Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "messages.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "bio.h"
 
  17#include "compression.h"
  18#include "fs.h"
  19#include "accessors.h"
  20#include "file-item.h"
  21
  22#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  23				   sizeof(struct btrfs_item) * 2) / \
  24				  size) - 1))
  25
  26#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  27				       PAGE_SIZE))
  28
  29/*
  30 * Set inode's size according to filesystem options.
  31 *
  32 * @inode:      inode we want to update the disk_i_size for
  33 * @new_i_size: i_size we want to set to, 0 if we use i_size
  34 *
  35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  36 * returns as it is perfectly fine with a file that has holes without hole file
  37 * extent items.
  38 *
  39 * However without NO_HOLES we need to only return the area that is contiguous
  40 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  41 * to an extent that has a gap in between.
  42 *
  43 * Finally new_i_size should only be set in the case of truncate where we're not
  44 * ready to use i_size_read() as the limiter yet.
  45 */
  46void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  47{
 
  48	u64 start, end, i_size;
  49	int ret;
  50
  51	spin_lock(&inode->lock);
  52	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  53	if (!inode->file_extent_tree) {
  54		inode->disk_i_size = i_size;
  55		goto out_unlock;
  56	}
  57
  58	ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
 
  59					 &end, EXTENT_DIRTY);
  60	if (!ret && start == 0)
  61		i_size = min(i_size, end + 1);
  62	else
  63		i_size = 0;
  64	inode->disk_i_size = i_size;
  65out_unlock:
  66	spin_unlock(&inode->lock);
  67}
  68
  69/*
  70 * Mark range within a file as having a new extent inserted.
  71 *
  72 * @inode: inode being modified
  73 * @start: start file offset of the file extent we've inserted
  74 * @len:   logical length of the file extent item
  75 *
  76 * Call when we are inserting a new file extent where there was none before.
  77 * Does not need to call this in the case where we're replacing an existing file
  78 * extent, however if not sure it's fine to call this multiple times.
  79 *
  80 * The start and len must match the file extent item, so thus must be sectorsize
  81 * aligned.
  82 */
  83int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  84				      u64 len)
  85{
  86	if (!inode->file_extent_tree)
  87		return 0;
  88
  89	if (len == 0)
  90		return 0;
  91
  92	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  93
  94	return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
  95			      EXTENT_DIRTY, NULL);
 
 
  96}
  97
  98/*
  99 * Mark an inode range as not having a backing extent.
 100 *
 101 * @inode: inode being modified
 102 * @start: start file offset of the file extent we've inserted
 103 * @len:   logical length of the file extent item
 104 *
 105 * Called when we drop a file extent, for example when we truncate.  Doesn't
 106 * need to be called for cases where we're replacing a file extent, like when
 107 * we've COWed a file extent.
 108 *
 109 * The start and len must match the file extent item, so thus must be sectorsize
 110 * aligned.
 111 */
 112int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 113					u64 len)
 114{
 115	if (!inode->file_extent_tree)
 116		return 0;
 117
 118	if (len == 0)
 119		return 0;
 120
 121	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 122	       len == (u64)-1);
 123
 124	return clear_extent_bit(inode->file_extent_tree, start,
 125				start + len - 1, EXTENT_DIRTY, NULL);
 126}
 127
 128static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
 129{
 130	ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
 131
 132	return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
 133}
 134
 135static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
 136{
 137	ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
 138
 139	return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
 140}
 141
 142static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
 
 143{
 144	u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
 145				       fs_info->csum_size);
 146
 147	return csum_size_to_bytes(fs_info, max_csum_size);
 148}
 149
 150/*
 151 * Calculate the total size needed to allocate for an ordered sum structure
 152 * spanning @bytes in the file.
 153 */
 154static int btrfs_ordered_sum_size(const struct btrfs_fs_info *fs_info, unsigned long bytes)
 155{
 156	return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
 157}
 158
 159int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
 160			     struct btrfs_root *root,
 161			     u64 objectid, u64 pos, u64 num_bytes)
 
 
 
 162{
 163	int ret = 0;
 164	struct btrfs_file_extent_item *item;
 165	struct btrfs_key file_key;
 166	struct btrfs_path *path;
 167	struct extent_buffer *leaf;
 168
 169	path = btrfs_alloc_path();
 170	if (!path)
 171		return -ENOMEM;
 172	file_key.objectid = objectid;
 173	file_key.offset = pos;
 174	file_key.type = BTRFS_EXTENT_DATA_KEY;
 175
 176	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 177				      sizeof(*item));
 178	if (ret < 0)
 179		goto out;
 
 180	leaf = path->nodes[0];
 181	item = btrfs_item_ptr(leaf, path->slots[0],
 182			      struct btrfs_file_extent_item);
 183	btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
 184	btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
 185	btrfs_set_file_extent_offset(leaf, item, 0);
 186	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 187	btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
 188	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 189	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 190	btrfs_set_file_extent_compression(leaf, item, 0);
 191	btrfs_set_file_extent_encryption(leaf, item, 0);
 192	btrfs_set_file_extent_other_encoding(leaf, item, 0);
 193
 194	btrfs_mark_buffer_dirty(trans, leaf);
 195out:
 196	btrfs_free_path(path);
 197	return ret;
 198}
 199
 200static struct btrfs_csum_item *
 201btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 202		  struct btrfs_root *root,
 203		  struct btrfs_path *path,
 204		  u64 bytenr, int cow)
 205{
 206	struct btrfs_fs_info *fs_info = root->fs_info;
 207	int ret;
 208	struct btrfs_key file_key;
 209	struct btrfs_key found_key;
 210	struct btrfs_csum_item *item;
 211	struct extent_buffer *leaf;
 212	u64 csum_offset = 0;
 213	const u32 csum_size = fs_info->csum_size;
 214	int csums_in_item;
 215
 216	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 217	file_key.offset = bytenr;
 218	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 219	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 220	if (ret < 0)
 221		goto fail;
 222	leaf = path->nodes[0];
 223	if (ret > 0) {
 224		ret = 1;
 225		if (path->slots[0] == 0)
 226			goto fail;
 227		path->slots[0]--;
 228		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 229		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 230			goto fail;
 231
 232		csum_offset = (bytenr - found_key.offset) >>
 233				fs_info->sectorsize_bits;
 234		csums_in_item = btrfs_item_size(leaf, path->slots[0]);
 235		csums_in_item /= csum_size;
 236
 237		if (csum_offset == csums_in_item) {
 238			ret = -EFBIG;
 239			goto fail;
 240		} else if (csum_offset > csums_in_item) {
 241			goto fail;
 242		}
 243	}
 244	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 245	item = (struct btrfs_csum_item *)((unsigned char *)item +
 246					  csum_offset * csum_size);
 247	return item;
 248fail:
 249	if (ret > 0)
 250		ret = -ENOENT;
 251	return ERR_PTR(ret);
 252}
 253
 254int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 255			     struct btrfs_root *root,
 256			     struct btrfs_path *path, u64 objectid,
 257			     u64 offset, int mod)
 258{
 
 259	struct btrfs_key file_key;
 260	int ins_len = mod < 0 ? -1 : 0;
 261	int cow = mod != 0;
 262
 263	file_key.objectid = objectid;
 264	file_key.offset = offset;
 265	file_key.type = BTRFS_EXTENT_DATA_KEY;
 266
 267	return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 268}
 269
 270/*
 271 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 272 * store the result to @dst.
 273 *
 274 * Return >0 for the number of sectors we found.
 275 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 276 * for it. Caller may want to try next sector until one range is hit.
 277 * Return <0 for fatal error.
 278 */
 279static int search_csum_tree(struct btrfs_fs_info *fs_info,
 280			    struct btrfs_path *path, u64 disk_bytenr,
 281			    u64 len, u8 *dst)
 282{
 283	struct btrfs_root *csum_root;
 284	struct btrfs_csum_item *item = NULL;
 285	struct btrfs_key key;
 286	const u32 sectorsize = fs_info->sectorsize;
 287	const u32 csum_size = fs_info->csum_size;
 288	u32 itemsize;
 289	int ret;
 290	u64 csum_start;
 291	u64 csum_len;
 292
 293	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 294	       IS_ALIGNED(len, sectorsize));
 295
 296	/* Check if the current csum item covers disk_bytenr */
 297	if (path->nodes[0]) {
 298		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 299				      struct btrfs_csum_item);
 300		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 301		itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 302
 303		csum_start = key.offset;
 304		csum_len = (itemsize / csum_size) * sectorsize;
 305
 306		if (in_range(disk_bytenr, csum_start, csum_len))
 307			goto found;
 308	}
 309
 310	/* Current item doesn't contain the desired range, search again */
 311	btrfs_release_path(path);
 312	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
 313	item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
 314	if (IS_ERR(item)) {
 315		ret = PTR_ERR(item);
 316		goto out;
 317	}
 318	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 319	itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
 320
 321	csum_start = key.offset;
 322	csum_len = (itemsize / csum_size) * sectorsize;
 323	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 324
 325found:
 326	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 327		   disk_bytenr) >> fs_info->sectorsize_bits;
 328	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 329			ret * csum_size);
 330out:
 331	if (ret == -ENOENT || ret == -EFBIG)
 332		ret = 0;
 333	return ret;
 334}
 335
 336/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337 * Lookup the checksum for the read bio in csum tree.
 338 *
 
 
 
 
 
 
 
 339 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 340 */
 341blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
 342{
 343	struct btrfs_inode *inode = bbio->inode;
 344	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 345	struct bio *bio = &bbio->bio;
 346	struct btrfs_path *path;
 347	const u32 sectorsize = fs_info->sectorsize;
 348	const u32 csum_size = fs_info->csum_size;
 349	u32 orig_len = bio->bi_iter.bi_size;
 350	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 
 
 351	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 352	blk_status_t ret = BLK_STS_OK;
 353	u32 bio_offset = 0;
 354
 355	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 356	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state))
 357		return BLK_STS_OK;
 358
 359	/*
 360	 * This function is only called for read bio.
 361	 *
 362	 * This means two things:
 363	 * - All our csums should only be in csum tree
 364	 *   No ordered extents csums, as ordered extents are only for write
 365	 *   path.
 366	 * - No need to bother any other info from bvec
 367	 *   Since we're looking up csums, the only important info is the
 368	 *   disk_bytenr and the length, which can be extracted from bi_iter
 369	 *   directly.
 370	 */
 371	ASSERT(bio_op(bio) == REQ_OP_READ);
 372	path = btrfs_alloc_path();
 373	if (!path)
 374		return BLK_STS_RESOURCE;
 375
 376	if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 377		bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
 378		if (!bbio->csum) {
 379			btrfs_free_path(path);
 380			return BLK_STS_RESOURCE;
 
