Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/cpu.h>
15#include <linux/cpumask.h>
16#include <linux/debugfs.h>
17#include <linux/kthread.h>
18#include <linux/mman.h>
19#include <linux/perf_event.h>
20#include <linux/pm_qos.h>
21#include <linux/slab.h>
22#include <linux/uaccess.h>
23
24#include <asm/cacheflush.h>
25#include <asm/cpu_device_id.h>
26#include <asm/resctrl.h>
27#include <asm/perf_event.h>
28
29#include "../../events/perf_event.h" /* For X86_CONFIG() */
30#include "internal.h"
31
32#define CREATE_TRACE_POINTS
33#include "trace.h"
34
35/*
36 * The bits needed to disable hardware prefetching varies based on the
37 * platform. During initialization we will discover which bits to use.
38 */
39static u64 prefetch_disable_bits;
40
41/*
42 * Major number assigned to and shared by all devices exposing
43 * pseudo-locked regions.
44 */
45static unsigned int pseudo_lock_major;
46static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
47
48static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
49{
50 const struct rdtgroup *rdtgrp;
51
52 rdtgrp = dev_get_drvdata(dev);
53 if (mode)
54 *mode = 0600;
55 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
56}
57
58static const struct class pseudo_lock_class = {
59 .name = "pseudo_lock",
60 .devnode = pseudo_lock_devnode,
61};
62
63/**
64 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
65 * @void: It takes no parameters.
66 *
67 * Capture the list of platforms that have been validated to support
68 * pseudo-locking. This includes testing to ensure pseudo-locked regions
69 * with low cache miss rates can be created under variety of load conditions
70 * as well as that these pseudo-locked regions can maintain their low cache
71 * miss rates under variety of load conditions for significant lengths of time.
72 *
73 * After a platform has been validated to support pseudo-locking its
74 * hardware prefetch disable bits are included here as they are documented
75 * in the SDM.
76 *
77 * When adding a platform here also add support for its cache events to
78 * measure_cycles_perf_fn()
79 *
80 * Return:
81 * If platform is supported, the bits to disable hardware prefetchers, 0
82 * if platform is not supported.
83 */
84static u64 get_prefetch_disable_bits(void)
85{
86 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
87 boot_cpu_data.x86 != 6)
88 return 0;
89
90 switch (boot_cpu_data.x86_vfm) {
91 case INTEL_BROADWELL_X:
92 /*
93 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
94 * as:
95 * 0 L2 Hardware Prefetcher Disable (R/W)
96 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
97 * 2 DCU Hardware Prefetcher Disable (R/W)
98 * 3 DCU IP Prefetcher Disable (R/W)
99 * 63:4 Reserved
100 */
101 return 0xF;
102 case INTEL_ATOM_GOLDMONT:
103 case INTEL_ATOM_GOLDMONT_PLUS:
104 /*
105 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
106 * as:
107 * 0 L2 Hardware Prefetcher Disable (R/W)
108 * 1 Reserved
109 * 2 DCU Hardware Prefetcher Disable (R/W)
110 * 63:3 Reserved
111 */
112 return 0x5;
113 }
114
115 return 0;
116}
117
118/**
119 * pseudo_lock_minor_get - Obtain available minor number
120 * @minor: Pointer to where new minor number will be stored
121 *
122 * A bitmask is used to track available minor numbers. Here the next free
123 * minor number is marked as unavailable and returned.
124 *
125 * Return: 0 on success, <0 on failure.
126 */
127static int pseudo_lock_minor_get(unsigned int *minor)
128{
129 unsigned long first_bit;
130
131 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
132
133 if (first_bit == MINORBITS)
134 return -ENOSPC;
135
136 __clear_bit(first_bit, &pseudo_lock_minor_avail);
137 *minor = first_bit;
138
139 return 0;
140}
141
142/**
143 * pseudo_lock_minor_release - Return minor number to available
144 * @minor: The minor number made available
145 */
146static void pseudo_lock_minor_release(unsigned int minor)
147{
148 __set_bit(minor, &pseudo_lock_minor_avail);
149}
150
151/**
152 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
153 * @minor: The minor number of the device representing pseudo-locked region
154 *
155 * When the character device is accessed we need to determine which
156 * pseudo-locked region it belongs to. This is done by matching the minor
157 * number of the device to the pseudo-locked region it belongs.
158 *
159 * Minor numbers are assigned at the time a pseudo-locked region is associated
160 * with a cache instance.
161 *
162 * Return: On success return pointer to resource group owning the pseudo-locked
163 * region, NULL on failure.
164 */
165static struct rdtgroup *region_find_by_minor(unsigned int minor)
166{
167 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
168
169 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
170 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
171 rdtgrp_match = rdtgrp;
172 break;
173 }
174 }
175 return rdtgrp_match;
176}
177
178/**
179 * struct pseudo_lock_pm_req - A power management QoS request list entry
180 * @list: Entry within the @pm_reqs list for a pseudo-locked region
181 * @req: PM QoS request
182 */
183struct pseudo_lock_pm_req {
184 struct list_head list;
185 struct dev_pm_qos_request req;
186};
187
188static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
189{
190 struct pseudo_lock_pm_req *pm_req, *next;
191
192 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
193 dev_pm_qos_remove_request(&pm_req->req);
194 list_del(&pm_req->list);
195 kfree(pm_req);
196 }
197}
198
199/**
200 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
201 * @plr: Pseudo-locked region
202 *
203 * To prevent the cache from being affected by power management entering
204 * C6 has to be avoided. This is accomplished by requesting a latency
205 * requirement lower than lowest C6 exit latency of all supported
206 * platforms as found in the cpuidle state tables in the intel_idle driver.
207 * At this time it is possible to do so with a single latency requirement
208 * for all supported platforms.
209 *
210 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
211 * the ACPI latencies need to be considered while keeping in mind that C2
212 * may be set to map to deeper sleep states. In this case the latency
213 * requirement needs to prevent entering C2 also.
214 *
215 * Return: 0 on success, <0 on failure
216 */
217static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
218{
219 struct pseudo_lock_pm_req *pm_req;
220 int cpu;
221 int ret;
222
223 for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
224 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
225 if (!pm_req) {
226 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
227 ret = -ENOMEM;
228 goto out_err;
229 }
230 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
231 &pm_req->req,
232 DEV_PM_QOS_RESUME_LATENCY,
233 30);
234 if (ret < 0) {
235 rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
236 cpu);
237 kfree(pm_req);
238 ret = -1;
239 goto out_err;
240 }
241 list_add(&pm_req->list, &plr->pm_reqs);
242 }
243
244 return 0;
245
246out_err:
247 pseudo_lock_cstates_relax(plr);
248 return ret;
249}
250
251/**
252 * pseudo_lock_region_clear - Reset pseudo-lock region data
253 * @plr: pseudo-lock region
254 *
255 * All content of the pseudo-locked region is reset - any memory allocated
256 * freed.
