Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <linux/iopoll.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227#define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229#define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
231
232/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
234 */
235#define DMA_MIN_BYTES 16
236
237#define AUTOSUSPEND_TIMEOUT 2000
238
239struct atmel_spi_caps {
240 bool is_spi2;
241 bool has_wdrbt;
242 bool has_dma_support;
243 bool has_pdc_support;
244};
245
246/*
247 * The core SPI transfer engine just talks to a register bank to set up
248 * DMA transfers; transfer queue progress is driven by IRQs. The clock
249 * framework provides the base clock, subdivided for each spi_device.
250 */
251struct atmel_spi {
252 spinlock_t lock;
253 unsigned long flags;
254
255 phys_addr_t phybase;
256 void __iomem *regs;
257 int irq;
258 struct clk *clk;
259 struct platform_device *pdev;
260 unsigned long spi_clk;
261
262 struct spi_transfer *current_transfer;
263 int current_remaining_bytes;
264 int done_status;
265 dma_addr_t dma_addr_rx_bbuf;
266 dma_addr_t dma_addr_tx_bbuf;
267 void *addr_rx_bbuf;
268 void *addr_tx_bbuf;
269
270 struct completion xfer_completion;
271
272 struct atmel_spi_caps caps;
273
274 bool use_dma;
275 bool use_pdc;
276
277 bool keep_cs;
278
279 u32 fifo_size;
280 bool last_polarity;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287 u32 csr;
288};
289
290#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS 0xffffffff
292
293/*
294 * This frequency can be anything supported by the controller, but to avoid
295 * unnecessary delay, the highest possible frequency is chosen.
296 *
297 * This frequency is the highest possible which is not interfering with other
298 * chip select registers (see Note for Serial Clock Bit Rate configuration in
299 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
300 */
301#define DUMMY_MSG_FREQUENCY 0x02
302/*
303 * 8 bits is the minimum data the controller is capable of sending.
304 *
305 * This message can be anything as it should not be treated by any SPI device.
306 */
307#define DUMMY_MSG 0xAA
308
309/*
310 * Version 2 of the SPI controller has
311 * - CR.LASTXFER
312 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
314 * - SPI_CSRx.CSAAT
315 * - SPI_CSRx.SBCR allows faster clocking
316 */
317static bool atmel_spi_is_v2(struct atmel_spi *as)
318{
319 return as->caps.is_spi2;
320}
321
322/*
323 * Send a dummy message.
324 *
325 * This is sometimes needed when using a CS GPIO to force clock transition when
326 * switching between devices with different polarities.
327 */
328static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
329{
330 u32 status;
331 u32 csr;
332
333 /*
334 * Set a clock frequency to allow sending message on SPI bus.
335 * The frequency here can be anything, but is needed for
336 * the controller to send the data.
337 */
338 csr = spi_readl(as, CSR0 + 4 * chip_select);
339 csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
340 spi_writel(as, CSR0 + 4 * chip_select, csr);
341
342 /*
343 * Read all data coming from SPI bus, needed to be able to send
344 * the message.
345 */
346 spi_readl(as, RDR);
347 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
348 spi_readl(as, RDR);
349 cpu_relax();
350 }
351
352 spi_writel(as, TDR, DUMMY_MSG);
353
354 readl_poll_timeout_atomic(as->regs + SPI_SR, status,
355 (status & SPI_BIT(TXEMPTY)), 1, 1000);
356}
357
358
359/*
360 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361 * they assume that spi slave device state will not change on deselect, so
362 * that automagic deselection is OK. ("NPCSx rises if no data is to be
363 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
364 * controllers have CSAAT and friends.
365 *
366 * Even controller newer than ar91rm9200, using GPIOs can make sens as
367 * it lets us support active-high chipselects despite the controller's
368 * belief that only active-low devices/systems exists.
369 *
370 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371 * right when driven with GPIO. ("Mode Fault does not allow more than one
372 * Master on Chip Select 0.") No workaround exists for that ... so for
373 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374 * and (c) will trigger that first erratum in some cases.
375 *
376 * When changing the clock polarity, the SPI controller waits for the next
377 * transmission to enforce the default clock state. This may be an issue when
378 * using a GPIO as Chip Select: the clock level is applied only when the first
379 * packet is sent, once the CS has already been asserted. The workaround is to
380 * avoid this by sending a first (dummy) message before toggling the CS state.
381 */
382static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
383{
384 struct atmel_spi_device *asd = spi->controller_state;
385 bool new_polarity;
386 int chip_select;
387 u32 mr;
388
389 if (spi_get_csgpiod(spi, 0))
390 chip_select = as->native_cs_for_gpio;
391 else
392 chip_select = spi_get_chipselect(spi, 0);
393
394 if (atmel_spi_is_v2(as)) {
395 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
396 /* For the low SPI version, there is a issue that PDC transfer
397 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
398 */
399 spi_writel(as, CSR0, asd->csr);
400 if (as->caps.has_wdrbt) {
401 spi_writel(as, MR,
402 SPI_BF(PCS, ~(0x01 << chip_select))
403 | SPI_BIT(WDRBT)
404 | SPI_BIT(MODFDIS)
405 | SPI_BIT(MSTR));
406 } else {
407 spi_writel(as, MR,
408 SPI_BF(PCS, ~(0x01 << chip_select))
409 | SPI_BIT(MODFDIS)
410 | SPI_BIT(MSTR));
411 }
412
413 mr = spi_readl(as, MR);
414
415 /*
416 * Ensures the clock polarity is valid before we actually
417 * assert the CS to avoid spurious clock edges to be
418 * processed by the spi devices.
419 */
420 if (spi_get_csgpiod(spi, 0)) {
421 new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
422 if (new_polarity != as->last_polarity) {
423 /*
424 * Need to disable the GPIO before sending the dummy
425 * message because it is already set by the spi core.
426 */
427 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
428 atmel_spi_send_dummy(as, spi, chip_select);
429 as->last_polarity = new_polarity;
430 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
431 }
432 }
433 } else {
434 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
435 int i;
436 u32 csr;
437
438 /* Make sure clock polarity is correct */
439 for (i = 0; i < spi->controller->num_chipselect; i++) {
440 csr = spi_readl(as, CSR0 + 4 * i);
441 if ((csr ^ cpol) & SPI_BIT(CPOL))
442 spi_writel(as, CSR0 + 4 * i,
443 csr ^ SPI_BIT(CPOL));
444 }
445
446 mr = spi_readl(as, MR);
447 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
448 spi_writel(as, MR, mr);
449 }
450
451 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
452}
453
454static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
455{
456 int chip_select;
457 u32 mr;
458
459 if (spi_get_csgpiod(spi, 0))
460 chip_select = as->native_cs_for_gpio;
461 else
462 chip_select = spi_get_chipselect(spi, 0);
463
464 /* only deactivate *this* device; sometimes transfers to
465 * another device may be active when this routine is called.
466 */
467 mr = spi_readl(as, MR);
468 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
469 mr = SPI_BFINS(PCS, 0xf, mr);
470 spi_writel(as, MR, mr);
471 }
472
473 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
474
475 if (!spi_get_csgpiod(spi, 0))
476 spi_writel(as, CR, SPI_BIT(LASTXFER));
477}
478
479static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
480{
481 spin_lock_irqsave(&as->lock, as->flags);
482}
483
484static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
485{
486 spin_unlock_irqrestore(&as->lock, as->flags);
487}
488
489static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
490{
491 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
492}
493
494static inline bool atmel_spi_use_dma(struct atmel_spi *as,
495 struct spi_transfer *xfer)
496{
497 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
498}
499
500static bool atmel_spi_can_dma(struct spi_controller *host,
501 struct spi_device *spi,
502 struct spi_transfer *xfer)
503{
504 struct atmel_spi *as = spi_controller_get_devdata(host);
505
506 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
507 return atmel_spi_use_dma(as, xfer) &&
508 !atmel_spi_is_vmalloc_xfer(xfer);
509 else
510 return atmel_spi_use_dma(as, xfer);
511
512}
513
514static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
515{
516 struct spi_controller *host = platform_get_drvdata(as->pdev);
517 struct dma_slave_config slave_config;
518 int err = 0;
519
520 if (bits_per_word > 8) {
521 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
522 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
523 } else {
524 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
525 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
526 }
527
528 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
529 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
530 slave_config.src_maxburst = 1;
531 slave_config.dst_maxburst = 1;
532 slave_config.device_fc = false;
533
534 /*
535 * This driver uses fixed peripheral select mode (PS bit set to '0' in
536 * the Mode Register).
537 * So according to the datasheet, when FIFOs are available (and
538 * enabled), the Transmit FIFO operates in Multiple Data Mode.
539 * In this mode, up to 2 data, not 4, can be written into the Transmit
540 * Data Register in a single access.
541 * However, the first data has to be written into the lowest 16 bits and
542 * the second data into the highest 16 bits of the Transmit
543 * Data Register. For 8bit data (the most frequent case), it would
544 * require to rework tx_buf so each data would actually fit 16 bits.
545 * So we'd rather write only one data at the time. Hence the transmit
546 * path works the same whether FIFOs are available (and enabled) or not.
547 */
548 if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
549 dev_err(&as->pdev->dev,
550 "failed to configure tx dma channel\n");
551 err = -EINVAL;
552 }
553
554 /*
555 * This driver configures the spi controller for host mode (MSTR bit
556 * set to '1' in the Mode Register).
557 * So according to the datasheet, when FIFOs are available (and
558 * enabled), the Receive FIFO operates in Single Data Mode.
559 * So the receive path works the same whether FIFOs are available (and
560 * enabled) or not.
561 */
562 if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
563 dev_err(&as->pdev->dev,
564 "failed to configure rx dma channel\n");
565 err = -EINVAL;
566 }
567
568 return err;
569}
570
571static int atmel_spi_configure_dma(struct spi_controller *host,
572 struct atmel_spi *as)
573{
574 struct device *dev = &as->pdev->dev;
575 int err;
576
577 host->dma_tx = dma_request_chan(dev, "tx");
578 if (IS_ERR(host->dma_tx)) {
579 err = PTR_ERR(host->dma_tx);
580 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
581 goto error_clear;
582 }
583
584 host->dma_rx = dma_request_chan(dev, "rx");
585 if (IS_ERR(host->dma_rx)) {
586 err = PTR_ERR(host->dma_rx);
587 /*
588 * No reason to check EPROBE_DEFER here since we have already
589 * requested tx channel.
590 */
591 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
592 goto error;
593 }
594
595 err = atmel_spi_dma_slave_config(as, 8);
596 if (err)
597 goto error;
598
599 dev_info(&as->pdev->dev,
600 "Using %s (tx) and %s (rx) for DMA transfers\n",
601 dma_chan_name(host->dma_tx),
602 dma_chan_name(host->dma_rx));
603
604 return 0;
605error:
606 if (!IS_ERR(host->dma_rx))
607 dma_release_channel(host->dma_rx);
608 if (!IS_ERR(host->dma_tx))
609 dma_release_channel(host->dma_tx);
610error_clear:
611 host->dma_tx = host->dma_rx = NULL;
612 return err;
613}
614
615static void atmel_spi_stop_dma(struct spi_controller *host)
616{
617 if (host->dma_rx)
618 dmaengine_terminate_all(host->dma_rx);
619 if (host->dma_tx)
620 dmaengine_terminate_all(host->dma_tx);
621}
622
623static void atmel_spi_release_dma(struct spi_controller *host)
624{
625 if (host->dma_rx) {
626 dma_release_channel(host->dma_rx);
627 host->dma_rx = NULL;
628 }
629 if (host->dma_tx) {
630 dma_release_channel(host->dma_tx);
631 host->dma_tx = NULL;
632 }
633}
634
635/* This function is called by the DMA driver from tasklet context */
636static void dma_callback(void *data)
637{
638 struct spi_controller *host = data;
639 struct atmel_spi *as = spi_controller_get_devdata(host);
640
641 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
642 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
643 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
644 as->current_transfer->len);
645 }
646 complete(&as->xfer_completion);
647}
648
649/*
650 * Next transfer using PIO without FIFO.
