Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 plane module
   8 *
   9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
  10 *
  11 * At atomic modeset check time, we compute the HVS display element
  12 * state that would be necessary for displaying the plane (giving us a
  13 * chance to figure out if a plane configuration is invalid), then at
  14 * atomic flush time the CRTC will ask us to write our element state
  15 * into the region of the HVS that it has allocated for us.
  16 */
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_atomic_uapi.h>
  21#include <drm/drm_blend.h>
  22#include <drm/drm_drv.h>
  23#include <drm/drm_fb_dma_helper.h>
  24#include <drm/drm_fourcc.h>
  25#include <drm/drm_framebuffer.h>
  26#include <drm/drm_gem_atomic_helper.h>
 
  27
  28#include "uapi/drm/vc4_drm.h"
  29
  30#include "vc4_drv.h"
  31#include "vc4_regs.h"
  32
  33static const struct hvs_format {
  34	u32 drm; /* DRM_FORMAT_* */
  35	u32 hvs; /* HVS_FORMAT_* */
  36	u32 pixel_order;
  37	u32 pixel_order_hvs5;
  38	bool hvs5_only;
  39} hvs_formats[] = {
  40	{
  41		.drm = DRM_FORMAT_XRGB8888,
  42		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  43		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  44		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  45	},
  46	{
  47		.drm = DRM_FORMAT_ARGB8888,
  48		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  49		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  50		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  51	},
  52	{
  53		.drm = DRM_FORMAT_ABGR8888,
  54		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  55		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  56		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  57	},
  58	{
  59		.drm = DRM_FORMAT_XBGR8888,
  60		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  61		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  62		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  63	},
  64	{
  65		.drm = DRM_FORMAT_RGB565,
  66		.hvs = HVS_PIXEL_FORMAT_RGB565,
  67		.pixel_order = HVS_PIXEL_ORDER_XRGB,
  68		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
  69	},
  70	{
  71		.drm = DRM_FORMAT_BGR565,
  72		.hvs = HVS_PIXEL_FORMAT_RGB565,
  73		.pixel_order = HVS_PIXEL_ORDER_XBGR,
  74		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
  75	},
  76	{
  77		.drm = DRM_FORMAT_ARGB1555,
  78		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  79		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  80		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  81	},
  82	{
  83		.drm = DRM_FORMAT_XRGB1555,
  84		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  85		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  86		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  87	},
  88	{
  89		.drm = DRM_FORMAT_RGB888,
  90		.hvs = HVS_PIXEL_FORMAT_RGB888,
  91		.pixel_order = HVS_PIXEL_ORDER_XRGB,
  92		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
  93	},
  94	{
  95		.drm = DRM_FORMAT_BGR888,
  96		.hvs = HVS_PIXEL_FORMAT_RGB888,
  97		.pixel_order = HVS_PIXEL_ORDER_XBGR,
  98		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
  99	},
 100	{
 101		.drm = DRM_FORMAT_YUV422,
 102		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 103		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 104		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 105	},
 106	{
 107		.drm = DRM_FORMAT_YVU422,
 108		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 109		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 110		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 111	},
 112	{
 113		.drm = DRM_FORMAT_YUV444,
 114		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 115		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 116		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 117	},
 118	{
 119		.drm = DRM_FORMAT_YVU444,
 120		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
 121		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 122		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 123	},
 124	{
 125		.drm = DRM_FORMAT_YUV420,
 126		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 127		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 128		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 129	},
 130	{
 131		.drm = DRM_FORMAT_YVU420,
 132		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 133		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 134		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 135	},
 136	{
 137		.drm = DRM_FORMAT_NV12,
 138		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 139		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 140		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 141	},
 142	{
 143		.drm = DRM_FORMAT_NV21,
 144		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 145		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 146		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 147	},
 148	{
 149		.drm = DRM_FORMAT_NV16,
 150		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 151		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 152		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 153	},
 154	{
 155		.drm = DRM_FORMAT_NV61,
 156		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 157		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 158		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
 159	},
 160	{
 161		.drm = DRM_FORMAT_P030,
 162		.hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
 163		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
 164		.hvs5_only = true,
 165	},
 166	{
 167		.drm = DRM_FORMAT_XRGB2101010,
 168		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 169		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 170		.hvs5_only = true,
 171	},
 172	{
 173		.drm = DRM_FORMAT_ARGB2101010,
 174		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 175		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 176		.hvs5_only = true,
 177	},
 178	{
 179		.drm = DRM_FORMAT_ABGR2101010,
 180		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 181		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 182		.hvs5_only = true,
 183	},
 184	{
 185		.drm = DRM_FORMAT_XBGR2101010,
 186		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
 187		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 188		.hvs5_only = true,
 189	},
 190	{
 191		.drm = DRM_FORMAT_RGB332,
 192		.hvs = HVS_PIXEL_FORMAT_RGB332,
 193		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 194		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 195	},
 196	{
 197		.drm = DRM_FORMAT_BGR233,
 198		.hvs = HVS_PIXEL_FORMAT_RGB332,
 199		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 200		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 201	},
 202	{
 203		.drm = DRM_FORMAT_XRGB4444,
 204		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 205		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 206		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 207	},
 208	{
 209		.drm = DRM_FORMAT_ARGB4444,
 210		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 211		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 212		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
 213	},
 214	{
 215		.drm = DRM_FORMAT_XBGR4444,
 216		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 217		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 218		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 219	},
 220	{
 221		.drm = DRM_FORMAT_ABGR4444,
 222		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 223		.pixel_order = HVS_PIXEL_ORDER_ARGB,
 224		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
 225	},
 226	{
 227		.drm = DRM_FORMAT_BGRX4444,
 228		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 229		.pixel_order = HVS_PIXEL_ORDER_RGBA,
 230		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
 231	},
 232	{
 233		.drm = DRM_FORMAT_BGRA4444,
 234		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 235		.pixel_order = HVS_PIXEL_ORDER_RGBA,
 236		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
 237	},
 238	{
 239		.drm = DRM_FORMAT_RGBX4444,
 240		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 241		.pixel_order = HVS_PIXEL_ORDER_BGRA,
 242		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
 243	},
 244	{
 245		.drm = DRM_FORMAT_RGBA4444,
 246		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
 247		.pixel_order = HVS_PIXEL_ORDER_BGRA,
 248		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
 249	},
 250};
 251
 252static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
 253{
 254	unsigned i;
 255
 256	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
 257		if (hvs_formats[i].drm == drm_format)
 258			return &hvs_formats[i];
 259	}
 260
 261	return NULL;
 262}
 263
 264static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
 265{
 266	if (dst == src >> 16)
 267		return VC4_SCALING_NONE;
 268	if (3 * dst >= 2 * (src >> 16))
 269		return VC4_SCALING_PPF;
 270	else
 271		return VC4_SCALING_TPZ;
 272}
 273
 274static bool plane_enabled(struct drm_plane_state *state)
 275{
 276	return state->fb && !WARN_ON(!state->crtc);
 277}
 278
 279static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
 280{
 281	struct vc4_plane_state *vc4_state;
 282
 283	if (WARN_ON(!plane->state))
 284		return NULL;
 285
 286	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
 287	if (!vc4_state)
 288		return NULL;
 289
 290	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
 291	vc4_state->dlist_initialized = 0;
 292
 293	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
 294
 295	if (vc4_state->dlist) {
 296		vc4_state->dlist = kmemdup(vc4_state->dlist,
 297					   vc4_state->dlist_count * 4,
 298					   GFP_KERNEL);
 299		if (!vc4_state->dlist) {
 300			kfree(vc4_state);
 301			return NULL;
 302		}
 303		vc4_state->dlist_size = vc4_state->dlist_count;
 304	}
 305
 306	return &vc4_state->base;
 307}
 308
 309static void vc4_plane_destroy_state(struct drm_plane *plane,
 310				    struct drm_plane_state *state)
 311{
 312	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 313	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 314
 315	if (drm_mm_node_allocated(&vc4_state->lbm)) {
 316		unsigned long irqflags;
 317
 318		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 319		drm_mm_remove_node(&vc4_state->lbm);
 320		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 321	}
 322
 323	kfree(vc4_state->dlist);
 324	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
 325	kfree(state);
 326}
 327
 328/* Called during init to allocate the plane's atomic state. */
 329static void vc4_plane_reset(struct drm_plane *plane)
 330{
 331	struct vc4_plane_state *vc4_state;
 332
 333	WARN_ON(plane->state);
 334
 335	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 336	if (!vc4_state)
 337		return;
 338
 339	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
 340}
 341
 342static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
 343{
 344	if (vc4_state->dlist_count == vc4_state->dlist_size) {
 345		u32 new_size = max(4u, vc4_state->dlist_count * 2);
 346		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
 347
 348		if (!new_dlist)
 349			return;
 350		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
 351
 352		kfree(vc4_state->dlist);
 353		vc4_state->dlist = new_dlist;
 354		vc4_state->dlist_size = new_size;
 355	}
 356
 357	vc4_state->dlist_count++;
 358}
 359
 360static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
 361{
 362	unsigned int idx = vc4_state->dlist_count;
 363
 364	vc4_dlist_counter_increment(vc4_state);
 365	vc4_state->dlist[idx] = val;
 366}
 367
 368/* Returns the scl0/scl1 field based on whether the dimensions need to
 369 * be up/down/non-scaled.
 370 *
 371 * This is a replication of a table from the spec.
 372 */
 373static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
 374{
 375	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 376
 377	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
 378	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
 379		return SCALER_CTL0_SCL_H_PPF_V_PPF;
 380	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
 381		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
 382	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
 383		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
 384	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
 385		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
 386	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
 387		return SCALER_CTL0_SCL_H_PPF_V_NONE;
 388	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
 389		return SCALER_CTL0_SCL_H_NONE_V_PPF;
 390	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
 391		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
 392	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
 393		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
 394	default:
 395	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
 396		/* The unity case is independently handled by
 397		 * SCALER_CTL0_UNITY.
 398		 */
 399		return 0;
 400	}
 401}
 402
 403static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
 404{
 405	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
 406	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
 407	struct drm_crtc_state *crtc_state;
 408
 409	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
 410						   pstate->crtc);
 411
 412	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
 413	if (!left && !right && !top && !bottom)
 414		return 0;
 415
 416	if (left + right >= crtc_state->mode.hdisplay ||
 417	    top + bottom >= crtc_state->mode.vdisplay)
 418		return -EINVAL;
 419
 420	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
 421	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
 422					       adjhdisplay,
 423					       crtc_state->mode.hdisplay);
 424	vc4_pstate->crtc_x += left;
 425	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
 426		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
 427
 428	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
 429	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
 430					       adjvdisplay,
 431					       crtc_state->mode.vdisplay);
 432	vc4_pstate->crtc_y += top;
 433	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
 434		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
 435
 436	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
 437					       adjhdisplay,
 438					       crtc_state->mode.hdisplay);
 439	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
 440					       adjvdisplay,
 441					       crtc_state->mode.vdisplay);
 442
 443	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
 444		return -EINVAL;
 445
 446	return 0;
 447}
 448
 449static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
 450{
 451	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 452	struct drm_framebuffer *fb = state->fb;
 
 
 453	int num_planes = fb->format->num_planes;
 454	struct drm_crtc_state *crtc_state;
 455	u32 h_subsample = fb->format->hsub;
 456	u32 v_subsample = fb->format->vsub;
 457	int ret;
 458
 459	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 460							state->crtc);
 461	if (!crtc_state) {
 462		DRM_DEBUG_KMS("Invalid crtc state\n");
 463		return -EINVAL;
 464	}
 465
 466	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
 467						  INT_MAX, true, true);
 468	if (ret)
 469		return ret;
 470
 471	vc4_state->src_x = state->src.x1;
 472	vc4_state->src_y = state->src.y1;
 473	vc4_state->src_w[0] = state->src.x2 - vc4_state->src_x;
 474	vc4_state->src_h[0] = state->src.y2 - vc4_state->src_y;
 
 
 
 
 
 
 
 
 
 
 
