Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PPP async serial channel driver for Linux.
4 *
5 * Copyright 1999 Paul Mackerras.
6 *
7 * This driver provides the encapsulation and framing for sending
8 * and receiving PPP frames over async serial lines. It relies on
9 * the generic PPP layer to give it frames to send and to process
10 * received frames. It implements the PPP line discipline.
11 *
12 * Part of the code in this driver was inspired by the old async-only
13 * PPP driver, written by Michael Callahan and Al Longyear, and
14 * subsequently hacked by Paul Mackerras.
15 */
16
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/skbuff.h>
20#include <linux/tty.h>
21#include <linux/netdevice.h>
22#include <linux/poll.h>
23#include <linux/crc-ccitt.h>
24#include <linux/ppp_defs.h>
25#include <linux/ppp-ioctl.h>
26#include <linux/ppp_channel.h>
27#include <linux/spinlock.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/jiffies.h>
31#include <linux/slab.h>
32#include <linux/unaligned.h>
33#include <linux/uaccess.h>
34#include <asm/string.h>
35
36#define PPP_VERSION "2.4.2"
37
38#define OBUFSIZE 4096
39
40/* Structure for storing local state. */
41struct asyncppp {
42 struct tty_struct *tty;
43 unsigned int flags;
44 unsigned int state;
45 unsigned int rbits;
46 int mru;
47 spinlock_t xmit_lock;
48 spinlock_t recv_lock;
49 unsigned long xmit_flags;
50 u32 xaccm[8];
51 u32 raccm;
52 unsigned int bytes_sent;
53 unsigned int bytes_rcvd;
54
55 struct sk_buff *tpkt;
56 int tpkt_pos;
57 u16 tfcs;
58 unsigned char *optr;
59 unsigned char *olim;
60 unsigned long last_xmit;
61
62 struct sk_buff *rpkt;
63 int lcp_fcs;
64 struct sk_buff_head rqueue;
65
66 struct tasklet_struct tsk;
67
68 refcount_t refcnt;
69 struct completion dead;
70 struct ppp_channel chan; /* interface to generic ppp layer */
71 unsigned char obuf[OBUFSIZE];
72};
73
74/* Bit numbers in xmit_flags */
75#define XMIT_WAKEUP 0
76#define XMIT_FULL 1
77#define XMIT_BUSY 2
78
79/* State bits */
80#define SC_TOSS 1
81#define SC_ESCAPE 2
82#define SC_PREV_ERROR 4
83
84/* Bits in rbits */
85#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86
87static int flag_time = HZ;
88module_param(flag_time, int, 0);
89MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
90MODULE_DESCRIPTION("PPP async serial channel module");
91MODULE_LICENSE("GPL");
92MODULE_ALIAS_LDISC(N_PPP);
93
94/*
95 * Prototypes.
96 */
97static int ppp_async_encode(struct asyncppp *ap);
98static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
99static int ppp_async_push(struct asyncppp *ap);
100static void ppp_async_flush_output(struct asyncppp *ap);
101static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
102 const u8 *flags, int count);
103static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
104 unsigned long arg);
105static void ppp_async_process(struct tasklet_struct *t);
106
107static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
108 int len, int inbound);
109
110static const struct ppp_channel_ops async_ops = {
111 .start_xmit = ppp_async_send,
112 .ioctl = ppp_async_ioctl,
113};
114
115/*
116 * Routines implementing the PPP line discipline.
117 */
118
119/*
120 * We have a potential race on dereferencing tty->disc_data,
121 * because the tty layer provides no locking at all - thus one
122 * cpu could be running ppp_asynctty_receive while another
123 * calls ppp_asynctty_close, which zeroes tty->disc_data and
124 * frees the memory that ppp_asynctty_receive is using. The best
125 * way to fix this is to use a rwlock in the tty struct, but for now
126 * we use a single global rwlock for all ttys in ppp line discipline.
127 *
128 * FIXME: this is no longer true. The _close path for the ldisc is
129 * now guaranteed to be sane.
130 */
131static DEFINE_RWLOCK(disc_data_lock);
132
133static struct asyncppp *ap_get(struct tty_struct *tty)
134{
135 struct asyncppp *ap;
136
137 read_lock(&disc_data_lock);
138 ap = tty->disc_data;
139 if (ap != NULL)
140 refcount_inc(&ap->refcnt);
141 read_unlock(&disc_data_lock);
142 return ap;
143}
144
145static void ap_put(struct asyncppp *ap)
146{
147 if (refcount_dec_and_test(&ap->refcnt))
148 complete(&ap->dead);
149}
150
151/*
152 * Called when a tty is put into PPP line discipline. Called in process
153 * context.
154 */
155static int
156ppp_asynctty_open(struct tty_struct *tty)
157{
158 struct asyncppp *ap;
159 int err;
160 int speed;
161
162 if (tty->ops->write == NULL)
163 return -EOPNOTSUPP;
164
165 err = -ENOMEM;
166 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
167 if (!ap)
168 goto out;
169
170 /* initialize the asyncppp structure */
171 ap->tty = tty;
172 ap->mru = PPP_MRU;
173 spin_lock_init(&ap->xmit_lock);
174 spin_lock_init(&ap->recv_lock);
175 ap->xaccm[0] = ~0U;
176 ap->xaccm[3] = 0x60000000U;
177 ap->raccm = ~0U;
178 ap->optr = ap->obuf;
179 ap->olim = ap->obuf;
180 ap->lcp_fcs = -1;
181
182 skb_queue_head_init(&ap->rqueue);
183 tasklet_setup(&ap->tsk, ppp_async_process);
184
185 refcount_set(&ap->refcnt, 1);
186 init_completion(&ap->dead);
187
188 ap->chan.private = ap;
189 ap->chan.ops = &async_ops;
190 ap->chan.mtu = PPP_MRU;
191 speed = tty_get_baud_rate(tty);
192 ap->chan.speed = speed;
193 err = ppp_register_channel(&ap->chan);
194 if (err)
195 goto out_free;
196
197 tty->disc_data = ap;
198 tty->receive_room = 65536;
199 return 0;
200
201 out_free:
202 kfree(ap);
203 out:
204 return err;
205}
206
207/*
208 * Called when the tty is put into another line discipline
209 * or it hangs up. We have to wait for any cpu currently
210 * executing in any of the other ppp_asynctty_* routines to
211 * finish before we can call ppp_unregister_channel and free
212 * the asyncppp struct. This routine must be called from
213 * process context, not interrupt or softirq context.
214 */
215static void
216ppp_asynctty_close(struct tty_struct *tty)
217{
218 struct asyncppp *ap;
219
220 write_lock_irq(&disc_data_lock);
221 ap = tty->disc_data;
222 tty->disc_data = NULL;
223 write_unlock_irq(&disc_data_lock);
224 if (!ap)
225 return;
226
227 /*
228 * We have now ensured that nobody can start using ap from now
229 * on, but we have to wait for all existing users to finish.
230 * Note that ppp_unregister_channel ensures that no calls to
231 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
232 * by the time it returns.
233 */
234 if (!refcount_dec_and_test(&ap->refcnt))
235 wait_for_completion(&ap->dead);
236 tasklet_kill(&ap->tsk);
237
238 ppp_unregister_channel(&ap->chan);
239 kfree_skb(ap->rpkt);
240 skb_queue_purge(&ap->rqueue);
241 kfree_skb(ap->tpkt);
242 kfree(ap);
243}
244
245/*
246 * Called on tty hangup in process context.
247 *
248 * Wait for I/O to driver to complete and unregister PPP channel.
249 * This is already done by the close routine, so just call that.
