Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 plane module
8 *
9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
10 *
11 * At atomic modeset check time, we compute the HVS display element
12 * state that would be necessary for displaying the plane (giving us a
13 * chance to figure out if a plane configuration is invalid), then at
14 * atomic flush time the CRTC will ask us to write our element state
15 * into the region of the HVS that it has allocated for us.
16 */
17
18#include <drm/drm_atomic.h>
19#include <drm/drm_atomic_helper.h>
20#include <drm/drm_atomic_uapi.h>
21#include <drm/drm_blend.h>
22#include <drm/drm_drv.h>
23#include <drm/drm_fb_dma_helper.h>
24#include <drm/drm_fourcc.h>
25#include <drm/drm_framebuffer.h>
26#include <drm/drm_gem_atomic_helper.h>
27
28#include "uapi/drm/vc4_drm.h"
29
30#include "vc4_drv.h"
31#include "vc4_regs.h"
32
33static const struct hvs_format {
34 u32 drm; /* DRM_FORMAT_* */
35 u32 hvs; /* HVS_FORMAT_* */
36 u32 pixel_order;
37 u32 pixel_order_hvs5;
38 bool hvs5_only;
39} hvs_formats[] = {
40 {
41 .drm = DRM_FORMAT_XRGB8888,
42 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
43 .pixel_order = HVS_PIXEL_ORDER_ABGR,
44 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
45 },
46 {
47 .drm = DRM_FORMAT_ARGB8888,
48 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
49 .pixel_order = HVS_PIXEL_ORDER_ABGR,
50 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
51 },
52 {
53 .drm = DRM_FORMAT_ABGR8888,
54 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
55 .pixel_order = HVS_PIXEL_ORDER_ARGB,
56 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
57 },
58 {
59 .drm = DRM_FORMAT_XBGR8888,
60 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
61 .pixel_order = HVS_PIXEL_ORDER_ARGB,
62 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
63 },
64 {
65 .drm = DRM_FORMAT_RGB565,
66 .hvs = HVS_PIXEL_FORMAT_RGB565,
67 .pixel_order = HVS_PIXEL_ORDER_XRGB,
68 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
69 },
70 {
71 .drm = DRM_FORMAT_BGR565,
72 .hvs = HVS_PIXEL_FORMAT_RGB565,
73 .pixel_order = HVS_PIXEL_ORDER_XBGR,
74 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
75 },
76 {
77 .drm = DRM_FORMAT_ARGB1555,
78 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 .pixel_order = HVS_PIXEL_ORDER_ABGR,
80 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
81 },
82 {
83 .drm = DRM_FORMAT_XRGB1555,
84 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
85 .pixel_order = HVS_PIXEL_ORDER_ABGR,
86 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
87 },
88 {
89 .drm = DRM_FORMAT_RGB888,
90 .hvs = HVS_PIXEL_FORMAT_RGB888,
91 .pixel_order = HVS_PIXEL_ORDER_XRGB,
92 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
93 },
94 {
95 .drm = DRM_FORMAT_BGR888,
96 .hvs = HVS_PIXEL_FORMAT_RGB888,
97 .pixel_order = HVS_PIXEL_ORDER_XBGR,
98 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
99 },
100 {
101 .drm = DRM_FORMAT_YUV422,
102 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
103 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
104 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
105 },
106 {
107 .drm = DRM_FORMAT_YVU422,
108 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
109 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
111 },
112 {
113 .drm = DRM_FORMAT_YUV444,
114 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
115 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
116 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
117 },
118 {
119 .drm = DRM_FORMAT_YVU444,
120 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
121 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
122 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
123 },
124 {
125 .drm = DRM_FORMAT_YUV420,
126 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
127 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
128 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
129 },
130 {
131 .drm = DRM_FORMAT_YVU420,
132 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
133 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
134 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
135 },
136 {
137 .drm = DRM_FORMAT_NV12,
138 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
139 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
140 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
141 },
142 {
143 .drm = DRM_FORMAT_NV21,
144 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
145 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
146 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
147 },
148 {
149 .drm = DRM_FORMAT_NV16,
150 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
151 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
152 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
153 },
154 {
155 .drm = DRM_FORMAT_NV61,
156 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
157 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
158 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
159 },
160 {
161 .drm = DRM_FORMAT_P030,
162 .hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
163 .pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
164 .hvs5_only = true,
165 },
166 {
167 .drm = DRM_FORMAT_XRGB2101010,
168 .hvs = HVS_PIXEL_FORMAT_RGBA1010102,
169 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
170 .hvs5_only = true,
171 },
172 {
173 .drm = DRM_FORMAT_ARGB2101010,
174 .hvs = HVS_PIXEL_FORMAT_RGBA1010102,
175 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
176 .hvs5_only = true,
177 },
178 {
179 .drm = DRM_FORMAT_ABGR2101010,
180 .hvs = HVS_PIXEL_FORMAT_RGBA1010102,
181 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
182 .hvs5_only = true,
183 },
184 {
185 .drm = DRM_FORMAT_XBGR2101010,
186 .hvs = HVS_PIXEL_FORMAT_RGBA1010102,
187 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
188 .hvs5_only = true,
189 },
190 {
191 .drm = DRM_FORMAT_RGB332,
192 .hvs = HVS_PIXEL_FORMAT_RGB332,
193 .pixel_order = HVS_PIXEL_ORDER_ARGB,
194 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
195 },
196 {
197 .drm = DRM_FORMAT_BGR233,
198 .hvs = HVS_PIXEL_FORMAT_RGB332,
199 .pixel_order = HVS_PIXEL_ORDER_ABGR,
200 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
201 },
202 {
203 .drm = DRM_FORMAT_XRGB4444,
204 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
205 .pixel_order = HVS_PIXEL_ORDER_ABGR,
206 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
207 },
208 {
209 .drm = DRM_FORMAT_ARGB4444,
210 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
211 .pixel_order = HVS_PIXEL_ORDER_ABGR,
212 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
213 },
214 {
215 .drm = DRM_FORMAT_XBGR4444,
216 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
217 .pixel_order = HVS_PIXEL_ORDER_ARGB,
218 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
219 },
220 {
221 .drm = DRM_FORMAT_ABGR4444,
222 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
223 .pixel_order = HVS_PIXEL_ORDER_ARGB,
224 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
225 },
226 {
227 .drm = DRM_FORMAT_BGRX4444,
228 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
229 .pixel_order = HVS_PIXEL_ORDER_RGBA,
230 .pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
231 },
232 {
233 .drm = DRM_FORMAT_BGRA4444,
234 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
235 .pixel_order = HVS_PIXEL_ORDER_RGBA,
236 .pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
237 },
238 {
239 .drm = DRM_FORMAT_RGBX4444,
240 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
241 .pixel_order = HVS_PIXEL_ORDER_BGRA,
242 .pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
243 },
244 {
245 .drm = DRM_FORMAT_RGBA4444,
246 .hvs = HVS_PIXEL_FORMAT_RGBA4444,
247 .pixel_order = HVS_PIXEL_ORDER_BGRA,
248 .pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
249 },
250};
251
252static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
253{
254 unsigned i;
255
256 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
257 if (hvs_formats[i].drm == drm_format)
258 return &hvs_formats[i];
259 }
260
261 return NULL;
262}
263
264static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
265{
266 if (dst == src >> 16)
267 return VC4_SCALING_NONE;
268 if (3 * dst >= 2 * (src >> 16))
269 return VC4_SCALING_PPF;
270 else
271 return VC4_SCALING_TPZ;
272}
273
274static bool plane_enabled(struct drm_plane_state *state)
275{
276 return state->fb && !WARN_ON(!state->crtc);
277}
278
279static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
280{
281 struct vc4_plane_state *vc4_state;
282
283 if (WARN_ON(!plane->state))
284 return NULL;
285
286 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
287 if (!vc4_state)
288 return NULL;
289
290 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
291 vc4_state->dlist_initialized = 0;
292
293 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
294
295 if (vc4_state->dlist) {
296 vc4_state->dlist = kmemdup(vc4_state->dlist,
297 vc4_state->dlist_count * 4,
298 GFP_KERNEL);
299 if (!vc4_state->dlist) {
300 kfree(vc4_state);
301 return NULL;
302 }
303 vc4_state->dlist_size = vc4_state->dlist_count;
304 }
305
306 return &vc4_state->base;
307}
308
309static void vc4_plane_destroy_state(struct drm_plane *plane,
310 struct drm_plane_state *state)
311{
312 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
313 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
314
315 if (drm_mm_node_allocated(&vc4_state->lbm)) {
316 unsigned long irqflags;
317
318 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
319 drm_mm_remove_node(&vc4_state->lbm);
320 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
321 }
322
323 kfree(vc4_state->dlist);
324 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
325 kfree(state);
326}
327
328/* Called during init to allocate the plane's atomic state. */
329static void vc4_plane_reset(struct drm_plane *plane)
330{
331 struct vc4_plane_state *vc4_state;
332
333 WARN_ON(plane->state);
334
335 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
336 if (!vc4_state)
337 return;
338
339 __drm_atomic_helper_plane_reset(plane, &vc4_state->base);
340}
341
342static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
343{
344 if (vc4_state->dlist_count == vc4_state->dlist_size) {
345 u32 new_size = max(4u, vc4_state->dlist_count * 2);
346 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
347
348 if (!new_dlist)
349 return;
350 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
351
352 kfree(vc4_state->dlist);
353 vc4_state->dlist = new_dlist;
354 vc4_state->dlist_size = new_size;
355 }
356
357 vc4_state->dlist_count++;
358}
359
360static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
361{
362 unsigned int idx = vc4_state->dlist_count;
363
364 vc4_dlist_counter_increment(vc4_state);
365 vc4_state->dlist[idx] = val;
366}
367
368/* Returns the scl0/scl1 field based on whether the dimensions need to
369 * be up/down/non-scaled.
370 *
371 * This is a replication of a table from the spec.
372 */
373static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
374{
375 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
376
377 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
378 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
379 return SCALER_CTL0_SCL_H_PPF_V_PPF;
380 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
381 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
382 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
383 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
384 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
385 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
386 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
387 return SCALER_CTL0_SCL_H_PPF_V_NONE;
388 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
389 return SCALER_CTL0_SCL_H_NONE_V_PPF;
390 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
391 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
392 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
393 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
394 default:
395 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
396 /* The unity case is independently handled by
397 * SCALER_CTL0_UNITY.
398 */
399 return 0;
400 }
401}
402
403static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
404{
405 struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
406 unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
407 struct drm_crtc_state *crtc_state;
408
409 crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
410 pstate->crtc);
411
412 vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
413 if (!left && !right && !top && !bottom)
414 return 0;
415
416 if (left + right >= crtc_state->mode.hdisplay ||
417 top + bottom >= crtc_state->mode.vdisplay)
418 return -EINVAL;
419
420 adjhdisplay = crtc_state->mode.hdisplay - (left + right);
421 vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
422 adjhdisplay,
423 crtc_state->mode.hdisplay);
424 vc4_pstate->crtc_x += left;
425 if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
426 vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
427
428 adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
429 vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
430 adjvdisplay,
431 crtc_state->mode.vdisplay);
432 vc4_pstate->crtc_y += top;
433 if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
434 vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
435
436 vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
437 adjhdisplay,
438 crtc_state->mode.hdisplay);
439 vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
440 adjvdisplay,
441 crtc_state->mode.vdisplay);
442
443 if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
444 return -EINVAL;
445
446 return 0;
447}
448
449static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
450{
451 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
452 struct drm_framebuffer *fb = state->fb;
453 int num_planes = fb->format->num_planes;
454 struct drm_crtc_state *crtc_state;
455 u32 h_subsample = fb->format->hsub;
456 u32 v_subsample = fb->format->vsub;
457 int ret;
458
459 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
460 state->crtc);
461 if (!crtc_state) {
462 DRM_DEBUG_KMS("Invalid crtc state\n");
463 return -EINVAL;
464 }
465
466 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
467 INT_MAX, true, true);
468 if (ret)
469 return ret;
470
471 vc4_state->src_x = state->src.x1;
472 vc4_state->src_y = state->src.y1;
473 vc4_state->src_w[0] = state->src.x2 - vc4_state->src_x;
474 vc4_state->src_h[0] = state->src.y2 - vc4_state->src_y;
475
476 vc4_state->crtc_x = state->dst.x1;
477 vc4_state->crtc_y = state->dst.y1;
478 vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
479 vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
480
481 ret = vc4_plane_margins_adj(state);
482 if (ret)
483 return ret;
484
485 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
486 vc4_state->crtc_w);
487 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
488 vc4_state->crtc_h);
489
490 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
491 vc4_state->y_scaling[0] == VC4_SCALING_NONE);
492
493 if (num_planes > 1) {
494 vc4_state->is_yuv = true;
495
496 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
497 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
498
499 vc4_state->x_scaling[1] =
500 vc4_get_scaling_mode(vc4_state->src_w[1],
501 vc4_state->crtc_w);
502 vc4_state->y_scaling[1] =
503 vc4_get_scaling_mode(vc4_state->src_h[1],
504 vc4_state->crtc_h);
505
506 /* YUV conversion requires that horizontal scaling be enabled
507 * on the UV plane even if vc4_get_scaling_mode() returned
508 * VC4_SCALING_NONE (which can happen when the down-scaling
509 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
510 * case.
