Loading...
1/*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101#include <crypto/internal/cipher.h>
102#include <linux/kernel.h>
103#include <linux/jiffies.h>
104#include <linux/string_choices.h>
105
106/***************************************************************
107 * Backend cipher definitions available to DRBG
108 ***************************************************************/
109
110/*
111 * The order of the DRBG definitions here matter: every DRBG is registered
112 * as stdrng. Each DRBG receives an increasing cra_priority values the later
113 * they are defined in this array (see drbg_fill_array).
114 *
115 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and the
116 * HMAC-SHA512 / SHA256 / AES 256 over other ciphers. Thus, the
117 * favored DRBGs are the latest entries in this array.
118 */
119static const struct drbg_core drbg_cores[] = {
120#ifdef CONFIG_CRYPTO_DRBG_CTR
121 {
122 .flags = DRBG_CTR | DRBG_STRENGTH128,
123 .statelen = 32, /* 256 bits as defined in 10.2.1 */
124 .blocklen_bytes = 16,
125 .cra_name = "ctr_aes128",
126 .backend_cra_name = "aes",
127 }, {
128 .flags = DRBG_CTR | DRBG_STRENGTH192,
129 .statelen = 40, /* 320 bits as defined in 10.2.1 */
130 .blocklen_bytes = 16,
131 .cra_name = "ctr_aes192",
132 .backend_cra_name = "aes",
133 }, {
134 .flags = DRBG_CTR | DRBG_STRENGTH256,
135 .statelen = 48, /* 384 bits as defined in 10.2.1 */
136 .blocklen_bytes = 16,
137 .cra_name = "ctr_aes256",
138 .backend_cra_name = "aes",
139 },
140#endif /* CONFIG_CRYPTO_DRBG_CTR */
141#ifdef CONFIG_CRYPTO_DRBG_HASH
142 {
143 .flags = DRBG_HASH | DRBG_STRENGTH256,
144 .statelen = 111, /* 888 bits */
145 .blocklen_bytes = 48,
146 .cra_name = "sha384",
147 .backend_cra_name = "sha384",
148 }, {
149 .flags = DRBG_HASH | DRBG_STRENGTH256,
150 .statelen = 111, /* 888 bits */
151 .blocklen_bytes = 64,
152 .cra_name = "sha512",
153 .backend_cra_name = "sha512",
154 }, {
155 .flags = DRBG_HASH | DRBG_STRENGTH256,
156 .statelen = 55, /* 440 bits */
157 .blocklen_bytes = 32,
158 .cra_name = "sha256",
159 .backend_cra_name = "sha256",
160 },
161#endif /* CONFIG_CRYPTO_DRBG_HASH */
162#ifdef CONFIG_CRYPTO_DRBG_HMAC
163 {
164 .flags = DRBG_HMAC | DRBG_STRENGTH256,
165 .statelen = 48, /* block length of cipher */
166 .blocklen_bytes = 48,
167 .cra_name = "hmac_sha384",
168 .backend_cra_name = "hmac(sha384)",
169 }, {
170 .flags = DRBG_HMAC | DRBG_STRENGTH256,
171 .statelen = 32, /* block length of cipher */
172 .blocklen_bytes = 32,
173 .cra_name = "hmac_sha256",
174 .backend_cra_name = "hmac(sha256)",
175 }, {
176 .flags = DRBG_HMAC | DRBG_STRENGTH256,
177 .statelen = 64, /* block length of cipher */
178 .blocklen_bytes = 64,
179 .cra_name = "hmac_sha512",
180 .backend_cra_name = "hmac(sha512)",
181 },
182#endif /* CONFIG_CRYPTO_DRBG_HMAC */
183};
184
185static int drbg_uninstantiate(struct drbg_state *drbg);
186
187/******************************************************************
188 * Generic helper functions
189 ******************************************************************/
190
191/*
192 * Return strength of DRBG according to SP800-90A section 8.4
193 *
194 * @flags DRBG flags reference
195 *
196 * Return: normalized strength in *bytes* value or 32 as default
197 * to counter programming errors
198 */
199static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
200{
201 switch (flags & DRBG_STRENGTH_MASK) {
202 case DRBG_STRENGTH128:
203 return 16;
204 case DRBG_STRENGTH192:
205 return 24;
206 case DRBG_STRENGTH256:
207 return 32;
208 default:
209 return 32;
210 }
211}
212
213/*
214 * FIPS 140-2 continuous self test for the noise source
215 * The test is performed on the noise source input data. Thus, the function
216 * implicitly knows the size of the buffer to be equal to the security
217 * strength.
218 *
219 * Note, this function disregards the nonce trailing the entropy data during
220 * initial seeding.
221 *
222 * drbg->drbg_mutex must have been taken.
223 *
224 * @drbg DRBG handle
225 * @entropy buffer of seed data to be checked
226 *
227 * return:
228 * 0 on success
229 * -EAGAIN on when the CTRNG is not yet primed
230 * < 0 on error
231 */
232static int drbg_fips_continuous_test(struct drbg_state *drbg,
233 const unsigned char *entropy)
234{
235 unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
236 int ret = 0;
237
238 if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
239 return 0;
240
241 /* skip test if we test the overall system */
242 if (list_empty(&drbg->test_data.list))
243 return 0;
244 /* only perform test in FIPS mode */
245 if (!fips_enabled)
246 return 0;
247
248 if (!drbg->fips_primed) {
249 /* Priming of FIPS test */
250 memcpy(drbg->prev, entropy, entropylen);
251 drbg->fips_primed = true;
252 /* priming: another round is needed */
253 return -EAGAIN;
254 }
255 ret = memcmp(drbg->prev, entropy, entropylen);
256 if (!ret)
257 panic("DRBG continuous self test failed\n");
258 memcpy(drbg->prev, entropy, entropylen);
259
260 /* the test shall pass when the two values are not equal */
261 return 0;
262}
263
264/*
265 * Convert an integer into a byte representation of this integer.
266 * The byte representation is big-endian
267 *
268 * @val value to be converted
269 * @buf buffer holding the converted integer -- caller must ensure that
270 * buffer size is at least 32 bit
271 */
272#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
273static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
274{
275 struct s {
276 __be32 conv;
277 };
278 struct s *conversion = (struct s *) buf;
279
280 conversion->conv = cpu_to_be32(val);
281}
282#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
283
284/******************************************************************
285 * CTR DRBG callback functions
286 ******************************************************************/
287
288#ifdef CONFIG_CRYPTO_DRBG_CTR
289#define CRYPTO_DRBG_CTR_STRING "CTR "
290MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
291MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
292MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
293MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
294MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
295MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
296
297static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
298 const unsigned char *key);
299static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
300 const struct drbg_string *in);
301static int drbg_init_sym_kernel(struct drbg_state *drbg);
302static int drbg_fini_sym_kernel(struct drbg_state *drbg);
303static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
304 u8 *inbuf, u32 inbuflen,
305 u8 *outbuf, u32 outlen);
306#define DRBG_OUTSCRATCHLEN 256
307
308/* BCC function for CTR DRBG as defined in 10.4.3 */
309static int drbg_ctr_bcc(struct drbg_state *drbg,
310 unsigned char *out, const unsigned char *key,
311 struct list_head *in)
312{
313 int ret = 0;
314 struct drbg_string *curr = NULL;
315 struct drbg_string data;
316 short cnt = 0;
317
318 drbg_string_fill(&data, out, drbg_blocklen(drbg));
319
320 /* 10.4.3 step 2 / 4 */
321 drbg_kcapi_symsetkey(drbg, key);
322 list_for_each_entry(curr, in, list) {
323 const unsigned char *pos = curr->buf;
324 size_t len = curr->len;
325 /* 10.4.3 step 4.1 */
326 while (len) {
327 /* 10.4.3 step 4.2 */
328 if (drbg_blocklen(drbg) == cnt) {
329 cnt = 0;
330 ret = drbg_kcapi_sym(drbg, out, &data);
331 if (ret)
332 return ret;
333 }
334 out[cnt] ^= *pos;
335 pos++;
336 cnt++;
337 len--;
338 }
339 }
340 /* 10.4.3 step 4.2 for last block */
341 if (cnt)
342 ret = drbg_kcapi_sym(drbg, out, &data);
343
344 return ret;
345}
346
347/*
348 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
349 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
350 * the scratchpad is used as follows:
351 * drbg_ctr_update:
352 * temp
353 * start: drbg->scratchpad
354 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
355 * note: the cipher writing into this variable works
356 * blocklen-wise. Now, when the statelen is not a multiple
357 * of blocklen, the generateion loop below "spills over"
358 * by at most blocklen. Thus, we need to give sufficient
359 * memory.
360 * df_data
361 * start: drbg->scratchpad +
362 * drbg_statelen(drbg) + drbg_blocklen(drbg)
363 * length: drbg_statelen(drbg)
364 *
365 * drbg_ctr_df:
366 * pad
367 * start: df_data + drbg_statelen(drbg)
368 * length: drbg_blocklen(drbg)
369 * iv
370 * start: pad + drbg_blocklen(drbg)
371 * length: drbg_blocklen(drbg)
372 * temp
373 * start: iv + drbg_blocklen(drbg)
374 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
375 * note: temp is the buffer that the BCC function operates
376 * on. BCC operates blockwise. drbg_statelen(drbg)
377 * is sufficient when the DRBG state length is a multiple
378 * of the block size. For AES192 (and maybe other ciphers)
379 * this is not correct and the length for temp is
380 * insufficient (yes, that also means for such ciphers,
381 * the final output of all BCC rounds are truncated).
382 * Therefore, add drbg_blocklen(drbg) to cover all
383 * possibilities.
384 */
385
386/* Derivation Function for CTR DRBG as defined in 10.4.2 */
387static int drbg_ctr_df(struct drbg_state *drbg,
388 unsigned char *df_data, size_t bytes_to_return,
389 struct list_head *seedlist)
390{
391 int ret = -EFAULT;
392 unsigned char L_N[8];
393 /* S3 is input */
394 struct drbg_string S1, S2, S4, cipherin;
395 LIST_HEAD(bcc_list);
396 unsigned char *pad = df_data + drbg_statelen(drbg);
397 unsigned char *iv = pad + drbg_blocklen(drbg);
398 unsigned char *temp = iv + drbg_blocklen(drbg);
399 size_t padlen = 0;
400 unsigned int templen = 0;
401 /* 10.4.2 step 7 */
402 unsigned int i = 0;
403 /* 10.4.2 step 8 */
404 const unsigned char *K = (unsigned char *)
405 "\x00\x01\x02\x03\x04\x05\x06\x07"
406 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
407 "\x10\x11\x12\x13\x14\x15\x16\x17"
408 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
409 unsigned char *X;
410 size_t generated_len = 0;
411 size_t inputlen = 0;
412 struct drbg_string *seed = NULL;
413
414 memset(pad, 0, drbg_blocklen(drbg));
415 memset(iv, 0, drbg_blocklen(drbg));
416
417 /* 10.4.2 step 1 is implicit as we work byte-wise */
418
419 /* 10.4.2 step 2 */
420 if ((512/8) < bytes_to_return)
421 return -EINVAL;
422
423 /* 10.4.2 step 2 -- calculate the entire length of all input data */
424 list_for_each_entry(seed, seedlist, list)
425 inputlen += seed->len;
426 drbg_cpu_to_be32(inputlen, &L_N[0]);
427
428 /* 10.4.2 step 3 */
429 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
430
431 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
432 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
433 /* wrap the padlen appropriately */
434 if (padlen)
435 padlen = drbg_blocklen(drbg) - padlen;
436 /*
437 * pad / padlen contains the 0x80 byte and the following zero bytes.
438 * As the calculated padlen value only covers the number of zero
439 * bytes, this value has to be incremented by one for the 0x80 byte.
440 */
441 padlen++;
442 pad[0] = 0x80;
443
444 /* 10.4.2 step 4 -- first fill the linked list and then order it */
445 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
446 list_add_tail(&S1.list, &bcc_list);
447 drbg_string_fill(&S2, L_N, sizeof(L_N));
448 list_add_tail(&S2.list, &bcc_list);
449 list_splice_tail(seedlist, &bcc_list);
450 drbg_string_fill(&S4, pad, padlen);
451 list_add_tail(&S4.list, &bcc_list);
452
453 /* 10.4.2 step 9 */
454 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
455 /*
456 * 10.4.2 step 9.1 - the padding is implicit as the buffer
457 * holds zeros after allocation -- even the increment of i
458 * is irrelevant as the increment remains within length of i
459 */
460 drbg_cpu_to_be32(i, iv);
461 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
462 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
463 if (ret)
464 goto out;
465 /* 10.4.2 step 9.3 */
466 i++;
467 templen += drbg_blocklen(drbg);
468 }
469
470 /* 10.4.2 step 11 */
471 X = temp + (drbg_keylen(drbg));
472 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
473
474 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
475
476 /* 10.4.2 step 13 */
477 drbg_kcapi_symsetkey(drbg, temp);
478 while (generated_len < bytes_to_return) {
479 short blocklen = 0;
480 /*
481 * 10.4.2 step 13.1: the truncation of the key length is
482 * implicit as the key is only drbg_blocklen in size based on
483 * the implementation of the cipher function callback
484 */
485 ret = drbg_kcapi_sym(drbg, X, &cipherin);
486 if (ret)
487 goto out;
488 blocklen = (drbg_blocklen(drbg) <
489 (bytes_to_return - generated_len)) ?
490 drbg_blocklen(drbg) :
491 (bytes_to_return - generated_len);
492 /* 10.4.2 step 13.2 and 14 */
493 memcpy(df_data + generated_len, X, blocklen);
494 generated_len += blocklen;
495 }
496
497 ret = 0;
498
499out:
500 memset(iv, 0, drbg_blocklen(drbg));
501 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
502 memset(pad, 0, drbg_blocklen(drbg));
503 return ret;
504}
505
506/*
507 * update function of CTR DRBG as defined in 10.2.1.2
508 *
509 * The reseed variable has an enhanced meaning compared to the update
510 * functions of the other DRBGs as follows:
511 * 0 => initial seed from initialization
512 * 1 => reseed via drbg_seed
513 * 2 => first invocation from drbg_ctr_update when addtl is present. In
514 * this case, the df_data scratchpad is not deleted so that it is
515 * available for another calls to prevent calling the DF function
516 * again.
517 * 3 => second invocation from drbg_ctr_update. When the update function
518 * was called with addtl, the df_data memory already contains the
519 * DFed addtl information and we do not need to call DF again.
520 */
521static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
522 int reseed)
523{
524 int ret = -EFAULT;
525 /* 10.2.1.2 step 1 */
526 unsigned char *temp = drbg->scratchpad;
527 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
528 drbg_blocklen(drbg);
529
530 if (3 > reseed)
531 memset(df_data, 0, drbg_statelen(drbg));
532
533 if (!reseed) {
534 /*
535 * The DRBG uses the CTR mode of the underlying AES cipher. The
536 * CTR mode increments the counter value after the AES operation
537 * but SP800-90A requires that the counter is incremented before
538 * the AES operation. Hence, we increment it at the time we set
539 * it by one.