 
 
 
 
 
 
 381		}
 
 382	} else {
 383		bbio->csum = bbio->csum_inline;
 384	}
 385
 386	/*
 387	 * If requested number of sectors is larger than one leaf can contain,
 388	 * kick the readahead for csum tree.
 389	 */
 390	if (nblocks > fs_info->csums_per_leaf)
 391		path->reada = READA_FORWARD;
 392
 393	/*
 394	 * the free space stuff is only read when it hasn't been
 395	 * updated in the current transaction.  So, we can safely
 396	 * read from the commit root and sidestep a nasty deadlock
 397	 * between reading the free space cache and updating the csum tree.
 398	 */
 399	if (btrfs_is_free_space_inode(inode)) {
 400		path->search_commit_root = 1;
 401		path->skip_locking = 1;
 402	}
 403
 404	while (bio_offset < orig_len) {
 405		int count;
 406		u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
 407		u8 *csum_dst = bbio->csum +
 408			(bio_offset >> fs_info->sectorsize_bits) * csum_size;
 409
 410		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 411					 orig_len - bio_offset, csum_dst);
 412		if (count < 0) {
 413			ret = errno_to_blk_status(count);
 414			if (bbio->csum != bbio->csum_inline)
 415				kfree(bbio->csum);
 416			bbio->csum = NULL;
 417			break;
 418		}
 419
 420		/*
 421		 * We didn't find a csum for this range.  We need to make sure
 422		 * we complain loudly about this, because we are not NODATASUM.
 423		 *
 424		 * However for the DATA_RELOC inode we could potentially be
 425		 * relocating data extents for a NODATASUM inode, so the inode
 426		 * itself won't be marked with NODATASUM, but the extent we're
 427		 * copying is in fact NODATASUM.  If we don't find a csum we
 428		 * assume this is the case.
 429		 */
 430		if (count == 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 431			memset(csum_dst, 0, csum_size);
 432			count = 1;
 433
 434			if (btrfs_root_id(inode->root) == BTRFS_DATA_RELOC_TREE_OBJECTID) {
 435				u64 file_offset = bbio->file_offset + bio_offset;
 436
 437				set_extent_bit(&inode->io_tree, file_offset,
 438					       file_offset + sectorsize - 1,
 439					       EXTENT_NODATASUM, NULL);
 
 
 
 
 
 
 
 
 
 
 440			} else {
 441				btrfs_warn_rl(fs_info,
 442			"csum hole found for disk bytenr range [%llu, %llu)",
 443				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 444			}
 445		}
 446		bio_offset += count * sectorsize;
 447	}
 448
 449	btrfs_free_path(path);
 450	return ret;
 451}
 452
 453/*
 454 * Search for checksums for a given logical range.
 455 *
 456 * @root:		The root where to look for checksums.
 457 * @start:		Logical address of target checksum range.
 458 * @end:		End offset (inclusive) of the target checksum range.
 459 * @list:		List for adding each checksum that was found.
 460 *			Can be NULL in case the caller only wants to check if
 461 *			there any checksums for the range.
 462 * @nowait:		Indicate if the search must be non-blocking or not.
 463 *
 464 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
 465 * found.
 466 */
 467int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
 468			    struct list_head *list, bool nowait)
 469{
 470	struct btrfs_fs_info *fs_info = root->fs_info;
 471	struct btrfs_key key;
 472	struct btrfs_path *path;
 473	struct extent_buffer *leaf;
 474	struct btrfs_ordered_sum *sums;
 475	struct btrfs_csum_item *item;
 
 
 476	int ret;
 477	bool found_csums = false;
 
 
 478
 479	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 480	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 481
 482	path = btrfs_alloc_path();
 483	if (!path)
 484		return -ENOMEM;
 485
 486	path->nowait = nowait;
 
 
 
 
 487
 488	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 489	key.offset = start;
 490	key.type = BTRFS_EXTENT_CSUM_KEY;
 491
 492	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 493	if (ret < 0)
 494		goto out;
 495	if (ret > 0 && path->slots[0] > 0) {
 496		leaf = path->nodes[0];
 497		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 498
 499		/*
 500		 * There are two cases we can hit here for the previous csum
 501		 * item:
 502		 *
 503		 *		|<- search range ->|
 504		 *	|<- csum item ->|
 505		 *
 506		 * Or
 507		 *				|<- search range ->|
 508		 *	|<- csum item ->|
 509		 *
 510		 * Check if the previous csum item covers the leading part of
 511		 * the search range.  If so we have to start from previous csum
 512		 * item.
 513		 */
 514		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 515		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 516			if (bytes_to_csum_size(fs_info, start - key.offset) <
 517			    btrfs_item_size(leaf, path->slots[0] - 1))
 
 518				path->slots[0]--;
 519		}
 520	}
 521
 522	while (start <= end) {
 523		u64 csum_end;
 524
 525		leaf = path->nodes[0];
 526		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 527			ret = btrfs_next_leaf(root, path);
 528			if (ret < 0)
 529				goto out;
 530			if (ret > 0)
 531				break;
 532			leaf = path->nodes[0];
 533		}
 534
 535		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 536		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 537		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 538		    key.offset > end)
 539			break;
 540
 541		if (key.offset > start)
 542			start = key.offset;
 543
 544		csum_end = key.offset + csum_size_to_bytes(fs_info,
 545					btrfs_item_size(leaf, path->slots[0]));
 546		if (csum_end <= start) {
 547			path->slots[0]++;
 548			continue;
 549		}
 550
 551		found_csums = true;
 552		if (!list)
 553			goto out;
 554
 555		csum_end = min(csum_end, end + 1);
 556		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 557				      struct btrfs_csum_item);
 558		while (start < csum_end) {
 559			unsigned long offset;
 560			size_t size;
 561
 562			size = min_t(size_t, csum_end - start,
 563				     max_ordered_sum_bytes(fs_info));
 564			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 565				       GFP_NOFS);
 566			if (!sums) {
 567				ret = -ENOMEM;
 568				goto out;
 569			}
 570
 571			sums->logical = start;
 572			sums->len = size;
 573
 574			offset = bytes_to_csum_size(fs_info, start - key.offset);
 
 
 575
 576			read_extent_buffer(path->nodes[0],
 577					   sums->sums,
 578					   ((unsigned long)item) + offset,
 579					   bytes_to_csum_size(fs_info, size));
 580
 581			start += size;
 582			list_add_tail(&sums->list, list);
 583		}
 584		path->slots[0]++;
 585	}
 586out:
 587	btrfs_free_path(path);
 588	if (ret < 0) {
 589		if (list) {
 590			struct btrfs_ordered_sum *tmp_sums;
 591
 592			list_for_each_entry_safe(sums, tmp_sums, list, list)
 593				kfree(sums);
 594		}
 595
 596		return ret;
 597	}
 598
 599	return found_csums ? 1 : 0;
 600}
 601
 602/*
 603 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
 604 * we return the result.
 605 *
 606 * This version will set the corresponding bits in @csum_bitmap to represent
 607 * that there is a csum found.
 608 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
 609 * in is large enough to contain all csums.
 610 */
 611int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
 612			      u64 start, u64 end, u8 *csum_buf,
 613			      unsigned long *csum_bitmap)
 614{
 615	struct btrfs_fs_info *fs_info = root->fs_info;
 616	struct btrfs_key key;
 617	struct extent_buffer *leaf;
 618	struct btrfs_csum_item *item;
 619	const u64 orig_start = start;
 620	bool free_path = false;
 621	int ret;
 622
 623	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 624	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 625
 626	if (!path) {
 627		path = btrfs_alloc_path();
 628		if (!path)
 629			return -ENOMEM;
 630		free_path = true;
 631	}
 632
 633	/* Check if we can reuse the previous path. */
 634	if (path->nodes[0]) {
 635		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 636
 637		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 638		    key.type == BTRFS_EXTENT_CSUM_KEY &&
 639		    key.offset <= start)
 640			goto search_forward;
 641		btrfs_release_path(path);
 642	}
 643
 644	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 645	key.type = BTRFS_EXTENT_CSUM_KEY;
 646	key.offset = start;
 647
 648	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 649	if (ret < 0)
 650		goto fail;
 651	if (ret > 0 && path->slots[0] > 0) {
 652		leaf = path->nodes[0];
 653		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 654
 655		/*
 656		 * There are two cases we can hit here for the previous csum
 657		 * item:
 658		 *
 659		 *		|<- search range ->|
 660		 *	|<- csum item ->|
 661		 *
 662		 * Or
 663		 *				|<- search range ->|
 664		 *	|<- csum item ->|
 665		 *
 666		 * Check if the previous csum item covers the leading part of
 667		 * the search range.  If so we have to start from previous csum
 668		 * item.
 669		 */
 670		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 671		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 672			if (bytes_to_csum_size(fs_info, start - key.offset) <
 673			    btrfs_item_size(leaf, path->slots[0] - 1))
 674				path->slots[0]--;
 675		}
 676	}
 677
 678search_forward:
 679	while (start <= end) {
 680		u64 csum_end;
 681
 682		leaf = path->nodes[0];
 683		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 684			ret = btrfs_next_leaf(root, path);
 685			if (ret < 0)
 686				goto fail;
 687			if (ret > 0)
 688				break;
 689			leaf = path->nodes[0];
 690		}
 691
 692		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 693		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 694		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 695		    key.offset > end)
 696			break;
 697
 698		if (key.offset > start)
 699			start = key.offset;
 700
 701		csum_end = key.offset + csum_size_to_bytes(fs_info,
 702					btrfs_item_size(leaf, path->slots[0]));
 703		if (csum_end <= start) {
 704			path->slots[0]++;
 705			continue;
 706		}
 707
 708		csum_end = min(csum_end, end + 1);
 709		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 710				      struct btrfs_csum_item);
 711		while (start < csum_end) {
 712			unsigned long offset;
 713			size_t size;
 714			u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
 715						start - orig_start);
 716
 717			size = min_t(size_t, csum_end - start, end + 1 - start);
 718
 719			offset = bytes_to_csum_size(fs_info, start - key.offset);
 720
 721			read_extent_buffer(path->nodes[0], csum_dest,
 722					   ((unsigned long)item) + offset,
 723					   bytes_to_csum_size(fs_info, size));
 724
 725			bitmap_set(csum_bitmap,
 726				(start - orig_start) >> fs_info->sectorsize_bits,
 727				size >> fs_info->sectorsize_bits);
 728
 729			start += size;
 730		}
 731		path->slots[0]++;
 732	}
 733	ret = 0;
 734fail:
 735	if (free_path)
 736		btrfs_free_path(path);
 
 
 
 
 
 
 737	return ret;
 738}
 739
 740/*
 741 * Calculate checksums of the data contained inside a bio.
 