257 *
258 * Return: void
259 */
260static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
261{
262 plr->size = 0;
263 plr->line_size = 0;
264 kfree(plr->kmem);
265 plr->kmem = NULL;
266 plr->s = NULL;
267 if (plr->d)
268 plr->d->plr = NULL;
269 plr->d = NULL;
270 plr->cbm = 0;
271 plr->debugfs_dir = NULL;
272}
273
274/**
275 * pseudo_lock_region_init - Initialize pseudo-lock region information
276 * @plr: pseudo-lock region
277 *
278 * Called after user provided a schemata to be pseudo-locked. From the
279 * schemata the &struct pseudo_lock_region is on entry already initialized
280 * with the resource, domain, and capacity bitmask. Here the information
281 * required for pseudo-locking is deduced from this data and &struct
282 * pseudo_lock_region initialized further. This information includes:
283 * - size in bytes of the region to be pseudo-locked
284 * - cache line size to know the stride with which data needs to be accessed
285 * to be pseudo-locked
286 * - a cpu associated with the cache instance on which the pseudo-locking
287 * flow can be executed
288 *
289 * Return: 0 on success, <0 on failure. Descriptive error will be written
290 * to last_cmd_status buffer.
291 */
292static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
293{
294 enum resctrl_scope scope = plr->s->res->ctrl_scope;
295 struct cacheinfo *ci;
296 int ret;
297
298 if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
299 return -ENODEV;
300
301 /* Pick the first cpu we find that is associated with the cache. */
302 plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
303
304 if (!cpu_online(plr->cpu)) {
305 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
306 plr->cpu);
307 ret = -ENODEV;
308 goto out_region;
309 }
310
311 ci = get_cpu_cacheinfo_level(plr->cpu, scope);
312 if (ci) {
313 plr->line_size = ci->coherency_line_size;
314 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
315 return 0;
316 }
317
318 ret = -1;
319 rdt_last_cmd_puts("Unable to determine cache line size\n");
320out_region:
321 pseudo_lock_region_clear(plr);
322 return ret;
323}
324
325/**
326 * pseudo_lock_init - Initialize a pseudo-lock region
327 * @rdtgrp: resource group to which new pseudo-locked region will belong
328 *
329 * A pseudo-locked region is associated with a resource group. When this
330 * association is created the pseudo-locked region is initialized. The
331 * details of the pseudo-locked region are not known at this time so only
332 * allocation is done and association established.
333 *
334 * Return: 0 on success, <0 on failure
335 */
336static int pseudo_lock_init(struct rdtgroup *rdtgrp)
337{
338 struct pseudo_lock_region *plr;
339
340 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
341 if (!plr)
342 return -ENOMEM;
343
344 init_waitqueue_head(&plr->lock_thread_wq);
345 INIT_LIST_HEAD(&plr->pm_reqs);
346 rdtgrp->plr = plr;
347 return 0;
348}
349
350/**
351 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
352 * @plr: pseudo-lock region
353 *
354 * Initialize the details required to set up the pseudo-locked region and
355 * allocate the contiguous memory that will be pseudo-locked to the cache.
356 *
357 * Return: 0 on success, <0 on failure. Descriptive error will be written
358 * to last_cmd_status buffer.
359 */
360static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
361{
362 int ret;
363
364 ret = pseudo_lock_region_init(plr);
365 if (ret < 0)
366 return ret;
367
368 /*
369 * We do not yet support contiguous regions larger than
370 * KMALLOC_MAX_SIZE.
371 */
372 if (plr->size > KMALLOC_MAX_SIZE) {
373 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
374 ret = -E2BIG;
375 goto out_region;
376 }
377
378 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
379 if (!plr->kmem) {
380 rdt_last_cmd_puts("Unable to allocate memory\n");
381 ret = -ENOMEM;
382 goto out_region;
383 }
384
385 ret = 0;
386 goto out;
387out_region:
388 pseudo_lock_region_clear(plr);
389out:
390 return ret;
391}
392
393/**
394 * pseudo_lock_free - Free a pseudo-locked region
395 * @rdtgrp: resource group to which pseudo-locked region belonged
396 *
397 * The pseudo-locked region's resources have already been released, or not
398 * yet created at this point. Now it can be freed and disassociated from the
399 * resource group.
400 *
401 * Return: void
402 */
403static void pseudo_lock_free(struct rdtgroup *rdtgrp)
404{
405 pseudo_lock_region_clear(rdtgrp->plr);
406 kfree(rdtgrp->plr);
407 rdtgrp->plr = NULL;
408}
409
410/**
411 * pseudo_lock_fn - Load kernel memory into cache
412 * @_rdtgrp: resource group to which pseudo-lock region belongs
413 *
414 * This is the core pseudo-locking flow.
415 *
416 * First we ensure that the kernel memory cannot be found in the cache.
417 * Then, while taking care that there will be as little interference as
418 * possible, the memory to be loaded is accessed while core is running
419 * with class of service set to the bitmask of the pseudo-locked region.
420 * After this is complete no future CAT allocations will be allowed to
421 * overlap with this bitmask.
422 *
423 * Local register variables are utilized to ensure that the memory region
424 * to be locked is the only memory access made during the critical locking
425 * loop.
426 *
427 * Return: 0. Waiter on waitqueue will be woken on completion.
428 */
429static int pseudo_lock_fn(void *_rdtgrp)
430{
431 struct rdtgroup *rdtgrp = _rdtgrp;
432 struct pseudo_lock_region *plr = rdtgrp->plr;
433 u32 rmid_p, closid_p;
434 unsigned long i;
435 u64 saved_msr;
436#ifdef CONFIG_KASAN
437 /*
438 * The registers used for local register variables are also used
439 * when KASAN is active. When KASAN is active we use a regular
440 * variable to ensure we always use a valid pointer, but the cost
441 * is that this variable will enter the cache through evicting the
442 * memory we are trying to lock into the cache. Thus expect lower
443 * pseudo-locking success rate when KASAN is active.
444 */
445 unsigned int line_size;
446 unsigned int size;
447 void *mem_r;
448#else
449 register unsigned int line_size asm("esi");
450 register unsigned int size asm("edi");
451 register void *mem_r asm(_ASM_BX);
452#endif /* CONFIG_KASAN */
453
454 /*
455 * Make sure none of the allocated memory is cached. If it is we
456 * will get a cache hit in below loop from outside of pseudo-locked
457 * region.
458 * wbinvd (as opposed to clflush/clflushopt) is required to
459 * increase likelihood that allocated cache portion will be filled
460 * with associated memory.
461 */
462 native_wbinvd();
463
464 /*
465 * Always called with interrupts enabled. By disabling interrupts
466 * ensure that we will not be preempted during this critical section.
467 */
468 local_irq_disable();
469
470 /*
471 * Call wrmsr and rdmsr as directly as possible to avoid tracing
472 * clobbering local register variables or affecting cache accesses.
473 *
474 * Disable the hardware prefetcher so that when the end of the memory
475 * being pseudo-locked is reached the hardware will not read beyond
476 * the buffer and evict pseudo-locked memory read earlier from the
477 * cache.