250 */
251static void ppp_asynctty_hangup(struct tty_struct *tty)
252{
253 ppp_asynctty_close(tty);
254}
255
256/*
257 * Read does nothing - no data is ever available this way.
258 * Pppd reads and writes packets via /dev/ppp instead.
259 */
260static ssize_t
261ppp_asynctty_read(struct tty_struct *tty, struct file *file, u8 *buf,
262 size_t count, void **cookie, unsigned long offset)
263{
264 return -EAGAIN;
265}
266
267/*
268 * Write on the tty does nothing, the packets all come in
269 * from the ppp generic stuff.
270 */
271static ssize_t
272ppp_asynctty_write(struct tty_struct *tty, struct file *file, const u8 *buf,
273 size_t count)
274{
275 return -EAGAIN;
276}
277
278/*
279 * Called in process context only. May be re-entered by multiple
280 * ioctl calling threads.
281 */
282
283static int
284ppp_asynctty_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg)
285{
286 struct asyncppp *ap = ap_get(tty);
287 int err, val;
288 int __user *p = (int __user *)arg;
289
290 if (!ap)
291 return -ENXIO;
292 err = -EFAULT;
293 switch (cmd) {
294 case PPPIOCGCHAN:
295 err = -EFAULT;
296 if (put_user(ppp_channel_index(&ap->chan), p))
297 break;
298 err = 0;
299 break;
300
301 case PPPIOCGUNIT:
302 err = -EFAULT;
303 if (put_user(ppp_unit_number(&ap->chan), p))
304 break;
305 err = 0;
306 break;
307
308 case TCFLSH:
309 /* flush our buffers and the serial port's buffer */
310 if (arg == TCIOFLUSH || arg == TCOFLUSH)
311 ppp_async_flush_output(ap);
312 err = n_tty_ioctl_helper(tty, cmd, arg);
313 break;
314
315 case FIONREAD:
316 val = 0;
317 if (put_user(val, p))
318 break;
319 err = 0;
320 break;
321
322 default:
323 /* Try the various mode ioctls */
324 err = tty_mode_ioctl(tty, cmd, arg);
325 }
326
327 ap_put(ap);
328 return err;
329}
330
331/* May sleep, don't call from interrupt level or with interrupts disabled */
332static void
333ppp_asynctty_receive(struct tty_struct *tty, const u8 *buf, const u8 *cflags,
334 size_t count)
335{
336 struct asyncppp *ap = ap_get(tty);
337 unsigned long flags;
338
339 if (!ap)
340 return;
341 spin_lock_irqsave(&ap->recv_lock, flags);
342 ppp_async_input(ap, buf, cflags, count);
343 spin_unlock_irqrestore(&ap->recv_lock, flags);
344 if (!skb_queue_empty(&ap->rqueue))
345 tasklet_schedule(&ap->tsk);
346 ap_put(ap);
347 tty_unthrottle(tty);
348}
349
350static void
351ppp_asynctty_wakeup(struct tty_struct *tty)
352{
353 struct asyncppp *ap = ap_get(tty);
354
355 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
356 if (!ap)
357 return;
358 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
359 tasklet_schedule(&ap->tsk);
360 ap_put(ap);
361}
362
363
364static struct tty_ldisc_ops ppp_ldisc = {
365 .owner = THIS_MODULE,
366 .num = N_PPP,
367 .name = "ppp",
368 .open = ppp_asynctty_open,
369 .close = ppp_asynctty_close,
370 .hangup = ppp_asynctty_hangup,
371 .read = ppp_asynctty_read,
372 .write = ppp_asynctty_write,
373 .ioctl = ppp_asynctty_ioctl,
374 .receive_buf = ppp_asynctty_receive,
375 .write_wakeup = ppp_asynctty_wakeup,
376};
377
378static int __init
379ppp_async_init(void)
380{
381 int err;
382
383 err = tty_register_ldisc(&ppp_ldisc);
384 if (err != 0)
385 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
386 err);
387 return err;
388}
389
390/*
391 * The following routines provide the PPP channel interface.
392 */
393static int
394ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
395{
396 struct asyncppp *ap = chan->private;
397 void __user *argp = (void __user *)arg;
398 int __user *p = argp;
399 int err, val;
400 u32 accm[8];
401
402 err = -EFAULT;
403 switch (cmd) {
404 case PPPIOCGFLAGS:
405 val = ap->flags | ap->rbits;
406 if (put_user(val, p))
407 break;
408 err = 0;
409 break;
410 case PPPIOCSFLAGS:
411 if (get_user(val, p))
412 break;
413 ap->flags = val & ~SC_RCV_BITS;
414 spin_lock_irq(&ap->recv_lock);
415 ap->rbits = val & SC_RCV_BITS;
416 spin_unlock_irq(&ap->recv_lock);
417 err = 0;
418 break;
419
420 case PPPIOCGASYNCMAP:
421 if (put_user(ap->xaccm[0], (u32 __user *)argp))
422 break;
423 err = 0;
424 break;
425 case PPPIOCSASYNCMAP:
426 if (get_user(ap->xaccm[0], (u32 __user *)argp))
427 break;
428 err = 0;
429 break;
430
431 case PPPIOCGRASYNCMAP:
432 if (put_user(ap->raccm, (u32 __user *)argp))
433 break;
434 err = 0;
435 break;
436 case PPPIOCSRASYNCMAP:
437 if (get_user(ap->raccm, (u32 __user *)argp))
438 break;
439 err = 0;
440 break;
441
442 case PPPIOCGXASYNCMAP:
443 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
444 break;
445 err = 0;
446 break;
447 case PPPIOCSXASYNCMAP:
448 if (copy_from_user(accm, argp, sizeof(accm)))
449 break;
450 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
451 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
452 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
453 err = 0;
454 break;
455
456 case PPPIOCGMRU:
457 if (put_user(ap->mru, p))
458 break;
459 err = 0;
460 break;
461 case PPPIOCSMRU:
462 if (get_user(val, p))
463 break;
464 if (val > U16_MAX) {
465 err = -EINVAL;
466 break;
467 }
468 if (val < PPP_MRU)
469 val = PPP_MRU;
470 ap->mru = val;
471 err = 0;
472 break;
473
474 default:
475 err = -ENOTTY;
476 }
477
478 return err;
479}
480
481/*
482 * This is called at softirq level to deliver received packets
483 * to the ppp_generic code, and to tell the ppp_generic code
484 * if we can accept more output now.
485 */
486static void ppp_async_process(struct tasklet_struct *t)
487{
488 struct asyncppp *ap = from_tasklet(ap, t, tsk);
489 struct sk_buff *skb;
490
491 /* process received packets */
492 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
493 if (skb->cb[0])
494 ppp_input_error(&ap->chan, 0);
495 ppp_input(&ap->chan, skb);
496 }
497
498 /* try to push more stuff out */
499 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
500 ppp_output_wakeup(&ap->chan);
501}
502
503/*
504 * Procedures for encapsulation and framing.
505 */
506
507/*
508 * Procedure to encode the data for async serial transmission.
509 * Does octet stuffing (escaping), puts the address/control bytes
510 * on if A/C compression is disabled, and does protocol compression.
511 * Assumes ap->tpkt != 0 on entry.
512 * Returns 1 if we finished the current frame, 0 otherwise.