 475
 476	vc4_state->crtc_x = state->dst.x1;
 477	vc4_state->crtc_y = state->dst.y1;
 478	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
 479	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
 480
 481	ret = vc4_plane_margins_adj(state);
 482	if (ret)
 483		return ret;
 484
 485	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
 486						       vc4_state->crtc_w);
 487	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
 488						       vc4_state->crtc_h);
 489
 490	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
 491			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
 492
 493	if (num_planes > 1) {
 494		vc4_state->is_yuv = true;
 495
 496		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
 497		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
 498
 499		vc4_state->x_scaling[1] =
 500			vc4_get_scaling_mode(vc4_state->src_w[1],
 501					     vc4_state->crtc_w);
 502		vc4_state->y_scaling[1] =
 503			vc4_get_scaling_mode(vc4_state->src_h[1],
 504					     vc4_state->crtc_h);
 505
 506		/* YUV conversion requires that horizontal scaling be enabled
 507		 * on the UV plane even if vc4_get_scaling_mode() returned
 508		 * VC4_SCALING_NONE (which can happen when the down-scaling
 509		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
 510		 * case.
 511		 */
 512		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
 513			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
 514
 515		/* Similarly UV needs vertical scaling to be enabled.
 516		 * Without this a 1:1 scaled YUV422 plane isn't rendered.
 517		 */
 518		if (vc4_state->y_scaling[1] == VC4_SCALING_NONE)
 519			vc4_state->y_scaling[1] = VC4_SCALING_PPF;
 520	} else {
 521		vc4_state->is_yuv = false;
 522		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
 523		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
 524	}
 525
 526	return 0;
 527}
 528
 529static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
 530{
 531	u32 scale, recip;
 532
 533	scale = src / dst;
 534
 535	/* The specs note that while the reciprocal would be defined
 536	 * as (1<<32)/scale, ~0 is close enough.
 537	 */
 538	recip = ~0 / scale;
 539
 540	vc4_dlist_write(vc4_state,
 541			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
 542			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
 543	vc4_dlist_write(vc4_state,
 544			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
 545}
 546
 547/* phase magnitude bits */
 548#define PHASE_BITS 6
 549
 550static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst,
 551			  u32 xy, int channel)
 552{
 553	u32 scale = src / dst;
 554	s32 offset, offset2;
 555	s32 phase;
 556
 557	/*
 558	 * Start the phase at 1/2 pixel from the 1st pixel at src_x.
 559	 * 1/4 pixel for YUV.
 560	 */
 561	if (channel) {
 562		/*
 563		 * The phase is relative to scale_src->x, so shift it for
 564		 * display list's x value
 565		 */
 566		offset = (xy & 0x1ffff) >> (16 - PHASE_BITS) >> 1;
 567		offset += -(1 << PHASE_BITS >> 2);
 568	} else {
 569		/*
 570		 * The phase is relative to scale_src->x, so shift it for
 571		 * display list's x value
 572		 */
 573		offset = (xy & 0xffff) >> (16 - PHASE_BITS);
 574		offset += -(1 << PHASE_BITS >> 1);
 575
 576		/*
 577		 * This is a kludge to make sure the scaling factors are
 578		 * consistent with YUV's luma scaling. We lose 1-bit precision
 579		 * because of this.
 580		 */
 581		scale &= ~1;
 582	}
 583
 584	/*
 585	 * There may be a also small error introduced by precision of scale.
 586	 * Add half of that as a compromise
 587	 */
 588	offset2 = src - dst * scale;
 589	offset2 >>= 16 - PHASE_BITS;
 590	phase = offset + (offset2 >> 1);
 591
 592	/* Ensure +ve values don't touch the sign bit, then truncate negative values */
 593	if (phase >= 1 << PHASE_BITS)
 594		phase = (1 << PHASE_BITS) - 1;
 595
 596	phase &= SCALER_PPF_IPHASE_MASK;
 597
 598	vc4_dlist_write(vc4_state,
 599			SCALER_PPF_AGC |
 600			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
 601			VC4_SET_FIELD(phase, SCALER_PPF_IPHASE));
 602}
 603
 604static u32 vc4_lbm_size(struct drm_plane_state *state)
 605{
 606	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 607	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
 608	u32 pix_per_line;
 609	u32 lbm;
 610
 611	/* LBM is not needed when there's no vertical scaling. */
 612	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
 613	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
 614		return 0;
 615
 616	/*
 617	 * This can be further optimized in the RGB/YUV444 case if the PPF
 618	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
 619	 *
 620	 * It's not an issue though, since in that case since src_w[0] is going
 621	 * to be greater than or equal to crtc_w.
 622	 */
 623	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
 624		pix_per_line = vc4_state->crtc_w;
 625	else
 626		pix_per_line = vc4_state->src_w[0] >> 16;
 627
 628	if (!vc4_state->is_yuv) {
 629		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
 630			lbm = pix_per_line * 8;
 631		else {
 632			/* In special cases, this multiplier might be 12. */
 633			lbm = pix_per_line * 16;
 634		}
 635	} else {
 636		/* There are cases for this going down to a multiplier
 637		 * of 2, but according to the firmware source, the
 638		 * table in the docs is somewhat wrong.
 639		 */
 640		lbm = pix_per_line * 16;
 641	}
 642
 643	/* Align it to 64 or 128 (hvs5) bytes */
 644	lbm = roundup(lbm, vc4->gen == VC4_GEN_5 ? 128 : 64);
 645
 646	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
 647	lbm /= vc4->gen == VC4_GEN_5 ? 4 : 2;
 648
 649	return lbm;
 650}
 651
 652static void vc4_write_scaling_parameters(struct drm_plane_state *state,
 653					 int channel)
 654{
 655	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 656
 657	/* Ch0 H-PPF Word 0: Scaling Parameters */
 658	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
 659		vc4_write_ppf(vc4_state, vc4_state->src_w[channel],
 660			      vc4_state->crtc_w, vc4_state->src_x, channel);
 661	}
 662
 663	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
 664	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
 665		vc4_write_ppf(vc4_state, vc4_state->src_h[channel],
 666			      vc4_state->crtc_h, vc4_state->src_y, channel);
 667		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 668	}
 669
 670	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
 671	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
 672		vc4_write_tpz(vc4_state, vc4_state->src_w[channel],
 673			      vc4_state->crtc_w);
 674	}
 675
 676	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
 677	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
 678		vc4_write_tpz(vc4_state, vc4_state->src_h[channel],
 679			      vc4_state->crtc_h);
 680		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 681	}
 682}
 683
 684static void vc4_plane_calc_load(struct drm_plane_state *state)
 685{
 686	unsigned int hvs_load_shift, vrefresh, i;
 687	struct drm_framebuffer *fb = state->fb;
 688	struct vc4_plane_state *vc4_state;
 689	struct drm_crtc_state *crtc_state;
 690	unsigned int vscale_factor;
 
 
 
 
 
 691
 692	vc4_state = to_vc4_plane_state(state);
 693	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 694							state->crtc);
 695	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
 696
 697	/* The HVS is able to process 2 pixels/cycle when scaling the source,
 698	 * 4 pixels/cycle otherwise.
 699	 * Alpha blending step seems to be pipelined and it's always operating
 700	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
 701	 * scaler block.
 702	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
 703	 */
 704	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
 705	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
 706	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
 707	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
 708		hvs_load_shift = 1;
 709	else
 710		hvs_load_shift = 2;
 711
 712	vc4_state->membus_load = 0;
 713	vc4_state->hvs_load = 0;
 714	for (i = 0; i < fb->format->num_planes; i++) {
 715		/* Even if the bandwidth/plane required for a single frame is
 716		 *
 717		 * (vc4_state->src_w[i] >> 16) * (vc4_state->src_h[i] >> 16) *
 718		 *  cpp * vrefresh
 719		 *
 720		 * when downscaling, we have to read more pixels per line in
 721		 * the time frame reserved for a single line, so the bandwidth
 722		 * demand can be punctually higher. To account for that, we
 723		 * calculate the down-scaling factor and multiply the plane
 724		 * load by this number. We're likely over-estimating the read
 725		 * demand, but that's better than under-estimating it.
 726		 */
 727		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i] >> 16,
 728					     vc4_state->crtc_h);
 729		vc4_state->membus_load += (vc4_state->src_w[i] >> 16) *
 730					  (vc4_state->src_h[i] >> 16) *
 731					  vscale_factor * fb->format->cpp[i];
 732		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
 733	}
 734
 735	vc4_state->hvs_load *= vrefresh;
 736	vc4_state->hvs_load >>= hvs_load_shift;
 737	vc4_state->membus_load *= vrefresh;
 738}
 739
 740static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
 741{
 742	struct drm_device *drm = state->plane->dev;
 743	struct vc4_dev *vc4 = to_vc4_dev(drm);
 744	struct drm_plane *plane = state->plane;
 745	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 746	unsigned long irqflags;
 747	u32 lbm_size;
 748
 749	lbm_size = vc4_lbm_size(state);
 750	if (!lbm_size)
 751		return 0;
 752
 753	if (vc4->gen == VC4_GEN_5)
 754		lbm_size = ALIGN(lbm_size, 64);
 755	else if (vc4->gen == VC4_GEN_4)
 756		lbm_size = ALIGN(lbm_size, 32);
 757
 758	drm_dbg_driver(drm, "[PLANE:%d:%s] LBM Allocation Size: %u\n",
 759		       plane->base.id, plane->name, lbm_size);
 760
 761	if (WARN_ON(!vc4_state->lbm_offset))
 762		return -EINVAL;
 763
 764	/* Allocate the LBM memory that the HVS will use for temporary
 765	 * storage due to our scaling/format conversion.
 766	 */
 767	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
 768		int ret;
 769
 770		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 771		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
 772						 &vc4_state->lbm,
 773						 lbm_size, 1,
 
 774						 0, 0);
 775		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 776
 777		if (ret) {
 778			drm_err(drm, "Failed to allocate LBM entry: %d\n", ret);
 779			return ret;
 780		}
 781	} else {
 782		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
 783	}
 784
 785	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
 786
 787	return 0;
 788}
 789
 790/*
 791 * The colorspace conversion matrices are held in 3 entries in the dlist.
 792 * Create an array of them, with entries for each full and limited mode, and
 793 * each supported colorspace.
 794 */
 795static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
 796	{
 797		/* Limited range */
 798		{
 799			/* BT601 */
 800			SCALER_CSC0_ITR_R_601_5,
 801			SCALER_CSC1_ITR_R_601_5,
 802			SCALER_CSC2_ITR_R_601_5,
 803		}, {
 804			/* BT709 */
 805			SCALER_CSC0_ITR_R_709_3,
 806			SCALER_CSC1_ITR_R_709_3,
 807			SCALER_CSC2_ITR_R_709_3,
 808		}, {
 809			/* BT2020 */
 810			SCALER_CSC0_ITR_R_2020,
 811			SCALER_CSC1_ITR_R_2020,
 812			SCALER_CSC2_ITR_R_2020,
 813		}
 814	}, {
 815		/* Full range */
 816		{
 817			/* JFIF */
 818			SCALER_CSC0_JPEG_JFIF,
 819			SCALER_CSC1_JPEG_JFIF,
 820			SCALER_CSC2_JPEG_JFIF,
 821		}, {
 822			/* BT709 */
 823			SCALER_CSC0_ITR_R_709_3_FR,
 824			SCALER_CSC1_ITR_R_709_3_FR,
 825			SCALER_CSC2_ITR_R_709_3_FR,
 826		}, {
 827			/* BT2020 */
 828			SCALER_CSC0_ITR_R_2020_FR,
 829			SCALER_CSC1_ITR_R_2020_FR,
 830			SCALER_CSC2_ITR_R_2020_FR,
 831		}
 832	}
 833};
 834
 835static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
 836{
 837	if (!state->fb->format->has_alpha)
 838		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
 839				     SCALER_POS2_ALPHA_MODE);
 840
 841	switch (state->pixel_blend_mode) {
 842	case DRM_MODE_BLEND_PIXEL_NONE:
 843		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
 844				     SCALER_POS2_ALPHA_MODE);
 845	default:
 846	case DRM_MODE_BLEND_PREMULTI:
 847		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
 848				     SCALER_POS2_ALPHA_MODE) |
 849			SCALER_POS2_ALPHA_PREMULT;
 850	case DRM_MODE_BLEND_COVERAGE:
 851		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
 852				     SCALER_POS2_ALPHA_MODE);
 853	}
 854}
 855
 856static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
 857{
 858	if (!state->fb->format->has_alpha)
 859		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
 860				     SCALER5_CTL2_ALPHA_MODE);
 861
 862	switch (state->pixel_blend_mode) {
 863	case DRM_MODE_BLEND_PIXEL_NONE:
 864		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
 865				     SCALER5_CTL2_ALPHA_MODE);
 866	default:
 867	case DRM_MODE_BLEND_PREMULTI:
 868		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
 869				     SCALER5_CTL2_ALPHA_MODE) |
 870			SCALER5_CTL2_ALPHA_PREMULT;
 871	case DRM_MODE_BLEND_COVERAGE:
 872		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
 873				     SCALER5_CTL2_ALPHA_MODE);
 874	}
 875}
 876
 877/* Writes out a full display list for an active plane to the plane's
 878 * private dlist state.
 879 */
 880static int vc4_plane_mode_set(struct drm_plane *plane,
 881			      struct drm_plane_state *state)
 882{
 883	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 884	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 885	struct drm_framebuffer *fb = state->fb;
 886	u32 ctl0_offset = vc4_state->dlist_count;
 887	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
 888	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
 889	int num_planes = fb->format->num_planes;
 890	u32 h_subsample = fb->format->hsub;
 891	u32 v_subsample = fb->format->vsub;
 892	bool mix_plane_alpha;
 893	bool covers_screen;
 894	u32 scl0, scl1, pitch0;
 895	u32 tiling, src_x, src_y;
 896	u32 width, height;
 897	u32 hvs_format = format->hvs;
 898	unsigned int rotation;
 899	u32 offsets[3] = { 0 };
 900	int ret, i;
 901
 902	if (vc4_state->dlist_initialized)
 903		return 0;
 904
 905	ret = vc4_plane_setup_clipping_and_scaling(state);
 906	if (ret)
 907		return ret;
 908
 909	width = vc4_state->src_w[0] >> 16;
 910	height = vc4_state->src_h[0] >> 16;
 911
 912	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
 913	 * and 4:4:4, scl1 should be set to scl0 so both channels of
 914	 * the scaler do the same thing.  For YUV, the Y plane needs
 915	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
 916	 * the scl fields here.
 917	 */
 918	if (num_planes == 1) {
 919		scl0 = vc4_get_scl_field(state, 0);
 920		scl1 = scl0;
 921	} else {
 922		scl0 = vc4_get_scl_field(state, 1);
 923		scl1 = vc4_get_scl_field(state, 0);
 924	}
 925
 926	rotation = drm_rotation_simplify(state->rotation,
 927					 DRM_MODE_ROTATE_0 |
 928					 DRM_MODE_REFLECT_X |
 929					 DRM_MODE_REFLECT_Y);
 930
 931	/* We must point to the last line when Y reflection is enabled. */
 932	src_y = vc4_state->src_y >> 16;
 933	if (rotation & DRM_MODE_REFLECT_Y)
 934		src_y += height - 1;
 935
 936	src_x = vc4_state->src_x >> 16;
 937
 938	switch (base_format_mod) {
 939	case DRM_FORMAT_MOD_LINEAR:
 940		tiling = SCALER_CTL0_TILING_LINEAR;
 941		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
 942
 943		/* Adjust the base pointer to the first pixel to be scanned
 944		 * out.
 945		 */
 946		for (i = 0; i < num_planes; i++) {
 947			offsets[i] += src_y / (i ? v_subsample : 1) * fb->pitches[i];
 948			offsets[i] += src_x / (i ? h_subsample : 1) * fb->format->cpp[i];
 
