Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/kmsan.h>
19#include <linux/spinlock.h>
20#include <linux/kprobes.h>
21#include <linux/uaccess.h>
22#include <linux/kdebug.h>
23#include <linux/kgdb.h>
24#include <linux/kernel.h>
25#include <linux/export.h>
26#include <linux/ptrace.h>
27#include <linux/uprobes.h>
28#include <linux/string.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/kexec.h>
32#include <linux/sched.h>
33#include <linux/sched/task_stack.h>
34#include <linux/timer.h>
35#include <linux/init.h>
36#include <linux/bug.h>
37#include <linux/nmi.h>
38#include <linux/mm.h>
39#include <linux/smp.h>
40#include <linux/cpu.h>
41#include <linux/io.h>
42#include <linux/hardirq.h>
43#include <linux/atomic.h>
44#include <linux/iommu.h>
45#include <linux/ubsan.h>
46
47#include <asm/stacktrace.h>
48#include <asm/processor.h>
49#include <asm/debugreg.h>
50#include <asm/realmode.h>
51#include <asm/text-patching.h>
52#include <asm/ftrace.h>
53#include <asm/traps.h>
54#include <asm/desc.h>
55#include <asm/fred.h>
56#include <asm/fpu/api.h>
57#include <asm/cpu.h>
58#include <asm/cpu_entry_area.h>
59#include <asm/mce.h>
60#include <asm/fixmap.h>
61#include <asm/mach_traps.h>
62#include <asm/alternative.h>
63#include <asm/fpu/xstate.h>
64#include <asm/vm86.h>
65#include <asm/umip.h>
66#include <asm/insn.h>
67#include <asm/insn-eval.h>
68#include <asm/vdso.h>
69#include <asm/tdx.h>
70#include <asm/cfi.h>
71
72#ifdef CONFIG_X86_64
73#include <asm/x86_init.h>
74#else
75#include <asm/processor-flags.h>
76#include <asm/setup.h>
77#endif
78
79#include <asm/proto.h>
80
81DECLARE_BITMAP(system_vectors, NR_VECTORS);
82
83__always_inline int is_valid_bugaddr(unsigned long addr)
84{
85 if (addr < TASK_SIZE_MAX)
86 return 0;
87
88 /*
89 * We got #UD, if the text isn't readable we'd have gotten
90 * a different exception.
91 */
92 return *(unsigned short *)addr == INSN_UD2;
93}
94
95/*
96 * Check for UD1 or UD2, accounting for Address Size Override Prefixes.
97 * If it's a UD1, get the ModRM byte to pass along to UBSan.
98 */
99__always_inline int decode_bug(unsigned long addr, u32 *imm)
100{
101 u8 v;
102
103 if (addr < TASK_SIZE_MAX)
104 return BUG_NONE;
105
106 v = *(u8 *)(addr++);
107 if (v == INSN_ASOP)
108 v = *(u8 *)(addr++);
109 if (v != OPCODE_ESCAPE)
110 return BUG_NONE;
111
112 v = *(u8 *)(addr++);
113 if (v == SECOND_BYTE_OPCODE_UD2)
114 return BUG_UD2;
115
116 if (!IS_ENABLED(CONFIG_UBSAN_TRAP) || v != SECOND_BYTE_OPCODE_UD1)
117 return BUG_NONE;
118
119 /* Retrieve the immediate (type value) for the UBSAN UD1 */
120 v = *(u8 *)(addr++);
121 if (X86_MODRM_RM(v) == 4)
122 addr++;
123
124 *imm = 0;
125 if (X86_MODRM_MOD(v) == 1)
126 *imm = *(u8 *)addr;
127 else if (X86_MODRM_MOD(v) == 2)
128 *imm = *(u32 *)addr;
129 else
130 WARN_ONCE(1, "Unexpected MODRM_MOD: %u\n", X86_MODRM_MOD(v));
131
132 return BUG_UD1;
133}
134
135
136static nokprobe_inline int
137do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
138 struct pt_regs *regs, long error_code)
139{
140 if (v8086_mode(regs)) {
141 /*
142 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
143 * On nmi (interrupt 2), do_trap should not be called.
144 */
145 if (trapnr < X86_TRAP_UD) {
146 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
147 error_code, trapnr))
148 return 0;
149 }
150 } else if (!user_mode(regs)) {
151 if (fixup_exception(regs, trapnr, error_code, 0))
152 return 0;
153
154 tsk->thread.error_code = error_code;
155 tsk->thread.trap_nr = trapnr;
156 die(str, regs, error_code);
157 } else {
158 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
159 return 0;
160 }
161
162 /*
163 * We want error_code and trap_nr set for userspace faults and
164 * kernelspace faults which result in die(), but not
165 * kernelspace faults which are fixed up. die() gives the
166 * process no chance to handle the signal and notice the
167 * kernel fault information, so that won't result in polluting
168 * the information about previously queued, but not yet
169 * delivered, faults. See also exc_general_protection below.
170 */
171 tsk->thread.error_code = error_code;
172 tsk->thread.trap_nr = trapnr;
173
174 return -1;
175}
176
177static void show_signal(struct task_struct *tsk, int signr,
178 const char *type, const char *desc,
179 struct pt_regs *regs, long error_code)
180{
181 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
182 printk_ratelimit()) {
183 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
184 tsk->comm, task_pid_nr(tsk), type, desc,
185 regs->ip, regs->sp, error_code);
186 print_vma_addr(KERN_CONT " in ", regs->ip);
187 pr_cont("\n");
188 }
189}
190
191static void
192do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
193 long error_code, int sicode, void __user *addr)
194{
195 struct task_struct *tsk = current;
196
197 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
198 return;
199
200 show_signal(tsk, signr, "trap ", str, regs, error_code);
201
202 if (!sicode)
203 force_sig(signr);
204 else
205 force_sig_fault(signr, sicode, addr);
206}
207NOKPROBE_SYMBOL(do_trap);
208
209static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
210 unsigned long trapnr, int signr, int sicode, void __user *addr)
211{
212 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
213
214 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
215 NOTIFY_STOP) {
216 cond_local_irq_enable(regs);
217 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
218 cond_local_irq_disable(regs);
219 }
220}
221
222/*
223 * Posix requires to provide the address of the faulting instruction for
224 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
225 *
226 * This address is usually regs->ip, but when an uprobe moved the code out
227 * of line then regs->ip points to the XOL code which would confuse
228 * anything which analyzes the fault address vs. the unmodified binary. If
229 * a trap happened in XOL code then uprobe maps regs->ip back to the
230 * original instruction address.
231 */
232static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
233{
234 return (void __user *)uprobe_get_trap_addr(regs);
235}
236
237DEFINE_IDTENTRY(exc_divide_error)
238{
239 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
240 FPE_INTDIV, error_get_trap_addr(regs));
241}
242
243DEFINE_IDTENTRY(exc_overflow)
244{
245 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
246}
247
248#ifdef CONFIG_X86_F00F_BUG
249void handle_invalid_op(struct pt_regs *regs)
250#else
251static inline void handle_invalid_op(struct pt_regs *regs)
252#endif
253{
254 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
255 ILL_ILLOPN, error_get_trap_addr(regs));
256}
257
258static noinstr bool handle_bug(struct pt_regs *regs)
259{
260 bool handled = false;
261 int ud_type;
262 u32 imm;
263
264 ud_type = decode_bug(regs->ip, &imm);
265 if (ud_type == BUG_NONE)
266 return handled;
267
268 /*
269 * All lies, just get the WARN/BUG out.
270 */
271 instrumentation_begin();
272 /*
273 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
274 * is a rare case that uses @regs without passing them to
275 * irqentry_enter().
276 */
277 kmsan_unpoison_entry_regs(regs);
278 /*
279 * Since we're emulating a CALL with exceptions, restore the interrupt
280 * state to what it was at the exception site.
281 */
282 if (regs->flags & X86_EFLAGS_IF)
283 raw_local_irq_enable();
284 if (ud_type == BUG_UD2) {
285 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
286 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
287 regs->ip += LEN_UD2;
288 handled = true;
289 }
290 } else if (IS_ENABLED(CONFIG_UBSAN_TRAP)) {
291 pr_crit("%s at %pS\n", report_ubsan_failure(regs, imm), (void *)regs->ip);
292 }
293 if (regs->flags & X86_EFLAGS_IF)
294 raw_local_irq_disable();
295 instrumentation_end();
296
297 return handled;
298}
299
300DEFINE_IDTENTRY_RAW(exc_invalid_op)
301{
302 irqentry_state_t state;
303
304 /*
305 * We use UD2 as a short encoding for 'CALL __WARN', as such
306 * handle it before exception entry to avoid recursive WARN
307 * in case exception entry is the one triggering WARNs.