513 */
514
515#define PUT_BYTE(ap, buf, c, islcp) do { \
516 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
517 *buf++ = PPP_ESCAPE; \
518 *buf++ = c ^ PPP_TRANS; \
519 } else \
520 *buf++ = c; \
521} while (0)
522
523static int
524ppp_async_encode(struct asyncppp *ap)
525{
526 int fcs, i, count, c, proto;
527 unsigned char *buf, *buflim;
528 unsigned char *data;
529 int islcp;
530
531 buf = ap->obuf;
532 ap->olim = buf;
533 ap->optr = buf;
534 i = ap->tpkt_pos;
535 data = ap->tpkt->data;
536 count = ap->tpkt->len;
537 fcs = ap->tfcs;
538 proto = get_unaligned_be16(data);
539
540 /*
541 * LCP packets with code values between 1 (configure-request)
542 * and 7 (code-reject) must be sent as though no options
543 * had been negotiated.
544 */
545 islcp = proto == PPP_LCP && count >= 3 && 1 <= data[2] && data[2] <= 7;
546
547 if (i == 0) {
548 if (islcp)
549 async_lcp_peek(ap, data, count, 0);
550
551 /*
552 * Start of a new packet - insert the leading FLAG
553 * character if necessary.
554 */
555 if (islcp || flag_time == 0 ||
556 time_after_eq(jiffies, ap->last_xmit + flag_time))
557 *buf++ = PPP_FLAG;
558 ap->last_xmit = jiffies;
559 fcs = PPP_INITFCS;
560
561 /*
562 * Put in the address/control bytes if necessary
563 */
564 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
565 PUT_BYTE(ap, buf, 0xff, islcp);
566 fcs = PPP_FCS(fcs, 0xff);
567 PUT_BYTE(ap, buf, 0x03, islcp);
568 fcs = PPP_FCS(fcs, 0x03);
569 }
570 }
571
572 /*
573 * Once we put in the last byte, we need to put in the FCS
574 * and closing flag, so make sure there is at least 7 bytes
575 * of free space in the output buffer.
576 */
577 buflim = ap->obuf + OBUFSIZE - 6;
578 while (i < count && buf < buflim) {
579 c = data[i++];
580 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
581 continue; /* compress protocol field */
582 fcs = PPP_FCS(fcs, c);
583 PUT_BYTE(ap, buf, c, islcp);
584 }
585
586 if (i < count) {
587 /*
588 * Remember where we are up to in this packet.
589 */
590 ap->olim = buf;
591 ap->tpkt_pos = i;
592 ap->tfcs = fcs;
593 return 0;
594 }
595
596 /*
597 * We have finished the packet. Add the FCS and flag.
598 */
599 fcs = ~fcs;
600 c = fcs & 0xff;
601 PUT_BYTE(ap, buf, c, islcp);
602 c = (fcs >> 8) & 0xff;
603 PUT_BYTE(ap, buf, c, islcp);
604 *buf++ = PPP_FLAG;
605 ap->olim = buf;
606
607 consume_skb(ap->tpkt);
608 ap->tpkt = NULL;
609 return 1;
610}
611
612/*
613 * Transmit-side routines.
614 */
615
616/*
617 * Send a packet to the peer over an async tty line.
618 * Returns 1 iff the packet was accepted.
619 * If the packet was not accepted, we will call ppp_output_wakeup
620 * at some later time.
621 */
622static int
623ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
624{
625 struct asyncppp *ap = chan->private;
626
627 ppp_async_push(ap);
628
629 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
630 return 0; /* already full */
631 ap->tpkt = skb;
632 ap->tpkt_pos = 0;
633
634 ppp_async_push(ap);
635 return 1;
636}
637
638/*
639 * Push as much data as possible out to the tty.
640 */
641static int
642ppp_async_push(struct asyncppp *ap)
643{
644 int avail, sent, done = 0;
645 struct tty_struct *tty = ap->tty;
646 int tty_stuffed = 0;
647
648 /*
649 * We can get called recursively here if the tty write
650 * function calls our wakeup function. This can happen
651 * for example on a pty with both the master and slave
652 * set to PPP line discipline.
653 * We use the XMIT_BUSY bit to detect this and get out,
654 * leaving the XMIT_WAKEUP bit set to tell the other
655 * instance that it may now be able to write more now.
656 */
657 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
658 return 0;
659 spin_lock_bh(&ap->xmit_lock);
660 for (;;) {
661 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
662 tty_stuffed = 0;
663 if (!tty_stuffed && ap->optr < ap->olim) {
664 avail = ap->olim - ap->optr;
665 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
666 sent = tty->ops->write(tty, ap->optr, avail);
667 if (sent < 0)
668 goto flush; /* error, e.g. loss of CD */
669 ap->optr += sent;
670 if (sent < avail)
671 tty_stuffed = 1;
672 continue;
673 }
674 if (ap->optr >= ap->olim && ap->tpkt) {
675 if (ppp_async_encode(ap)) {
676 /* finished processing ap->tpkt */
677 clear_bit(XMIT_FULL, &ap->xmit_flags);
678 done = 1;
679 }
680 continue;
681 }
682 /*
683 * We haven't made any progress this time around.
684 * Clear XMIT_BUSY to let other callers in, but
685 * after doing so we have to check if anyone set
686 * XMIT_WAKEUP since we last checked it. If they
687 * did, we should try again to set XMIT_BUSY and go
688 * around again in case XMIT_BUSY was still set when
689 * the other caller tried.
690 */
691 clear_bit(XMIT_BUSY, &ap->xmit_flags);
692 /* any more work to do? if not, exit the loop */
693 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
694 (!tty_stuffed && ap->tpkt)))
695 break;
696 /* more work to do, see if we can do it now */
697 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
698 break;
699 }
700 spin_unlock_bh(&ap->xmit_lock);
701 return done;
702
703flush:
704 clear_bit(XMIT_BUSY, &ap->xmit_flags);
705 if (ap->tpkt) {
706 kfree_skb(ap->tpkt);
707 ap->tpkt = NULL;
708 clear_bit(XMIT_FULL, &ap->xmit_flags);
709 done = 1;
710 }
711 ap->optr = ap->olim;
712 spin_unlock_bh(&ap->xmit_lock);
713 return done;
714}
715
716/*
717 * Flush output from our internal buffers.
718 * Called for the TCFLSH ioctl. Can be entered in parallel
719 * but this is covered by the xmit_lock.
720 */
721static void
722ppp_async_flush_output(struct asyncppp *ap)
723{
724 int done = 0;
725
726 spin_lock_bh(&ap->xmit_lock);
727 ap->optr = ap->olim;
728 if (ap->tpkt != NULL) {
729 kfree_skb(ap->tpkt);
730 ap->tpkt = NULL;
731 clear_bit(XMIT_FULL, &ap->xmit_flags);
732 done = 1;
733 }
734 spin_unlock_bh(&ap->xmit_lock);
735 if (done)
736 ppp_output_wakeup(&ap->chan);
737}
738
739/*
740 * Receive-side routines.