478 */
479 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
480 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
481 closid_p = this_cpu_read(pqr_state.cur_closid);
482 rmid_p = this_cpu_read(pqr_state.cur_rmid);
483 mem_r = plr->kmem;
484 size = plr->size;
485 line_size = plr->line_size;
486 /*
487 * Critical section begin: start by writing the closid associated
488 * with the capacity bitmask of the cache region being
489 * pseudo-locked followed by reading of kernel memory to load it
490 * into the cache.
491 */
492 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
493 /*
494 * Cache was flushed earlier. Now access kernel memory to read it
495 * into cache region associated with just activated plr->closid.
496 * Loop over data twice:
497 * - In first loop the cache region is shared with the page walker
498 * as it populates the paging structure caches (including TLB).
499 * - In the second loop the paging structure caches are used and
500 * cache region is populated with the memory being referenced.
501 */
502 for (i = 0; i < size; i += PAGE_SIZE) {
503 /*
504 * Add a barrier to prevent speculative execution of this
505 * loop reading beyond the end of the buffer.
506 */
507 rmb();
508 asm volatile("mov (%0,%1,1), %%eax\n\t"
509 :
510 : "r" (mem_r), "r" (i)
511 : "%eax", "memory");
512 }
513 for (i = 0; i < size; i += line_size) {
514 /*
515 * Add a barrier to prevent speculative execution of this
516 * loop reading beyond the end of the buffer.
517 */
518 rmb();
519 asm volatile("mov (%0,%1,1), %%eax\n\t"
520 :
521 : "r" (mem_r), "r" (i)
522 : "%eax", "memory");
523 }
524 /*
525 * Critical section end: restore closid with capacity bitmask that
526 * does not overlap with pseudo-locked region.
527 */
528 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
529
530 /* Re-enable the hardware prefetcher(s) */
531 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
532 local_irq_enable();
533
534 plr->thread_done = 1;
535 wake_up_interruptible(&plr->lock_thread_wq);
536 return 0;
537}
538
539/**
540 * rdtgroup_monitor_in_progress - Test if monitoring in progress
541 * @rdtgrp: resource group being queried
542 *
543 * Return: 1 if monitor groups have been created for this resource
544 * group, 0 otherwise.
545 */
546static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
547{
548 return !list_empty(&rdtgrp->mon.crdtgrp_list);
549}
550
551/**
552 * rdtgroup_locksetup_user_restrict - Restrict user access to group
553 * @rdtgrp: resource group needing access restricted
554 *
555 * A resource group used for cache pseudo-locking cannot have cpus or tasks
556 * assigned to it. This is communicated to the user by restricting access
557 * to all the files that can be used to make such changes.
558 *
559 * Permissions restored with rdtgroup_locksetup_user_restore()
560 *
561 * Return: 0 on success, <0 on failure. If a failure occurs during the
562 * restriction of access an attempt will be made to restore permissions but
563 * the state of the mode of these files will be uncertain when a failure
564 * occurs.
565 */
566static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
567{
568 int ret;
569
570 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
571 if (ret)
572 return ret;
573
574 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
575 if (ret)
576 goto err_tasks;
577
578 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
579 if (ret)
580 goto err_cpus;
581
582 if (resctrl_arch_mon_capable()) {
583 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
584 if (ret)
585 goto err_cpus_list;
586 }
587
588 ret = 0;
589 goto out;
590
591err_cpus_list:
592 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
593err_cpus:
594 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
595err_tasks:
596 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
597out:
598 return ret;
599}
600
601/**
602 * rdtgroup_locksetup_user_restore - Restore user access to group
603 * @rdtgrp: resource group needing access restored
604 *
605 * Restore all file access previously removed using
606 * rdtgroup_locksetup_user_restrict()
607 *
608 * Return: 0 on success, <0 on failure. If a failure occurs during the
609 * restoration of access an attempt will be made to restrict permissions
610 * again but the state of the mode of these files will be uncertain when
611 * a failure occurs.
612 */
613static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
614{
615 int ret;
616
617 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
618 if (ret)
619 return ret;
620
621 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
622 if (ret)
623 goto err_tasks;
624
625 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
626 if (ret)
627 goto err_cpus;
628
629 if (resctrl_arch_mon_capable()) {
630 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
631 if (ret)
632 goto err_cpus_list;
633 }
634
635 ret = 0;
636 goto out;
637
638err_cpus_list:
639 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
640err_cpus:
641 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
642err_tasks:
643 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
644out:
645 return ret;
646}
647
648/**
649 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
650 * @rdtgrp: resource group requested to enter locksetup mode
651 *
652 * A resource group enters locksetup mode to reflect that it would be used
653 * to represent a pseudo-locked region and is in the process of being set
654 * up to do so. A resource group used for a pseudo-locked region would
655 * lose the closid associated with it so we cannot allow it to have any
656 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
657 * future. Monitoring of a pseudo-locked region is not allowed either.
658 *
659 * The above and more restrictions on a pseudo-locked region are checked
660 * for and enforced before the resource group enters the locksetup mode.
661 *
662 * Returns: 0 if the resource group successfully entered locksetup mode, <0
663 * on failure. On failure the last_cmd_status buffer is updated with text to
664 * communicate details of failure to the user.
665 */
666int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
667{
668 int ret;
669
670 /*
671 * The default resource group can neither be removed nor lose the
672 * default closid associated with it.
673 */
674 if (rdtgrp == &rdtgroup_default) {
675 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
676 return -EINVAL;
677 }
678
679 /*
680 * Cache Pseudo-locking not supported when CDP is enabled.
681 *
682 * Some things to consider if you would like to enable this
683 * support (using L3 CDP as example):
684 * - When CDP is enabled two separate resources are exposed,
685 * L3DATA and L3CODE, but they are actually on the same cache.
686 * The implication for pseudo-locking is that if a
687 * pseudo-locked region is created on a domain of one
688 * resource (eg. L3CODE), then a pseudo-locked region cannot
689 * be created on that same domain of the other resource
690 * (eg. L3DATA). This is because the creation of a
691 * pseudo-locked region involves a call to wbinvd that will
692 * affect all cache allocations on particular domain.
693 * - Considering the previous, it may be possible to only
694 * expose one of the CDP resources to pseudo-locking and
695 * hide the other. For example, we could consider to only
696 * expose L3DATA and since the L3 cache is unified it is
697 * still possible to place instructions there are execute it.
698 * - If only one region is exposed to pseudo-locking we should
699 * still keep in mind that availability of a portion of cache
700 * for pseudo-locking should take into account both resources.
701 * Similarly, if a pseudo-locked region is created in one
702 * resource, the portion of cache used by it should be made
703 * unavailable to all future allocations from both resources.
704 */
705 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
706 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
707 rdt_last_cmd_puts("CDP enabled\n");
708 return -EINVAL;
709 }
710
711 /*
712 * Not knowing the bits to disable prefetching implies that this
713 * platform does not support Cache Pseudo-Locking.