511 */
512 if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
513 vc4_state->x_scaling[1] = VC4_SCALING_PPF;
514
515 /* Similarly UV needs vertical scaling to be enabled.
516 * Without this a 1:1 scaled YUV422 plane isn't rendered.
517 */
518 if (vc4_state->y_scaling[1] == VC4_SCALING_NONE)
519 vc4_state->y_scaling[1] = VC4_SCALING_PPF;
520 } else {
521 vc4_state->is_yuv = false;
522 vc4_state->x_scaling[1] = VC4_SCALING_NONE;
523 vc4_state->y_scaling[1] = VC4_SCALING_NONE;
524 }
525
526 return 0;
527}
528
529static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
530{
531 u32 scale, recip;
532
533 scale = src / dst;
534
535 /* The specs note that while the reciprocal would be defined
536 * as (1<<32)/scale, ~0 is close enough.
537 */
538 recip = ~0 / scale;
539
540 vc4_dlist_write(vc4_state,
541 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
542 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
543 vc4_dlist_write(vc4_state,
544 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
545}
546
547/* phase magnitude bits */
548#define PHASE_BITS 6
549
550static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst,
551 u32 xy, int channel)
552{
553 u32 scale = src / dst;
554 s32 offset, offset2;
555 s32 phase;
556
557 /*
558 * Start the phase at 1/2 pixel from the 1st pixel at src_x.
559 * 1/4 pixel for YUV.
560 */
561 if (channel) {
562 /*
563 * The phase is relative to scale_src->x, so shift it for
564 * display list's x value
565 */
566 offset = (xy & 0x1ffff) >> (16 - PHASE_BITS) >> 1;
567 offset += -(1 << PHASE_BITS >> 2);
568 } else {
569 /*
570 * The phase is relative to scale_src->x, so shift it for
571 * display list's x value
572 */
573 offset = (xy & 0xffff) >> (16 - PHASE_BITS);
574 offset += -(1 << PHASE_BITS >> 1);
575
576 /*
577 * This is a kludge to make sure the scaling factors are
578 * consistent with YUV's luma scaling. We lose 1-bit precision
579 * because of this.
580 */
581 scale &= ~1;
582 }
583
584 /*
585 * There may be a also small error introduced by precision of scale.
586 * Add half of that as a compromise
587 */
588 offset2 = src - dst * scale;
589 offset2 >>= 16 - PHASE_BITS;
590 phase = offset + (offset2 >> 1);
591
592 /* Ensure +ve values don't touch the sign bit, then truncate negative values */
593 if (phase >= 1 << PHASE_BITS)
594 phase = (1 << PHASE_BITS) - 1;
595
596 phase &= SCALER_PPF_IPHASE_MASK;
597
598 vc4_dlist_write(vc4_state,
599 SCALER_PPF_AGC |
600 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
601 VC4_SET_FIELD(phase, SCALER_PPF_IPHASE));
602}
603
604static u32 vc4_lbm_size(struct drm_plane_state *state)
605{
606 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
607 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
608 u32 pix_per_line;
609 u32 lbm;
610
611 /* LBM is not needed when there's no vertical scaling. */
612 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
613 vc4_state->y_scaling[1] == VC4_SCALING_NONE)
614 return 0;
615
616 /*
617 * This can be further optimized in the RGB/YUV444 case if the PPF
618 * decimation factor is between 0.5 and 1.0 by using crtc_w.
619 *
620 * It's not an issue though, since in that case since src_w[0] is going
621 * to be greater than or equal to crtc_w.
622 */
623 if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
624 pix_per_line = vc4_state->crtc_w;
625 else
626 pix_per_line = vc4_state->src_w[0] >> 16;
627
628 if (!vc4_state->is_yuv) {
629 if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
630 lbm = pix_per_line * 8;
631 else {
632 /* In special cases, this multiplier might be 12. */
633 lbm = pix_per_line * 16;
634 }
635 } else {
636 /* There are cases for this going down to a multiplier
637 * of 2, but according to the firmware source, the
638 * table in the docs is somewhat wrong.
639 */
640 lbm = pix_per_line * 16;
641 }
642
643 /* Align it to 64 or 128 (hvs5) bytes */
644 lbm = roundup(lbm, vc4->gen == VC4_GEN_5 ? 128 : 64);
645
646 /* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
647 lbm /= vc4->gen == VC4_GEN_5 ? 4 : 2;
648
649 return lbm;
650}
651
652static void vc4_write_scaling_parameters(struct drm_plane_state *state,
653 int channel)
654{
655 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
656
657 /* Ch0 H-PPF Word 0: Scaling Parameters */
658 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
659 vc4_write_ppf(vc4_state, vc4_state->src_w[channel],
660 vc4_state->crtc_w, vc4_state->src_x, channel);
661 }
662
663 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
664 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
665 vc4_write_ppf(vc4_state, vc4_state->src_h[channel],
666 vc4_state->crtc_h, vc4_state->src_y, channel);
667 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
668 }
669
670 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
671 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
672 vc4_write_tpz(vc4_state, vc4_state->src_w[channel],
673 vc4_state->crtc_w);
674 }
675
676 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
677 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
678 vc4_write_tpz(vc4_state, vc4_state->src_h[channel],
679 vc4_state->crtc_h);
680 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
681 }
682}
683
684static void vc4_plane_calc_load(struct drm_plane_state *state)
685{
686 unsigned int hvs_load_shift, vrefresh, i;
687 struct drm_framebuffer *fb = state->fb;
688 struct vc4_plane_state *vc4_state;
689 struct drm_crtc_state *crtc_state;
690 unsigned int vscale_factor;
691
692 vc4_state = to_vc4_plane_state(state);
693 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
694 state->crtc);
695 vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
696
697 /* The HVS is able to process 2 pixels/cycle when scaling the source,
698 * 4 pixels/cycle otherwise.
699 * Alpha blending step seems to be pipelined and it's always operating
700 * at 4 pixels/cycle, so the limiting aspect here seems to be the
701 * scaler block.
702 * HVS load is expressed in clk-cycles/sec (AKA Hz).
703 */
704 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
705 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
706 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
707 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
708 hvs_load_shift = 1;
709 else
710 hvs_load_shift = 2;
711
712 vc4_state->membus_load = 0;
713 vc4_state->hvs_load = 0;
714 for (i = 0; i < fb->format->num_planes; i++) {
715 /* Even if the bandwidth/plane required for a single frame is
716 *
717 * (vc4_state->src_w[i] >> 16) * (vc4_state->src_h[i] >> 16) *
718 * cpp * vrefresh
719 *
720 * when downscaling, we have to read more pixels per line in
721 * the time frame reserved for a single line, so the bandwidth
722 * demand can be punctually higher. To account for that, we
723 * calculate the down-scaling factor and multiply the plane
724 * load by this number. We're likely over-estimating the read
725 * demand, but that's better than under-estimating it.
726 */
727 vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i] >> 16,
728 vc4_state->crtc_h);
729 vc4_state->membus_load += (vc4_state->src_w[i] >> 16) *
730 (vc4_state->src_h[i] >> 16) *
731 vscale_factor * fb->format->cpp[i];
732 vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
733 }
734
735 vc4_state->hvs_load *= vrefresh;
736 vc4_state->hvs_load >>= hvs_load_shift;
737 vc4_state->membus_load *= vrefresh;
738}
739
740static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
741{
742 struct drm_device *drm = state->plane->dev;
743 struct vc4_dev *vc4 = to_vc4_dev(drm);
744 struct drm_plane *plane = state->plane;
745 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
746 unsigned long irqflags;
747 u32 lbm_size;
748
749 lbm_size = vc4_lbm_size(state);
750 if (!lbm_size)
751 return 0;
752
753 if (vc4->gen == VC4_GEN_5)
754 lbm_size = ALIGN(lbm_size, 64);
755 else if (vc4->gen == VC4_GEN_4)
756 lbm_size = ALIGN(lbm_size, 32);
757
758 drm_dbg_driver(drm, "[PLANE:%d:%s] LBM Allocation Size: %u\n",
759 plane->base.id, plane->name, lbm_size);
760
761 if (WARN_ON(!vc4_state->lbm_offset))
762 return -EINVAL;
763
764 /* Allocate the LBM memory that the HVS will use for temporary
765 * storage due to our scaling/format conversion.
766 */
767 if (!drm_mm_node_allocated(&vc4_state->lbm)) {
768 int ret;
769
770 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
771 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
772 &vc4_state->lbm,
773 lbm_size, 1,
774 0, 0);
775 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
776
777 if (ret) {
778 drm_err(drm, "Failed to allocate LBM entry: %d\n", ret);
779 return ret;
780 }
781 } else {
782 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
783 }
784
785 vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
786
787 return 0;
788}
789
790/*
791 * The colorspace conversion matrices are held in 3 entries in the dlist.
792 * Create an array of them, with entries for each full and limited mode, and
793 * each supported colorspace.
794 */
795static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
796 {
797 /* Limited range */
798 {
799 /* BT601 */
800 SCALER_CSC0_ITR_R_601_5,
801 SCALER_CSC1_ITR_R_601_5,
802 SCALER_CSC2_ITR_R_601_5,
803 }, {
804 /* BT709 */
805 SCALER_CSC0_ITR_R_709_3,
806 SCALER_CSC1_ITR_R_709_3,
807 SCALER_CSC2_ITR_R_709_3,
808 }, {
809 /* BT2020 */
810 SCALER_CSC0_ITR_R_2020,
811 SCALER_CSC1_ITR_R_2020,
812 SCALER_CSC2_ITR_R_2020,
813 }
814 }, {
815 /* Full range */
816 {
817 /* JFIF */
818 SCALER_CSC0_JPEG_JFIF,
819 SCALER_CSC1_JPEG_JFIF,
820 SCALER_CSC2_JPEG_JFIF,
821 }, {
822 /* BT709 */
823 SCALER_CSC0_ITR_R_709_3_FR,
824 SCALER_CSC1_ITR_R_709_3_FR,
825 SCALER_CSC2_ITR_R_709_3_FR,
826 }, {
827 /* BT2020 */
828 SCALER_CSC0_ITR_R_2020_FR,
829 SCALER_CSC1_ITR_R_2020_FR,
830 SCALER_CSC2_ITR_R_2020_FR,
831 }
832 }
833};
834
835static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
836{
837 if (!state->fb->format->has_alpha)
838 return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
839 SCALER_POS2_ALPHA_MODE);
840
841 switch (state->pixel_blend_mode) {
842 case DRM_MODE_BLEND_PIXEL_NONE:
843 return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
844 SCALER_POS2_ALPHA_MODE);
845 default:
846 case DRM_MODE_BLEND_PREMULTI:
847 return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
848 SCALER_POS2_ALPHA_MODE) |
849 SCALER_POS2_ALPHA_PREMULT;
850 case DRM_MODE_BLEND_COVERAGE:
851 return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
852 SCALER_POS2_ALPHA_MODE);
853 }
854}
855
856static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
857{
858 if (!state->fb->format->has_alpha)
859 return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
860 SCALER5_CTL2_ALPHA_MODE);
861
862 switch (state->pixel_blend_mode) {
863 case DRM_MODE_BLEND_PIXEL_NONE:
864 return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
865 SCALER5_CTL2_ALPHA_MODE);
866 default:
867 case DRM_MODE_BLEND_PREMULTI:
868 return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
869 SCALER5_CTL2_ALPHA_MODE) |
870 SCALER5_CTL2_ALPHA_PREMULT;
871 case DRM_MODE_BLEND_COVERAGE:
872 return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
873 SCALER5_CTL2_ALPHA_MODE);
874 }
875}
876
877/* Writes out a full display list for an active plane to the plane's
878 * private dlist state.
879 */
880static int vc4_plane_mode_set(struct drm_plane *plane,
881 struct drm_plane_state *state)
882{
883 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
884 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
885 struct drm_framebuffer *fb = state->fb;
886 u32 ctl0_offset = vc4_state->dlist_count;
887 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
888 u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
889 int num_planes = fb->format->num_planes;
890 u32 h_subsample = fb->format->hsub;
891 u32 v_subsample = fb->format->vsub;
892 bool mix_plane_alpha;
893 bool covers_screen;
894 u32 scl0, scl1, pitch0;
895 u32 tiling, src_x, src_y;
896 u32 width, height;
897 u32 hvs_format = format->hvs;
898 unsigned int rotation;
899 u32 offsets[3] = { 0 };
900 int ret, i;
901
902 if (vc4_state->dlist_initialized)
903 return 0;
904
905 ret = vc4_plane_setup_clipping_and_scaling(state);
906 if (ret)
907 return ret;
908
909 width = vc4_state->src_w[0] >> 16;
910 height = vc4_state->src_h[0] >> 16;
911
912 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
913 * and 4:4:4, scl1 should be set to scl0 so both channels of
914 * the scaler do the same thing. For YUV, the Y plane needs
915 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
916 * the scl fields here.