 
 
 
 
 949		}
 950
 951		break;
 952
 953	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
 954		u32 tile_size_shift = 12; /* T tiles are 4kb */
 955		/* Whole-tile offsets, mostly for setting the pitch. */
 956		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
 957		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
 958		u32 tile_w_mask = (1 << tile_w_shift) - 1;
 959		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
 960		 * the height (in pixels) of a 4k tile.
 961		 */
 962		u32 tile_h_mask = (2 << tile_h_shift) - 1;
 963		/* For T-tiled, the FB pitch is "how many bytes from one row to
 964		 * the next, such that
 965		 *
 966		 *	pitch * tile_h == tile_size * tiles_per_row
 967		 */
 968		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
 969		u32 tiles_l = src_x >> tile_w_shift;
 970		u32 tiles_r = tiles_w - tiles_l;
 971		u32 tiles_t = src_y >> tile_h_shift;
 972		/* Intra-tile offsets, which modify the base address (the
 973		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
 974		 * base address).
 975		 */
 976		u32 tile_y = (src_y >> 4) & 1;
 977		u32 subtile_y = (src_y >> 2) & 3;
 978		u32 utile_y = src_y & 3;
 979		u32 x_off = src_x & tile_w_mask;
 980		u32 y_off = src_y & tile_h_mask;
 981
 982		/* When Y reflection is requested we must set the
 983		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
 984		 * after the initial one should be fetched in descending order,
 985		 * which makes sense since we start from the last line and go
 986		 * backward.
 987		 * Don't know why we need y_off = max_y_off - y_off, but it's
 988		 * definitely required (I guess it's also related to the "going
 989		 * backward" situation).
 990		 */
 991		if (rotation & DRM_MODE_REFLECT_Y) {
 992			y_off = tile_h_mask - y_off;
 993			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
 994		} else {
 995			pitch0 = 0;
 996		}
 997
 998		tiling = SCALER_CTL0_TILING_256B_OR_T;
 999		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
1000			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
1001			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
1002			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
1003		offsets[0] += tiles_t * (tiles_w << tile_size_shift);
1004		offsets[0] += subtile_y << 8;
1005		offsets[0] += utile_y << 4;
1006
1007		/* Rows of tiles alternate left-to-right and right-to-left. */
1008		if (tiles_t & 1) {
1009			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
1010			offsets[0] += (tiles_w - tiles_l) << tile_size_shift;
1011			offsets[0] -= (1 + !tile_y) << 10;
 
1012		} else {
1013			offsets[0] += tiles_l << tile_size_shift;
1014			offsets[0] += tile_y << 10;
1015		}
1016
1017		break;
1018	}
1019
1020	case DRM_FORMAT_MOD_BROADCOM_SAND64:
1021	case DRM_FORMAT_MOD_BROADCOM_SAND128:
1022	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
1023		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
 
1024
1025		if (param > SCALER_TILE_HEIGHT_MASK) {
1026			DRM_DEBUG_KMS("SAND height too large (%d)\n",
1027				      param);
1028			return -EINVAL;
1029		}
1030
1031		if (fb->format->format == DRM_FORMAT_P030) {
1032			hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
 
 
 
 
1033			tiling = SCALER_CTL0_TILING_128B;
1034		} else {
1035			hvs_format = HVS_PIXEL_FORMAT_H264;
 
 
 
 
 
 
 
1036
1037			switch (base_format_mod) {
1038			case DRM_FORMAT_MOD_BROADCOM_SAND64:
1039				tiling = SCALER_CTL0_TILING_64B;
1040				break;
1041			case DRM_FORMAT_MOD_BROADCOM_SAND128:
1042				tiling = SCALER_CTL0_TILING_128B;
1043				break;
1044			case DRM_FORMAT_MOD_BROADCOM_SAND256:
1045				tiling = SCALER_CTL0_TILING_256B_OR_T;
1046				break;
1047			default:
1048				return -EINVAL;
1049			}
1050		}
1051
 
 
 
 
1052		/* Adjust the base pointer to the first pixel to be scanned
1053		 * out.
1054		 *
1055		 * For P030, y_ptr [31:4] is the 128bit word for the start pixel
1056		 * y_ptr [3:0] is the pixel (0-11) contained within that 128bit
1057		 * word that should be taken as the first pixel.
1058		 * Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
1059		 * element within the 128bit word, eg for pixel 3 the value
1060		 * should be 6.
1061		 */
1062		for (i = 0; i < num_planes; i++) {
1063			u32 tile_w, tile, x_off, pix_per_tile;
1064
1065			if (fb->format->format == DRM_FORMAT_P030) {
1066				/*
1067				 * Spec says: bits [31:4] of the given address
1068				 * should point to the 128-bit word containing
1069				 * the desired starting pixel, and bits[3:0]
1070				 * should be between 0 and 11, indicating which
1071				 * of the 12-pixels in that 128-bit word is the
1072				 * first pixel to be used
1073				 */
1074				u32 remaining_pixels = src_x % 96;
1075				u32 aligned = remaining_pixels / 12;
1076				u32 last_bits = remaining_pixels % 12;
1077
1078				x_off = aligned * 16 + last_bits;
1079				tile_w = 128;
1080				pix_per_tile = 96;
1081			} else {
1082				switch (base_format_mod) {
1083				case DRM_FORMAT_MOD_BROADCOM_SAND64:
1084					tile_w = 64;
1085					break;
1086				case DRM_FORMAT_MOD_BROADCOM_SAND128:
1087					tile_w = 128;
1088					break;
1089				case DRM_FORMAT_MOD_BROADCOM_SAND256:
1090					tile_w = 256;
1091					break;
1092				default:
1093					return -EINVAL;
1094				}
1095				pix_per_tile = tile_w / fb->format->cpp[0];
1096				x_off = (src_x % pix_per_tile) /
1097					(i ? h_subsample : 1) *
1098					fb->format->cpp[i];
1099			}
1100
1101			tile = src_x / pix_per_tile;
1102
1103			offsets[i] += param * tile_w * tile;
1104			offsets[i] += src_y / (i ? v_subsample : 1) * tile_w;
1105			offsets[i] += x_off & ~(i ? 1 : 0);
1106		}
1107
1108		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
1109		break;
1110	}
1111
1112	default:
1113		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
1114			      (long long)fb->modifier);
1115		return -EINVAL;
1116	}
1117
1118	/* fetch an extra pixel if we don't actually line up with the left edge. */
1119	if ((vc4_state->src_x & 0xffff) && vc4_state->src_x < (state->fb->width << 16))
1120		width++;
1121
1122	/* same for the right side */
1123	if (((vc4_state->src_x + vc4_state->src_w[0]) & 0xffff) &&
1124	    vc4_state->src_x + vc4_state->src_w[0] < (state->fb->width << 16))
1125		width++;
1126
1127	/* now for the top */
1128	if ((vc4_state->src_y & 0xffff) && vc4_state->src_y < (state->fb->height << 16))
1129		height++;
1130
1131	/* and the bottom */
1132	if (((vc4_state->src_y + vc4_state->src_h[0]) & 0xffff) &&
1133	    vc4_state->src_y + vc4_state->src_h[0] < (state->fb->height << 16))
1134		height++;
1135
1136	/* For YUV444 the hardware wants double the width, otherwise it doesn't
1137	 * fetch full width of chroma
1138	 */
1139	if (format->drm == DRM_FORMAT_YUV444 || format->drm == DRM_FORMAT_YVU444)
1140		width <<= 1;
1141
1142	/* Don't waste cycles mixing with plane alpha if the set alpha
1143	 * is opaque or there is no per-pixel alpha information.
1144	 * In any case we use the alpha property value as the fixed alpha.
1145	 */
1146	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
1147			  fb->format->has_alpha;
1148
1149	if (vc4->gen == VC4_GEN_4) {
1150	/* Control word */
1151		vc4_dlist_write(vc4_state,
1152				SCALER_CTL0_VALID |
1153				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
1154				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
1155				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
1156				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
1157				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1158				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1159				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
1160				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1161				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
1162
1163		/* Position Word 0: Image Positions and Alpha Value */
1164		vc4_state->pos0_offset = vc4_state->dlist_count;
1165		vc4_dlist_write(vc4_state,
1166				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
1167				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
1168				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
1169
1170		/* Position Word 1: Scaled Image Dimensions. */
1171		if (!vc4_state->is_unity) {
1172			vc4_dlist_write(vc4_state,
1173					VC4_SET_FIELD(vc4_state->crtc_w,
1174						      SCALER_POS1_SCL_WIDTH) |
1175					VC4_SET_FIELD(vc4_state->crtc_h,
1176						      SCALER_POS1_SCL_HEIGHT));
1177		}
1178
1179		/* Position Word 2: Source Image Size, Alpha */
1180		vc4_state->pos2_offset = vc4_state->dlist_count;
1181		vc4_dlist_write(vc4_state,
 
 
 
 
1182				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
1183				vc4_hvs4_get_alpha_blend_mode(state) |
1184				VC4_SET_FIELD(width, SCALER_POS2_WIDTH) |
1185				VC4_SET_FIELD(height, SCALER_POS2_HEIGHT));
 
 
 
1186
1187		/* Position Word 3: Context.  Written by the HVS. */
1188		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1189
1190	} else {
 
 
 
 
 
1191		/* Control word */
1192		vc4_dlist_write(vc4_state,
1193				SCALER_CTL0_VALID |
1194				(format->pixel_order_hvs5 << SCALER_CTL0_ORDER_SHIFT) |
1195				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1196				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1197				(vc4_state->is_unity ?
1198						SCALER5_CTL0_UNITY : 0) |
1199				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1200				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
1201				SCALER5_CTL0_ALPHA_EXPAND |
1202				SCALER5_CTL0_RGB_EXPAND);
1203
1204		/* Position Word 0: Image Positions and Alpha Value */
1205		vc4_state->pos0_offset = vc4_state->dlist_count;
1206		vc4_dlist_write(vc4_state,
1207				(rotation & DRM_MODE_REFLECT_Y ?
1208						SCALER5_POS0_VFLIP : 0) |
1209				VC4_SET_FIELD(vc4_state->crtc_x,
1210					      SCALER_POS0_START_X) |
1211				(rotation & DRM_MODE_REFLECT_X ?
1212					      SCALER5_POS0_HFLIP : 0) |
1213				VC4_SET_FIELD(vc4_state->crtc_y,
1214					      SCALER5_POS0_START_Y)
1215			       );
1216
1217		/* Control Word 2 */
1218		vc4_dlist_write(vc4_state,
1219				VC4_SET_FIELD(state->alpha >> 4,
1220					      SCALER5_CTL2_ALPHA) |
1221				vc4_hvs5_get_alpha_blend_mode(state) |
 
1222				(mix_plane_alpha ?
1223					SCALER5_CTL2_ALPHA_MIX : 0)
 
 
 
 
1224			       );
1225
1226		/* Position Word 1: Scaled Image Dimensions. */
1227		if (!vc4_state->is_unity) {
1228			vc4_dlist_write(vc4_state,
1229					VC4_SET_FIELD(vc4_state->crtc_w,
1230						      SCALER5_POS1_SCL_WIDTH) |
1231					VC4_SET_FIELD(vc4_state->crtc_h,
1232						      SCALER5_POS1_SCL_HEIGHT));
1233		}
1234
1235		/* Position Word 2: Source Image Size */
1236		vc4_state->pos2_offset = vc4_state->dlist_count;
1237		vc4_dlist_write(vc4_state,
1238				VC4_SET_FIELD(width, SCALER5_POS2_WIDTH) |
1239				VC4_SET_FIELD(height, SCALER5_POS2_HEIGHT));
 