714 */
715 prefetch_disable_bits = get_prefetch_disable_bits();
716 if (prefetch_disable_bits == 0) {
717 rdt_last_cmd_puts("Pseudo-locking not supported\n");
718 return -EINVAL;
719 }
720
721 if (rdtgroup_monitor_in_progress(rdtgrp)) {
722 rdt_last_cmd_puts("Monitoring in progress\n");
723 return -EINVAL;
724 }
725
726 if (rdtgroup_tasks_assigned(rdtgrp)) {
727 rdt_last_cmd_puts("Tasks assigned to resource group\n");
728 return -EINVAL;
729 }
730
731 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
732 rdt_last_cmd_puts("CPUs assigned to resource group\n");
733 return -EINVAL;
734 }
735
736 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
737 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
738 return -EIO;
739 }
740
741 ret = pseudo_lock_init(rdtgrp);
742 if (ret) {
743 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
744 goto out_release;
745 }
746
747 /*
748 * If this system is capable of monitoring a rmid would have been
749 * allocated when the control group was created. This is not needed
750 * anymore when this group would be used for pseudo-locking. This
751 * is safe to call on platforms not capable of monitoring.
752 */
753 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
754
755 ret = 0;
756 goto out;
757
758out_release:
759 rdtgroup_locksetup_user_restore(rdtgrp);
760out:
761 return ret;
762}
763
764/**
765 * rdtgroup_locksetup_exit - resource group exist locksetup mode
766 * @rdtgrp: resource group
767 *
768 * When a resource group exits locksetup mode the earlier restrictions are
769 * lifted.
770 *
771 * Return: 0 on success, <0 on failure
772 */
773int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
774{
775 int ret;
776
777 if (resctrl_arch_mon_capable()) {
778 ret = alloc_rmid(rdtgrp->closid);
779 if (ret < 0) {
780 rdt_last_cmd_puts("Out of RMIDs\n");
781 return ret;
782 }
783 rdtgrp->mon.rmid = ret;
784 }
785
786 ret = rdtgroup_locksetup_user_restore(rdtgrp);
787 if (ret) {
788 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
789 return ret;
790 }
791
792 pseudo_lock_free(rdtgrp);
793 return 0;
794}
795
796/**
797 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
798 * @d: RDT domain
799 * @cbm: CBM to test
800 *
801 * @d represents a cache instance and @cbm a capacity bitmask that is
802 * considered for it. Determine if @cbm overlaps with any existing
803 * pseudo-locked region on @d.
804 *
805 * @cbm is unsigned long, even if only 32 bits are used, to make the
806 * bitmap functions work correctly.
807 *
808 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
809 * otherwise.
810 */
811bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
812{
813 unsigned int cbm_len;
814 unsigned long cbm_b;
815
816 if (d->plr) {
817 cbm_len = d->plr->s->res->cache.cbm_len;
818 cbm_b = d->plr->cbm;
819 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
820 return true;
821 }
822 return false;
823}
824
825/**
826 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
827 * @d: RDT domain under test
828 *
829 * The setup of a pseudo-locked region affects all cache instances within
830 * the hierarchy of the region. It is thus essential to know if any
831 * pseudo-locked regions exist within a cache hierarchy to prevent any
832 * attempts to create new pseudo-locked regions in the same hierarchy.
833 *
834 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
835 * if it is not possible to test due to memory allocation issue,
836 * false otherwise.
837 */
838bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
839{
840 struct rdt_ctrl_domain *d_i;
841 cpumask_var_t cpu_with_psl;
842 struct rdt_resource *r;
843 bool ret = false;
844
845 /* Walking r->domains, ensure it can't race with cpuhp */
846 lockdep_assert_cpus_held();
847
848 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
849 return true;
850
851 /*
852 * First determine which cpus have pseudo-locked regions
853 * associated with them.
854 */
855 for_each_alloc_capable_rdt_resource(r) {
856 list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
857 if (d_i->plr)
858 cpumask_or(cpu_with_psl, cpu_with_psl,
859 &d_i->hdr.cpu_mask);
860 }
861 }
862
863 /*
864 * Next test if new pseudo-locked region would intersect with
865 * existing region.
866 */
867 if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
868 ret = true;
869
870 free_cpumask_var(cpu_with_psl);
871 return ret;
872}
873
874/**
875 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
876 * @_plr: pseudo-lock region to measure
877 *
878 * There is no deterministic way to test if a memory region is cached. One
879 * way is to measure how long it takes to read the memory, the speed of
880 * access is a good way to learn how close to the cpu the data was. Even
881 * more, if the prefetcher is disabled and the memory is read at a stride
882 * of half the cache line, then a cache miss will be easy to spot since the
883 * read of the first half would be significantly slower than the read of
884 * the second half.
885 *
886 * Return: 0. Waiter on waitqueue will be woken on completion.
887 */
888static int measure_cycles_lat_fn(void *_plr)
889{
890 struct pseudo_lock_region *plr = _plr;
891 u32 saved_low, saved_high;
892 unsigned long i;
893 u64 start, end;
894 void *mem_r;
895
896 local_irq_disable();
897 /*
898 * Disable hardware prefetchers.
899 */
900 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
901 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
902 mem_r = READ_ONCE(plr->kmem);
903 /*
904 * Dummy execute of the time measurement to load the needed
905 * instructions into the L1 instruction cache.
906 */
907 start = rdtsc_ordered();
908 for (i = 0; i < plr->size; i += 32) {
909 start = rdtsc_ordered();
910 asm volatile("mov (%0,%1,1), %%eax\n\t"
911 :
912 : "r" (mem_r), "r" (i)
913 : "%eax", "memory");
914 end = rdtsc_ordered();
915 trace_pseudo_lock_mem_latency((u32)(end - start));
916 }
917 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
918 local_irq_enable();
919 plr->thread_done = 1;
920 wake_up_interruptible(&plr->lock_thread_wq);
921 return 0;
922}
923
924/*
925 * Create a perf_event_attr for the hit and miss perf events that will
926 * be used during the performance measurement. A perf_event maintains
927 * a pointer to its perf_event_attr so a unique attribute structure is
928 * created for each perf_event.
929 *
930 * The actual configuration of the event is set right before use in order
931 * to use the X86_CONFIG macro.
932 */
933static struct perf_event_attr perf_miss_attr = {
934 .type = PERF_TYPE_RAW,
935 .size = sizeof(struct perf_event_attr),
936 .pinned = 1,
937 .disabled = 0,
938 .exclude_user = 1,
939};
940
941static struct perf_event_attr perf_hit_attr = {
942 .type = PERF_TYPE_RAW,
943 .size = sizeof(struct perf_event_attr),
944 .pinned = 1,
945 .disabled = 0,
946 .exclude_user = 1,
947};
948
949struct residency_counts {
950 u64 miss_before, hits_before;
951 u64 miss_after, hits_after;
952};
953
954static int measure_residency_fn(struct perf_event_attr *miss_attr,
955 struct perf_event_attr *hit_attr,
956 struct pseudo_lock_region *plr,
957 struct residency_counts *counts)
958{
959 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
960 struct perf_event *miss_event, *hit_event;
961 int hit_pmcnum, miss_pmcnum;
962 u32 saved_low, saved_high;
963 unsigned int line_size;
964 unsigned int size;
965 unsigned long i;
966 void *mem_r;
967 u64 tmp;
968
969 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
970 NULL, NULL, NULL);
971 if (IS_ERR(miss_event))
972 goto out;
973
974 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
975 NULL, NULL, NULL);
976 if (IS_ERR(hit_event))
977 goto out_miss;
978
979 local_irq_disable();
980 /*
981 * Check any possible error state of events used by performing
982 * one local read.