917 */
918 if (num_planes == 1) {
919 scl0 = vc4_get_scl_field(state, 0);
920 scl1 = scl0;
921 } else {
922 scl0 = vc4_get_scl_field(state, 1);
923 scl1 = vc4_get_scl_field(state, 0);
924 }
925
926 rotation = drm_rotation_simplify(state->rotation,
927 DRM_MODE_ROTATE_0 |
928 DRM_MODE_REFLECT_X |
929 DRM_MODE_REFLECT_Y);
930
931 /* We must point to the last line when Y reflection is enabled. */
932 src_y = vc4_state->src_y >> 16;
933 if (rotation & DRM_MODE_REFLECT_Y)
934 src_y += height - 1;
935
936 src_x = vc4_state->src_x >> 16;
937
938 switch (base_format_mod) {
939 case DRM_FORMAT_MOD_LINEAR:
940 tiling = SCALER_CTL0_TILING_LINEAR;
941 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
942
943 /* Adjust the base pointer to the first pixel to be scanned
944 * out.
945 */
946 for (i = 0; i < num_planes; i++) {
947 offsets[i] += src_y / (i ? v_subsample : 1) * fb->pitches[i];
948 offsets[i] += src_x / (i ? h_subsample : 1) * fb->format->cpp[i];
949 }
950
951 break;
952
953 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
954 u32 tile_size_shift = 12; /* T tiles are 4kb */
955 /* Whole-tile offsets, mostly for setting the pitch. */
956 u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
957 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
958 u32 tile_w_mask = (1 << tile_w_shift) - 1;
959 /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
960 * the height (in pixels) of a 4k tile.
961 */
962 u32 tile_h_mask = (2 << tile_h_shift) - 1;
963 /* For T-tiled, the FB pitch is "how many bytes from one row to
964 * the next, such that
965 *
966 * pitch * tile_h == tile_size * tiles_per_row
967 */
968 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
969 u32 tiles_l = src_x >> tile_w_shift;
970 u32 tiles_r = tiles_w - tiles_l;
971 u32 tiles_t = src_y >> tile_h_shift;
972 /* Intra-tile offsets, which modify the base address (the
973 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
974 * base address).
975 */
976 u32 tile_y = (src_y >> 4) & 1;
977 u32 subtile_y = (src_y >> 2) & 3;
978 u32 utile_y = src_y & 3;
979 u32 x_off = src_x & tile_w_mask;
980 u32 y_off = src_y & tile_h_mask;
981
982 /* When Y reflection is requested we must set the
983 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
984 * after the initial one should be fetched in descending order,
985 * which makes sense since we start from the last line and go
986 * backward.
987 * Don't know why we need y_off = max_y_off - y_off, but it's
988 * definitely required (I guess it's also related to the "going
989 * backward" situation).
990 */
991 if (rotation & DRM_MODE_REFLECT_Y) {
992 y_off = tile_h_mask - y_off;
993 pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
994 } else {
995 pitch0 = 0;
996 }
997
998 tiling = SCALER_CTL0_TILING_256B_OR_T;
999 pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
1000 VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
1001 VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
1002 VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
1003 offsets[0] += tiles_t * (tiles_w << tile_size_shift);
1004 offsets[0] += subtile_y << 8;
1005 offsets[0] += utile_y << 4;
1006
1007 /* Rows of tiles alternate left-to-right and right-to-left. */
1008 if (tiles_t & 1) {
1009 pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
1010 offsets[0] += (tiles_w - tiles_l) << tile_size_shift;
1011 offsets[0] -= (1 + !tile_y) << 10;
1012 } else {
1013 offsets[0] += tiles_l << tile_size_shift;
1014 offsets[0] += tile_y << 10;
1015 }
1016
1017 break;
1018 }
1019
1020 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1021 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1022 case DRM_FORMAT_MOD_BROADCOM_SAND256: {
1023 uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
1024
1025 if (param > SCALER_TILE_HEIGHT_MASK) {
1026 DRM_DEBUG_KMS("SAND height too large (%d)\n",
1027 param);
1028 return -EINVAL;
1029 }
1030
1031 if (fb->format->format == DRM_FORMAT_P030) {
1032 hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
1033 tiling = SCALER_CTL0_TILING_128B;
1034 } else {
1035 hvs_format = HVS_PIXEL_FORMAT_H264;
1036
1037 switch (base_format_mod) {
1038 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1039 tiling = SCALER_CTL0_TILING_64B;
1040 break;
1041 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1042 tiling = SCALER_CTL0_TILING_128B;
1043 break;
1044 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1045 tiling = SCALER_CTL0_TILING_256B_OR_T;
1046 break;
1047 default:
1048 return -EINVAL;
1049 }
1050 }
1051
1052 /* Adjust the base pointer to the first pixel to be scanned
1053 * out.
1054 *
1055 * For P030, y_ptr [31:4] is the 128bit word for the start pixel
1056 * y_ptr [3:0] is the pixel (0-11) contained within that 128bit
1057 * word that should be taken as the first pixel.
1058 * Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
1059 * element within the 128bit word, eg for pixel 3 the value
1060 * should be 6.
1061 */
1062 for (i = 0; i < num_planes; i++) {
1063 u32 tile_w, tile, x_off, pix_per_tile;
1064
1065 if (fb->format->format == DRM_FORMAT_P030) {
1066 /*
1067 * Spec says: bits [31:4] of the given address
1068 * should point to the 128-bit word containing
1069 * the desired starting pixel, and bits[3:0]
1070 * should be between 0 and 11, indicating which
1071 * of the 12-pixels in that 128-bit word is the
1072 * first pixel to be used
1073 */
1074 u32 remaining_pixels = src_x % 96;
1075 u32 aligned = remaining_pixels / 12;
1076 u32 last_bits = remaining_pixels % 12;
1077
1078 x_off = aligned * 16 + last_bits;
1079 tile_w = 128;
1080 pix_per_tile = 96;
1081 } else {
1082 switch (base_format_mod) {
1083 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1084 tile_w = 64;
1085 break;
1086 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1087 tile_w = 128;
1088 break;
1089 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1090 tile_w = 256;
1091 break;
1092 default:
1093 return -EINVAL;
1094 }
1095 pix_per_tile = tile_w / fb->format->cpp[0];
1096 x_off = (src_x % pix_per_tile) /
1097 (i ? h_subsample : 1) *
1098 fb->format->cpp[i];
1099 }
1100
1101 tile = src_x / pix_per_tile;
1102
1103 offsets[i] += param * tile_w * tile;
1104 offsets[i] += src_y / (i ? v_subsample : 1) * tile_w;
1105 offsets[i] += x_off & ~(i ? 1 : 0);
1106 }
1107
1108 pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
1109 break;
1110 }
1111
1112 default:
1113 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
1114 (long long)fb->modifier);
1115 return -EINVAL;
1116 }
1117
1118 /* fetch an extra pixel if we don't actually line up with the left edge. */
1119 if ((vc4_state->src_x & 0xffff) && vc4_state->src_x < (state->fb->width << 16))
1120 width++;
1121
1122 /* same for the right side */
1123 if (((vc4_state->src_x + vc4_state->src_w[0]) & 0xffff) &&
1124 vc4_state->src_x + vc4_state->src_w[0] < (state->fb->width << 16))
1125 width++;
1126
1127 /* now for the top */
1128 if ((vc4_state->src_y & 0xffff) && vc4_state->src_y < (state->fb->height << 16))
1129 height++;
1130
1131 /* and the bottom */
1132 if (((vc4_state->src_y + vc4_state->src_h[0]) & 0xffff) &&
1133 vc4_state->src_y + vc4_state->src_h[0] < (state->fb->height << 16))
1134 height++;
1135
1136 /* For YUV444 the hardware wants double the width, otherwise it doesn't
1137 * fetch full width of chroma
1138 */
1139 if (format->drm == DRM_FORMAT_YUV444 || format->drm == DRM_FORMAT_YVU444)
1140 width <<= 1;
1141
1142 /* Don't waste cycles mixing with plane alpha if the set alpha
1143 * is opaque or there is no per-pixel alpha information.
1144 * In any case we use the alpha property value as the fixed alpha.
1145 */
1146 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
1147 fb->format->has_alpha;
1148
1149 if (vc4->gen == VC4_GEN_4) {
1150 /* Control word */
1151 vc4_dlist_write(vc4_state,
1152 SCALER_CTL0_VALID |
1153 (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
1154 (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
1155 VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
1156 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
1157 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1158 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1159 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
1160 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1161 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
1162
1163 /* Position Word 0: Image Positions and Alpha Value */
1164 vc4_state->pos0_offset = vc4_state->dlist_count;
1165 vc4_dlist_write(vc4_state,
1166 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
1167 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
1168 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
1169
1170 /* Position Word 1: Scaled Image Dimensions. */
1171 if (!vc4_state->is_unity) {
1172 vc4_dlist_write(vc4_state,
1173 VC4_SET_FIELD(vc4_state->crtc_w,
1174 SCALER_POS1_SCL_WIDTH) |
1175 VC4_SET_FIELD(vc4_state->crtc_h,
1176 SCALER_POS1_SCL_HEIGHT));
1177 }
1178
1179 /* Position Word 2: Source Image Size, Alpha */
1180 vc4_state->pos2_offset = vc4_state->dlist_count;
1181 vc4_dlist_write(vc4_state,
1182 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
1183 vc4_hvs4_get_alpha_blend_mode(state) |
1184 VC4_SET_FIELD(width, SCALER_POS2_WIDTH) |
1185 VC4_SET_FIELD(height, SCALER_POS2_HEIGHT));
1186
1187 /* Position Word 3: Context. Written by the HVS. */
1188 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1189
1190 } else {
1191 /* Control word */
1192 vc4_dlist_write(vc4_state,
1193 SCALER_CTL0_VALID |
1194 (format->pixel_order_hvs5 << SCALER_CTL0_ORDER_SHIFT) |
1195 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1196 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1197 (vc4_state->is_unity ?
1198 SCALER5_CTL0_UNITY : 0) |
1199 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1200 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
1201 SCALER5_CTL0_ALPHA_EXPAND |
1202 SCALER5_CTL0_RGB_EXPAND);
1203
1204 /* Position Word 0: Image Positions and Alpha Value */
1205 vc4_state->pos0_offset = vc4_state->dlist_count;
1206 vc4_dlist_write(vc4_state,
1207 (rotation & DRM_MODE_REFLECT_Y ?
1208 SCALER5_POS0_VFLIP : 0) |
1209 VC4_SET_FIELD(vc4_state->crtc_x,
1210 SCALER_POS0_START_X) |
1211 (rotation & DRM_MODE_REFLECT_X ?
1212 SCALER5_POS0_HFLIP : 0) |
1213 VC4_SET_FIELD(vc4_state->crtc_y,
1214 SCALER5_POS0_START_Y)
1215 );
1216
1217 /* Control Word 2 */
1218 vc4_dlist_write(vc4_state,
1219 VC4_SET_FIELD(state->alpha >> 4,
1220 SCALER5_CTL2_ALPHA) |
1221 vc4_hvs5_get_alpha_blend_mode(state) |
1222 (mix_plane_alpha ?
1223 SCALER5_CTL2_ALPHA_MIX : 0)
1224 );
1225
1226 /* Position Word 1: Scaled Image Dimensions. */
1227 if (!vc4_state->is_unity) {
1228 vc4_dlist_write(vc4_state,
1229 VC4_SET_FIELD(vc4_state->crtc_w,
1230 SCALER5_POS1_SCL_WIDTH) |
1231 VC4_SET_FIELD(vc4_state->crtc_h,
1232 SCALER5_POS1_SCL_HEIGHT));
1233 }
1234
1235 /* Position Word 2: Source Image Size */
1236 vc4_state->pos2_offset = vc4_state->dlist_count;
1237 vc4_dlist_write(vc4_state,
1238 VC4_SET_FIELD(width, SCALER5_POS2_WIDTH) |
1239 VC4_SET_FIELD(height, SCALER5_POS2_HEIGHT));
1240
1241 /* Position Word 3: Context. Written by the HVS. */
1242 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1243 }
1244
1245
1246 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
1247 *
1248 * The pointers may be any byte address.