540 */
541 crypto_inc(drbg->V, drbg_blocklen(drbg));
542
543 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
544 drbg_keylen(drbg));
545 if (ret)
546 goto out;
547 }
548
549 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
550 if (seed) {
551 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
552 if (ret)
553 goto out;
554 }
555
556 ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
557 temp, drbg_statelen(drbg));
558 if (ret)
559 return ret;
560
561 /* 10.2.1.2 step 5 */
562 ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
563 drbg_keylen(drbg));
564 if (ret)
565 goto out;
566 /* 10.2.1.2 step 6 */
567 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
568 /* See above: increment counter by one to compensate timing of CTR op */
569 crypto_inc(drbg->V, drbg_blocklen(drbg));
570 ret = 0;
571
572out:
573 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
574 if (2 != reseed)
575 memset(df_data, 0, drbg_statelen(drbg));
576 return ret;
577}
578
579/*
580 * scratchpad use: drbg_ctr_update is called independently from
581 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
582 */
583/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
584static int drbg_ctr_generate(struct drbg_state *drbg,
585 unsigned char *buf, unsigned int buflen,
586 struct list_head *addtl)
587{
588 int ret;
589 int len = min_t(int, buflen, INT_MAX);
590
591 /* 10.2.1.5.2 step 2 */
592 if (addtl && !list_empty(addtl)) {
593 ret = drbg_ctr_update(drbg, addtl, 2);
594 if (ret)
595 return 0;
596 }
597
598 /* 10.2.1.5.2 step 4.1 */
599 ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
600 if (ret)
601 return ret;
602
603 /* 10.2.1.5.2 step 6 */
604 ret = drbg_ctr_update(drbg, NULL, 3);
605 if (ret)
606 len = ret;
607
608 return len;
609}
610
611static const struct drbg_state_ops drbg_ctr_ops = {
612 .update = drbg_ctr_update,
613 .generate = drbg_ctr_generate,
614 .crypto_init = drbg_init_sym_kernel,
615 .crypto_fini = drbg_fini_sym_kernel,
616};
617#endif /* CONFIG_CRYPTO_DRBG_CTR */
618
619/******************************************************************
620 * HMAC DRBG callback functions
621 ******************************************************************/
622
623#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
624static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
625 const struct list_head *in);
626static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
627 const unsigned char *key);
628static int drbg_init_hash_kernel(struct drbg_state *drbg);
629static int drbg_fini_hash_kernel(struct drbg_state *drbg);
630#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
631
632#ifdef CONFIG_CRYPTO_DRBG_HMAC
633#define CRYPTO_DRBG_HMAC_STRING "HMAC "
634MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
635MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
636MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
637MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
638MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
639MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
640
641/* update function of HMAC DRBG as defined in 10.1.2.2 */
642static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
643 int reseed)
644{
645 int ret = -EFAULT;
646 int i = 0;
647 struct drbg_string seed1, seed2, vdata;
648 LIST_HEAD(seedlist);
649 LIST_HEAD(vdatalist);
650
651 if (!reseed) {
652 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
653 memset(drbg->V, 1, drbg_statelen(drbg));
654 drbg_kcapi_hmacsetkey(drbg, drbg->C);
655 }
656
657 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
658 list_add_tail(&seed1.list, &seedlist);
659 /* buffer of seed2 will be filled in for loop below with one byte */
660 drbg_string_fill(&seed2, NULL, 1);
661 list_add_tail(&seed2.list, &seedlist);
662 /* input data of seed is allowed to be NULL at this point */
663 if (seed)
664 list_splice_tail(seed, &seedlist);
665
666 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
667 list_add_tail(&vdata.list, &vdatalist);
668 for (i = 2; 0 < i; i--) {
669 /* first round uses 0x0, second 0x1 */
670 unsigned char prefix = DRBG_PREFIX0;
671 if (1 == i)
672 prefix = DRBG_PREFIX1;
673 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
674 seed2.buf = &prefix;
675 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
676 if (ret)
677 return ret;
678 drbg_kcapi_hmacsetkey(drbg, drbg->C);
679
680 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
681 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
682 if (ret)
683 return ret;
684
685 /* 10.1.2.2 step 3 */
686 if (!seed)
687 return ret;
688 }
689
690 return 0;
691}
692
693/* generate function of HMAC DRBG as defined in 10.1.2.5 */
694static int drbg_hmac_generate(struct drbg_state *drbg,
695 unsigned char *buf,
696 unsigned int buflen,
697 struct list_head *addtl)
698{
699 int len = 0;
700 int ret = 0;
701 struct drbg_string data;
702 LIST_HEAD(datalist);
703
704 /* 10.1.2.5 step 2 */
705 if (addtl && !list_empty(addtl)) {
706 ret = drbg_hmac_update(drbg, addtl, 1);
707 if (ret)
708 return ret;
709 }
710
711 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
712 list_add_tail(&data.list, &datalist);
713 while (len < buflen) {
714 unsigned int outlen = 0;
715 /* 10.1.2.5 step 4.1 */
716 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
717 if (ret)
718 return ret;
719 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
720 drbg_blocklen(drbg) : (buflen - len);
721
722 /* 10.1.2.5 step 4.2 */
723 memcpy(buf + len, drbg->V, outlen);
724 len += outlen;
725 }
726
727 /* 10.1.2.5 step 6 */
728 if (addtl && !list_empty(addtl))
729 ret = drbg_hmac_update(drbg, addtl, 1);
730 else
731 ret = drbg_hmac_update(drbg, NULL, 1);
732 if (ret)
733 return ret;
734
735 return len;
736}
737
738static const struct drbg_state_ops drbg_hmac_ops = {
739 .update = drbg_hmac_update,
740 .generate = drbg_hmac_generate,
741 .crypto_init = drbg_init_hash_kernel,
742 .crypto_fini = drbg_fini_hash_kernel,
743};
744#endif /* CONFIG_CRYPTO_DRBG_HMAC */
745
746/******************************************************************
747 * Hash DRBG callback functions
748 ******************************************************************/
749
750#ifdef CONFIG_CRYPTO_DRBG_HASH
751#define CRYPTO_DRBG_HASH_STRING "HASH "
752MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
753MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
754MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
755MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
756MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
757MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
758
759/*
760 * Increment buffer
761 *
762 * @dst buffer to increment
763 * @add value to add
764 */
765static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
766 const unsigned char *add, size_t addlen)
767{
768 /* implied: dstlen > addlen */
769 unsigned char *dstptr;
770 const unsigned char *addptr;
771 unsigned int remainder = 0;
772 size_t len = addlen;
773
774 dstptr = dst + (dstlen-1);
775 addptr = add + (addlen-1);
776 while (len) {
777 remainder += *dstptr + *addptr;
778 *dstptr = remainder & 0xff;
779 remainder >>= 8;
780 len--; dstptr--; addptr--;
781 }
782 len = dstlen - addlen;
783 while (len && remainder > 0) {
784 remainder = *dstptr + 1;
785 *dstptr = remainder & 0xff;
786 remainder >>= 8;
787 len--; dstptr--;
788 }
789}
790
791/*
792 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
793 * interlinked, the scratchpad is used as follows:
794 * drbg_hash_update
795 * start: drbg->scratchpad
796 * length: drbg_statelen(drbg)
797 * drbg_hash_df:
798 * start: drbg->scratchpad + drbg_statelen(drbg)
799 * length: drbg_blocklen(drbg)
800 *
801 * drbg_hash_process_addtl uses the scratchpad, but fully completes
802 * before either of the functions mentioned before are invoked. Therefore,
803 * drbg_hash_process_addtl does not need to be specifically considered.
804 */
805
806/* Derivation Function for Hash DRBG as defined in 10.4.1 */
807static int drbg_hash_df(struct drbg_state *drbg,
808 unsigned char *outval, size_t outlen,
809 struct list_head *entropylist)
810{
811 int ret = 0;
812 size_t len = 0;
813 unsigned char input[5];
814 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
815 struct drbg_string data;
816
817 /* 10.4.1 step 3 */
818 input[0] = 1;
819 drbg_cpu_to_be32((outlen * 8), &input[1]);
820
821 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
822 drbg_string_fill(&data, input, 5);
823 list_add(&data.list, entropylist);
824
825 /* 10.4.1 step 4 */
826 while (len < outlen) {
827 short blocklen = 0;
828 /* 10.4.1 step 4.1 */
829 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
830 if (ret)
831 goto out;
832 /* 10.4.1 step 4.2 */
833 input[0]++;
834 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
835 drbg_blocklen(drbg) : (outlen - len);
836 memcpy(outval + len, tmp, blocklen);
837 len += blocklen;
838 }
839
840out:
841 memset(tmp, 0, drbg_blocklen(drbg));
842 return ret;
843}
844
845/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
846static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
847 int reseed)
848{
849 int ret = 0;
850 struct drbg_string data1, data2;
851 LIST_HEAD(datalist);
852 LIST_HEAD(datalist2);
853 unsigned char *V = drbg->scratchpad;
854 unsigned char prefix = DRBG_PREFIX1;
855
856 if (!seed)
857 return -EINVAL;
858
859 if (reseed) {
860 /* 10.1.1.3 step 1 */
861 memcpy(V, drbg->V, drbg_statelen(drbg));
862 drbg_string_fill(&data1, &prefix, 1);
863 list_add_tail(&data1.list, &datalist);
864 drbg_string_fill(&data2, V, drbg_statelen(drbg));
865 list_add_tail(&data2.list, &datalist);
866 }
867 list_splice_tail(seed, &datalist);
868
869 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
870 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
871 if (ret)
872 goto out;
873
874 /* 10.1.1.2 / 10.1.1.3 step 4 */
875 prefix = DRBG_PREFIX0;
876 drbg_string_fill(&data1, &prefix, 1);
877 list_add_tail(&data1.list, &datalist2);
878 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
879 list_add_tail(&data2.list, &datalist2);
880 /* 10.1.1.2 / 10.1.1.3 step 4 */
881 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
882
883out:
884 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
885 return ret;
886}
887
888/* processing of additional information string for Hash DRBG */
889static int drbg_hash_process_addtl(struct drbg_state *drbg,
890 struct list_head *addtl)
891{
892 int ret = 0;
893 struct drbg_string data1, data2;
894 LIST_HEAD(datalist);
895 unsigned char prefix = DRBG_PREFIX2;
896
897 /* 10.1.1.4 step 2 */
898 if (!addtl || list_empty(addtl))
899 return 0;
900
901 /* 10.1.1.4 step 2a */
902 drbg_string_fill(&data1, &prefix, 1);
903 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
904 list_add_tail(&data1.list, &datalist);
905 list_add_tail(&data2.list, &datalist);
906 list_splice_tail(addtl, &datalist);
907 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
908 if (ret)
909 goto out;
910
911 /* 10.1.1.4 step 2b */
912 drbg_add_buf(drbg->V, drbg_statelen(drbg),
913 drbg->scratchpad, drbg_blocklen(drbg));
914
915out:
916 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
917 return ret;
918}
919
920/* Hashgen defined in 10.1.1.4 */
921static int drbg_hash_hashgen(struct drbg_state *drbg,
922 unsigned char *buf,
923 unsigned int buflen)
924{
925 int len = 0;
926 int ret = 0;
927 unsigned char *src = drbg->scratchpad;
928 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
929 struct drbg_string data;
930 LIST_HEAD(datalist);
931
932 /* 10.1.1.4 step hashgen 2 */
933 memcpy(src, drbg->V, drbg_statelen(drbg));
934
935 drbg_string_fill(&data, src, drbg_statelen(drbg));
936 list_add_tail(&data.list, &datalist);
937 while (len < buflen) {
938 unsigned int outlen = 0;
939 /* 10.1.1.4 step hashgen 4.1 */
940 ret = drbg_kcapi_hash(drbg, dst, &datalist);
941 if (ret) {
942 len = ret;
943 goto out;
944 }
945 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
946 drbg_blocklen(drbg) : (buflen - len);
947 /* 10.1.1.4 step hashgen 4.2 */
948 memcpy(buf + len, dst, outlen);
949 len += outlen;
950 /* 10.1.1.4 hashgen step 4.3 */
951 if (len < buflen)
952 crypto_inc(src, drbg_statelen(drbg));
953 }
954
955out:
956 memset(drbg->scratchpad, 0,
957 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
958 return len;
959}
960
961/* generate function for Hash DRBG as defined in 10.1.1.4 */
962static int drbg_hash_generate(struct drbg_state *drbg,
963 unsigned char *buf, unsigned int buflen,
964 struct list_head *addtl)
965{
966 int len = 0;
967 int ret = 0;
968 union {
969 unsigned char req[8];
970 __be64 req_int;
971 } u;
972 unsigned char prefix = DRBG_PREFIX3;
973 struct drbg_string data1, data2;
974 LIST_HEAD(datalist);
975
976 /* 10.1.1.4 step 2 */
977 ret = drbg_hash_process_addtl(drbg, addtl);
978 if (ret)
979 return ret;
980 /* 10.1.1.4 step 3 */
981 len = drbg_hash_hashgen(drbg, buf, buflen);
982
983 /* this is the value H as documented in 10.1.1.4 */
984 /* 10.1.1.4 step 4 */
985 drbg_string_fill(&data1, &prefix, 1);
986 list_add_tail(&data1.list, &datalist);
987 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
988 list_add_tail(&data2.list, &datalist);
989 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
990 if (ret) {
991 len = ret;
992 goto out;
993 }
994
995 /* 10.1.1.4 step 5 */
996 drbg_add_buf(drbg->V, drbg_statelen(drbg),
997 drbg->scratchpad, drbg_blocklen(drbg));
998 drbg_add_buf(drbg->V, drbg_statelen(drbg),
999 drbg->C, drbg_statelen(drbg));
1000 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1001 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1002
1003out:
1004 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1005 return len;
1006}
1007
1008/*
1009 * scratchpad usage: as update and generate are used isolated, both
1010 * can use the scratchpad
1011 */
1012static const struct drbg_state_ops drbg_hash_ops = {
1013 .update = drbg_hash_update,
1014 .generate = drbg_hash_generate,
1015 .crypto_init = drbg_init_hash_kernel,
1016 .crypto_fini = drbg_fini_hash_kernel,
1017};
1018#endif /* CONFIG_CRYPTO_DRBG_HASH */
1019
1020/******************************************************************
1021 * Functions common for DRBG implementations
1022 ******************************************************************/
1023
1024static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1025 int reseed, enum drbg_seed_state new_seed_state)
1026{
1027 int ret = drbg->d_ops->update(drbg, seed, reseed);
1028
1029 if (ret)
1030 return ret;
1031
1032 drbg->seeded = new_seed_state;
1033 drbg->last_seed_time = jiffies;
1034 /* 10.1.1.2 / 10.1.1.3 step 5 */
1035 drbg->reseed_ctr = 1;
1036
1037 switch (drbg->seeded) {
1038 case DRBG_SEED_STATE_UNSEEDED:
1039 /* Impossible, but handle it to silence compiler warnings. */
1040 fallthrough;
1041 case DRBG_SEED_STATE_PARTIAL:
1042 /*
1043 * Require frequent reseeds until the seed source is
1044 * fully initialized.
1045 */
1046 drbg->reseed_threshold = 50;
1047 break;
1048
1049 case DRBG_SEED_STATE_FULL:
1050 /*
1051 * Seed source has become fully initialized, frequent
1052 * reseeds no longer required.
1053 */
1054 drbg->reseed_threshold = drbg_max_requests(drbg);
1055 break;
1056 }
1057
1058 return ret;
1059}
1060
1061static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1062 unsigned char *entropy,
1063 unsigned int entropylen)
1064{
1065 int ret;
1066
1067 do {
1068 get_random_bytes(entropy, entropylen);
1069 ret = drbg_fips_continuous_test(drbg, entropy);
1070 if (ret && ret != -EAGAIN)
1071 return ret;
1072 } while (ret);
1073
1074 return 0;
1075}
1076
1077static int drbg_seed_from_random(struct drbg_state *drbg)
1078{
1079 struct drbg_string data;
1080 LIST_HEAD(seedlist);
1081 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1082 unsigned char entropy[32];
1083 int ret;
1084
1085 BUG_ON(!entropylen);
1086 BUG_ON(entropylen > sizeof(entropy));
1087
1088 drbg_string_fill(&data, entropy, entropylen);
1089 list_add_tail(&data.list, &seedlist);
1090
1091 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1092 if (ret)
1093 goto out;
1094
1095 ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1096
1097out:
1098 memzero_explicit(entropy, entropylen);
1099 return ret;
1100}
1101
1102static bool drbg_nopr_reseed_interval_elapsed(struct drbg_state *drbg)
1103{
1104 unsigned long next_reseed;
1105
1106 /* Don't ever reseed from get_random_bytes() in test mode. */
1107 if (list_empty(&drbg->test_data.list))
1108 return false;
1109
1110 /*
1111 * Obtain fresh entropy for the nopr DRBGs after 300s have
1112 * elapsed in order to still achieve sort of partial
1113 * prediction resistance over the time domain at least. Note
1114 * that the period of 300s has been chosen to match the
1115 * CRNG_RESEED_INTERVAL of the get_random_bytes()' chacha
1116 * rngs.