983 */
984 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
985 local_irq_enable();
986 goto out_hit;
987 }
988 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
989 local_irq_enable();
990 goto out_hit;
991 }
992
993 /*
994 * Disable hardware prefetchers.
995 */
996 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
997 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
998
999 /* Initialize rest of local variables */
1000 /*
1001 * Performance event has been validated right before this with
1002 * interrupts disabled - it is thus safe to read the counter index.
1003 */
1004 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1005 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1006 line_size = READ_ONCE(plr->line_size);
1007 mem_r = READ_ONCE(plr->kmem);
1008 size = READ_ONCE(plr->size);
1009
1010 /*
1011 * Read counter variables twice - first to load the instructions
1012 * used in L1 cache, second to capture accurate value that does not
1013 * include cache misses incurred because of instruction loads.
1014 */
1015 rdpmcl(hit_pmcnum, hits_before);
1016 rdpmcl(miss_pmcnum, miss_before);
1017 /*
1018 * From SDM: Performing back-to-back fast reads are not guaranteed
1019 * to be monotonic.
1020 * Use LFENCE to ensure all previous instructions are retired
1021 * before proceeding.
1022 */
1023 rmb();
1024 rdpmcl(hit_pmcnum, hits_before);
1025 rdpmcl(miss_pmcnum, miss_before);
1026 /*
1027 * Use LFENCE to ensure all previous instructions are retired
1028 * before proceeding.
1029 */
1030 rmb();
1031 for (i = 0; i < size; i += line_size) {
1032 /*
1033 * Add a barrier to prevent speculative execution of this
1034 * loop reading beyond the end of the buffer.
1035 */
1036 rmb();
1037 asm volatile("mov (%0,%1,1), %%eax\n\t"
1038 :
1039 : "r" (mem_r), "r" (i)
1040 : "%eax", "memory");
1041 }
1042 /*
1043 * Use LFENCE to ensure all previous instructions are retired
1044 * before proceeding.
1045 */
1046 rmb();
1047 rdpmcl(hit_pmcnum, hits_after);
1048 rdpmcl(miss_pmcnum, miss_after);
1049 /*
1050 * Use LFENCE to ensure all previous instructions are retired
1051 * before proceeding.
1052 */
1053 rmb();
1054 /* Re-enable hardware prefetchers */
1055 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1056 local_irq_enable();
1057out_hit:
1058 perf_event_release_kernel(hit_event);
1059out_miss:
1060 perf_event_release_kernel(miss_event);
1061out:
1062 /*
1063 * All counts will be zero on failure.
1064 */
1065 counts->miss_before = miss_before;
1066 counts->hits_before = hits_before;
1067 counts->miss_after = miss_after;
1068 counts->hits_after = hits_after;
1069 return 0;
1070}
1071
1072static int measure_l2_residency(void *_plr)
1073{
1074 struct pseudo_lock_region *plr = _plr;
1075 struct residency_counts counts = {0};
1076
1077 /*
1078 * Non-architectural event for the Goldmont Microarchitecture
1079 * from Intel x86 Architecture Software Developer Manual (SDM):
1080 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1081 * Umask values:
1082 * L2_HIT 02H
1083 * L2_MISS 10H
1084 */
1085 switch (boot_cpu_data.x86_vfm) {
1086 case INTEL_ATOM_GOLDMONT:
1087 case INTEL_ATOM_GOLDMONT_PLUS:
1088 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1089 .umask = 0x10);
1090 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1091 .umask = 0x2);
1092 break;
1093 default:
1094 goto out;
1095 }
1096
1097 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1098 /*
1099 * If a failure prevented the measurements from succeeding
1100 * tracepoints will still be written and all counts will be zero.
1101 */
1102 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1103 counts.miss_after - counts.miss_before);
1104out:
1105 plr->thread_done = 1;
1106 wake_up_interruptible(&plr->lock_thread_wq);
1107 return 0;
1108}
1109
1110static int measure_l3_residency(void *_plr)
1111{
1112 struct pseudo_lock_region *plr = _plr;
1113 struct residency_counts counts = {0};
1114
1115 /*
1116 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1117 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1118 * this platform the following events are used instead:
1119 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1120 * REFERENCE 4FH
1121 * MISS 41H
1122 */
1123
1124 switch (boot_cpu_data.x86_vfm) {
1125 case INTEL_BROADWELL_X:
1126 /* On BDW the hit event counts references, not hits */
1127 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1128 .umask = 0x4f);
1129 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1130 .umask = 0x41);
1131 break;
1132 default:
1133 goto out;
1134 }
1135
1136 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1137 /*
1138 * If a failure prevented the measurements from succeeding
1139 * tracepoints will still be written and all counts will be zero.
1140 */
1141
1142 counts.miss_after -= counts.miss_before;
1143 if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1144 /*
1145 * On BDW references and misses are counted, need to adjust.
1146 * Sometimes the "hits" counter is a bit more than the
1147 * references, for example, x references but x + 1 hits.
1148 * To not report invalid hit values in this case we treat
1149 * that as misses equal to references.
1150 */
1151 /* First compute the number of cache references measured */
1152 counts.hits_after -= counts.hits_before;
1153 /* Next convert references to cache hits */
1154 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1155 } else {
1156 counts.hits_after -= counts.hits_before;
1157 }
1158
1159 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1160out:
1161 plr->thread_done = 1;
1162 wake_up_interruptible(&plr->lock_thread_wq);
1163 return 0;
1164}
1165
1166/**
1167 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1168 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1169 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1170 *
1171 * The measurement of latency to access a pseudo-locked region should be
1172 * done from a cpu that is associated with that pseudo-locked region.
1173 * Determine which cpu is associated with this region and start a thread on
1174 * that cpu to perform the measurement, wait for that thread to complete.