1249 */
1250 vc4_state->ptr0_offset[0] = vc4_state->dlist_count;
1251
1252 for (i = 0; i < num_planes; i++) {
1253 struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, i);
1254
1255 vc4_dlist_write(vc4_state, bo->dma_addr + fb->offsets[i] + offsets[i]);
1256 }
1257
1258 /* Pointer Context Word 0/1/2: Written by the HVS */
1259 for (i = 0; i < num_planes; i++)
1260 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1261
1262 /* Pitch word 0 */
1263 vc4_dlist_write(vc4_state, pitch0);
1264
1265 /* Pitch word 1/2 */
1266 for (i = 1; i < num_planes; i++) {
1267 if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
1268 hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
1269 vc4_dlist_write(vc4_state,
1270 VC4_SET_FIELD(fb->pitches[i],
1271 SCALER_SRC_PITCH));
1272 } else {
1273 vc4_dlist_write(vc4_state, pitch0);
1274 }
1275 }
1276
1277 /* Colorspace conversion words */
1278 if (vc4_state->is_yuv) {
1279 enum drm_color_encoding color_encoding = state->color_encoding;
1280 enum drm_color_range color_range = state->color_range;
1281 const u32 *ccm;
1282
1283 if (color_encoding >= DRM_COLOR_ENCODING_MAX)
1284 color_encoding = DRM_COLOR_YCBCR_BT601;
1285 if (color_range >= DRM_COLOR_RANGE_MAX)
1286 color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
1287
1288 ccm = colorspace_coeffs[color_range][color_encoding];
1289
1290 vc4_dlist_write(vc4_state, ccm[0]);
1291 vc4_dlist_write(vc4_state, ccm[1]);
1292 vc4_dlist_write(vc4_state, ccm[2]);
1293 }
1294
1295 vc4_state->lbm_offset = 0;
1296
1297 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
1298 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
1299 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1300 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1301 /* Reserve a slot for the LBM Base Address. The real value will
1302 * be set when calling vc4_plane_allocate_lbm().
1303 */
1304 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1305 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1306 vc4_state->lbm_offset = vc4_state->dlist_count;
1307 vc4_dlist_counter_increment(vc4_state);
1308 }
1309
1310 if (num_planes > 1) {
1311 /* Emit Cb/Cr as channel 0 and Y as channel
1312 * 1. This matches how we set up scl0/scl1
1313 * above.
1314 */
1315 vc4_write_scaling_parameters(state, 1);
1316 }
1317 vc4_write_scaling_parameters(state, 0);
1318
1319 /* If any PPF setup was done, then all the kernel
1320 * pointers get uploaded.
1321 */
1322 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1323 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1324 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1325 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1326 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1327 SCALER_PPF_KERNEL_OFFSET);
1328
1329 /* HPPF plane 0 */
1330 vc4_dlist_write(vc4_state, kernel);
1331 /* VPPF plane 0 */
1332 vc4_dlist_write(vc4_state, kernel);
1333 /* HPPF plane 1 */
1334 vc4_dlist_write(vc4_state, kernel);
1335 /* VPPF plane 1 */
1336 vc4_dlist_write(vc4_state, kernel);
1337 }
1338 }
1339
1340 vc4_state->dlist[ctl0_offset] |=
1341 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1342
1343 /* crtc_* are already clipped coordinates. */
1344 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1345 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1346 vc4_state->crtc_h == state->crtc->mode.vdisplay;
1347 /* Background fill might be necessary when the plane has per-pixel
1348 * alpha content or a non-opaque plane alpha and could blend from the
1349 * background or does not cover the entire screen.
1350 */
1351 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1352 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1353
1354 /* Flag the dlist as initialized to avoid checking it twice in case
1355 * the async update check already called vc4_plane_mode_set() and
1356 * decided to fallback to sync update because async update was not
1357 * possible.
1358 */
1359 vc4_state->dlist_initialized = 1;
1360
1361 vc4_plane_calc_load(state);
1362
1363 return 0;
1364}
1365
1366/* If a modeset involves changing the setup of a plane, the atomic
1367 * infrastructure will call this to validate a proposed plane setup.
1368 * However, if a plane isn't getting updated, this (and the
1369 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
1370 * compute the dlist here and have all active plane dlists get updated
1371 * in the CRTC's flush.
1372 */
1373static int vc4_plane_atomic_check(struct drm_plane *plane,
1374 struct drm_atomic_state *state)
1375{
1376 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1377 plane);
1378 struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1379 int ret;
1380
1381 vc4_state->dlist_count = 0;
1382
1383 if (!plane_enabled(new_plane_state))
1384 return 0;
1385
1386 ret = vc4_plane_mode_set(plane, new_plane_state);
1387 if (ret)
1388 return ret;
1389
1390 ret = vc4_plane_allocate_lbm(new_plane_state);
1391 if (ret)
1392 return ret;
1393
1394 return 0;
1395}
1396
1397static void vc4_plane_atomic_update(struct drm_plane *plane,
1398 struct drm_atomic_state *state)
1399{
1400 /* No contents here. Since we don't know where in the CRTC's
1401 * dlist we should be stored, our dlist is uploaded to the
1402 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1403 * time.
1404 */
1405}
1406
1407u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1408{
1409 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1410 int i;
1411 int idx;
1412
1413 if (!drm_dev_enter(plane->dev, &idx))
1414 goto out;
1415
1416 vc4_state->hw_dlist = dlist;
1417
1418 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
1419 for (i = 0; i < vc4_state->dlist_count; i++)
1420 writel(vc4_state->dlist[i], &dlist[i]);
1421
1422 drm_dev_exit(idx);
1423
1424out:
1425 return vc4_state->dlist_count;
1426}
1427
1428u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1429{
1430 const struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1431
1432 return vc4_state->dlist_count;
1433}
1434
1435/* Updates the plane to immediately (well, once the FIFO needs
1436 * refilling) scan out from at a new framebuffer.
1437 */
1438void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1439{
1440 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1441 struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
1442 uint32_t addr;
1443 int idx;
1444
1445 if (!drm_dev_enter(plane->dev, &idx))
1446 return;
1447
1448 /* We're skipping the address adjustment for negative origin,
1449 * because this is only called on the primary plane.
1450 */
1451 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1452 addr = bo->dma_addr + fb->offsets[0];
1453
1454 /* Write the new address into the hardware immediately. The
1455 * scanout will start from this address as soon as the FIFO
1456 * needs to refill with pixels.
1457 */
1458 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset[0]]);
1459
1460 /* Also update the CPU-side dlist copy, so that any later
1461 * atomic updates that don't do a new modeset on our plane
1462 * also use our updated address.
1463 */
1464 vc4_state->dlist[vc4_state->ptr0_offset[0]] = addr;
1465
1466 drm_dev_exit(idx);
1467}
1468
1469static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1470 struct drm_atomic_state *state)
1471{
1472 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1473 plane);
1474 struct vc4_plane_state *vc4_state, *new_vc4_state;
1475 int idx;
1476
1477 if (!drm_dev_enter(plane->dev, &idx))
1478 return;
1479
1480 swap(plane->state->fb, new_plane_state->fb);
1481 plane->state->crtc_x = new_plane_state->crtc_x;
1482 plane->state->crtc_y = new_plane_state->crtc_y;
1483 plane->state->crtc_w = new_plane_state->crtc_w;
1484 plane->state->crtc_h = new_plane_state->crtc_h;
1485 plane->state->src_x = new_plane_state->src_x;
1486 plane->state->src_y = new_plane_state->src_y;
1487 plane->state->src_w = new_plane_state->src_w;
1488 plane->state->src_h = new_plane_state->src_h;
1489 plane->state->alpha = new_plane_state->alpha;
1490 plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1491 plane->state->rotation = new_plane_state->rotation;
1492 plane->state->zpos = new_plane_state->zpos;
1493 plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1494 plane->state->color_encoding = new_plane_state->color_encoding;
1495 plane->state->color_range = new_plane_state->color_range;
1496 plane->state->src = new_plane_state->src;
1497 plane->state->dst = new_plane_state->dst;
1498 plane->state->visible = new_plane_state->visible;
1499
1500 new_vc4_state = to_vc4_plane_state(new_plane_state);
1501 vc4_state = to_vc4_plane_state(plane->state);
1502
1503 vc4_state->crtc_x = new_vc4_state->crtc_x;
1504 vc4_state->crtc_y = new_vc4_state->crtc_y;
1505 vc4_state->crtc_h = new_vc4_state->crtc_h;
1506 vc4_state->crtc_w = new_vc4_state->crtc_w;
1507 vc4_state->src_x = new_vc4_state->src_x;
1508 vc4_state->src_y = new_vc4_state->src_y;
1509 memcpy(vc4_state->src_w, new_vc4_state->src_w,
1510 sizeof(vc4_state->src_w));
1511 memcpy(vc4_state->src_h, new_vc4_state->src_h,
1512 sizeof(vc4_state->src_h));
1513 memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1514 sizeof(vc4_state->x_scaling));
1515 memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1516 sizeof(vc4_state->y_scaling));
1517 vc4_state->is_unity = new_vc4_state->is_unity;
1518 vc4_state->is_yuv = new_vc4_state->is_yuv;
1519 vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1520
1521 /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1522 vc4_state->dlist[vc4_state->pos0_offset] =
1523 new_vc4_state->dlist[vc4_state->pos0_offset];
1524 vc4_state->dlist[vc4_state->pos2_offset] =
1525 new_vc4_state->dlist[vc4_state->pos2_offset];
1526 vc4_state->dlist[vc4_state->ptr0_offset[0]] =
1527 new_vc4_state->dlist[vc4_state->ptr0_offset[0]];
1528
1529 /* Note that we can't just call vc4_plane_write_dlist()
1530 * because that would smash the context data that the HVS is
1531 * currently using.
1532 */
1533 writel(vc4_state->dlist[vc4_state->pos0_offset],
1534 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1535 writel(vc4_state->dlist[vc4_state->pos2_offset],
1536 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1537 writel(vc4_state->dlist[vc4_state->ptr0_offset[0]],
1538 &vc4_state->hw_dlist[vc4_state->ptr0_offset[0]]);
1539
1540 drm_dev_exit(idx);
1541}
1542
1543static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1544 struct drm_atomic_state *state)
1545{
1546 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1547 plane);
1548 struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1549 int ret;
1550 u32 i;
1551
1552 ret = vc4_plane_mode_set(plane, new_plane_state);
1553 if (ret)
1554 return ret;
1555
1556 old_vc4_state = to_vc4_plane_state(plane->state);
1557 new_vc4_state = to_vc4_plane_state(new_plane_state);
1558
1559 if (!new_vc4_state->hw_dlist)
1560 return -EINVAL;
1561
1562 if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1563 old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1564 old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1565 old_vc4_state->ptr0_offset[0] != new_vc4_state->ptr0_offset[0] ||
1566 vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1567 return -EINVAL;
1568
1569 /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1570 * if anything else has changed, fallback to a sync update.