 
 
 
 
 
 
 742 */
 743blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
 
 744{
 745	struct btrfs_ordered_extent *ordered = bbio->ordered;
 746	struct btrfs_inode *inode = bbio->inode;
 747	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 748	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 749	struct bio *bio = &bbio->bio;
 750	struct btrfs_ordered_sum *sums;
 
 751	char *data;
 752	struct bvec_iter iter;
 753	struct bio_vec bvec;
 754	int index;
 755	unsigned int blockcount;
 
 
 756	int i;
 
 757	unsigned nofs_flag;
 758
 759	nofs_flag = memalloc_nofs_save();
 760	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 761		       GFP_KERNEL);
 762	memalloc_nofs_restore(nofs_flag);
 763
 764	if (!sums)
 765		return BLK_STS_RESOURCE;
 766
 767	sums->len = bio->bi_iter.bi_size;
 768	INIT_LIST_HEAD(&sums->list);
 769
 770	sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 
 
 
 
 
 771	index = 0;
 772
 773	shash->tfm = fs_info->csum_shash;
 774
 775	bio_for_each_segment(bvec, bio, iter) {
 776		blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777						 bvec.bv_len + fs_info->sectorsize
 778						 - 1);
 779
 780		for (i = 0; i < blockcount; i++) {
 781			data = bvec_kmap_local(&bvec);
 782			crypto_shash_digest(shash,
 783					    data + (i * fs_info->sectorsize),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784					    fs_info->sectorsize,
 785					    sums->sums + index);
 786			kunmap_local(data);
 787			index += fs_info->csum_size;
 
 
 
 788		}
 789
 790	}
 791
 792	bbio->sums = sums;
 793	btrfs_add_ordered_sum(ordered, sums);
 
 794	return 0;
 795}
 796
 797/*
 798 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
 799 * record the updated logical address on Zone Append completion.
 800 * Allocate just the structure with an empty sums array here for that case.
 801 */
 802blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
 803{
 804	bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
 805	if (!bbio->sums)
 806		return BLK_STS_RESOURCE;
 807	bbio->sums->len = bbio->bio.bi_iter.bi_size;
 808	bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 809	btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
 810	return 0;
 811}
 812
 813/*
 814 * Remove one checksum overlapping a range.
 815 *
 816 * This expects the key to describe the csum pointed to by the path, and it
 817 * expects the csum to overlap the range [bytenr, len]
 818 *
 819 * The csum should not be entirely contained in the range and the range should
 820 * not be entirely contained in the csum.
 821 *
 822 * This calls btrfs_truncate_item with the correct args based on the overlap,
 823 * and fixes up the key as required.
 824 */
 825static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
 826				       struct btrfs_path *path,
 827				       struct btrfs_key *key,
 828				       u64 bytenr, u64 len)
 829{
 830	struct btrfs_fs_info *fs_info = trans->fs_info;
 831	struct extent_buffer *leaf;
 832	const u32 csum_size = fs_info->csum_size;
 833	u64 csum_end;
 834	u64 end_byte = bytenr + len;
 835	u32 blocksize_bits = fs_info->sectorsize_bits;
 836
 837	leaf = path->nodes[0];
 838	csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 839	csum_end <<= blocksize_bits;
 840	csum_end += key->offset;
 841
 842	if (key->offset < bytenr && csum_end <= end_byte) {
 843		/*
 844		 *         [ bytenr - len ]
 845		 *         [   ]
 846		 *   [csum     ]
 847		 *   A simple truncate off the end of the item
 848		 */
 849		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 850		new_size *= csum_size;
 851		btrfs_truncate_item(trans, path, new_size, 1);
 852	} else if (key->offset >= bytenr && csum_end > end_byte &&
 853		   end_byte > key->offset) {
 854		/*
 855		 *         [ bytenr - len ]
 856		 *                 [ ]
 857		 *                 [csum     ]
 858		 * we need to truncate from the beginning of the csum
 859		 */
 860		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 861		new_size *= csum_size;
 862
 863		btrfs_truncate_item(trans, path, new_size, 0);
 864
 865		key->offset = end_byte;
 866		btrfs_set_item_key_safe(trans, path, key);
 867	} else {
 868		BUG();
 869	}
 870}
 871
 872/*
 873 * Delete the csum items from the csum tree for a given range of bytes.
 