1117 */
1118 next_reseed = drbg->last_seed_time + 300 * HZ;
1119 return time_after(jiffies, next_reseed);
1120}
1121
1122/*
1123 * Seeding or reseeding of the DRBG
1124 *
1125 * @drbg: DRBG state struct
1126 * @pers: personalization / additional information buffer
1127 * @reseed: 0 for initial seed process, 1 for reseeding
1128 *
1129 * return:
1130 * 0 on success
1131 * error value otherwise
1132 */
1133static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1134 bool reseed)
1135{
1136 int ret;
1137 unsigned char entropy[((32 + 16) * 2)];
1138 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1139 struct drbg_string data1;
1140 LIST_HEAD(seedlist);
1141 enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1142
1143 /* 9.1 / 9.2 / 9.3.1 step 3 */
1144 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1145 pr_devel("DRBG: personalization string too long %zu\n",
1146 pers->len);
1147 return -EINVAL;
1148 }
1149
1150 if (list_empty(&drbg->test_data.list)) {
1151 drbg_string_fill(&data1, drbg->test_data.buf,
1152 drbg->test_data.len);
1153 pr_devel("DRBG: using test entropy\n");
1154 } else {
1155 /*
1156 * Gather entropy equal to the security strength of the DRBG.
1157 * With a derivation function, a nonce is required in addition
1158 * to the entropy. A nonce must be at least 1/2 of the security
1159 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1160 * of the strength. The consideration of a nonce is only
1161 * applicable during initial seeding.
1162 */
1163 BUG_ON(!entropylen);
1164 if (!reseed)
1165 entropylen = ((entropylen + 1) / 2) * 3;
1166 BUG_ON((entropylen * 2) > sizeof(entropy));
1167
1168 /* Get seed from in-kernel /dev/urandom */
1169 if (!rng_is_initialized())
1170 new_seed_state = DRBG_SEED_STATE_PARTIAL;
1171
1172 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1173 if (ret)
1174 goto out;
1175
1176 if (!drbg->jent) {
1177 drbg_string_fill(&data1, entropy, entropylen);
1178 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1179 entropylen);
1180 } else {
1181 /*
1182 * Get seed from Jitter RNG, failures are
1183 * fatal only in FIPS mode.
1184 */
1185 ret = crypto_rng_get_bytes(drbg->jent,
1186 entropy + entropylen,
1187 entropylen);
1188 if (fips_enabled && ret) {
1189 pr_devel("DRBG: jent failed with %d\n", ret);
1190
1191 /*
1192 * Do not treat the transient failure of the
1193 * Jitter RNG as an error that needs to be
1194 * reported. The combined number of the
1195 * maximum reseed threshold times the maximum
1196 * number of Jitter RNG transient errors is
1197 * less than the reseed threshold required by
1198 * SP800-90A allowing us to treat the
1199 * transient errors as such.
1200 *
1201 * However, we mandate that at least the first
1202 * seeding operation must succeed with the
1203 * Jitter RNG.
1204 */
1205 if (!reseed || ret != -EAGAIN)
1206 goto out;
1207 }
1208
1209 drbg_string_fill(&data1, entropy, entropylen * 2);
1210 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1211 entropylen * 2);
1212 }
1213 }
1214 list_add_tail(&data1.list, &seedlist);
1215
1216 /*
1217 * concatenation of entropy with personalization str / addtl input)
1218 * the variable pers is directly handed in by the caller, so check its
1219 * contents whether it is appropriate
1220 */
1221 if (pers && pers->buf && 0 < pers->len) {
1222 list_add_tail(&pers->list, &seedlist);
1223 pr_devel("DRBG: using personalization string\n");
1224 }
1225
1226 if (!reseed) {
1227 memset(drbg->V, 0, drbg_statelen(drbg));
1228 memset(drbg->C, 0, drbg_statelen(drbg));
1229 }
1230
1231 ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1232
1233out:
1234 memzero_explicit(entropy, entropylen * 2);
1235
1236 return ret;
1237}
1238
1239/* Free all substructures in a DRBG state without the DRBG state structure */
1240static inline void drbg_dealloc_state(struct drbg_state *drbg)
1241{
1242 if (!drbg)
1243 return;
1244 kfree_sensitive(drbg->Vbuf);
1245 drbg->Vbuf = NULL;
1246 drbg->V = NULL;
1247 kfree_sensitive(drbg->Cbuf);
1248 drbg->Cbuf = NULL;
1249 drbg->C = NULL;
1250 kfree_sensitive(drbg->scratchpadbuf);
1251 drbg->scratchpadbuf = NULL;
1252 drbg->reseed_ctr = 0;
1253 drbg->d_ops = NULL;
1254 drbg->core = NULL;
1255 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1256 kfree_sensitive(drbg->prev);
1257 drbg->prev = NULL;
1258 drbg->fips_primed = false;
1259 }
1260}
1261
1262/*
1263 * Allocate all sub-structures for a DRBG state.
1264 * The DRBG state structure must already be allocated.
1265 */
1266static inline int drbg_alloc_state(struct drbg_state *drbg)
1267{
1268 int ret = -ENOMEM;
1269 unsigned int sb_size = 0;
1270
1271 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1272#ifdef CONFIG_CRYPTO_DRBG_HMAC
1273 case DRBG_HMAC:
1274 drbg->d_ops = &drbg_hmac_ops;
1275 break;
1276#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1277#ifdef CONFIG_CRYPTO_DRBG_HASH
1278 case DRBG_HASH:
1279 drbg->d_ops = &drbg_hash_ops;
1280 break;
1281#endif /* CONFIG_CRYPTO_DRBG_HASH */
1282#ifdef CONFIG_CRYPTO_DRBG_CTR
1283 case DRBG_CTR:
1284 drbg->d_ops = &drbg_ctr_ops;
1285 break;
1286#endif /* CONFIG_CRYPTO_DRBG_CTR */
1287 default:
1288 ret = -EOPNOTSUPP;
1289 goto err;
1290 }
1291
1292 ret = drbg->d_ops->crypto_init(drbg);
1293 if (ret < 0)
1294 goto err;
1295
1296 drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1297 if (!drbg->Vbuf) {
1298 ret = -ENOMEM;
1299 goto fini;
1300 }
1301 drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1302 drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1303 if (!drbg->Cbuf) {
1304 ret = -ENOMEM;
1305 goto fini;
1306 }
1307 drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1308 /* scratchpad is only generated for CTR and Hash */
1309 if (drbg->core->flags & DRBG_HMAC)
1310 sb_size = 0;
1311 else if (drbg->core->flags & DRBG_CTR)
1312 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1313 drbg_statelen(drbg) + /* df_data */
1314 drbg_blocklen(drbg) + /* pad */
1315 drbg_blocklen(drbg) + /* iv */
1316 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1317 else
1318 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1319
1320 if (0 < sb_size) {
1321 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1322 if (!drbg->scratchpadbuf) {
1323 ret = -ENOMEM;
1324 goto fini;
1325 }
1326 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1327 }
1328
1329 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1330 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1331 GFP_KERNEL);
1332 if (!drbg->prev) {
1333 ret = -ENOMEM;
1334 goto fini;
1335 }
1336 drbg->fips_primed = false;
1337 }
1338
1339 return 0;
1340
1341fini:
1342 drbg->d_ops->crypto_fini(drbg);
1343err:
1344 drbg_dealloc_state(drbg);
1345 return ret;
1346}
1347
1348/*************************************************************************
1349 * DRBG interface functions
1350 *************************************************************************/
1351
1352/*
1353 * DRBG generate function as required by SP800-90A - this function
1354 * generates random numbers
1355 *
1356 * @drbg DRBG state handle
1357 * @buf Buffer where to store the random numbers -- the buffer must already
1358 * be pre-allocated by caller
1359 * @buflen Length of output buffer - this value defines the number of random
1360 * bytes pulled from DRBG
1361 * @addtl Additional input that is mixed into state, may be NULL -- note
1362 * the entropy is pulled by the DRBG internally unconditionally
1363 * as defined in SP800-90A. The additional input is mixed into
1364 * the state in addition to the pulled entropy.
1365 *
1366 * return: 0 when all bytes are generated; < 0 in case of an error
1367 */
1368static int drbg_generate(struct drbg_state *drbg,
1369 unsigned char *buf, unsigned int buflen,
1370 struct drbg_string *addtl)
1371{
1372 int len = 0;
1373 LIST_HEAD(addtllist);
1374
1375 if (!drbg->core) {
1376 pr_devel("DRBG: not yet seeded\n");
1377 return -EINVAL;
1378 }
1379 if (0 == buflen || !buf) {
1380 pr_devel("DRBG: no output buffer provided\n");
1381 return -EINVAL;
1382 }
1383 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1384 pr_devel("DRBG: wrong format of additional information\n");
1385 return -EINVAL;
1386 }
1387
1388 /* 9.3.1 step 2 */
1389 len = -EINVAL;
1390 if (buflen > (drbg_max_request_bytes(drbg))) {
1391 pr_devel("DRBG: requested random numbers too large %u\n",
1392 buflen);
1393 goto err;
1394 }
1395
1396 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1397
1398 /* 9.3.1 step 4 */
1399 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1400 pr_devel("DRBG: additional information string too long %zu\n",
1401 addtl->len);
1402 goto err;
1403 }
1404 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1405
1406 /*
1407 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1408 * here. The spec is a bit convoluted here, we make it simpler.
1409 */
1410 if (drbg->reseed_threshold < drbg->reseed_ctr)
1411 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1412
1413 if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1414 pr_devel("DRBG: reseeding before generation (prediction "
1415 "resistance: %s, state %s)\n",
1416 str_true_false(drbg->pr),
1417 (drbg->seeded == DRBG_SEED_STATE_FULL ?
1418 "seeded" : "unseeded"));
1419 /* 9.3.1 steps 7.1 through 7.3 */
1420 len = drbg_seed(drbg, addtl, true);
1421 if (len)
1422 goto err;
1423 /* 9.3.1 step 7.4 */
1424 addtl = NULL;
1425 } else if (rng_is_initialized() &&
1426 (drbg->seeded == DRBG_SEED_STATE_PARTIAL ||
1427 drbg_nopr_reseed_interval_elapsed(drbg))) {
1428 len = drbg_seed_from_random(drbg);
1429 if (len)
1430 goto err;
1431 }
1432
1433 if (addtl && 0 < addtl->len)
1434 list_add_tail(&addtl->list, &addtllist);
1435 /* 9.3.1 step 8 and 10 */
1436 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1437
1438 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1439 drbg->reseed_ctr++;
1440 if (0 >= len)
1441 goto err;
1442
1443 /*
1444 * Section 11.3.3 requires to re-perform self tests after some
1445 * generated random numbers. The chosen value after which self
1446 * test is performed is arbitrary, but it should be reasonable.
1447 * However, we do not perform the self tests because of the following
1448 * reasons: it is mathematically impossible that the initial self tests
1449 * were successfully and the following are not. If the initial would
1450 * pass and the following would not, the kernel integrity is violated.
1451 * In this case, the entire kernel operation is questionable and it
1452 * is unlikely that the integrity violation only affects the
1453 * correct operation of the DRBG.
1454 *
1455 * Albeit the following code is commented out, it is provided in
1456 * case somebody has a need to implement the test of 11.3.3.
1457 */
1458#if 0
1459 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1460 int err = 0;
1461 pr_devel("DRBG: start to perform self test\n");
1462 if (drbg->core->flags & DRBG_HMAC)
1463 err = alg_test("drbg_pr_hmac_sha512",
1464 "drbg_pr_hmac_sha512", 0, 0);
1465 else if (drbg->core->flags & DRBG_CTR)
1466 err = alg_test("drbg_pr_ctr_aes256",
1467 "drbg_pr_ctr_aes256", 0, 0);
1468 else
1469 err = alg_test("drbg_pr_sha256",
1470 "drbg_pr_sha256", 0, 0);
1471 if (err) {
1472 pr_err("DRBG: periodical self test failed\n");
1473 /*
1474 * uninstantiate implies that from now on, only errors
1475 * are returned when reusing this DRBG cipher handle
1476 */
1477 drbg_uninstantiate(drbg);
1478 return 0;
1479 } else {
1480 pr_devel("DRBG: self test successful\n");
1481 }
1482 }
1483#endif
1484
1485 /*
1486 * All operations were successful, return 0 as mandated by
1487 * the kernel crypto API interface.
1488 */
1489 len = 0;
1490err:
1491 return len;
1492}
1493
1494/*
1495 * Wrapper around drbg_generate which can pull arbitrary long strings
1496 * from the DRBG without hitting the maximum request limitation.
1497 *
1498 * Parameters: see drbg_generate
1499 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1500 * the entire drbg_generate_long request fails
1501 */
1502static int drbg_generate_long(struct drbg_state *drbg,
1503 unsigned char *buf, unsigned int buflen,
1504 struct drbg_string *addtl)
1505{
1506 unsigned int len = 0;
1507 unsigned int slice = 0;
1508 do {
1509 int err = 0;
1510 unsigned int chunk = 0;
1511 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1512 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1513 mutex_lock(&drbg->drbg_mutex);
1514 err = drbg_generate(drbg, buf + len, chunk, addtl);
1515 mutex_unlock(&drbg->drbg_mutex);
1516 if (0 > err)
1517 return err;
1518 len += chunk;
1519 } while (slice > 0 && (len < buflen));
1520 return 0;
1521}
1522
1523static int drbg_prepare_hrng(struct drbg_state *drbg)
1524{
1525 /* We do not need an HRNG in test mode. */
1526 if (list_empty(&drbg->test_data.list))
1527 return 0;
1528
1529 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1530 if (IS_ERR(drbg->jent)) {
1531 const int err = PTR_ERR(drbg->jent);
1532
1533 drbg->jent = NULL;
1534 if (fips_enabled)
1535 return err;
1536 pr_info("DRBG: Continuing without Jitter RNG\n");
1537 }
1538
1539 return 0;
1540}
1541
1542/*
1543 * DRBG instantiation function as required by SP800-90A - this function
1544 * sets up the DRBG handle, performs the initial seeding and all sanity
1545 * checks required by SP800-90A
1546 *
1547 * @drbg memory of state -- if NULL, new memory is allocated
1548 * @pers Personalization string that is mixed into state, may be NULL -- note
1549 * the entropy is pulled by the DRBG internally unconditionally
1550 * as defined in SP800-90A. The additional input is mixed into
1551 * the state in addition to the pulled entropy.