308 */
309 if (!user_mode(regs) && handle_bug(regs))
310 return;
311
312 state = irqentry_enter(regs);
313 instrumentation_begin();
314 handle_invalid_op(regs);
315 instrumentation_end();
316 irqentry_exit(regs, state);
317}
318
319DEFINE_IDTENTRY(exc_coproc_segment_overrun)
320{
321 do_error_trap(regs, 0, "coprocessor segment overrun",
322 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
323}
324
325DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
326{
327 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
328 0, NULL);
329}
330
331DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
332{
333 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
334 SIGBUS, 0, NULL);
335}
336
337DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
338{
339 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
340 0, NULL);
341}
342
343DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
344{
345 char *str = "alignment check";
346
347 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
348 return;
349
350 if (!user_mode(regs))
351 die("Split lock detected\n", regs, error_code);
352
353 local_irq_enable();
354
355 if (handle_user_split_lock(regs, error_code))
356 goto out;
357
358 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
359 error_code, BUS_ADRALN, NULL);
360
361out:
362 local_irq_disable();
363}
364
365#ifdef CONFIG_VMAP_STACK
366__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
367 unsigned long fault_address,
368 struct stack_info *info)
369{
370 const char *name = stack_type_name(info->type);
371
372 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
373 name, (void *)fault_address, info->begin, info->end);
374
375 die("stack guard page", regs, 0);
376
377 /* Be absolutely certain we don't return. */
378 panic("%s stack guard hit", name);
379}
380#endif
381
382/*
383 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
384 *
385 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
386 * SDM's warnings about double faults being unrecoverable, returning works as
387 * expected. Presumably what the SDM actually means is that the CPU may get
388 * the register state wrong on entry, so returning could be a bad idea.
389 *
390 * Various CPU engineers have promised that double faults due to an IRET fault
391 * while the stack is read-only are, in fact, recoverable.
392 *
393 * On x86_32, this is entered through a task gate, and regs are synthesized
394 * from the TSS. Returning is, in principle, okay, but changes to regs will
395 * be lost. If, for some reason, we need to return to a context with modified
396 * regs, the shim code could be adjusted to synchronize the registers.
397 *
398 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
399 * to be read before doing anything else.
400 */
401DEFINE_IDTENTRY_DF(exc_double_fault)
402{
403 static const char str[] = "double fault";
404 struct task_struct *tsk = current;
405
406#ifdef CONFIG_VMAP_STACK
407 unsigned long address = read_cr2();
408 struct stack_info info;
409#endif
410
411#ifdef CONFIG_X86_ESPFIX64
412 extern unsigned char native_irq_return_iret[];
413
414 /*
415 * If IRET takes a non-IST fault on the espfix64 stack, then we
416 * end up promoting it to a doublefault. In that case, take
417 * advantage of the fact that we're not using the normal (TSS.sp0)
418 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
419 * and then modify our own IRET frame so that, when we return,
420 * we land directly at the #GP(0) vector with the stack already
421 * set up according to its expectations.
422 *
423 * The net result is that our #GP handler will think that we
424 * entered from usermode with the bad user context.
425 *
426 * No need for nmi_enter() here because we don't use RCU.
427 */
428 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
429 regs->cs == __KERNEL_CS &&
430 regs->ip == (unsigned long)native_irq_return_iret)
431 {
432 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
433 unsigned long *p = (unsigned long *)regs->sp;
434
435 /*
436 * regs->sp points to the failing IRET frame on the
437 * ESPFIX64 stack. Copy it to the entry stack. This fills
438 * in gpregs->ss through gpregs->ip.
439 *
440 */
441 gpregs->ip = p[0];
442 gpregs->cs = p[1];
443 gpregs->flags = p[2];
444 gpregs->sp = p[3];
445 gpregs->ss = p[4];
446 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
447
448 /*
449 * Adjust our frame so that we return straight to the #GP
450 * vector with the expected RSP value. This is safe because
451 * we won't enable interrupts or schedule before we invoke
452 * general_protection, so nothing will clobber the stack
453 * frame we just set up.
454 *
455 * We will enter general_protection with kernel GSBASE,
456 * which is what the stub expects, given that the faulting
457 * RIP will be the IRET instruction.
458 */
459 regs->ip = (unsigned long)asm_exc_general_protection;
460 regs->sp = (unsigned long)&gpregs->orig_ax;
461
462 return;
463 }
464#endif
465
466 irqentry_nmi_enter(regs);
467 instrumentation_begin();
468 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
469
470 tsk->thread.error_code = error_code;
471 tsk->thread.trap_nr = X86_TRAP_DF;
472
473#ifdef CONFIG_VMAP_STACK
474 /*
475 * If we overflow the stack into a guard page, the CPU will fail
476 * to deliver #PF and will send #DF instead. Similarly, if we
477 * take any non-IST exception while too close to the bottom of
478 * the stack, the processor will get a page fault while
479 * delivering the exception and will generate a double fault.
480 *
481 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
482 * Page-Fault Exception (#PF):
483 *
484 * Processors update CR2 whenever a page fault is detected. If a
485 * second page fault occurs while an earlier page fault is being
486 * delivered, the faulting linear address of the second fault will
487 * overwrite the contents of CR2 (replacing the previous
488 * address). These updates to CR2 occur even if the page fault
489 * results in a double fault or occurs during the delivery of a
490 * double fault.
491 *
492 * The logic below has a small possibility of incorrectly diagnosing
493 * some errors as stack overflows. For example, if the IDT or GDT
494 * gets corrupted such that #GP delivery fails due to a bad descriptor
495 * causing #GP and we hit this condition while CR2 coincidentally
496 * points to the stack guard page, we'll think we overflowed the
497 * stack. Given that we're going to panic one way or another
498 * if this happens, this isn't necessarily worth fixing.
499 *
500 * If necessary, we could improve the test by only diagnosing
501 * a stack overflow if the saved RSP points within 47 bytes of
502 * the bottom of the stack: if RSP == tsk_stack + 48 and we
503 * take an exception, the stack is already aligned and there
504 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
505 * possible error code, so a stack overflow would *not* double
506 * fault. With any less space left, exception delivery could
507 * fail, and, as a practical matter, we've overflowed the
508 * stack even if the actual trigger for the double fault was
509 * something else.
510 */
511 if (get_stack_guard_info((void *)address, &info))
512 handle_stack_overflow(regs, address, &info);
513#endif
514
515 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
516 die("double fault", regs, error_code);
517 panic("Machine halted.");
518 instrumentation_end();
519}
520
521DEFINE_IDTENTRY(exc_bounds)
522{
523 if (notify_die(DIE_TRAP, "bounds", regs, 0,
524 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
525 return;
526 cond_local_irq_enable(regs);
527
528 if (!user_mode(regs))
529 die("bounds", regs, 0);
530
531 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
532
533 cond_local_irq_disable(regs);
534}
535
536enum kernel_gp_hint {
537 GP_NO_HINT,
538 GP_NON_CANONICAL,
539 GP_CANONICAL
540};
541
542/*
543 * When an uncaught #GP occurs, try to determine the memory address accessed by
544 * the instruction and return that address to the caller. Also, try to figure
545 * out whether any part of the access to that address was non-canonical.
546 */
547static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
548 unsigned long *addr)
549{
550 u8 insn_buf[MAX_INSN_SIZE];
551 struct insn insn;
552 int ret;
553
554 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
555 MAX_INSN_SIZE))
556 return GP_NO_HINT;
557
558 ret = insn_decode_kernel(&insn, insn_buf);
559 if (ret < 0)
560 return GP_NO_HINT;
561
562 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
563 if (*addr == -1UL)
564 return GP_NO_HINT;
565
566#ifdef CONFIG_X86_64
567 /*
568 * Check that:
569 * - the operand is not in the kernel half
570 * - the last byte of the operand is not in the user canonical half
571 */
572 if (*addr < ~__VIRTUAL_MASK &&
573 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
574 return GP_NON_CANONICAL;
575#endif
576
577 return GP_CANONICAL;
578}
579
580#define GPFSTR "general protection fault"
581
582static bool fixup_iopl_exception(struct pt_regs *regs)
583{
584 struct thread_struct *t = ¤t->thread;
585 unsigned char byte;
586 unsigned long ip;
587
588 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
589 return false;
590
591 if (insn_get_effective_ip(regs, &ip))
592 return false;
593
594 if (get_user(byte, (const char __user *)ip))
595 return false;
596
597 if (byte != 0xfa && byte != 0xfb)
598 return false;
599
600 if (!t->iopl_warn && printk_ratelimit()) {
601 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
602 current->comm, task_pid_nr(current), ip);
603 print_vma_addr(KERN_CONT " in ", ip);
604 pr_cont("\n");
605 t->iopl_warn = 1;
606 }
607
608 regs->ip += 1;
609 return true;
610}
611
612/*
613 * The unprivileged ENQCMD instruction generates #GPs if the
614 * IA32_PASID MSR has not been populated. If possible, populate
615 * the MSR from a PASID previously allocated to the mm.
616 */
617static bool try_fixup_enqcmd_gp(void)
618{
619#ifdef CONFIG_ARCH_HAS_CPU_PASID
620 u32 pasid;
621
622 /*
623 * MSR_IA32_PASID is managed using XSAVE. Directly
624 * writing to the MSR is only possible when fpregs
625 * are valid and the fpstate is not. This is
626 * guaranteed when handling a userspace exception
627 * in *before* interrupts are re-enabled.
628 */
629 lockdep_assert_irqs_disabled();
630
631 /*
632 * Hardware without ENQCMD will not generate
633 * #GPs that can be fixed up here.
634 */
635 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
636 return false;
637
638 /*
639 * If the mm has not been allocated a
640 * PASID, the #GP can not be fixed up.