 874 */
 875int btrfs_del_csums(struct btrfs_trans_handle *trans,
 876		    struct btrfs_root *root, u64 bytenr, u64 len)
 877{
 878	struct btrfs_fs_info *fs_info = trans->fs_info;
 879	struct btrfs_path *path;
 880	struct btrfs_key key;
 881	u64 end_byte = bytenr + len;
 882	u64 csum_end;
 883	struct extent_buffer *leaf;
 884	int ret = 0;
 885	const u32 csum_size = fs_info->csum_size;
 886	u32 blocksize_bits = fs_info->sectorsize_bits;
 887
 888	ASSERT(btrfs_root_id(root) == BTRFS_CSUM_TREE_OBJECTID ||
 889	       btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
 890
 891	path = btrfs_alloc_path();
 892	if (!path)
 893		return -ENOMEM;
 894
 895	while (1) {
 896		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 897		key.offset = end_byte - 1;
 898		key.type = BTRFS_EXTENT_CSUM_KEY;
 899
 900		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 901		if (ret > 0) {
 902			ret = 0;
 903			if (path->slots[0] == 0)
 904				break;
 905			path->slots[0]--;
 906		} else if (ret < 0) {
 907			break;
 908		}
 909
 910		leaf = path->nodes[0];
 911		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 912
 913		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 914		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 915			break;
 916		}
 917
 918		if (key.offset >= end_byte)
 919			break;
 920
 921		csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
 922		csum_end <<= blocksize_bits;
 923		csum_end += key.offset;
 924
 925		/* this csum ends before we start, we're done */
 926		if (csum_end <= bytenr)
 927			break;
 928
 929		/* delete the entire item, it is inside our range */
 930		if (key.offset >= bytenr && csum_end <= end_byte) {
 931			int del_nr = 1;
 932
 933			/*
 934			 * Check how many csum items preceding this one in this
 935			 * leaf correspond to our range and then delete them all
 936			 * at once.
 937			 */
 938			if (key.offset > bytenr && path->slots[0] > 0) {
 939				int slot = path->slots[0] - 1;
 940
 941				while (slot >= 0) {
 942					struct btrfs_key pk;
 943
 944					btrfs_item_key_to_cpu(leaf, &pk, slot);
 945					if (pk.offset < bytenr ||
 946					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 947					    pk.objectid !=
 948					    BTRFS_EXTENT_CSUM_OBJECTID)
 949						break;
 950					path->slots[0] = slot;
 951					del_nr++;
 952					key.offset = pk.offset;
 953					slot--;
 954				}
 955			}
 956			ret = btrfs_del_items(trans, root, path,
 957					      path->slots[0], del_nr);
 958			if (ret)
 959				break;
 960			if (key.offset == bytenr)
 961				break;
 962		} else if (key.offset < bytenr && csum_end > end_byte) {
 963			unsigned long offset;
 964			unsigned long shift_len;
 965			unsigned long item_offset;
 966			/*
 967			 *        [ bytenr - len ]
 968			 *     [csum                ]
 969			 *
 970			 * Our bytes are in the middle of the csum,
 971			 * we need to split this item and insert a new one.
 972			 *
 973			 * But we can't drop the path because the
 974			 * csum could change, get removed, extended etc.
 975			 *
 976			 * The trick here is the max size of a csum item leaves
 977			 * enough room in the tree block for a single
 978			 * item header.  So, we split the item in place,
 979			 * adding a new header pointing to the existing
 980			 * bytes.  Then we loop around again and we have
 981			 * a nicely formed csum item that we can neatly
 982			 * truncate.
 983			 */
 984			offset = (bytenr - key.offset) >> blocksize_bits;
 985			offset *= csum_size;
 986
 987			shift_len = (len >> blocksize_bits) * csum_size;
 988
 989			item_offset = btrfs_item_ptr_offset(leaf,
 990							    path->slots[0]);
 991
 992			memzero_extent_buffer(leaf, item_offset + offset,
 993					     shift_len);
 994			key.offset = bytenr;
 995
 996			/*
 997			 * btrfs_split_item returns -EAGAIN when the
 998			 * item changed size or key
 999			 */
1000			ret = btrfs_split_item(trans, root, path, &key, offset);
1001			if (ret && ret != -EAGAIN) {
1002				btrfs_abort_transaction(trans, ret);
1003				break;
1004			}
1005			ret = 0;
1006
1007			key.offset = end_byte - 1;
1008		} else {
1009			truncate_one_csum(trans, path, &key, bytenr, len);
1010			if (key.offset < bytenr)
1011				break;
1012		}
1013		btrfs_release_path(path);
1014	}
1015	btrfs_free_path(path);
1016	return ret;
1017}
1018
1019static int find_next_csum_offset(struct btrfs_root *root,
1020				 struct btrfs_path *path,
1021				 u64 *next_offset)
1022{
1023	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1024	struct btrfs_key found_key;
1025	int slot = path->slots[0] + 1;
1026	int ret;
1027
1028	if (nritems == 0 || slot >= nritems) {
1029		ret = btrfs_next_leaf(root, path);
1030		if (ret < 0) {
1031			return ret;
1032		} else if (ret > 0) {
1033			*next_offset = (u64)-1;
1034			return 0;
1035		}
1036		slot = path->slots[0];
1037	}
1038
1039	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1040
1041	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1042	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
1043		*next_offset = (u64)-1;
1044	else
1045		*next_offset = found_key.offset;
1046
1047	return 0;
1048}
1049
1050int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1051			   struct btrfs_root *root,
1052			   struct btrfs_ordered_sum *sums)
1053{
1054	struct btrfs_fs_info *fs_info = root->fs_info;
1055	struct btrfs_key file_key;
1056	struct btrfs_key found_key;
1057	struct btrfs_path *path;
1058	struct btrfs_csum_item *item;
1059	struct btrfs_csum_item *item_end;
1060	struct extent_buffer *leaf = NULL;
1061	u64 next_offset;
1062	u64 total_bytes = 0;
1063	u64 csum_offset;
1064	u64 bytenr;
1065	u32 ins_size;
1066	int index = 0;
1067	int found_next;
1068	int ret;
1069	const u32 csum_size = fs_info->csum_size;
1070
1071	path = btrfs_alloc_path();
1072	if (!path)
1073		return -ENOMEM;
1074again:
1075	next_offset = (u64)-1;
1076	found_next = 0;
1077	bytenr = sums->logical + total_bytes;
1078	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1079	file_key.offset = bytenr;
1080	file_key.type = BTRFS_EXTENT_CSUM_KEY;
1081
1082	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1083	if (!IS_ERR(item)) {
1084		ret = 0;
1085		leaf = path->nodes[0];
1086		item_end = btrfs_item_ptr(leaf, path->slots[0],
1087					  struct btrfs_csum_item);
1088		item_end = (struct btrfs_csum_item *)((char *)item_end +
1089			   btrfs_item_size(leaf, path->slots[0]));
1090		goto found;
1091	}
1092	ret = PTR_ERR(item);
1093	if (ret != -EFBIG && ret != -ENOENT)
1094		goto out;
1095
1096	if (ret == -EFBIG) {
1097		u32 item_size;
1098		/* we found one, but it isn't big enough yet */
1099		leaf = path->nodes[0];
1100		item_size = btrfs_item_size(leaf, path->slots[0]);
1101		if ((item_size / csum_size) >=
1102		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1103			/* already at max size, make a new one */
1104			goto insert;
1105		}
1106	} else {
1107		/* We didn't find a csum item, insert one. */
1108		ret = find_next_csum_offset(root, path, &next_offset);
1109		if (ret < 0)
1110			goto out;
1111		found_next = 1;
1112		goto insert;
1113	}
1114
1115	/*
1116	 * At this point, we know the tree has a checksum item that ends at an
1117	 * offset matching the start of the checksum range we want to insert.
1118	 * We try to extend that item as much as possible and then add as many
1119	 * checksums to it as they fit.
1120	 *
1121	 * First check if the leaf has enough free space for at least one
1122	 * checksum. If it has go directly to the item extension code, otherwise
1123	 * release the path and do a search for insertion before the extension.
1124	 */
1125	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1126		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1127		csum_offset = (bytenr - found_key.offset) >>
1128			fs_info->sectorsize_bits;
1129		goto extend_csum;
1130	}
1131
1132	btrfs_release_path(path);
1133	path->search_for_extension = 1;
1134	ret = btrfs_search_slot(trans, root, &file_key, path,
1135				csum_size, 1);
1136	path->search_for_extension = 0;
1137	if (ret < 0)
1138		goto out;
1139
1140	if (ret > 0) {
1141		if (path->slots[0] == 0)
1142			goto insert;
1143		path->slots[0]--;
1144	}
1145
1146	leaf = path->nodes[0];
1147	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1148	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1149
1150	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1151	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1152	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1153		goto insert;
1154	}
1155
1156extend_csum:
1157	if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1158	    csum_size) {
1159		int extend_nr;
1160		u64 tmp;
1161		u32 diff;
1162
1163		tmp = sums->len - total_bytes;
1164		tmp >>= fs_info->sectorsize_bits;
1165		WARN_ON(tmp < 1);
1166		extend_nr = max_t(int, 1, tmp);
1167
1168		/*
1169		 * A log tree can already have checksum items with a subset of
1170		 * the checksums we are trying to log. This can happen after
1171		 * doing a sequence of partial writes into prealloc extents and
1172		 * fsyncs in between, with a full fsync logging a larger subrange
1173		 * of an extent for which a previous fast fsync logged a smaller
1174		 * subrange. And this happens in particular due to merging file
1175		 * extent items when we complete an ordered extent for a range
1176		 * covered by a prealloc extent - this is done at
1177		 * btrfs_mark_extent_written().
1178		 *
1179		 * So if we try to extend the previous checksum item, which has
1180		 * a range that ends at the start of the range we want to insert,
1181		 * make sure we don't extend beyond the start offset of the next
1182		 * checksum item. If we are at the last item in the leaf, then
1183		 * forget the optimization of extending and add a new checksum
1184		 * item - it is not worth the complexity of releasing the path,
1185		 * getting the first key for the next leaf, repeat the btree
1186		 * search, etc, because log trees are temporary anyway and it
1187		 * would only save a few bytes of leaf space.
1188		 */
1189		if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
1190			if (path->slots[0] + 1 >=
1191			    btrfs_header_nritems(path->nodes[0])) {
1192				ret = find_next_csum_offset(root, path, &next_offset);
1193				if (ret < 0)
1194					goto out;
1195				found_next = 1;
1196				goto insert;
1197			}
1198
1199			ret = find_next_csum_offset(root, path, &next_offset);
1200			if (ret < 0)
1201				goto out;
1202
1203			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1204			if (tmp <= INT_MAX)
1205				extend_nr = min_t(int, extend_nr, tmp);
1206		}
1207
1208		diff = (csum_offset + extend_nr) * csum_size;
1209		diff = min(diff,
1210			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1211
1212		diff = diff - btrfs_item_size(leaf, path->slots[0]);
1213		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1214		diff /= csum_size;
1215		diff *= csum_size;
1216
1217		btrfs_extend_item(trans, path, diff);
1218		ret = 0;
1219		goto csum;
1220	}
1221
1222insert:
1223	btrfs_release_path(path);
1224	csum_offset = 0;
1225	if (found_next) {
1226		u64 tmp;
1227
1228		tmp = sums->len - total_bytes;
1229		tmp >>= fs_info->sectorsize_bits;
1230		tmp = min(tmp, (next_offset - file_key.offset) >>
1231					 fs_info->sectorsize_bits);
1232
1233		tmp = max_t(u64, 1, tmp);
1234		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1235		ins_size = csum_size * tmp;
1236	} else {
1237		ins_size = csum_size;
1238	}
1239	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1240				      ins_size);
1241	if (ret < 0)
1242		goto out;
 
 
1243	leaf = path->nodes[0];
1244csum:
1245	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1246	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1247				      btrfs_item_size(leaf, path->slots[0]));
1248	item = (struct btrfs_csum_item *)((unsigned char *)item +
1249					  csum_offset * csum_size);
1250found:
1251	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1252	ins_size *= csum_size;
1253	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1254			      ins_size);
1255	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1256			    ins_size);
1257
1258	index += ins_size;
1259	ins_size /= csum_size;
1260	total_bytes += ins_size * fs_info->sectorsize;
1261
1262	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1263	if (total_bytes < sums->len) {
1264		btrfs_release_path(path);
1265		cond_resched();
1266		goto again;
1267	}
1268out:
1269	btrfs_free_path(path);
1270	return ret;
1271}
1272
1273void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1274				     const struct btrfs_path *path,
1275				     const struct btrfs_file_extent_item *fi,
 
1276				     struct extent_map *em)
1277{
1278	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1279	struct btrfs_root *root = inode->root;
1280	struct extent_buffer *leaf = path->nodes[0];
1281	const int slot = path->slots[0];
1282	struct btrfs_key key;
1283	u64 extent_start;
 
1284	u8 type = btrfs_file_extent_type(leaf, fi);
1285	int compress_type = btrfs_file_extent_compression(leaf, fi);
1286
1287	btrfs_item_key_to_cpu(leaf, &key, slot);
1288	extent_start = key.offset;
 
1289	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1290	em->generation = btrfs_file_extent_generation(leaf, fi);
1291	if (type == BTRFS_FILE_EXTENT_REG ||
1292	    type == BTRFS_FILE_EXTENT_PREALLOC) {
1293		const u64 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1294
1295		em->start = extent_start;
1296		em->len = btrfs_file_extent_end(path) - extent_start;
1297		if (disk_bytenr == 0) {
1298			em->disk_bytenr = EXTENT_MAP_HOLE;
1299			em->disk_num_bytes = 0;
1300			em->offset = 0;
 
 
1301			return;
1302		}
1303		em->disk_bytenr = disk_bytenr;
1304		em->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1305		em->offset = btrfs_file_extent_offset(leaf, fi);
1306		if (compress_type != BTRFS_COMPRESS_NONE) {
1307			extent_map_set_compression(em, compress_type);
 
 
 
1308		} else {
1309			/*
1310			 * Older kernels can create regular non-hole data
1311			 * extents with ram_bytes smaller than disk_num_bytes.
1312			 * Not a big deal, just always use disk_num_bytes
1313			 * for ram_bytes.
1314			 */
1315			em->ram_bytes = em->disk_num_bytes;
1316			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1317				em->flags |= EXTENT_FLAG_PREALLOC;
1318		}
1319	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1320		/* Tree-checker has ensured this. */
1321		ASSERT(extent_start == 0);
1322
1323		em->disk_bytenr = EXTENT_MAP_INLINE;
1324		em->start = 0;
1325		em->len = fs_info->sectorsize;
1326		em->offset = 0;
1327		extent_map_set_compression(em, compress_type);
 
 
 
 
 
1328	} else {
1329		btrfs_err(fs_info,
1330			  "unknown file extent item type %d, inode %llu, offset %llu, "
1331			  "root %llu", type, btrfs_ino(inode), extent_start,
1332			  btrfs_root_id(root));
1333	}
1334}
1335
1336/*
1337 * Returns the end offset (non inclusive) of the file extent item the given path
1338 * points to. If it points to an inline extent, the returned offset is rounded
1339 * up to the sector size.
1340 */
1341u64 btrfs_file_extent_end(const struct btrfs_path *path)
1342{
1343	const struct extent_buffer *leaf = path->nodes[0];
1344	const int slot = path->slots[0];
1345	struct btrfs_file_extent_item *fi;
1346	struct btrfs_key key;
1347	u64 end;
1348
1349	btrfs_item_key_to_cpu(leaf, &key, slot);
1350	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1351	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1352
1353	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE)
1354		end = leaf->fs_info->sectorsize;
1355	else
 