1552 * @coreref reference to core
1553 * @pr prediction resistance enabled
1554 *
1555 * return
1556 * 0 on success
1557 * error value otherwise
1558 */
1559static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1560 int coreref, bool pr)
1561{
1562 int ret;
1563 bool reseed = true;
1564
1565 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1566 "%s\n", coreref, str_enabled_disabled(pr));
1567 mutex_lock(&drbg->drbg_mutex);
1568
1569 /* 9.1 step 1 is implicit with the selected DRBG type */
1570
1571 /*
1572 * 9.1 step 2 is implicit as caller can select prediction resistance
1573 * and the flag is copied into drbg->flags --
1574 * all DRBG types support prediction resistance
1575 */
1576
1577 /* 9.1 step 4 is implicit in drbg_sec_strength */
1578
1579 if (!drbg->core) {
1580 drbg->core = &drbg_cores[coreref];
1581 drbg->pr = pr;
1582 drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1583 drbg->last_seed_time = 0;
1584 drbg->reseed_threshold = drbg_max_requests(drbg);
1585
1586 ret = drbg_alloc_state(drbg);
1587 if (ret)
1588 goto unlock;
1589
1590 ret = drbg_prepare_hrng(drbg);
1591 if (ret)
1592 goto free_everything;
1593
1594 reseed = false;
1595 }
1596
1597 ret = drbg_seed(drbg, pers, reseed);
1598
1599 if (ret && !reseed)
1600 goto free_everything;
1601
1602 mutex_unlock(&drbg->drbg_mutex);
1603 return ret;
1604
1605unlock:
1606 mutex_unlock(&drbg->drbg_mutex);
1607 return ret;
1608
1609free_everything:
1610 mutex_unlock(&drbg->drbg_mutex);
1611 drbg_uninstantiate(drbg);
1612 return ret;
1613}
1614
1615/*
1616 * DRBG uninstantiate function as required by SP800-90A - this function
1617 * frees all buffers and the DRBG handle
1618 *
1619 * @drbg DRBG state handle
1620 *
1621 * return
1622 * 0 on success
1623 */
1624static int drbg_uninstantiate(struct drbg_state *drbg)
1625{
1626 if (!IS_ERR_OR_NULL(drbg->jent))
1627 crypto_free_rng(drbg->jent);
1628 drbg->jent = NULL;
1629
1630 if (drbg->d_ops)
1631 drbg->d_ops->crypto_fini(drbg);
1632 drbg_dealloc_state(drbg);
1633 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1634 return 0;
1635}
1636
1637/*
1638 * Helper function for setting the test data in the DRBG
1639 *
1640 * @drbg DRBG state handle
1641 * @data test data
1642 * @len test data length
1643 */
1644static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1645 const u8 *data, unsigned int len)
1646{
1647 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1648
1649 mutex_lock(&drbg->drbg_mutex);
1650 drbg_string_fill(&drbg->test_data, data, len);
1651 mutex_unlock(&drbg->drbg_mutex);
1652}
1653
1654/***************************************************************
1655 * Kernel crypto API cipher invocations requested by DRBG
1656 ***************************************************************/
1657
1658#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1659struct sdesc {
1660 struct shash_desc shash;
1661 char ctx[];
1662};
1663
1664static int drbg_init_hash_kernel(struct drbg_state *drbg)
1665{
1666 struct sdesc *sdesc;
1667 struct crypto_shash *tfm;
1668
1669 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1670 if (IS_ERR(tfm)) {
1671 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1672 drbg->core->backend_cra_name);
1673 return PTR_ERR(tfm);
1674 }
1675 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1676 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1677 GFP_KERNEL);
1678 if (!sdesc) {
1679 crypto_free_shash(tfm);
1680 return -ENOMEM;
1681 }
1682
1683 sdesc->shash.tfm = tfm;
1684 drbg->priv_data = sdesc;
1685
1686 return 0;
1687}
1688
1689static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1690{
1691 struct sdesc *sdesc = drbg->priv_data;
1692 if (sdesc) {
1693 crypto_free_shash(sdesc->shash.tfm);
1694 kfree_sensitive(sdesc);
1695 }
1696 drbg->priv_data = NULL;
1697 return 0;
1698}
1699
1700static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1701 const unsigned char *key)
1702{
1703 struct sdesc *sdesc = drbg->priv_data;
1704
1705 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1706}
1707
1708static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1709 const struct list_head *in)
1710{
1711 struct sdesc *sdesc = drbg->priv_data;
1712 struct drbg_string *input = NULL;
1713
1714 crypto_shash_init(&sdesc->shash);
1715 list_for_each_entry(input, in, list)
1716 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1717 return crypto_shash_final(&sdesc->shash, outval);
1718}
1719#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1720
1721#ifdef CONFIG_CRYPTO_DRBG_CTR
1722static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1723{
1724 struct crypto_cipher *tfm =
1725 (struct crypto_cipher *)drbg->priv_data;
1726 if (tfm)
1727 crypto_free_cipher(tfm);
1728 drbg->priv_data = NULL;
1729
1730 if (drbg->ctr_handle)
1731 crypto_free_skcipher(drbg->ctr_handle);
1732 drbg->ctr_handle = NULL;
1733
1734 if (drbg->ctr_req)
1735 skcipher_request_free(drbg->ctr_req);
1736 drbg->ctr_req = NULL;
1737
1738 kfree(drbg->outscratchpadbuf);
1739 drbg->outscratchpadbuf = NULL;
1740
1741 return 0;
1742}
1743
1744static int drbg_init_sym_kernel(struct drbg_state *drbg)
1745{
1746 struct crypto_cipher *tfm;
1747 struct crypto_skcipher *sk_tfm;
1748 struct skcipher_request *req;
1749 unsigned int alignmask;
1750 char ctr_name[CRYPTO_MAX_ALG_NAME];
1751
1752 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1753 if (IS_ERR(tfm)) {
1754 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1755 drbg->core->backend_cra_name);
1756 return PTR_ERR(tfm);
1757 }
1758 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1759 drbg->priv_data = tfm;
1760
1761 if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1762 drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1763 drbg_fini_sym_kernel(drbg);
1764 return -EINVAL;
1765 }
1766 sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1767 if (IS_ERR(sk_tfm)) {
1768 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1769 ctr_name);
1770 drbg_fini_sym_kernel(drbg);
1771 return PTR_ERR(sk_tfm);
1772 }
1773 drbg->ctr_handle = sk_tfm;
1774 crypto_init_wait(&drbg->ctr_wait);
1775
1776 req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1777 if (!req) {
1778 pr_info("DRBG: could not allocate request queue\n");
1779 drbg_fini_sym_kernel(drbg);
1780 return -ENOMEM;
1781 }
1782 drbg->ctr_req = req;
1783 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1784 CRYPTO_TFM_REQ_MAY_SLEEP,
1785 crypto_req_done, &drbg->ctr_wait);
1786
1787 alignmask = crypto_skcipher_alignmask(sk_tfm);
1788 drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1789 GFP_KERNEL);
1790 if (!drbg->outscratchpadbuf) {
1791 drbg_fini_sym_kernel(drbg);
1792 return -ENOMEM;
1793 }
1794 drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1795 alignmask + 1);
1796
1797 sg_init_table(&drbg->sg_in, 1);
1798 sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1799
1800 return alignmask;
1801}
1802
1803static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1804 const unsigned char *key)
1805{
1806 struct crypto_cipher *tfm = drbg->priv_data;
1807
1808 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1809}
1810
1811static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1812 const struct drbg_string *in)
1813{
1814 struct crypto_cipher *tfm = drbg->priv_data;
1815
1816 /* there is only component in *in */
1817 BUG_ON(in->len < drbg_blocklen(drbg));
1818 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1819 return 0;
1820}
1821
1822static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1823 u8 *inbuf, u32 inlen,
1824 u8 *outbuf, u32 outlen)
1825{
1826 struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1827 u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1828 int ret;
1829
1830 if (inbuf) {
1831 /* Use caller-provided input buffer */
1832 sg_set_buf(sg_in, inbuf, inlen);
1833 } else {
1834 /* Use scratchpad for in-place operation */
1835 inlen = scratchpad_use;
1836 memset(drbg->outscratchpad, 0, scratchpad_use);
1837 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1838 }
1839
1840 while (outlen) {
1841 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1842
1843 /* Output buffer may not be valid for SGL, use scratchpad */
1844 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1845 cryptlen, drbg->V);
1846 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1847 &drbg->ctr_wait);
1848 if (ret)
1849 goto out;
1850
1851 crypto_init_wait(&drbg->ctr_wait);
1852
1853 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1854 memzero_explicit(drbg->outscratchpad, cryptlen);
1855
1856 outlen -= cryptlen;
1857 outbuf += cryptlen;
1858 }
1859 ret = 0;
1860
1861out:
1862 return ret;
1863}
1864#endif /* CONFIG_CRYPTO_DRBG_CTR */
1865
1866/***************************************************************
1867 * Kernel crypto API interface to register DRBG
1868 ***************************************************************/
1869
1870/*
1871 * Look up the DRBG flags by given kernel crypto API cra_name
1872 * The code uses the drbg_cores definition to do this
1873 *
1874 * @cra_name kernel crypto API cra_name
1875 * @coreref reference to integer which is filled with the pointer to
1876 * the applicable core
1877 * @pr reference for setting prediction resistance
1878 *
1879 * return: flags
1880 */
1881static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1882 int *coreref, bool *pr)
1883{
1884 int i = 0;
1885 size_t start = 0;
1886 int len = 0;
1887
1888 *pr = true;
1889 /* disassemble the names */
1890 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1891 start = 10;
1892 *pr = false;
1893 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1894 start = 8;
1895 } else {
1896 return;
1897 }
1898
1899 /* remove the first part */
1900 len = strlen(cra_driver_name) - start;
1901 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1902 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1903 len)) {
1904 *coreref = i;
1905 return;
1906 }
1907 }
1908}
1909
1910static int drbg_kcapi_init(struct crypto_tfm *tfm)
1911{
1912 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1913
1914 mutex_init(&drbg->drbg_mutex);
1915
1916 return 0;
1917}
1918
1919static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1920{
1921 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1922}
1923
1924/*
1925 * Generate random numbers invoked by the kernel crypto API:
1926 * The API of the kernel crypto API is extended as follows:
1927 *
1928 * src is additional input supplied to the RNG.
1929 * slen is the length of src.
1930 * dst is the output buffer where random data is to be stored.
1931 * dlen is the length of dst.
1932 */
1933static int drbg_kcapi_random(struct crypto_rng *tfm,
1934 const u8 *src, unsigned int slen,
1935 u8 *dst, unsigned int dlen)
1936{
1937 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1938 struct drbg_string *addtl = NULL;
1939 struct drbg_string string;
1940
1941 if (slen) {
1942 /* linked list variable is now local to allow modification */
1943 drbg_string_fill(&string, src, slen);
1944 addtl = &string;
1945 }
1946
1947 return drbg_generate_long(drbg, dst, dlen, addtl);
1948}
1949
1950/*
1951 * Seed the DRBG invoked by the kernel crypto API
1952 */
1953static int drbg_kcapi_seed(struct crypto_rng *tfm,
1954 const u8 *seed, unsigned int slen)
1955{
1956 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1957 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1958 bool pr = false;
1959 struct drbg_string string;
1960 struct drbg_string *seed_string = NULL;
1961 int coreref = 0;
1962
1963 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1964 &pr);
1965 if (0 < slen) {
1966 drbg_string_fill(&string, seed, slen);
1967 seed_string = &string;
1968 }
1969
1970 return drbg_instantiate(drbg, seed_string, coreref, pr);
1971}
1972
1973/***************************************************************
1974 * Kernel module: code to load the module
1975 ***************************************************************/
1976
1977/*
1978 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1979 * of the error handling.
1980 *
1981 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1982 * as seed source of get_random_bytes does not fail.
1983 *
1984 * Note 2: There is no sensible way of testing the reseed counter
1985 * enforcement, so skip it.
1986 */
1987static inline int __init drbg_healthcheck_sanity(void)
1988{
1989 int len = 0;
1990#define OUTBUFLEN 16
1991 unsigned char buf[OUTBUFLEN];
1992 struct drbg_state *drbg = NULL;
1993 int ret;
1994 int rc = -EFAULT;
1995 bool pr = false;
1996 int coreref = 0;
1997 struct drbg_string addtl;
1998 size_t max_addtllen, max_request_bytes;
1999
2000 /* only perform test in FIPS mode */
2001 if (!fips_enabled)
2002 return 0;
2003
2004#ifdef CONFIG_CRYPTO_DRBG_CTR
2005 drbg_convert_tfm_core("drbg_nopr_ctr_aes256", &coreref, &pr);
2006#endif
2007#ifdef CONFIG_CRYPTO_DRBG_HASH
2008 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2009#endif
2010#ifdef CONFIG_CRYPTO_DRBG_HMAC
2011 drbg_convert_tfm_core("drbg_nopr_hmac_sha512", &coreref, &pr);
2012#endif
2013
2014 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2015 if (!drbg)
2016 return -ENOMEM;
2017
2018 mutex_init(&drbg->drbg_mutex);
2019 drbg->core = &drbg_cores[coreref];
2020 drbg->reseed_threshold = drbg_max_requests(drbg);
2021
2022 /*
2023 * if the following tests fail, it is likely that there is a buffer
2024 * overflow as buf is much smaller than the requested or provided
2025 * string lengths -- in case the error handling does not succeed
2026 * we may get an OOPS. And we want to get an OOPS as this is a
2027 * grave bug.
2028 */
2029
2030 max_addtllen = drbg_max_addtl(drbg);
2031 max_request_bytes = drbg_max_request_bytes(drbg);
2032 drbg_string_fill(&addtl, buf, max_addtllen + 1);
2033 /* overflow addtllen with additonal info string */
2034 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2035 BUG_ON(0 < len);
2036 /* overflow max_bits */
2037 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2038 BUG_ON(0 < len);
2039
2040 /* overflow max addtllen with personalization string */
2041 ret = drbg_seed(drbg, &addtl, false);
2042 BUG_ON(0 == ret);
2043 /* all tests passed */
2044 rc = 0;
2045
2046 pr_devel("DRBG: Sanity tests for failure code paths successfully "
2047 "completed\n");
2048
2049 kfree(drbg);
2050 return rc;
2051}
2052
2053static struct rng_alg drbg_algs[22];
2054
2055/*
2056 * Fill the array drbg_algs used to register the different DRBGs
2057 * with the kernel crypto API. To fill the array, the information
2058 * from drbg_cores[] is used.
2059 */
2060static inline void __init drbg_fill_array(struct rng_alg *alg,
2061 const struct drbg_core *core, int pr)
2062{
2063 int pos = 0;
2064 static int priority = 200;
2065
2066 memcpy(alg->base.cra_name, "stdrng", 6);
2067 if (pr) {
2068 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2069 pos = 8;
2070 } else {
2071 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2072 pos = 10;
2073 }
2074 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2075 strlen(core->cra_name));
2076
2077 alg->base.cra_priority = priority;
2078 priority++;
2079 /*
2080 * If FIPS mode enabled, the selected DRBG shall have the
2081 * highest cra_priority over other stdrng instances to ensure
2082 * it is selected.
2083 */
2084 if (fips_enabled)
2085 alg->base.cra_priority += 200;
2086
2087 alg->base.cra_ctxsize = sizeof(struct drbg_state);
2088 alg->base.cra_module = THIS_MODULE;
2089 alg->base.cra_init = drbg_kcapi_init;
2090 alg->base.cra_exit = drbg_kcapi_cleanup;
2091 alg->generate = drbg_kcapi_random;
2092 alg->seed = drbg_kcapi_seed;
2093 alg->set_ent = drbg_kcapi_set_entropy;
2094 alg->seedsize = 0;
2095}
2096
2097static int __init drbg_init(void)
2098{
2099 unsigned int i = 0; /* pointer to drbg_algs */
2100 unsigned int j = 0; /* pointer to drbg_cores */
2101 int ret;
2102
2103 ret = drbg_healthcheck_sanity();
2104 if (ret)
2105 return ret;
2106
2107 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2108 pr_info("DRBG: Cannot register all DRBG types"
2109 "(slots needed: %zu, slots available: %zu)\n",
2110 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2111 return -EFAULT;
2112 }
2113
2114 /*
2115 * each DRBG definition can be used with PR and without PR, thus
2116 * we instantiate each DRBG in drbg_cores[] twice.
2117 *
2118 * As the order of placing them into the drbg_algs array matters
2119 * (the later DRBGs receive a higher cra_priority) we register the
2120 * prediction resistance DRBGs first as the should not be too
2121 * interesting.
2122 */
2123 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2124 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2125 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2126 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2127 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2128}
2129
2130static void __exit drbg_exit(void)
2131{
2132 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2133}
2134
2135subsys_initcall(drbg_init);
2136module_exit(drbg_exit);
2137#ifndef CRYPTO_DRBG_HASH_STRING
2138#define CRYPTO_DRBG_HASH_STRING ""
2139#endif
2140#ifndef CRYPTO_DRBG_HMAC_STRING
2141#define CRYPTO_DRBG_HMAC_STRING ""
2142#endif
2143#ifndef CRYPTO_DRBG_CTR_STRING
2144#define CRYPTO_DRBG_CTR_STRING ""
2145#endif
2146MODULE_LICENSE("GPL");
2147MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2148MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2149 "using following cores: "
2150 CRYPTO_DRBG_HASH_STRING
2151 CRYPTO_DRBG_HMAC_STRING
2152 CRYPTO_DRBG_CTR_STRING);
2153MODULE_ALIAS_CRYPTO("stdrng");
2154MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1/*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101#include <crypto/internal/cipher.h>
102#include <linux/kernel.h>
103
104/***************************************************************
105 * Backend cipher definitions available to DRBG
106 ***************************************************************/
107
108/*
109 * The order of the DRBG definitions here matter: every DRBG is registered
110 * as stdrng. Each DRBG receives an increasing cra_priority values the later
111 * they are defined in this array (see drbg_fill_array).