1175 *
1176 * Return: 0 on success, <0 on failure
1177 */
1178static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1179{
1180 struct pseudo_lock_region *plr = rdtgrp->plr;
1181 struct task_struct *thread;
1182 unsigned int cpu;
1183 int ret = -1;
1184
1185 cpus_read_lock();
1186 mutex_lock(&rdtgroup_mutex);
1187
1188 if (rdtgrp->flags & RDT_DELETED) {
1189 ret = -ENODEV;
1190 goto out;
1191 }
1192
1193 if (!plr->d) {
1194 ret = -ENODEV;
1195 goto out;
1196 }
1197
1198 plr->thread_done = 0;
1199 cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1200 if (!cpu_online(cpu)) {
1201 ret = -ENODEV;
1202 goto out;
1203 }
1204
1205 plr->cpu = cpu;
1206
1207 if (sel == 1)
1208 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1209 cpu_to_node(cpu),
1210 "pseudo_lock_measure/%u",
1211 cpu);
1212 else if (sel == 2)
1213 thread = kthread_create_on_node(measure_l2_residency, plr,
1214 cpu_to_node(cpu),
1215 "pseudo_lock_measure/%u",
1216 cpu);
1217 else if (sel == 3)
1218 thread = kthread_create_on_node(measure_l3_residency, plr,
1219 cpu_to_node(cpu),
1220 "pseudo_lock_measure/%u",
1221 cpu);
1222 else
1223 goto out;
1224
1225 if (IS_ERR(thread)) {
1226 ret = PTR_ERR(thread);
1227 goto out;
1228 }
1229 kthread_bind(thread, cpu);
1230 wake_up_process(thread);
1231
1232 ret = wait_event_interruptible(plr->lock_thread_wq,
1233 plr->thread_done == 1);
1234 if (ret < 0)
1235 goto out;
1236
1237 ret = 0;
1238
1239out:
1240 mutex_unlock(&rdtgroup_mutex);
1241 cpus_read_unlock();
1242 return ret;
1243}
1244
1245static ssize_t pseudo_lock_measure_trigger(struct file *file,
1246 const char __user *user_buf,
1247 size_t count, loff_t *ppos)
1248{
1249 struct rdtgroup *rdtgrp = file->private_data;
1250 size_t buf_size;
1251 char buf[32];
1252 int ret;
1253 int sel;
1254
1255 buf_size = min(count, (sizeof(buf) - 1));
1256 if (copy_from_user(buf, user_buf, buf_size))
1257 return -EFAULT;
1258
1259 buf[buf_size] = '\0';
1260 ret = kstrtoint(buf, 10, &sel);
1261 if (ret == 0) {
1262 if (sel != 1 && sel != 2 && sel != 3)
1263 return -EINVAL;
1264 ret = debugfs_file_get(file->f_path.dentry);
1265 if (ret)
1266 return ret;
1267 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1268 if (ret == 0)
1269 ret = count;
1270 debugfs_file_put(file->f_path.dentry);
1271 }
1272
1273 return ret;
1274}
1275
1276static const struct file_operations pseudo_measure_fops = {
1277 .write = pseudo_lock_measure_trigger,
1278 .open = simple_open,
1279 .llseek = default_llseek,
1280};
1281
1282/**
1283 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1284 * @rdtgrp: resource group to which pseudo-lock region belongs
1285 *
1286 * Called when a resource group in the pseudo-locksetup mode receives a
1287 * valid schemata that should be pseudo-locked. Since the resource group is
1288 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1289 * allocated and initialized with the essential information. If a failure
1290 * occurs the resource group remains in the pseudo-locksetup mode with the
1291 * &struct pseudo_lock_region associated with it, but cleared from all
1292 * information and ready for the user to re-attempt pseudo-locking by
1293 * writing the schemata again.
1294 *
1295 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1296 * on failure. Descriptive error will be written to last_cmd_status buffer.
1297 */
1298int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1299{
1300 struct pseudo_lock_region *plr = rdtgrp->plr;
1301 struct task_struct *thread;
1302 unsigned int new_minor;
1303 struct device *dev;
1304 int ret;
1305
1306 ret = pseudo_lock_region_alloc(plr);
1307 if (ret < 0)
1308 return ret;
1309
1310 ret = pseudo_lock_cstates_constrain(plr);
1311 if (ret < 0) {
1312 ret = -EINVAL;
1313 goto out_region;
1314 }
1315
1316 plr->thread_done = 0;
1317
1318 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1319 cpu_to_node(plr->cpu),
1320 "pseudo_lock/%u", plr->cpu);
1321 if (IS_ERR(thread)) {
1322 ret = PTR_ERR(thread);
1323 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1324 goto out_cstates;
1325 }
1326
1327 kthread_bind(thread, plr->cpu);
1328 wake_up_process(thread);
1329
1330 ret = wait_event_interruptible(plr->lock_thread_wq,
1331 plr->thread_done == 1);
1332 if (ret < 0) {
1333 /*
1334 * If the thread does not get on the CPU for whatever
1335 * reason and the process which sets up the region is
1336 * interrupted then this will leave the thread in runnable
1337 * state and once it gets on the CPU it will dereference
1338 * the cleared, but not freed, plr struct resulting in an
1339 * empty pseudo-locking loop.
1340 */
1341 rdt_last_cmd_puts("Locking thread interrupted\n");
1342 goto out_cstates;
1343 }
1344
1345 ret = pseudo_lock_minor_get(&new_minor);
1346 if (ret < 0) {
1347 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1348 goto out_cstates;
1349 }
1350
1351 /*
1352 * Unlock access but do not release the reference. The
1353 * pseudo-locked region will still be here on return.
1354 *
1355 * The mutex has to be released temporarily to avoid a potential
1356 * deadlock with the mm->mmap_lock which is obtained in the
1357 * device_create() and debugfs_create_dir() callpath below as well as
1358 * before the mmap() callback is called.
1359 */
1360 mutex_unlock(&rdtgroup_mutex);
1361
1362 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1363 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1364 debugfs_resctrl);
1365 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1366 debugfs_create_file("pseudo_lock_measure", 0200,
1367 plr->debugfs_dir, rdtgrp,
1368 &pseudo_measure_fops);
1369 }
1370
1371 dev = device_create(&pseudo_lock_class, NULL,
1372 MKDEV(pseudo_lock_major, new_minor),
1373 rdtgrp, "%s", rdtgrp->kn->name);
1374
1375 mutex_lock(&rdtgroup_mutex);
1376
1377 if (IS_ERR(dev)) {
1378 ret = PTR_ERR(dev);
1379 rdt_last_cmd_printf("Failed to create character device: %d\n",
1380 ret);
1381 goto out_debugfs;
1382 }
1383
1384 /* We released the mutex - check if group was removed while we did so */
1385 if (rdtgrp->flags & RDT_DELETED) {
1386 ret = -ENODEV;
1387 goto out_device;
1388 }
1389
1390 plr->minor = new_minor;
1391
1392 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1393 closid_free(rdtgrp->closid);
1394 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1395 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1396
1397 ret = 0;
1398 goto out;
1399
1400out_device:
1401 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1402out_debugfs:
1403 debugfs_remove_recursive(plr->debugfs_dir);
1404 pseudo_lock_minor_release(new_minor);
1405out_cstates:
1406 pseudo_lock_cstates_relax(plr);
1407out_region:
1408 pseudo_lock_region_clear(plr);
1409out:
1410 return ret;
1411}
1412
1413/**
1414 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1415 * @rdtgrp: resource group to which the pseudo-locked region belongs
1416 *
1417 * The removal of a pseudo-locked region can be initiated when the resource
1418 * group is removed from user space via a "rmdir" from userspace or the
1419 * unmount of the resctrl filesystem. On removal the resource group does
1420 * not go back to pseudo-locksetup mode before it is removed, instead it is
1421 * removed directly. There is thus asymmetry with the creation where the
1422 * &struct pseudo_lock_region is removed here while it was not created in
1423 * rdtgroup_pseudo_lock_create().