641 */
642 if (!mm_valid_pasid(current->mm))
643 return false;
644
645 pasid = mm_get_enqcmd_pasid(current->mm);
646
647 /*
648 * Did this thread already have its PASID activated?
649 * If so, the #GP must be from something else.
650 */
651 if (current->pasid_activated)
652 return false;
653
654 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
655 current->pasid_activated = 1;
656
657 return true;
658#else
659 return false;
660#endif
661}
662
663static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
664 unsigned long error_code, const char *str,
665 unsigned long address)
666{
667 if (fixup_exception(regs, trapnr, error_code, address))
668 return true;
669
670 current->thread.error_code = error_code;
671 current->thread.trap_nr = trapnr;
672
673 /*
674 * To be potentially processing a kprobe fault and to trust the result
675 * from kprobe_running(), we have to be non-preemptible.
676 */
677 if (!preemptible() && kprobe_running() &&
678 kprobe_fault_handler(regs, trapnr))
679 return true;
680
681 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
682}
683
684static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
685 unsigned long error_code, const char *str)
686{
687 current->thread.error_code = error_code;
688 current->thread.trap_nr = trapnr;
689 show_signal(current, SIGSEGV, "", str, regs, error_code);
690 force_sig(SIGSEGV);
691}
692
693DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
694{
695 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
696 enum kernel_gp_hint hint = GP_NO_HINT;
697 unsigned long gp_addr;
698
699 if (user_mode(regs) && try_fixup_enqcmd_gp())
700 return;
701
702 cond_local_irq_enable(regs);
703
704 if (static_cpu_has(X86_FEATURE_UMIP)) {
705 if (user_mode(regs) && fixup_umip_exception(regs))
706 goto exit;
707 }
708
709 if (v8086_mode(regs)) {
710 local_irq_enable();
711 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
712 local_irq_disable();
713 return;
714 }
715
716 if (user_mode(regs)) {
717 if (fixup_iopl_exception(regs))
718 goto exit;
719
720 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
721 goto exit;
722
723 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
724 goto exit;
725 }
726
727 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc, 0))
728 goto exit;
729
730 if (error_code)
731 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
732 else
733 hint = get_kernel_gp_address(regs, &gp_addr);
734
735 if (hint != GP_NO_HINT)
736 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
737 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
738 : "maybe for address",
739 gp_addr);
740
741 /*
742 * KASAN is interested only in the non-canonical case, clear it
743 * otherwise.
744 */
745 if (hint != GP_NON_CANONICAL)
746 gp_addr = 0;
747
748 die_addr(desc, regs, error_code, gp_addr);
749
750exit:
751 cond_local_irq_disable(regs);
752}
753
754static bool do_int3(struct pt_regs *regs)
755{
756 int res;
757
758#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
759 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
760 SIGTRAP) == NOTIFY_STOP)
761 return true;
762#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763
764#ifdef CONFIG_KPROBES
765 if (kprobe_int3_handler(regs))
766 return true;
767#endif
768 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
769
770 return res == NOTIFY_STOP;
771}
772NOKPROBE_SYMBOL(do_int3);
773
774static void do_int3_user(struct pt_regs *regs)
775{
776 if (do_int3(regs))
777 return;
778
779 cond_local_irq_enable(regs);
780 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
781 cond_local_irq_disable(regs);
782}
783
784DEFINE_IDTENTRY_RAW(exc_int3)
785{
786 /*
787 * poke_int3_handler() is completely self contained code; it does (and
788 * must) *NOT* call out to anything, lest it hits upon yet another
789 * INT3.
790 */
791 if (poke_int3_handler(regs))
792 return;
793
794 /*
795 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
796 * and therefore can trigger INT3, hence poke_int3_handler() must
797 * be done before. If the entry came from kernel mode, then use
798 * nmi_enter() because the INT3 could have been hit in any context
799 * including NMI.
800 */
801 if (user_mode(regs)) {
802 irqentry_enter_from_user_mode(regs);
803 instrumentation_begin();
804 do_int3_user(regs);
805 instrumentation_end();
806 irqentry_exit_to_user_mode(regs);
807 } else {
808 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
809
810 instrumentation_begin();
811 if (!do_int3(regs))
812 die("int3", regs, 0);
813 instrumentation_end();
814 irqentry_nmi_exit(regs, irq_state);
815 }
816}
817
818#ifdef CONFIG_X86_64
819/*
820 * Help handler running on a per-cpu (IST or entry trampoline) stack
821 * to switch to the normal thread stack if the interrupted code was in
822 * user mode. The actual stack switch is done in entry_64.S
823 */
824asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
825{
826 struct pt_regs *regs = (struct pt_regs *)current_top_of_stack() - 1;
827 if (regs != eregs)
828 *regs = *eregs;
829 return regs;
830}
831
832#ifdef CONFIG_AMD_MEM_ENCRYPT
833asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
834{
835 unsigned long sp, *stack;
836 struct stack_info info;
837 struct pt_regs *regs_ret;
838
839 /*
840 * In the SYSCALL entry path the RSP value comes from user-space - don't
841 * trust it and switch to the current kernel stack
842 */
843 if (ip_within_syscall_gap(regs)) {
844 sp = current_top_of_stack();
845 goto sync;
846 }
847
848 /*
849 * From here on the RSP value is trusted. Now check whether entry
850 * happened from a safe stack. Not safe are the entry or unknown stacks,
851 * use the fall-back stack instead in this case.
852 */
853 sp = regs->sp;
854 stack = (unsigned long *)sp;
855
856 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
857 info.type > STACK_TYPE_EXCEPTION_LAST)
858 sp = __this_cpu_ist_top_va(VC2);
859
860sync:
861 /*
862 * Found a safe stack - switch to it as if the entry didn't happen via
863 * IST stack. The code below only copies pt_regs, the real switch happens
864 * in assembly code.
865 */
866 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
867
868 regs_ret = (struct pt_regs *)sp;
869 *regs_ret = *regs;
870
871 return regs_ret;
872}
873#endif
874
875asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
876{
877 struct pt_regs tmp, *new_stack;
878
879 /*
880 * This is called from entry_64.S early in handling a fault
881 * caused by a bad iret to user mode. To handle the fault
882 * correctly, we want to move our stack frame to where it would
883 * be had we entered directly on the entry stack (rather than
884 * just below the IRET frame) and we want to pretend that the
885 * exception came from the IRET target.
886 */
887 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
888
889 /* Copy the IRET target to the temporary storage. */
890 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
891
892 /* Copy the remainder of the stack from the current stack. */
893 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
894
895 /* Update the entry stack */
896 __memcpy(new_stack, &tmp, sizeof(tmp));
897
898 BUG_ON(!user_mode(new_stack));
899 return new_stack;
900}
901#endif
902
903static bool is_sysenter_singlestep(struct pt_regs *regs)
904{
905 /*
906 * We don't try for precision here. If we're anywhere in the region of
907 * code that can be single-stepped in the SYSENTER entry path, then
908 * assume that this is a useless single-step trap due to SYSENTER
909 * being invoked with TF set. (We don't know in advance exactly
910 * which instructions will be hit because BTF could plausibly
911 * be set.)
912 */
913#ifdef CONFIG_X86_32
914 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
915 (unsigned long)__end_SYSENTER_singlestep_region -
916 (unsigned long)__begin_SYSENTER_singlestep_region;
917#elif defined(CONFIG_IA32_EMULATION)
918 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
919 (unsigned long)__end_entry_SYSENTER_compat -
920 (unsigned long)entry_SYSENTER_compat;
921#else
922 return false;
923#endif
924}
925
926static __always_inline unsigned long debug_read_clear_dr6(void)
927{
928 unsigned long dr6;
929
930 /*
931 * The Intel SDM says:
932 *
933 * Certain debug exceptions may clear bits 0-3. The remaining
934 * contents of the DR6 register are never cleared by the
935 * processor. To avoid confusion in identifying debug
936 * exceptions, debug handlers should clear the register before
937 * returning to the interrupted task.
938 *
939 * Keep it simple: clear DR6 immediately.
940 */
941 get_debugreg(dr6, 6);
942 set_debugreg(DR6_RESERVED, 6);
943 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
944
945 return dr6;
946}
947
948/*
949 * Our handling of the processor debug registers is non-trivial.
950 * We do not clear them on entry and exit from the kernel. Therefore
951 * it is possible to get a watchpoint trap here from inside the kernel.
952 * However, the code in ./ptrace.c has ensured that the user can
953 * only set watchpoints on userspace addresses. Therefore the in-kernel
954 * watchpoint trap can only occur in code which is reading/writing
955 * from user space. Such code must not hold kernel locks (since it
956 * can equally take a page fault), therefore it is safe to call
957 * force_sig_info even though that claims and releases locks.
958 *
959 * Code in ./signal.c ensures that the debug control register
960 * is restored before we deliver any signal, and therefore that
961 * user code runs with the correct debug control register even though
962 * we clear it here.
963 *
964 * Being careful here means that we don't have to be as careful in a
965 * lot of more complicated places (task switching can be a bit lazy
966 * about restoring all the debug state, and ptrace doesn't have to
967 * find every occurrence of the TF bit that could be saved away even
968 * by user code)
969 *
970 * May run on IST stack.
971 */
972
973static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
974{
975 /*
976 * Notifiers will clear bits in @dr6 to indicate the event has been
977 * consumed - hw_breakpoint_handler(), single_stop_cont().