651 */
652static void atmel_spi_next_xfer_single(struct spi_controller *host,
653 struct spi_transfer *xfer)
654{
655 struct atmel_spi *as = spi_controller_get_devdata(host);
656 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
657
658 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
659
660 /* Make sure data is not remaining in RDR */
661 spi_readl(as, RDR);
662 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
663 spi_readl(as, RDR);
664 cpu_relax();
665 }
666
667 if (xfer->bits_per_word > 8)
668 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
669 else
670 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
671
672 dev_dbg(host->dev.parent,
673 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
675 xfer->bits_per_word);
676
677 /* Enable relevant interrupts */
678 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
679}
680
681/*
682 * Next transfer using PIO with FIFO.
683 */
684static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
685 struct spi_transfer *xfer)
686{
687 struct atmel_spi *as = spi_controller_get_devdata(host);
688 u32 current_remaining_data, num_data;
689 u32 offset = xfer->len - as->current_remaining_bytes;
690 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
691 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
692 u16 td0, td1;
693 u32 fifomr;
694
695 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
696
697 /* Compute the number of data to transfer in the current iteration */
698 current_remaining_data = ((xfer->bits_per_word > 8) ?
699 ((u32)as->current_remaining_bytes >> 1) :
700 (u32)as->current_remaining_bytes);
701 num_data = min(current_remaining_data, as->fifo_size);
702
703 /* Flush RX and TX FIFOs */
704 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
705 while (spi_readl(as, FLR))
706 cpu_relax();
707
708 /* Set RX FIFO Threshold to the number of data to transfer */
709 fifomr = spi_readl(as, FMR);
710 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
711
712 /* Clear FIFO flags in the Status Register, especially RXFTHF */
713 (void)spi_readl(as, SR);
714
715 /* Fill TX FIFO */
716 while (num_data >= 2) {
717 if (xfer->bits_per_word > 8) {
718 td0 = *words++;
719 td1 = *words++;
720 } else {
721 td0 = *bytes++;
722 td1 = *bytes++;
723 }
724
725 spi_writel(as, TDR, (td1 << 16) | td0);
726 num_data -= 2;
727 }
728
729 if (num_data) {
730 if (xfer->bits_per_word > 8)
731 td0 = *words++;
732 else
733 td0 = *bytes++;
734
735 spi_writew(as, TDR, td0);
736 num_data--;
737 }
738
739 dev_dbg(host->dev.parent,
740 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
742 xfer->bits_per_word);
743
744 /*
745 * Enable RX FIFO Threshold Flag interrupt to be notified about
746 * transfer completion.
747 */
748 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
749}
750
751/*
752 * Next transfer using PIO.
753 */
754static void atmel_spi_next_xfer_pio(struct spi_controller *host,
755 struct spi_transfer *xfer)
756{
757 struct atmel_spi *as = spi_controller_get_devdata(host);
758
759 if (as->fifo_size)
760 atmel_spi_next_xfer_fifo(host, xfer);
761 else
762 atmel_spi_next_xfer_single(host, xfer);
763}
764
765/*
766 * Submit next transfer for DMA.
767 */
768static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
769 struct spi_transfer *xfer,
770 u32 *plen)
771{
772 struct atmel_spi *as = spi_controller_get_devdata(host);
773 struct dma_chan *rxchan = host->dma_rx;
774 struct dma_chan *txchan = host->dma_tx;
775 struct dma_async_tx_descriptor *rxdesc;
776 struct dma_async_tx_descriptor *txdesc;
777 dma_cookie_t cookie;
778
779 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
780
781 /* Check that the channels are available */
782 if (!rxchan || !txchan)
783 return -ENODEV;
784
785
786 *plen = xfer->len;
787
788 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
789 goto err_exit;
790
791 /* Send both scatterlists */
792 if (atmel_spi_is_vmalloc_xfer(xfer) &&
793 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
794 rxdesc = dmaengine_prep_slave_single(rxchan,
795 as->dma_addr_rx_bbuf,
796 xfer->len,
797 DMA_DEV_TO_MEM,
798 DMA_PREP_INTERRUPT |
799 DMA_CTRL_ACK);
800 } else {
801 rxdesc = dmaengine_prep_slave_sg(rxchan,
802 xfer->rx_sg.sgl,
803 xfer->rx_sg.nents,
804 DMA_DEV_TO_MEM,
805 DMA_PREP_INTERRUPT |
806 DMA_CTRL_ACK);
807 }
808 if (!rxdesc)
809 goto err_dma;
810
811 if (atmel_spi_is_vmalloc_xfer(xfer) &&
812 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
813 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
814 txdesc = dmaengine_prep_slave_single(txchan,
815 as->dma_addr_tx_bbuf,
816 xfer->len, DMA_MEM_TO_DEV,
817 DMA_PREP_INTERRUPT |
818 DMA_CTRL_ACK);
819 } else {
820 txdesc = dmaengine_prep_slave_sg(txchan,
821 xfer->tx_sg.sgl,
822 xfer->tx_sg.nents,
823 DMA_MEM_TO_DEV,
824 DMA_PREP_INTERRUPT |
825 DMA_CTRL_ACK);
826 }
827 if (!txdesc)
828 goto err_dma;
829
830 dev_dbg(host->dev.parent,
831 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
833 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
834
835 /* Enable relevant interrupts */
836 spi_writel(as, IER, SPI_BIT(OVRES));
837
838 /* Put the callback on the RX transfer only, that should finish last */
839 rxdesc->callback = dma_callback;
840 rxdesc->callback_param = host;
841
842 /* Submit and fire RX and TX with TX last so we're ready to read! */
843 cookie = rxdesc->tx_submit(rxdesc);
844 if (dma_submit_error(cookie))
845 goto err_dma;
846 cookie = txdesc->tx_submit(txdesc);
847 if (dma_submit_error(cookie))
848 goto err_dma;
849 rxchan->device->device_issue_pending(rxchan);
850 txchan->device->device_issue_pending(txchan);
851
852 return 0;
853
854err_dma:
855 spi_writel(as, IDR, SPI_BIT(OVRES));
856 atmel_spi_stop_dma(host);
857err_exit:
858 return -ENOMEM;
859}
860
861static void atmel_spi_next_xfer_data(struct spi_controller *host,
862 struct spi_transfer *xfer,
863 dma_addr_t *tx_dma,
864 dma_addr_t *rx_dma,
865 u32 *plen)
866{
867 *rx_dma = xfer->rx_dma + xfer->len - *plen;
868 *tx_dma = xfer->tx_dma + xfer->len - *plen;
869 if (*plen > host->max_dma_len)
870 *plen = host->max_dma_len;
871}
872
873static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
874 struct spi_device *spi,
875 struct spi_transfer *xfer)
876{
877 u32 scbr, csr;
878 unsigned long bus_hz;
879 int chip_select;
880
881 if (spi_get_csgpiod(spi, 0))
882 chip_select = as->native_cs_for_gpio;
883 else
884 chip_select = spi_get_chipselect(spi, 0);
885
886 /* v1 chips start out at half the peripheral bus speed. */
887 bus_hz = as->spi_clk;
888 if (!atmel_spi_is_v2(as))
889 bus_hz /= 2;
890
891 /*
892 * Calculate the lowest divider that satisfies the
893 * constraint, assuming div32/fdiv/mbz == 0.
894 */
895 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
896
897 /*
898 * If the resulting divider doesn't fit into the
899 * register bitfield, we can't satisfy the constraint.
900 */
901 if (scbr >= (1 << SPI_SCBR_SIZE)) {
902 dev_err(&spi->dev,
903 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904 xfer->speed_hz, scbr, bus_hz/255);
905 return -EINVAL;
906 }
907 if (scbr == 0) {
908 dev_err(&spi->dev,
909 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
910 xfer->speed_hz, scbr, bus_hz);
911 return -EINVAL;
912 }
913 csr = spi_readl(as, CSR0 + 4 * chip_select);
914 csr = SPI_BFINS(SCBR, scbr, csr);
915 spi_writel(as, CSR0 + 4 * chip_select, csr);
916 xfer->effective_speed_hz = bus_hz / scbr;
917
918 return 0;
919}
920
921/*
922 * Submit next transfer for PDC.
923 * lock is held, spi irq is blocked
924 */
925static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
926 struct spi_transfer *xfer)
927{
928 struct atmel_spi *as = spi_controller_get_devdata(host);
929 u32 len;
930 dma_addr_t tx_dma, rx_dma;
931
932 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
933
934 len = as->current_remaining_bytes;
935 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
936 as->current_remaining_bytes -= len;
937
938 spi_writel(as, RPR, rx_dma);
939 spi_writel(as, TPR, tx_dma);
940
941 if (xfer->bits_per_word > 8)
942 len >>= 1;
943 spi_writel(as, RCR, len);
944 spi_writel(as, TCR, len);
945
946 dev_dbg(&host->dev,
947 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948 xfer, xfer->len, xfer->tx_buf,
949 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
950 (unsigned long long)xfer->rx_dma);
951
952 if (as->current_remaining_bytes) {
953 len = as->current_remaining_bytes;
954 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
955 as->current_remaining_bytes -= len;
956
957 spi_writel(as, RNPR, rx_dma);
958 spi_writel(as, TNPR, tx_dma);
959
960 if (xfer->bits_per_word > 8)
961 len >>= 1;
962 spi_writel(as, RNCR, len);
963 spi_writel(as, TNCR, len);
964
965 dev_dbg(&host->dev,
966 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967 xfer, xfer->len, xfer->tx_buf,
968 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
969 (unsigned long long)xfer->rx_dma);
970 }
971
972 /* REVISIT: We're waiting for RXBUFF before we start the next
973 * transfer because we need to handle some difficult timing
974 * issues otherwise. If we wait for TXBUFE in one transfer and
975 * then starts waiting for RXBUFF in the next, it's difficult
976 * to tell the difference between the RXBUFF interrupt we're
977 * actually waiting for and the RXBUFF interrupt of the
978 * previous transfer.
979 *
980 * It should be doable, though. Just not now...
981 */
982 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
983 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
984}
985
986/*
987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988 * - The buffer is either valid for CPU access, else NULL
989 * - If the buffer is valid, so is its DMA address
990 */
991static int
992atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
993{
994 struct device *dev = &as->pdev->dev;
995
996 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
997 if (xfer->tx_buf) {
998 /* tx_buf is a const void* where we need a void * for the dma
999 * mapping */
1000 void *nonconst_tx = (void *)xfer->tx_buf;
1001
1002 xfer->tx_dma = dma_map_single(dev,
1003 nonconst_tx, xfer->len,
1004 DMA_TO_DEVICE);
1005 if (dma_mapping_error(dev, xfer->tx_dma))
1006 return -ENOMEM;
1007 }
1008 if (xfer->rx_buf) {
1009 xfer->rx_dma = dma_map_single(dev,
1010 xfer->rx_buf, xfer->len,
1011 DMA_FROM_DEVICE);
1012 if (dma_mapping_error(dev, xfer->rx_dma)) {
1013 if (xfer->tx_buf)
1014 dma_unmap_single(dev,
1015 xfer->tx_dma, xfer->len,
1016 DMA_TO_DEVICE);
1017 return -ENOMEM;
1018 }
1019 }
1020 return 0;
1021}
1022
1023static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1024 struct spi_transfer *xfer)
1025{
1026 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1027 dma_unmap_single(host->dev.parent, xfer->tx_dma,
1028 xfer->len, DMA_TO_DEVICE);
1029 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1030 dma_unmap_single(host->dev.parent, xfer->rx_dma,
1031 xfer->len, DMA_FROM_DEVICE);
1032}
1033
1034static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1035{
1036 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1037}
1038
1039static void
1040atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1041{
1042 u8 *rxp;
1043 u16 *rxp16;
1044 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1045
1046 if (xfer->bits_per_word > 8) {
1047 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1048 *rxp16 = spi_readl(as, RDR);
1049 } else {
1050 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1051 *rxp = spi_readl(as, RDR);
1052 }
1053 if (xfer->bits_per_word > 8) {
1054 if (as->current_remaining_bytes > 2)
1055 as->current_remaining_bytes -= 2;
1056 else
1057 as->current_remaining_bytes = 0;
1058 } else {
1059 as->current_remaining_bytes--;
1060 }
1061}
1062
1063static void
1064atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1065{
1066 u32 fifolr = spi_readl(as, FLR);
1067 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1068 u32 offset = xfer->len - as->current_remaining_bytes;
1069 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1070 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1071 u16 rd; /* RD field is the lowest 16 bits of RDR */
1072
1073 /* Update the number of remaining bytes to transfer */
1074 num_bytes = ((xfer->bits_per_word > 8) ?