1424 *
1425 * Return: void
1426 */
1427void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1428{
1429 struct pseudo_lock_region *plr = rdtgrp->plr;
1430
1431 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1432 /*
1433 * Default group cannot be a pseudo-locked region so we can
1434 * free closid here.
1435 */
1436 closid_free(rdtgrp->closid);
1437 goto free;
1438 }
1439
1440 pseudo_lock_cstates_relax(plr);
1441 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1442 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1443 pseudo_lock_minor_release(plr->minor);
1444
1445free:
1446 pseudo_lock_free(rdtgrp);
1447}
1448
1449static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1450{
1451 struct rdtgroup *rdtgrp;
1452
1453 mutex_lock(&rdtgroup_mutex);
1454
1455 rdtgrp = region_find_by_minor(iminor(inode));
1456 if (!rdtgrp) {
1457 mutex_unlock(&rdtgroup_mutex);
1458 return -ENODEV;
1459 }
1460
1461 filp->private_data = rdtgrp;
1462 atomic_inc(&rdtgrp->waitcount);
1463 /* Perform a non-seekable open - llseek is not supported */
1464 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1465
1466 mutex_unlock(&rdtgroup_mutex);
1467
1468 return 0;
1469}
1470
1471static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1472{
1473 struct rdtgroup *rdtgrp;
1474
1475 mutex_lock(&rdtgroup_mutex);
1476 rdtgrp = filp->private_data;
1477 WARN_ON(!rdtgrp);
1478 if (!rdtgrp) {
1479 mutex_unlock(&rdtgroup_mutex);
1480 return -ENODEV;
1481 }
1482 filp->private_data = NULL;
1483 atomic_dec(&rdtgrp->waitcount);
1484 mutex_unlock(&rdtgroup_mutex);
1485 return 0;
1486}
1487
1488static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1489{
1490 /* Not supported */
1491 return -EINVAL;
1492}
1493
1494static const struct vm_operations_struct pseudo_mmap_ops = {
1495 .mremap = pseudo_lock_dev_mremap,
1496};
1497
1498static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1499{
1500 unsigned long vsize = vma->vm_end - vma->vm_start;
1501 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1502 struct pseudo_lock_region *plr;
1503 struct rdtgroup *rdtgrp;
1504 unsigned long physical;
1505 unsigned long psize;
1506
1507 mutex_lock(&rdtgroup_mutex);
1508
1509 rdtgrp = filp->private_data;
1510 WARN_ON(!rdtgrp);
1511 if (!rdtgrp) {
1512 mutex_unlock(&rdtgroup_mutex);
1513 return -ENODEV;
1514 }
1515
1516 plr = rdtgrp->plr;
1517
1518 if (!plr->d) {
1519 mutex_unlock(&rdtgroup_mutex);
1520 return -ENODEV;
1521 }
1522
1523 /*
1524 * Task is required to run with affinity to the cpus associated
1525 * with the pseudo-locked region. If this is not the case the task
1526 * may be scheduled elsewhere and invalidate entries in the
1527 * pseudo-locked region.
1528 */
1529 if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1530 mutex_unlock(&rdtgroup_mutex);
1531 return -EINVAL;
1532 }
1533
1534 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1535 psize = plr->size - off;
1536
1537 if (off > plr->size) {
1538 mutex_unlock(&rdtgroup_mutex);
1539 return -ENOSPC;
1540 }
1541
1542 /*
1543 * Ensure changes are carried directly to the memory being mapped,
1544 * do not allow copy-on-write mapping.
1545 */
1546 if (!(vma->vm_flags & VM_SHARED)) {
1547 mutex_unlock(&rdtgroup_mutex);
1548 return -EINVAL;
1549 }
1550
1551 if (vsize > psize) {
1552 mutex_unlock(&rdtgroup_mutex);
1553 return -ENOSPC;
1554 }
1555
1556 memset(plr->kmem + off, 0, vsize);
1557
1558 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1559 vsize, vma->vm_page_prot)) {
1560 mutex_unlock(&rdtgroup_mutex);
1561 return -EAGAIN;
1562 }
1563 vma->vm_ops = &pseudo_mmap_ops;
1564 mutex_unlock(&rdtgroup_mutex);
1565 return 0;
1566}
1567
1568static const struct file_operations pseudo_lock_dev_fops = {
1569 .owner = THIS_MODULE,
1570 .read = NULL,
1571 .write = NULL,
1572 .open = pseudo_lock_dev_open,
1573 .release = pseudo_lock_dev_release,
1574 .mmap = pseudo_lock_dev_mmap,
1575};
1576
1577int rdt_pseudo_lock_init(void)
1578{
1579 int ret;
1580
1581 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1582 if (ret < 0)
1583 return ret;
1584
1585 pseudo_lock_major = ret;
1586
1587 ret = class_register(&pseudo_lock_class);
1588 if (ret) {
1589 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1590 return ret;
1591 }
1592
1593 return 0;
1594}
1595
1596void rdt_pseudo_lock_release(void)
1597{
1598 class_unregister(&pseudo_lock_class);
1599 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1600 pseudo_lock_major = 0;
1601}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/cacheinfo.h>
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/debugfs.h>
18#include <linux/kthread.h>
19#include <linux/mman.h>
20#include <linux/perf_event.h>
21#include <linux/pm_qos.h>
22#include <linux/slab.h>
23#include <linux/uaccess.h>
24
25#include <asm/cacheflush.h>
26#include <asm/intel-family.h>
27#include <asm/resctrl.h>
28#include <asm/perf_event.h>
29
30#include "../../events/perf_event.h" /* For X86_CONFIG() */
31#include "internal.h"
32
33#define CREATE_TRACE_POINTS
34#include "pseudo_lock_event.h"
35
36/*
37 * The bits needed to disable hardware prefetching varies based on the
38 * platform. During initialization we will discover which bits to use.
39 */
40static u64 prefetch_disable_bits;
41
42/*
43 * Major number assigned to and shared by all devices exposing
44 * pseudo-locked regions.
45 */
46static unsigned int pseudo_lock_major;
47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
48static struct class *pseudo_lock_class;
49
50/**
51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
52 * @void: It takes no parameters.
53 *
54 * Capture the list of platforms that have been validated to support
55 * pseudo-locking. This includes testing to ensure pseudo-locked regions
56 * with low cache miss rates can be created under variety of load conditions
57 * as well as that these pseudo-locked regions can maintain their low cache
58 * miss rates under variety of load conditions for significant lengths of time.
59 *
60 * After a platform has been validated to support pseudo-locking its
61 * hardware prefetch disable bits are included here as they are documented
62 * in the SDM.
63 *
64 * When adding a platform here also add support for its cache events to
65 * measure_cycles_perf_fn()
66 *
67 * Return:
68 * If platform is supported, the bits to disable hardware prefetchers, 0
69 * if platform is not supported.