 
1240
1241		/* Position Word 3: Context.  Written by the HVS. */
1242		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1243	}
1244
1245
1246	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
1247	 *
1248	 * The pointers may be any byte address.
1249	 */
1250	vc4_state->ptr0_offset[0] = vc4_state->dlist_count;
1251
1252	for (i = 0; i < num_planes; i++) {
1253		struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, i);
1254
1255		vc4_dlist_write(vc4_state, bo->dma_addr + fb->offsets[i] + offsets[i]);
1256	}
1257
1258	/* Pointer Context Word 0/1/2: Written by the HVS */
1259	for (i = 0; i < num_planes; i++)
1260		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1261
1262	/* Pitch word 0 */
1263	vc4_dlist_write(vc4_state, pitch0);
1264
1265	/* Pitch word 1/2 */
1266	for (i = 1; i < num_planes; i++) {
1267		if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
1268		    hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
1269			vc4_dlist_write(vc4_state,
1270					VC4_SET_FIELD(fb->pitches[i],
1271						      SCALER_SRC_PITCH));
1272		} else {
1273			vc4_dlist_write(vc4_state, pitch0);
1274		}
1275	}
1276
1277	/* Colorspace conversion words */
1278	if (vc4_state->is_yuv) {
1279		enum drm_color_encoding color_encoding = state->color_encoding;
1280		enum drm_color_range color_range = state->color_range;
1281		const u32 *ccm;
1282
1283		if (color_encoding >= DRM_COLOR_ENCODING_MAX)
1284			color_encoding = DRM_COLOR_YCBCR_BT601;
1285		if (color_range >= DRM_COLOR_RANGE_MAX)
1286			color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
1287
1288		ccm = colorspace_coeffs[color_range][color_encoding];
1289
1290		vc4_dlist_write(vc4_state, ccm[0]);
1291		vc4_dlist_write(vc4_state, ccm[1]);
1292		vc4_dlist_write(vc4_state, ccm[2]);
1293	}
1294
1295	vc4_state->lbm_offset = 0;
1296
1297	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
1298	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
1299	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1300	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1301		/* Reserve a slot for the LBM Base Address. The real value will
1302		 * be set when calling vc4_plane_allocate_lbm().
1303		 */
1304		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1305		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1306			vc4_state->lbm_offset = vc4_state->dlist_count;
1307			vc4_dlist_counter_increment(vc4_state);
1308		}
1309
1310		if (num_planes > 1) {
1311			/* Emit Cb/Cr as channel 0 and Y as channel
1312			 * 1. This matches how we set up scl0/scl1
1313			 * above.
1314			 */
1315			vc4_write_scaling_parameters(state, 1);
1316		}
1317		vc4_write_scaling_parameters(state, 0);
1318
1319		/* If any PPF setup was done, then all the kernel
1320		 * pointers get uploaded.
1321		 */
1322		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1323		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1324		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1325		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1326			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1327						   SCALER_PPF_KERNEL_OFFSET);
1328
1329			/* HPPF plane 0 */
1330			vc4_dlist_write(vc4_state, kernel);
1331			/* VPPF plane 0 */
1332			vc4_dlist_write(vc4_state, kernel);
1333			/* HPPF plane 1 */
1334			vc4_dlist_write(vc4_state, kernel);
1335			/* VPPF plane 1 */
1336			vc4_dlist_write(vc4_state, kernel);
1337		}
1338	}
1339
1340	vc4_state->dlist[ctl0_offset] |=
1341		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1342
1343	/* crtc_* are already clipped coordinates. */
1344	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1345			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1346			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1347	/* Background fill might be necessary when the plane has per-pixel
1348	 * alpha content or a non-opaque plane alpha and could blend from the
1349	 * background or does not cover the entire screen.
1350	 */
1351	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1352				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1353
1354	/* Flag the dlist as initialized to avoid checking it twice in case
1355	 * the async update check already called vc4_plane_mode_set() and
1356	 * decided to fallback to sync update because async update was not
1357	 * possible.
1358	 */
1359	vc4_state->dlist_initialized = 1;
1360
1361	vc4_plane_calc_load(state);
1362
1363	return 0;
1364}
1365
1366/* If a modeset involves changing the setup of a plane, the atomic
1367 * infrastructure will call this to validate a proposed plane setup.
1368 * However, if a plane isn't getting updated, this (and the
1369 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1370 * compute the dlist here and have all active plane dlists get updated
1371 * in the CRTC's flush.
1372 */
1373static int vc4_plane_atomic_check(struct drm_plane *plane,
1374				  struct drm_atomic_state *state)
1375{
1376	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1377										 plane);
1378	struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1379	int ret;
1380
1381	vc4_state->dlist_count = 0;
1382
1383	if (!plane_enabled(new_plane_state))
1384		return 0;
1385
1386	ret = vc4_plane_mode_set(plane, new_plane_state);
1387	if (ret)
1388		return ret;
1389
1390	ret = vc4_plane_allocate_lbm(new_plane_state);
1391	if (ret)
1392		return ret;
1393
1394	return 0;
1395}
1396
1397static void vc4_plane_atomic_update(struct drm_plane *plane,
1398				    struct drm_atomic_state *state)
1399{
1400	/* No contents here.  Since we don't know where in the CRTC's
1401	 * dlist we should be stored, our dlist is uploaded to the
1402	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1403	 * time.
1404	 */
1405}
1406
1407u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1408{
1409	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1410	int i;
1411	int idx;
1412
1413	if (!drm_dev_enter(plane->dev, &idx))
1414		goto out;
1415
1416	vc4_state->hw_dlist = dlist;
1417
1418	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1419	for (i = 0; i < vc4_state->dlist_count; i++)
1420		writel(vc4_state->dlist[i], &dlist[i]);
1421
1422	drm_dev_exit(idx);
1423
1424out:
1425	return vc4_state->dlist_count;
1426}
1427
1428u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1429{
1430	const struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 
1431
1432	return vc4_state->dlist_count;
1433}
1434
1435/* Updates the plane to immediately (well, once the FIFO needs
1436 * refilling) scan out from at a new framebuffer.
1437 */
1438void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1439{
1440	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1441	struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
1442	uint32_t addr;
1443	int idx;
1444
1445	if (!drm_dev_enter(plane->dev, &idx))
1446		return;
1447
1448	/* We're skipping the address adjustment for negative origin,
1449	 * because this is only called on the primary plane.
1450	 */
1451	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1452	addr = bo->dma_addr + fb->offsets[0];
1453
1454	/* Write the new address into the hardware immediately.  The
1455	 * scanout will start from this address as soon as the FIFO
1456	 * needs to refill with pixels.
1457	 */
1458	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset[0]]);
1459
1460	/* Also update the CPU-side dlist copy, so that any later
1461	 * atomic updates that don't do a new modeset on our plane
1462	 * also use our updated address.
1463	 */
1464	vc4_state->dlist[vc4_state->ptr0_offset[0]] = addr;
1465
1466	drm_dev_exit(idx);
1467}
1468
1469static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1470					  struct drm_atomic_state *state)
1471{
1472	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1473										 plane);
1474	struct vc4_plane_state *vc4_state, *new_vc4_state;
1475	int idx;
1476
1477	if (!drm_dev_enter(plane->dev, &idx))
1478		return;
1479
1480	swap(plane->state->fb, new_plane_state->fb);
1481	plane->state->crtc_x = new_plane_state->crtc_x;
1482	plane->state->crtc_y = new_plane_state->crtc_y;
1483	plane->state->crtc_w = new_plane_state->crtc_w;
1484	plane->state->crtc_h = new_plane_state->crtc_h;
1485	plane->state->src_x = new_plane_state->src_x;
1486	plane->state->src_y = new_plane_state->src_y;
1487	plane->state->src_w = new_plane_state->src_w;
1488	plane->state->src_h = new_plane_state->src_h;
1489	plane->state->alpha = new_plane_state->alpha;
1490	plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1491	plane->state->rotation = new_plane_state->rotation;
1492	plane->state->zpos = new_plane_state->zpos;
1493	plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1494	plane->state->color_encoding = new_plane_state->color_encoding;
1495	plane->state->color_range = new_plane_state->color_range;
1496	plane->state->src = new_plane_state->src;
1497	plane->state->dst = new_plane_state->dst;
1498	plane->state->visible = new_plane_state->visible;
1499
1500	new_vc4_state = to_vc4_plane_state(new_plane_state);
1501	vc4_state = to_vc4_plane_state(plane->state);
1502
1503	vc4_state->crtc_x = new_vc4_state->crtc_x;
1504	vc4_state->crtc_y = new_vc4_state->crtc_y;
1505	vc4_state->crtc_h = new_vc4_state->crtc_h;
1506	vc4_state->crtc_w = new_vc4_state->crtc_w;
1507	vc4_state->src_x = new_vc4_state->src_x;
1508	vc4_state->src_y = new_vc4_state->src_y;
1509	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1510	       sizeof(vc4_state->src_w));
1511	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1512	       sizeof(vc4_state->src_h));
1513	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1514	       sizeof(vc4_state->x_scaling));
1515	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1516	       sizeof(vc4_state->y_scaling));
1517	vc4_state->is_unity = new_vc4_state->is_unity;
1518	vc4_state->is_yuv = new_vc4_state->is_yuv;
 
 
1519	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1520
1521	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1522	vc4_state->dlist[vc4_state->pos0_offset] =
1523		new_vc4_state->dlist[vc4_state->pos0_offset];
1524	vc4_state->dlist[vc4_state->pos2_offset] =
1525		new_vc4_state->dlist[vc4_state->pos2_offset];
1526	vc4_state->dlist[vc4_state->ptr0_offset[0]] =
1527		new_vc4_state->dlist[vc4_state->ptr0_offset[0]];
1528
1529	/* Note that we can't just call vc4_plane_write_dlist()
1530	 * because that would smash the context data that the HVS is
1531	 * currently using.
1532	 */
1533	writel(vc4_state->dlist[vc4_state->pos0_offset],
1534	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1535	writel(vc4_state->dlist[vc4_state->pos2_offset],
1536	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1537	writel(vc4_state->dlist[vc4_state->ptr0_offset[0]],
1538	       &vc4_state->hw_dlist[vc4_state->ptr0_offset[0]]);
1539
1540	drm_dev_exit(idx);
1541}
1542
1543static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1544					struct drm_atomic_state *state)
1545{
1546	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1547										 plane);
1548	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1549	int ret;
1550	u32 i;
1551
1552	ret = vc4_plane_mode_set(plane, new_plane_state);
1553	if (ret)
1554		return ret;
1555
1556	old_vc4_state = to_vc4_plane_state(plane->state);
1557	new_vc4_state = to_vc4_plane_state(new_plane_state);
1558
1559	if (!new_vc4_state->hw_dlist)
1560		return -EINVAL;
1561
1562	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1563	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1564	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1565	    old_vc4_state->ptr0_offset[0] != new_vc4_state->ptr0_offset[0] ||
1566	    vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1567		return -EINVAL;
1568
1569	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1570	 * if anything else has changed, fallback to a sync update.
1571	 */
1572	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1573		if (i == new_vc4_state->pos0_offset ||
1574		    i == new_vc4_state->pos2_offset ||
1575		    i == new_vc4_state->ptr0_offset[0] ||
1576		    (new_vc4_state->lbm_offset &&
1577		     i == new_vc4_state->lbm_offset))
1578			continue;
1579
1580		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1581			return -EINVAL;
1582	}
1583
1584	return 0;
1585}
1586
1587static int vc4_prepare_fb(struct drm_plane *plane,
1588			  struct drm_plane_state *state)
1589{
1590	struct vc4_bo *bo;
1591	int ret;
1592
1593	if (!state->fb)
1594		return 0;
1595
1596	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
 
 
 
 
 
1597
1598	ret = drm_gem_plane_helper_prepare_fb(plane, state);
1599	if (ret)
1600		return ret;
1601
1602	return vc4_bo_inc_usecnt(bo);
1603}
1604
1605static void vc4_cleanup_fb(struct drm_plane *plane,
1606			   struct drm_plane_state *state)
1607{
1608	struct vc4_bo *bo;
1609
1610	if (!state->fb)
1611		return;
1612
1613	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1614	vc4_bo_dec_usecnt(bo);
1615}
1616
1617static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1618	.atomic_check = vc4_plane_atomic_check,
1619	.atomic_update = vc4_plane_atomic_update,
1620	.prepare_fb = vc4_prepare_fb,
1621	.cleanup_fb = vc4_cleanup_fb,
1622	.atomic_async_check = vc4_plane_atomic_async_check,
1623	.atomic_async_update = vc4_plane_atomic_async_update,
1624};
1625
1626static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
1627	.atomic_check = vc4_plane_atomic_check,
1628	.atomic_update = vc4_plane_atomic_update,
1629	.atomic_async_check = vc4_plane_atomic_async_check,
1630	.atomic_async_update = vc4_plane_atomic_async_update,
1631};
1632
1633static bool vc4_format_mod_supported(struct drm_plane *plane,
1634				     uint32_t format,
1635				     uint64_t modifier)
1636{
1637	/* Support T_TILING for RGB formats only. */
1638	switch (format) {
1639	case DRM_FORMAT_XRGB8888:
1640	case DRM_FORMAT_ARGB8888:
1641	case DRM_FORMAT_ABGR8888:
1642	case DRM_FORMAT_XBGR8888:
1643	case DRM_FORMAT_RGB565:
1644	case DRM_FORMAT_BGR565:
1645	case DRM_FORMAT_ARGB1555:
1646	case DRM_FORMAT_XRGB1555:
1647		switch (fourcc_mod_broadcom_mod(modifier)) {
1648		case DRM_FORMAT_MOD_LINEAR:
1649		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1650			return true;
1651		default:
1652			return false;
1653		}
1654	case DRM_FORMAT_NV12:
1655	case DRM_FORMAT_NV21:
1656		switch (fourcc_mod_broadcom_mod(modifier)) {
1657		case DRM_FORMAT_MOD_LINEAR:
1658		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1659		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1660		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1661			return true;
1662		default:
1663			return false;
1664		}
1665	case DRM_FORMAT_P030:
1666		switch (fourcc_mod_broadcom_mod(modifier)) {
1667		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1668			return true;
1669		default:
1670			return false;
1671		}
1672	case DRM_FORMAT_RGBX1010102:
1673	case DRM_FORMAT_BGRX1010102:
1674	case DRM_FORMAT_RGBA1010102:
1675	case DRM_FORMAT_BGRA1010102:
1676	case DRM_FORMAT_XRGB4444:
1677	case DRM_FORMAT_ARGB4444:
1678	case DRM_FORMAT_XBGR4444:
1679	case DRM_FORMAT_ABGR4444:
1680	case DRM_FORMAT_RGBX4444:
1681	case DRM_FORMAT_RGBA4444:
1682	case DRM_FORMAT_BGRX4444:
1683	case DRM_FORMAT_BGRA4444:
1684	case DRM_FORMAT_RGB332:
1685	case DRM_FORMAT_BGR233:
1686	case DRM_FORMAT_YUV422:
1687	case DRM_FORMAT_YVU422:
1688	case DRM_FORMAT_YUV420:
1689	case DRM_FORMAT_YVU420:
1690	case DRM_FORMAT_NV16:
1691	case DRM_FORMAT_NV61:
1692	default:
1693		return (modifier == DRM_FORMAT_MOD_LINEAR);
1694	}
1695}
1696
1697static const struct drm_plane_funcs vc4_plane_funcs = {
1698	.update_plane = drm_atomic_helper_update_plane,
1699	.disable_plane = drm_atomic_helper_disable_plane,
 