978 *
979 * Notifiers will set bits in @virtual_dr6 to indicate the desire
980 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
981 */
982 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
983 return true;
984
985 return false;
986}
987
988static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6)
989{
990 /*
991 * Disable breakpoints during exception handling; recursive exceptions
992 * are exceedingly 'fun'.
993 *
994 * Since this function is NOKPROBE, and that also applies to
995 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
996 * HW_BREAKPOINT_W on our stack)
997 *
998 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
999 * includes the entry stack is excluded for everything.
1000 *
1001 * For FRED, nested #DB should just work fine. But when a watchpoint or
1002 * breakpoint is set in the code path which is executed by #DB handler,
1003 * it results in an endless recursion and stack overflow. Thus we stay
1004 * with the IDT approach, i.e., save DR7 and disable #DB.
1005 */
1006 unsigned long dr7 = local_db_save();
1007 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1008 instrumentation_begin();
1009
1010 /*
1011 * If something gets miswired and we end up here for a user mode
1012 * #DB, we will malfunction.
1013 */
1014 WARN_ON_ONCE(user_mode(regs));
1015
1016 if (test_thread_flag(TIF_BLOCKSTEP)) {
1017 /*
1018 * The SDM says "The processor clears the BTF flag when it
1019 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1020 * it for userspace, but we just took a kernel #DB, so re-set
1021 * BTF.
1022 */
1023 unsigned long debugctl;
1024
1025 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1026 debugctl |= DEBUGCTLMSR_BTF;
1027 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1028 }
1029
1030 /*
1031 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1032 * watchpoint at the same time then that will still be handled.
1033 */
1034 if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
1035 (dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1036 dr6 &= ~DR_STEP;
1037
1038 /*
1039 * The kernel doesn't use INT1
1040 */
1041 if (!dr6)
1042 goto out;
1043
1044 if (notify_debug(regs, &dr6))
1045 goto out;
1046
1047 /*
1048 * The kernel doesn't use TF single-step outside of:
1049 *
1050 * - Kprobes, consumed through kprobe_debug_handler()
1051 * - KGDB, consumed through notify_debug()
1052 *
1053 * So if we get here with DR_STEP set, something is wonky.
1054 *
1055 * A known way to trigger this is through QEMU's GDB stub,
1056 * which leaks #DB into the guest and causes IST recursion.
1057 */
1058 if (WARN_ON_ONCE(dr6 & DR_STEP))
1059 regs->flags &= ~X86_EFLAGS_TF;
1060out:
1061 instrumentation_end();
1062 irqentry_nmi_exit(regs, irq_state);
1063
1064 local_db_restore(dr7);
1065}
1066
1067static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6)
1068{
1069 bool icebp;
1070
1071 /*
1072 * If something gets miswired and we end up here for a kernel mode
1073 * #DB, we will malfunction.
1074 */
1075 WARN_ON_ONCE(!user_mode(regs));
1076
1077 /*
1078 * NB: We can't easily clear DR7 here because
1079 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1080 * user memory, etc. This means that a recursive #DB is possible. If
1081 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1082 * Since we're not on the IST stack right now, everything will be
1083 * fine.
1084 */
1085
1086 irqentry_enter_from_user_mode(regs);
1087 instrumentation_begin();
1088
1089 /*
1090 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1091 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1092 *
1093 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1094 * even if it is not the result of PTRACE_SINGLESTEP.
1095 */
1096 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1097
1098 /*
1099 * The SDM says "The processor clears the BTF flag when it
1100 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1101 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1102 */
1103 clear_thread_flag(TIF_BLOCKSTEP);
1104
1105 /*
1106 * If dr6 has no reason to give us about the origin of this trap,
1107 * then it's very likely the result of an icebp/int01 trap.
1108 * User wants a sigtrap for that.
1109 */
1110 icebp = !dr6;
1111
1112 if (notify_debug(regs, &dr6))
1113 goto out;
1114
1115 /* It's safe to allow irq's after DR6 has been saved */
1116 local_irq_enable();
1117
1118 if (v8086_mode(regs)) {
1119 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1120 goto out_irq;
1121 }
1122
1123 /* #DB for bus lock can only be triggered from userspace. */
1124 if (dr6 & DR_BUS_LOCK)
1125 handle_bus_lock(regs);
1126
1127 /* Add the virtual_dr6 bits for signals. */
1128 dr6 |= current->thread.virtual_dr6;
1129 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1130 send_sigtrap(regs, 0, get_si_code(dr6));
1131
1132out_irq:
1133 local_irq_disable();
1134out:
1135 instrumentation_end();
1136 irqentry_exit_to_user_mode(regs);
1137}
1138
1139#ifdef CONFIG_X86_64
1140/* IST stack entry */
1141DEFINE_IDTENTRY_DEBUG(exc_debug)
1142{
1143 exc_debug_kernel(regs, debug_read_clear_dr6());
1144}
1145
1146/* User entry, runs on regular task stack */
1147DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1148{
1149 exc_debug_user(regs, debug_read_clear_dr6());
1150}
1151
1152#ifdef CONFIG_X86_FRED
1153/*
1154 * When occurred on different ring level, i.e., from user or kernel
1155 * context, #DB needs to be handled on different stack: User #DB on
1156 * current task stack, while kernel #DB on a dedicated stack.
1157 *
1158 * This is exactly how FRED event delivery invokes an exception
1159 * handler: ring 3 event on level 0 stack, i.e., current task stack;
1160 * ring 0 event on the #DB dedicated stack specified in the
1161 * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception
1162 * entry stub doesn't do stack switch.
1163 */
1164DEFINE_FREDENTRY_DEBUG(exc_debug)
1165{
1166 /*
1167 * FRED #DB stores DR6 on the stack in the format which
1168 * debug_read_clear_dr6() returns for the IDT entry points.
1169 */
1170 unsigned long dr6 = fred_event_data(regs);
1171
1172 if (user_mode(regs))
1173 exc_debug_user(regs, dr6);
1174 else
1175 exc_debug_kernel(regs, dr6);
1176}
1177#endif /* CONFIG_X86_FRED */
1178
1179#else
1180/* 32 bit does not have separate entry points. */
1181DEFINE_IDTENTRY_RAW(exc_debug)
1182{
1183 unsigned long dr6 = debug_read_clear_dr6();
1184
1185 if (user_mode(regs))
1186 exc_debug_user(regs, dr6);
1187 else
1188 exc_debug_kernel(regs, dr6);
1189}
1190#endif
1191
1192/*
1193 * Note that we play around with the 'TS' bit in an attempt to get
1194 * the correct behaviour even in the presence of the asynchronous
1195 * IRQ13 behaviour
1196 */
1197static void math_error(struct pt_regs *regs, int trapnr)
1198{
1199 struct task_struct *task = current;
1200 struct fpu *fpu = &task->thread.fpu;
1201 int si_code;
1202 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1203 "simd exception";
1204
1205 cond_local_irq_enable(regs);
1206
1207 if (!user_mode(regs)) {
1208 if (fixup_exception(regs, trapnr, 0, 0))
1209 goto exit;
1210
1211 task->thread.error_code = 0;
1212 task->thread.trap_nr = trapnr;
1213
1214 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1215 SIGFPE) != NOTIFY_STOP)
1216 die(str, regs, 0);
1217 goto exit;
1218 }
1219
1220 /*
1221 * Synchronize the FPU register state to the memory register state
1222 * if necessary. This allows the exception handler to inspect it.
1223 */
1224 fpu_sync_fpstate(fpu);
1225
1226 task->thread.trap_nr = trapnr;
1227 task->thread.error_code = 0;
1228
1229 si_code = fpu__exception_code(fpu, trapnr);
1230 /* Retry when we get spurious exceptions: */
1231 if (!si_code)
1232 goto exit;
1233
1234 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1235 goto exit;
1236
1237 force_sig_fault(SIGFPE, si_code,
1238 (void __user *)uprobe_get_trap_addr(regs));
1239exit:
1240 cond_local_irq_disable(regs);
1241}
1242
1243DEFINE_IDTENTRY(exc_coprocessor_error)
1244{
1245 math_error(regs, X86_TRAP_MF);
1246}
1247
1248DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1249{
1250 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1251 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1252 if (!static_cpu_has(X86_FEATURE_XMM)) {
1253 __exc_general_protection(regs, 0);
1254 return;
1255 }
1256 }
1257 math_error(regs, X86_TRAP_XF);
1258}
1259
1260DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1261{
1262 /*
1263 * This addresses a Pentium Pro Erratum:
1264 *
1265 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1266 * Virtual Wire mode implemented through the local APIC, an
1267 * interrupt vector of 0Fh (Intel reserved encoding) may be
1268 * generated by the local APIC (Int 15). This vector may be
1269 * generated upon receipt of a spurious interrupt (an interrupt
1270 * which is removed before the system receives the INTA sequence)
1271 * instead of the programmed 8259 spurious interrupt vector.
1272 *
1273 * IMPLICATION: The spurious interrupt vector programmed in the
1274 * 8259 is normally handled by an operating system's spurious
1275 * interrupt handler. However, a vector of 0Fh is unknown to some
1276 * operating systems, which would crash if this erratum occurred.
1277 *
1278 * In theory this could be limited to 32bit, but the handler is not
1279 * hurting and who knows which other CPUs suffer from this.