1356		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
 
1357
1358	return end;
1359}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/bio.h>
   7#include <linux/slab.h>
   8#include <linux/pagemap.h>
   9#include <linux/highmem.h>
  10#include <linux/sched/mm.h>
  11#include <crypto/hash.h>
  12#include "misc.h"
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "print-tree.h"
  18#include "compression.h"
 
 
 
  19
  20#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
  21				   sizeof(struct btrfs_item) * 2) / \
  22				  size) - 1))
  23
  24#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
  25				       PAGE_SIZE))
  26
  27/**
  28 * Set inode's size according to filesystem options
  29 *
  30 * @inode:      inode we want to update the disk_i_size for
  31 * @new_i_size: i_size we want to set to, 0 if we use i_size
  32 *
  33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
  34 * returns as it is perfectly fine with a file that has holes without hole file
  35 * extent items.
  36 *
  37 * However without NO_HOLES we need to only return the area that is contiguous
  38 * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
  39 * to an extent that has a gap in between.
  40 *
  41 * Finally new_i_size should only be set in the case of truncate where we're not
  42 * ready to use i_size_read() as the limiter yet.
  43 */
  44void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
  45{
  46	struct btrfs_fs_info *fs_info = inode->root->fs_info;
  47	u64 start, end, i_size;
  48	int ret;
  49
 
  50	i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
  51	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
  52		inode->disk_i_size = i_size;
  53		return;
  54	}
  55
  56	spin_lock(&inode->lock);
  57	ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
  58					 &end, EXTENT_DIRTY);
  59	if (!ret && start == 0)
  60		i_size = min(i_size, end + 1);
  61	else
  62		i_size = 0;
  63	inode->disk_i_size = i_size;
 
  64	spin_unlock(&inode->lock);
  65}
  66
  67/**
  68 * Mark range within a file as having a new extent inserted
  69 *
  70 * @inode: inode being modified
  71 * @start: start file offset of the file extent we've inserted
  72 * @len:   logical length of the file extent item
  73 *
  74 * Call when we are inserting a new file extent where there was none before.
  75 * Does not need to call this in the case where we're replacing an existing file
  76 * extent, however if not sure it's fine to call this multiple times.
  77 *
  78 * The start and len must match the file extent item, so thus must be sectorsize
  79 * aligned.
  80 */
  81int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
  82				      u64 len)
  83{
 
 
 
  84	if (len == 0)
  85		return 0;
  86
  87	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
  88
  89	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
  90		return 0;
  91	return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
  92			       EXTENT_DIRTY);
  93}
  94
  95/**
  96 * Marks an inode range as not having a backing extent
  97 *
  98 * @inode: inode being modified
  99 * @start: start file offset of the file extent we've inserted
 100 * @len:   logical length of the file extent item
 101 *
 102 * Called when we drop a file extent, for example when we truncate.  Doesn't
 103 * need to be called for cases where we're replacing a file extent, like when
 104 * we've COWed a file extent.
 105 *
 106 * The start and len must match the file extent item, so thus must be sectorsize
 107 * aligned.
 108 */
 109int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
 110					u64 len)
 111{
 
 
 
 112	if (len == 0)
 113		return 0;
 114
 115	ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
 116	       len == (u64)-1);
 117
 118	if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
 119		return 0;
 120	return clear_extent_bit(&inode->file_extent_tree, start,
 121				start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 122}
 123
 124static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
 125					u16 csum_size)
 126{
 127	u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
 
 
 
 
 128
 129	return ncsums * fs_info->sectorsize;
 
 
 
 
 
 
 130}
 131
 132int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
 133			     struct btrfs_root *root,
 134			     u64 objectid, u64 pos,
 135			     u64 disk_offset, u64 disk_num_bytes,
 136			     u64 num_bytes, u64 offset, u64 ram_bytes,
 137			     u8 compression, u8 encryption, u16 other_encoding)
 138{
 139	int ret = 0;
 140	struct btrfs_file_extent_item *item;
 141	struct btrfs_key file_key;
 142	struct btrfs_path *path;
 143	struct extent_buffer *leaf;
 144
 145	path = btrfs_alloc_path();
 146	if (!path)
 147		return -ENOMEM;
 148	file_key.objectid = objectid;
 149	file_key.offset = pos;
 150	file_key.type = BTRFS_EXTENT_DATA_KEY;
 151
 152	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
 153				      sizeof(*item));
 154	if (ret < 0)
 155		goto out;
 156	BUG_ON(ret); /* Can't happen */
 157	leaf = path->nodes[0];
 158	item = btrfs_item_ptr(leaf, path->slots[0],
 159			      struct btrfs_file_extent_item);
 160	btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
 161	btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
 162	btrfs_set_file_extent_offset(leaf, item, offset);
 163	btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
 164	btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
 165	btrfs_set_file_extent_generation(leaf, item, trans->transid);
 166	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
 167	btrfs_set_file_extent_compression(leaf, item, compression);
 168	btrfs_set_file_extent_encryption(leaf, item, encryption);
 169	btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
 170
 171	btrfs_mark_buffer_dirty(leaf);
 172out:
 173	btrfs_free_path(path);
 174	return ret;
 175}
 176
 177static struct btrfs_csum_item *
 178btrfs_lookup_csum(struct btrfs_trans_handle *trans,
 179		  struct btrfs_root *root,
 180		  struct btrfs_path *path,
 181		  u64 bytenr, int cow)
 182{
 183	struct btrfs_fs_info *fs_info = root->fs_info;
 184	int ret;
 185	struct btrfs_key file_key;
 186	struct btrfs_key found_key;
 187	struct btrfs_csum_item *item;
 188	struct extent_buffer *leaf;
 189	u64 csum_offset = 0;
 190	const u32 csum_size = fs_info->csum_size;
 191	int csums_in_item;
 192
 193	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 194	file_key.offset = bytenr;
 195	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 196	ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
 197	if (ret < 0)
 198		goto fail;
 199	leaf = path->nodes[0];
 200	if (ret > 0) {
 201		ret = 1;
 202		if (path->slots[0] == 0)
 203			goto fail;
 204		path->slots[0]--;
 205		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 206		if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
 207			goto fail;
 208
 209		csum_offset = (bytenr - found_key.offset) >>
 210				fs_info->sectorsize_bits;
 211		csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
 212		csums_in_item /= csum_size;
 213
 214		if (csum_offset == csums_in_item) {
 215			ret = -EFBIG;
 216			goto fail;
 217		} else if (csum_offset > csums_in_item) {
 218			goto fail;
 219		}
 220	}
 221	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
 222	item = (struct btrfs_csum_item *)((unsigned char *)item +
 223					  csum_offset * csum_size);
 224	return item;
 225fail:
 226	if (ret > 0)
 227		ret = -ENOENT;
 228	return ERR_PTR(ret);
 229}
 230
 231int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
 232			     struct btrfs_root *root,
 233			     struct btrfs_path *path, u64 objectid,
 234			     u64 offset, int mod)
 235{
 236	int ret;
 237	struct btrfs_key file_key;
 238	int ins_len = mod < 0 ? -1 : 0;
 239	int cow = mod != 0;
 240
 241	file_key.objectid = objectid;
 242	file_key.offset = offset;
 243	file_key.type = BTRFS_EXTENT_DATA_KEY;
 244	ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
 245	return ret;
 246}
 247
 248/*
 249 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
 250 * estore the result to @dst.
 251 *
 252 * Return >0 for the number of sectors we found.
 253 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
 254 * for it. Caller may want to try next sector until one range is hit.
 255 * Return <0 for fatal error.
 256 */
 257static int search_csum_tree(struct btrfs_fs_info *fs_info,
 258			    struct btrfs_path *path, u64 disk_bytenr,
 259			    u64 len, u8 *dst)
 260{
 
 261	struct btrfs_csum_item *item = NULL;
 262	struct btrfs_key key;
 263	const u32 sectorsize = fs_info->sectorsize;
 264	const u32 csum_size = fs_info->csum_size;
 265	u32 itemsize;
 266	int ret;
 267	u64 csum_start;
 268	u64 csum_len;
 269
 270	ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
 271	       IS_ALIGNED(len, sectorsize));
 272
 273	/* Check if the current csum item covers disk_bytenr */
 274	if (path->nodes[0]) {
 275		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 276				      struct btrfs_csum_item);
 277		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 278		itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 279
 280		csum_start = key.offset;
 281		csum_len = (itemsize / csum_size) * sectorsize;
 282
 283		if (in_range(disk_bytenr, csum_start, csum_len))
 284			goto found;
 285	}
 286
 287	/* Current item doesn't contain the desired range, search again */
 288	btrfs_release_path(path);
 289	item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
 
 290	if (IS_ERR(item)) {
 291		ret = PTR_ERR(item);
 292		goto out;
 293	}
 294	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 295	itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 296
 297	csum_start = key.offset;
 298	csum_len = (itemsize / csum_size) * sectorsize;
 299	ASSERT(in_range(disk_bytenr, csum_start, csum_len));
 300
 301found:
 302	ret = (min(csum_start + csum_len, disk_bytenr + len) -
 303		   disk_bytenr) >> fs_info->sectorsize_bits;
 304	read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
 305			ret * csum_size);
 306out:
 307	if (ret == -ENOENT)
 308		ret = 0;
 309	return ret;
 310}
 311
 312/*
 313 * Locate the file_offset of @cur_disk_bytenr of a @bio.
 314 *
 315 * Bio of btrfs represents read range of
 316 * [bi_sector << 9, bi_sector << 9 + bi_size).
 317 * Knowing this, we can iterate through each bvec to locate the page belong to
 318 * @cur_disk_bytenr and get the file offset.
 319 *
 320 * @inode is used to determine if the bvec page really belongs to @inode.
 321 *
 322 * Return 0 if we can't find the file offset
 323 * Return >0 if we find the file offset and restore it to @file_offset_ret
 324 */
 325static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
 326				     u64 disk_bytenr, u64 *file_offset_ret)
 327{
 328	struct bvec_iter iter;
 329	struct bio_vec bvec;
 330	u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 331	int ret = 0;
 332
 333	bio_for_each_segment(bvec, bio, iter) {
 334		struct page *page = bvec.bv_page;
 335
 336		if (cur > disk_bytenr)
 337			break;
 338		if (cur + bvec.bv_len <= disk_bytenr) {
 339			cur += bvec.bv_len;
 340			continue;
 341		}
 342		ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
 343		if (page->mapping && page->mapping->host &&
 344		    page->mapping->host == inode) {
 345			ret = 1;
 346			*file_offset_ret = page_offset(page) + bvec.bv_offset +
 347					   disk_bytenr - cur;
 348			break;
 349		}
 350	}
 351	return ret;
 352}
 353
 354/**
 355 * Lookup the checksum for the read bio in csum tree.
 356 *
 357 * @inode: inode that the bio is for.
 358 * @bio: bio to look up.
 359 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
 360 *       checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
 361 *       NULL, the checksum buffer is allocated and returned in
 362 *       btrfs_io_bio(bio)->csum instead.
 363 *
 364 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
 365 */
 366blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
 367{
 368	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 369	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 
 370	struct btrfs_path *path;
 371	const u32 sectorsize = fs_info->sectorsize;
 372	const u32 csum_size = fs_info->csum_size;
 373	u32 orig_len = bio->bi_iter.bi_size;
 374	u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 375	u64 cur_disk_bytenr;
 376	u8 *csum;
 377	const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
 378	int count = 0;
 