741 */
742
743/* see how many ordinary chars there are at the start of buf */
744static inline int
745scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
746{
747 int i, c;
748
749 for (i = 0; i < count; ++i) {
750 c = buf[i];
751 if (c == PPP_ESCAPE || c == PPP_FLAG ||
752 (c < 0x20 && (ap->raccm & (1 << c)) != 0))
753 break;
754 }
755 return i;
756}
757
758/* called when a flag is seen - do end-of-packet processing */
759static void
760process_input_packet(struct asyncppp *ap)
761{
762 struct sk_buff *skb;
763 unsigned char *p;
764 unsigned int len, fcs;
765
766 skb = ap->rpkt;
767 if (ap->state & (SC_TOSS | SC_ESCAPE))
768 goto err;
769
770 if (skb == NULL)
771 return; /* 0-length packet */
772
773 /* check the FCS */
774 p = skb->data;
775 len = skb->len;
776 if (len < 3)
777 goto err; /* too short */
778 fcs = PPP_INITFCS;
779 for (; len > 0; --len)
780 fcs = PPP_FCS(fcs, *p++);
781 if (fcs != PPP_GOODFCS)
782 goto err; /* bad FCS */
783 skb_trim(skb, skb->len - 2);
784
785 /* check for address/control and protocol compression */
786 p = skb->data;
787 if (p[0] == PPP_ALLSTATIONS) {
788 /* chop off address/control */
789 if (p[1] != PPP_UI || skb->len < 3)
790 goto err;
791 p = skb_pull(skb, 2);
792 }
793
794 /* If protocol field is not compressed, it can be LCP packet */
795 if (!(p[0] & 0x01)) {
796 unsigned int proto;
797
798 if (skb->len < 2)
799 goto err;
800 proto = (p[0] << 8) + p[1];
801 if (proto == PPP_LCP)
802 async_lcp_peek(ap, p, skb->len, 1);
803 }
804
805 /* queue the frame to be processed */
806 skb->cb[0] = ap->state;
807 skb_queue_tail(&ap->rqueue, skb);
808 ap->rpkt = NULL;
809 ap->state = 0;
810 return;
811
812 err:
813 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
814 ap->state = SC_PREV_ERROR;
815 if (skb) {
816 /* make skb appear as freshly allocated */
817 skb_trim(skb, 0);
818 skb_reserve(skb, - skb_headroom(skb));
819 }
820}
821
822/* Called when the tty driver has data for us. Runs parallel with the
823 other ldisc functions but will not be re-entered */
824
825static void
826ppp_async_input(struct asyncppp *ap, const u8 *buf, const u8 *flags, int count)
827{
828 struct sk_buff *skb;
829 int c, i, j, n, s, f;
830 unsigned char *sp;
831
832 /* update bits used for 8-bit cleanness detection */
833 if (~ap->rbits & SC_RCV_BITS) {
834 s = 0;
835 for (i = 0; i < count; ++i) {
836 c = buf[i];
837 if (flags && flags[i] != 0)
838 continue;
839 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
840 c = ((c >> 4) ^ c) & 0xf;
841 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
842 }
843 ap->rbits |= s;
844 }
845
846 while (count > 0) {
847 /* scan through and see how many chars we can do in bulk */
848 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
849 n = 1;
850 else
851 n = scan_ordinary(ap, buf, count);
852
853 f = 0;
854 if (flags && (ap->state & SC_TOSS) == 0) {
855 /* check the flags to see if any char had an error */
856 for (j = 0; j < n; ++j)
857 if ((f = flags[j]) != 0)
858 break;
859 }
860 if (f != 0) {
861 /* start tossing */
862 ap->state |= SC_TOSS;
863
864 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
865 /* stuff the chars in the skb */
866 skb = ap->rpkt;
867 if (!skb) {
868 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
869 if (!skb)
870 goto nomem;
871 ap->rpkt = skb;
872 }
873 if (skb->len == 0) {
874 /* Try to get the payload 4-byte aligned.
875 * This should match the
876 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
877 * process_input_packet, but we do not have
878 * enough chars here to test buf[1] and buf[2].
879 */
880 if (buf[0] != PPP_ALLSTATIONS)
881 skb_reserve(skb, 2 + (buf[0] & 1));
882 }
883 if (n > skb_tailroom(skb)) {
884 /* packet overflowed MRU */
885 ap->state |= SC_TOSS;
886 } else {
887 sp = skb_put_data(skb, buf, n);
888 if (ap->state & SC_ESCAPE) {
889 sp[0] ^= PPP_TRANS;
890 ap->state &= ~SC_ESCAPE;
891 }
892 }
893 }
894
895 if (n >= count)
896 break;
897
898 c = buf[n];
899 if (flags != NULL && flags[n] != 0) {
900 ap->state |= SC_TOSS;
901 } else if (c == PPP_FLAG) {
902 process_input_packet(ap);
903 } else if (c == PPP_ESCAPE) {
904 ap->state |= SC_ESCAPE;
905 } else if (I_IXON(ap->tty)) {
906 if (c == START_CHAR(ap->tty))
907 start_tty(ap->tty);
908 else if (c == STOP_CHAR(ap->tty))
909 stop_tty(ap->tty);
910 }
911 /* otherwise it's a char in the recv ACCM */
912 ++n;
913
914 buf += n;
915 if (flags)
916 flags += n;
917 count -= n;
918 }
919 return;
920
921 nomem:
922 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
923 ap->state |= SC_TOSS;
924}
925
926/*
927 * We look at LCP frames going past so that we can notice
928 * and react to the LCP configure-ack from the peer.
929 * In the situation where the peer has been sent a configure-ack
930 * already, LCP is up once it has sent its configure-ack
931 * so the immediately following packet can be sent with the
932 * configured LCP options. This allows us to process the following
933 * packet correctly without pppd needing to respond quickly.
934 *
935 * We only respond to the received configure-ack if we have just
936 * sent a configure-request, and the configure-ack contains the
937 * same data (this is checked using a 16-bit crc of the data).
938 */
939#define CONFREQ 1 /* LCP code field values */
940#define CONFACK 2
941#define LCP_MRU 1 /* LCP option numbers */
942#define LCP_ASYNCMAP 2
943
944static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
945 int len, int inbound)
946{
947 int dlen, fcs, i, code;
948 u32 val;
949
950 data += 2; /* skip protocol bytes */
951 len -= 2;
952 if (len < 4) /* 4 = code, ID, length */
953 return;
954 code = data[0];
955 if (code != CONFACK && code != CONFREQ)
956 return;
957 dlen = get_unaligned_be16(data + 2);
958 if (len < dlen)
959 return; /* packet got truncated or length is bogus */
960
961 if (code == (inbound? CONFACK: CONFREQ)) {
962 /*
963 * sent confreq or received confack:
964 * calculate the crc of the data from the ID field on.
965 */
966 fcs = PPP_INITFCS;
967 for (i = 1; i < dlen; ++i)
968 fcs = PPP_FCS(fcs, data[i]);
969
970 if (!inbound) {
971 /* outbound confreq - remember the crc for later */
972 ap->lcp_fcs = fcs;
973 return;
974 }
975
976 /* received confack, check the crc */
977 fcs ^= ap->lcp_fcs;
978 ap->lcp_fcs = -1;
979 if (fcs != 0)
980 return;
981 } else if (inbound)
982 return; /* not interested in received confreq */
983
984 /* process the options in the confack */
985 data += 4;
986 dlen -= 4;
987 /* data[0] is code, data[1] is length */
988 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
989 switch (data[0]) {
990 case LCP_MRU:
991 val = get_unaligned_be16(data + 2);
992 if (inbound)
993 ap->mru = val;
994 else
995 ap->chan.mtu = val;
996 break;
997 case LCP_ASYNCMAP:
998 val = get_unaligned_be32(data + 2);
999 if (inbound)
1000 ap->raccm = val;
1001 else
1002 ap->xaccm[0] = val;
1003 break;
1004 }
1005 dlen -= data[1];
1006 data += data[1];
1007 }
1008}
1009
1010static void __exit ppp_async_cleanup(void)
1011{
1012 tty_unregister_ldisc(&ppp_ldisc);
1013}
1014
1015module_init(ppp_async_init);
1016module_exit(ppp_async_cleanup);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PPP async serial channel driver for Linux.
4 *
5 * Copyright 1999 Paul Mackerras.
6 *
7 * This driver provides the encapsulation and framing for sending
8 * and receiving PPP frames over async serial lines. It relies on
9 * the generic PPP layer to give it frames to send and to process
10 * received frames. It implements the PPP line discipline.
11 *
12 * Part of the code in this driver was inspired by the old async-only
13 * PPP driver, written by Michael Callahan and Al Longyear, and
14 * subsequently hacked by Paul Mackerras.