1075 (num_data << 1) :
1076 num_data);
1077
1078 if (as->current_remaining_bytes > num_bytes)
1079 as->current_remaining_bytes -= num_bytes;
1080 else
1081 as->current_remaining_bytes = 0;
1082
1083 /* Handle odd number of bytes when data are more than 8bit width */
1084 if (xfer->bits_per_word > 8)
1085 as->current_remaining_bytes &= ~0x1;
1086
1087 /* Read data */
1088 while (num_data) {
1089 rd = spi_readl(as, RDR);
1090 if (xfer->bits_per_word > 8)
1091 *words++ = rd;
1092 else
1093 *bytes++ = rd;
1094 num_data--;
1095 }
1096}
1097
1098/* Called from IRQ
1099 *
1100 * Must update "current_remaining_bytes" to keep track of data
1101 * to transfer.
1102 */
1103static void
1104atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1105{
1106 if (as->fifo_size)
1107 atmel_spi_pump_fifo_data(as, xfer);
1108 else
1109 atmel_spi_pump_single_data(as, xfer);
1110}
1111
1112/* Interrupt
1113 *
1114 */
1115static irqreturn_t
1116atmel_spi_pio_interrupt(int irq, void *dev_id)
1117{
1118 struct spi_controller *host = dev_id;
1119 struct atmel_spi *as = spi_controller_get_devdata(host);
1120 u32 status, pending, imr;
1121 struct spi_transfer *xfer;
1122 int ret = IRQ_NONE;
1123
1124 imr = spi_readl(as, IMR);
1125 status = spi_readl(as, SR);
1126 pending = status & imr;
1127
1128 if (pending & SPI_BIT(OVRES)) {
1129 ret = IRQ_HANDLED;
1130 spi_writel(as, IDR, SPI_BIT(OVRES));
1131 dev_warn(host->dev.parent, "overrun\n");
1132
1133 /*
1134 * When we get an overrun, we disregard the current
1135 * transfer. Data will not be copied back from any
1136 * bounce buffer and msg->actual_len will not be
1137 * updated with the last xfer.
1138 *
1139 * We will also not process any remaning transfers in
1140 * the message.
1141 */
1142 as->done_status = -EIO;
1143 smp_wmb();
1144
1145 /* Clear any overrun happening while cleaning up */
1146 spi_readl(as, SR);
1147
1148 complete(&as->xfer_completion);
1149
1150 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1151 atmel_spi_lock(as);
1152
1153 if (as->current_remaining_bytes) {
1154 ret = IRQ_HANDLED;
1155 xfer = as->current_transfer;
1156 atmel_spi_pump_pio_data(as, xfer);
1157 if (!as->current_remaining_bytes)
1158 spi_writel(as, IDR, pending);
1159
1160 complete(&as->xfer_completion);
1161 }
1162
1163 atmel_spi_unlock(as);
1164 } else {
1165 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1166 ret = IRQ_HANDLED;
1167 spi_writel(as, IDR, pending);
1168 }
1169
1170 return ret;
1171}
1172
1173static irqreturn_t
1174atmel_spi_pdc_interrupt(int irq, void *dev_id)
1175{
1176 struct spi_controller *host = dev_id;
1177 struct atmel_spi *as = spi_controller_get_devdata(host);
1178 u32 status, pending, imr;
1179 int ret = IRQ_NONE;
1180
1181 imr = spi_readl(as, IMR);
1182 status = spi_readl(as, SR);
1183 pending = status & imr;
1184
1185 if (pending & SPI_BIT(OVRES)) {
1186
1187 ret = IRQ_HANDLED;
1188
1189 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1190 | SPI_BIT(OVRES)));
1191
1192 /* Clear any overrun happening while cleaning up */
1193 spi_readl(as, SR);
1194
1195 as->done_status = -EIO;
1196
1197 complete(&as->xfer_completion);
1198
1199 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1200 ret = IRQ_HANDLED;
1201
1202 spi_writel(as, IDR, pending);
1203
1204 complete(&as->xfer_completion);
1205 }
1206
1207 return ret;
1208}
1209
1210static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1211{
1212 struct spi_delay *delay = &spi->word_delay;
1213 u32 value = delay->value;
1214
1215 switch (delay->unit) {
1216 case SPI_DELAY_UNIT_NSECS:
1217 value /= 1000;
1218 break;
1219 case SPI_DELAY_UNIT_USECS:
1220 break;
1221 default:
1222 return -EINVAL;
1223 }
1224
1225 return (as->spi_clk / 1000000 * value) >> 5;
1226}
1227
1228static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1229{
1230 int i;
1231 struct spi_controller *host = platform_get_drvdata(as->pdev);
1232
1233 if (!as->native_cs_free)
1234 return; /* already initialized */
1235
1236 if (!host->cs_gpiods)
1237 return; /* No CS GPIO */
1238
1239 /*
1240 * On the first version of the controller (AT91RM9200), CS0
1241 * can't be used associated with GPIO
1242 */
1243 if (atmel_spi_is_v2(as))
1244 i = 0;
1245 else
1246 i = 1;
1247
1248 for (; i < 4; i++)
1249 if (host->cs_gpiods[i])
1250 as->native_cs_free |= BIT(i);
1251
1252 if (as->native_cs_free)
1253 as->native_cs_for_gpio = ffs(as->native_cs_free);
1254}
1255
1256static int atmel_spi_setup(struct spi_device *spi)
1257{
1258 struct atmel_spi *as;
1259 struct atmel_spi_device *asd;
1260 u32 csr;
1261 unsigned int bits = spi->bits_per_word;
1262 int chip_select;
1263 int word_delay_csr;
1264
1265 as = spi_controller_get_devdata(spi->controller);
1266
1267 /* see notes above re chipselect */
1268 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1269 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1270 return -EINVAL;
1271 }
1272
1273 /* Setup() is called during spi_register_controller(aka
1274 * spi_register_master) but after all membmers of the cs_gpiod
1275 * array have been filled, so we can looked for which native
1276 * CS will be free for using with GPIO
1277 */
1278 initialize_native_cs_for_gpio(as);
1279
1280 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1281 dev_err(&spi->dev,
1282 "No native CS available to support this GPIO CS\n");
1283 return -EBUSY;
1284 }
1285
1286 if (spi_get_csgpiod(spi, 0))
1287 chip_select = as->native_cs_for_gpio;
1288 else
1289 chip_select = spi_get_chipselect(spi, 0);
1290
1291 csr = SPI_BF(BITS, bits - 8);
1292 if (spi->mode & SPI_CPOL)
1293 csr |= SPI_BIT(CPOL);
1294 if (!(spi->mode & SPI_CPHA))
1295 csr |= SPI_BIT(NCPHA);
1296
1297 if (!spi_get_csgpiod(spi, 0))
1298 csr |= SPI_BIT(CSAAT);
1299 csr |= SPI_BF(DLYBS, 0);
1300
1301 word_delay_csr = atmel_word_delay_csr(spi, as);
1302 if (word_delay_csr < 0)
1303 return word_delay_csr;
1304
1305 /* DLYBCT adds delays between words. This is useful for slow devices
1306 * that need a bit of time to setup the next transfer.
1307 */
1308 csr |= SPI_BF(DLYBCT, word_delay_csr);
1309
1310 asd = spi->controller_state;
1311 if (!asd) {
1312 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1313 if (!asd)
1314 return -ENOMEM;
1315
1316 spi->controller_state = asd;
1317 }
1318
1319 asd->csr = csr;
1320
1321 dev_dbg(&spi->dev,
1322 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1323 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1324
1325 if (!atmel_spi_is_v2(as))
1326 spi_writel(as, CSR0 + 4 * chip_select, csr);
1327
1328 return 0;
1329}
1330
1331static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1332{
1333 struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1334 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1335 * since we already have routines for activate/deactivate translate
1336 * high/low to active/inactive
1337 */
1338 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1339
1340 if (enable) {
1341 cs_activate(as, spi);
1342 } else {
1343 cs_deactivate(as, spi);
1344 }
1345
1346}
1347
1348static int atmel_spi_one_transfer(struct spi_controller *host,
1349 struct spi_device *spi,
1350 struct spi_transfer *xfer)
1351{
1352 struct atmel_spi *as;
1353 u8 bits;
1354 u32 len;
1355 struct atmel_spi_device *asd;
1356 int timeout;
1357 int ret;
1358 unsigned int dma_timeout;
1359 long ret_timeout;
1360
1361 as = spi_controller_get_devdata(host);
1362
1363 asd = spi->controller_state;
1364 bits = (asd->csr >> 4) & 0xf;
1365 if (bits != xfer->bits_per_word - 8) {
1366 dev_dbg(&spi->dev,
1367 "you can't yet change bits_per_word in transfers\n");
1368 return -ENOPROTOOPT;
1369 }
1370
1371 /*
1372 * DMA map early, for performance (empties dcache ASAP) and
1373 * better fault reporting.
1374 */
1375 if (as->use_pdc) {
1376 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1377 return -ENOMEM;
1378 }
1379
1380 atmel_spi_set_xfer_speed(as, spi, xfer);
1381
1382 as->done_status = 0;
1383 as->current_transfer = xfer;
1384 as->current_remaining_bytes = xfer->len;
1385 while (as->current_remaining_bytes) {
1386 reinit_completion(&as->xfer_completion);
1387
1388 if (as->use_pdc) {
1389 atmel_spi_lock(as);
1390 atmel_spi_pdc_next_xfer(host, xfer);
1391 atmel_spi_unlock(as);
1392 } else if (atmel_spi_use_dma(as, xfer)) {
1393 len = as->current_remaining_bytes;
1394 ret = atmel_spi_next_xfer_dma_submit(host,
1395 xfer, &len);
1396 if (ret) {
1397 dev_err(&spi->dev,
1398 "unable to use DMA, fallback to PIO\n");
1399 as->done_status = ret;
1400 break;
1401 } else {
1402 as->current_remaining_bytes -= len;
1403 if (as->current_remaining_bytes < 0)
1404 as->current_remaining_bytes = 0;
1405 }
1406 } else {
1407 atmel_spi_lock(as);
1408 atmel_spi_next_xfer_pio(host, xfer);
1409 atmel_spi_unlock(as);
1410 }
1411
1412 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1413 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1414 if (!ret_timeout) {
1415 dev_err(&spi->dev, "spi transfer timeout\n");
1416 as->done_status = -EIO;
1417 }
1418
1419 if (as->done_status)
1420 break;
1421 }
1422
1423 if (as->done_status) {
1424 if (as->use_pdc) {
1425 dev_warn(host->dev.parent,
1426 "overrun (%u/%u remaining)\n",
1427 spi_readl(as, TCR), spi_readl(as, RCR));
1428
1429 /*
1430 * Clean up DMA registers and make sure the data
1431 * registers are empty.