 379
 380	if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
 
 381		return BLK_STS_OK;
 382
 383	/*
 384	 * This function is only called for read bio.
 385	 *
 386	 * This means two things:
 387	 * - All our csums should only be in csum tree
 388	 *   No ordered extents csums, as ordered extents are only for write
 389	 *   path.
 390	 * - No need to bother any other info from bvec
 391	 *   Since we're looking up csums, the only important info is the
 392	 *   disk_bytenr and the length, which can be extracted from bi_iter
 393	 *   directly.
 394	 */
 395	ASSERT(bio_op(bio) == REQ_OP_READ);
 396	path = btrfs_alloc_path();
 397	if (!path)
 398		return BLK_STS_RESOURCE;
 399
 400	if (!dst) {
 401		struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
 402
 403		if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
 404			btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
 405							GFP_NOFS);
 406			if (!btrfs_bio->csum) {
 407				btrfs_free_path(path);
 408				return BLK_STS_RESOURCE;
 409			}
 410		} else {
 411			btrfs_bio->csum = btrfs_bio->csum_inline;
 412		}
 413		csum = btrfs_bio->csum;
 414	} else {
 415		csum = dst;
 416	}
 417
 418	/*
 419	 * If requested number of sectors is larger than one leaf can contain,
 420	 * kick the readahead for csum tree.
 421	 */
 422	if (nblocks > fs_info->csums_per_leaf)
 423		path->reada = READA_FORWARD;
 424
 425	/*
 426	 * the free space stuff is only read when it hasn't been
 427	 * updated in the current transaction.  So, we can safely
 428	 * read from the commit root and sidestep a nasty deadlock
 429	 * between reading the free space cache and updating the csum tree.
 430	 */
 431	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
 432		path->search_commit_root = 1;
 433		path->skip_locking = 1;
 434	}
 435
 436	for (cur_disk_bytenr = orig_disk_bytenr;
 437	     cur_disk_bytenr < orig_disk_bytenr + orig_len;
 438	     cur_disk_bytenr += (count * sectorsize)) {
 439		u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
 440		unsigned int sector_offset;
 441		u8 *csum_dst;
 
 
 
 
 
 
 
 
 
 442
 443		/*
 444		 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
 445		 * we're calculating the offset to the bio start.
 446		 *
 447		 * Bio size is limited to UINT_MAX, thus unsigned int is large
 448		 * enough to contain the raw result, not to mention the right
 449		 * shifted result.
 
 
 450		 */
 451		ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
 452		sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
 453				fs_info->sectorsize_bits;
 454		csum_dst = csum + sector_offset * csum_size;
 455
 456		count = search_csum_tree(fs_info, path, cur_disk_bytenr,
 457					 search_len, csum_dst);
 458		if (count <= 0) {
 459			/*
 460			 * Either we hit a critical error or we didn't find
 461			 * the csum.
 462			 * Either way, we put zero into the csums dst, and skip
 463			 * to the next sector.
 464			 */
 465			memset(csum_dst, 0, csum_size);
 466			count = 1;
 467
 468			/*
 469			 * For data reloc inode, we need to mark the range
 470			 * NODATASUM so that balance won't report false csum
 471			 * error.
 472			 */
 473			if (BTRFS_I(inode)->root->root_key.objectid ==
 474			    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 475				u64 file_offset;
 476				int ret;
 477
 478				ret = search_file_offset_in_bio(bio, inode,
 479						cur_disk_bytenr, &file_offset);
 480				if (ret)
 481					set_extent_bits(io_tree, file_offset,
 482						file_offset + sectorsize - 1,
 483						EXTENT_NODATASUM);
 484			} else {
 485				btrfs_warn_rl(fs_info,
 486			"csum hole found for disk bytenr range [%llu, %llu)",
 487				cur_disk_bytenr, cur_disk_bytenr + sectorsize);
 488			}
 489		}
 
 490	}
 491
 492	btrfs_free_path(path);
 493	return BLK_STS_OK;
 494}
 495
 496int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
 497			     struct list_head *list, int search_commit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498{
 499	struct btrfs_fs_info *fs_info = root->fs_info;
 500	struct btrfs_key key;
 501	struct btrfs_path *path;
 502	struct extent_buffer *leaf;
 503	struct btrfs_ordered_sum *sums;
 504	struct btrfs_csum_item *item;
 505	LIST_HEAD(tmplist);
 506	unsigned long offset;
 507	int ret;
 508	size_t size;
 509	u64 csum_end;
 510	const u32 csum_size = fs_info->csum_size;
 511
 512	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 513	       IS_ALIGNED(end + 1, fs_info->sectorsize));
 514
 515	path = btrfs_alloc_path();
 516	if (!path)
 517		return -ENOMEM;
 518
 519	if (search_commit) {
 520		path->skip_locking = 1;
 521		path->reada = READA_FORWARD;
 522		path->search_commit_root = 1;
 523	}
 524
 525	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 526	key.offset = start;
 527	key.type = BTRFS_EXTENT_CSUM_KEY;
 528
 529	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 530	if (ret < 0)
 531		goto fail;
 532	if (ret > 0 && path->slots[0] > 0) {
 533		leaf = path->nodes[0];
 534		btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535		if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
 536		    key.type == BTRFS_EXTENT_CSUM_KEY) {
 537			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 538			if (offset * csum_size <
 539			    btrfs_item_size_nr(leaf, path->slots[0] - 1))
 540				path->slots[0]--;
 541		}
 542	}
 543
 544	while (start <= end) {
 
 
 545		leaf = path->nodes[0];
 546		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
 547			ret = btrfs_next_leaf(root, path);
 548			if (ret < 0)
 549				goto fail;
 550			if (ret > 0)
 551				break;
 552			leaf = path->nodes[0];
 553		}
 554
 555		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 556		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 557		    key.type != BTRFS_EXTENT_CSUM_KEY ||
 558		    key.offset > end)
 559			break;
 560
 561		if (key.offset > start)
 562			start = key.offset;
 563
 564		size = btrfs_item_size_nr(leaf, path->slots[0]);
 565		csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
 566		if (csum_end <= start) {
 567			path->slots[0]++;
 568			continue;
 569		}
 570
 
 
 
 
 571		csum_end = min(csum_end, end + 1);
 572		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 573				      struct btrfs_csum_item);
 574		while (start < csum_end) {
 
 
 
 575			size = min_t(size_t, csum_end - start,
 576				     max_ordered_sum_bytes(fs_info, csum_size));
 577			sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
 578				       GFP_NOFS);
 579			if (!sums) {
 580				ret = -ENOMEM;
 581				goto fail;
 582			}
 583
 584			sums->bytenr = start;
 585			sums->len = (int)size;
 586
 587			offset = (start - key.offset) >> fs_info->sectorsize_bits;
 588			offset *= csum_size;
 589			size >>= fs_info->sectorsize_bits;
 590
 591			read_extent_buffer(path->nodes[0],
 592					   sums->sums,
 593					   ((unsigned long)item) + offset,
 594					   csum_size * size);
 595
 596			start += fs_info->sectorsize * size;
 597			list_add_tail(&sums->list, &tmplist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598		}
 599		path->slots[0]++;
 600	}
 601	ret = 0;
 602fail:
 603	while (ret < 0 && !list_empty(&tmplist)) {
 604		sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
 605		list_del(&sums->list);
 606		kfree(sums);
 607	}
 608	list_splice_tail(&tmplist, list);
 609
 610	btrfs_free_path(path);
 611	return ret;
 612}
 613
 614/*
 615 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
 616 * @inode:	 Owner of the data inside the bio
 617 * @bio:	 Contains the data to be checksummed
 618 * @file_start:  offset in file this bio begins to describe
 619 * @contig:	 Boolean. If true/1 means all bio vecs in this bio are
 620 *		 contiguous and they begin at @file_start in the file. False/0
 621 *		 means this bio can contain potentially discontiguous bio vecs
 622 *		 so the logical offset of each should be calculated separately.
 623 */
 624blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
 625		       u64 file_start, int contig)
 626{
 