15 */
16
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/skbuff.h>
20#include <linux/tty.h>
21#include <linux/netdevice.h>
22#include <linux/poll.h>
23#include <linux/crc-ccitt.h>
24#include <linux/ppp_defs.h>
25#include <linux/ppp-ioctl.h>
26#include <linux/ppp_channel.h>
27#include <linux/spinlock.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/jiffies.h>
31#include <linux/slab.h>
32#include <asm/unaligned.h>
33#include <linux/uaccess.h>
34#include <asm/string.h>
35
36#define PPP_VERSION "2.4.2"
37
38#define OBUFSIZE 4096
39
40/* Structure for storing local state. */
41struct asyncppp {
42 struct tty_struct *tty;
43 unsigned int flags;
44 unsigned int state;
45 unsigned int rbits;
46 int mru;
47 spinlock_t xmit_lock;
48 spinlock_t recv_lock;
49 unsigned long xmit_flags;
50 u32 xaccm[8];
51 u32 raccm;
52 unsigned int bytes_sent;
53 unsigned int bytes_rcvd;
54
55 struct sk_buff *tpkt;
56 int tpkt_pos;
57 u16 tfcs;
58 unsigned char *optr;
59 unsigned char *olim;
60 unsigned long last_xmit;
61
62 struct sk_buff *rpkt;
63 int lcp_fcs;
64 struct sk_buff_head rqueue;
65
66 struct tasklet_struct tsk;
67
68 refcount_t refcnt;
69 struct completion dead;
70 struct ppp_channel chan; /* interface to generic ppp layer */
71 unsigned char obuf[OBUFSIZE];
72};
73
74/* Bit numbers in xmit_flags */
75#define XMIT_WAKEUP 0
76#define XMIT_FULL 1
77#define XMIT_BUSY 2
78
79/* State bits */
80#define SC_TOSS 1
81#define SC_ESCAPE 2
82#define SC_PREV_ERROR 4
83
84/* Bits in rbits */
85#define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP)
86
87static int flag_time = HZ;
88module_param(flag_time, int, 0);
89MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)");
90MODULE_LICENSE("GPL");
91MODULE_ALIAS_LDISC(N_PPP);
92
93/*
94 * Prototypes.
95 */
96static int ppp_async_encode(struct asyncppp *ap);
97static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb);
98static int ppp_async_push(struct asyncppp *ap);
99static void ppp_async_flush_output(struct asyncppp *ap);
100static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
101 const char *flags, int count);
102static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd,
103 unsigned long arg);
104static void ppp_async_process(struct tasklet_struct *t);
105
106static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
107 int len, int inbound);
108
109static const struct ppp_channel_ops async_ops = {
110 .start_xmit = ppp_async_send,
111 .ioctl = ppp_async_ioctl,
112};
113
114/*
115 * Routines implementing the PPP line discipline.
116 */
117
118/*
119 * We have a potential race on dereferencing tty->disc_data,
120 * because the tty layer provides no locking at all - thus one
121 * cpu could be running ppp_asynctty_receive while another
122 * calls ppp_asynctty_close, which zeroes tty->disc_data and
123 * frees the memory that ppp_asynctty_receive is using. The best
124 * way to fix this is to use a rwlock in the tty struct, but for now
125 * we use a single global rwlock for all ttys in ppp line discipline.
126 *
127 * FIXME: this is no longer true. The _close path for the ldisc is
128 * now guaranteed to be sane.
129 */
130static DEFINE_RWLOCK(disc_data_lock);
131
132static struct asyncppp *ap_get(struct tty_struct *tty)
133{
134 struct asyncppp *ap;
135
136 read_lock(&disc_data_lock);
137 ap = tty->disc_data;
138 if (ap != NULL)
139 refcount_inc(&ap->refcnt);
140 read_unlock(&disc_data_lock);
141 return ap;
142}
143
144static void ap_put(struct asyncppp *ap)
145{
146 if (refcount_dec_and_test(&ap->refcnt))
147 complete(&ap->dead);
148}
149
150/*
151 * Called when a tty is put into PPP line discipline. Called in process
152 * context.
153 */
154static int
155ppp_asynctty_open(struct tty_struct *tty)
156{
157 struct asyncppp *ap;
158 int err;
159 int speed;
160
161 if (tty->ops->write == NULL)
162 return -EOPNOTSUPP;
163
164 err = -ENOMEM;
165 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
166 if (!ap)
167 goto out;
168
169 /* initialize the asyncppp structure */
170 ap->tty = tty;
171 ap->mru = PPP_MRU;
172 spin_lock_init(&ap->xmit_lock);
173 spin_lock_init(&ap->recv_lock);
174 ap->xaccm[0] = ~0U;
175 ap->xaccm[3] = 0x60000000U;
176 ap->raccm = ~0U;
177 ap->optr = ap->obuf;
178 ap->olim = ap->obuf;
179 ap->lcp_fcs = -1;
180
181 skb_queue_head_init(&ap->rqueue);
182 tasklet_setup(&ap->tsk, ppp_async_process);
183
184 refcount_set(&ap->refcnt, 1);
185 init_completion(&ap->dead);
186
187 ap->chan.private = ap;
188 ap->chan.ops = &async_ops;
189 ap->chan.mtu = PPP_MRU;
190 speed = tty_get_baud_rate(tty);
191 ap->chan.speed = speed;
192 err = ppp_register_channel(&ap->chan);
193 if (err)
194 goto out_free;
195
196 tty->disc_data = ap;
197 tty->receive_room = 65536;
198 return 0;
199
200 out_free:
201 kfree(ap);
202 out:
203 return err;
204}
205
206/*
207 * Called when the tty is put into another line discipline
208 * or it hangs up. We have to wait for any cpu currently
209 * executing in any of the other ppp_asynctty_* routines to
210 * finish before we can call ppp_unregister_channel and free
211 * the asyncppp struct. This routine must be called from
212 * process context, not interrupt or softirq context.
213 */
214static void
215ppp_asynctty_close(struct tty_struct *tty)
216{
217 struct asyncppp *ap;
218
219 write_lock_irq(&disc_data_lock);
220 ap = tty->disc_data;
221 tty->disc_data = NULL;
222 write_unlock_irq(&disc_data_lock);
223 if (!ap)
224 return;
225
226 /*
227 * We have now ensured that nobody can start using ap from now
228 * on, but we have to wait for all existing users to finish.
229 * Note that ppp_unregister_channel ensures that no calls to
230 * our channel ops (i.e. ppp_async_send/ioctl) are in progress
231 * by the time it returns.
232 */
233 if (!refcount_dec_and_test(&ap->refcnt))
234 wait_for_completion(&ap->dead);
235 tasklet_kill(&ap->tsk);
236
237 ppp_unregister_channel(&ap->chan);
238 kfree_skb(ap->rpkt);
239 skb_queue_purge(&ap->rqueue);
240 kfree_skb(ap->tpkt);
241 kfree(ap);
242}
243
244/*
245 * Called on tty hangup in process context.
246 *
247 * Wait for I/O to driver to complete and unregister PPP channel.
248 * This is already done by the close routine, so just call that.
249 */
250static int ppp_asynctty_hangup(struct tty_struct *tty)
251{
252 ppp_asynctty_close(tty);
253 return 0;
254}
255
256/*
257 * Read does nothing - no data is ever available this way.
258 * Pppd reads and writes packets via /dev/ppp instead.
259 */
260static ssize_t
261ppp_asynctty_read(struct tty_struct *tty, struct file *file,
262 unsigned char *buf, size_t count,
263 void **cookie, unsigned long offset)
264{
265 return -EAGAIN;
266}
267
268/*
269 * Write on the tty does nothing, the packets all come in
270 * from the ppp generic stuff.