1571 */
1572 for (i = 0; i < new_vc4_state->dlist_count; i++) {
1573 if (i == new_vc4_state->pos0_offset ||
1574 i == new_vc4_state->pos2_offset ||
1575 i == new_vc4_state->ptr0_offset[0] ||
1576 (new_vc4_state->lbm_offset &&
1577 i == new_vc4_state->lbm_offset))
1578 continue;
1579
1580 if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1581 return -EINVAL;
1582 }
1583
1584 return 0;
1585}
1586
1587static int vc4_prepare_fb(struct drm_plane *plane,
1588 struct drm_plane_state *state)
1589{
1590 struct vc4_bo *bo;
1591 int ret;
1592
1593 if (!state->fb)
1594 return 0;
1595
1596 bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1597
1598 ret = drm_gem_plane_helper_prepare_fb(plane, state);
1599 if (ret)
1600 return ret;
1601
1602 return vc4_bo_inc_usecnt(bo);
1603}
1604
1605static void vc4_cleanup_fb(struct drm_plane *plane,
1606 struct drm_plane_state *state)
1607{
1608 struct vc4_bo *bo;
1609
1610 if (!state->fb)
1611 return;
1612
1613 bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1614 vc4_bo_dec_usecnt(bo);
1615}
1616
1617static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1618 .atomic_check = vc4_plane_atomic_check,
1619 .atomic_update = vc4_plane_atomic_update,
1620 .prepare_fb = vc4_prepare_fb,
1621 .cleanup_fb = vc4_cleanup_fb,
1622 .atomic_async_check = vc4_plane_atomic_async_check,
1623 .atomic_async_update = vc4_plane_atomic_async_update,
1624};
1625
1626static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
1627 .atomic_check = vc4_plane_atomic_check,
1628 .atomic_update = vc4_plane_atomic_update,
1629 .atomic_async_check = vc4_plane_atomic_async_check,
1630 .atomic_async_update = vc4_plane_atomic_async_update,
1631};
1632
1633static bool vc4_format_mod_supported(struct drm_plane *plane,
1634 uint32_t format,
1635 uint64_t modifier)
1636{
1637 /* Support T_TILING for RGB formats only. */
1638 switch (format) {
1639 case DRM_FORMAT_XRGB8888:
1640 case DRM_FORMAT_ARGB8888:
1641 case DRM_FORMAT_ABGR8888:
1642 case DRM_FORMAT_XBGR8888:
1643 case DRM_FORMAT_RGB565:
1644 case DRM_FORMAT_BGR565:
1645 case DRM_FORMAT_ARGB1555:
1646 case DRM_FORMAT_XRGB1555:
1647 switch (fourcc_mod_broadcom_mod(modifier)) {
1648 case DRM_FORMAT_MOD_LINEAR:
1649 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1650 return true;
1651 default:
1652 return false;
1653 }
1654 case DRM_FORMAT_NV12:
1655 case DRM_FORMAT_NV21:
1656 switch (fourcc_mod_broadcom_mod(modifier)) {
1657 case DRM_FORMAT_MOD_LINEAR:
1658 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1659 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1660 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1661 return true;
1662 default:
1663 return false;
1664 }
1665 case DRM_FORMAT_P030:
1666 switch (fourcc_mod_broadcom_mod(modifier)) {
1667 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1668 return true;
1669 default:
1670 return false;
1671 }
1672 case DRM_FORMAT_RGBX1010102:
1673 case DRM_FORMAT_BGRX1010102:
1674 case DRM_FORMAT_RGBA1010102:
1675 case DRM_FORMAT_BGRA1010102:
1676 case DRM_FORMAT_XRGB4444:
1677 case DRM_FORMAT_ARGB4444:
1678 case DRM_FORMAT_XBGR4444:
1679 case DRM_FORMAT_ABGR4444:
1680 case DRM_FORMAT_RGBX4444:
1681 case DRM_FORMAT_RGBA4444:
1682 case DRM_FORMAT_BGRX4444:
1683 case DRM_FORMAT_BGRA4444:
1684 case DRM_FORMAT_RGB332:
1685 case DRM_FORMAT_BGR233:
1686 case DRM_FORMAT_YUV422:
1687 case DRM_FORMAT_YVU422:
1688 case DRM_FORMAT_YUV420:
1689 case DRM_FORMAT_YVU420:
1690 case DRM_FORMAT_NV16:
1691 case DRM_FORMAT_NV61:
1692 default:
1693 return (modifier == DRM_FORMAT_MOD_LINEAR);
1694 }
1695}
1696
1697static const struct drm_plane_funcs vc4_plane_funcs = {
1698 .update_plane = drm_atomic_helper_update_plane,
1699 .disable_plane = drm_atomic_helper_disable_plane,
1700 .reset = vc4_plane_reset,
1701 .atomic_duplicate_state = vc4_plane_duplicate_state,
1702 .atomic_destroy_state = vc4_plane_destroy_state,
1703 .format_mod_supported = vc4_format_mod_supported,
1704};
1705
1706struct drm_plane *vc4_plane_init(struct drm_device *dev,
1707 enum drm_plane_type type,
1708 uint32_t possible_crtcs)
1709{
1710 struct vc4_dev *vc4 = to_vc4_dev(dev);
1711 struct drm_plane *plane;
1712 struct vc4_plane *vc4_plane;
1713 u32 formats[ARRAY_SIZE(hvs_formats)];
1714 int num_formats = 0;
1715 unsigned i;
1716 static const uint64_t modifiers[] = {
1717 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1718 DRM_FORMAT_MOD_BROADCOM_SAND128,
1719 DRM_FORMAT_MOD_BROADCOM_SAND64,
1720 DRM_FORMAT_MOD_BROADCOM_SAND256,
1721 DRM_FORMAT_MOD_LINEAR,
1722 DRM_FORMAT_MOD_INVALID
1723 };
1724
1725 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
1726 if (!hvs_formats[i].hvs5_only || vc4->gen == VC4_GEN_5) {
1727 formats[num_formats] = hvs_formats[i].drm;
1728 num_formats++;
1729 }
1730 }
1731
1732 vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
1733 possible_crtcs,
1734 &vc4_plane_funcs,
1735 formats, num_formats,
1736 modifiers, type, NULL);
1737 if (IS_ERR(vc4_plane))
1738 return ERR_CAST(vc4_plane);
1739 plane = &vc4_plane->base;
1740
1741 if (vc4->gen == VC4_GEN_5)
1742 drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
1743 else
1744 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1745
1746 drm_plane_create_alpha_property(plane);
1747 drm_plane_create_blend_mode_property(plane,
1748 BIT(DRM_MODE_BLEND_PIXEL_NONE) |
1749 BIT(DRM_MODE_BLEND_PREMULTI) |
1750 BIT(DRM_MODE_BLEND_COVERAGE));
1751 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1752 DRM_MODE_ROTATE_0 |
1753 DRM_MODE_ROTATE_180 |
1754 DRM_MODE_REFLECT_X |
1755 DRM_MODE_REFLECT_Y);
1756
1757 drm_plane_create_color_properties(plane,
1758 BIT(DRM_COLOR_YCBCR_BT601) |
1759 BIT(DRM_COLOR_YCBCR_BT709) |
1760 BIT(DRM_COLOR_YCBCR_BT2020),
1761 BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
1762 BIT(DRM_COLOR_YCBCR_FULL_RANGE),
1763 DRM_COLOR_YCBCR_BT709,
1764 DRM_COLOR_YCBCR_LIMITED_RANGE);
1765
1766 if (type == DRM_PLANE_TYPE_PRIMARY)
1767 drm_plane_create_zpos_immutable_property(plane, 0);
1768
1769 return plane;
1770}
1771
1772#define VC4_NUM_OVERLAY_PLANES 16
1773
1774int vc4_plane_create_additional_planes(struct drm_device *drm)
1775{
1776 struct drm_plane *cursor_plane;
1777 struct drm_crtc *crtc;
1778 unsigned int i;
1779
1780 /* Set up some arbitrary number of planes. We're not limited
1781 * by a set number of physical registers, just the space in
1782 * the HVS (16k) and how small an plane can be (28 bytes).
1783 * However, each plane we set up takes up some memory, and
1784 * increases the cost of looping over planes, which atomic
1785 * modesetting does quite a bit. As a result, we pick a
1786 * modest number of planes to expose, that should hopefully
1787 * still cover any sane usecase.
1788 */
1789 for (i = 0; i < VC4_NUM_OVERLAY_PLANES; i++) {
1790 struct drm_plane *plane =
1791 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
1792 GENMASK(drm->mode_config.num_crtc - 1, 0));
1793
1794 if (IS_ERR(plane))
1795 continue;
1796
1797 /* Create zpos property. Max of all the overlays + 1 primary +
1798 * 1 cursor plane on a crtc.
1799 */
1800 drm_plane_create_zpos_property(plane, i + 1, 1,
1801 VC4_NUM_OVERLAY_PLANES + 1);
1802 }
1803
1804 drm_for_each_crtc(crtc, drm) {
1805 /* Set up the legacy cursor after overlay initialization,
1806 * since the zpos fallback is that planes are rendered by plane
1807 * ID order, and that then puts the cursor on top.
1808 */
1809 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
1810 drm_crtc_mask(crtc));
1811 if (!IS_ERR(cursor_plane)) {
1812 crtc->cursor = cursor_plane;
1813
1814 drm_plane_create_zpos_property(cursor_plane,
1815 VC4_NUM_OVERLAY_PLANES + 1,
1816 1,
1817 VC4_NUM_OVERLAY_PLANES + 1);
1818 }
1819 }
1820
1821 return 0;
1822}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 plane module
8 *
9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
10 *
11 * At atomic modeset check time, we compute the HVS display element
12 * state that would be necessary for displaying the plane (giving us a
13 * chance to figure out if a plane configuration is invalid), then at
14 * atomic flush time the CRTC will ask us to write our element state
15 * into the region of the HVS that it has allocated for us.
16 */
17
18#include <drm/drm_atomic.h>
19#include <drm/drm_atomic_helper.h>
20#include <drm/drm_atomic_uapi.h>
21#include <drm/drm_fb_cma_helper.h>
22#include <drm/drm_fourcc.h>
23#include <drm/drm_gem_atomic_helper.h>
24#include <drm/drm_plane_helper.h>
25
26#include "uapi/drm/vc4_drm.h"
27
28#include "vc4_drv.h"
29#include "vc4_regs.h"
30
31static const struct hvs_format {
32 u32 drm; /* DRM_FORMAT_* */
33 u32 hvs; /* HVS_FORMAT_* */
34 u32 pixel_order;
35 u32 pixel_order_hvs5;
36} hvs_formats[] = {
37 {
38 .drm = DRM_FORMAT_XRGB8888,
39 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 .pixel_order = HVS_PIXEL_ORDER_ABGR,
41 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
42 },
43 {
44 .drm = DRM_FORMAT_ARGB8888,
45 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 .pixel_order = HVS_PIXEL_ORDER_ABGR,
47 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
48 },
49 {
50 .drm = DRM_FORMAT_ABGR8888,
51 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 .pixel_order = HVS_PIXEL_ORDER_ARGB,
53 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
54 },
55 {
56 .drm = DRM_FORMAT_XBGR8888,
57 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 .pixel_order = HVS_PIXEL_ORDER_ARGB,
59 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
60 },
61 {
62 .drm = DRM_FORMAT_RGB565,
63 .hvs = HVS_PIXEL_FORMAT_RGB565,
64 .pixel_order = HVS_PIXEL_ORDER_XRGB,
65 },
66 {
67 .drm = DRM_FORMAT_BGR565,
68 .hvs = HVS_PIXEL_FORMAT_RGB565,
69 .pixel_order = HVS_PIXEL_ORDER_XBGR,
70 },
71 {
72 .drm = DRM_FORMAT_ARGB1555,
73 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 .pixel_order = HVS_PIXEL_ORDER_ABGR,
75 },
76 {
77 .drm = DRM_FORMAT_XRGB1555,
78 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 .pixel_order = HVS_PIXEL_ORDER_ABGR,
80 },
81 {
82 .drm = DRM_FORMAT_RGB888,
83 .hvs = HVS_PIXEL_FORMAT_RGB888,
84 .pixel_order = HVS_PIXEL_ORDER_XRGB,
85 },
86 {
87 .drm = DRM_FORMAT_BGR888,
88 .hvs = HVS_PIXEL_FORMAT_RGB888,
89 .pixel_order = HVS_PIXEL_ORDER_XBGR,
90 },
91 {
92 .drm = DRM_FORMAT_YUV422,
93 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
95 },
96 {
97 .drm = DRM_FORMAT_YVU422,
98 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
100 },
101 {
102 .drm = DRM_FORMAT_YUV420,
103 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
105 },
106 {
107 .drm = DRM_FORMAT_YVU420,
108 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 },
111 {
112 .drm = DRM_FORMAT_NV12,
113 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
115 },
116 {
117 .drm = DRM_FORMAT_NV21,
118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
120 },
121 {
122 .drm = DRM_FORMAT_NV16,
123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
125 },
126 {
127 .drm = DRM_FORMAT_NV61,
128 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
130 },
131};
132
133static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
134{
135 unsigned i;
136
137 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 if (hvs_formats[i].drm == drm_format)
139 return &hvs_formats[i];
140 }
141
142 return NULL;
143}
144
145static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
146{
147 if (dst == src)
148 return VC4_SCALING_NONE;
149 if (3 * dst >= 2 * src)
150 return VC4_SCALING_PPF;
151 else
152 return VC4_SCALING_TPZ;
153}
154
155static bool plane_enabled(struct drm_plane_state *state)
156{
157 return state->fb && !WARN_ON(!state->crtc);
158}
159
160static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
161{
162 struct vc4_plane_state *vc4_state;
163
164 if (WARN_ON(!plane->state))
165 return NULL;
166
167 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
168 if (!vc4_state)
169 return NULL;
170
171 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 vc4_state->dlist_initialized = 0;
173
174 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
175
176 if (vc4_state->dlist) {
177 vc4_state->dlist = kmemdup(vc4_state->dlist,
178 vc4_state->dlist_count * 4,
179 GFP_KERNEL);
180 if (!vc4_state->dlist) {
181 kfree(vc4_state);
182 return NULL;
183 }
184 vc4_state->dlist_size = vc4_state->dlist_count;
185 }
186
187 return &vc4_state->base;
188}
189
190static void vc4_plane_destroy_state(struct drm_plane *plane,
191 struct drm_plane_state *state)
192{
193 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
195
196 if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 unsigned long irqflags;
198
199 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 drm_mm_remove_node(&vc4_state->lbm);
201 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
202 }
203
204 kfree(vc4_state->dlist);
205 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 kfree(state);
207}
208
209/* Called during init to allocate the plane's atomic state. */
210static void vc4_plane_reset(struct drm_plane *plane)
211{
212 struct vc4_plane_state *vc4_state;
213
214 WARN_ON(plane->state);
215
216 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
217 if (!vc4_state)
218 return;
219
220 __drm_atomic_helper_plane_reset(plane, &vc4_state->base);
221}
222
223static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
224{
225 if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
228
229 if (!new_dlist)
230 return;
231 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
232
233 kfree(vc4_state->dlist);
234 vc4_state->dlist = new_dlist;
235 vc4_state->dlist_size = new_size;
236 }
237
238 vc4_state->dlist_count++;
239}
240
241static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
242{
243 unsigned int idx = vc4_state->dlist_count;
244
245 vc4_dlist_counter_increment(vc4_state);
246 vc4_state->dlist[idx] = val;
247}
248
249/* Returns the scl0/scl1 field based on whether the dimensions need to
250 * be up/down/non-scaled.