1432 */
1433 spi_writel(as, RNCR, 0);
1434 spi_writel(as, TNCR, 0);
1435 spi_writel(as, RCR, 0);
1436 spi_writel(as, TCR, 0);
1437 for (timeout = 1000; timeout; timeout--)
1438 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1439 break;
1440 if (!timeout)
1441 dev_warn(host->dev.parent,
1442 "timeout waiting for TXEMPTY");
1443 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1444 spi_readl(as, RDR);
1445
1446 /* Clear any overrun happening while cleaning up */
1447 spi_readl(as, SR);
1448
1449 } else if (atmel_spi_use_dma(as, xfer)) {
1450 atmel_spi_stop_dma(host);
1451 }
1452 }
1453
1454 if (as->use_pdc)
1455 atmel_spi_dma_unmap_xfer(host, xfer);
1456
1457 if (as->use_pdc)
1458 atmel_spi_disable_pdc_transfer(as);
1459
1460 return as->done_status;
1461}
1462
1463static void atmel_spi_cleanup(struct spi_device *spi)
1464{
1465 struct atmel_spi_device *asd = spi->controller_state;
1466
1467 if (!asd)
1468 return;
1469
1470 spi->controller_state = NULL;
1471 kfree(asd);
1472}
1473
1474static inline unsigned int atmel_get_version(struct atmel_spi *as)
1475{
1476 return spi_readl(as, VERSION) & 0x00000fff;
1477}
1478
1479static void atmel_get_caps(struct atmel_spi *as)
1480{
1481 unsigned int version;
1482
1483 version = atmel_get_version(as);
1484
1485 as->caps.is_spi2 = version > 0x121;
1486 as->caps.has_wdrbt = version >= 0x210;
1487 as->caps.has_dma_support = version >= 0x212;
1488 as->caps.has_pdc_support = version < 0x212;
1489}
1490
1491static void atmel_spi_init(struct atmel_spi *as)
1492{
1493 spi_writel(as, CR, SPI_BIT(SWRST));
1494 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1495
1496 /* It is recommended to enable FIFOs first thing after reset */
1497 if (as->fifo_size)
1498 spi_writel(as, CR, SPI_BIT(FIFOEN));
1499
1500 if (as->caps.has_wdrbt) {
1501 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1502 | SPI_BIT(MSTR));
1503 } else {
1504 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1505 }
1506
1507 if (as->use_pdc)
1508 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1509 spi_writel(as, CR, SPI_BIT(SPIEN));
1510}
1511
1512static int atmel_spi_probe(struct platform_device *pdev)
1513{
1514 struct resource *regs;
1515 int irq;
1516 struct clk *clk;
1517 int ret;
1518 struct spi_controller *host;
1519 struct atmel_spi *as;
1520
1521 /* Select default pin state */
1522 pinctrl_pm_select_default_state(&pdev->dev);
1523
1524 irq = platform_get_irq(pdev, 0);
1525 if (irq < 0)
1526 return irq;
1527
1528 clk = devm_clk_get(&pdev->dev, "spi_clk");
1529 if (IS_ERR(clk))
1530 return PTR_ERR(clk);
1531
1532 /* setup spi core then atmel-specific driver state */
1533 host = spi_alloc_host(&pdev->dev, sizeof(*as));
1534 if (!host)
1535 return -ENOMEM;
1536
1537 /* the spi->mode bits understood by this driver: */
1538 host->use_gpio_descriptors = true;
1539 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1540 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1541 host->dev.of_node = pdev->dev.of_node;
1542 host->bus_num = pdev->id;
1543 host->num_chipselect = 4;
1544 host->setup = atmel_spi_setup;
1545 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1546 SPI_CONTROLLER_GPIO_SS);
1547 host->transfer_one = atmel_spi_one_transfer;
1548 host->set_cs = atmel_spi_set_cs;
1549 host->cleanup = atmel_spi_cleanup;
1550 host->auto_runtime_pm = true;
1551 host->max_dma_len = SPI_MAX_DMA_XFER;
1552 host->can_dma = atmel_spi_can_dma;
1553 platform_set_drvdata(pdev, host);
1554
1555 as = spi_controller_get_devdata(host);
1556
1557 spin_lock_init(&as->lock);
1558
1559 as->pdev = pdev;
1560 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
1561 if (IS_ERR(as->regs)) {
1562 ret = PTR_ERR(as->regs);
1563 goto out_unmap_regs;
1564 }
1565 as->phybase = regs->start;
1566 as->irq = irq;
1567 as->clk = clk;
1568
1569 init_completion(&as->xfer_completion);
1570
1571 atmel_get_caps(as);
1572
1573 as->use_dma = false;
1574 as->use_pdc = false;
1575 if (as->caps.has_dma_support) {
1576 ret = atmel_spi_configure_dma(host, as);
1577 if (ret == 0) {
1578 as->use_dma = true;
1579 } else if (ret == -EPROBE_DEFER) {
1580 goto out_unmap_regs;
1581 }
1582 } else if (as->caps.has_pdc_support) {
1583 as->use_pdc = true;
1584 }
1585
1586 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1587 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1588 SPI_MAX_DMA_XFER,
1589 &as->dma_addr_rx_bbuf,
1590 GFP_KERNEL | GFP_DMA);
1591 if (!as->addr_rx_bbuf) {
1592 as->use_dma = false;
1593 } else {
1594 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1595 SPI_MAX_DMA_XFER,
1596 &as->dma_addr_tx_bbuf,
1597 GFP_KERNEL | GFP_DMA);
1598 if (!as->addr_tx_bbuf) {
1599 as->use_dma = false;
1600 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1601 as->addr_rx_bbuf,
1602 as->dma_addr_rx_bbuf);
1603 }
1604 }
1605 if (!as->use_dma)
1606 dev_info(host->dev.parent,
1607 " can not allocate dma coherent memory\n");
1608 }
1609
1610 if (as->caps.has_dma_support && !as->use_dma)
1611 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1612
1613 if (as->use_pdc) {
1614 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1615 0, dev_name(&pdev->dev), host);
1616 } else {
1617 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1618 0, dev_name(&pdev->dev), host);
1619 }
1620 if (ret)
1621 goto out_unmap_regs;
1622
1623 /* Initialize the hardware */
1624 ret = clk_prepare_enable(clk);
1625 if (ret)
1626 goto out_free_irq;
1627
1628 as->spi_clk = clk_get_rate(clk);
1629
1630 as->fifo_size = 0;
1631 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1632 &as->fifo_size)) {
1633 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1634 }
1635
1636 atmel_spi_init(as);
1637
1638 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1639 pm_runtime_use_autosuspend(&pdev->dev);
1640 pm_runtime_set_active(&pdev->dev);
1641 pm_runtime_enable(&pdev->dev);
1642
1643 ret = devm_spi_register_controller(&pdev->dev, host);
1644 if (ret)
1645 goto out_free_dma;
1646
1647 /* go! */
1648 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1649 atmel_get_version(as), (unsigned long)regs->start,
1650 irq);
1651
1652 return 0;
1653
1654out_free_dma:
1655 pm_runtime_disable(&pdev->dev);
1656 pm_runtime_set_suspended(&pdev->dev);
1657
1658 if (as->use_dma)
1659 atmel_spi_release_dma(host);
1660
1661 spi_writel(as, CR, SPI_BIT(SWRST));
1662 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1663 clk_disable_unprepare(clk);
1664out_free_irq:
1665out_unmap_regs:
1666 spi_controller_put(host);
1667 return ret;
1668}
1669
1670static void atmel_spi_remove(struct platform_device *pdev)
1671{
1672 struct spi_controller *host = platform_get_drvdata(pdev);
1673 struct atmel_spi *as = spi_controller_get_devdata(host);
1674
1675 pm_runtime_get_sync(&pdev->dev);
1676
1677 /* reset the hardware and block queue progress */
1678 if (as->use_dma) {
1679 atmel_spi_stop_dma(host);
1680 atmel_spi_release_dma(host);
1681 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1682 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683 as->addr_tx_bbuf,
1684 as->dma_addr_tx_bbuf);
1685 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1686 as->addr_rx_bbuf,
1687 as->dma_addr_rx_bbuf);
1688 }
1689 }
1690
1691 spin_lock_irq(&as->lock);
1692 spi_writel(as, CR, SPI_BIT(SWRST));
1693 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1694 spi_readl(as, SR);
1695 spin_unlock_irq(&as->lock);
1696
1697 clk_disable_unprepare(as->clk);
1698
1699 pm_runtime_put_noidle(&pdev->dev);
1700 pm_runtime_disable(&pdev->dev);
1701}
1702
1703static int atmel_spi_runtime_suspend(struct device *dev)
1704{
1705 struct spi_controller *host = dev_get_drvdata(dev);
1706 struct atmel_spi *as = spi_controller_get_devdata(host);
1707
1708 clk_disable_unprepare(as->clk);
1709 pinctrl_pm_select_sleep_state(dev);
1710
1711 return 0;
1712}
1713
1714static int atmel_spi_runtime_resume(struct device *dev)
1715{
1716 struct spi_controller *host = dev_get_drvdata(dev);
1717 struct atmel_spi *as = spi_controller_get_devdata(host);
1718
1719 pinctrl_pm_select_default_state(dev);
1720
1721 return clk_prepare_enable(as->clk);
1722}
1723
1724static int atmel_spi_suspend(struct device *dev)
1725{
1726 struct spi_controller *host = dev_get_drvdata(dev);
1727 int ret;
1728
1729 /* Stop the queue running */
1730 ret = spi_controller_suspend(host);
1731 if (ret)
1732 return ret;
1733
1734 if (!pm_runtime_suspended(dev))
1735 atmel_spi_runtime_suspend(dev);
1736
1737 return 0;
1738}
1739
1740static int atmel_spi_resume(struct device *dev)
1741{
1742 struct spi_controller *host = dev_get_drvdata(dev);
1743 struct atmel_spi *as = spi_controller_get_devdata(host);
1744 int ret;
1745
1746 ret = clk_prepare_enable(as->clk);
1747 if (ret)
1748 return ret;
1749
1750 atmel_spi_init(as);
1751
1752 clk_disable_unprepare(as->clk);
1753
1754 if (!pm_runtime_suspended(dev)) {
1755 ret = atmel_spi_runtime_resume(dev);
1756 if (ret)
1757 return ret;
1758 }
1759
1760 /* Start the queue running */
1761 return spi_controller_resume(host);
1762}
1763
1764static const struct dev_pm_ops atmel_spi_pm_ops = {
1765 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1766 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1767 atmel_spi_runtime_resume, NULL)
1768};
1769
1770static const struct of_device_id atmel_spi_dt_ids[] = {
1771 { .compatible = "atmel,at91rm9200-spi" },
1772 { /* sentinel */ }
1773};
1774
1775MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1776
1777static struct platform_driver atmel_spi_driver = {
1778 .driver = {
1779 .name = "atmel_spi",
1780 .pm = pm_ptr(&atmel_spi_pm_ops),
1781 .of_match_table = atmel_spi_dt_ids,
1782 },
1783 .probe = atmel_spi_probe,
1784 .remove = atmel_spi_remove,
1785};
1786module_platform_driver(atmel_spi_driver);
1787
1788MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1789MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1790MODULE_LICENSE("GPL");
1791MODULE_ALIAS("platform:atmel_spi");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <trace/events/spi.h>
26
27/* SPI register offsets */
28#define SPI_CR 0x0000
29#define SPI_MR 0x0004
30#define SPI_RDR 0x0008
31#define SPI_TDR 0x000c
32#define SPI_SR 0x0010
33#define SPI_IER 0x0014
34#define SPI_IDR 0x0018
35#define SPI_IMR 0x001c
36#define SPI_CSR0 0x0030
37#define SPI_CSR1 0x0034
38#define SPI_CSR2 0x0038
39#define SPI_CSR3 0x003c
40#define SPI_FMR 0x0040
41#define SPI_FLR 0x0044
42#define SPI_VERSION 0x00fc
43#define SPI_RPR 0x0100
44#define SPI_RCR 0x0104
45#define SPI_TPR 0x0108
46#define SPI_TCR 0x010c
47#define SPI_RNPR 0x0110
48#define SPI_RNCR 0x0114
49#define SPI_TNPR 0x0118
50#define SPI_TNCR 0x011c
51#define SPI_PTCR 0x0120