271 */
272static ssize_t
273ppp_asynctty_write(struct tty_struct *tty, struct file *file,
274 const unsigned char *buf, size_t count)
275{
276 return -EAGAIN;
277}
278
279/*
280 * Called in process context only. May be re-entered by multiple
281 * ioctl calling threads.
282 */
283
284static int
285ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file,
286 unsigned int cmd, unsigned long arg)
287{
288 struct asyncppp *ap = ap_get(tty);
289 int err, val;
290 int __user *p = (int __user *)arg;
291
292 if (!ap)
293 return -ENXIO;
294 err = -EFAULT;
295 switch (cmd) {
296 case PPPIOCGCHAN:
297 err = -EFAULT;
298 if (put_user(ppp_channel_index(&ap->chan), p))
299 break;
300 err = 0;
301 break;
302
303 case PPPIOCGUNIT:
304 err = -EFAULT;
305 if (put_user(ppp_unit_number(&ap->chan), p))
306 break;
307 err = 0;
308 break;
309
310 case TCFLSH:
311 /* flush our buffers and the serial port's buffer */
312 if (arg == TCIOFLUSH || arg == TCOFLUSH)
313 ppp_async_flush_output(ap);
314 err = n_tty_ioctl_helper(tty, file, cmd, arg);
315 break;
316
317 case FIONREAD:
318 val = 0;
319 if (put_user(val, p))
320 break;
321 err = 0;
322 break;
323
324 default:
325 /* Try the various mode ioctls */
326 err = tty_mode_ioctl(tty, file, cmd, arg);
327 }
328
329 ap_put(ap);
330 return err;
331}
332
333/* No kernel lock - fine */
334static __poll_t
335ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait)
336{
337 return 0;
338}
339
340/* May sleep, don't call from interrupt level or with interrupts disabled */
341static void
342ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf,
343 const char *cflags, int count)
344{
345 struct asyncppp *ap = ap_get(tty);
346 unsigned long flags;
347
348 if (!ap)
349 return;
350 spin_lock_irqsave(&ap->recv_lock, flags);
351 ppp_async_input(ap, buf, cflags, count);
352 spin_unlock_irqrestore(&ap->recv_lock, flags);
353 if (!skb_queue_empty(&ap->rqueue))
354 tasklet_schedule(&ap->tsk);
355 ap_put(ap);
356 tty_unthrottle(tty);
357}
358
359static void
360ppp_asynctty_wakeup(struct tty_struct *tty)
361{
362 struct asyncppp *ap = ap_get(tty);
363
364 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
365 if (!ap)
366 return;
367 set_bit(XMIT_WAKEUP, &ap->xmit_flags);
368 tasklet_schedule(&ap->tsk);
369 ap_put(ap);
370}
371
372
373static struct tty_ldisc_ops ppp_ldisc = {
374 .owner = THIS_MODULE,
375 .num = N_PPP,
376 .name = "ppp",
377 .open = ppp_asynctty_open,
378 .close = ppp_asynctty_close,
379 .hangup = ppp_asynctty_hangup,
380 .read = ppp_asynctty_read,
381 .write = ppp_asynctty_write,
382 .ioctl = ppp_asynctty_ioctl,
383 .poll = ppp_asynctty_poll,
384 .receive_buf = ppp_asynctty_receive,
385 .write_wakeup = ppp_asynctty_wakeup,
386};
387
388static int __init
389ppp_async_init(void)
390{
391 int err;
392
393 err = tty_register_ldisc(&ppp_ldisc);
394 if (err != 0)
395 printk(KERN_ERR "PPP_async: error %d registering line disc.\n",
396 err);
397 return err;
398}
399
400/*
401 * The following routines provide the PPP channel interface.
402 */
403static int
404ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg)
405{
406 struct asyncppp *ap = chan->private;
407 void __user *argp = (void __user *)arg;
408 int __user *p = argp;
409 int err, val;
410 u32 accm[8];
411
412 err = -EFAULT;
413 switch (cmd) {
414 case PPPIOCGFLAGS:
415 val = ap->flags | ap->rbits;
416 if (put_user(val, p))
417 break;
418 err = 0;
419 break;
420 case PPPIOCSFLAGS:
421 if (get_user(val, p))
422 break;
423 ap->flags = val & ~SC_RCV_BITS;
424 spin_lock_irq(&ap->recv_lock);
425 ap->rbits = val & SC_RCV_BITS;
426 spin_unlock_irq(&ap->recv_lock);
427 err = 0;
428 break;
429
430 case PPPIOCGASYNCMAP:
431 if (put_user(ap->xaccm[0], (u32 __user *)argp))
432 break;
433 err = 0;
434 break;
435 case PPPIOCSASYNCMAP:
436 if (get_user(ap->xaccm[0], (u32 __user *)argp))
437 break;
438 err = 0;
439 break;
440
441 case PPPIOCGRASYNCMAP:
442 if (put_user(ap->raccm, (u32 __user *)argp))
443 break;
444 err = 0;
445 break;
446 case PPPIOCSRASYNCMAP:
447 if (get_user(ap->raccm, (u32 __user *)argp))
448 break;
449 err = 0;
450 break;
451
452 case PPPIOCGXASYNCMAP:
453 if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm)))
454 break;
455 err = 0;
456 break;
457 case PPPIOCSXASYNCMAP:
458 if (copy_from_user(accm, argp, sizeof(accm)))
459 break;
460 accm[2] &= ~0x40000000U; /* can't escape 0x5e */
461 accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */
462 memcpy(ap->xaccm, accm, sizeof(ap->xaccm));
463 err = 0;
464 break;
465
466 case PPPIOCGMRU:
467 if (put_user(ap->mru, p))
468 break;
469 err = 0;
470 break;
471 case PPPIOCSMRU:
472 if (get_user(val, p))
473 break;
474 if (val < PPP_MRU)
475 val = PPP_MRU;
476 ap->mru = val;
477 err = 0;
478 break;
479
480 default:
481 err = -ENOTTY;
482 }
483
484 return err;
485}
486
487/*
488 * This is called at softirq level to deliver received packets
489 * to the ppp_generic code, and to tell the ppp_generic code
490 * if we can accept more output now.
491 */
492static void ppp_async_process(struct tasklet_struct *t)
493{
494 struct asyncppp *ap = from_tasklet(ap, t, tsk);
495 struct sk_buff *skb;
496
497 /* process received packets */
498 while ((skb = skb_dequeue(&ap->rqueue)) != NULL) {
499 if (skb->cb[0])
500 ppp_input_error(&ap->chan, 0);
501 ppp_input(&ap->chan, skb);
502 }
503
504 /* try to push more stuff out */
505 if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap))
506 ppp_output_wakeup(&ap->chan);
507}
508
509/*
510 * Procedures for encapsulation and framing.
511 */
512
513/*
514 * Procedure to encode the data for async serial transmission.
515 * Does octet stuffing (escaping), puts the address/control bytes
516 * on if A/C compression is disabled, and does protocol compression.
517 * Assumes ap->tpkt != 0 on entry.
518 * Returns 1 if we finished the current frame, 0 otherwise.