1280 */
1281}
1282
1283static bool handle_xfd_event(struct pt_regs *regs)
1284{
1285 u64 xfd_err;
1286 int err;
1287
1288 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1289 return false;
1290
1291 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1292 if (!xfd_err)
1293 return false;
1294
1295 wrmsrl(MSR_IA32_XFD_ERR, 0);
1296
1297 /* Die if that happens in kernel space */
1298 if (WARN_ON(!user_mode(regs)))
1299 return false;
1300
1301 local_irq_enable();
1302
1303 err = xfd_enable_feature(xfd_err);
1304
1305 switch (err) {
1306 case -EPERM:
1307 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1308 break;
1309 case -EFAULT:
1310 force_sig(SIGSEGV);
1311 break;
1312 }
1313
1314 local_irq_disable();
1315 return true;
1316}
1317
1318DEFINE_IDTENTRY(exc_device_not_available)
1319{
1320 unsigned long cr0 = read_cr0();
1321
1322 if (handle_xfd_event(regs))
1323 return;
1324
1325#ifdef CONFIG_MATH_EMULATION
1326 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1327 struct math_emu_info info = { };
1328
1329 cond_local_irq_enable(regs);
1330
1331 info.regs = regs;
1332 math_emulate(&info);
1333
1334 cond_local_irq_disable(regs);
1335 return;
1336 }
1337#endif
1338
1339 /* This should not happen. */
1340 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1341 /* Try to fix it up and carry on. */
1342 write_cr0(cr0 & ~X86_CR0_TS);
1343 } else {
1344 /*
1345 * Something terrible happened, and we're better off trying
1346 * to kill the task than getting stuck in a never-ending
1347 * loop of #NM faults.
1348 */
1349 die("unexpected #NM exception", regs, 0);
1350 }
1351}
1352
1353#ifdef CONFIG_INTEL_TDX_GUEST
1354
1355#define VE_FAULT_STR "VE fault"
1356
1357static void ve_raise_fault(struct pt_regs *regs, long error_code,
1358 unsigned long address)
1359{
1360 if (user_mode(regs)) {
1361 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1362 return;
1363 }
1364
1365 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code,
1366 VE_FAULT_STR, address)) {
1367 return;
1368 }
1369
1370 die_addr(VE_FAULT_STR, regs, error_code, address);
1371}
1372
1373/*
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1376 * kernel:
1377 *
1378 * * Specific instructions (WBINVD, for example)
1379 * * Specific MSR accesses
1380 * * Specific CPUID leaf accesses
1381 * * Access to specific guest physical addresses
1382 *
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1386 *
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392 *
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1399 *
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1402 *
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405 * the VE info.
1406 *
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1410 *
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1415 */
1416DEFINE_IDTENTRY(exc_virtualization_exception)
1417{
1418 struct ve_info ve;
1419
1420 /*
1421 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 * info cannot be overwritten by a nested #VE.
1424 */
1425 tdx_get_ve_info(&ve);
1426
1427 cond_local_irq_enable(regs);
1428
1429 /*
1430 * If tdx_handle_virt_exception() could not process
1431 * it successfully, treat it as #GP(0) and handle it.
1432 */
1433 if (!tdx_handle_virt_exception(regs, &ve))
1434 ve_raise_fault(regs, 0, ve.gla);
1435
1436 cond_local_irq_disable(regs);
1437}
1438
1439#endif
1440
1441#ifdef CONFIG_X86_32
1442DEFINE_IDTENTRY_SW(iret_error)
1443{
1444 local_irq_enable();
1445 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448 ILL_BADSTK, (void __user *)NULL);
1449 }
1450 local_irq_disable();
1451}
1452#endif
1453
1454void __init trap_init(void)
1455{
1456 /* Init cpu_entry_area before IST entries are set up */
1457 setup_cpu_entry_areas();
1458
1459 /* Init GHCB memory pages when running as an SEV-ES guest */
1460 sev_es_init_vc_handling();
1461
1462 /* Initialize TSS before setting up traps so ISTs work */
1463 cpu_init_exception_handling(true);
1464
1465 /* Setup traps as cpu_init() might #GP */
1466 if (!cpu_feature_enabled(X86_FEATURE_FRED))
1467 idt_setup_traps();
1468
1469 cpu_init();
1470}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/export.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/sched/task_stack.h>
33#include <linux/timer.h>
34#include <linux/init.h>
35#include <linux/bug.h>
36#include <linux/nmi.h>
37#include <linux/mm.h>
38#include <linux/smp.h>
39#include <linux/io.h>
40#include <linux/hardirq.h>
41#include <linux/atomic.h>
42
43#include <asm/stacktrace.h>
44#include <asm/processor.h>
45#include <asm/debugreg.h>
46#include <asm/realmode.h>
47#include <asm/text-patching.h>
48#include <asm/ftrace.h>
49#include <asm/traps.h>
50#include <asm/desc.h>
51#include <asm/fpu/internal.h>
52#include <asm/cpu.h>
53#include <asm/cpu_entry_area.h>
54#include <asm/mce.h>
55#include <asm/fixmap.h>
56#include <asm/mach_traps.h>
57#include <asm/alternative.h>
58#include <asm/fpu/xstate.h>
59#include <asm/vm86.h>
60#include <asm/umip.h>
61#include <asm/insn.h>
62#include <asm/insn-eval.h>
63#include <asm/vdso.h>
64
65#ifdef CONFIG_X86_64
66#include <asm/x86_init.h>
67#include <asm/proto.h>
68#else
69#include <asm/processor-flags.h>
70#include <asm/setup.h>
71#include <asm/proto.h>
72#endif
73
74DECLARE_BITMAP(system_vectors, NR_VECTORS);
75
76static inline void cond_local_irq_enable(struct pt_regs *regs)
77{
78 if (regs->flags & X86_EFLAGS_IF)
79 local_irq_enable();
80}
81
82static inline void cond_local_irq_disable(struct pt_regs *regs)
83{
84 if (regs->flags & X86_EFLAGS_IF)
85 local_irq_disable();
86}
87
88__always_inline int is_valid_bugaddr(unsigned long addr)
89{
90 if (addr < TASK_SIZE_MAX)
91 return 0;
92
93 /*
94 * We got #UD, if the text isn't readable we'd have gotten
95 * a different exception.
96 */
97 return *(unsigned short *)addr == INSN_UD2;
98}
99
100static nokprobe_inline int
101do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
102 struct pt_regs *regs, long error_code)
103{
104 if (v8086_mode(regs)) {
105 /*
106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
107 * On nmi (interrupt 2), do_trap should not be called.
108 */
109 if (trapnr < X86_TRAP_UD) {
110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 error_code, trapnr))
112 return 0;
113 }
114 } else if (!user_mode(regs)) {
115 if (fixup_exception(regs, trapnr, error_code, 0))
116 return 0;
117
118 tsk->thread.error_code = error_code;
119 tsk->thread.trap_nr = trapnr;
120 die(str, regs, error_code);
121 } else {
122 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
123 return 0;
124 }
125
126 /*
127 * We want error_code and trap_nr set for userspace faults and
128 * kernelspace faults which result in die(), but not
129 * kernelspace faults which are fixed up. die() gives the
130 * process no chance to handle the signal and notice the
131 * kernel fault information, so that won't result in polluting
132 * the information about previously queued, but not yet
133 * delivered, faults. See also exc_general_protection below.
134 */
135 tsk->thread.error_code = error_code;
136 tsk->thread.trap_nr = trapnr;
137
138 return -1;
139}
140
141static void show_signal(struct task_struct *tsk, int signr,
142 const char *type, const char *desc,
143 struct pt_regs *regs, long error_code)
144{
145 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
146 printk_ratelimit()) {
147 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
148 tsk->comm, task_pid_nr(tsk), type, desc,
149 regs->ip, regs->sp, error_code);
150 print_vma_addr(KERN_CONT " in ", regs->ip);
151 pr_cont("\n");
152 }
153}
154
155static void
156do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
157 long error_code, int sicode, void __user *addr)
158{
159 struct task_struct *tsk = current;
160
161 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
162 return;
163
164 show_signal(tsk, signr, "trap ", str, regs, error_code);
165
166 if (!sicode)
167 force_sig(signr);
168 else
169 force_sig_fault(signr, sicode, addr);
170}
171NOKPROBE_SYMBOL(do_trap);
172
173static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
174 unsigned long trapnr, int signr, int sicode, void __user *addr)
175{
176 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
177
178 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
179 NOTIFY_STOP) {
180 cond_local_irq_enable(regs);
181 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
182 cond_local_irq_disable(regs);
183 }
184}
185
186/*
187 * Posix requires to provide the address of the faulting instruction for
188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
189 *
190 * This address is usually regs->ip, but when an uprobe moved the code out
191 * of line then regs->ip points to the XOL code which would confuse
192 * anything which analyzes the fault address vs. the unmodified binary. If
193 * a trap happened in XOL code then uprobe maps regs->ip back to the
194 * original instruction address.