52#define SPI_PTSR 0x0124
53
54/* Bitfields in CR */
55#define SPI_SPIEN_OFFSET 0
56#define SPI_SPIEN_SIZE 1
57#define SPI_SPIDIS_OFFSET 1
58#define SPI_SPIDIS_SIZE 1
59#define SPI_SWRST_OFFSET 7
60#define SPI_SWRST_SIZE 1
61#define SPI_LASTXFER_OFFSET 24
62#define SPI_LASTXFER_SIZE 1
63#define SPI_TXFCLR_OFFSET 16
64#define SPI_TXFCLR_SIZE 1
65#define SPI_RXFCLR_OFFSET 17
66#define SPI_RXFCLR_SIZE 1
67#define SPI_FIFOEN_OFFSET 30
68#define SPI_FIFOEN_SIZE 1
69#define SPI_FIFODIS_OFFSET 31
70#define SPI_FIFODIS_SIZE 1
71
72/* Bitfields in MR */
73#define SPI_MSTR_OFFSET 0
74#define SPI_MSTR_SIZE 1
75#define SPI_PS_OFFSET 1
76#define SPI_PS_SIZE 1
77#define SPI_PCSDEC_OFFSET 2
78#define SPI_PCSDEC_SIZE 1
79#define SPI_FDIV_OFFSET 3
80#define SPI_FDIV_SIZE 1
81#define SPI_MODFDIS_OFFSET 4
82#define SPI_MODFDIS_SIZE 1
83#define SPI_WDRBT_OFFSET 5
84#define SPI_WDRBT_SIZE 1
85#define SPI_LLB_OFFSET 7
86#define SPI_LLB_SIZE 1
87#define SPI_PCS_OFFSET 16
88#define SPI_PCS_SIZE 4
89#define SPI_DLYBCS_OFFSET 24
90#define SPI_DLYBCS_SIZE 8
91
92/* Bitfields in RDR */
93#define SPI_RD_OFFSET 0
94#define SPI_RD_SIZE 16
95
96/* Bitfields in TDR */
97#define SPI_TD_OFFSET 0
98#define SPI_TD_SIZE 16
99
100/* Bitfields in SR */
101#define SPI_RDRF_OFFSET 0
102#define SPI_RDRF_SIZE 1
103#define SPI_TDRE_OFFSET 1
104#define SPI_TDRE_SIZE 1
105#define SPI_MODF_OFFSET 2
106#define SPI_MODF_SIZE 1
107#define SPI_OVRES_OFFSET 3
108#define SPI_OVRES_SIZE 1
109#define SPI_ENDRX_OFFSET 4
110#define SPI_ENDRX_SIZE 1
111#define SPI_ENDTX_OFFSET 5
112#define SPI_ENDTX_SIZE 1
113#define SPI_RXBUFF_OFFSET 6
114#define SPI_RXBUFF_SIZE 1
115#define SPI_TXBUFE_OFFSET 7
116#define SPI_TXBUFE_SIZE 1
117#define SPI_NSSR_OFFSET 8
118#define SPI_NSSR_SIZE 1
119#define SPI_TXEMPTY_OFFSET 9
120#define SPI_TXEMPTY_SIZE 1
121#define SPI_SPIENS_OFFSET 16
122#define SPI_SPIENS_SIZE 1
123#define SPI_TXFEF_OFFSET 24
124#define SPI_TXFEF_SIZE 1
125#define SPI_TXFFF_OFFSET 25
126#define SPI_TXFFF_SIZE 1
127#define SPI_TXFTHF_OFFSET 26
128#define SPI_TXFTHF_SIZE 1
129#define SPI_RXFEF_OFFSET 27
130#define SPI_RXFEF_SIZE 1
131#define SPI_RXFFF_OFFSET 28
132#define SPI_RXFFF_SIZE 1
133#define SPI_RXFTHF_OFFSET 29
134#define SPI_RXFTHF_SIZE 1
135#define SPI_TXFPTEF_OFFSET 30
136#define SPI_TXFPTEF_SIZE 1
137#define SPI_RXFPTEF_OFFSET 31
138#define SPI_RXFPTEF_SIZE 1
139
140/* Bitfields in CSR0 */
141#define SPI_CPOL_OFFSET 0
142#define SPI_CPOL_SIZE 1
143#define SPI_NCPHA_OFFSET 1
144#define SPI_NCPHA_SIZE 1
145#define SPI_CSAAT_OFFSET 3
146#define SPI_CSAAT_SIZE 1
147#define SPI_BITS_OFFSET 4
148#define SPI_BITS_SIZE 4
149#define SPI_SCBR_OFFSET 8
150#define SPI_SCBR_SIZE 8
151#define SPI_DLYBS_OFFSET 16
152#define SPI_DLYBS_SIZE 8
153#define SPI_DLYBCT_OFFSET 24
154#define SPI_DLYBCT_SIZE 8
155
156/* Bitfields in RCR */
157#define SPI_RXCTR_OFFSET 0
158#define SPI_RXCTR_SIZE 16
159
160/* Bitfields in TCR */
161#define SPI_TXCTR_OFFSET 0
162#define SPI_TXCTR_SIZE 16
163
164/* Bitfields in RNCR */
165#define SPI_RXNCR_OFFSET 0
166#define SPI_RXNCR_SIZE 16
167
168/* Bitfields in TNCR */
169#define SPI_TXNCR_OFFSET 0
170#define SPI_TXNCR_SIZE 16
171
172/* Bitfields in PTCR */
173#define SPI_RXTEN_OFFSET 0
174#define SPI_RXTEN_SIZE 1
175#define SPI_RXTDIS_OFFSET 1
176#define SPI_RXTDIS_SIZE 1
177#define SPI_TXTEN_OFFSET 8
178#define SPI_TXTEN_SIZE 1
179#define SPI_TXTDIS_OFFSET 9
180#define SPI_TXTDIS_SIZE 1
181
182/* Bitfields in FMR */
183#define SPI_TXRDYM_OFFSET 0
184#define SPI_TXRDYM_SIZE 2
185#define SPI_RXRDYM_OFFSET 4
186#define SPI_RXRDYM_SIZE 2
187#define SPI_TXFTHRES_OFFSET 16
188#define SPI_TXFTHRES_SIZE 6
189#define SPI_RXFTHRES_OFFSET 24
190#define SPI_RXFTHRES_SIZE 6
191
192/* Bitfields in FLR */
193#define SPI_TXFL_OFFSET 0
194#define SPI_TXFL_SIZE 6
195#define SPI_RXFL_OFFSET 16
196#define SPI_RXFL_SIZE 6
197
198/* Constants for BITS */
199#define SPI_BITS_8_BPT 0
200#define SPI_BITS_9_BPT 1
201#define SPI_BITS_10_BPT 2
202#define SPI_BITS_11_BPT 3
203#define SPI_BITS_12_BPT 4
204#define SPI_BITS_13_BPT 5
205#define SPI_BITS_14_BPT 6
206#define SPI_BITS_15_BPT 7
207#define SPI_BITS_16_BPT 8
208#define SPI_ONE_DATA 0
209#define SPI_TWO_DATA 1
210#define SPI_FOUR_DATA 2
211
212/* Bit manipulation macros */
213#define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215#define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217#define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219#define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223/* Register access macros */
224#define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226#define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228#define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234#define DMA_MIN_BYTES 16
235
236#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
237
238#define AUTOSUSPEND_TIMEOUT 2000
239
240struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
245};
246
247/*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
255
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
262
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
270
271 struct completion xfer_completion;
272
273 struct atmel_spi_caps caps;
274
275 bool use_dma;
276 bool use_pdc;
277
278 bool keep_cs;
279
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287 u32 csr;
288};
289
290#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS 0xffffffff
292
293/*
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
300 */
301static bool atmel_spi_is_v2(struct atmel_spi *as)
302{
303 return as->caps.is_spi2;
304}
305
306/*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325{
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
329
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
334
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 */
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
352 }
353
354 mr = spi_readl(as, MR);
355 } else {
356 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 int i;
358 u32 csr;
359
360 /* Make sure clock polarity is correct */
361 for (i = 0; i < spi->master->num_chipselect; i++) {
362 csr = spi_readl(as, CSR0 + 4 * i);
363 if ((csr ^ cpol) & SPI_BIT(CPOL))
364 spi_writel(as, CSR0 + 4 * i,
365 csr ^ SPI_BIT(CPOL));
366 }
367
368 mr = spi_readl(as, MR);
369 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 spi_writel(as, MR, mr);
371 }
372
373 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374}
375
376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377{
378 int chip_select;
379 u32 mr;
380
381 if (spi->cs_gpiod)
382 chip_select = as->native_cs_for_gpio;
383 else
384 chip_select = spi->chip_select;
385
386 /* only deactivate *this* device; sometimes transfers to
387 * another device may be active when this routine is called.
388 */
389 mr = spi_readl(as, MR);
390 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 mr = SPI_BFINS(PCS, 0xf, mr);
392 spi_writel(as, MR, mr);
393 }
394
395 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397 if (!spi->cs_gpiod)
398 spi_writel(as, CR, SPI_BIT(LASTXFER));
399}
400
401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402{
403 spin_lock_irqsave(&as->lock, as->flags);
404}
405
406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407{
408 spin_unlock_irqrestore(&as->lock, as->flags);
409}
410
411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412{
413 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414}
415
416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 struct spi_transfer *xfer)
418{
419 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420}
421
422static bool atmel_spi_can_dma(struct spi_master *master,
423 struct spi_device *spi,
424 struct spi_transfer *xfer)
425{
426 struct atmel_spi *as = spi_master_get_devdata(master);
427
428 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 return atmel_spi_use_dma(as, xfer) &&
430 !atmel_spi_is_vmalloc_xfer(xfer);
431 else
432 return atmel_spi_use_dma(as, xfer);
433
434}
435
436static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437 struct dma_slave_config *slave_config,
438 u8 bits_per_word)
439{
440 struct spi_master *master = platform_get_drvdata(as->pdev);
441 int err = 0;
442
443 if (bits_per_word > 8) {
444 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 } else {
447 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 }
450
451 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453 slave_config->src_maxburst = 1;
454 slave_config->dst_maxburst = 1;
455 slave_config->device_fc = false;
456
457 /*
458 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459 * the Mode Register).
460 * So according to the datasheet, when FIFOs are available (and
461 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462 * In this mode, up to 2 data, not 4, can be written into the Transmit
463 * Data Register in a single access.
464 * However, the first data has to be written into the lowest 16 bits and
465 * the second data into the highest 16 bits of the Transmit
466 * Data Register. For 8bit data (the most frequent case), it would
467 * require to rework tx_buf so each data would actualy fit 16 bits.
468 * So we'd rather write only one data at the time. Hence the transmit
469 * path works the same whether FIFOs are available (and enabled) or not.
470 */
471 slave_config->direction = DMA_MEM_TO_DEV;
472 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473 dev_err(&as->pdev->dev,
474 "failed to configure tx dma channel\n");
475 err = -EINVAL;
476 }
477
478 /*
479 * This driver configures the spi controller for master mode (MSTR bit
480 * set to '1' in the Mode Register).
481 * So according to the datasheet, when FIFOs are available (and
482 * enabled), the Receive FIFO operates in Single Data Mode.
483 * So the receive path works the same whether FIFOs are available (and
484 * enabled) or not.
485 */
486 slave_config->direction = DMA_DEV_TO_MEM;
487 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488 dev_err(&as->pdev->dev,
489 "failed to configure rx dma channel\n");
490 err = -EINVAL;
491 }
492
493 return err;
494}
495
496static int atmel_spi_configure_dma(struct spi_master *master,
497 struct atmel_spi *as)
498{
499 struct dma_slave_config slave_config;
500 struct device *dev = &as->pdev->dev;
501 int err;
502
503 master->dma_tx = dma_request_chan(dev, "tx");
504 if (IS_ERR(master->dma_tx)) {
505 err = PTR_ERR(master->dma_tx);
506 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
507 goto error_clear;
508 }
509
510 master->dma_rx = dma_request_chan(dev, "rx");
511 if (IS_ERR(master->dma_rx)) {
512 err = PTR_ERR(master->dma_rx);
513 /*
514 * No reason to check EPROBE_DEFER here since we have already
515 * requested tx channel.