519 */
520
521#define PUT_BYTE(ap, buf, c, islcp) do { \
522 if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\
523 *buf++ = PPP_ESCAPE; \
524 *buf++ = c ^ PPP_TRANS; \
525 } else \
526 *buf++ = c; \
527} while (0)
528
529static int
530ppp_async_encode(struct asyncppp *ap)
531{
532 int fcs, i, count, c, proto;
533 unsigned char *buf, *buflim;
534 unsigned char *data;
535 int islcp;
536
537 buf = ap->obuf;
538 ap->olim = buf;
539 ap->optr = buf;
540 i = ap->tpkt_pos;
541 data = ap->tpkt->data;
542 count = ap->tpkt->len;
543 fcs = ap->tfcs;
544 proto = get_unaligned_be16(data);
545
546 /*
547 * LCP packets with code values between 1 (configure-reqest)
548 * and 7 (code-reject) must be sent as though no options
549 * had been negotiated.
550 */
551 islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7;
552
553 if (i == 0) {
554 if (islcp)
555 async_lcp_peek(ap, data, count, 0);
556
557 /*
558 * Start of a new packet - insert the leading FLAG
559 * character if necessary.
560 */
561 if (islcp || flag_time == 0 ||
562 time_after_eq(jiffies, ap->last_xmit + flag_time))
563 *buf++ = PPP_FLAG;
564 ap->last_xmit = jiffies;
565 fcs = PPP_INITFCS;
566
567 /*
568 * Put in the address/control bytes if necessary
569 */
570 if ((ap->flags & SC_COMP_AC) == 0 || islcp) {
571 PUT_BYTE(ap, buf, 0xff, islcp);
572 fcs = PPP_FCS(fcs, 0xff);
573 PUT_BYTE(ap, buf, 0x03, islcp);
574 fcs = PPP_FCS(fcs, 0x03);
575 }
576 }
577
578 /*
579 * Once we put in the last byte, we need to put in the FCS
580 * and closing flag, so make sure there is at least 7 bytes
581 * of free space in the output buffer.
582 */
583 buflim = ap->obuf + OBUFSIZE - 6;
584 while (i < count && buf < buflim) {
585 c = data[i++];
586 if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT))
587 continue; /* compress protocol field */
588 fcs = PPP_FCS(fcs, c);
589 PUT_BYTE(ap, buf, c, islcp);
590 }
591
592 if (i < count) {
593 /*
594 * Remember where we are up to in this packet.
595 */
596 ap->olim = buf;
597 ap->tpkt_pos = i;
598 ap->tfcs = fcs;
599 return 0;
600 }
601
602 /*
603 * We have finished the packet. Add the FCS and flag.
604 */
605 fcs = ~fcs;
606 c = fcs & 0xff;
607 PUT_BYTE(ap, buf, c, islcp);
608 c = (fcs >> 8) & 0xff;
609 PUT_BYTE(ap, buf, c, islcp);
610 *buf++ = PPP_FLAG;
611 ap->olim = buf;
612
613 consume_skb(ap->tpkt);
614 ap->tpkt = NULL;
615 return 1;
616}
617
618/*
619 * Transmit-side routines.
620 */
621
622/*
623 * Send a packet to the peer over an async tty line.
624 * Returns 1 iff the packet was accepted.
625 * If the packet was not accepted, we will call ppp_output_wakeup
626 * at some later time.
627 */
628static int
629ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb)
630{
631 struct asyncppp *ap = chan->private;
632
633 ppp_async_push(ap);
634
635 if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags))
636 return 0; /* already full */
637 ap->tpkt = skb;
638 ap->tpkt_pos = 0;
639
640 ppp_async_push(ap);
641 return 1;
642}
643
644/*
645 * Push as much data as possible out to the tty.
646 */
647static int
648ppp_async_push(struct asyncppp *ap)
649{
650 int avail, sent, done = 0;
651 struct tty_struct *tty = ap->tty;
652 int tty_stuffed = 0;
653
654 /*
655 * We can get called recursively here if the tty write
656 * function calls our wakeup function. This can happen
657 * for example on a pty with both the master and slave
658 * set to PPP line discipline.
659 * We use the XMIT_BUSY bit to detect this and get out,
660 * leaving the XMIT_WAKEUP bit set to tell the other
661 * instance that it may now be able to write more now.
662 */
663 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
664 return 0;
665 spin_lock_bh(&ap->xmit_lock);
666 for (;;) {
667 if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags))
668 tty_stuffed = 0;
669 if (!tty_stuffed && ap->optr < ap->olim) {
670 avail = ap->olim - ap->optr;
671 set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
672 sent = tty->ops->write(tty, ap->optr, avail);
673 if (sent < 0)
674 goto flush; /* error, e.g. loss of CD */
675 ap->optr += sent;
676 if (sent < avail)
677 tty_stuffed = 1;
678 continue;
679 }
680 if (ap->optr >= ap->olim && ap->tpkt) {
681 if (ppp_async_encode(ap)) {
682 /* finished processing ap->tpkt */
683 clear_bit(XMIT_FULL, &ap->xmit_flags);
684 done = 1;
685 }
686 continue;
687 }
688 /*
689 * We haven't made any progress this time around.
690 * Clear XMIT_BUSY to let other callers in, but
691 * after doing so we have to check if anyone set
692 * XMIT_WAKEUP since we last checked it. If they
693 * did, we should try again to set XMIT_BUSY and go
694 * around again in case XMIT_BUSY was still set when
695 * the other caller tried.
696 */
697 clear_bit(XMIT_BUSY, &ap->xmit_flags);
698 /* any more work to do? if not, exit the loop */
699 if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) ||
700 (!tty_stuffed && ap->tpkt)))
701 break;
702 /* more work to do, see if we can do it now */
703 if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags))
704 break;
705 }
706 spin_unlock_bh(&ap->xmit_lock);
707 return done;
708
709flush:
710 clear_bit(XMIT_BUSY, &ap->xmit_flags);
711 if (ap->tpkt) {
712 kfree_skb(ap->tpkt);
713 ap->tpkt = NULL;
714 clear_bit(XMIT_FULL, &ap->xmit_flags);
715 done = 1;
716 }
717 ap->optr = ap->olim;
718 spin_unlock_bh(&ap->xmit_lock);
719 return done;
720}
721
722/*
723 * Flush output from our internal buffers.
724 * Called for the TCFLSH ioctl. Can be entered in parallel
725 * but this is covered by the xmit_lock.
726 */
727static void
728ppp_async_flush_output(struct asyncppp *ap)
729{
730 int done = 0;
731
732 spin_lock_bh(&ap->xmit_lock);
733 ap->optr = ap->olim;
734 if (ap->tpkt != NULL) {
735 kfree_skb(ap->tpkt);
736 ap->tpkt = NULL;
737 clear_bit(XMIT_FULL, &ap->xmit_flags);
738 done = 1;
739 }
740 spin_unlock_bh(&ap->xmit_lock);
741 if (done)
742 ppp_output_wakeup(&ap->chan);
743}
744
745/*
746 * Receive-side routines.