195 */
196static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
197{
198 return (void __user *)uprobe_get_trap_addr(regs);
199}
200
201DEFINE_IDTENTRY(exc_divide_error)
202{
203 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
204 FPE_INTDIV, error_get_trap_addr(regs));
205}
206
207DEFINE_IDTENTRY(exc_overflow)
208{
209 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
210}
211
212#ifdef CONFIG_X86_F00F_BUG
213void handle_invalid_op(struct pt_regs *regs)
214#else
215static inline void handle_invalid_op(struct pt_regs *regs)
216#endif
217{
218 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
219 ILL_ILLOPN, error_get_trap_addr(regs));
220}
221
222static noinstr bool handle_bug(struct pt_regs *regs)
223{
224 bool handled = false;
225
226 if (!is_valid_bugaddr(regs->ip))
227 return handled;
228
229 /*
230 * All lies, just get the WARN/BUG out.
231 */
232 instrumentation_begin();
233 /*
234 * Since we're emulating a CALL with exceptions, restore the interrupt
235 * state to what it was at the exception site.
236 */
237 if (regs->flags & X86_EFLAGS_IF)
238 raw_local_irq_enable();
239 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
240 regs->ip += LEN_UD2;
241 handled = true;
242 }
243 if (regs->flags & X86_EFLAGS_IF)
244 raw_local_irq_disable();
245 instrumentation_end();
246
247 return handled;
248}
249
250DEFINE_IDTENTRY_RAW(exc_invalid_op)
251{
252 irqentry_state_t state;
253
254 /*
255 * We use UD2 as a short encoding for 'CALL __WARN', as such
256 * handle it before exception entry to avoid recursive WARN
257 * in case exception entry is the one triggering WARNs.
258 */
259 if (!user_mode(regs) && handle_bug(regs))
260 return;
261
262 state = irqentry_enter(regs);
263 instrumentation_begin();
264 handle_invalid_op(regs);
265 instrumentation_end();
266 irqentry_exit(regs, state);
267}
268
269DEFINE_IDTENTRY(exc_coproc_segment_overrun)
270{
271 do_error_trap(regs, 0, "coprocessor segment overrun",
272 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
273}
274
275DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
276{
277 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
278 0, NULL);
279}
280
281DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
282{
283 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
284 SIGBUS, 0, NULL);
285}
286
287DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
288{
289 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
290 0, NULL);
291}
292
293DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
294{
295 char *str = "alignment check";
296
297 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
298 return;
299
300 if (!user_mode(regs))
301 die("Split lock detected\n", regs, error_code);
302
303 local_irq_enable();
304
305 if (handle_user_split_lock(regs, error_code))
306 goto out;
307
308 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
309 error_code, BUS_ADRALN, NULL);
310
311out:
312 local_irq_disable();
313}
314
315#ifdef CONFIG_VMAP_STACK
316__visible void __noreturn handle_stack_overflow(const char *message,
317 struct pt_regs *regs,
318 unsigned long fault_address)
319{
320 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
321 (void *)fault_address, current->stack,
322 (char *)current->stack + THREAD_SIZE - 1);
323 die(message, regs, 0);
324
325 /* Be absolutely certain we don't return. */
326 panic("%s", message);
327}
328#endif
329
330/*
331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
332 *
333 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
334 * SDM's warnings about double faults being unrecoverable, returning works as
335 * expected. Presumably what the SDM actually means is that the CPU may get
336 * the register state wrong on entry, so returning could be a bad idea.
337 *
338 * Various CPU engineers have promised that double faults due to an IRET fault
339 * while the stack is read-only are, in fact, recoverable.
340 *
341 * On x86_32, this is entered through a task gate, and regs are synthesized
342 * from the TSS. Returning is, in principle, okay, but changes to regs will
343 * be lost. If, for some reason, we need to return to a context with modified
344 * regs, the shim code could be adjusted to synchronize the registers.
345 *
346 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
347 * to be read before doing anything else.
348 */
349DEFINE_IDTENTRY_DF(exc_double_fault)
350{
351 static const char str[] = "double fault";
352 struct task_struct *tsk = current;
353
354#ifdef CONFIG_VMAP_STACK
355 unsigned long address = read_cr2();
356#endif
357
358#ifdef CONFIG_X86_ESPFIX64
359 extern unsigned char native_irq_return_iret[];
360
361 /*
362 * If IRET takes a non-IST fault on the espfix64 stack, then we
363 * end up promoting it to a doublefault. In that case, take
364 * advantage of the fact that we're not using the normal (TSS.sp0)
365 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
366 * and then modify our own IRET frame so that, when we return,
367 * we land directly at the #GP(0) vector with the stack already
368 * set up according to its expectations.
369 *
370 * The net result is that our #GP handler will think that we
371 * entered from usermode with the bad user context.
372 *
373 * No need for nmi_enter() here because we don't use RCU.
374 */
375 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
376 regs->cs == __KERNEL_CS &&
377 regs->ip == (unsigned long)native_irq_return_iret)
378 {
379 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
380 unsigned long *p = (unsigned long *)regs->sp;
381
382 /*
383 * regs->sp points to the failing IRET frame on the
384 * ESPFIX64 stack. Copy it to the entry stack. This fills
385 * in gpregs->ss through gpregs->ip.
386 *
387 */
388 gpregs->ip = p[0];
389 gpregs->cs = p[1];
390 gpregs->flags = p[2];
391 gpregs->sp = p[3];
392 gpregs->ss = p[4];
393 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
394
395 /*
396 * Adjust our frame so that we return straight to the #GP
397 * vector with the expected RSP value. This is safe because
398 * we won't enable interrupts or schedule before we invoke
399 * general_protection, so nothing will clobber the stack
400 * frame we just set up.
401 *
402 * We will enter general_protection with kernel GSBASE,
403 * which is what the stub expects, given that the faulting
404 * RIP will be the IRET instruction.
405 */
406 regs->ip = (unsigned long)asm_exc_general_protection;
407 regs->sp = (unsigned long)&gpregs->orig_ax;
408
409 return;
410 }
411#endif
412
413 irqentry_nmi_enter(regs);
414 instrumentation_begin();
415 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
416
417 tsk->thread.error_code = error_code;
418 tsk->thread.trap_nr = X86_TRAP_DF;
419
420#ifdef CONFIG_VMAP_STACK
421 /*
422 * If we overflow the stack into a guard page, the CPU will fail
423 * to deliver #PF and will send #DF instead. Similarly, if we
424 * take any non-IST exception while too close to the bottom of
425 * the stack, the processor will get a page fault while
426 * delivering the exception and will generate a double fault.
427 *
428 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
429 * Page-Fault Exception (#PF):
430 *
431 * Processors update CR2 whenever a page fault is detected. If a
432 * second page fault occurs while an earlier page fault is being
433 * delivered, the faulting linear address of the second fault will
434 * overwrite the contents of CR2 (replacing the previous
435 * address). These updates to CR2 occur even if the page fault
436 * results in a double fault or occurs during the delivery of a
437 * double fault.
438 *
439 * The logic below has a small possibility of incorrectly diagnosing
440 * some errors as stack overflows. For example, if the IDT or GDT
441 * gets corrupted such that #GP delivery fails due to a bad descriptor
442 * causing #GP and we hit this condition while CR2 coincidentally
443 * points to the stack guard page, we'll think we overflowed the
444 * stack. Given that we're going to panic one way or another
445 * if this happens, this isn't necessarily worth fixing.
446 *
447 * If necessary, we could improve the test by only diagnosing
448 * a stack overflow if the saved RSP points within 47 bytes of
449 * the bottom of the stack: if RSP == tsk_stack + 48 and we
450 * take an exception, the stack is already aligned and there
451 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
452 * possible error code, so a stack overflow would *not* double
453 * fault. With any less space left, exception delivery could
454 * fail, and, as a practical matter, we've overflowed the
455 * stack even if the actual trigger for the double fault was
456 * something else.
457 */
458 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
459 handle_stack_overflow("kernel stack overflow (double-fault)",
460 regs, address);
461 }
462#endif
463
464 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
465 die("double fault", regs, error_code);
466 panic("Machine halted.");
467 instrumentation_end();
468}
469
470DEFINE_IDTENTRY(exc_bounds)
471{
472 if (notify_die(DIE_TRAP, "bounds", regs, 0,
473 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
474 return;
475 cond_local_irq_enable(regs);
476
477 if (!user_mode(regs))
478 die("bounds", regs, 0);
479
480 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
481
482 cond_local_irq_disable(regs);
483}
484
485enum kernel_gp_hint {
486 GP_NO_HINT,
487 GP_NON_CANONICAL,
488 GP_CANONICAL
489};
490
491/*
492 * When an uncaught #GP occurs, try to determine the memory address accessed by
493 * the instruction and return that address to the caller. Also, try to figure
494 * out whether any part of the access to that address was non-canonical.