 
1700	.reset = vc4_plane_reset,
1701	.atomic_duplicate_state = vc4_plane_duplicate_state,
1702	.atomic_destroy_state = vc4_plane_destroy_state,
1703	.format_mod_supported = vc4_format_mod_supported,
1704};
1705
1706struct drm_plane *vc4_plane_init(struct drm_device *dev,
1707				 enum drm_plane_type type,
1708				 uint32_t possible_crtcs)
1709{
1710	struct vc4_dev *vc4 = to_vc4_dev(dev);
1711	struct drm_plane *plane;
1712	struct vc4_plane *vc4_plane;
1713	u32 formats[ARRAY_SIZE(hvs_formats)];
1714	int num_formats = 0;
1715	unsigned i;
1716	static const uint64_t modifiers[] = {
1717		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1718		DRM_FORMAT_MOD_BROADCOM_SAND128,
1719		DRM_FORMAT_MOD_BROADCOM_SAND64,
1720		DRM_FORMAT_MOD_BROADCOM_SAND256,
1721		DRM_FORMAT_MOD_LINEAR,
1722		DRM_FORMAT_MOD_INVALID
1723	};
1724
1725	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
1726		if (!hvs_formats[i].hvs5_only || vc4->gen == VC4_GEN_5) {
1727			formats[num_formats] = hvs_formats[i].drm;
1728			num_formats++;
1729		}
1730	}
 
1731
1732	vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
1733					       possible_crtcs,
1734					       &vc4_plane_funcs,
1735					       formats, num_formats,
1736					       modifiers, type, NULL);
1737	if (IS_ERR(vc4_plane))
1738		return ERR_CAST(vc4_plane);
1739	plane = &vc4_plane->base;
 
 
 
 
 
 
1740
1741	if (vc4->gen == VC4_GEN_5)
1742		drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
1743	else
1744		drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1745
1746	drm_plane_create_alpha_property(plane);
1747	drm_plane_create_blend_mode_property(plane,
1748					     BIT(DRM_MODE_BLEND_PIXEL_NONE) |
1749					     BIT(DRM_MODE_BLEND_PREMULTI) |
1750					     BIT(DRM_MODE_BLEND_COVERAGE));
1751	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1752					   DRM_MODE_ROTATE_0 |
1753					   DRM_MODE_ROTATE_180 |
1754					   DRM_MODE_REFLECT_X |
1755					   DRM_MODE_REFLECT_Y);
1756
1757	drm_plane_create_color_properties(plane,
1758					  BIT(DRM_COLOR_YCBCR_BT601) |
1759					  BIT(DRM_COLOR_YCBCR_BT709) |
1760					  BIT(DRM_COLOR_YCBCR_BT2020),
1761					  BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
1762					  BIT(DRM_COLOR_YCBCR_FULL_RANGE),
1763					  DRM_COLOR_YCBCR_BT709,
1764					  DRM_COLOR_YCBCR_LIMITED_RANGE);
1765
1766	if (type == DRM_PLANE_TYPE_PRIMARY)
1767		drm_plane_create_zpos_immutable_property(plane, 0);
1768
1769	return plane;
1770}
1771
1772#define VC4_NUM_OVERLAY_PLANES	16
1773
1774int vc4_plane_create_additional_planes(struct drm_device *drm)
1775{
1776	struct drm_plane *cursor_plane;
1777	struct drm_crtc *crtc;
1778	unsigned int i;
1779
1780	/* Set up some arbitrary number of planes.  We're not limited
1781	 * by a set number of physical registers, just the space in
1782	 * the HVS (16k) and how small an plane can be (28 bytes).
1783	 * However, each plane we set up takes up some memory, and
1784	 * increases the cost of looping over planes, which atomic
1785	 * modesetting does quite a bit.  As a result, we pick a
1786	 * modest number of planes to expose, that should hopefully
1787	 * still cover any sane usecase.
1788	 */
1789	for (i = 0; i < VC4_NUM_OVERLAY_PLANES; i++) {
1790		struct drm_plane *plane =
1791			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
1792				       GENMASK(drm->mode_config.num_crtc - 1, 0));
1793
1794		if (IS_ERR(plane))
1795			continue;
1796
1797		/* Create zpos property. Max of all the overlays + 1 primary +
1798		 * 1 cursor plane on a crtc.
1799		 */
1800		drm_plane_create_zpos_property(plane, i + 1, 1,
1801					       VC4_NUM_OVERLAY_PLANES + 1);
1802	}
1803
1804	drm_for_each_crtc(crtc, drm) {
1805		/* Set up the legacy cursor after overlay initialization,
1806		 * since the zpos fallback is that planes are rendered by plane
1807		 * ID order, and that then puts the cursor on top.
1808		 */
1809		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
1810					      drm_crtc_mask(crtc));
1811		if (!IS_ERR(cursor_plane)) {
 
1812			crtc->cursor = cursor_plane;
1813
1814			drm_plane_create_zpos_property(cursor_plane,
1815						       VC4_NUM_OVERLAY_PLANES + 1,
1816						       1,
1817						       VC4_NUM_OVERLAY_PLANES + 1);
1818		}
1819	}
1820
1821	return 0;
1822}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
   4 */
   5
   6/**
   7 * DOC: VC4 plane module
   8 *
   9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
  10 *
  11 * At atomic modeset check time, we compute the HVS display element
  12 * state that would be necessary for displaying the plane (giving us a
  13 * chance to figure out if a plane configuration is invalid), then at
  14 * atomic flush time the CRTC will ask us to write our element state
  15 * into the region of the HVS that it has allocated for us.
  16 */
  17
  18#include <drm/drm_atomic.h>
  19#include <drm/drm_atomic_helper.h>
  20#include <drm/drm_atomic_uapi.h>
  21#include <drm/drm_fb_cma_helper.h>
 
 
  22#include <drm/drm_fourcc.h>
 
  23#include <drm/drm_gem_atomic_helper.h>
  24#include <drm/drm_plane_helper.h>
  25
  26#include "uapi/drm/vc4_drm.h"
  27
  28#include "vc4_drv.h"
  29#include "vc4_regs.h"
  30
  31static const struct hvs_format {
  32	u32 drm; /* DRM_FORMAT_* */
  33	u32 hvs; /* HVS_FORMAT_* */
  34	u32 pixel_order;
  35	u32 pixel_order_hvs5;
 
  36} hvs_formats[] = {
  37	{
  38		.drm = DRM_FORMAT_XRGB8888,
  39		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  40		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  41		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  42	},
  43	{
  44		.drm = DRM_FORMAT_ARGB8888,
  45		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  46		.pixel_order = HVS_PIXEL_ORDER_ABGR,
  47		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
  48	},
  49	{
  50		.drm = DRM_FORMAT_ABGR8888,
  51		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  52		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  53		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  54	},
  55	{
  56		.drm = DRM_FORMAT_XBGR8888,
  57		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
  58		.pixel_order = HVS_PIXEL_ORDER_ARGB,
  59		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
  60	},
  61	{
  62		.drm = DRM_FORMAT_RGB565,
  63		.hvs = HVS_PIXEL_FORMAT_RGB565,
  64		.pixel_order = HVS_PIXEL_ORDER_XRGB,
 
  65	},
  66	{
  67		.drm = DRM_FORMAT_BGR565,
  68		.hvs = HVS_PIXEL_FORMAT_RGB565,
  69		.pixel_order = HVS_PIXEL_ORDER_XBGR,
 
  70	},
  71	{
  72		.drm = DRM_FORMAT_ARGB1555,
  73		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  74		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 
  75	},
  76	{
  77		.drm = DRM_FORMAT_XRGB1555,
  78		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
  79		.pixel_order = HVS_PIXEL_ORDER_ABGR,
 
  80	},
  81	{
  82		.drm = DRM_FORMAT_RGB888,
  83		.hvs = HVS_PIXEL_FORMAT_RGB888,
  84		.pixel_order = HVS_PIXEL_ORDER_XRGB,
 
  85	},
  86	{
  87		.drm = DRM_FORMAT_BGR888,
  88		.hvs = HVS_PIXEL_FORMAT_RGB888,
  89		.pixel_order = HVS_PIXEL_ORDER_XBGR,
 
  90	},
  91	{
  92		.drm = DRM_FORMAT_YUV422,
  93		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
  94		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 
  95	},
  96	{
  97		.drm = DRM_FORMAT_YVU422,
  98		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
  99		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 
 
 
 
 
 
 
 
 
 
 
 
 
 100	},
 101	{
 102		.drm = DRM_FORMAT_YUV420,
 103		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 104		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 
 105	},
 106	{
 107		.drm = DRM_FORMAT_YVU420,
 108		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
 109		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 
 110	},
 111	{
 112		.drm = DRM_FORMAT_NV12,
 113		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 114		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 
 115	},
 116	{
 117		.drm = DRM_FORMAT_NV21,
 118		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
 119		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 
 120	},
 121	{
 122		.drm = DRM_FORMAT_NV16,
 123		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 124		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
 