112 *
113 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
114 * the SHA256 / AES 256 over other ciphers. Thus, the favored
115 * DRBGs are the latest entries in this array.
116 */
117static const struct drbg_core drbg_cores[] = {
118#ifdef CONFIG_CRYPTO_DRBG_CTR
119 {
120 .flags = DRBG_CTR | DRBG_STRENGTH128,
121 .statelen = 32, /* 256 bits as defined in 10.2.1 */
122 .blocklen_bytes = 16,
123 .cra_name = "ctr_aes128",
124 .backend_cra_name = "aes",
125 }, {
126 .flags = DRBG_CTR | DRBG_STRENGTH192,
127 .statelen = 40, /* 320 bits as defined in 10.2.1 */
128 .blocklen_bytes = 16,
129 .cra_name = "ctr_aes192",
130 .backend_cra_name = "aes",
131 }, {
132 .flags = DRBG_CTR | DRBG_STRENGTH256,
133 .statelen = 48, /* 384 bits as defined in 10.2.1 */
134 .blocklen_bytes = 16,
135 .cra_name = "ctr_aes256",
136 .backend_cra_name = "aes",
137 },
138#endif /* CONFIG_CRYPTO_DRBG_CTR */
139#ifdef CONFIG_CRYPTO_DRBG_HASH
140 {
141 .flags = DRBG_HASH | DRBG_STRENGTH128,
142 .statelen = 55, /* 440 bits */
143 .blocklen_bytes = 20,
144 .cra_name = "sha1",
145 .backend_cra_name = "sha1",
146 }, {
147 .flags = DRBG_HASH | DRBG_STRENGTH256,
148 .statelen = 111, /* 888 bits */
149 .blocklen_bytes = 48,
150 .cra_name = "sha384",
151 .backend_cra_name = "sha384",
152 }, {
153 .flags = DRBG_HASH | DRBG_STRENGTH256,
154 .statelen = 111, /* 888 bits */
155 .blocklen_bytes = 64,
156 .cra_name = "sha512",
157 .backend_cra_name = "sha512",
158 }, {
159 .flags = DRBG_HASH | DRBG_STRENGTH256,
160 .statelen = 55, /* 440 bits */
161 .blocklen_bytes = 32,
162 .cra_name = "sha256",
163 .backend_cra_name = "sha256",
164 },
165#endif /* CONFIG_CRYPTO_DRBG_HASH */
166#ifdef CONFIG_CRYPTO_DRBG_HMAC
167 {
168 .flags = DRBG_HMAC | DRBG_STRENGTH128,
169 .statelen = 20, /* block length of cipher */
170 .blocklen_bytes = 20,
171 .cra_name = "hmac_sha1",
172 .backend_cra_name = "hmac(sha1)",
173 }, {
174 .flags = DRBG_HMAC | DRBG_STRENGTH256,
175 .statelen = 48, /* block length of cipher */
176 .blocklen_bytes = 48,
177 .cra_name = "hmac_sha384",
178 .backend_cra_name = "hmac(sha384)",
179 }, {
180 .flags = DRBG_HMAC | DRBG_STRENGTH256,
181 .statelen = 32, /* block length of cipher */
182 .blocklen_bytes = 32,
183 .cra_name = "hmac_sha256",
184 .backend_cra_name = "hmac(sha256)",
185 }, {
186 .flags = DRBG_HMAC | DRBG_STRENGTH256,
187 .statelen = 64, /* block length of cipher */
188 .blocklen_bytes = 64,
189 .cra_name = "hmac_sha512",
190 .backend_cra_name = "hmac(sha512)",
191 },
192#endif /* CONFIG_CRYPTO_DRBG_HMAC */
193};
194
195static int drbg_uninstantiate(struct drbg_state *drbg);
196
197/******************************************************************
198 * Generic helper functions
199 ******************************************************************/
200
201/*
202 * Return strength of DRBG according to SP800-90A section 8.4
203 *
204 * @flags DRBG flags reference
205 *
206 * Return: normalized strength in *bytes* value or 32 as default
207 * to counter programming errors
208 */
209static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
210{
211 switch (flags & DRBG_STRENGTH_MASK) {
212 case DRBG_STRENGTH128:
213 return 16;
214 case DRBG_STRENGTH192:
215 return 24;
216 case DRBG_STRENGTH256:
217 return 32;
218 default:
219 return 32;
220 }
221}
222
223/*
224 * FIPS 140-2 continuous self test for the noise source
225 * The test is performed on the noise source input data. Thus, the function
226 * implicitly knows the size of the buffer to be equal to the security
227 * strength.
228 *
229 * Note, this function disregards the nonce trailing the entropy data during
230 * initial seeding.
231 *
232 * drbg->drbg_mutex must have been taken.
233 *
234 * @drbg DRBG handle
235 * @entropy buffer of seed data to be checked
236 *
237 * return:
238 * 0 on success
239 * -EAGAIN on when the CTRNG is not yet primed
240 * < 0 on error
241 */
242static int drbg_fips_continuous_test(struct drbg_state *drbg,
243 const unsigned char *entropy)
244{
245 unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
246 int ret = 0;
247
248 if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
249 return 0;
250
251 /* skip test if we test the overall system */
252 if (list_empty(&drbg->test_data.list))
253 return 0;
254 /* only perform test in FIPS mode */
255 if (!fips_enabled)
256 return 0;
257
258 if (!drbg->fips_primed) {
259 /* Priming of FIPS test */
260 memcpy(drbg->prev, entropy, entropylen);
261 drbg->fips_primed = true;
262 /* priming: another round is needed */
263 return -EAGAIN;
264 }
265 ret = memcmp(drbg->prev, entropy, entropylen);
266 if (!ret)
267 panic("DRBG continuous self test failed\n");
268 memcpy(drbg->prev, entropy, entropylen);
269
270 /* the test shall pass when the two values are not equal */
271 return 0;
272}
273
274/*
275 * Convert an integer into a byte representation of this integer.
276 * The byte representation is big-endian
277 *
278 * @val value to be converted
279 * @buf buffer holding the converted integer -- caller must ensure that
280 * buffer size is at least 32 bit
281 */
282#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
283static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
284{
285 struct s {
286 __be32 conv;
287 };
288 struct s *conversion = (struct s *) buf;
289
290 conversion->conv = cpu_to_be32(val);
291}
292#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
293
294/******************************************************************
295 * CTR DRBG callback functions
296 ******************************************************************/
297
298#ifdef CONFIG_CRYPTO_DRBG_CTR
299#define CRYPTO_DRBG_CTR_STRING "CTR "
300MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
301MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
302MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
303MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
304MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
305MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
306
307static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
308 const unsigned char *key);
309static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
310 const struct drbg_string *in);
311static int drbg_init_sym_kernel(struct drbg_state *drbg);
312static int drbg_fini_sym_kernel(struct drbg_state *drbg);
313static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
314 u8 *inbuf, u32 inbuflen,
315 u8 *outbuf, u32 outlen);
316#define DRBG_OUTSCRATCHLEN 256
317
318/* BCC function for CTR DRBG as defined in 10.4.3 */
319static int drbg_ctr_bcc(struct drbg_state *drbg,
320 unsigned char *out, const unsigned char *key,
321 struct list_head *in)
322{
323 int ret = 0;
324 struct drbg_string *curr = NULL;
325 struct drbg_string data;
326 short cnt = 0;
327
328 drbg_string_fill(&data, out, drbg_blocklen(drbg));
329
330 /* 10.4.3 step 2 / 4 */
331 drbg_kcapi_symsetkey(drbg, key);
332 list_for_each_entry(curr, in, list) {
333 const unsigned char *pos = curr->buf;
334 size_t len = curr->len;
335 /* 10.4.3 step 4.1 */
336 while (len) {
337 /* 10.4.3 step 4.2 */
338 if (drbg_blocklen(drbg) == cnt) {
339 cnt = 0;
340 ret = drbg_kcapi_sym(drbg, out, &data);
341 if (ret)
342 return ret;
343 }
344 out[cnt] ^= *pos;
345 pos++;
346 cnt++;
347 len--;
348 }
349 }
350 /* 10.4.3 step 4.2 for last block */
351 if (cnt)
352 ret = drbg_kcapi_sym(drbg, out, &data);
353
354 return ret;
355}
356
357/*
358 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
359 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
360 * the scratchpad is used as follows:
361 * drbg_ctr_update:
362 * temp
363 * start: drbg->scratchpad
364 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
365 * note: the cipher writing into this variable works
366 * blocklen-wise. Now, when the statelen is not a multiple
367 * of blocklen, the generateion loop below "spills over"
368 * by at most blocklen. Thus, we need to give sufficient
369 * memory.
370 * df_data
371 * start: drbg->scratchpad +
372 * drbg_statelen(drbg) + drbg_blocklen(drbg)
373 * length: drbg_statelen(drbg)
374 *
375 * drbg_ctr_df:
376 * pad
377 * start: df_data + drbg_statelen(drbg)
378 * length: drbg_blocklen(drbg)
379 * iv
380 * start: pad + drbg_blocklen(drbg)
381 * length: drbg_blocklen(drbg)
382 * temp
383 * start: iv + drbg_blocklen(drbg)
384 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
385 * note: temp is the buffer that the BCC function operates
386 * on. BCC operates blockwise. drbg_statelen(drbg)
387 * is sufficient when the DRBG state length is a multiple
388 * of the block size. For AES192 (and maybe other ciphers)
389 * this is not correct and the length for temp is
390 * insufficient (yes, that also means for such ciphers,
391 * the final output of all BCC rounds are truncated).
392 * Therefore, add drbg_blocklen(drbg) to cover all
393 * possibilities.
394 */
395
396/* Derivation Function for CTR DRBG as defined in 10.4.2 */
397static int drbg_ctr_df(struct drbg_state *drbg,
398 unsigned char *df_data, size_t bytes_to_return,
399 struct list_head *seedlist)
400{
401 int ret = -EFAULT;
402 unsigned char L_N[8];
403 /* S3 is input */
404 struct drbg_string S1, S2, S4, cipherin;
405 LIST_HEAD(bcc_list);
406 unsigned char *pad = df_data + drbg_statelen(drbg);
407 unsigned char *iv = pad + drbg_blocklen(drbg);
408 unsigned char *temp = iv + drbg_blocklen(drbg);
409 size_t padlen = 0;
410 unsigned int templen = 0;
411 /* 10.4.2 step 7 */
412 unsigned int i = 0;
413 /* 10.4.2 step 8 */
414 const unsigned char *K = (unsigned char *)
415 "\x00\x01\x02\x03\x04\x05\x06\x07"
416 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
417 "\x10\x11\x12\x13\x14\x15\x16\x17"
418 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
419 unsigned char *X;
420 size_t generated_len = 0;
421 size_t inputlen = 0;
422 struct drbg_string *seed = NULL;
423
424 memset(pad, 0, drbg_blocklen(drbg));
425 memset(iv, 0, drbg_blocklen(drbg));
426
427 /* 10.4.2 step 1 is implicit as we work byte-wise */
428
429 /* 10.4.2 step 2 */
430 if ((512/8) < bytes_to_return)
431 return -EINVAL;
432
433 /* 10.4.2 step 2 -- calculate the entire length of all input data */
434 list_for_each_entry(seed, seedlist, list)
435 inputlen += seed->len;
436 drbg_cpu_to_be32(inputlen, &L_N[0]);
437
438 /* 10.4.2 step 3 */
439 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
440
441 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
442 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
443 /* wrap the padlen appropriately */
444 if (padlen)
445 padlen = drbg_blocklen(drbg) - padlen;
446 /*
447 * pad / padlen contains the 0x80 byte and the following zero bytes.
448 * As the calculated padlen value only covers the number of zero
449 * bytes, this value has to be incremented by one for the 0x80 byte.
450 */
451 padlen++;
452 pad[0] = 0x80;
453
454 /* 10.4.2 step 4 -- first fill the linked list and then order it */
455 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
456 list_add_tail(&S1.list, &bcc_list);
457 drbg_string_fill(&S2, L_N, sizeof(L_N));
458 list_add_tail(&S2.list, &bcc_list);
459 list_splice_tail(seedlist, &bcc_list);
460 drbg_string_fill(&S4, pad, padlen);
461 list_add_tail(&S4.list, &bcc_list);
462
463 /* 10.4.2 step 9 */
464 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
465 /*
466 * 10.4.2 step 9.1 - the padding is implicit as the buffer
467 * holds zeros after allocation -- even the increment of i
468 * is irrelevant as the increment remains within length of i
469 */
470 drbg_cpu_to_be32(i, iv);
471 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
472 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
473 if (ret)
474 goto out;
475 /* 10.4.2 step 9.3 */
476 i++;
477 templen += drbg_blocklen(drbg);
478 }
479
480 /* 10.4.2 step 11 */
481 X = temp + (drbg_keylen(drbg));
482 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
483
484 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
485
486 /* 10.4.2 step 13 */
487 drbg_kcapi_symsetkey(drbg, temp);
488 while (generated_len < bytes_to_return) {
489 short blocklen = 0;
490 /*
491 * 10.4.2 step 13.1: the truncation of the key length is
492 * implicit as the key is only drbg_blocklen in size based on
493 * the implementation of the cipher function callback
494 */
495 ret = drbg_kcapi_sym(drbg, X, &cipherin);
496 if (ret)
497 goto out;
498 blocklen = (drbg_blocklen(drbg) <
499 (bytes_to_return - generated_len)) ?
500 drbg_blocklen(drbg) :
501 (bytes_to_return - generated_len);
502 /* 10.4.2 step 13.2 and 14 */
503 memcpy(df_data + generated_len, X, blocklen);
504 generated_len += blocklen;
505 }
506
507 ret = 0;
508
509out:
510 memset(iv, 0, drbg_blocklen(drbg));
511 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
512 memset(pad, 0, drbg_blocklen(drbg));
513 return ret;
514}
515
516/*
517 * update function of CTR DRBG as defined in 10.2.1.2
518 *
519 * The reseed variable has an enhanced meaning compared to the update
520 * functions of the other DRBGs as follows:
521 * 0 => initial seed from initialization
522 * 1 => reseed via drbg_seed
523 * 2 => first invocation from drbg_ctr_update when addtl is present. In
524 * this case, the df_data scratchpad is not deleted so that it is
525 * available for another calls to prevent calling the DF function
526 * again.
527 * 3 => second invocation from drbg_ctr_update. When the update function
528 * was called with addtl, the df_data memory already contains the
529 * DFed addtl information and we do not need to call DF again.
530 */
531static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
532 int reseed)
533{
534 int ret = -EFAULT;
535 /* 10.2.1.2 step 1 */
536 unsigned char *temp = drbg->scratchpad;
537 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
538 drbg_blocklen(drbg);
539
540 if (3 > reseed)
541 memset(df_data, 0, drbg_statelen(drbg));
542
543 if (!reseed) {
544 /*
545 * The DRBG uses the CTR mode of the underlying AES cipher. The
546 * CTR mode increments the counter value after the AES operation
547 * but SP800-90A requires that the counter is incremented before
548 * the AES operation. Hence, we increment it at the time we set
549 * it by one.