495 */
496static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
497 unsigned long *addr)
498{
499 u8 insn_buf[MAX_INSN_SIZE];
500 struct insn insn;
501 int ret;
502
503 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
504 MAX_INSN_SIZE))
505 return GP_NO_HINT;
506
507 ret = insn_decode_kernel(&insn, insn_buf);
508 if (ret < 0)
509 return GP_NO_HINT;
510
511 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
512 if (*addr == -1UL)
513 return GP_NO_HINT;
514
515#ifdef CONFIG_X86_64
516 /*
517 * Check that:
518 * - the operand is not in the kernel half
519 * - the last byte of the operand is not in the user canonical half
520 */
521 if (*addr < ~__VIRTUAL_MASK &&
522 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
523 return GP_NON_CANONICAL;
524#endif
525
526 return GP_CANONICAL;
527}
528
529#define GPFSTR "general protection fault"
530
531DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
532{
533 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
534 enum kernel_gp_hint hint = GP_NO_HINT;
535 struct task_struct *tsk;
536 unsigned long gp_addr;
537 int ret;
538
539 cond_local_irq_enable(regs);
540
541 if (static_cpu_has(X86_FEATURE_UMIP)) {
542 if (user_mode(regs) && fixup_umip_exception(regs))
543 goto exit;
544 }
545
546 if (v8086_mode(regs)) {
547 local_irq_enable();
548 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
549 local_irq_disable();
550 return;
551 }
552
553 tsk = current;
554
555 if (user_mode(regs)) {
556 tsk->thread.error_code = error_code;
557 tsk->thread.trap_nr = X86_TRAP_GP;
558
559 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
560 goto exit;
561
562 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
563 force_sig(SIGSEGV);
564 goto exit;
565 }
566
567 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
568 goto exit;
569
570 tsk->thread.error_code = error_code;
571 tsk->thread.trap_nr = X86_TRAP_GP;
572
573 /*
574 * To be potentially processing a kprobe fault and to trust the result
575 * from kprobe_running(), we have to be non-preemptible.
576 */
577 if (!preemptible() &&
578 kprobe_running() &&
579 kprobe_fault_handler(regs, X86_TRAP_GP))
580 goto exit;
581
582 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
583 if (ret == NOTIFY_STOP)
584 goto exit;
585
586 if (error_code)
587 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
588 else
589 hint = get_kernel_gp_address(regs, &gp_addr);
590
591 if (hint != GP_NO_HINT)
592 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
593 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
594 : "maybe for address",
595 gp_addr);
596
597 /*
598 * KASAN is interested only in the non-canonical case, clear it
599 * otherwise.
600 */
601 if (hint != GP_NON_CANONICAL)
602 gp_addr = 0;
603
604 die_addr(desc, regs, error_code, gp_addr);
605
606exit:
607 cond_local_irq_disable(regs);
608}
609
610static bool do_int3(struct pt_regs *regs)
611{
612 int res;
613
614#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
615 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
616 SIGTRAP) == NOTIFY_STOP)
617 return true;
618#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
619
620#ifdef CONFIG_KPROBES
621 if (kprobe_int3_handler(regs))
622 return true;
623#endif
624 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
625
626 return res == NOTIFY_STOP;
627}
628
629static void do_int3_user(struct pt_regs *regs)
630{
631 if (do_int3(regs))
632 return;
633
634 cond_local_irq_enable(regs);
635 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
636 cond_local_irq_disable(regs);
637}
638
639DEFINE_IDTENTRY_RAW(exc_int3)
640{
641 /*
642 * poke_int3_handler() is completely self contained code; it does (and
643 * must) *NOT* call out to anything, lest it hits upon yet another
644 * INT3.
645 */
646 if (poke_int3_handler(regs))
647 return;
648
649 /*
650 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
651 * and therefore can trigger INT3, hence poke_int3_handler() must
652 * be done before. If the entry came from kernel mode, then use
653 * nmi_enter() because the INT3 could have been hit in any context
654 * including NMI.
655 */
656 if (user_mode(regs)) {
657 irqentry_enter_from_user_mode(regs);
658 instrumentation_begin();
659 do_int3_user(regs);
660 instrumentation_end();
661 irqentry_exit_to_user_mode(regs);
662 } else {
663 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
664
665 instrumentation_begin();
666 if (!do_int3(regs))
667 die("int3", regs, 0);
668 instrumentation_end();
669 irqentry_nmi_exit(regs, irq_state);
670 }
671}
672
673#ifdef CONFIG_X86_64
674/*
675 * Help handler running on a per-cpu (IST or entry trampoline) stack
676 * to switch to the normal thread stack if the interrupted code was in
677 * user mode. The actual stack switch is done in entry_64.S
678 */
679asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
680{
681 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
682 if (regs != eregs)
683 *regs = *eregs;
684 return regs;
685}
686
687#ifdef CONFIG_AMD_MEM_ENCRYPT
688asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
689{
690 unsigned long sp, *stack;
691 struct stack_info info;
692 struct pt_regs *regs_ret;
693
694 /*
695 * In the SYSCALL entry path the RSP value comes from user-space - don't
696 * trust it and switch to the current kernel stack
697 */
698 if (ip_within_syscall_gap(regs)) {
699 sp = this_cpu_read(cpu_current_top_of_stack);
700 goto sync;
701 }
702
703 /*
704 * From here on the RSP value is trusted. Now check whether entry
705 * happened from a safe stack. Not safe are the entry or unknown stacks,
706 * use the fall-back stack instead in this case.
707 */
708 sp = regs->sp;
709 stack = (unsigned long *)sp;
710
711 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
712 info.type >= STACK_TYPE_EXCEPTION_LAST)
713 sp = __this_cpu_ist_top_va(VC2);
714
715sync:
716 /*
717 * Found a safe stack - switch to it as if the entry didn't happen via
718 * IST stack. The code below only copies pt_regs, the real switch happens
719 * in assembly code.
720 */
721 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
722
723 regs_ret = (struct pt_regs *)sp;
724 *regs_ret = *regs;
725
726 return regs_ret;
727}
728#endif
729
730struct bad_iret_stack {
731 void *error_entry_ret;
732 struct pt_regs regs;
733};
734
735asmlinkage __visible noinstr
736struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
737{
738 /*
739 * This is called from entry_64.S early in handling a fault
740 * caused by a bad iret to user mode. To handle the fault
741 * correctly, we want to move our stack frame to where it would
742 * be had we entered directly on the entry stack (rather than
743 * just below the IRET frame) and we want to pretend that the
744 * exception came from the IRET target.
745 */
746 struct bad_iret_stack tmp, *new_stack =
747 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
748
749 /* Copy the IRET target to the temporary storage. */
750 __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
751
752 /* Copy the remainder of the stack from the current stack. */
753 __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
754
755 /* Update the entry stack */
756 __memcpy(new_stack, &tmp, sizeof(tmp));
757
758 BUG_ON(!user_mode(&new_stack->regs));
759 return new_stack;
760}
761#endif
762
763static bool is_sysenter_singlestep(struct pt_regs *regs)
764{
765 /*
766 * We don't try for precision here. If we're anywhere in the region of
767 * code that can be single-stepped in the SYSENTER entry path, then
768 * assume that this is a useless single-step trap due to SYSENTER
769 * being invoked with TF set. (We don't know in advance exactly
770 * which instructions will be hit because BTF could plausibly
771 * be set.)
772 */
773#ifdef CONFIG_X86_32
774 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
775 (unsigned long)__end_SYSENTER_singlestep_region -
776 (unsigned long)__begin_SYSENTER_singlestep_region;
777#elif defined(CONFIG_IA32_EMULATION)
778 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
779 (unsigned long)__end_entry_SYSENTER_compat -
780 (unsigned long)entry_SYSENTER_compat;
781#else
782 return false;
783#endif
784}
785
786static __always_inline unsigned long debug_read_clear_dr6(void)
787{
788 unsigned long dr6;
789
790 /*
791 * The Intel SDM says:
792 *
793 * Certain debug exceptions may clear bits 0-3. The remaining
794 * contents of the DR6 register are never cleared by the
795 * processor. To avoid confusion in identifying debug
796 * exceptions, debug handlers should clear the register before
797 * returning to the interrupted task.
798 *
799 * Keep it simple: clear DR6 immediately.
800 */
801 get_debugreg(dr6, 6);
802 set_debugreg(DR6_RESERVED, 6);
803 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
804
805 return dr6;
806}
807
808/*
809 * Our handling of the processor debug registers is non-trivial.
810 * We do not clear them on entry and exit from the kernel. Therefore
811 * it is possible to get a watchpoint trap here from inside the kernel.
812 * However, the code in ./ptrace.c has ensured that the user can
813 * only set watchpoints on userspace addresses. Therefore the in-kernel
814 * watchpoint trap can only occur in code which is reading/writing
815 * from user space. Such code must not hold kernel locks (since it
816 * can equally take a page fault), therefore it is safe to call
817 * force_sig_info even though that claims and releases locks.
818 *
819 * Code in ./signal.c ensures that the debug control register
820 * is restored before we deliver any signal, and therefore that
821 * user code runs with the correct debug control register even though
822 * we clear it here.
823 *
824 * Being careful here means that we don't have to be as careful in a
825 * lot of more complicated places (task switching can be a bit lazy
826 * about restoring all the debug state, and ptrace doesn't have to
827 * find every occurrence of the TF bit that could be saved away even
828 * by user code)
829 *
830 * May run on IST stack.
831 */
832
833static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
834{
835 /*
836 * Notifiers will clear bits in @dr6 to indicate the event has been
837 * consumed - hw_breakpoint_handler(), single_stop_cont().
838 *
839 * Notifiers will set bits in @virtual_dr6 to indicate the desire
840 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
841 */
842 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
843 return true;
844
845 return false;
846}
847
848static __always_inline void exc_debug_kernel(struct pt_regs *regs,
849 unsigned long dr6)
850{
851 /*
852 * Disable breakpoints during exception handling; recursive exceptions
853 * are exceedingly 'fun'.