251 *
252 * This is a replication of a table from the spec.
253 */
254static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
255{
256 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
257
258 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
259 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
260 return SCALER_CTL0_SCL_H_PPF_V_PPF;
261 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
262 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
263 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
264 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
265 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
266 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
267 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
268 return SCALER_CTL0_SCL_H_PPF_V_NONE;
269 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
270 return SCALER_CTL0_SCL_H_NONE_V_PPF;
271 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
272 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
273 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
274 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
275 default:
276 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
277 /* The unity case is independently handled by
278 * SCALER_CTL0_UNITY.
279 */
280 return 0;
281 }
282}
283
284static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
285{
286 struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
287 unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
288 struct drm_crtc_state *crtc_state;
289
290 crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
291 pstate->crtc);
292
293 vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
294 if (!left && !right && !top && !bottom)
295 return 0;
296
297 if (left + right >= crtc_state->mode.hdisplay ||
298 top + bottom >= crtc_state->mode.vdisplay)
299 return -EINVAL;
300
301 adjhdisplay = crtc_state->mode.hdisplay - (left + right);
302 vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
303 adjhdisplay,
304 crtc_state->mode.hdisplay);
305 vc4_pstate->crtc_x += left;
306 if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
307 vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
308
309 adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
310 vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
311 adjvdisplay,
312 crtc_state->mode.vdisplay);
313 vc4_pstate->crtc_y += top;
314 if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
315 vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
316
317 vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
318 adjhdisplay,
319 crtc_state->mode.hdisplay);
320 vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
321 adjvdisplay,
322 crtc_state->mode.vdisplay);
323
324 if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
325 return -EINVAL;
326
327 return 0;
328}
329
330static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
331{
332 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
333 struct drm_framebuffer *fb = state->fb;
334 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
335 u32 subpixel_src_mask = (1 << 16) - 1;
336 int num_planes = fb->format->num_planes;
337 struct drm_crtc_state *crtc_state;
338 u32 h_subsample = fb->format->hsub;
339 u32 v_subsample = fb->format->vsub;
340 int i, ret;
341
342 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
343 state->crtc);
344 if (!crtc_state) {
345 DRM_DEBUG_KMS("Invalid crtc state\n");
346 return -EINVAL;
347 }
348
349 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
350 INT_MAX, true, true);
351 if (ret)
352 return ret;
353
354 for (i = 0; i < num_planes; i++)
355 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
356
357 /* We don't support subpixel source positioning for scaling. */
358 if ((state->src.x1 & subpixel_src_mask) ||
359 (state->src.x2 & subpixel_src_mask) ||
360 (state->src.y1 & subpixel_src_mask) ||
361 (state->src.y2 & subpixel_src_mask)) {
362 return -EINVAL;
363 }
364
365 vc4_state->src_x = state->src.x1 >> 16;
366 vc4_state->src_y = state->src.y1 >> 16;
367 vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
368 vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
369
370 vc4_state->crtc_x = state->dst.x1;
371 vc4_state->crtc_y = state->dst.y1;
372 vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
373 vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
374
375 ret = vc4_plane_margins_adj(state);
376 if (ret)
377 return ret;
378
379 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
380 vc4_state->crtc_w);
381 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
382 vc4_state->crtc_h);
383
384 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
385 vc4_state->y_scaling[0] == VC4_SCALING_NONE);
386
387 if (num_planes > 1) {
388 vc4_state->is_yuv = true;
389
390 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
391 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
392
393 vc4_state->x_scaling[1] =
394 vc4_get_scaling_mode(vc4_state->src_w[1],
395 vc4_state->crtc_w);
396 vc4_state->y_scaling[1] =
397 vc4_get_scaling_mode(vc4_state->src_h[1],
398 vc4_state->crtc_h);
399
400 /* YUV conversion requires that horizontal scaling be enabled
401 * on the UV plane even if vc4_get_scaling_mode() returned
402 * VC4_SCALING_NONE (which can happen when the down-scaling
403 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
404 * case.
405 */
406 if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
407 vc4_state->x_scaling[1] = VC4_SCALING_PPF;
408 } else {
409 vc4_state->is_yuv = false;
410 vc4_state->x_scaling[1] = VC4_SCALING_NONE;
411 vc4_state->y_scaling[1] = VC4_SCALING_NONE;
412 }
413
414 return 0;
415}
416
417static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
418{
419 u32 scale, recip;
420
421 scale = (1 << 16) * src / dst;
422
423 /* The specs note that while the reciprocal would be defined
424 * as (1<<32)/scale, ~0 is close enough.
425 */
426 recip = ~0 / scale;
427
428 vc4_dlist_write(vc4_state,
429 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
430 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
431 vc4_dlist_write(vc4_state,
432 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
433}
434
435static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
436{
437 u32 scale = (1 << 16) * src / dst;
438
439 vc4_dlist_write(vc4_state,
440 SCALER_PPF_AGC |
441 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
442 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
443}
444
445static u32 vc4_lbm_size(struct drm_plane_state *state)
446{
447 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
448 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
449 u32 pix_per_line;
450 u32 lbm;
451
452 /* LBM is not needed when there's no vertical scaling. */
453 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
454 vc4_state->y_scaling[1] == VC4_SCALING_NONE)
455 return 0;
456
457 /*
458 * This can be further optimized in the RGB/YUV444 case if the PPF
459 * decimation factor is between 0.5 and 1.0 by using crtc_w.
460 *
461 * It's not an issue though, since in that case since src_w[0] is going
462 * to be greater than or equal to crtc_w.
463 */
464 if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
465 pix_per_line = vc4_state->crtc_w;
466 else
467 pix_per_line = vc4_state->src_w[0];
468
469 if (!vc4_state->is_yuv) {
470 if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
471 lbm = pix_per_line * 8;
472 else {
473 /* In special cases, this multiplier might be 12. */
474 lbm = pix_per_line * 16;
475 }
476 } else {
477 /* There are cases for this going down to a multiplier
478 * of 2, but according to the firmware source, the
479 * table in the docs is somewhat wrong.
480 */
481 lbm = pix_per_line * 16;
482 }
483
484 /* Align it to 64 or 128 (hvs5) bytes */
485 lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
486
487 /* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
488 lbm /= vc4->hvs->hvs5 ? 4 : 2;
489
490 return lbm;
491}
492
493static void vc4_write_scaling_parameters(struct drm_plane_state *state,
494 int channel)
495{
496 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
497
498 /* Ch0 H-PPF Word 0: Scaling Parameters */
499 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
500 vc4_write_ppf(vc4_state,
501 vc4_state->src_w[channel], vc4_state->crtc_w);
502 }
503
504 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
505 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
506 vc4_write_ppf(vc4_state,
507 vc4_state->src_h[channel], vc4_state->crtc_h);
508 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
509 }
510
511 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
512 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
513 vc4_write_tpz(vc4_state,
514 vc4_state->src_w[channel], vc4_state->crtc_w);
515 }
516
517 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
518 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
519 vc4_write_tpz(vc4_state,
520 vc4_state->src_h[channel], vc4_state->crtc_h);
521 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
522 }
523}
524
525static void vc4_plane_calc_load(struct drm_plane_state *state)
526{
527 unsigned int hvs_load_shift, vrefresh, i;
528 struct drm_framebuffer *fb = state->fb;
529 struct vc4_plane_state *vc4_state;
530 struct drm_crtc_state *crtc_state;
531 unsigned int vscale_factor;
532 struct vc4_dev *vc4;
533
534 vc4 = to_vc4_dev(state->plane->dev);
535 if (!vc4->load_tracker_available)
536 return;
537
538 vc4_state = to_vc4_plane_state(state);
539 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
540 state->crtc);
541 vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
542
543 /* The HVS is able to process 2 pixels/cycle when scaling the source,
544 * 4 pixels/cycle otherwise.
545 * Alpha blending step seems to be pipelined and it's always operating
546 * at 4 pixels/cycle, so the limiting aspect here seems to be the
547 * scaler block.
548 * HVS load is expressed in clk-cycles/sec (AKA Hz).
549 */
550 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
551 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
552 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
553 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
554 hvs_load_shift = 1;
555 else
556 hvs_load_shift = 2;
557
558 vc4_state->membus_load = 0;
559 vc4_state->hvs_load = 0;
560 for (i = 0; i < fb->format->num_planes; i++) {
561 /* Even if the bandwidth/plane required for a single frame is
562 *
563 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
564 *
565 * when downscaling, we have to read more pixels per line in
566 * the time frame reserved for a single line, so the bandwidth
567 * demand can be punctually higher. To account for that, we
568 * calculate the down-scaling factor and multiply the plane
569 * load by this number. We're likely over-estimating the read
570 * demand, but that's better than under-estimating it.
571 */
572 vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
573 vc4_state->crtc_h);
574 vc4_state->membus_load += vc4_state->src_w[i] *
575 vc4_state->src_h[i] * vscale_factor *
576 fb->format->cpp[i];
577 vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
578 }
579
580 vc4_state->hvs_load *= vrefresh;
581 vc4_state->hvs_load >>= hvs_load_shift;
582 vc4_state->membus_load *= vrefresh;
583}
584
585static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
586{
587 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
588 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
589 unsigned long irqflags;
590 u32 lbm_size;
591
592 lbm_size = vc4_lbm_size(state);
593 if (!lbm_size)
594 return 0;
595
596 if (WARN_ON(!vc4_state->lbm_offset))
597 return -EINVAL;
598
599 /* Allocate the LBM memory that the HVS will use for temporary
600 * storage due to our scaling/format conversion.
601 */
602 if (!drm_mm_node_allocated(&vc4_state->lbm)) {
603 int ret;
604
605 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
606 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
607 &vc4_state->lbm,
608 lbm_size,
609 vc4->hvs->hvs5 ? 64 : 32,
610 0, 0);
611 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
612
613 if (ret)
614 return ret;
615 } else {
616 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
617 }
618
619 vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
620
621 return 0;
622}
623
624/* Writes out a full display list for an active plane to the plane's
625 * private dlist state.
626 */
627static int vc4_plane_mode_set(struct drm_plane *plane,
628 struct drm_plane_state *state)
629{
630 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
631 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
632 struct drm_framebuffer *fb = state->fb;
633 u32 ctl0_offset = vc4_state->dlist_count;
634 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
635 u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
636 int num_planes = fb->format->num_planes;
637 u32 h_subsample = fb->format->hsub;
638 u32 v_subsample = fb->format->vsub;
639 bool mix_plane_alpha;
640 bool covers_screen;
641 u32 scl0, scl1, pitch0;
642 u32 tiling, src_y;
643 u32 hvs_format = format->hvs;
644 unsigned int rotation;
645 int ret, i;
646
647 if (vc4_state->dlist_initialized)
648 return 0;
649
650 ret = vc4_plane_setup_clipping_and_scaling(state);
651 if (ret)
652 return ret;
653
654 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
655 * and 4:4:4, scl1 should be set to scl0 so both channels of
656 * the scaler do the same thing. For YUV, the Y plane needs
657 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
658 * the scl fields here.
659 */
660 if (num_planes == 1) {
661 scl0 = vc4_get_scl_field(state, 0);
662 scl1 = scl0;
663 } else {
664 scl0 = vc4_get_scl_field(state, 1);
665 scl1 = vc4_get_scl_field(state, 0);
666 }
667
668 rotation = drm_rotation_simplify(state->rotation,
669 DRM_MODE_ROTATE_0 |
670 DRM_MODE_REFLECT_X |
671 DRM_MODE_REFLECT_Y);
672
673 /* We must point to the last line when Y reflection is enabled. */
674 src_y = vc4_state->src_y;
675 if (rotation & DRM_MODE_REFLECT_Y)
676 src_y += vc4_state->src_h[0] - 1;
677
678 switch (base_format_mod) {
679 case DRM_FORMAT_MOD_LINEAR:
680 tiling = SCALER_CTL0_TILING_LINEAR;
681 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
682
683 /* Adjust the base pointer to the first pixel to be scanned
684 * out.