 
 627	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 628	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 629	struct btrfs_ordered_sum *sums;
 630	struct btrfs_ordered_extent *ordered = NULL;
 631	char *data;
 632	struct bvec_iter iter;
 633	struct bio_vec bvec;
 634	int index;
 635	int nr_sectors;
 636	unsigned long total_bytes = 0;
 637	unsigned long this_sum_bytes = 0;
 638	int i;
 639	u64 offset;
 640	unsigned nofs_flag;
 641
 642	nofs_flag = memalloc_nofs_save();
 643	sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
 644		       GFP_KERNEL);
 645	memalloc_nofs_restore(nofs_flag);
 646
 647	if (!sums)
 648		return BLK_STS_RESOURCE;
 649
 650	sums->len = bio->bi_iter.bi_size;
 651	INIT_LIST_HEAD(&sums->list);
 652
 653	if (contig)
 654		offset = file_start;
 655	else
 656		offset = 0; /* shut up gcc */
 657
 658	sums->bytenr = bio->bi_iter.bi_sector << 9;
 659	index = 0;
 660
 661	shash->tfm = fs_info->csum_shash;
 662
 663	bio_for_each_segment(bvec, bio, iter) {
 664		if (!contig)
 665			offset = page_offset(bvec.bv_page) + bvec.bv_offset;
 666
 667		if (!ordered) {
 668			ordered = btrfs_lookup_ordered_extent(inode, offset);
 669			/*
 670			 * The bio range is not covered by any ordered extent,
 671			 * must be a code logic error.
 672			 */
 673			if (unlikely(!ordered)) {
 674				WARN(1, KERN_WARNING
 675			"no ordered extent for root %llu ino %llu offset %llu\n",
 676				     inode->root->root_key.objectid,
 677				     btrfs_ino(inode), offset);
 678				kvfree(sums);
 679				return BLK_STS_IOERR;
 680			}
 681		}
 682
 683		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
 684						 bvec.bv_len + fs_info->sectorsize
 685						 - 1);
 686
 687		for (i = 0; i < nr_sectors; i++) {
 688			if (offset >= ordered->file_offset + ordered->num_bytes ||
 689			    offset < ordered->file_offset) {
 690				unsigned long bytes_left;
 691
 692				sums->len = this_sum_bytes;
 693				this_sum_bytes = 0;
 694				btrfs_add_ordered_sum(ordered, sums);
 695				btrfs_put_ordered_extent(ordered);
 696
 697				bytes_left = bio->bi_iter.bi_size - total_bytes;
 698
 699				nofs_flag = memalloc_nofs_save();
 700				sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
 701						      bytes_left), GFP_KERNEL);
 702				memalloc_nofs_restore(nofs_flag);
 703				BUG_ON(!sums); /* -ENOMEM */
 704				sums->len = bytes_left;
 705				ordered = btrfs_lookup_ordered_extent(inode,
 706								offset);
 707				ASSERT(ordered); /* Logic error */
 708				sums->bytenr = (bio->bi_iter.bi_sector << 9)
 709					+ total_bytes;
 710				index = 0;
 711			}
 712
 713			data = kmap_atomic(bvec.bv_page);
 714			crypto_shash_digest(shash, data + bvec.bv_offset
 715					    + (i * fs_info->sectorsize),
 716					    fs_info->sectorsize,
 717					    sums->sums + index);
 718			kunmap_atomic(data);
 719			index += fs_info->csum_size;
 720			offset += fs_info->sectorsize;
 721			this_sum_bytes += fs_info->sectorsize;
 722			total_bytes += fs_info->sectorsize;
 723		}
 724
 725	}
 726	this_sum_bytes = 0;
 
 727	btrfs_add_ordered_sum(ordered, sums);
 728	btrfs_put_ordered_extent(ordered);
 729	return 0;
 730}
 731
 732/*
 733 * helper function for csum removal, this expects the
 734 * key to describe the csum pointed to by the path, and it expects
 735 * the csum to overlap the range [bytenr, len]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736 *
 737 * The csum should not be entirely contained in the range and the
 738 * range should not be entirely contained in the csum.
 739 *
 740 * This calls btrfs_truncate_item with the correct args based on the
 741 * overlap, and fixes up the key as required.
 742 */
 743static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
 744				       struct btrfs_path *path,
 745				       struct btrfs_key *key,
 746				       u64 bytenr, u64 len)
 747{
 