747 */
748
749/* see how many ordinary chars there are at the start of buf */
750static inline int
751scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count)
752{
753 int i, c;
754
755 for (i = 0; i < count; ++i) {
756 c = buf[i];
757 if (c == PPP_ESCAPE || c == PPP_FLAG ||
758 (c < 0x20 && (ap->raccm & (1 << c)) != 0))
759 break;
760 }
761 return i;
762}
763
764/* called when a flag is seen - do end-of-packet processing */
765static void
766process_input_packet(struct asyncppp *ap)
767{
768 struct sk_buff *skb;
769 unsigned char *p;
770 unsigned int len, fcs;
771
772 skb = ap->rpkt;
773 if (ap->state & (SC_TOSS | SC_ESCAPE))
774 goto err;
775
776 if (skb == NULL)
777 return; /* 0-length packet */
778
779 /* check the FCS */
780 p = skb->data;
781 len = skb->len;
782 if (len < 3)
783 goto err; /* too short */
784 fcs = PPP_INITFCS;
785 for (; len > 0; --len)
786 fcs = PPP_FCS(fcs, *p++);
787 if (fcs != PPP_GOODFCS)
788 goto err; /* bad FCS */
789 skb_trim(skb, skb->len - 2);
790
791 /* check for address/control and protocol compression */
792 p = skb->data;
793 if (p[0] == PPP_ALLSTATIONS) {
794 /* chop off address/control */
795 if (p[1] != PPP_UI || skb->len < 3)
796 goto err;
797 p = skb_pull(skb, 2);
798 }
799
800 /* If protocol field is not compressed, it can be LCP packet */
801 if (!(p[0] & 0x01)) {
802 unsigned int proto;
803
804 if (skb->len < 2)
805 goto err;
806 proto = (p[0] << 8) + p[1];
807 if (proto == PPP_LCP)
808 async_lcp_peek(ap, p, skb->len, 1);
809 }
810
811 /* queue the frame to be processed */
812 skb->cb[0] = ap->state;
813 skb_queue_tail(&ap->rqueue, skb);
814 ap->rpkt = NULL;
815 ap->state = 0;
816 return;
817
818 err:
819 /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */
820 ap->state = SC_PREV_ERROR;
821 if (skb) {
822 /* make skb appear as freshly allocated */
823 skb_trim(skb, 0);
824 skb_reserve(skb, - skb_headroom(skb));
825 }
826}
827
828/* Called when the tty driver has data for us. Runs parallel with the
829 other ldisc functions but will not be re-entered */
830
831static void
832ppp_async_input(struct asyncppp *ap, const unsigned char *buf,
833 const char *flags, int count)
834{
835 struct sk_buff *skb;
836 int c, i, j, n, s, f;
837 unsigned char *sp;
838
839 /* update bits used for 8-bit cleanness detection */
840 if (~ap->rbits & SC_RCV_BITS) {
841 s = 0;
842 for (i = 0; i < count; ++i) {
843 c = buf[i];
844 if (flags && flags[i] != 0)
845 continue;
846 s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0;
847 c = ((c >> 4) ^ c) & 0xf;
848 s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP;
849 }
850 ap->rbits |= s;
851 }
852
853 while (count > 0) {
854 /* scan through and see how many chars we can do in bulk */
855 if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE)
856 n = 1;
857 else
858 n = scan_ordinary(ap, buf, count);
859
860 f = 0;
861 if (flags && (ap->state & SC_TOSS) == 0) {
862 /* check the flags to see if any char had an error */
863 for (j = 0; j < n; ++j)
864 if ((f = flags[j]) != 0)
865 break;
866 }
867 if (f != 0) {
868 /* start tossing */
869 ap->state |= SC_TOSS;
870
871 } else if (n > 0 && (ap->state & SC_TOSS) == 0) {
872 /* stuff the chars in the skb */
873 skb = ap->rpkt;
874 if (!skb) {
875 skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2);
876 if (!skb)
877 goto nomem;
878 ap->rpkt = skb;
879 }
880 if (skb->len == 0) {
881 /* Try to get the payload 4-byte aligned.
882 * This should match the
883 * PPP_ALLSTATIONS/PPP_UI/compressed tests in
884 * process_input_packet, but we do not have
885 * enough chars here to test buf[1] and buf[2].
886 */
887 if (buf[0] != PPP_ALLSTATIONS)
888 skb_reserve(skb, 2 + (buf[0] & 1));
889 }
890 if (n > skb_tailroom(skb)) {
891 /* packet overflowed MRU */
892 ap->state |= SC_TOSS;
893 } else {
894 sp = skb_put_data(skb, buf, n);
895 if (ap->state & SC_ESCAPE) {
896 sp[0] ^= PPP_TRANS;
897 ap->state &= ~SC_ESCAPE;
898 }
899 }
900 }
901
902 if (n >= count)
903 break;
904
905 c = buf[n];
906 if (flags != NULL && flags[n] != 0) {
907 ap->state |= SC_TOSS;
908 } else if (c == PPP_FLAG) {
909 process_input_packet(ap);
910 } else if (c == PPP_ESCAPE) {
911 ap->state |= SC_ESCAPE;
912 } else if (I_IXON(ap->tty)) {
913 if (c == START_CHAR(ap->tty))
914 start_tty(ap->tty);
915 else if (c == STOP_CHAR(ap->tty))
916 stop_tty(ap->tty);
917 }
918 /* otherwise it's a char in the recv ACCM */
919 ++n;
920
921 buf += n;
922 if (flags)
923 flags += n;
924 count -= n;
925 }
926 return;
927
928 nomem:
929 printk(KERN_ERR "PPPasync: no memory (input pkt)\n");
930 ap->state |= SC_TOSS;
931}
932
933/*
934 * We look at LCP frames going past so that we can notice
935 * and react to the LCP configure-ack from the peer.
936 * In the situation where the peer has been sent a configure-ack
937 * already, LCP is up once it has sent its configure-ack
938 * so the immediately following packet can be sent with the
939 * configured LCP options. This allows us to process the following
940 * packet correctly without pppd needing to respond quickly.
941 *
942 * We only respond to the received configure-ack if we have just
943 * sent a configure-request, and the configure-ack contains the
944 * same data (this is checked using a 16-bit crc of the data).
945 */
946#define CONFREQ 1 /* LCP code field values */
947#define CONFACK 2
948#define LCP_MRU 1 /* LCP option numbers */
949#define LCP_ASYNCMAP 2
950
951static void async_lcp_peek(struct asyncppp *ap, unsigned char *data,
952 int len, int inbound)
953{
954 int dlen, fcs, i, code;
955 u32 val;
956
957 data += 2; /* skip protocol bytes */
958 len -= 2;
959 if (len < 4) /* 4 = code, ID, length */
960 return;
961 code = data[0];
962 if (code != CONFACK && code != CONFREQ)
963 return;
964 dlen = get_unaligned_be16(data + 2);
965 if (len < dlen)
966 return; /* packet got truncated or length is bogus */
967
968 if (code == (inbound? CONFACK: CONFREQ)) {
969 /*
970 * sent confreq or received confack:
971 * calculate the crc of the data from the ID field on.
972 */
973 fcs = PPP_INITFCS;
974 for (i = 1; i < dlen; ++i)
975 fcs = PPP_FCS(fcs, data[i]);
976
977 if (!inbound) {
978 /* outbound confreq - remember the crc for later */
979 ap->lcp_fcs = fcs;
980 return;
981 }
982
983 /* received confack, check the crc */
984 fcs ^= ap->lcp_fcs;
985 ap->lcp_fcs = -1;
986 if (fcs != 0)
987 return;
988 } else if (inbound)
989 return; /* not interested in received confreq */
990
991 /* process the options in the confack */
992 data += 4;
993 dlen -= 4;
994 /* data[0] is code, data[1] is length */
995 while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) {
996 switch (data[0]) {
997 case LCP_MRU:
998 val = get_unaligned_be16(data + 2);
999 if (inbound)
1000 ap->mru = val;
1001 else
1002 ap->chan.mtu = val;
1003 break;
1004 case LCP_ASYNCMAP:
1005 val = get_unaligned_be32(data + 2);
1006 if (inbound)
1007 ap->raccm = val;
1008 else
1009 ap->xaccm[0] = val;
1010 break;
1011 }
1012 dlen -= data[1];
1013 data += data[1];
1014 }
1015}
1016
1017static void __exit ppp_async_cleanup(void)
1018{
1019 tty_unregister_ldisc(&ppp_ldisc);
1020}
1021
1022module_init(ppp_async_init);
1023module_exit(ppp_async_cleanup);