550 */
551 crypto_inc(drbg->V, drbg_blocklen(drbg));
552
553 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
554 drbg_keylen(drbg));
555 if (ret)
556 goto out;
557 }
558
559 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
560 if (seed) {
561 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
562 if (ret)
563 goto out;
564 }
565
566 ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
567 temp, drbg_statelen(drbg));
568 if (ret)
569 return ret;
570
571 /* 10.2.1.2 step 5 */
572 ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
573 drbg_keylen(drbg));
574 if (ret)
575 goto out;
576 /* 10.2.1.2 step 6 */
577 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
578 /* See above: increment counter by one to compensate timing of CTR op */
579 crypto_inc(drbg->V, drbg_blocklen(drbg));
580 ret = 0;
581
582out:
583 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
584 if (2 != reseed)
585 memset(df_data, 0, drbg_statelen(drbg));
586 return ret;
587}
588
589/*
590 * scratchpad use: drbg_ctr_update is called independently from
591 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
592 */
593/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
594static int drbg_ctr_generate(struct drbg_state *drbg,
595 unsigned char *buf, unsigned int buflen,
596 struct list_head *addtl)
597{
598 int ret;
599 int len = min_t(int, buflen, INT_MAX);
600
601 /* 10.2.1.5.2 step 2 */
602 if (addtl && !list_empty(addtl)) {
603 ret = drbg_ctr_update(drbg, addtl, 2);
604 if (ret)
605 return 0;
606 }
607
608 /* 10.2.1.5.2 step 4.1 */
609 ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
610 if (ret)
611 return ret;
612
613 /* 10.2.1.5.2 step 6 */
614 ret = drbg_ctr_update(drbg, NULL, 3);
615 if (ret)
616 len = ret;
617
618 return len;
619}
620
621static const struct drbg_state_ops drbg_ctr_ops = {
622 .update = drbg_ctr_update,
623 .generate = drbg_ctr_generate,
624 .crypto_init = drbg_init_sym_kernel,
625 .crypto_fini = drbg_fini_sym_kernel,
626};
627#endif /* CONFIG_CRYPTO_DRBG_CTR */
628
629/******************************************************************
630 * HMAC DRBG callback functions
631 ******************************************************************/
632
633#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
634static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
635 const struct list_head *in);
636static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
637 const unsigned char *key);
638static int drbg_init_hash_kernel(struct drbg_state *drbg);
639static int drbg_fini_hash_kernel(struct drbg_state *drbg);
640#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
641
642#ifdef CONFIG_CRYPTO_DRBG_HMAC
643#define CRYPTO_DRBG_HMAC_STRING "HMAC "
644MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
645MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
646MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
647MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
648MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
649MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
650MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
651MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
652
653/* update function of HMAC DRBG as defined in 10.1.2.2 */
654static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
655 int reseed)
656{
657 int ret = -EFAULT;
658 int i = 0;
659 struct drbg_string seed1, seed2, vdata;
660 LIST_HEAD(seedlist);
661 LIST_HEAD(vdatalist);
662
663 if (!reseed) {
664 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
665 memset(drbg->V, 1, drbg_statelen(drbg));
666 drbg_kcapi_hmacsetkey(drbg, drbg->C);
667 }
668
669 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
670 list_add_tail(&seed1.list, &seedlist);
671 /* buffer of seed2 will be filled in for loop below with one byte */
672 drbg_string_fill(&seed2, NULL, 1);
673 list_add_tail(&seed2.list, &seedlist);
674 /* input data of seed is allowed to be NULL at this point */
675 if (seed)
676 list_splice_tail(seed, &seedlist);
677
678 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
679 list_add_tail(&vdata.list, &vdatalist);
680 for (i = 2; 0 < i; i--) {
681 /* first round uses 0x0, second 0x1 */
682 unsigned char prefix = DRBG_PREFIX0;
683 if (1 == i)
684 prefix = DRBG_PREFIX1;
685 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
686 seed2.buf = &prefix;
687 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
688 if (ret)
689 return ret;
690 drbg_kcapi_hmacsetkey(drbg, drbg->C);
691
692 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
693 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
694 if (ret)
695 return ret;
696
697 /* 10.1.2.2 step 3 */
698 if (!seed)
699 return ret;
700 }
701
702 return 0;
703}
704
705/* generate function of HMAC DRBG as defined in 10.1.2.5 */
706static int drbg_hmac_generate(struct drbg_state *drbg,
707 unsigned char *buf,
708 unsigned int buflen,
709 struct list_head *addtl)
710{
711 int len = 0;
712 int ret = 0;
713 struct drbg_string data;
714 LIST_HEAD(datalist);
715
716 /* 10.1.2.5 step 2 */
717 if (addtl && !list_empty(addtl)) {
718 ret = drbg_hmac_update(drbg, addtl, 1);
719 if (ret)
720 return ret;
721 }
722
723 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724 list_add_tail(&data.list, &datalist);
725 while (len < buflen) {
726 unsigned int outlen = 0;
727 /* 10.1.2.5 step 4.1 */
728 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
729 if (ret)
730 return ret;
731 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732 drbg_blocklen(drbg) : (buflen - len);
733
734 /* 10.1.2.5 step 4.2 */
735 memcpy(buf + len, drbg->V, outlen);
736 len += outlen;
737 }
738
739 /* 10.1.2.5 step 6 */
740 if (addtl && !list_empty(addtl))
741 ret = drbg_hmac_update(drbg, addtl, 1);
742 else
743 ret = drbg_hmac_update(drbg, NULL, 1);
744 if (ret)
745 return ret;
746
747 return len;
748}
749
750static const struct drbg_state_ops drbg_hmac_ops = {
751 .update = drbg_hmac_update,
752 .generate = drbg_hmac_generate,
753 .crypto_init = drbg_init_hash_kernel,
754 .crypto_fini = drbg_fini_hash_kernel,
755};
756#endif /* CONFIG_CRYPTO_DRBG_HMAC */
757
758/******************************************************************
759 * Hash DRBG callback functions
760 ******************************************************************/
761
762#ifdef CONFIG_CRYPTO_DRBG_HASH
763#define CRYPTO_DRBG_HASH_STRING "HASH "
764MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
765MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
766MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
767MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
768MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
769MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
770MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
771MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
772
773/*
774 * Increment buffer
775 *
776 * @dst buffer to increment
777 * @add value to add
778 */
779static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
780 const unsigned char *add, size_t addlen)
781{
782 /* implied: dstlen > addlen */
783 unsigned char *dstptr;
784 const unsigned char *addptr;
785 unsigned int remainder = 0;
786 size_t len = addlen;
787
788 dstptr = dst + (dstlen-1);
789 addptr = add + (addlen-1);
790 while (len) {
791 remainder += *dstptr + *addptr;
792 *dstptr = remainder & 0xff;
793 remainder >>= 8;
794 len--; dstptr--; addptr--;
795 }
796 len = dstlen - addlen;
797 while (len && remainder > 0) {
798 remainder = *dstptr + 1;
799 *dstptr = remainder & 0xff;
800 remainder >>= 8;
801 len--; dstptr--;
802 }
803}
804
805/*
806 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
807 * interlinked, the scratchpad is used as follows:
808 * drbg_hash_update
809 * start: drbg->scratchpad
810 * length: drbg_statelen(drbg)
811 * drbg_hash_df:
812 * start: drbg->scratchpad + drbg_statelen(drbg)
813 * length: drbg_blocklen(drbg)
814 *
815 * drbg_hash_process_addtl uses the scratchpad, but fully completes
816 * before either of the functions mentioned before are invoked. Therefore,
817 * drbg_hash_process_addtl does not need to be specifically considered.
818 */
819
820/* Derivation Function for Hash DRBG as defined in 10.4.1 */
821static int drbg_hash_df(struct drbg_state *drbg,
822 unsigned char *outval, size_t outlen,
823 struct list_head *entropylist)
824{
825 int ret = 0;
826 size_t len = 0;
827 unsigned char input[5];
828 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
829 struct drbg_string data;
830
831 /* 10.4.1 step 3 */
832 input[0] = 1;
833 drbg_cpu_to_be32((outlen * 8), &input[1]);
834
835 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
836 drbg_string_fill(&data, input, 5);
837 list_add(&data.list, entropylist);
838
839 /* 10.4.1 step 4 */
840 while (len < outlen) {
841 short blocklen = 0;
842 /* 10.4.1 step 4.1 */
843 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
844 if (ret)
845 goto out;
846 /* 10.4.1 step 4.2 */
847 input[0]++;
848 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
849 drbg_blocklen(drbg) : (outlen - len);
850 memcpy(outval + len, tmp, blocklen);
851 len += blocklen;
852 }
853
854out:
855 memset(tmp, 0, drbg_blocklen(drbg));
856 return ret;
857}
858
859/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
860static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
861 int reseed)
862{
863 int ret = 0;
864 struct drbg_string data1, data2;
865 LIST_HEAD(datalist);
866 LIST_HEAD(datalist2);
867 unsigned char *V = drbg->scratchpad;
868 unsigned char prefix = DRBG_PREFIX1;
869
870 if (!seed)
871 return -EINVAL;
872
873 if (reseed) {
874 /* 10.1.1.3 step 1 */
875 memcpy(V, drbg->V, drbg_statelen(drbg));
876 drbg_string_fill(&data1, &prefix, 1);
877 list_add_tail(&data1.list, &datalist);
878 drbg_string_fill(&data2, V, drbg_statelen(drbg));
879 list_add_tail(&data2.list, &datalist);
880 }
881 list_splice_tail(seed, &datalist);
882
883 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
884 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
885 if (ret)
886 goto out;
887
888 /* 10.1.1.2 / 10.1.1.3 step 4 */
889 prefix = DRBG_PREFIX0;
890 drbg_string_fill(&data1, &prefix, 1);
891 list_add_tail(&data1.list, &datalist2);
892 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
893 list_add_tail(&data2.list, &datalist2);
894 /* 10.1.1.2 / 10.1.1.3 step 4 */
895 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
896
897out:
898 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
899 return ret;
900}
901
902/* processing of additional information string for Hash DRBG */
903static int drbg_hash_process_addtl(struct drbg_state *drbg,
904 struct list_head *addtl)
905{
906 int ret = 0;
907 struct drbg_string data1, data2;
908 LIST_HEAD(datalist);
909 unsigned char prefix = DRBG_PREFIX2;
910
911 /* 10.1.1.4 step 2 */
912 if (!addtl || list_empty(addtl))
913 return 0;
914
915 /* 10.1.1.4 step 2a */
916 drbg_string_fill(&data1, &prefix, 1);
917 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
918 list_add_tail(&data1.list, &datalist);
919 list_add_tail(&data2.list, &datalist);
920 list_splice_tail(addtl, &datalist);
921 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
922 if (ret)
923 goto out;
924
925 /* 10.1.1.4 step 2b */
926 drbg_add_buf(drbg->V, drbg_statelen(drbg),
927 drbg->scratchpad, drbg_blocklen(drbg));
928
929out:
930 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
931 return ret;
932}
933
934/* Hashgen defined in 10.1.1.4 */
935static int drbg_hash_hashgen(struct drbg_state *drbg,
936 unsigned char *buf,
937 unsigned int buflen)
938{
939 int len = 0;
940 int ret = 0;
941 unsigned char *src = drbg->scratchpad;
942 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
943 struct drbg_string data;
944 LIST_HEAD(datalist);
945
946 /* 10.1.1.4 step hashgen 2 */
947 memcpy(src, drbg->V, drbg_statelen(drbg));
948
949 drbg_string_fill(&data, src, drbg_statelen(drbg));
950 list_add_tail(&data.list, &datalist);
951 while (len < buflen) {
952 unsigned int outlen = 0;
953 /* 10.1.1.4 step hashgen 4.1 */
954 ret = drbg_kcapi_hash(drbg, dst, &datalist);
955 if (ret) {
956 len = ret;
957 goto out;
958 }
959 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
960 drbg_blocklen(drbg) : (buflen - len);
961 /* 10.1.1.4 step hashgen 4.2 */
962 memcpy(buf + len, dst, outlen);
963 len += outlen;
964 /* 10.1.1.4 hashgen step 4.3 */
965 if (len < buflen)
966 crypto_inc(src, drbg_statelen(drbg));
967 }
968
969out:
970 memset(drbg->scratchpad, 0,
971 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
972 return len;
973}
974
975/* generate function for Hash DRBG as defined in 10.1.1.4 */
976static int drbg_hash_generate(struct drbg_state *drbg,
977 unsigned char *buf, unsigned int buflen,
978 struct list_head *addtl)
979{
980 int len = 0;
981 int ret = 0;
982 union {
983 unsigned char req[8];
984 __be64 req_int;
985 } u;
986 unsigned char prefix = DRBG_PREFIX3;
987 struct drbg_string data1, data2;
988 LIST_HEAD(datalist);
989
990 /* 10.1.1.4 step 2 */
991 ret = drbg_hash_process_addtl(drbg, addtl);
992 if (ret)
993 return ret;
994 /* 10.1.1.4 step 3 */
995 len = drbg_hash_hashgen(drbg, buf, buflen);
996
997 /* this is the value H as documented in 10.1.1.4 */
998 /* 10.1.1.4 step 4 */
999 drbg_string_fill(&data1, &prefix, 1);
1000 list_add_tail(&data1.list, &datalist);
1001 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1002 list_add_tail(&data2.list, &datalist);
1003 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1004 if (ret) {
1005 len = ret;
1006 goto out;
1007 }
1008
1009 /* 10.1.1.4 step 5 */
1010 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1011 drbg->scratchpad, drbg_blocklen(drbg));
1012 drbg_add_buf(drbg->V, drbg_statelen(drbg),
1013 drbg->C, drbg_statelen(drbg));
1014 u.req_int = cpu_to_be64(drbg->reseed_ctr);
1015 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1016
1017out:
1018 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1019 return len;
1020}
1021
1022/*
1023 * scratchpad usage: as update and generate are used isolated, both
1024 * can use the scratchpad
1025 */
1026static const struct drbg_state_ops drbg_hash_ops = {
1027 .update = drbg_hash_update,
1028 .generate = drbg_hash_generate,
1029 .crypto_init = drbg_init_hash_kernel,
1030 .crypto_fini = drbg_fini_hash_kernel,
1031};
1032#endif /* CONFIG_CRYPTO_DRBG_HASH */
1033
1034/******************************************************************
1035 * Functions common for DRBG implementations
1036 ******************************************************************/
1037
1038static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1039 int reseed)
1040{
1041 int ret = drbg->d_ops->update(drbg, seed, reseed);
1042
1043 if (ret)
1044 return ret;
1045
1046 drbg->seeded = true;
1047 /* 10.1.1.2 / 10.1.1.3 step 5 */
1048 drbg->reseed_ctr = 1;
1049
1050 return ret;
1051}
1052
1053static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1054 unsigned char *entropy,
1055 unsigned int entropylen)
1056{
1057 int ret;
1058
1059 do {
1060 get_random_bytes(entropy, entropylen);
1061 ret = drbg_fips_continuous_test(drbg, entropy);
1062 if (ret && ret != -EAGAIN)
1063 return ret;
1064 } while (ret);
1065
1066 return 0;
1067}
1068
1069static void drbg_async_seed(struct work_struct *work)
1070{
1071 struct drbg_string data;
1072 LIST_HEAD(seedlist);
1073 struct drbg_state *drbg = container_of(work, struct drbg_state,
1074 seed_work);
1075 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1076 unsigned char entropy[32];
1077 int ret;
1078
1079 BUG_ON(!entropylen);
1080 BUG_ON(entropylen > sizeof(entropy));
1081
1082 drbg_string_fill(&data, entropy, entropylen);
1083 list_add_tail(&data.list, &seedlist);
1084
1085 mutex_lock(&drbg->drbg_mutex);
1086
1087 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1088 if (ret)
1089 goto unlock;
1090
1091 /* Set seeded to false so that if __drbg_seed fails the
1092 * next generate call will trigger a reseed.