 748	struct extent_buffer *leaf;
 749	const u32 csum_size = fs_info->csum_size;
 750	u64 csum_end;
 751	u64 end_byte = bytenr + len;
 752	u32 blocksize_bits = fs_info->sectorsize_bits;
 753
 754	leaf = path->nodes[0];
 755	csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 756	csum_end <<= blocksize_bits;
 757	csum_end += key->offset;
 758
 759	if (key->offset < bytenr && csum_end <= end_byte) {
 760		/*
 761		 *         [ bytenr - len ]
 762		 *         [   ]
 763		 *   [csum     ]
 764		 *   A simple truncate off the end of the item
 765		 */
 766		u32 new_size = (bytenr - key->offset) >> blocksize_bits;
 767		new_size *= csum_size;
 768		btrfs_truncate_item(path, new_size, 1);
 769	} else if (key->offset >= bytenr && csum_end > end_byte &&
 770		   end_byte > key->offset) {
 771		/*
 772		 *         [ bytenr - len ]
 773		 *                 [ ]
 774		 *                 [csum     ]
 775		 * we need to truncate from the beginning of the csum
 776		 */
 777		u32 new_size = (csum_end - end_byte) >> blocksize_bits;
 778		new_size *= csum_size;
 779
 780		btrfs_truncate_item(path, new_size, 0);
 781
 782		key->offset = end_byte;
 783		btrfs_set_item_key_safe(fs_info, path, key);
 784	} else {
 785		BUG();
 786	}
 787}
 788
 789/*
 790 * deletes the csum items from the csum tree for a given
 791 * range of bytes.
 792 */
 793int btrfs_del_csums(struct btrfs_trans_handle *trans,
 794		    struct btrfs_root *root, u64 bytenr, u64 len)
 795{
 796	struct btrfs_fs_info *fs_info = trans->fs_info;
 797	struct btrfs_path *path;
 798	struct btrfs_key key;
 799	u64 end_byte = bytenr + len;
 800	u64 csum_end;
 801	struct extent_buffer *leaf;
 802	int ret = 0;
 803	const u32 csum_size = fs_info->csum_size;
 804	u32 blocksize_bits = fs_info->sectorsize_bits;
 805
 806	ASSERT(root == fs_info->csum_root ||
 807	       root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
 808
 809	path = btrfs_alloc_path();
 810	if (!path)
 811		return -ENOMEM;
 812
 813	while (1) {
 814		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 815		key.offset = end_byte - 1;
 816		key.type = BTRFS_EXTENT_CSUM_KEY;
 817
 818		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
 819		if (ret > 0) {
 820			ret = 0;
 821			if (path->slots[0] == 0)
 822				break;
 823			path->slots[0]--;
 824		} else if (ret < 0) {
 825			break;
 826		}
 827
 828		leaf = path->nodes[0];
 829		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 830
 831		if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 832		    key.type != BTRFS_EXTENT_CSUM_KEY) {
 833			break;
 834		}
 835
 836		if (key.offset >= end_byte)
 837			break;
 838
 839		csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
 840		csum_end <<= blocksize_bits;
 841		csum_end += key.offset;
 842
 843		/* this csum ends before we start, we're done */
 844		if (csum_end <= bytenr)
 845			break;
 846
 847		/* delete the entire item, it is inside our range */
 848		if (key.offset >= bytenr && csum_end <= end_byte) {
 849			int del_nr = 1;
 850
 851			/*
 852			 * Check how many csum items preceding this one in this
 853			 * leaf correspond to our range and then delete them all
 854			 * at once.
 855			 */
 856			if (key.offset > bytenr && path->slots[0] > 0) {
 857				int slot = path->slots[0] - 1;
 858
 859				while (slot >= 0) {
 860					struct btrfs_key pk;
 861
 862					btrfs_item_key_to_cpu(leaf, &pk, slot);
 863					if (pk.offset < bytenr ||
 864					    pk.type != BTRFS_EXTENT_CSUM_KEY ||
 865					    pk.objectid !=
 866					    BTRFS_EXTENT_CSUM_OBJECTID)
 867						break;
 868					path->slots[0] = slot;
 869					del_nr++;
 870					key.offset = pk.offset;
 871					slot--;
 872				}
 873			}
 874			ret = btrfs_del_items(trans, root, path,
 875					      path->slots[0], del_nr);
 876			if (ret)
 877				break;
 878			if (key.offset == bytenr)
 879				break;
 880		} else if (key.offset < bytenr && csum_end > end_byte) {
 881			unsigned long offset;
 882			unsigned long shift_len;
 883			unsigned long item_offset;
 884			/*
 885			 *        [ bytenr - len ]
 886			 *     [csum                ]
 887			 *
 888			 * Our bytes are in the middle of the csum,
 889			 * we need to split this item and insert a new one.
 890			 *
 891			 * But we can't drop the path because the
 892			 * csum could change, get removed, extended etc.
 893			 *
 894			 * The trick here is the max size of a csum item leaves
 895			 * enough room in the tree block for a single
 896			 * item header.  So, we split the item in place,
 897			 * adding a new header pointing to the existing
 898			 * bytes.  Then we loop around again and we have
 899			 * a nicely formed csum item that we can neatly
 900			 * truncate.
 901			 */
 902			offset = (bytenr - key.offset) >> blocksize_bits;
 903			offset *= csum_size;
 904
 905			shift_len = (len >> blocksize_bits) * csum_size;
 906
 907			item_offset = btrfs_item_ptr_offset(leaf,
 908							    path->slots[0]);
 909
 910			memzero_extent_buffer(leaf, item_offset + offset,
 911					     shift_len);
 912			key.offset = bytenr;
 913
 914			/*
 915			 * btrfs_split_item returns -EAGAIN when the
 916			 * item changed size or key
 917			 */
 918			ret = btrfs_split_item(trans, root, path, &key, offset);
 919			if (ret && ret != -EAGAIN) {
 920				btrfs_abort_transaction(trans, ret);
 921				break;
 922			}
 923			ret = 0;
 924
 925			key.offset = end_byte - 1;
 926		} else {
 927			truncate_one_csum(fs_info, path, &key, bytenr, len);
 928			if (key.offset < bytenr)
 929				break;
 930		}
 931		btrfs_release_path(path);
 932	}
 933	btrfs_free_path(path);
 934	return ret;
 935}
 936
 937static int find_next_csum_offset(struct btrfs_root *root,
 938				 struct btrfs_path *path,
 939				 u64 *next_offset)
 940{
 941	const u32 nritems = btrfs_header_nritems(path->nodes[0]);
 942	struct btrfs_key found_key;
 943	int slot = path->slots[0] + 1;
 944	int ret;
 945
 946	if (nritems == 0 || slot >= nritems) {
 947		ret = btrfs_next_leaf(root, path);
 948		if (ret < 0) {
 949			return ret;
 950		} else if (ret > 0) {
 951			*next_offset = (u64)-1;
 952			return 0;
 953		}
 954		slot = path->slots[0];
 955	}
 956
 957	btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
 958
 959	if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
 960	    found_key.type != BTRFS_EXTENT_CSUM_KEY)
 961		*next_offset = (u64)-1;
 962	else
 963		*next_offset = found_key.offset;
 964
 965	return 0;
 966}
 967
 968int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
 969			   struct btrfs_root *root,
 970			   struct btrfs_ordered_sum *sums)
 971{
 972	struct btrfs_fs_info *fs_info = root->fs_info;
 973	struct btrfs_key file_key;
 974	struct btrfs_key found_key;
 975	struct btrfs_path *path;
 976	struct btrfs_csum_item *item;
 977	struct btrfs_csum_item *item_end;
 978	struct extent_buffer *leaf = NULL;
 979	u64 next_offset;
 980	u64 total_bytes = 0;
 981	u64 csum_offset;
 982	u64 bytenr;
 983	u32 ins_size;
 984	int index = 0;
 985	int found_next;
 986	int ret;
 987	const u32 csum_size = fs_info->csum_size;
 988
 989	path = btrfs_alloc_path();
 990	if (!path)
 991		return -ENOMEM;
 992again:
 993	next_offset = (u64)-1;
 994	found_next = 0;
 995	bytenr = sums->bytenr + total_bytes;
 996	file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
 997	file_key.offset = bytenr;
 998	file_key.type = BTRFS_EXTENT_CSUM_KEY;
 999
1000	item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1001	if (!IS_ERR(item)) {
1002		ret = 0;
1003		leaf = path->nodes[0];
1004		item_end = btrfs_item_ptr(leaf, path->slots[0],
1005					  struct btrfs_csum_item);
1006		item_end = (struct btrfs_csum_item *)((char *)item_end +
1007			   btrfs_item_size_nr(leaf, path->slots[0]));
1008		goto found;
1009	}
1010	ret = PTR_ERR(item);
1011	if (ret != -EFBIG && ret != -ENOENT)
1012		goto out;
1013
1014	if (ret == -EFBIG) {
1015		u32 item_size;
1016		/* we found one, but it isn't big enough yet */
1017		leaf = path->nodes[0];
1018		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1019		if ((item_size / csum_size) >=
1020		    MAX_CSUM_ITEMS(fs_info, csum_size)) {
1021			/* already at max size, make a new one */
1022			goto insert;
1023		}
1024	} else {
1025		/* We didn't find a csum item, insert one. */
1026		ret = find_next_csum_offset(root, path, &next_offset);
1027		if (ret < 0)
1028			goto out;
1029		found_next = 1;
1030		goto insert;
1031	}
1032
1033	/*
1034	 * At this point, we know the tree has a checksum item that ends at an
1035	 * offset matching the start of the checksum range we want to insert.
1036	 * We try to extend that item as much as possible and then add as many
1037	 * checksums to it as they fit.
1038	 *
1039	 * First check if the leaf has enough free space for at least one
1040	 * checksum. If it has go directly to the item extension code, otherwise
1041	 * release the path and do a search for insertion before the extension.
1042	 */
1043	if (btrfs_leaf_free_space(leaf) >= csum_size) {
1044		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1045		csum_offset = (bytenr - found_key.offset) >>
1046			fs_info->sectorsize_bits;
1047		goto extend_csum;
1048	}
1049
1050	btrfs_release_path(path);
1051	path->search_for_extension = 1;
1052	ret = btrfs_search_slot(trans, root, &file_key, path,
1053				csum_size, 1);
1054	path->search_for_extension = 0;
1055	if (ret < 0)
1056		goto out;
1057
1058	if (ret > 0) {
1059		if (path->slots[0] == 0)
1060			goto insert;
1061		path->slots[0]--;
1062	}
1063
1064	leaf = path->nodes[0];
1065	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1066	csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1067
1068	if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1069	    found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1070	    csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1071		goto insert;
1072	}
1073
1074extend_csum:
1075	if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1076	    csum_size) {
1077		int extend_nr;
1078		u64 tmp;
1079		u32 diff;
1080
1081		tmp = sums->len - total_bytes;
1082		tmp >>= fs_info->sectorsize_bits;
1083		WARN_ON(tmp < 1);
1084		extend_nr = max_t(int, 1, tmp);
1085
1086		/*
1087		 * A log tree can already have checksum items with a subset of
1088		 * the checksums we are trying to log. This can happen after
1089		 * doing a sequence of partial writes into prealloc extents and
1090		 * fsyncs in between, with a full fsync logging a larger subrange
1091		 * of an extent for which a previous fast fsync logged a smaller
1092		 * subrange. And this happens in particular due to merging file
1093		 * extent items when we complete an ordered extent for a range
1094		 * covered by a prealloc extent - this is done at
1095		 * btrfs_mark_extent_written().
1096		 *
1097		 * So if we try to extend the previous checksum item, which has
1098		 * a range that ends at the start of the range we want to insert,
1099		 * make sure we don't extend beyond the start offset of the next
1100		 * checksum item. If we are at the last item in the leaf, then
1101		 * forget the optimization of extending and add a new checksum
1102		 * item - it is not worth the complexity of releasing the path,
1103		 * getting the first key for the next leaf, repeat the btree
1104		 * search, etc, because log trees are temporary anyway and it
1105		 * would only save a few bytes of leaf space.
1106		 */
1107		if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1108			if (path->slots[0] + 1 >=
1109			    btrfs_header_nritems(path->nodes[0])) {
1110				ret = find_next_csum_offset(root, path, &next_offset);
1111				if (ret < 0)
1112					goto out;
1113				found_next = 1;
1114				goto insert;
1115			}
1116
1117			ret = find_next_csum_offset(root, path, &next_offset);
1118			if (ret < 0)
1119				goto out;
1120
1121			tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1122			if (tmp <= INT_MAX)
1123				extend_nr = min_t(int, extend_nr, tmp);
1124		}
1125
1126		diff = (csum_offset + extend_nr) * csum_size;
1127		diff = min(diff,
1128			   MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1129
1130		diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1131		diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1132		diff /= csum_size;
1133		diff *= csum_size;
1134
1135		btrfs_extend_item(path, diff);
1136		ret = 0;
1137		goto csum;
1138	}
1139
1140insert:
1141	btrfs_release_path(path);
1142	csum_offset = 0;
1143	if (found_next) {
1144		u64 tmp;
1145
1146		tmp = sums->len - total_bytes;
1147		tmp >>= fs_info->sectorsize_bits;
1148		tmp = min(tmp, (next_offset - file_key.offset) >>
1149					 fs_info->sectorsize_bits);
1150
1151		tmp = max_t(u64, 1, tmp);
1152		tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1153		ins_size = csum_size * tmp;
1154	} else {
1155		ins_size = csum_size;
1156	}
1157	ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1158				      ins_size);
1159	if (ret < 0)
1160		goto out;
1161	if (WARN_ON(ret != 0))
1162		goto out;
1163	leaf = path->nodes[0];
1164csum:
1165	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1166	item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1167				      btrfs_item_size_nr(leaf, path->slots[0]));
1168	item = (struct btrfs_csum_item *)((unsigned char *)item +
1169					  csum_offset * csum_size);
1170found:
1171	ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1172	ins_size *= csum_size;
1173	ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1174			      ins_size);
1175	write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1176			    ins_size);
1177
1178	index += ins_size;
1179	ins_size /= csum_size;
1180	total_bytes += ins_size * fs_info->sectorsize;
1181
1182	btrfs_mark_buffer_dirty(path->nodes[0]);
1183	if (total_bytes < sums->len) {
1184		btrfs_release_path(path);
1185		cond_resched();
1186		goto again;
1187	}
1188out:
1189	btrfs_free_path(path);
1190	return ret;
1191}
1192
1193void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1194				     const struct btrfs_path *path,
1195				     struct btrfs_file_extent_item *fi,
1196				     const bool new_inline,
1197				     struct extent_map *em)
1198{
1199	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1200	struct btrfs_root *root = inode->root;
1201	struct extent_buffer *leaf = path->nodes[0];
1202	const int slot = path->slots[0];
1203	struct btrfs_key key;
1204	u64 extent_start, extent_end;
1205	u64 bytenr;
1206	u8 type = btrfs_file_extent_type(leaf, fi);
1207	int compress_type = btrfs_file_extent_compression(leaf, fi);
1208
1209	btrfs_item_key_to_cpu(leaf, &key, slot);
1210	extent_start = key.offset;
1211	extent_end = btrfs_file_extent_end(path);
1212	em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
 
1213	if (type == BTRFS_FILE_EXTENT_REG ||
1214	    type == BTRFS_FILE_EXTENT_PREALLOC) {
 
 
1215		em->start = extent_start;
1216		em->len = extent_end - extent_start;
1217		em->orig_start = extent_start -
1218			btrfs_file_extent_offset(leaf, fi);
1219		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1220		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1221		if (bytenr == 0) {
1222			em->block_start = EXTENT_MAP_HOLE;
1223			return;
1224		}
 
 
 
1225		if (compress_type != BTRFS_COMPRESS_NONE) {
1226			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1227			em->compress_type = compress_type;
1228			em->block_start = bytenr;
1229			em->block_len = em->orig_block_len;
1230		} else {
1231			bytenr += btrfs_file_extent_offset(leaf, fi);
1232			em->block_start = bytenr;
1233			em->block_len = em->len;
 
 
 
 
1234			if (type == BTRFS_FILE_EXTENT_PREALLOC)
1235				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1236		}
1237	} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1238		em->block_start = EXTENT_MAP_INLINE;
1239		em->start = extent_start;
1240		em->len = extent_end - extent_start;
1241		/*
1242		 * Initialize orig_start and block_len with the same values
1243		 * as in inode.c:btrfs_get_extent().
1244		 */
1245		em->orig_start = EXTENT_MAP_HOLE;
1246		em->block_len = (u64)-1;
1247		if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1248			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1249			em->compress_type = compress_type;
1250		}
1251	} else {
1252		btrfs_err(fs_info,
1253			  "unknown file extent item type %d, inode %llu, offset %llu, "
1254			  "root %llu", type, btrfs_ino(inode), extent_start,
1255			  root->root_key.objectid);
1256	}
1257}
1258
1259/*
1260 * Returns the end offset (non inclusive) of the file extent item the given path
1261 * points to. If it points to an inline extent, the returned offset is rounded
1262 * up to the sector size.
1263 */
1264u64 btrfs_file_extent_end(const struct btrfs_path *path)
1265{
1266	const struct extent_buffer *leaf = path->nodes[0];
1267	const int slot = path->slots[0];
1268	struct btrfs_file_extent_item *fi;
1269	struct btrfs_key key;
1270	u64 end;
1271
1272	btrfs_item_key_to_cpu(leaf, &key, slot);
1273	ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1274	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1275
1276	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1277		end = btrfs_file_extent_ram_bytes(leaf, fi);
1278		end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1279	} else {
1280		end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1281	}
1282
1283	return end;
1284}