 125	},
 126	{
 127		.drm = DRM_FORMAT_NV61,
 128		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
 129		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130	},
 131};
 132
 133static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
 134{
 135	unsigned i;
 136
 137	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
 138		if (hvs_formats[i].drm == drm_format)
 139			return &hvs_formats[i];
 140	}
 141
 142	return NULL;
 143}
 144
 145static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
 146{
 147	if (dst == src)
 148		return VC4_SCALING_NONE;
 149	if (3 * dst >= 2 * src)
 150		return VC4_SCALING_PPF;
 151	else
 152		return VC4_SCALING_TPZ;
 153}
 154
 155static bool plane_enabled(struct drm_plane_state *state)
 156{
 157	return state->fb && !WARN_ON(!state->crtc);
 158}
 159
 160static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
 161{
 162	struct vc4_plane_state *vc4_state;
 163
 164	if (WARN_ON(!plane->state))
 165		return NULL;
 166
 167	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
 168	if (!vc4_state)
 169		return NULL;
 170
 171	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
 172	vc4_state->dlist_initialized = 0;
 173
 174	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
 175
 176	if (vc4_state->dlist) {
 177		vc4_state->dlist = kmemdup(vc4_state->dlist,
 178					   vc4_state->dlist_count * 4,
 179					   GFP_KERNEL);
 180		if (!vc4_state->dlist) {
 181			kfree(vc4_state);
 182			return NULL;
 183		}
 184		vc4_state->dlist_size = vc4_state->dlist_count;
 185	}
 186
 187	return &vc4_state->base;
 188}
 189
 190static void vc4_plane_destroy_state(struct drm_plane *plane,
 191				    struct drm_plane_state *state)
 192{
 193	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 194	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 195
 196	if (drm_mm_node_allocated(&vc4_state->lbm)) {
 197		unsigned long irqflags;
 198
 199		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 200		drm_mm_remove_node(&vc4_state->lbm);
 201		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 202	}
 203
 204	kfree(vc4_state->dlist);
 205	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
 206	kfree(state);
 207}
 208
 209/* Called during init to allocate the plane's atomic state. */
 210static void vc4_plane_reset(struct drm_plane *plane)
 211{
 212	struct vc4_plane_state *vc4_state;
 213
 214	WARN_ON(plane->state);
 215
 216	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 217	if (!vc4_state)
 218		return;
 219
 220	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
 221}
 222
 223static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
 224{
 225	if (vc4_state->dlist_count == vc4_state->dlist_size) {
 226		u32 new_size = max(4u, vc4_state->dlist_count * 2);
 227		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
 228
 229		if (!new_dlist)
 230			return;
 231		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
 232
 233		kfree(vc4_state->dlist);
 234		vc4_state->dlist = new_dlist;
 235		vc4_state->dlist_size = new_size;
 236	}
 237
 238	vc4_state->dlist_count++;
 239}
 240
 241static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
 242{
 243	unsigned int idx = vc4_state->dlist_count;
 244
 245	vc4_dlist_counter_increment(vc4_state);
 246	vc4_state->dlist[idx] = val;
 247}
 248
 249/* Returns the scl0/scl1 field based on whether the dimensions need to
 250 * be up/down/non-scaled.
 251 *
 252 * This is a replication of a table from the spec.
 253 */
 254static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
 255{
 256	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 257
 258	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
 259	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
 260		return SCALER_CTL0_SCL_H_PPF_V_PPF;
 261	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
 262		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
 263	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
 264		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
 265	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
 266		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
 267	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
 268		return SCALER_CTL0_SCL_H_PPF_V_NONE;
 269	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
 270		return SCALER_CTL0_SCL_H_NONE_V_PPF;
 271	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
 272		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
 273	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
 274		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
 275	default:
 276	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
 277		/* The unity case is independently handled by
 278		 * SCALER_CTL0_UNITY.
 279		 */
 280		return 0;
 281	}
 282}
 283
 284static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
 285{
 286	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
 287	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
 288	struct drm_crtc_state *crtc_state;
 289
 290	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
 291						   pstate->crtc);
 292
 293	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
 294	if (!left && !right && !top && !bottom)
 295		return 0;
 296
 297	if (left + right >= crtc_state->mode.hdisplay ||
 298	    top + bottom >= crtc_state->mode.vdisplay)
 299		return -EINVAL;
 300
 301	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
 302	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
 303					       adjhdisplay,
 304					       crtc_state->mode.hdisplay);
 305	vc4_pstate->crtc_x += left;
 306	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
 307		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
 308
 309	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
 310	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
 311					       adjvdisplay,
 312					       crtc_state->mode.vdisplay);
 313	vc4_pstate->crtc_y += top;
 314	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
 315		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
 316
 317	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
 318					       adjhdisplay,
 319					       crtc_state->mode.hdisplay);
 320	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
 321					       adjvdisplay,
 322					       crtc_state->mode.vdisplay);
 323
 324	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
 325		return -EINVAL;
 326
 327	return 0;
 328}
 329
 330static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
 331{
 332	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 333	struct drm_framebuffer *fb = state->fb;
 334	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
 335	u32 subpixel_src_mask = (1 << 16) - 1;
 336	int num_planes = fb->format->num_planes;
 337	struct drm_crtc_state *crtc_state;
 338	u32 h_subsample = fb->format->hsub;
 339	u32 v_subsample = fb->format->vsub;
 340	int i, ret;
 341
 342	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 343							state->crtc);
 344	if (!crtc_state) {
 345		DRM_DEBUG_KMS("Invalid crtc state\n");
 346		return -EINVAL;
 347	}
 348
 349	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
 350						  INT_MAX, true, true);
 351	if (ret)
 352		return ret;
 353
 354	for (i = 0; i < num_planes; i++)
 355		vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
 356
 357	/* We don't support subpixel source positioning for scaling. */
 358	if ((state->src.x1 & subpixel_src_mask) ||
 359	    (state->src.x2 & subpixel_src_mask) ||
 360	    (state->src.y1 & subpixel_src_mask) ||
 361	    (state->src.y2 & subpixel_src_mask)) {
 362		return -EINVAL;
 363	}
 364
 365	vc4_state->src_x = state->src.x1 >> 16;
 366	vc4_state->src_y = state->src.y1 >> 16;
 367	vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
 368	vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
 369
 370	vc4_state->crtc_x = state->dst.x1;
 371	vc4_state->crtc_y = state->dst.y1;
 372	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
 373	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
 374
 375	ret = vc4_plane_margins_adj(state);
 376	if (ret)
 377		return ret;
 378
 379	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
 380						       vc4_state->crtc_w);
 381	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
 382						       vc4_state->crtc_h);
 383
 384	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
 385			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
 386
 387	if (num_planes > 1) {
 388		vc4_state->is_yuv = true;
 389
 390		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
 391		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
 392
 393		vc4_state->x_scaling[1] =
 394			vc4_get_scaling_mode(vc4_state->src_w[1],
 395					     vc4_state->crtc_w);
 396		vc4_state->y_scaling[1] =
 397			vc4_get_scaling_mode(vc4_state->src_h[1],
 398					     vc4_state->crtc_h);
 399
 400		/* YUV conversion requires that horizontal scaling be enabled
 401		 * on the UV plane even if vc4_get_scaling_mode() returned
 402		 * VC4_SCALING_NONE (which can happen when the down-scaling
 403		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
 404		 * case.
 405		 */
 406		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
 407			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
 
 
 
 
 
 
 408	} else {
 409		vc4_state->is_yuv = false;
 410		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
 411		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
 412	}
 413
 414	return 0;
 415}
 416
 417static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
 418{
 419	u32 scale, recip;
 420
 421	scale = (1 << 16) * src / dst;
 422
 423	/* The specs note that while the reciprocal would be defined
 424	 * as (1<<32)/scale, ~0 is close enough.
 425	 */
 426	recip = ~0 / scale;
 427
 428	vc4_dlist_write(vc4_state,
 429			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
 430			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
 431	vc4_dlist_write(vc4_state,
 432			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
 433}
 434
 435static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
 
 
 
 
 436{
 437	u32 scale = (1 << 16) * src / dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439	vc4_dlist_write(vc4_state,
 440			SCALER_PPF_AGC |
 441			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
 442			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
 443}
 444
 445static u32 vc4_lbm_size(struct drm_plane_state *state)
 446{
 447	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 448	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
 449	u32 pix_per_line;
 450	u32 lbm;
 451
 452	/* LBM is not needed when there's no vertical scaling. */
 453	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
 454	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
 455		return 0;
 456
 457	/*
 458	 * This can be further optimized in the RGB/YUV444 case if the PPF
 459	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
 460	 *
 461	 * It's not an issue though, since in that case since src_w[0] is going
 462	 * to be greater than or equal to crtc_w.
 463	 */
 464	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
 465		pix_per_line = vc4_state->crtc_w;
 466	else
 467		pix_per_line = vc4_state->src_w[0];
 468
 469	if (!vc4_state->is_yuv) {
 470		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
 471			lbm = pix_per_line * 8;
 472		else {
 473			/* In special cases, this multiplier might be 12. */
 474			lbm = pix_per_line * 16;
 475		}
 476	} else {
 477		/* There are cases for this going down to a multiplier
 478		 * of 2, but according to the firmware source, the
 479		 * table in the docs is somewhat wrong.
 480		 */
 481		lbm = pix_per_line * 16;
 482	}
 483
 484	/* Align it to 64 or 128 (hvs5) bytes */
 485	lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
 486
 487	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
 488	lbm /= vc4->hvs->hvs5 ? 4 : 2;
 489
 490	return lbm;
 491}
 492
 493static void vc4_write_scaling_parameters(struct drm_plane_state *state,
 494					 int channel)
 495{
 496	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 497
 498	/* Ch0 H-PPF Word 0: Scaling Parameters */
 499	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
 500		vc4_write_ppf(vc4_state,
 501			      vc4_state->src_w[channel], vc4_state->crtc_w);
 502	}
 503
 504	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
 505	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
 506		vc4_write_ppf(vc4_state,
 507			      vc4_state->src_h[channel], vc4_state->crtc_h);
 508		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 509	}
 510
 511	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
 512	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
 513		vc4_write_tpz(vc4_state,
 514			      vc4_state->src_w[channel], vc4_state->crtc_w);
 515	}
 516
 517	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
 518	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
 519		vc4_write_tpz(vc4_state,
 520			      vc4_state->src_h[channel], vc4_state->crtc_h);
 521		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 522	}
 523}
 524
 525static void vc4_plane_calc_load(struct drm_plane_state *state)
 526{
 527	unsigned int hvs_load_shift, vrefresh, i;
 528	struct drm_framebuffer *fb = state->fb;
 529	struct vc4_plane_state *vc4_state;
 530	struct drm_crtc_state *crtc_state;
 531	unsigned int vscale_factor;
 532	struct vc4_dev *vc4;
 533
 534	vc4 = to_vc4_dev(state->plane->dev);
 535	if (!vc4->load_tracker_available)
 536		return;
 537
 538	vc4_state = to_vc4_plane_state(state);
 539	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
 540							state->crtc);
 541	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
 542
 543	/* The HVS is able to process 2 pixels/cycle when scaling the source,
 544	 * 4 pixels/cycle otherwise.
 545	 * Alpha blending step seems to be pipelined and it's always operating
 546	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
 547	 * scaler block.
 548	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
 549	 */
 550	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
 551	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
 552	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
 553	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
 554		hvs_load_shift = 1;
 555	else
 556		hvs_load_shift = 2;
 557
 558	vc4_state->membus_load = 0;
 559	vc4_state->hvs_load = 0;
 560	for (i = 0; i < fb->format->num_planes; i++) {
 561		/* Even if the bandwidth/plane required for a single frame is
 562		 *
 563		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
 
 564		 *
 565		 * when downscaling, we have to read more pixels per line in
 566		 * the time frame reserved for a single line, so the bandwidth
 567		 * demand can be punctually higher. To account for that, we
 568		 * calculate the down-scaling factor and multiply the plane
 569		 * load by this number. We're likely over-estimating the read
 570		 * demand, but that's better than under-estimating it.
 571		 */
 572		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
 573					     vc4_state->crtc_h);
 574		vc4_state->membus_load += vc4_state->src_w[i] *
 575					  vc4_state->src_h[i] * vscale_factor *
 576					  fb->format->cpp[i];
 577		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
 578	}
 579
 580	vc4_state->hvs_load *= vrefresh;
 581	vc4_state->hvs_load >>= hvs_load_shift;
 582	vc4_state->membus_load *= vrefresh;
 583}
 584
 585static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
 586{
 587	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
 
 
 588	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 589	unsigned long irqflags;
 590	u32 lbm_size;
 591
 592	lbm_size = vc4_lbm_size(state);
 593	if (!lbm_size)
 594		return 0;
 595
 
 
 
 
 
 
 
 
 596	if (WARN_ON(!vc4_state->lbm_offset))
 597		return -EINVAL;
 598
 599	/* Allocate the LBM memory that the HVS will use for temporary
 600	 * storage due to our scaling/format conversion.
 601	 */
 602	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
 603		int ret;
 604
 605		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
 606		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
 607						 &vc4_state->lbm,
 608						 lbm_size,
 609						 vc4->hvs->hvs5 ? 64 : 32,
 610						 0, 0);
 611		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
 612
 613		if (ret)
 
 614			return ret;
 
 615	} else {
 616		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
 617	}
 618
 619	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
 620
 621	return 0;
 622}
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624/* Writes out a full display list for an active plane to the plane's
 625 * private dlist state.
 626 */
 627static int vc4_plane_mode_set(struct drm_plane *plane,
 628			      struct drm_plane_state *state)
 629{
 630	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
 631	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
 632	struct drm_framebuffer *fb = state->fb;
 633	u32 ctl0_offset = vc4_state->dlist_count;
 634	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
 635	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
 636	int num_planes = fb->format->num_planes;
 637	u32 h_subsample = fb->format->hsub;
 638	u32 v_subsample = fb->format->vsub;
 639	bool mix_plane_alpha;
 640	bool covers_screen;
 641	u32 scl0, scl1, pitch0;
 642	u32 tiling, src_y;
 
 643	u32 hvs_format = format->hvs;
 644	unsigned int rotation;
 
 645	int ret, i;
 646
 647	if (vc4_state->dlist_initialized)
 648		return 0;
 649
 650	ret = vc4_plane_setup_clipping_and_scaling(state);
 651	if (ret)
 652		return ret;
 653
 
 
 
 654	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
 655	 * and 4:4:4, scl1 should be set to scl0 so both channels of
 656	 * the scaler do the same thing.  For YUV, the Y plane needs
 657	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
 658	 * the scl fields here.
 659	 */
 660	if (num_planes == 1) {
 661		scl0 = vc4_get_scl_field(state, 0);
 662		scl1 = scl0;
 663	} else {
 664		scl0 = vc4_get_scl_field(state, 1);
 665		scl1 = vc4_get_scl_field(state, 0);
 666	}
 667
 668	rotation = drm_rotation_simplify(state->rotation,
 669					 DRM_MODE_ROTATE_0 |
 670					 DRM_MODE_REFLECT_X |
 671					 DRM_MODE_REFLECT_Y);
 672
 673	/* We must point to the last line when Y reflection is enabled. */
 674	src_y = vc4_state->src_y;
 675	if (rotation & DRM_MODE_REFLECT_Y)
 676		src_y += vc4_state->src_h[0] - 1;
 