1093 */
1094 drbg->seeded = false;
1095
1096 __drbg_seed(drbg, &seedlist, true);
1097
1098 if (drbg->seeded)
1099 drbg->reseed_threshold = drbg_max_requests(drbg);
1100
1101unlock:
1102 mutex_unlock(&drbg->drbg_mutex);
1103
1104 memzero_explicit(entropy, entropylen);
1105}
1106
1107/*
1108 * Seeding or reseeding of the DRBG
1109 *
1110 * @drbg: DRBG state struct
1111 * @pers: personalization / additional information buffer
1112 * @reseed: 0 for initial seed process, 1 for reseeding
1113 *
1114 * return:
1115 * 0 on success
1116 * error value otherwise
1117 */
1118static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1119 bool reseed)
1120{
1121 int ret;
1122 unsigned char entropy[((32 + 16) * 2)];
1123 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1124 struct drbg_string data1;
1125 LIST_HEAD(seedlist);
1126
1127 /* 9.1 / 9.2 / 9.3.1 step 3 */
1128 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1129 pr_devel("DRBG: personalization string too long %zu\n",
1130 pers->len);
1131 return -EINVAL;
1132 }
1133
1134 if (list_empty(&drbg->test_data.list)) {
1135 drbg_string_fill(&data1, drbg->test_data.buf,
1136 drbg->test_data.len);
1137 pr_devel("DRBG: using test entropy\n");
1138 } else {
1139 /*
1140 * Gather entropy equal to the security strength of the DRBG.
1141 * With a derivation function, a nonce is required in addition
1142 * to the entropy. A nonce must be at least 1/2 of the security
1143 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1144 * of the strength. The consideration of a nonce is only
1145 * applicable during initial seeding.
1146 */
1147 BUG_ON(!entropylen);
1148 if (!reseed)
1149 entropylen = ((entropylen + 1) / 2) * 3;
1150 BUG_ON((entropylen * 2) > sizeof(entropy));
1151
1152 /* Get seed from in-kernel /dev/urandom */
1153 ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1154 if (ret)
1155 goto out;
1156
1157 if (!drbg->jent) {
1158 drbg_string_fill(&data1, entropy, entropylen);
1159 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1160 entropylen);
1161 } else {
1162 /* Get seed from Jitter RNG */
1163 ret = crypto_rng_get_bytes(drbg->jent,
1164 entropy + entropylen,
1165 entropylen);
1166 if (ret) {
1167 pr_devel("DRBG: jent failed with %d\n", ret);
1168
1169 /*
1170 * Do not treat the transient failure of the
1171 * Jitter RNG as an error that needs to be
1172 * reported. The combined number of the
1173 * maximum reseed threshold times the maximum
1174 * number of Jitter RNG transient errors is
1175 * less than the reseed threshold required by
1176 * SP800-90A allowing us to treat the
1177 * transient errors as such.
1178 *
1179 * However, we mandate that at least the first
1180 * seeding operation must succeed with the
1181 * Jitter RNG.
1182 */
1183 if (!reseed || ret != -EAGAIN)
1184 goto out;
1185 }
1186
1187 drbg_string_fill(&data1, entropy, entropylen * 2);
1188 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1189 entropylen * 2);
1190 }
1191 }
1192 list_add_tail(&data1.list, &seedlist);
1193
1194 /*
1195 * concatenation of entropy with personalization str / addtl input)
1196 * the variable pers is directly handed in by the caller, so check its
1197 * contents whether it is appropriate
1198 */
1199 if (pers && pers->buf && 0 < pers->len) {
1200 list_add_tail(&pers->list, &seedlist);
1201 pr_devel("DRBG: using personalization string\n");
1202 }
1203
1204 if (!reseed) {
1205 memset(drbg->V, 0, drbg_statelen(drbg));
1206 memset(drbg->C, 0, drbg_statelen(drbg));
1207 }
1208
1209 ret = __drbg_seed(drbg, &seedlist, reseed);
1210
1211out:
1212 memzero_explicit(entropy, entropylen * 2);
1213
1214 return ret;
1215}
1216
1217/* Free all substructures in a DRBG state without the DRBG state structure */
1218static inline void drbg_dealloc_state(struct drbg_state *drbg)
1219{
1220 if (!drbg)
1221 return;
1222 kfree_sensitive(drbg->Vbuf);
1223 drbg->Vbuf = NULL;
1224 drbg->V = NULL;
1225 kfree_sensitive(drbg->Cbuf);
1226 drbg->Cbuf = NULL;
1227 drbg->C = NULL;
1228 kfree_sensitive(drbg->scratchpadbuf);
1229 drbg->scratchpadbuf = NULL;
1230 drbg->reseed_ctr = 0;
1231 drbg->d_ops = NULL;
1232 drbg->core = NULL;
1233 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1234 kfree_sensitive(drbg->prev);
1235 drbg->prev = NULL;
1236 drbg->fips_primed = false;
1237 }
1238}
1239
1240/*
1241 * Allocate all sub-structures for a DRBG state.
1242 * The DRBG state structure must already be allocated.
1243 */
1244static inline int drbg_alloc_state(struct drbg_state *drbg)
1245{
1246 int ret = -ENOMEM;
1247 unsigned int sb_size = 0;
1248
1249 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1250#ifdef CONFIG_CRYPTO_DRBG_HMAC
1251 case DRBG_HMAC:
1252 drbg->d_ops = &drbg_hmac_ops;
1253 break;
1254#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1255#ifdef CONFIG_CRYPTO_DRBG_HASH
1256 case DRBG_HASH:
1257 drbg->d_ops = &drbg_hash_ops;
1258 break;
1259#endif /* CONFIG_CRYPTO_DRBG_HASH */
1260#ifdef CONFIG_CRYPTO_DRBG_CTR
1261 case DRBG_CTR:
1262 drbg->d_ops = &drbg_ctr_ops;
1263 break;
1264#endif /* CONFIG_CRYPTO_DRBG_CTR */
1265 default:
1266 ret = -EOPNOTSUPP;
1267 goto err;
1268 }
1269
1270 ret = drbg->d_ops->crypto_init(drbg);
1271 if (ret < 0)
1272 goto err;
1273
1274 drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1275 if (!drbg->Vbuf) {
1276 ret = -ENOMEM;
1277 goto fini;
1278 }
1279 drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1280 drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1281 if (!drbg->Cbuf) {
1282 ret = -ENOMEM;
1283 goto fini;
1284 }
1285 drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1286 /* scratchpad is only generated for CTR and Hash */
1287 if (drbg->core->flags & DRBG_HMAC)
1288 sb_size = 0;
1289 else if (drbg->core->flags & DRBG_CTR)
1290 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1291 drbg_statelen(drbg) + /* df_data */
1292 drbg_blocklen(drbg) + /* pad */
1293 drbg_blocklen(drbg) + /* iv */
1294 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1295 else
1296 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1297
1298 if (0 < sb_size) {
1299 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1300 if (!drbg->scratchpadbuf) {
1301 ret = -ENOMEM;
1302 goto fini;
1303 }
1304 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1305 }
1306
1307 if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1308 drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1309 GFP_KERNEL);
1310 if (!drbg->prev) {
1311 ret = -ENOMEM;
1312 goto fini;
1313 }
1314 drbg->fips_primed = false;
1315 }
1316
1317 return 0;
1318
1319fini:
1320 drbg->d_ops->crypto_fini(drbg);
1321err:
1322 drbg_dealloc_state(drbg);
1323 return ret;
1324}
1325
1326/*************************************************************************
1327 * DRBG interface functions
1328 *************************************************************************/
1329
1330/*
1331 * DRBG generate function as required by SP800-90A - this function
1332 * generates random numbers
1333 *
1334 * @drbg DRBG state handle
1335 * @buf Buffer where to store the random numbers -- the buffer must already
1336 * be pre-allocated by caller
1337 * @buflen Length of output buffer - this value defines the number of random
1338 * bytes pulled from DRBG
1339 * @addtl Additional input that is mixed into state, may be NULL -- note
1340 * the entropy is pulled by the DRBG internally unconditionally
1341 * as defined in SP800-90A. The additional input is mixed into
1342 * the state in addition to the pulled entropy.
1343 *
1344 * return: 0 when all bytes are generated; < 0 in case of an error
1345 */
1346static int drbg_generate(struct drbg_state *drbg,
1347 unsigned char *buf, unsigned int buflen,
1348 struct drbg_string *addtl)
1349{
1350 int len = 0;
1351 LIST_HEAD(addtllist);
1352
1353 if (!drbg->core) {
1354 pr_devel("DRBG: not yet seeded\n");
1355 return -EINVAL;
1356 }
1357 if (0 == buflen || !buf) {
1358 pr_devel("DRBG: no output buffer provided\n");
1359 return -EINVAL;
1360 }
1361 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1362 pr_devel("DRBG: wrong format of additional information\n");
1363 return -EINVAL;
1364 }
1365
1366 /* 9.3.1 step 2 */
1367 len = -EINVAL;
1368 if (buflen > (drbg_max_request_bytes(drbg))) {
1369 pr_devel("DRBG: requested random numbers too large %u\n",
1370 buflen);
1371 goto err;
1372 }
1373
1374 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1375
1376 /* 9.3.1 step 4 */
1377 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1378 pr_devel("DRBG: additional information string too long %zu\n",
1379 addtl->len);
1380 goto err;
1381 }
1382 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1383
1384 /*
1385 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1386 * here. The spec is a bit convoluted here, we make it simpler.
1387 */
1388 if (drbg->reseed_threshold < drbg->reseed_ctr)
1389 drbg->seeded = false;
1390
1391 if (drbg->pr || !drbg->seeded) {
1392 pr_devel("DRBG: reseeding before generation (prediction "
1393 "resistance: %s, state %s)\n",
1394 drbg->pr ? "true" : "false",
1395 drbg->seeded ? "seeded" : "unseeded");
1396 /* 9.3.1 steps 7.1 through 7.3 */
1397 len = drbg_seed(drbg, addtl, true);
1398 if (len)
1399 goto err;
1400 /* 9.3.1 step 7.4 */
1401 addtl = NULL;
1402 }
1403
1404 if (addtl && 0 < addtl->len)
1405 list_add_tail(&addtl->list, &addtllist);
1406 /* 9.3.1 step 8 and 10 */
1407 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1408
1409 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1410 drbg->reseed_ctr++;
1411 if (0 >= len)
1412 goto err;
1413
1414 /*
1415 * Section 11.3.3 requires to re-perform self tests after some
1416 * generated random numbers. The chosen value after which self
1417 * test is performed is arbitrary, but it should be reasonable.
1418 * However, we do not perform the self tests because of the following
1419 * reasons: it is mathematically impossible that the initial self tests
1420 * were successfully and the following are not. If the initial would
1421 * pass and the following would not, the kernel integrity is violated.
1422 * In this case, the entire kernel operation is questionable and it
1423 * is unlikely that the integrity violation only affects the
1424 * correct operation of the DRBG.
1425 *
1426 * Albeit the following code is commented out, it is provided in
1427 * case somebody has a need to implement the test of 11.3.3.
1428 */
1429#if 0
1430 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1431 int err = 0;
1432 pr_devel("DRBG: start to perform self test\n");
1433 if (drbg->core->flags & DRBG_HMAC)
1434 err = alg_test("drbg_pr_hmac_sha256",
1435 "drbg_pr_hmac_sha256", 0, 0);
1436 else if (drbg->core->flags & DRBG_CTR)
1437 err = alg_test("drbg_pr_ctr_aes128",
1438 "drbg_pr_ctr_aes128", 0, 0);
1439 else
1440 err = alg_test("drbg_pr_sha256",
1441 "drbg_pr_sha256", 0, 0);
1442 if (err) {
1443 pr_err("DRBG: periodical self test failed\n");
1444 /*
1445 * uninstantiate implies that from now on, only errors
1446 * are returned when reusing this DRBG cipher handle
1447 */
1448 drbg_uninstantiate(drbg);
1449 return 0;
1450 } else {
1451 pr_devel("DRBG: self test successful\n");
1452 }
1453 }
1454#endif
1455
1456 /*
1457 * All operations were successful, return 0 as mandated by
1458 * the kernel crypto API interface.
1459 */
1460 len = 0;
1461err:
1462 return len;
1463}
1464
1465/*
1466 * Wrapper around drbg_generate which can pull arbitrary long strings
1467 * from the DRBG without hitting the maximum request limitation.
1468 *
1469 * Parameters: see drbg_generate
1470 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1471 * the entire drbg_generate_long request fails
1472 */
1473static int drbg_generate_long(struct drbg_state *drbg,
1474 unsigned char *buf, unsigned int buflen,
1475 struct drbg_string *addtl)
1476{
1477 unsigned int len = 0;
1478 unsigned int slice = 0;
1479 do {
1480 int err = 0;
1481 unsigned int chunk = 0;
1482 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1483 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1484 mutex_lock(&drbg->drbg_mutex);
1485 err = drbg_generate(drbg, buf + len, chunk, addtl);
1486 mutex_unlock(&drbg->drbg_mutex);
1487 if (0 > err)
1488 return err;
1489 len += chunk;
1490 } while (slice > 0 && (len < buflen));
1491 return 0;
1492}
1493
1494static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1495{
1496 struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1497 random_ready);
1498
1499 schedule_work(&drbg->seed_work);
1500}
1501
1502static int drbg_prepare_hrng(struct drbg_state *drbg)
1503{
1504 int err;
1505
1506 /* We do not need an HRNG in test mode. */
1507 if (list_empty(&drbg->test_data.list))
1508 return 0;
1509
1510 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1511
1512 INIT_WORK(&drbg->seed_work, drbg_async_seed);
1513
1514 drbg->random_ready.owner = THIS_MODULE;
1515 drbg->random_ready.func = drbg_schedule_async_seed;
1516
1517 err = add_random_ready_callback(&drbg->random_ready);
1518
1519 switch (err) {
1520 case 0:
1521 break;
1522
1523 case -EALREADY:
1524 err = 0;
1525 fallthrough;
1526
1527 default:
1528 drbg->random_ready.func = NULL;
1529 return err;
1530 }
1531
1532 /*
1533 * Require frequent reseeds until the seed source is fully
1534 * initialized.
1535 */
1536 drbg->reseed_threshold = 50;
1537
1538 return err;
1539}
1540
1541/*
1542 * DRBG instantiation function as required by SP800-90A - this function
1543 * sets up the DRBG handle, performs the initial seeding and all sanity
1544 * checks required by SP800-90A
1545 *
1546 * @drbg memory of state -- if NULL, new memory is allocated
1547 * @pers Personalization string that is mixed into state, may be NULL -- note
1548 * the entropy is pulled by the DRBG internally unconditionally
1549 * as defined in SP800-90A. The additional input is mixed into
1550 * the state in addition to the pulled entropy.