685 */
686 for (i = 0; i < num_planes; i++) {
687 vc4_state->offsets[i] += src_y /
688 (i ? v_subsample : 1) *
689 fb->pitches[i];
690
691 vc4_state->offsets[i] += vc4_state->src_x /
692 (i ? h_subsample : 1) *
693 fb->format->cpp[i];
694 }
695
696 break;
697
698 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
699 u32 tile_size_shift = 12; /* T tiles are 4kb */
700 /* Whole-tile offsets, mostly for setting the pitch. */
701 u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
702 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
703 u32 tile_w_mask = (1 << tile_w_shift) - 1;
704 /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
705 * the height (in pixels) of a 4k tile.
706 */
707 u32 tile_h_mask = (2 << tile_h_shift) - 1;
708 /* For T-tiled, the FB pitch is "how many bytes from one row to
709 * the next, such that
710 *
711 * pitch * tile_h == tile_size * tiles_per_row
712 */
713 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
714 u32 tiles_l = vc4_state->src_x >> tile_w_shift;
715 u32 tiles_r = tiles_w - tiles_l;
716 u32 tiles_t = src_y >> tile_h_shift;
717 /* Intra-tile offsets, which modify the base address (the
718 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
719 * base address).
720 */
721 u32 tile_y = (src_y >> 4) & 1;
722 u32 subtile_y = (src_y >> 2) & 3;
723 u32 utile_y = src_y & 3;
724 u32 x_off = vc4_state->src_x & tile_w_mask;
725 u32 y_off = src_y & tile_h_mask;
726
727 /* When Y reflection is requested we must set the
728 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
729 * after the initial one should be fetched in descending order,
730 * which makes sense since we start from the last line and go
731 * backward.
732 * Don't know why we need y_off = max_y_off - y_off, but it's
733 * definitely required (I guess it's also related to the "going
734 * backward" situation).
735 */
736 if (rotation & DRM_MODE_REFLECT_Y) {
737 y_off = tile_h_mask - y_off;
738 pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
739 } else {
740 pitch0 = 0;
741 }
742
743 tiling = SCALER_CTL0_TILING_256B_OR_T;
744 pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
745 VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
746 VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
747 VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
748 vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
749 vc4_state->offsets[0] += subtile_y << 8;
750 vc4_state->offsets[0] += utile_y << 4;
751
752 /* Rows of tiles alternate left-to-right and right-to-left. */
753 if (tiles_t & 1) {
754 pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
755 vc4_state->offsets[0] += (tiles_w - tiles_l) <<
756 tile_size_shift;
757 vc4_state->offsets[0] -= (1 + !tile_y) << 10;
758 } else {
759 vc4_state->offsets[0] += tiles_l << tile_size_shift;
760 vc4_state->offsets[0] += tile_y << 10;
761 }
762
763 break;
764 }
765
766 case DRM_FORMAT_MOD_BROADCOM_SAND64:
767 case DRM_FORMAT_MOD_BROADCOM_SAND128:
768 case DRM_FORMAT_MOD_BROADCOM_SAND256: {
769 uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
770 u32 tile_w, tile, x_off, pix_per_tile;
771
772 hvs_format = HVS_PIXEL_FORMAT_H264;
773
774 switch (base_format_mod) {
775 case DRM_FORMAT_MOD_BROADCOM_SAND64:
776 tiling = SCALER_CTL0_TILING_64B;
777 tile_w = 64;
778 break;
779 case DRM_FORMAT_MOD_BROADCOM_SAND128:
780 tiling = SCALER_CTL0_TILING_128B;
781 tile_w = 128;
782 break;
783 case DRM_FORMAT_MOD_BROADCOM_SAND256:
784 tiling = SCALER_CTL0_TILING_256B_OR_T;
785 tile_w = 256;
786 break;
787 default:
788 break;
789 }
790
791 if (param > SCALER_TILE_HEIGHT_MASK) {
792 DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
793 return -EINVAL;
794 }
795
796 pix_per_tile = tile_w / fb->format->cpp[0];
797 tile = vc4_state->src_x / pix_per_tile;
798 x_off = vc4_state->src_x % pix_per_tile;
799
800 /* Adjust the base pointer to the first pixel to be scanned
801 * out.
802 */
803 for (i = 0; i < num_planes; i++) {
804 vc4_state->offsets[i] += param * tile_w * tile;
805 vc4_state->offsets[i] += src_y /
806 (i ? v_subsample : 1) *
807 tile_w;
808 vc4_state->offsets[i] += x_off /
809 (i ? h_subsample : 1) *
810 fb->format->cpp[i];
811 }
812
813 pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
814 break;
815 }
816
817 default:
818 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
819 (long long)fb->modifier);
820 return -EINVAL;
821 }
822
823 /* Don't waste cycles mixing with plane alpha if the set alpha
824 * is opaque or there is no per-pixel alpha information.
825 * In any case we use the alpha property value as the fixed alpha.
826 */
827 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
828 fb->format->has_alpha;
829
830 if (!vc4->hvs->hvs5) {
831 /* Control word */
832 vc4_dlist_write(vc4_state,
833 SCALER_CTL0_VALID |
834 (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
835 (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
836 VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
837 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
838 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
839 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
840 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
841 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
842 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
843
844 /* Position Word 0: Image Positions and Alpha Value */
845 vc4_state->pos0_offset = vc4_state->dlist_count;
846 vc4_dlist_write(vc4_state,
847 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
848 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
849 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
850
851 /* Position Word 1: Scaled Image Dimensions. */
852 if (!vc4_state->is_unity) {
853 vc4_dlist_write(vc4_state,
854 VC4_SET_FIELD(vc4_state->crtc_w,
855 SCALER_POS1_SCL_WIDTH) |
856 VC4_SET_FIELD(vc4_state->crtc_h,
857 SCALER_POS1_SCL_HEIGHT));
858 }
859
860 /* Position Word 2: Source Image Size, Alpha */
861 vc4_state->pos2_offset = vc4_state->dlist_count;
862 vc4_dlist_write(vc4_state,
863 VC4_SET_FIELD(fb->format->has_alpha ?
864 SCALER_POS2_ALPHA_MODE_PIPELINE :
865 SCALER_POS2_ALPHA_MODE_FIXED,
866 SCALER_POS2_ALPHA_MODE) |
867 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
868 (fb->format->has_alpha ?
869 SCALER_POS2_ALPHA_PREMULT : 0) |
870 VC4_SET_FIELD(vc4_state->src_w[0],
871 SCALER_POS2_WIDTH) |
872 VC4_SET_FIELD(vc4_state->src_h[0],
873 SCALER_POS2_HEIGHT));
874
875 /* Position Word 3: Context. Written by the HVS. */
876 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
877
878 } else {
879 u32 hvs_pixel_order = format->pixel_order;
880
881 if (format->pixel_order_hvs5)
882 hvs_pixel_order = format->pixel_order_hvs5;
883
884 /* Control word */
885 vc4_dlist_write(vc4_state,
886 SCALER_CTL0_VALID |
887 (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
888 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
889 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
890 (vc4_state->is_unity ?
891 SCALER5_CTL0_UNITY : 0) |
892 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
893 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
894 SCALER5_CTL0_ALPHA_EXPAND |
895 SCALER5_CTL0_RGB_EXPAND);
896
897 /* Position Word 0: Image Positions and Alpha Value */
898 vc4_state->pos0_offset = vc4_state->dlist_count;
899 vc4_dlist_write(vc4_state,
900 (rotation & DRM_MODE_REFLECT_Y ?
901 SCALER5_POS0_VFLIP : 0) |
902 VC4_SET_FIELD(vc4_state->crtc_x,
903 SCALER_POS0_START_X) |
904 (rotation & DRM_MODE_REFLECT_X ?
905 SCALER5_POS0_HFLIP : 0) |
906 VC4_SET_FIELD(vc4_state->crtc_y,
907 SCALER5_POS0_START_Y)
908 );
909
910 /* Control Word 2 */
911 vc4_dlist_write(vc4_state,
912 VC4_SET_FIELD(state->alpha >> 4,
913 SCALER5_CTL2_ALPHA) |
914 (fb->format->has_alpha ?
915 SCALER5_CTL2_ALPHA_PREMULT : 0) |
916 (mix_plane_alpha ?
917 SCALER5_CTL2_ALPHA_MIX : 0) |
918 VC4_SET_FIELD(fb->format->has_alpha ?
919 SCALER5_CTL2_ALPHA_MODE_PIPELINE :
920 SCALER5_CTL2_ALPHA_MODE_FIXED,
921 SCALER5_CTL2_ALPHA_MODE)
922 );
923
924 /* Position Word 1: Scaled Image Dimensions. */
925 if (!vc4_state->is_unity) {
926 vc4_dlist_write(vc4_state,
927 VC4_SET_FIELD(vc4_state->crtc_w,
928 SCALER5_POS1_SCL_WIDTH) |
929 VC4_SET_FIELD(vc4_state->crtc_h,
930 SCALER5_POS1_SCL_HEIGHT));
931 }
932
933 /* Position Word 2: Source Image Size */
934 vc4_state->pos2_offset = vc4_state->dlist_count;
935 vc4_dlist_write(vc4_state,
936 VC4_SET_FIELD(vc4_state->src_w[0],
937 SCALER5_POS2_WIDTH) |
938 VC4_SET_FIELD(vc4_state->src_h[0],
939 SCALER5_POS2_HEIGHT));
940
941 /* Position Word 3: Context. Written by the HVS. */
942 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
943 }
944
945
946 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
947 *
948 * The pointers may be any byte address.
949 */
950 vc4_state->ptr0_offset = vc4_state->dlist_count;
951 for (i = 0; i < num_planes; i++)
952 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
953
954 /* Pointer Context Word 0/1/2: Written by the HVS */
955 for (i = 0; i < num_planes; i++)
956 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
957
958 /* Pitch word 0 */
959 vc4_dlist_write(vc4_state, pitch0);
960
961 /* Pitch word 1/2 */
962 for (i = 1; i < num_planes; i++) {
963 if (hvs_format != HVS_PIXEL_FORMAT_H264) {
964 vc4_dlist_write(vc4_state,
965 VC4_SET_FIELD(fb->pitches[i],
966 SCALER_SRC_PITCH));
967 } else {
968 vc4_dlist_write(vc4_state, pitch0);
969 }
970 }
971
972 /* Colorspace conversion words */
973 if (vc4_state->is_yuv) {
974 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
975 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
976 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
977 }
978
979 vc4_state->lbm_offset = 0;
980
981 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
982 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
983 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
984 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
985 /* Reserve a slot for the LBM Base Address. The real value will
986 * be set when calling vc4_plane_allocate_lbm().
987 */
988 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
989 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
990 vc4_state->lbm_offset = vc4_state->dlist_count;
991 vc4_dlist_counter_increment(vc4_state);
992 }
993
994 if (num_planes > 1) {
995 /* Emit Cb/Cr as channel 0 and Y as channel
996 * 1. This matches how we set up scl0/scl1
997 * above.
998 */
999 vc4_write_scaling_parameters(state, 1);
1000 }
1001 vc4_write_scaling_parameters(state, 0);
1002
1003 /* If any PPF setup was done, then all the kernel
1004 * pointers get uploaded.
1005 */
1006 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1007 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1008 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1009 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1010 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1011 SCALER_PPF_KERNEL_OFFSET);
1012
1013 /* HPPF plane 0 */
1014 vc4_dlist_write(vc4_state, kernel);
1015 /* VPPF plane 0 */
1016 vc4_dlist_write(vc4_state, kernel);
1017 /* HPPF plane 1 */
1018 vc4_dlist_write(vc4_state, kernel);
1019 /* VPPF plane 1 */
1020 vc4_dlist_write(vc4_state, kernel);
1021 }
1022 }
1023
1024 vc4_state->dlist[ctl0_offset] |=
1025 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1026
1027 /* crtc_* are already clipped coordinates. */
1028 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1029 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1030 vc4_state->crtc_h == state->crtc->mode.vdisplay;
1031 /* Background fill might be necessary when the plane has per-pixel
1032 * alpha content or a non-opaque plane alpha and could blend from the
1033 * background or does not cover the entire screen.
1034 */
1035 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1036 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1037
1038 /* Flag the dlist as initialized to avoid checking it twice in case
1039 * the async update check already called vc4_plane_mode_set() and
1040 * decided to fallback to sync update because async update was not
1041 * possible.
1042 */
1043 vc4_state->dlist_initialized = 1;
1044
1045 vc4_plane_calc_load(state);
1046
1047 return 0;
1048}
1049
1050/* If a modeset involves changing the setup of a plane, the atomic
1051 * infrastructure will call this to validate a proposed plane setup.
1052 * However, if a plane isn't getting updated, this (and the
1053 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
1054 * compute the dlist here and have all active plane dlists get updated
1055 * in the CRTC's flush.