 
 677
 678	switch (base_format_mod) {
 679	case DRM_FORMAT_MOD_LINEAR:
 680		tiling = SCALER_CTL0_TILING_LINEAR;
 681		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
 682
 683		/* Adjust the base pointer to the first pixel to be scanned
 684		 * out.
 685		 */
 686		for (i = 0; i < num_planes; i++) {
 687			vc4_state->offsets[i] += src_y /
 688						 (i ? v_subsample : 1) *
 689						 fb->pitches[i];
 690
 691			vc4_state->offsets[i] += vc4_state->src_x /
 692						 (i ? h_subsample : 1) *
 693						 fb->format->cpp[i];
 694		}
 695
 696		break;
 697
 698	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
 699		u32 tile_size_shift = 12; /* T tiles are 4kb */
 700		/* Whole-tile offsets, mostly for setting the pitch. */
 701		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
 702		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
 703		u32 tile_w_mask = (1 << tile_w_shift) - 1;
 704		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
 705		 * the height (in pixels) of a 4k tile.
 706		 */
 707		u32 tile_h_mask = (2 << tile_h_shift) - 1;
 708		/* For T-tiled, the FB pitch is "how many bytes from one row to
 709		 * the next, such that
 710		 *
 711		 *	pitch * tile_h == tile_size * tiles_per_row
 712		 */
 713		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
 714		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
 715		u32 tiles_r = tiles_w - tiles_l;
 716		u32 tiles_t = src_y >> tile_h_shift;
 717		/* Intra-tile offsets, which modify the base address (the
 718		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
 719		 * base address).
 720		 */
 721		u32 tile_y = (src_y >> 4) & 1;
 722		u32 subtile_y = (src_y >> 2) & 3;
 723		u32 utile_y = src_y & 3;
 724		u32 x_off = vc4_state->src_x & tile_w_mask;
 725		u32 y_off = src_y & tile_h_mask;
 726
 727		/* When Y reflection is requested we must set the
 728		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
 729		 * after the initial one should be fetched in descending order,
 730		 * which makes sense since we start from the last line and go
 731		 * backward.
 732		 * Don't know why we need y_off = max_y_off - y_off, but it's
 733		 * definitely required (I guess it's also related to the "going
 734		 * backward" situation).
 735		 */
 736		if (rotation & DRM_MODE_REFLECT_Y) {
 737			y_off = tile_h_mask - y_off;
 738			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
 739		} else {
 740			pitch0 = 0;
 741		}
 742
 743		tiling = SCALER_CTL0_TILING_256B_OR_T;
 744		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
 745			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
 746			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
 747			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
 748		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
 749		vc4_state->offsets[0] += subtile_y << 8;
 750		vc4_state->offsets[0] += utile_y << 4;
 751
 752		/* Rows of tiles alternate left-to-right and right-to-left. */
 753		if (tiles_t & 1) {
 754			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
 755			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
 756						 tile_size_shift;
 757			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
 758		} else {
 759			vc4_state->offsets[0] += tiles_l << tile_size_shift;
 760			vc4_state->offsets[0] += tile_y << 10;
 761		}
 762
 763		break;
 764	}
 765
 766	case DRM_FORMAT_MOD_BROADCOM_SAND64:
 767	case DRM_FORMAT_MOD_BROADCOM_SAND128:
 768	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
 769		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
 770		u32 tile_w, tile, x_off, pix_per_tile;
 771
 772		hvs_format = HVS_PIXEL_FORMAT_H264;
 
 
 
 
 773
 774		switch (base_format_mod) {
 775		case DRM_FORMAT_MOD_BROADCOM_SAND64:
 776			tiling = SCALER_CTL0_TILING_64B;
 777			tile_w = 64;
 778			break;
 779		case DRM_FORMAT_MOD_BROADCOM_SAND128:
 780			tiling = SCALER_CTL0_TILING_128B;
 781			tile_w = 128;
 782			break;
 783		case DRM_FORMAT_MOD_BROADCOM_SAND256:
 784			tiling = SCALER_CTL0_TILING_256B_OR_T;
 785			tile_w = 256;
 786			break;
 787		default:
 788			break;
 789		}
 790
 791		if (param > SCALER_TILE_HEIGHT_MASK) {
 792			DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
 793			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 794		}
 795
 796		pix_per_tile = tile_w / fb->format->cpp[0];
 797		tile = vc4_state->src_x / pix_per_tile;
 798		x_off = vc4_state->src_x % pix_per_tile;
 799
 800		/* Adjust the base pointer to the first pixel to be scanned
 801		 * out.
 
 
 
 
 
 
 
 802		 */
 803		for (i = 0; i < num_planes; i++) {
 804			vc4_state->offsets[i] += param * tile_w * tile;
 805			vc4_state->offsets[i] += src_y /
 806						 (i ? v_subsample : 1) *
 807						 tile_w;
 808			vc4_state->offsets[i] += x_off /
 809						 (i ? h_subsample : 1) *
 810						 fb->format->cpp[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811		}
 812
 813		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
 814		break;
 815	}
 816
 817	default:
 818		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
 819			      (long long)fb->modifier);
 820		return -EINVAL;
 821	}
 822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	/* Don't waste cycles mixing with plane alpha if the set alpha
 824	 * is opaque or there is no per-pixel alpha information.
 825	 * In any case we use the alpha property value as the fixed alpha.
 826	 */
 827	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
 828			  fb->format->has_alpha;
 829
 830	if (!vc4->hvs->hvs5) {
 831	/* Control word */
 832		vc4_dlist_write(vc4_state,
 833				SCALER_CTL0_VALID |
 834				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
 835				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
 836				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
 837				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
 838				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
 839				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
 840				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
 841				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
 842				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
 843
 844		/* Position Word 0: Image Positions and Alpha Value */
 845		vc4_state->pos0_offset = vc4_state->dlist_count;
 846		vc4_dlist_write(vc4_state,
 847				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
 848				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
 849				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
 850
 851		/* Position Word 1: Scaled Image Dimensions. */
 852		if (!vc4_state->is_unity) {
 853			vc4_dlist_write(vc4_state,
 854					VC4_SET_FIELD(vc4_state->crtc_w,
 855						      SCALER_POS1_SCL_WIDTH) |
 856					VC4_SET_FIELD(vc4_state->crtc_h,
 857						      SCALER_POS1_SCL_HEIGHT));
 858		}
 859
 860		/* Position Word 2: Source Image Size, Alpha */
 861		vc4_state->pos2_offset = vc4_state->dlist_count;
 862		vc4_dlist_write(vc4_state,
 863				VC4_SET_FIELD(fb->format->has_alpha ?
 864					      SCALER_POS2_ALPHA_MODE_PIPELINE :
 865					      SCALER_POS2_ALPHA_MODE_FIXED,
 866					      SCALER_POS2_ALPHA_MODE) |
 867				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
 868				(fb->format->has_alpha ?
 869						SCALER_POS2_ALPHA_PREMULT : 0) |
 870				VC4_SET_FIELD(vc4_state->src_w[0],
 871					      SCALER_POS2_WIDTH) |
 872				VC4_SET_FIELD(vc4_state->src_h[0],
 873					      SCALER_POS2_HEIGHT));
 874
 875		/* Position Word 3: Context.  Written by the HVS. */
 876		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 877
 878	} else {
 879		u32 hvs_pixel_order = format->pixel_order;
 880
 881		if (format->pixel_order_hvs5)
 882			hvs_pixel_order = format->pixel_order_hvs5;
 883
 884		/* Control word */
 885		vc4_dlist_write(vc4_state,
 886				SCALER_CTL0_VALID |
 887				(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
 888				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
 889				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
 890				(vc4_state->is_unity ?
 891						SCALER5_CTL0_UNITY : 0) |
 892				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
 893				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
 894				SCALER5_CTL0_ALPHA_EXPAND |
 895				SCALER5_CTL0_RGB_EXPAND);
 896
 897		/* Position Word 0: Image Positions and Alpha Value */
 898		vc4_state->pos0_offset = vc4_state->dlist_count;
 899		vc4_dlist_write(vc4_state,
 900				(rotation & DRM_MODE_REFLECT_Y ?
 901						SCALER5_POS0_VFLIP : 0) |
 902				VC4_SET_FIELD(vc4_state->crtc_x,
 903					      SCALER_POS0_START_X) |
 904				(rotation & DRM_MODE_REFLECT_X ?
 905					      SCALER5_POS0_HFLIP : 0) |
 906				VC4_SET_FIELD(vc4_state->crtc_y,
 907					      SCALER5_POS0_START_Y)
 908			       );
 909
 910		/* Control Word 2 */
 911		vc4_dlist_write(vc4_state,
 912				VC4_SET_FIELD(state->alpha >> 4,
 913					      SCALER5_CTL2_ALPHA) |
 914				(fb->format->has_alpha ?
 915					SCALER5_CTL2_ALPHA_PREMULT : 0) |
 916				(mix_plane_alpha ?
 917					SCALER5_CTL2_ALPHA_MIX : 0) |
 918				VC4_SET_FIELD(fb->format->has_alpha ?
 919				      SCALER5_CTL2_ALPHA_MODE_PIPELINE :
 920				      SCALER5_CTL2_ALPHA_MODE_FIXED,
 921				      SCALER5_CTL2_ALPHA_MODE)
 922			       );
 923
 924		/* Position Word 1: Scaled Image Dimensions. */
 925		if (!vc4_state->is_unity) {
 926			vc4_dlist_write(vc4_state,
 927					VC4_SET_FIELD(vc4_state->crtc_w,
 928						      SCALER5_POS1_SCL_WIDTH) |
 929					VC4_SET_FIELD(vc4_state->crtc_h,
 930						      SCALER5_POS1_SCL_HEIGHT));
 931		}
 932
 933		/* Position Word 2: Source Image Size */
 934		vc4_state->pos2_offset = vc4_state->dlist_count;
 935		vc4_dlist_write(vc4_state,
 936				VC4_SET_FIELD(vc4_state->src_w[0],
 937					      SCALER5_POS2_WIDTH) |
 938				VC4_SET_FIELD(vc4_state->src_h[0],
 939					      SCALER5_POS2_HEIGHT));
 940
 941		/* Position Word 3: Context.  Written by the HVS. */
 942		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 943	}
 944
 945
 946	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
 947	 *
 948	 * The pointers may be any byte address.
 949	 */
 950	vc4_state->ptr0_offset = vc4_state->dlist_count;
 951	for (i = 0; i < num_planes; i++)
 952		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
 
 
 
 
 953
 954	/* Pointer Context Word 0/1/2: Written by the HVS */
 955	for (i = 0; i < num_planes; i++)
 956		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
 957
 958	/* Pitch word 0 */
 959	vc4_dlist_write(vc4_state, pitch0);
 960
 961	/* Pitch word 1/2 */
 962	for (i = 1; i < num_planes; i++) {
 963		if (hvs_format != HVS_PIXEL_FORMAT_H264) {
 
 964			vc4_dlist_write(vc4_state,
 965					VC4_SET_FIELD(fb->pitches[i],
 966						      SCALER_SRC_PITCH));
 967		} else {
 968			vc4_dlist_write(vc4_state, pitch0);
 969		}
 970	}
 971
 972	/* Colorspace conversion words */
 973	if (vc4_state->is_yuv) {
 974		vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
 975		vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
 976		vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
 
 
 
 
 
 
 
 
 
 
 
 977	}
 978
 979	vc4_state->lbm_offset = 0;
 980
 981	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
 982	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
 983	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
 984	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
 985		/* Reserve a slot for the LBM Base Address. The real value will
 986		 * be set when calling vc4_plane_allocate_lbm().
 987		 */
 988		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
 989		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
 990			vc4_state->lbm_offset = vc4_state->dlist_count;
 991			vc4_dlist_counter_increment(vc4_state);
 992		}
 993
 994		if (num_planes > 1) {
 995			/* Emit Cb/Cr as channel 0 and Y as channel
 996			 * 1. This matches how we set up scl0/scl1
 997			 * above.
 998			 */
 999			vc4_write_scaling_parameters(state, 1);
1000		}
1001		vc4_write_scaling_parameters(state, 0);
1002
1003		/* If any PPF setup was done, then all the kernel
1004		 * pointers get uploaded.
1005		 */
1006		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1007		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1008		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1009		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1010			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1011						   SCALER_PPF_KERNEL_OFFSET);
1012
1013			/* HPPF plane 0 */
1014			vc4_dlist_write(vc4_state, kernel);
1015			/* VPPF plane 0 */
1016			vc4_dlist_write(vc4_state, kernel);
1017			/* HPPF plane 1 */
1018			vc4_dlist_write(vc4_state, kernel);
1019			/* VPPF plane 1 */
1020			vc4_dlist_write(vc4_state, kernel);
1021		}
1022	}
1023
1024	vc4_state->dlist[ctl0_offset] |=
1025		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1026
1027	/* crtc_* are already clipped coordinates. */
1028	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1029			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1030			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1031	/* Background fill might be necessary when the plane has per-pixel
1032	 * alpha content or a non-opaque plane alpha and could blend from the
1033	 * background or does not cover the entire screen.
1034	 */
1035	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1036				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1037
1038	/* Flag the dlist as initialized to avoid checking it twice in case
1039	 * the async update check already called vc4_plane_mode_set() and
1040	 * decided to fallback to sync update because async update was not
1041	 * possible.
1042	 */
1043	vc4_state->dlist_initialized = 1;
1044
1045	vc4_plane_calc_load(state);
1046
1047	return 0;
1048}
1049
1050/* If a modeset involves changing the setup of a plane, the atomic
1051 * infrastructure will call this to validate a proposed plane setup.
1052 * However, if a plane isn't getting updated, this (and the
1053 * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1054 * compute the dlist here and have all active plane dlists get updated
1055 * in the CRTC's flush.
1056 */
1057static int vc4_plane_atomic_check(struct drm_plane *plane,
1058				  struct drm_atomic_state *state)
1059{
1060	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1061										 plane);
1062	struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1063	int ret;
1064
1065	vc4_state->dlist_count = 0;
1066
1067	if (!plane_enabled(new_plane_state))
1068		return 0;
1069
1070	ret = vc4_plane_mode_set(plane, new_plane_state);
1071	if (ret)
1072		return ret;
1073
1074	return vc4_plane_allocate_lbm(new_plane_state);
 