516 */
517 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
518 goto error;
519 }
520
521 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
522 if (err)
523 goto error;
524
525 dev_info(&as->pdev->dev,
526 "Using %s (tx) and %s (rx) for DMA transfers\n",
527 dma_chan_name(master->dma_tx),
528 dma_chan_name(master->dma_rx));
529
530 return 0;
531error:
532 if (!IS_ERR(master->dma_rx))
533 dma_release_channel(master->dma_rx);
534 if (!IS_ERR(master->dma_tx))
535 dma_release_channel(master->dma_tx);
536error_clear:
537 master->dma_tx = master->dma_rx = NULL;
538 return err;
539}
540
541static void atmel_spi_stop_dma(struct spi_master *master)
542{
543 if (master->dma_rx)
544 dmaengine_terminate_all(master->dma_rx);
545 if (master->dma_tx)
546 dmaengine_terminate_all(master->dma_tx);
547}
548
549static void atmel_spi_release_dma(struct spi_master *master)
550{
551 if (master->dma_rx) {
552 dma_release_channel(master->dma_rx);
553 master->dma_rx = NULL;
554 }
555 if (master->dma_tx) {
556 dma_release_channel(master->dma_tx);
557 master->dma_tx = NULL;
558 }
559}
560
561/* This function is called by the DMA driver from tasklet context */
562static void dma_callback(void *data)
563{
564 struct spi_master *master = data;
565 struct atmel_spi *as = spi_master_get_devdata(master);
566
567 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
568 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
569 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
570 as->current_transfer->len);
571 }
572 complete(&as->xfer_completion);
573}
574
575/*
576 * Next transfer using PIO without FIFO.
577 */
578static void atmel_spi_next_xfer_single(struct spi_master *master,
579 struct spi_transfer *xfer)
580{
581 struct atmel_spi *as = spi_master_get_devdata(master);
582 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
583
584 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
585
586 /* Make sure data is not remaining in RDR */
587 spi_readl(as, RDR);
588 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
589 spi_readl(as, RDR);
590 cpu_relax();
591 }
592
593 if (xfer->bits_per_word > 8)
594 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
595 else
596 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
597
598 dev_dbg(master->dev.parent,
599 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
600 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
601 xfer->bits_per_word);
602
603 /* Enable relevant interrupts */
604 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
605}
606
607/*
608 * Next transfer using PIO with FIFO.
609 */
610static void atmel_spi_next_xfer_fifo(struct spi_master *master,
611 struct spi_transfer *xfer)
612{
613 struct atmel_spi *as = spi_master_get_devdata(master);
614 u32 current_remaining_data, num_data;
615 u32 offset = xfer->len - as->current_remaining_bytes;
616 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
617 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
618 u16 td0, td1;
619 u32 fifomr;
620
621 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
622
623 /* Compute the number of data to transfer in the current iteration */
624 current_remaining_data = ((xfer->bits_per_word > 8) ?
625 ((u32)as->current_remaining_bytes >> 1) :
626 (u32)as->current_remaining_bytes);
627 num_data = min(current_remaining_data, as->fifo_size);
628
629 /* Flush RX and TX FIFOs */
630 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
631 while (spi_readl(as, FLR))
632 cpu_relax();
633
634 /* Set RX FIFO Threshold to the number of data to transfer */
635 fifomr = spi_readl(as, FMR);
636 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
637
638 /* Clear FIFO flags in the Status Register, especially RXFTHF */
639 (void)spi_readl(as, SR);
640
641 /* Fill TX FIFO */
642 while (num_data >= 2) {
643 if (xfer->bits_per_word > 8) {
644 td0 = *words++;
645 td1 = *words++;
646 } else {
647 td0 = *bytes++;
648 td1 = *bytes++;
649 }
650
651 spi_writel(as, TDR, (td1 << 16) | td0);
652 num_data -= 2;
653 }
654
655 if (num_data) {
656 if (xfer->bits_per_word > 8)
657 td0 = *words++;
658 else
659 td0 = *bytes++;
660
661 spi_writew(as, TDR, td0);
662 num_data--;
663 }
664
665 dev_dbg(master->dev.parent,
666 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
667 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
668 xfer->bits_per_word);
669
670 /*
671 * Enable RX FIFO Threshold Flag interrupt to be notified about
672 * transfer completion.
673 */
674 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
675}
676
677/*
678 * Next transfer using PIO.
679 */
680static void atmel_spi_next_xfer_pio(struct spi_master *master,
681 struct spi_transfer *xfer)
682{
683 struct atmel_spi *as = spi_master_get_devdata(master);
684
685 if (as->fifo_size)
686 atmel_spi_next_xfer_fifo(master, xfer);
687 else
688 atmel_spi_next_xfer_single(master, xfer);
689}
690
691/*
692 * Submit next transfer for DMA.
693 */
694static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
695 struct spi_transfer *xfer,
696 u32 *plen)
697{
698 struct atmel_spi *as = spi_master_get_devdata(master);
699 struct dma_chan *rxchan = master->dma_rx;
700 struct dma_chan *txchan = master->dma_tx;
701 struct dma_async_tx_descriptor *rxdesc;
702 struct dma_async_tx_descriptor *txdesc;
703 struct dma_slave_config slave_config;
704 dma_cookie_t cookie;
705
706 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
707
708 /* Check that the channels are available */
709 if (!rxchan || !txchan)
710 return -ENODEV;
711
712
713 *plen = xfer->len;
714
715 if (atmel_spi_dma_slave_config(as, &slave_config,
716 xfer->bits_per_word))
717 goto err_exit;
718
719 /* Send both scatterlists */
720 if (atmel_spi_is_vmalloc_xfer(xfer) &&
721 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
722 rxdesc = dmaengine_prep_slave_single(rxchan,
723 as->dma_addr_rx_bbuf,
724 xfer->len,
725 DMA_DEV_TO_MEM,
726 DMA_PREP_INTERRUPT |
727 DMA_CTRL_ACK);
728 } else {
729 rxdesc = dmaengine_prep_slave_sg(rxchan,
730 xfer->rx_sg.sgl,
731 xfer->rx_sg.nents,
732 DMA_DEV_TO_MEM,
733 DMA_PREP_INTERRUPT |
734 DMA_CTRL_ACK);
735 }
736 if (!rxdesc)
737 goto err_dma;
738
739 if (atmel_spi_is_vmalloc_xfer(xfer) &&
740 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
741 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
742 txdesc = dmaengine_prep_slave_single(txchan,
743 as->dma_addr_tx_bbuf,
744 xfer->len, DMA_MEM_TO_DEV,
745 DMA_PREP_INTERRUPT |
746 DMA_CTRL_ACK);
747 } else {
748 txdesc = dmaengine_prep_slave_sg(txchan,
749 xfer->tx_sg.sgl,
750 xfer->tx_sg.nents,
751 DMA_MEM_TO_DEV,
752 DMA_PREP_INTERRUPT |
753 DMA_CTRL_ACK);
754 }
755 if (!txdesc)
756 goto err_dma;
757
758 dev_dbg(master->dev.parent,
759 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
761 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
762
763 /* Enable relevant interrupts */
764 spi_writel(as, IER, SPI_BIT(OVRES));
765
766 /* Put the callback on the RX transfer only, that should finish last */
767 rxdesc->callback = dma_callback;
768 rxdesc->callback_param = master;
769
770 /* Submit and fire RX and TX with TX last so we're ready to read! */
771 cookie = rxdesc->tx_submit(rxdesc);
772 if (dma_submit_error(cookie))
773 goto err_dma;
774 cookie = txdesc->tx_submit(txdesc);
775 if (dma_submit_error(cookie))
776 goto err_dma;
777 rxchan->device->device_issue_pending(rxchan);
778 txchan->device->device_issue_pending(txchan);
779
780 return 0;
781
782err_dma:
783 spi_writel(as, IDR, SPI_BIT(OVRES));
784 atmel_spi_stop_dma(master);
785err_exit:
786 return -ENOMEM;
787}
788
789static void atmel_spi_next_xfer_data(struct spi_master *master,
790 struct spi_transfer *xfer,
791 dma_addr_t *tx_dma,
792 dma_addr_t *rx_dma,
793 u32 *plen)
794{
795 *rx_dma = xfer->rx_dma + xfer->len - *plen;
796 *tx_dma = xfer->tx_dma + xfer->len - *plen;
797 if (*plen > master->max_dma_len)
798 *plen = master->max_dma_len;
799}
800
801static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
802 struct spi_device *spi,
803 struct spi_transfer *xfer)
804{
805 u32 scbr, csr;
806 unsigned long bus_hz;
807 int chip_select;
808
809 if (spi->cs_gpiod)
810 chip_select = as->native_cs_for_gpio;
811 else
812 chip_select = spi->chip_select;
813
814 /* v1 chips start out at half the peripheral bus speed. */
815 bus_hz = as->spi_clk;
816 if (!atmel_spi_is_v2(as))
817 bus_hz /= 2;
818
819 /*
820 * Calculate the lowest divider that satisfies the
821 * constraint, assuming div32/fdiv/mbz == 0.
822 */
823 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
824
825 /*
826 * If the resulting divider doesn't fit into the
827 * register bitfield, we can't satisfy the constraint.
828 */
829 if (scbr >= (1 << SPI_SCBR_SIZE)) {
830 dev_err(&spi->dev,
831 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
832 xfer->speed_hz, scbr, bus_hz/255);
833 return -EINVAL;
834 }
835 if (scbr == 0) {
836 dev_err(&spi->dev,
837 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
838 xfer->speed_hz, scbr, bus_hz);
839 return -EINVAL;
840 }
841 csr = spi_readl(as, CSR0 + 4 * chip_select);
842 csr = SPI_BFINS(SCBR, scbr, csr);
843 spi_writel(as, CSR0 + 4 * chip_select, csr);
844 xfer->effective_speed_hz = bus_hz / scbr;
845
846 return 0;
847}
848
849/*
850 * Submit next transfer for PDC.
851 * lock is held, spi irq is blocked
852 */
853static void atmel_spi_pdc_next_xfer(struct spi_master *master,
854 struct spi_transfer *xfer)
855{
856 struct atmel_spi *as = spi_master_get_devdata(master);
857 u32 len;
858 dma_addr_t tx_dma, rx_dma;
859
860 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
861
862 len = as->current_remaining_bytes;
863 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
864 as->current_remaining_bytes -= len;
865
866 spi_writel(as, RPR, rx_dma);
867 spi_writel(as, TPR, tx_dma);
868
869 if (xfer->bits_per_word > 8)
870 len >>= 1;
871 spi_writel(as, RCR, len);
872 spi_writel(as, TCR, len);
873
874 dev_dbg(&master->dev,
875 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
876 xfer, xfer->len, xfer->tx_buf,
877 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
878 (unsigned long long)xfer->rx_dma);
879
880 if (as->current_remaining_bytes) {
881 len = as->current_remaining_bytes;
882 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
883 as->current_remaining_bytes -= len;
884
885 spi_writel(as, RNPR, rx_dma);
886 spi_writel(as, TNPR, tx_dma);
887
888 if (xfer->bits_per_word > 8)
889 len >>= 1;
890 spi_writel(as, RNCR, len);
891 spi_writel(as, TNCR, len);
892
893 dev_dbg(&master->dev,
894 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
895 xfer, xfer->len, xfer->tx_buf,
896 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
897 (unsigned long long)xfer->rx_dma);
898 }
899
900 /* REVISIT: We're waiting for RXBUFF before we start the next
901 * transfer because we need to handle some difficult timing
902 * issues otherwise. If we wait for TXBUFE in one transfer and
903 * then starts waiting for RXBUFF in the next, it's difficult
904 * to tell the difference between the RXBUFF interrupt we're
905 * actually waiting for and the RXBUFF interrupt of the
906 * previous transfer.
907 *
908 * It should be doable, though. Just not now...