854 *
855 * Since this function is NOKPROBE, and that also applies to
856 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
857 * HW_BREAKPOINT_W on our stack)
858 *
859 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
860 * includes the entry stack is excluded for everything.
861 */
862 unsigned long dr7 = local_db_save();
863 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
864 instrumentation_begin();
865
866 /*
867 * If something gets miswired and we end up here for a user mode
868 * #DB, we will malfunction.
869 */
870 WARN_ON_ONCE(user_mode(regs));
871
872 if (test_thread_flag(TIF_BLOCKSTEP)) {
873 /*
874 * The SDM says "The processor clears the BTF flag when it
875 * generates a debug exception." but PTRACE_BLOCKSTEP requested
876 * it for userspace, but we just took a kernel #DB, so re-set
877 * BTF.
878 */
879 unsigned long debugctl;
880
881 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
882 debugctl |= DEBUGCTLMSR_BTF;
883 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
884 }
885
886 /*
887 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
888 * watchpoint at the same time then that will still be handled.
889 */
890 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
891 dr6 &= ~DR_STEP;
892
893 /*
894 * The kernel doesn't use INT1
895 */
896 if (!dr6)
897 goto out;
898
899 if (notify_debug(regs, &dr6))
900 goto out;
901
902 /*
903 * The kernel doesn't use TF single-step outside of:
904 *
905 * - Kprobes, consumed through kprobe_debug_handler()
906 * - KGDB, consumed through notify_debug()
907 *
908 * So if we get here with DR_STEP set, something is wonky.
909 *
910 * A known way to trigger this is through QEMU's GDB stub,
911 * which leaks #DB into the guest and causes IST recursion.
912 */
913 if (WARN_ON_ONCE(dr6 & DR_STEP))
914 regs->flags &= ~X86_EFLAGS_TF;
915out:
916 instrumentation_end();
917 irqentry_nmi_exit(regs, irq_state);
918
919 local_db_restore(dr7);
920}
921
922static __always_inline void exc_debug_user(struct pt_regs *regs,
923 unsigned long dr6)
924{
925 bool icebp;
926
927 /*
928 * If something gets miswired and we end up here for a kernel mode
929 * #DB, we will malfunction.
930 */
931 WARN_ON_ONCE(!user_mode(regs));
932
933 /*
934 * NB: We can't easily clear DR7 here because
935 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
936 * user memory, etc. This means that a recursive #DB is possible. If
937 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
938 * Since we're not on the IST stack right now, everything will be
939 * fine.
940 */
941
942 irqentry_enter_from_user_mode(regs);
943 instrumentation_begin();
944
945 /*
946 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
947 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
948 *
949 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
950 * even if it is not the result of PTRACE_SINGLESTEP.
951 */
952 current->thread.virtual_dr6 = (dr6 & DR_STEP);
953
954 /*
955 * The SDM says "The processor clears the BTF flag when it
956 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
957 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
958 */
959 clear_thread_flag(TIF_BLOCKSTEP);
960
961 /*
962 * If dr6 has no reason to give us about the origin of this trap,
963 * then it's very likely the result of an icebp/int01 trap.
964 * User wants a sigtrap for that.
965 */
966 icebp = !dr6;
967
968 if (notify_debug(regs, &dr6))
969 goto out;
970
971 /* It's safe to allow irq's after DR6 has been saved */
972 local_irq_enable();
973
974 if (v8086_mode(regs)) {
975 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
976 goto out_irq;
977 }
978
979 /* #DB for bus lock can only be triggered from userspace. */
980 if (dr6 & DR_BUS_LOCK)
981 handle_bus_lock(regs);
982
983 /* Add the virtual_dr6 bits for signals. */
984 dr6 |= current->thread.virtual_dr6;
985 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
986 send_sigtrap(regs, 0, get_si_code(dr6));
987
988out_irq:
989 local_irq_disable();
990out:
991 instrumentation_end();
992 irqentry_exit_to_user_mode(regs);
993}
994
995#ifdef CONFIG_X86_64
996/* IST stack entry */
997DEFINE_IDTENTRY_DEBUG(exc_debug)
998{
999 exc_debug_kernel(regs, debug_read_clear_dr6());
1000}
1001
1002/* User entry, runs on regular task stack */
1003DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1004{
1005 exc_debug_user(regs, debug_read_clear_dr6());
1006}
1007#else
1008/* 32 bit does not have separate entry points. */
1009DEFINE_IDTENTRY_RAW(exc_debug)
1010{
1011 unsigned long dr6 = debug_read_clear_dr6();
1012
1013 if (user_mode(regs))
1014 exc_debug_user(regs, dr6);
1015 else
1016 exc_debug_kernel(regs, dr6);
1017}
1018#endif
1019
1020/*
1021 * Note that we play around with the 'TS' bit in an attempt to get
1022 * the correct behaviour even in the presence of the asynchronous
1023 * IRQ13 behaviour
1024 */
1025static void math_error(struct pt_regs *regs, int trapnr)
1026{
1027 struct task_struct *task = current;
1028 struct fpu *fpu = &task->thread.fpu;
1029 int si_code;
1030 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1031 "simd exception";
1032
1033 cond_local_irq_enable(regs);
1034
1035 if (!user_mode(regs)) {
1036 if (fixup_exception(regs, trapnr, 0, 0))
1037 goto exit;
1038
1039 task->thread.error_code = 0;
1040 task->thread.trap_nr = trapnr;
1041
1042 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1043 SIGFPE) != NOTIFY_STOP)
1044 die(str, regs, 0);
1045 goto exit;
1046 }
1047
1048 /*
1049 * Synchronize the FPU register state to the memory register state
1050 * if necessary. This allows the exception handler to inspect it.
1051 */
1052 fpu_sync_fpstate(fpu);
1053
1054 task->thread.trap_nr = trapnr;
1055 task->thread.error_code = 0;
1056
1057 si_code = fpu__exception_code(fpu, trapnr);
1058 /* Retry when we get spurious exceptions: */
1059 if (!si_code)
1060 goto exit;
1061
1062 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1063 goto exit;
1064
1065 force_sig_fault(SIGFPE, si_code,
1066 (void __user *)uprobe_get_trap_addr(regs));
1067exit:
1068 cond_local_irq_disable(regs);
1069}
1070
1071DEFINE_IDTENTRY(exc_coprocessor_error)
1072{
1073 math_error(regs, X86_TRAP_MF);
1074}
1075
1076DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1077{
1078 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1079 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1080 if (!static_cpu_has(X86_FEATURE_XMM)) {
1081 __exc_general_protection(regs, 0);
1082 return;
1083 }
1084 }
1085 math_error(regs, X86_TRAP_XF);
1086}
1087
1088DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1089{
1090 /*
1091 * This addresses a Pentium Pro Erratum:
1092 *
1093 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1094 * Virtual Wire mode implemented through the local APIC, an
1095 * interrupt vector of 0Fh (Intel reserved encoding) may be
1096 * generated by the local APIC (Int 15). This vector may be
1097 * generated upon receipt of a spurious interrupt (an interrupt
1098 * which is removed before the system receives the INTA sequence)
1099 * instead of the programmed 8259 spurious interrupt vector.
1100 *
1101 * IMPLICATION: The spurious interrupt vector programmed in the
1102 * 8259 is normally handled by an operating system's spurious
1103 * interrupt handler. However, a vector of 0Fh is unknown to some
1104 * operating systems, which would crash if this erratum occurred.
1105 *
1106 * In theory this could be limited to 32bit, but the handler is not
1107 * hurting and who knows which other CPUs suffer from this.
1108 */
1109}
1110
1111DEFINE_IDTENTRY(exc_device_not_available)
1112{
1113 unsigned long cr0 = read_cr0();
1114
1115#ifdef CONFIG_MATH_EMULATION
1116 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1117 struct math_emu_info info = { };
1118
1119 cond_local_irq_enable(regs);
1120
1121 info.regs = regs;
1122 math_emulate(&info);
1123
1124 cond_local_irq_disable(regs);
1125 return;
1126 }
1127#endif
1128
1129 /* This should not happen. */
1130 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1131 /* Try to fix it up and carry on. */
1132 write_cr0(cr0 & ~X86_CR0_TS);
1133 } else {
1134 /*
1135 * Something terrible happened, and we're better off trying
1136 * to kill the task than getting stuck in a never-ending
1137 * loop of #NM faults.
1138 */
1139 die("unexpected #NM exception", regs, 0);
1140 }
1141}
1142
1143#ifdef CONFIG_X86_32
1144DEFINE_IDTENTRY_SW(iret_error)
1145{
1146 local_irq_enable();
1147 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1148 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1149 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1150 ILL_BADSTK, (void __user *)NULL);
1151 }
1152 local_irq_disable();
1153}
1154#endif
1155
1156void __init trap_init(void)
1157{
1158 /* Init cpu_entry_area before IST entries are set up */
1159 setup_cpu_entry_areas();
1160
1161 /* Init GHCB memory pages when running as an SEV-ES guest */
1162 sev_es_init_vc_handling();
1163
1164 /* Initialize TSS before setting up traps so ISTs work */
1165 cpu_init_exception_handling();
1166 /* Setup traps as cpu_init() might #GP */
1167 idt_setup_traps();
1168 cpu_init();
1169}