 
 
 
1075}
1076
1077static void vc4_plane_atomic_update(struct drm_plane *plane,
1078				    struct drm_atomic_state *state)
1079{
1080	/* No contents here.  Since we don't know where in the CRTC's
1081	 * dlist we should be stored, our dlist is uploaded to the
1082	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1083	 * time.
1084	 */
1085}
1086
1087u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1088{
1089	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1090	int i;
 
 
 
 
1091
1092	vc4_state->hw_dlist = dlist;
1093
1094	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1095	for (i = 0; i < vc4_state->dlist_count; i++)
1096		writel(vc4_state->dlist[i], &dlist[i]);
1097
 
 
 
1098	return vc4_state->dlist_count;
1099}
1100
1101u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1102{
1103	const struct vc4_plane_state *vc4_state =
1104		container_of(state, typeof(*vc4_state), base);
1105
1106	return vc4_state->dlist_count;
1107}
1108
1109/* Updates the plane to immediately (well, once the FIFO needs
1110 * refilling) scan out from at a new framebuffer.
1111 */
1112void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1113{
1114	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1115	struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1116	uint32_t addr;
 
 
 
 
1117
1118	/* We're skipping the address adjustment for negative origin,
1119	 * because this is only called on the primary plane.
1120	 */
1121	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1122	addr = bo->paddr + fb->offsets[0];
1123
1124	/* Write the new address into the hardware immediately.  The
1125	 * scanout will start from this address as soon as the FIFO
1126	 * needs to refill with pixels.
1127	 */
1128	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1129
1130	/* Also update the CPU-side dlist copy, so that any later
1131	 * atomic updates that don't do a new modeset on our plane
1132	 * also use our updated address.
1133	 */
1134	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
 
 
1135}
1136
1137static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1138					  struct drm_atomic_state *state)
1139{
1140	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1141										 plane);
1142	struct vc4_plane_state *vc4_state, *new_vc4_state;
 
 
 
 
1143
1144	swap(plane->state->fb, new_plane_state->fb);
1145	plane->state->crtc_x = new_plane_state->crtc_x;
1146	plane->state->crtc_y = new_plane_state->crtc_y;
1147	plane->state->crtc_w = new_plane_state->crtc_w;
1148	plane->state->crtc_h = new_plane_state->crtc_h;
1149	plane->state->src_x = new_plane_state->src_x;
1150	plane->state->src_y = new_plane_state->src_y;
1151	plane->state->src_w = new_plane_state->src_w;
1152	plane->state->src_h = new_plane_state->src_h;
1153	plane->state->alpha = new_plane_state->alpha;
1154	plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1155	plane->state->rotation = new_plane_state->rotation;
1156	plane->state->zpos = new_plane_state->zpos;
1157	plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1158	plane->state->color_encoding = new_plane_state->color_encoding;
1159	plane->state->color_range = new_plane_state->color_range;
1160	plane->state->src = new_plane_state->src;
1161	plane->state->dst = new_plane_state->dst;
1162	plane->state->visible = new_plane_state->visible;
1163
1164	new_vc4_state = to_vc4_plane_state(new_plane_state);
1165	vc4_state = to_vc4_plane_state(plane->state);
1166
1167	vc4_state->crtc_x = new_vc4_state->crtc_x;
1168	vc4_state->crtc_y = new_vc4_state->crtc_y;
1169	vc4_state->crtc_h = new_vc4_state->crtc_h;
1170	vc4_state->crtc_w = new_vc4_state->crtc_w;
1171	vc4_state->src_x = new_vc4_state->src_x;
1172	vc4_state->src_y = new_vc4_state->src_y;
1173	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1174	       sizeof(vc4_state->src_w));
1175	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1176	       sizeof(vc4_state->src_h));
1177	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1178	       sizeof(vc4_state->x_scaling));
1179	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1180	       sizeof(vc4_state->y_scaling));
1181	vc4_state->is_unity = new_vc4_state->is_unity;
1182	vc4_state->is_yuv = new_vc4_state->is_yuv;
1183	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1184	       sizeof(vc4_state->offsets));
1185	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1186
1187	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1188	vc4_state->dlist[vc4_state->pos0_offset] =
1189		new_vc4_state->dlist[vc4_state->pos0_offset];
1190	vc4_state->dlist[vc4_state->pos2_offset] =
1191		new_vc4_state->dlist[vc4_state->pos2_offset];
1192	vc4_state->dlist[vc4_state->ptr0_offset] =
1193		new_vc4_state->dlist[vc4_state->ptr0_offset];
1194
1195	/* Note that we can't just call vc4_plane_write_dlist()
1196	 * because that would smash the context data that the HVS is
1197	 * currently using.
1198	 */
1199	writel(vc4_state->dlist[vc4_state->pos0_offset],
1200	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1201	writel(vc4_state->dlist[vc4_state->pos2_offset],
1202	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1203	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1204	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
 
 
1205}
1206
1207static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1208					struct drm_atomic_state *state)
1209{
1210	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1211										 plane);
1212	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1213	int ret;
1214	u32 i;
1215
1216	ret = vc4_plane_mode_set(plane, new_plane_state);
1217	if (ret)
1218		return ret;
1219
1220	old_vc4_state = to_vc4_plane_state(plane->state);
1221	new_vc4_state = to_vc4_plane_state(new_plane_state);
 
 
 
 
1222	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1223	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1224	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1225	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1226	    vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1227		return -EINVAL;
1228
1229	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1230	 * if anything else has changed, fallback to a sync update.
1231	 */
1232	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1233		if (i == new_vc4_state->pos0_offset ||
1234		    i == new_vc4_state->pos2_offset ||
1235		    i == new_vc4_state->ptr0_offset ||
1236		    (new_vc4_state->lbm_offset &&
1237		     i == new_vc4_state->lbm_offset))
1238			continue;
1239
1240		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1241			return -EINVAL;
1242	}
1243
1244	return 0;
1245}
1246
1247static int vc4_prepare_fb(struct drm_plane *plane,
1248			  struct drm_plane_state *state)
1249{
1250	struct vc4_bo *bo;
1251	int ret;
1252
1253	if (!state->fb)
1254		return 0;
1255
1256	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1257
1258	drm_gem_plane_helper_prepare_fb(plane, state);
1259
1260	if (plane->state->fb == state->fb)
1261		return 0;
1262
1263	ret = vc4_bo_inc_usecnt(bo);
1264	if (ret)
1265		return ret;
1266
1267	return 0;
1268}
1269
1270static void vc4_cleanup_fb(struct drm_plane *plane,
1271			   struct drm_plane_state *state)
1272{
1273	struct vc4_bo *bo;
1274
1275	if (plane->state->fb == state->fb || !state->fb)
1276		return;
1277
1278	bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1279	vc4_bo_dec_usecnt(bo);
1280}
1281
1282static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1283	.atomic_check = vc4_plane_atomic_check,
1284	.atomic_update = vc4_plane_atomic_update,
1285	.prepare_fb = vc4_prepare_fb,
1286	.cleanup_fb = vc4_cleanup_fb,
1287	.atomic_async_check = vc4_plane_atomic_async_check,
1288	.atomic_async_update = vc4_plane_atomic_async_update,
1289};
1290
 
 
 
 
 
 
 
1291static bool vc4_format_mod_supported(struct drm_plane *plane,
1292				     uint32_t format,
1293				     uint64_t modifier)
1294{
1295	/* Support T_TILING for RGB formats only. */
1296	switch (format) {
1297	case DRM_FORMAT_XRGB8888:
1298	case DRM_FORMAT_ARGB8888:
1299	case DRM_FORMAT_ABGR8888:
1300	case DRM_FORMAT_XBGR8888:
1301	case DRM_FORMAT_RGB565:
1302	case DRM_FORMAT_BGR565:
1303	case DRM_FORMAT_ARGB1555:
1304	case DRM_FORMAT_XRGB1555:
1305		switch (fourcc_mod_broadcom_mod(modifier)) {
1306		case DRM_FORMAT_MOD_LINEAR:
1307		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1308			return true;
1309		default:
1310			return false;
1311		}
1312	case DRM_FORMAT_NV12:
1313	case DRM_FORMAT_NV21:
1314		switch (fourcc_mod_broadcom_mod(modifier)) {
1315		case DRM_FORMAT_MOD_LINEAR:
1316		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1317		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1318		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1319			return true;
1320		default:
1321			return false;
1322		}
 
 
 
 
 
 
 
1323	case DRM_FORMAT_RGBX1010102:
1324	case DRM_FORMAT_BGRX1010102:
1325	case DRM_FORMAT_RGBA1010102:
1326	case DRM_FORMAT_BGRA1010102:
 
 
 
 
 
 
 
 
 
 
1327	case DRM_FORMAT_YUV422:
1328	case DRM_FORMAT_YVU422:
1329	case DRM_FORMAT_YUV420:
1330	case DRM_FORMAT_YVU420:
1331	case DRM_FORMAT_NV16:
1332	case DRM_FORMAT_NV61:
1333	default:
1334		return (modifier == DRM_FORMAT_MOD_LINEAR);
1335	}
1336}
1337
1338static const struct drm_plane_funcs vc4_plane_funcs = {
1339	.update_plane = drm_atomic_helper_update_plane,
1340	.disable_plane = drm_atomic_helper_disable_plane,
1341	.destroy = drm_plane_cleanup,
1342	.set_property = NULL,
1343	.reset = vc4_plane_reset,
1344	.atomic_duplicate_state = vc4_plane_duplicate_state,
1345	.atomic_destroy_state = vc4_plane_destroy_state,
1346	.format_mod_supported = vc4_format_mod_supported,
1347};
1348
1349struct drm_plane *vc4_plane_init(struct drm_device *dev,
1350				 enum drm_plane_type type)
 
1351{
1352	struct drm_plane *plane = NULL;
 
1353	struct vc4_plane *vc4_plane;
1354	u32 formats[ARRAY_SIZE(hvs_formats)];
1355	int ret = 0;
1356	unsigned i;
1357	static const uint64_t modifiers[] = {
1358		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1359		DRM_FORMAT_MOD_BROADCOM_SAND128,
1360		DRM_FORMAT_MOD_BROADCOM_SAND64,
1361		DRM_FORMAT_MOD_BROADCOM_SAND256,
1362		DRM_FORMAT_MOD_LINEAR,
1363		DRM_FORMAT_MOD_INVALID
1364	};
1365
1366	vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1367				 GFP_KERNEL);
1368	if (!vc4_plane)
1369		return ERR_PTR(-ENOMEM);
1370
1371	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1372		formats[i] = hvs_formats[i].drm;
1373
 
 
 
 
 
 
 
1374	plane = &vc4_plane->base;
1375	ret = drm_universal_plane_init(dev, plane, 0,
1376				       &vc4_plane_funcs,
1377				       formats, ARRAY_SIZE(formats),
1378				       modifiers, type, NULL);
1379	if (ret)
1380		return ERR_PTR(ret);
1381
1382	drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
 
 
 
1383
1384	drm_plane_create_alpha_property(plane);
 
 
 
 
1385	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1386					   DRM_MODE_ROTATE_0 |
1387					   DRM_MODE_ROTATE_180 |
1388					   DRM_MODE_REFLECT_X |
1389					   DRM_MODE_REFLECT_Y);
1390
 
 
 
 
 
 
 
 
 
 
 
 
1391	return plane;
1392}
1393
 
 
1394int vc4_plane_create_additional_planes(struct drm_device *drm)
1395{
1396	struct drm_plane *cursor_plane;
1397	struct drm_crtc *crtc;
1398	unsigned int i;
1399
1400	/* Set up some arbitrary number of planes.  We're not limited
1401	 * by a set number of physical registers, just the space in
1402	 * the HVS (16k) and how small an plane can be (28 bytes).
1403	 * However, each plane we set up takes up some memory, and
1404	 * increases the cost of looping over planes, which atomic
1405	 * modesetting does quite a bit.  As a result, we pick a
1406	 * modest number of planes to expose, that should hopefully
1407	 * still cover any sane usecase.
1408	 */
1409	for (i = 0; i < 16; i++) {
1410		struct drm_plane *plane =
1411			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
 
1412
1413		if (IS_ERR(plane))
1414			continue;
1415
1416		plane->possible_crtcs =
1417			GENMASK(drm->mode_config.num_crtc - 1, 0);
 
 
 
1418	}
1419
1420	drm_for_each_crtc(crtc, drm) {
1421		/* Set up the legacy cursor after overlay initialization,
1422		 * since we overlay planes on the CRTC in the order they were
1423		 * initialized.
1424		 */
1425		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
 
1426		if (!IS_ERR(cursor_plane)) {
1427			cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1428			crtc->cursor = cursor_plane;
 
 
 
 
 
1429		}
1430	}
1431
1432	return 0;
1433}