1056 */
1057static int vc4_plane_atomic_check(struct drm_plane *plane,
1058 struct drm_atomic_state *state)
1059{
1060 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1061 plane);
1062 struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1063 int ret;
1064
1065 vc4_state->dlist_count = 0;
1066
1067 if (!plane_enabled(new_plane_state))
1068 return 0;
1069
1070 ret = vc4_plane_mode_set(plane, new_plane_state);
1071 if (ret)
1072 return ret;
1073
1074 return vc4_plane_allocate_lbm(new_plane_state);
1075}
1076
1077static void vc4_plane_atomic_update(struct drm_plane *plane,
1078 struct drm_atomic_state *state)
1079{
1080 /* No contents here. Since we don't know where in the CRTC's
1081 * dlist we should be stored, our dlist is uploaded to the
1082 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1083 * time.
1084 */
1085}
1086
1087u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1088{
1089 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1090 int i;
1091
1092 vc4_state->hw_dlist = dlist;
1093
1094 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
1095 for (i = 0; i < vc4_state->dlist_count; i++)
1096 writel(vc4_state->dlist[i], &dlist[i]);
1097
1098 return vc4_state->dlist_count;
1099}
1100
1101u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1102{
1103 const struct vc4_plane_state *vc4_state =
1104 container_of(state, typeof(*vc4_state), base);
1105
1106 return vc4_state->dlist_count;
1107}
1108
1109/* Updates the plane to immediately (well, once the FIFO needs
1110 * refilling) scan out from at a new framebuffer.
1111 */
1112void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1113{
1114 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1115 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1116 uint32_t addr;
1117
1118 /* We're skipping the address adjustment for negative origin,
1119 * because this is only called on the primary plane.
1120 */
1121 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1122 addr = bo->paddr + fb->offsets[0];
1123
1124 /* Write the new address into the hardware immediately. The
1125 * scanout will start from this address as soon as the FIFO
1126 * needs to refill with pixels.
1127 */
1128 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1129
1130 /* Also update the CPU-side dlist copy, so that any later
1131 * atomic updates that don't do a new modeset on our plane
1132 * also use our updated address.
1133 */
1134 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1135}
1136
1137static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1138 struct drm_atomic_state *state)
1139{
1140 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1141 plane);
1142 struct vc4_plane_state *vc4_state, *new_vc4_state;
1143
1144 swap(plane->state->fb, new_plane_state->fb);
1145 plane->state->crtc_x = new_plane_state->crtc_x;
1146 plane->state->crtc_y = new_plane_state->crtc_y;
1147 plane->state->crtc_w = new_plane_state->crtc_w;
1148 plane->state->crtc_h = new_plane_state->crtc_h;
1149 plane->state->src_x = new_plane_state->src_x;
1150 plane->state->src_y = new_plane_state->src_y;
1151 plane->state->src_w = new_plane_state->src_w;
1152 plane->state->src_h = new_plane_state->src_h;
1153 plane->state->alpha = new_plane_state->alpha;
1154 plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1155 plane->state->rotation = new_plane_state->rotation;
1156 plane->state->zpos = new_plane_state->zpos;
1157 plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1158 plane->state->color_encoding = new_plane_state->color_encoding;
1159 plane->state->color_range = new_plane_state->color_range;
1160 plane->state->src = new_plane_state->src;
1161 plane->state->dst = new_plane_state->dst;
1162 plane->state->visible = new_plane_state->visible;
1163
1164 new_vc4_state = to_vc4_plane_state(new_plane_state);
1165 vc4_state = to_vc4_plane_state(plane->state);
1166
1167 vc4_state->crtc_x = new_vc4_state->crtc_x;
1168 vc4_state->crtc_y = new_vc4_state->crtc_y;
1169 vc4_state->crtc_h = new_vc4_state->crtc_h;
1170 vc4_state->crtc_w = new_vc4_state->crtc_w;
1171 vc4_state->src_x = new_vc4_state->src_x;
1172 vc4_state->src_y = new_vc4_state->src_y;
1173 memcpy(vc4_state->src_w, new_vc4_state->src_w,
1174 sizeof(vc4_state->src_w));
1175 memcpy(vc4_state->src_h, new_vc4_state->src_h,
1176 sizeof(vc4_state->src_h));
1177 memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1178 sizeof(vc4_state->x_scaling));
1179 memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1180 sizeof(vc4_state->y_scaling));
1181 vc4_state->is_unity = new_vc4_state->is_unity;
1182 vc4_state->is_yuv = new_vc4_state->is_yuv;
1183 memcpy(vc4_state->offsets, new_vc4_state->offsets,
1184 sizeof(vc4_state->offsets));
1185 vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1186
1187 /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1188 vc4_state->dlist[vc4_state->pos0_offset] =
1189 new_vc4_state->dlist[vc4_state->pos0_offset];
1190 vc4_state->dlist[vc4_state->pos2_offset] =
1191 new_vc4_state->dlist[vc4_state->pos2_offset];
1192 vc4_state->dlist[vc4_state->ptr0_offset] =
1193 new_vc4_state->dlist[vc4_state->ptr0_offset];
1194
1195 /* Note that we can't just call vc4_plane_write_dlist()
1196 * because that would smash the context data that the HVS is
1197 * currently using.
1198 */
1199 writel(vc4_state->dlist[vc4_state->pos0_offset],
1200 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1201 writel(vc4_state->dlist[vc4_state->pos2_offset],
1202 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1203 writel(vc4_state->dlist[vc4_state->ptr0_offset],
1204 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1205}
1206
1207static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1208 struct drm_atomic_state *state)
1209{
1210 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1211 plane);
1212 struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1213 int ret;
1214 u32 i;
1215
1216 ret = vc4_plane_mode_set(plane, new_plane_state);
1217 if (ret)
1218 return ret;
1219
1220 old_vc4_state = to_vc4_plane_state(plane->state);
1221 new_vc4_state = to_vc4_plane_state(new_plane_state);
1222 if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1223 old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1224 old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1225 old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1226 vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1227 return -EINVAL;
1228
1229 /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1230 * if anything else has changed, fallback to a sync update.
1231 */
1232 for (i = 0; i < new_vc4_state->dlist_count; i++) {
1233 if (i == new_vc4_state->pos0_offset ||
1234 i == new_vc4_state->pos2_offset ||
1235 i == new_vc4_state->ptr0_offset ||
1236 (new_vc4_state->lbm_offset &&
1237 i == new_vc4_state->lbm_offset))
1238 continue;
1239
1240 if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245}
1246
1247static int vc4_prepare_fb(struct drm_plane *plane,
1248 struct drm_plane_state *state)
1249{
1250 struct vc4_bo *bo;
1251 int ret;
1252
1253 if (!state->fb)
1254 return 0;
1255
1256 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1257
1258 drm_gem_plane_helper_prepare_fb(plane, state);
1259
1260 if (plane->state->fb == state->fb)
1261 return 0;
1262
1263 ret = vc4_bo_inc_usecnt(bo);
1264 if (ret)
1265 return ret;
1266
1267 return 0;
1268}
1269
1270static void vc4_cleanup_fb(struct drm_plane *plane,
1271 struct drm_plane_state *state)
1272{
1273 struct vc4_bo *bo;
1274
1275 if (plane->state->fb == state->fb || !state->fb)
1276 return;
1277
1278 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1279 vc4_bo_dec_usecnt(bo);
1280}
1281
1282static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1283 .atomic_check = vc4_plane_atomic_check,
1284 .atomic_update = vc4_plane_atomic_update,
1285 .prepare_fb = vc4_prepare_fb,
1286 .cleanup_fb = vc4_cleanup_fb,
1287 .atomic_async_check = vc4_plane_atomic_async_check,
1288 .atomic_async_update = vc4_plane_atomic_async_update,
1289};
1290
1291static bool vc4_format_mod_supported(struct drm_plane *plane,
1292 uint32_t format,
1293 uint64_t modifier)
1294{
1295 /* Support T_TILING for RGB formats only. */
1296 switch (format) {
1297 case DRM_FORMAT_XRGB8888:
1298 case DRM_FORMAT_ARGB8888:
1299 case DRM_FORMAT_ABGR8888:
1300 case DRM_FORMAT_XBGR8888:
1301 case DRM_FORMAT_RGB565:
1302 case DRM_FORMAT_BGR565:
1303 case DRM_FORMAT_ARGB1555:
1304 case DRM_FORMAT_XRGB1555:
1305 switch (fourcc_mod_broadcom_mod(modifier)) {
1306 case DRM_FORMAT_MOD_LINEAR:
1307 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1308 return true;
1309 default:
1310 return false;
1311 }
1312 case DRM_FORMAT_NV12:
1313 case DRM_FORMAT_NV21:
1314 switch (fourcc_mod_broadcom_mod(modifier)) {
1315 case DRM_FORMAT_MOD_LINEAR:
1316 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1317 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1318 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1319 return true;
1320 default:
1321 return false;
1322 }
1323 case DRM_FORMAT_RGBX1010102:
1324 case DRM_FORMAT_BGRX1010102:
1325 case DRM_FORMAT_RGBA1010102:
1326 case DRM_FORMAT_BGRA1010102:
1327 case DRM_FORMAT_YUV422:
1328 case DRM_FORMAT_YVU422:
1329 case DRM_FORMAT_YUV420:
1330 case DRM_FORMAT_YVU420:
1331 case DRM_FORMAT_NV16:
1332 case DRM_FORMAT_NV61:
1333 default:
1334 return (modifier == DRM_FORMAT_MOD_LINEAR);
1335 }
1336}
1337
1338static const struct drm_plane_funcs vc4_plane_funcs = {
1339 .update_plane = drm_atomic_helper_update_plane,
1340 .disable_plane = drm_atomic_helper_disable_plane,
1341 .destroy = drm_plane_cleanup,
1342 .set_property = NULL,
1343 .reset = vc4_plane_reset,
1344 .atomic_duplicate_state = vc4_plane_duplicate_state,
1345 .atomic_destroy_state = vc4_plane_destroy_state,
1346 .format_mod_supported = vc4_format_mod_supported,
1347};
1348
1349struct drm_plane *vc4_plane_init(struct drm_device *dev,
1350 enum drm_plane_type type)
1351{
1352 struct drm_plane *plane = NULL;
1353 struct vc4_plane *vc4_plane;
1354 u32 formats[ARRAY_SIZE(hvs_formats)];
1355 int ret = 0;
1356 unsigned i;
1357 static const uint64_t modifiers[] = {
1358 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1359 DRM_FORMAT_MOD_BROADCOM_SAND128,
1360 DRM_FORMAT_MOD_BROADCOM_SAND64,
1361 DRM_FORMAT_MOD_BROADCOM_SAND256,
1362 DRM_FORMAT_MOD_LINEAR,
1363 DRM_FORMAT_MOD_INVALID
1364 };
1365
1366 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1367 GFP_KERNEL);
1368 if (!vc4_plane)
1369 return ERR_PTR(-ENOMEM);
1370
1371 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1372 formats[i] = hvs_formats[i].drm;
1373
1374 plane = &vc4_plane->base;
1375 ret = drm_universal_plane_init(dev, plane, 0,
1376 &vc4_plane_funcs,
1377 formats, ARRAY_SIZE(formats),
1378 modifiers, type, NULL);
1379 if (ret)
1380 return ERR_PTR(ret);
1381
1382 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1383
1384 drm_plane_create_alpha_property(plane);
1385 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1386 DRM_MODE_ROTATE_0 |
1387 DRM_MODE_ROTATE_180 |
1388 DRM_MODE_REFLECT_X |
1389 DRM_MODE_REFLECT_Y);
1390
1391 return plane;
1392}
1393
1394int vc4_plane_create_additional_planes(struct drm_device *drm)
1395{
1396 struct drm_plane *cursor_plane;
1397 struct drm_crtc *crtc;
1398 unsigned int i;
1399
1400 /* Set up some arbitrary number of planes. We're not limited
1401 * by a set number of physical registers, just the space in
1402 * the HVS (16k) and how small an plane can be (28 bytes).
1403 * However, each plane we set up takes up some memory, and
1404 * increases the cost of looping over planes, which atomic
1405 * modesetting does quite a bit. As a result, we pick a
1406 * modest number of planes to expose, that should hopefully
1407 * still cover any sane usecase.
1408 */
1409 for (i = 0; i < 16; i++) {
1410 struct drm_plane *plane =
1411 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1412
1413 if (IS_ERR(plane))
1414 continue;
1415
1416 plane->possible_crtcs =
1417 GENMASK(drm->mode_config.num_crtc - 1, 0);
1418 }
1419
1420 drm_for_each_crtc(crtc, drm) {
1421 /* Set up the legacy cursor after overlay initialization,
1422 * since we overlay planes on the CRTC in the order they were
1423 * initialized.
1424 */
1425 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1426 if (!IS_ERR(cursor_plane)) {
1427 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1428 crtc->cursor = cursor_plane;
1429 }
1430 }
1431
1432 return 0;
1433}