909 */
910 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
911 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
912}
913
914/*
915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
916 * - The buffer is either valid for CPU access, else NULL
917 * - If the buffer is valid, so is its DMA address
918 *
919 * This driver manages the dma address unless message->is_dma_mapped.
920 */
921static int
922atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
923{
924 struct device *dev = &as->pdev->dev;
925
926 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
927 if (xfer->tx_buf) {
928 /* tx_buf is a const void* where we need a void * for the dma
929 * mapping */
930 void *nonconst_tx = (void *)xfer->tx_buf;
931
932 xfer->tx_dma = dma_map_single(dev,
933 nonconst_tx, xfer->len,
934 DMA_TO_DEVICE);
935 if (dma_mapping_error(dev, xfer->tx_dma))
936 return -ENOMEM;
937 }
938 if (xfer->rx_buf) {
939 xfer->rx_dma = dma_map_single(dev,
940 xfer->rx_buf, xfer->len,
941 DMA_FROM_DEVICE);
942 if (dma_mapping_error(dev, xfer->rx_dma)) {
943 if (xfer->tx_buf)
944 dma_unmap_single(dev,
945 xfer->tx_dma, xfer->len,
946 DMA_TO_DEVICE);
947 return -ENOMEM;
948 }
949 }
950 return 0;
951}
952
953static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
954 struct spi_transfer *xfer)
955{
956 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
957 dma_unmap_single(master->dev.parent, xfer->tx_dma,
958 xfer->len, DMA_TO_DEVICE);
959 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
960 dma_unmap_single(master->dev.parent, xfer->rx_dma,
961 xfer->len, DMA_FROM_DEVICE);
962}
963
964static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
965{
966 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
967}
968
969static void
970atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
971{
972 u8 *rxp;
973 u16 *rxp16;
974 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
975
976 if (xfer->bits_per_word > 8) {
977 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978 *rxp16 = spi_readl(as, RDR);
979 } else {
980 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981 *rxp = spi_readl(as, RDR);
982 }
983 if (xfer->bits_per_word > 8) {
984 if (as->current_remaining_bytes > 2)
985 as->current_remaining_bytes -= 2;
986 else
987 as->current_remaining_bytes = 0;
988 } else {
989 as->current_remaining_bytes--;
990 }
991}
992
993static void
994atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
995{
996 u32 fifolr = spi_readl(as, FLR);
997 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
998 u32 offset = xfer->len - as->current_remaining_bytes;
999 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1001 u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003 /* Update the number of remaining bytes to transfer */
1004 num_bytes = ((xfer->bits_per_word > 8) ?
1005 (num_data << 1) :
1006 num_data);
1007
1008 if (as->current_remaining_bytes > num_bytes)
1009 as->current_remaining_bytes -= num_bytes;
1010 else
1011 as->current_remaining_bytes = 0;
1012
1013 /* Handle odd number of bytes when data are more than 8bit width */
1014 if (xfer->bits_per_word > 8)
1015 as->current_remaining_bytes &= ~0x1;
1016
1017 /* Read data */
1018 while (num_data) {
1019 rd = spi_readl(as, RDR);
1020 if (xfer->bits_per_word > 8)
1021 *words++ = rd;
1022 else
1023 *bytes++ = rd;
1024 num_data--;
1025 }
1026}
1027
1028/* Called from IRQ
1029 *
1030 * Must update "current_remaining_bytes" to keep track of data
1031 * to transfer.
1032 */
1033static void
1034atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035{
1036 if (as->fifo_size)
1037 atmel_spi_pump_fifo_data(as, xfer);
1038 else
1039 atmel_spi_pump_single_data(as, xfer);
1040}
1041
1042/* Interrupt
1043 *
1044 */
1045static irqreturn_t
1046atmel_spi_pio_interrupt(int irq, void *dev_id)
1047{
1048 struct spi_master *master = dev_id;
1049 struct atmel_spi *as = spi_master_get_devdata(master);
1050 u32 status, pending, imr;
1051 struct spi_transfer *xfer;
1052 int ret = IRQ_NONE;
1053
1054 imr = spi_readl(as, IMR);
1055 status = spi_readl(as, SR);
1056 pending = status & imr;
1057
1058 if (pending & SPI_BIT(OVRES)) {
1059 ret = IRQ_HANDLED;
1060 spi_writel(as, IDR, SPI_BIT(OVRES));
1061 dev_warn(master->dev.parent, "overrun\n");
1062
1063 /*
1064 * When we get an overrun, we disregard the current
1065 * transfer. Data will not be copied back from any
1066 * bounce buffer and msg->actual_len will not be
1067 * updated with the last xfer.
1068 *
1069 * We will also not process any remaning transfers in
1070 * the message.
1071 */
1072 as->done_status = -EIO;
1073 smp_wmb();
1074
1075 /* Clear any overrun happening while cleaning up */
1076 spi_readl(as, SR);
1077
1078 complete(&as->xfer_completion);
1079
1080 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081 atmel_spi_lock(as);
1082
1083 if (as->current_remaining_bytes) {
1084 ret = IRQ_HANDLED;
1085 xfer = as->current_transfer;
1086 atmel_spi_pump_pio_data(as, xfer);
1087 if (!as->current_remaining_bytes)
1088 spi_writel(as, IDR, pending);
1089
1090 complete(&as->xfer_completion);
1091 }
1092
1093 atmel_spi_unlock(as);
1094 } else {
1095 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096 ret = IRQ_HANDLED;
1097 spi_writel(as, IDR, pending);
1098 }
1099
1100 return ret;
1101}
1102
1103static irqreturn_t
1104atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105{
1106 struct spi_master *master = dev_id;
1107 struct atmel_spi *as = spi_master_get_devdata(master);
1108 u32 status, pending, imr;
1109 int ret = IRQ_NONE;
1110
1111 imr = spi_readl(as, IMR);
1112 status = spi_readl(as, SR);
1113 pending = status & imr;
1114
1115 if (pending & SPI_BIT(OVRES)) {
1116
1117 ret = IRQ_HANDLED;
1118
1119 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120 | SPI_BIT(OVRES)));
1121
1122 /* Clear any overrun happening while cleaning up */
1123 spi_readl(as, SR);
1124
1125 as->done_status = -EIO;
1126
1127 complete(&as->xfer_completion);
1128
1129 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130 ret = IRQ_HANDLED;
1131
1132 spi_writel(as, IDR, pending);
1133
1134 complete(&as->xfer_completion);
1135 }
1136
1137 return ret;
1138}
1139
1140static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141{
1142 struct spi_delay *delay = &spi->word_delay;
1143 u32 value = delay->value;
1144
1145 switch (delay->unit) {
1146 case SPI_DELAY_UNIT_NSECS:
1147 value /= 1000;
1148 break;
1149 case SPI_DELAY_UNIT_USECS:
1150 break;
1151 default:
1152 return -EINVAL;
1153 }
1154
1155 return (as->spi_clk / 1000000 * value) >> 5;
1156}
1157
1158static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159{
1160 int i;
1161 struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163 if (!as->native_cs_free)
1164 return; /* already initialized */
1165
1166 if (!master->cs_gpiods)
1167 return; /* No CS GPIO */
1168
1169 /*
1170 * On the first version of the controller (AT91RM9200), CS0
1171 * can't be used associated with GPIO
1172 */
1173 if (atmel_spi_is_v2(as))
1174 i = 0;
1175 else
1176 i = 1;
1177
1178 for (; i < 4; i++)
1179 if (master->cs_gpiods[i])
1180 as->native_cs_free |= BIT(i);
1181
1182 if (as->native_cs_free)
1183 as->native_cs_for_gpio = ffs(as->native_cs_free);
1184}
1185
1186static int atmel_spi_setup(struct spi_device *spi)
1187{
1188 struct atmel_spi *as;
1189 struct atmel_spi_device *asd;
1190 u32 csr;
1191 unsigned int bits = spi->bits_per_word;
1192 int chip_select;
1193 int word_delay_csr;
1194
1195 as = spi_master_get_devdata(spi->master);
1196
1197 /* see notes above re chipselect */
1198 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1200 return -EINVAL;
1201 }
1202
1203 /* Setup() is called during spi_register_controller(aka
1204 * spi_register_master) but after all membmers of the cs_gpiod
1205 * array have been filled, so we can looked for which native
1206 * CS will be free for using with GPIO
1207 */
1208 initialize_native_cs_for_gpio(as);
1209
1210 if (spi->cs_gpiod && as->native_cs_free) {
1211 dev_err(&spi->dev,
1212 "No native CS available to support this GPIO CS\n");
1213 return -EBUSY;
1214 }
1215
1216 if (spi->cs_gpiod)
1217 chip_select = as->native_cs_for_gpio;
1218 else
1219 chip_select = spi->chip_select;
1220
1221 csr = SPI_BF(BITS, bits - 8);
1222 if (spi->mode & SPI_CPOL)
1223 csr |= SPI_BIT(CPOL);
1224 if (!(spi->mode & SPI_CPHA))
1225 csr |= SPI_BIT(NCPHA);
1226
1227 if (!spi->cs_gpiod)
1228 csr |= SPI_BIT(CSAAT);
1229 csr |= SPI_BF(DLYBS, 0);
1230
1231 word_delay_csr = atmel_word_delay_csr(spi, as);
1232 if (word_delay_csr < 0)
1233 return word_delay_csr;
1234
1235 /* DLYBCT adds delays between words. This is useful for slow devices
1236 * that need a bit of time to setup the next transfer.
1237 */
1238 csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240 asd = spi->controller_state;
1241 if (!asd) {
1242 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243 if (!asd)
1244 return -ENOMEM;
1245
1246 spi->controller_state = asd;
1247 }
1248
1249 asd->csr = csr;
1250
1251 dev_dbg(&spi->dev,
1252 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253 bits, spi->mode, spi->chip_select, csr);
1254
1255 if (!atmel_spi_is_v2(as))
1256 spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258 return 0;
1259}
1260
1261static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262{
1263 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265 * since we already have routines for activate/deactivate translate
1266 * high/low to active/inactive
1267 */
1268 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270 if (enable) {
1271 cs_activate(as, spi);
1272 } else {
1273 cs_deactivate(as, spi);
1274 }
1275
1276}
1277
1278static int atmel_spi_one_transfer(struct spi_master *master,
1279 struct spi_device *spi,
1280 struct spi_transfer *xfer)
1281{
1282 struct atmel_spi *as;
1283 u8 bits;
1284 u32 len;
1285 struct atmel_spi_device *asd;
1286 int timeout;
1287 int ret;
1288 unsigned long dma_timeout;
1289
1290 as = spi_master_get_devdata(master);
1291
1292 asd = spi->controller_state;
1293 bits = (asd->csr >> 4) & 0xf;
1294 if (bits != xfer->bits_per_word - 8) {
1295 dev_dbg(&spi->dev,
1296 "you can't yet change bits_per_word in transfers\n");
1297 return -ENOPROTOOPT;
1298 }
1299
1300 /*
1301 * DMA map early, for performance (empties dcache ASAP) and
1302 * better fault reporting.
