&
1530		    need_preemptive_reclaim(fs_info, space_info)) {
1531			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1532						  orig_bytes, flush, "preempt");
1533			queue_work(system_unbound_wq,
1534				   &fs_info->preempt_reclaim_work);
1535		}
1536	}
1537	spin_unlock(&space_info->lock);
1538	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1539		return ret;
1540
1541	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1542				     orig_bytes, flush);
1543}
1544
1545/**
1546 * Trye to reserve metadata bytes from the block_rsv's space
1547 *
1548 * @root:       the root we're allocating for
1549 * @block_rsv:  block_rsv we're allocating for
1550 * @orig_bytes: number of bytes we want
1551 * @flush:      whether or not we can flush to make our reservation
1552 *
1553 * This will reserve orig_bytes number of bytes from the space info associated
1554 * with the block_rsv.  If there is not enough space it will make an attempt to
1555 * flush out space to make room.  It will do this by flushing delalloc if
1556 * possible or committing the transaction.  If flush is 0 then no attempts to
1557 * regain reservations will be made and this will fail if there is not enough
1558 * space already.
1559 */
1560int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1561				 struct btrfs_block_rsv *block_rsv,
1562				 u64 orig_bytes,
1563				 enum btrfs_reserve_flush_enum flush)
1564{
1565	struct btrfs_fs_info *fs_info = root->fs_info;
1566	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1567	int ret;
1568
1569	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1570	if (ret == -ENOSPC &&
1571	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1572		if (block_rsv != global_rsv &&
1573		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1574			ret = 0;
1575	}
1576	if (ret == -ENOSPC) {
1577		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1578					      block_rsv->space_info->flags,
1579					      orig_bytes, 1);
1580
1581		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1582			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1583					      orig_bytes, 0);
1584	}
1585	return ret;
1586}
1587
1588/**
1589 * Try to reserve data bytes for an allocation
1590 *
1591 * @fs_info: the filesystem
1592 * @bytes:   number of bytes we need
1593 * @flush:   how we are allowed to flush
1594 *
1595 * This will reserve bytes from the data space info.  If there is not enough
1596 * space then we will attempt to flush space as specified by flush.
1597 */
1598int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1599			     enum btrfs_reserve_flush_enum flush)
1600{
1601	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1602	int ret;
1603
1604	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1605	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
 
1606	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1607
1608	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1609	if (ret == -ENOSPC) {
1610		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1611					      data_sinfo->flags, bytes, 1);
1612		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1613			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1614	}
1615	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616}