1551 * @coreref reference to core
1552 * @pr prediction resistance enabled
1553 *
1554 * return
1555 * 0 on success
1556 * error value otherwise
1557 */
1558static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1559 int coreref, bool pr)
1560{
1561 int ret;
1562 bool reseed = true;
1563
1564 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1565 "%s\n", coreref, pr ? "enabled" : "disabled");
1566 mutex_lock(&drbg->drbg_mutex);
1567
1568 /* 9.1 step 1 is implicit with the selected DRBG type */
1569
1570 /*
1571 * 9.1 step 2 is implicit as caller can select prediction resistance
1572 * and the flag is copied into drbg->flags --
1573 * all DRBG types support prediction resistance
1574 */
1575
1576 /* 9.1 step 4 is implicit in drbg_sec_strength */
1577
1578 if (!drbg->core) {
1579 drbg->core = &drbg_cores[coreref];
1580 drbg->pr = pr;
1581 drbg->seeded = false;
1582 drbg->reseed_threshold = drbg_max_requests(drbg);
1583
1584 ret = drbg_alloc_state(drbg);
1585 if (ret)
1586 goto unlock;
1587
1588 ret = drbg_prepare_hrng(drbg);
1589 if (ret)
1590 goto free_everything;
1591
1592 if (IS_ERR(drbg->jent)) {
1593 ret = PTR_ERR(drbg->jent);
1594 drbg->jent = NULL;
1595 if (fips_enabled || ret != -ENOENT)
1596 goto free_everything;
1597 pr_info("DRBG: Continuing without Jitter RNG\n");
1598 }
1599
1600 reseed = false;
1601 }
1602
1603 ret = drbg_seed(drbg, pers, reseed);
1604
1605 if (ret && !reseed)
1606 goto free_everything;
1607
1608 mutex_unlock(&drbg->drbg_mutex);
1609 return ret;
1610
1611unlock:
1612 mutex_unlock(&drbg->drbg_mutex);
1613 return ret;
1614
1615free_everything:
1616 mutex_unlock(&drbg->drbg_mutex);
1617 drbg_uninstantiate(drbg);
1618 return ret;
1619}
1620
1621/*
1622 * DRBG uninstantiate function as required by SP800-90A - this function
1623 * frees all buffers and the DRBG handle
1624 *
1625 * @drbg DRBG state handle
1626 *
1627 * return
1628 * 0 on success
1629 */
1630static int drbg_uninstantiate(struct drbg_state *drbg)
1631{
1632 if (drbg->random_ready.func) {
1633 del_random_ready_callback(&drbg->random_ready);
1634 cancel_work_sync(&drbg->seed_work);
1635 }
1636
1637 if (!IS_ERR_OR_NULL(drbg->jent))
1638 crypto_free_rng(drbg->jent);
1639 drbg->jent = NULL;
1640
1641 if (drbg->d_ops)
1642 drbg->d_ops->crypto_fini(drbg);
1643 drbg_dealloc_state(drbg);
1644 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1645 return 0;
1646}
1647
1648/*
1649 * Helper function for setting the test data in the DRBG
1650 *
1651 * @drbg DRBG state handle
1652 * @data test data
1653 * @len test data length
1654 */
1655static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1656 const u8 *data, unsigned int len)
1657{
1658 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1659
1660 mutex_lock(&drbg->drbg_mutex);
1661 drbg_string_fill(&drbg->test_data, data, len);
1662 mutex_unlock(&drbg->drbg_mutex);
1663}
1664
1665/***************************************************************
1666 * Kernel crypto API cipher invocations requested by DRBG
1667 ***************************************************************/
1668
1669#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1670struct sdesc {
1671 struct shash_desc shash;
1672 char ctx[];
1673};
1674
1675static int drbg_init_hash_kernel(struct drbg_state *drbg)
1676{
1677 struct sdesc *sdesc;
1678 struct crypto_shash *tfm;
1679
1680 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1681 if (IS_ERR(tfm)) {
1682 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1683 drbg->core->backend_cra_name);
1684 return PTR_ERR(tfm);
1685 }
1686 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1687 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1688 GFP_KERNEL);
1689 if (!sdesc) {
1690 crypto_free_shash(tfm);
1691 return -ENOMEM;
1692 }
1693
1694 sdesc->shash.tfm = tfm;
1695 drbg->priv_data = sdesc;
1696
1697 return crypto_shash_alignmask(tfm);
1698}
1699
1700static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1701{
1702 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1703 if (sdesc) {
1704 crypto_free_shash(sdesc->shash.tfm);
1705 kfree_sensitive(sdesc);
1706 }
1707 drbg->priv_data = NULL;
1708 return 0;
1709}
1710
1711static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1712 const unsigned char *key)
1713{
1714 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1715
1716 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1717}
1718
1719static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1720 const struct list_head *in)
1721{
1722 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1723 struct drbg_string *input = NULL;
1724
1725 crypto_shash_init(&sdesc->shash);
1726 list_for_each_entry(input, in, list)
1727 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1728 return crypto_shash_final(&sdesc->shash, outval);
1729}
1730#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1731
1732#ifdef CONFIG_CRYPTO_DRBG_CTR
1733static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1734{
1735 struct crypto_cipher *tfm =
1736 (struct crypto_cipher *)drbg->priv_data;
1737 if (tfm)
1738 crypto_free_cipher(tfm);
1739 drbg->priv_data = NULL;
1740
1741 if (drbg->ctr_handle)
1742 crypto_free_skcipher(drbg->ctr_handle);
1743 drbg->ctr_handle = NULL;
1744
1745 if (drbg->ctr_req)
1746 skcipher_request_free(drbg->ctr_req);
1747 drbg->ctr_req = NULL;
1748
1749 kfree(drbg->outscratchpadbuf);
1750 drbg->outscratchpadbuf = NULL;
1751
1752 return 0;
1753}
1754
1755static int drbg_init_sym_kernel(struct drbg_state *drbg)
1756{
1757 struct crypto_cipher *tfm;
1758 struct crypto_skcipher *sk_tfm;
1759 struct skcipher_request *req;
1760 unsigned int alignmask;
1761 char ctr_name[CRYPTO_MAX_ALG_NAME];
1762
1763 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1764 if (IS_ERR(tfm)) {
1765 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1766 drbg->core->backend_cra_name);
1767 return PTR_ERR(tfm);
1768 }
1769 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1770 drbg->priv_data = tfm;
1771
1772 if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1773 drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1774 drbg_fini_sym_kernel(drbg);
1775 return -EINVAL;
1776 }
1777 sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1778 if (IS_ERR(sk_tfm)) {
1779 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1780 ctr_name);
1781 drbg_fini_sym_kernel(drbg);
1782 return PTR_ERR(sk_tfm);
1783 }
1784 drbg->ctr_handle = sk_tfm;
1785 crypto_init_wait(&drbg->ctr_wait);
1786
1787 req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1788 if (!req) {
1789 pr_info("DRBG: could not allocate request queue\n");
1790 drbg_fini_sym_kernel(drbg);
1791 return -ENOMEM;
1792 }
1793 drbg->ctr_req = req;
1794 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1795 CRYPTO_TFM_REQ_MAY_SLEEP,
1796 crypto_req_done, &drbg->ctr_wait);
1797
1798 alignmask = crypto_skcipher_alignmask(sk_tfm);
1799 drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1800 GFP_KERNEL);
1801 if (!drbg->outscratchpadbuf) {
1802 drbg_fini_sym_kernel(drbg);
1803 return -ENOMEM;
1804 }
1805 drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1806 alignmask + 1);
1807
1808 sg_init_table(&drbg->sg_in, 1);
1809 sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1810
1811 return alignmask;
1812}
1813
1814static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1815 const unsigned char *key)
1816{
1817 struct crypto_cipher *tfm =
1818 (struct crypto_cipher *)drbg->priv_data;
1819
1820 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1821}
1822
1823static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1824 const struct drbg_string *in)
1825{
1826 struct crypto_cipher *tfm =
1827 (struct crypto_cipher *)drbg->priv_data;
1828
1829 /* there is only component in *in */
1830 BUG_ON(in->len < drbg_blocklen(drbg));
1831 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1832 return 0;
1833}
1834
1835static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1836 u8 *inbuf, u32 inlen,
1837 u8 *outbuf, u32 outlen)
1838{
1839 struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1840 u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1841 int ret;
1842
1843 if (inbuf) {
1844 /* Use caller-provided input buffer */
1845 sg_set_buf(sg_in, inbuf, inlen);
1846 } else {
1847 /* Use scratchpad for in-place operation */
1848 inlen = scratchpad_use;
1849 memset(drbg->outscratchpad, 0, scratchpad_use);
1850 sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1851 }
1852
1853 while (outlen) {
1854 u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1855
1856 /* Output buffer may not be valid for SGL, use scratchpad */
1857 skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1858 cryptlen, drbg->V);
1859 ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1860 &drbg->ctr_wait);
1861 if (ret)
1862 goto out;
1863
1864 crypto_init_wait(&drbg->ctr_wait);
1865
1866 memcpy(outbuf, drbg->outscratchpad, cryptlen);
1867 memzero_explicit(drbg->outscratchpad, cryptlen);
1868
1869 outlen -= cryptlen;
1870 outbuf += cryptlen;
1871 }
1872 ret = 0;
1873
1874out:
1875 return ret;
1876}
1877#endif /* CONFIG_CRYPTO_DRBG_CTR */
1878
1879/***************************************************************
1880 * Kernel crypto API interface to register DRBG
1881 ***************************************************************/
1882
1883/*
1884 * Look up the DRBG flags by given kernel crypto API cra_name
1885 * The code uses the drbg_cores definition to do this
1886 *
1887 * @cra_name kernel crypto API cra_name
1888 * @coreref reference to integer which is filled with the pointer to
1889 * the applicable core
1890 * @pr reference for setting prediction resistance
1891 *
1892 * return: flags
1893 */
1894static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1895 int *coreref, bool *pr)
1896{
1897 int i = 0;
1898 size_t start = 0;
1899 int len = 0;
1900
1901 *pr = true;
1902 /* disassemble the names */
1903 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1904 start = 10;
1905 *pr = false;
1906 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1907 start = 8;
1908 } else {
1909 return;
1910 }
1911
1912 /* remove the first part */
1913 len = strlen(cra_driver_name) - start;
1914 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1915 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1916 len)) {
1917 *coreref = i;
1918 return;
1919 }
1920 }
1921}
1922
1923static int drbg_kcapi_init(struct crypto_tfm *tfm)
1924{
1925 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1926
1927 mutex_init(&drbg->drbg_mutex);
1928
1929 return 0;
1930}
1931
1932static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1933{
1934 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1935}
1936
1937/*
1938 * Generate random numbers invoked by the kernel crypto API:
1939 * The API of the kernel crypto API is extended as follows:
1940 *
1941 * src is additional input supplied to the RNG.
1942 * slen is the length of src.
1943 * dst is the output buffer where random data is to be stored.
1944 * dlen is the length of dst.
1945 */
1946static int drbg_kcapi_random(struct crypto_rng *tfm,
1947 const u8 *src, unsigned int slen,
1948 u8 *dst, unsigned int dlen)
1949{
1950 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1951 struct drbg_string *addtl = NULL;
1952 struct drbg_string string;
1953
1954 if (slen) {
1955 /* linked list variable is now local to allow modification */
1956 drbg_string_fill(&string, src, slen);
1957 addtl = &string;
1958 }
1959
1960 return drbg_generate_long(drbg, dst, dlen, addtl);
1961}
1962
1963/*
1964 * Seed the DRBG invoked by the kernel crypto API
1965 */
1966static int drbg_kcapi_seed(struct crypto_rng *tfm,
1967 const u8 *seed, unsigned int slen)
1968{
1969 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1970 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1971 bool pr = false;
1972 struct drbg_string string;
1973 struct drbg_string *seed_string = NULL;
1974 int coreref = 0;
1975
1976 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1977 &pr);
1978 if (0 < slen) {
1979 drbg_string_fill(&string, seed, slen);
1980 seed_string = &string;
1981 }
1982
1983 return drbg_instantiate(drbg, seed_string, coreref, pr);
1984}
1985
1986/***************************************************************
1987 * Kernel module: code to load the module
1988 ***************************************************************/
1989
1990/*
1991 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1992 * of the error handling.
1993 *
1994 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1995 * as seed source of get_random_bytes does not fail.
1996 *
1997 * Note 2: There is no sensible way of testing the reseed counter
1998 * enforcement, so skip it.
1999 */
2000static inline int __init drbg_healthcheck_sanity(void)
2001{
2002 int len = 0;
2003#define OUTBUFLEN 16
2004 unsigned char buf[OUTBUFLEN];
2005 struct drbg_state *drbg = NULL;
2006 int ret = -EFAULT;
2007 int rc = -EFAULT;
2008 bool pr = false;
2009 int coreref = 0;
2010 struct drbg_string addtl;
2011 size_t max_addtllen, max_request_bytes;
2012
2013 /* only perform test in FIPS mode */
2014 if (!fips_enabled)
2015 return 0;
2016
2017#ifdef CONFIG_CRYPTO_DRBG_CTR
2018 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2019#elif defined CONFIG_CRYPTO_DRBG_HASH
2020 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2021#else
2022 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2023#endif
2024
2025 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2026 if (!drbg)
2027 return -ENOMEM;
2028
2029 mutex_init(&drbg->drbg_mutex);
2030 drbg->core = &drbg_cores[coreref];
2031 drbg->reseed_threshold = drbg_max_requests(drbg);
2032
2033 /*
2034 * if the following tests fail, it is likely that there is a buffer
2035 * overflow as buf is much smaller than the requested or provided
2036 * string lengths -- in case the error handling does not succeed
2037 * we may get an OOPS. And we want to get an OOPS as this is a
2038 * grave bug.
2039 */
2040
2041 max_addtllen = drbg_max_addtl(drbg);
2042 max_request_bytes = drbg_max_request_bytes(drbg);
2043 drbg_string_fill(&addtl, buf, max_addtllen + 1);
2044 /* overflow addtllen with additonal info string */
2045 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2046 BUG_ON(0 < len);
2047 /* overflow max_bits */
2048 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2049 BUG_ON(0 < len);
2050
2051 /* overflow max addtllen with personalization string */
2052 ret = drbg_seed(drbg, &addtl, false);
2053 BUG_ON(0 == ret);
2054 /* all tests passed */
2055 rc = 0;
2056
2057 pr_devel("DRBG: Sanity tests for failure code paths successfully "
2058 "completed\n");
2059
2060 kfree(drbg);
2061 return rc;
2062}
2063
2064static struct rng_alg drbg_algs[22];
2065
2066/*
2067 * Fill the array drbg_algs used to register the different DRBGs
2068 * with the kernel crypto API. To fill the array, the information
2069 * from drbg_cores[] is used.
2070 */
2071static inline void __init drbg_fill_array(struct rng_alg *alg,
2072 const struct drbg_core *core, int pr)
2073{
2074 int pos = 0;
2075 static int priority = 200;
2076
2077 memcpy(alg->base.cra_name, "stdrng", 6);
2078 if (pr) {
2079 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2080 pos = 8;
2081 } else {
2082 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2083 pos = 10;
2084 }
2085 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2086 strlen(core->cra_name));
2087
2088 alg->base.cra_priority = priority;
2089 priority++;
2090 /*
2091 * If FIPS mode enabled, the selected DRBG shall have the
2092 * highest cra_priority over other stdrng instances to ensure
2093 * it is selected.
2094 */
2095 if (fips_enabled)
2096 alg->base.cra_priority += 200;
2097
2098 alg->base.cra_ctxsize = sizeof(struct drbg_state);
2099 alg->base.cra_module = THIS_MODULE;
2100 alg->base.cra_init = drbg_kcapi_init;
2101 alg->base.cra_exit = drbg_kcapi_cleanup;
2102 alg->generate = drbg_kcapi_random;
2103 alg->seed = drbg_kcapi_seed;
2104 alg->set_ent = drbg_kcapi_set_entropy;
2105 alg->seedsize = 0;
2106}
2107
2108static int __init drbg_init(void)
2109{
2110 unsigned int i = 0; /* pointer to drbg_algs */
2111 unsigned int j = 0; /* pointer to drbg_cores */
2112 int ret;
2113
2114 ret = drbg_healthcheck_sanity();
2115 if (ret)
2116 return ret;
2117
2118 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2119 pr_info("DRBG: Cannot register all DRBG types"
2120 "(slots needed: %zu, slots available: %zu)\n",
2121 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2122 return -EFAULT;
2123 }
2124
2125 /*
2126 * each DRBG definition can be used with PR and without PR, thus
2127 * we instantiate each DRBG in drbg_cores[] twice.
2128 *
2129 * As the order of placing them into the drbg_algs array matters
2130 * (the later DRBGs receive a higher cra_priority) we register the
2131 * prediction resistance DRBGs first as the should not be too
2132 * interesting.
2133 */
2134 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2135 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2136 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2137 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2138 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2139}
2140
2141static void __exit drbg_exit(void)
2142{
2143 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2144}
2145
2146subsys_initcall(drbg_init);
2147module_exit(drbg_exit);
2148#ifndef CRYPTO_DRBG_HASH_STRING
2149#define CRYPTO_DRBG_HASH_STRING ""
2150#endif
2151#ifndef CRYPTO_DRBG_HMAC_STRING
2152#define CRYPTO_DRBG_HMAC_STRING ""
2153#endif
2154#ifndef CRYPTO_DRBG_CTR_STRING
2155#define CRYPTO_DRBG_CTR_STRING ""
2156#endif
2157MODULE_LICENSE("GPL");
2158MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2159MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2160 "using following cores: "
2161 CRYPTO_DRBG_HASH_STRING
2162 CRYPTO_DRBG_HMAC_STRING
2163 CRYPTO_DRBG_CTR_STRING);
2164MODULE_ALIAS_CRYPTO("stdrng");
2165MODULE_IMPORT_NS(CRYPTO_INTERNAL);