1303 */
1304 if ((!master->cur_msg->is_dma_mapped)
1305 && as->use_pdc) {
1306 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307 return -ENOMEM;
1308 }
1309
1310 atmel_spi_set_xfer_speed(as, spi, xfer);
1311
1312 as->done_status = 0;
1313 as->current_transfer = xfer;
1314 as->current_remaining_bytes = xfer->len;
1315 while (as->current_remaining_bytes) {
1316 reinit_completion(&as->xfer_completion);
1317
1318 if (as->use_pdc) {
1319 atmel_spi_lock(as);
1320 atmel_spi_pdc_next_xfer(master, xfer);
1321 atmel_spi_unlock(as);
1322 } else if (atmel_spi_use_dma(as, xfer)) {
1323 len = as->current_remaining_bytes;
1324 ret = atmel_spi_next_xfer_dma_submit(master,
1325 xfer, &len);
1326 if (ret) {
1327 dev_err(&spi->dev,
1328 "unable to use DMA, fallback to PIO\n");
1329 as->done_status = ret;
1330 break;
1331 } else {
1332 as->current_remaining_bytes -= len;
1333 if (as->current_remaining_bytes < 0)
1334 as->current_remaining_bytes = 0;
1335 }
1336 } else {
1337 atmel_spi_lock(as);
1338 atmel_spi_next_xfer_pio(master, xfer);
1339 atmel_spi_unlock(as);
1340 }
1341
1342 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343 SPI_DMA_TIMEOUT);
1344 if (WARN_ON(dma_timeout == 0)) {
1345 dev_err(&spi->dev, "spi transfer timeout\n");
1346 as->done_status = -EIO;
1347 }
1348
1349 if (as->done_status)
1350 break;
1351 }
1352
1353 if (as->done_status) {
1354 if (as->use_pdc) {
1355 dev_warn(master->dev.parent,
1356 "overrun (%u/%u remaining)\n",
1357 spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359 /*
1360 * Clean up DMA registers and make sure the data
1361 * registers are empty.
1362 */
1363 spi_writel(as, RNCR, 0);
1364 spi_writel(as, TNCR, 0);
1365 spi_writel(as, RCR, 0);
1366 spi_writel(as, TCR, 0);
1367 for (timeout = 1000; timeout; timeout--)
1368 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369 break;
1370 if (!timeout)
1371 dev_warn(master->dev.parent,
1372 "timeout waiting for TXEMPTY");
1373 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374 spi_readl(as, RDR);
1375
1376 /* Clear any overrun happening while cleaning up */
1377 spi_readl(as, SR);
1378
1379 } else if (atmel_spi_use_dma(as, xfer)) {
1380 atmel_spi_stop_dma(master);
1381 }
1382 }
1383
1384 if (!master->cur_msg->is_dma_mapped
1385 && as->use_pdc)
1386 atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388 if (as->use_pdc)
1389 atmel_spi_disable_pdc_transfer(as);
1390
1391 return as->done_status;
1392}
1393
1394static void atmel_spi_cleanup(struct spi_device *spi)
1395{
1396 struct atmel_spi_device *asd = spi->controller_state;
1397
1398 if (!asd)
1399 return;
1400
1401 spi->controller_state = NULL;
1402 kfree(asd);
1403}
1404
1405static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406{
1407 return spi_readl(as, VERSION) & 0x00000fff;
1408}
1409
1410static void atmel_get_caps(struct atmel_spi *as)
1411{
1412 unsigned int version;
1413
1414 version = atmel_get_version(as);
1415
1416 as->caps.is_spi2 = version > 0x121;
1417 as->caps.has_wdrbt = version >= 0x210;
1418 as->caps.has_dma_support = version >= 0x212;
1419 as->caps.has_pdc_support = version < 0x212;
1420}
1421
1422static void atmel_spi_init(struct atmel_spi *as)
1423{
1424 spi_writel(as, CR, SPI_BIT(SWRST));
1425 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427 /* It is recommended to enable FIFOs first thing after reset */
1428 if (as->fifo_size)
1429 spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431 if (as->caps.has_wdrbt) {
1432 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433 | SPI_BIT(MSTR));
1434 } else {
1435 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436 }
1437
1438 if (as->use_pdc)
1439 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440 spi_writel(as, CR, SPI_BIT(SPIEN));
1441}
1442
1443static int atmel_spi_probe(struct platform_device *pdev)
1444{
1445 struct resource *regs;
1446 int irq;
1447 struct clk *clk;
1448 int ret;
1449 struct spi_master *master;
1450 struct atmel_spi *as;
1451
1452 /* Select default pin state */
1453 pinctrl_pm_select_default_state(&pdev->dev);
1454
1455 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 if (!regs)
1457 return -ENXIO;
1458
1459 irq = platform_get_irq(pdev, 0);
1460 if (irq < 0)
1461 return irq;
1462
1463 clk = devm_clk_get(&pdev->dev, "spi_clk");
1464 if (IS_ERR(clk))
1465 return PTR_ERR(clk);
1466
1467 /* setup spi core then atmel-specific driver state */
1468 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1469 if (!master)
1470 return -ENOMEM;
1471
1472 /* the spi->mode bits understood by this driver: */
1473 master->use_gpio_descriptors = true;
1474 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476 master->dev.of_node = pdev->dev.of_node;
1477 master->bus_num = pdev->id;
1478 master->num_chipselect = 4;
1479 master->setup = atmel_spi_setup;
1480 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481 SPI_MASTER_GPIO_SS);
1482 master->transfer_one = atmel_spi_one_transfer;
1483 master->set_cs = atmel_spi_set_cs;
1484 master->cleanup = atmel_spi_cleanup;
1485 master->auto_runtime_pm = true;
1486 master->max_dma_len = SPI_MAX_DMA_XFER;
1487 master->can_dma = atmel_spi_can_dma;
1488 platform_set_drvdata(pdev, master);
1489
1490 as = spi_master_get_devdata(master);
1491
1492 spin_lock_init(&as->lock);
1493
1494 as->pdev = pdev;
1495 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496 if (IS_ERR(as->regs)) {
1497 ret = PTR_ERR(as->regs);
1498 goto out_unmap_regs;
1499 }
1500 as->phybase = regs->start;
1501 as->irq = irq;
1502 as->clk = clk;
1503
1504 init_completion(&as->xfer_completion);
1505
1506 atmel_get_caps(as);
1507
1508 as->use_dma = false;
1509 as->use_pdc = false;
1510 if (as->caps.has_dma_support) {
1511 ret = atmel_spi_configure_dma(master, as);
1512 if (ret == 0) {
1513 as->use_dma = true;
1514 } else if (ret == -EPROBE_DEFER) {
1515 goto out_unmap_regs;
1516 }
1517 } else if (as->caps.has_pdc_support) {
1518 as->use_pdc = true;
1519 }
1520
1521 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523 SPI_MAX_DMA_XFER,
1524 &as->dma_addr_rx_bbuf,
1525 GFP_KERNEL | GFP_DMA);
1526 if (!as->addr_rx_bbuf) {
1527 as->use_dma = false;
1528 } else {
1529 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530 SPI_MAX_DMA_XFER,
1531 &as->dma_addr_tx_bbuf,
1532 GFP_KERNEL | GFP_DMA);
1533 if (!as->addr_tx_bbuf) {
1534 as->use_dma = false;
1535 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536 as->addr_rx_bbuf,
1537 as->dma_addr_rx_bbuf);
1538 }
1539 }
1540 if (!as->use_dma)
1541 dev_info(master->dev.parent,
1542 " can not allocate dma coherent memory\n");
1543 }
1544
1545 if (as->caps.has_dma_support && !as->use_dma)
1546 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548 if (as->use_pdc) {
1549 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550 0, dev_name(&pdev->dev), master);
1551 } else {
1552 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553 0, dev_name(&pdev->dev), master);
1554 }
1555 if (ret)
1556 goto out_unmap_regs;
1557
1558 /* Initialize the hardware */
1559 ret = clk_prepare_enable(clk);
1560 if (ret)
1561 goto out_free_irq;
1562
1563 as->spi_clk = clk_get_rate(clk);
1564
1565 as->fifo_size = 0;
1566 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567 &as->fifo_size)) {
1568 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569 }
1570
1571 atmel_spi_init(as);
1572
1573 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574 pm_runtime_use_autosuspend(&pdev->dev);
1575 pm_runtime_set_active(&pdev->dev);
1576 pm_runtime_enable(&pdev->dev);
1577
1578 ret = devm_spi_register_master(&pdev->dev, master);
1579 if (ret)
1580 goto out_free_dma;
1581
1582 /* go! */
1583 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584 atmel_get_version(as), (unsigned long)regs->start,
1585 irq);
1586
1587 return 0;
1588
1589out_free_dma:
1590 pm_runtime_disable(&pdev->dev);
1591 pm_runtime_set_suspended(&pdev->dev);
1592
1593 if (as->use_dma)
1594 atmel_spi_release_dma(master);
1595
1596 spi_writel(as, CR, SPI_BIT(SWRST));
1597 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598 clk_disable_unprepare(clk);
1599out_free_irq:
1600out_unmap_regs:
1601 spi_master_put(master);
1602 return ret;
1603}
1604
1605static int atmel_spi_remove(struct platform_device *pdev)
1606{
1607 struct spi_master *master = platform_get_drvdata(pdev);
1608 struct atmel_spi *as = spi_master_get_devdata(master);
1609
1610 pm_runtime_get_sync(&pdev->dev);
1611
1612 /* reset the hardware and block queue progress */
1613 if (as->use_dma) {
1614 atmel_spi_stop_dma(master);
1615 atmel_spi_release_dma(master);
1616 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618 as->addr_tx_bbuf,
1619 as->dma_addr_tx_bbuf);
1620 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621 as->addr_rx_bbuf,
1622 as->dma_addr_rx_bbuf);
1623 }
1624 }
1625
1626 spin_lock_irq(&as->lock);
1627 spi_writel(as, CR, SPI_BIT(SWRST));
1628 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629 spi_readl(as, SR);
1630 spin_unlock_irq(&as->lock);
1631
1632 clk_disable_unprepare(as->clk);
1633
1634 pm_runtime_put_noidle(&pdev->dev);
1635 pm_runtime_disable(&pdev->dev);
1636
1637 return 0;
1638}
1639
1640#ifdef CONFIG_PM
1641static int atmel_spi_runtime_suspend(struct device *dev)
1642{
1643 struct spi_master *master = dev_get_drvdata(dev);
1644 struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646 clk_disable_unprepare(as->clk);
1647 pinctrl_pm_select_sleep_state(dev);
1648
1649 return 0;
1650}
1651
1652static int atmel_spi_runtime_resume(struct device *dev)
1653{
1654 struct spi_master *master = dev_get_drvdata(dev);
1655 struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657 pinctrl_pm_select_default_state(dev);
1658
1659 return clk_prepare_enable(as->clk);
1660}
1661
1662#ifdef CONFIG_PM_SLEEP
1663static int atmel_spi_suspend(struct device *dev)
1664{
1665 struct spi_master *master = dev_get_drvdata(dev);
1666 int ret;
1667
1668 /* Stop the queue running */
1669 ret = spi_master_suspend(master);
1670 if (ret)
1671 return ret;
1672
1673 if (!pm_runtime_suspended(dev))
1674 atmel_spi_runtime_suspend(dev);
1675
1676 return 0;
1677}
1678
1679static int atmel_spi_resume(struct device *dev)
1680{
1681 struct spi_master *master = dev_get_drvdata(dev);
1682 struct atmel_spi *as = spi_master_get_devdata(master);
1683 int ret;
1684
1685 ret = clk_prepare_enable(as->clk);
1686 if (ret)
1687 return ret;
1688
1689 atmel_spi_init(as);
1690
1691 clk_disable_unprepare(as->clk);
1692
1693 if (!pm_runtime_suspended(dev)) {
1694 ret = atmel_spi_runtime_resume(dev);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 /* Start the queue running */
1700 return spi_master_resume(master);
1701}
1702#endif
1703
1704static const struct dev_pm_ops atmel_spi_pm_ops = {
1705 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707 atmel_spi_runtime_resume, NULL)
1708};
1709#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1710#else
1711#define ATMEL_SPI_PM_OPS NULL
1712#endif
1713
1714static const struct of_device_id atmel_spi_dt_ids[] = {
1715 { .compatible = "atmel,at91rm9200-spi" },
1716 { /* sentinel */ }
1717};
1718
1719MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721static struct platform_driver atmel_spi_driver = {
1722 .driver = {
1723 .name = "atmel_spi",
1724 .pm = ATMEL_SPI_PM_OPS,
1725 .of_match_table = atmel_spi_dt_ids,
1726 },
1727 .probe = atmel_spi_probe,
1728 .remove = atmel_spi_remove,
1729};
1730module_platform_driver(atmel_spi_driver);
1731
1732MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734MODULE_LICENSE("GPL");
1735MODULE_ALIAS("platform:atmel_spi");