70 */
71static u64 get_prefetch_disable_bits(void)
72{
73 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
74 boot_cpu_data.x86 != 6)
75 return 0;
76
77 switch (boot_cpu_data.x86_model) {
78 case INTEL_FAM6_BROADWELL_X:
79 /*
80 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
81 * as:
82 * 0 L2 Hardware Prefetcher Disable (R/W)
83 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
84 * 2 DCU Hardware Prefetcher Disable (R/W)
85 * 3 DCU IP Prefetcher Disable (R/W)
86 * 63:4 Reserved
87 */
88 return 0xF;
89 case INTEL_FAM6_ATOM_GOLDMONT:
90 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
91 /*
92 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
93 * as:
94 * 0 L2 Hardware Prefetcher Disable (R/W)
95 * 1 Reserved
96 * 2 DCU Hardware Prefetcher Disable (R/W)
97 * 63:3 Reserved
98 */
99 return 0x5;
100 }
101
102 return 0;
103}
104
105/**
106 * pseudo_lock_minor_get - Obtain available minor number
107 * @minor: Pointer to where new minor number will be stored
108 *
109 * A bitmask is used to track available minor numbers. Here the next free
110 * minor number is marked as unavailable and returned.
111 *
112 * Return: 0 on success, <0 on failure.
113 */
114static int pseudo_lock_minor_get(unsigned int *minor)
115{
116 unsigned long first_bit;
117
118 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
119
120 if (first_bit == MINORBITS)
121 return -ENOSPC;
122
123 __clear_bit(first_bit, &pseudo_lock_minor_avail);
124 *minor = first_bit;
125
126 return 0;
127}
128
129/**
130 * pseudo_lock_minor_release - Return minor number to available
131 * @minor: The minor number made available
132 */
133static void pseudo_lock_minor_release(unsigned int minor)
134{
135 __set_bit(minor, &pseudo_lock_minor_avail);
136}
137
138/**
139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
140 * @minor: The minor number of the device representing pseudo-locked region
141 *
142 * When the character device is accessed we need to determine which
143 * pseudo-locked region it belongs to. This is done by matching the minor
144 * number of the device to the pseudo-locked region it belongs.
145 *
146 * Minor numbers are assigned at the time a pseudo-locked region is associated
147 * with a cache instance.
148 *
149 * Return: On success return pointer to resource group owning the pseudo-locked
150 * region, NULL on failure.
151 */
152static struct rdtgroup *region_find_by_minor(unsigned int minor)
153{
154 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
155
156 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
157 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
158 rdtgrp_match = rdtgrp;
159 break;
160 }
161 }
162 return rdtgrp_match;
163}
164
165/**
166 * struct pseudo_lock_pm_req - A power management QoS request list entry
167 * @list: Entry within the @pm_reqs list for a pseudo-locked region
168 * @req: PM QoS request
169 */
170struct pseudo_lock_pm_req {
171 struct list_head list;
172 struct dev_pm_qos_request req;
173};
174
175static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
176{
177 struct pseudo_lock_pm_req *pm_req, *next;
178
179 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
180 dev_pm_qos_remove_request(&pm_req->req);
181 list_del(&pm_req->list);
182 kfree(pm_req);
183 }
184}
185
186/**
187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
188 * @plr: Pseudo-locked region
189 *
190 * To prevent the cache from being affected by power management entering
191 * C6 has to be avoided. This is accomplished by requesting a latency
192 * requirement lower than lowest C6 exit latency of all supported
193 * platforms as found in the cpuidle state tables in the intel_idle driver.
194 * At this time it is possible to do so with a single latency requirement
195 * for all supported platforms.
196 *
197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
198 * the ACPI latencies need to be considered while keeping in mind that C2
199 * may be set to map to deeper sleep states. In this case the latency
200 * requirement needs to prevent entering C2 also.
201 *
202 * Return: 0 on success, <0 on failure
203 */
204static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
205{
206 struct pseudo_lock_pm_req *pm_req;
207 int cpu;
208 int ret;
209
210 for_each_cpu(cpu, &plr->d->cpu_mask) {
211 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
212 if (!pm_req) {
213 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
214 ret = -ENOMEM;
215 goto out_err;
216 }
217 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
218 &pm_req->req,
219 DEV_PM_QOS_RESUME_LATENCY,
220 30);
221 if (ret < 0) {
222 rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
223 cpu);
224 kfree(pm_req);
225 ret = -1;
226 goto out_err;
227 }
228 list_add(&pm_req->list, &plr->pm_reqs);
229 }
230
231 return 0;
232
233out_err:
234 pseudo_lock_cstates_relax(plr);
235 return ret;
236}
237
238/**
239 * pseudo_lock_region_clear - Reset pseudo-lock region data
240 * @plr: pseudo-lock region
241 *
242 * All content of the pseudo-locked region is reset - any memory allocated
243 * freed.
244 *
245 * Return: void
246 */
247static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
248{
249 plr->size = 0;
250 plr->line_size = 0;
251 kfree(plr->kmem);
252 plr->kmem = NULL;
253 plr->r = NULL;
254 if (plr->d)
255 plr->d->plr = NULL;
256 plr->d = NULL;
257 plr->cbm = 0;
258 plr->debugfs_dir = NULL;
259}
260
261/**
262 * pseudo_lock_region_init - Initialize pseudo-lock region information
263 * @plr: pseudo-lock region
264 *
265 * Called after user provided a schemata to be pseudo-locked. From the
266 * schemata the &struct pseudo_lock_region is on entry already initialized
267 * with the resource, domain, and capacity bitmask. Here the information
268 * required for pseudo-locking is deduced from this data and &struct
269 * pseudo_lock_region initialized further. This information includes:
270 * - size in bytes of the region to be pseudo-locked
271 * - cache line size to know the stride with which data needs to be accessed
272 * to be pseudo-locked
273 * - a cpu associated with the cache instance on which the pseudo-locking
274 * flow can be executed
275 *
276 * Return: 0 on success, <0 on failure. Descriptive error will be written
277 * to last_cmd_status buffer.
278 */
279static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
280{
281 struct cpu_cacheinfo *ci;
282 int ret;
283 int i;
284
285 /* Pick the first cpu we find that is associated with the cache. */
286 plr->cpu = cpumask_first(&plr->d->cpu_mask);
287
288 if (!cpu_online(plr->cpu)) {
289 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
290 plr->cpu);
291 ret = -ENODEV;
292 goto out_region;
293 }
294
295 ci = get_cpu_cacheinfo(plr->cpu);
296
297 plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
298
299 for (i = 0; i < ci->num_leaves; i++) {
300 if (ci->info_list[i].level == plr->r->cache_level) {
301 plr->line_size = ci->info_list[i].coherency_line_size;
302 return 0;
303 }
304 }
305
306 ret = -1;
307 rdt_last_cmd_puts("Unable to determine cache line size\n");
308out_region:
309 pseudo_lock_region_clear(plr);
310 return ret;
311}
312
313/**
314 * pseudo_lock_init - Initialize a pseudo-lock region
315 * @rdtgrp: resource group to which new pseudo-locked region will belong
316 *
317 * A pseudo-locked region is associated with a resource group. When this
318 * association is created the pseudo-locked region is initialized. The
319 * details of the pseudo-locked region are not known at this time so only
320 * allocation is done and association established.
321 *
322 * Return: 0 on success, <0 on failure
323 */
324static int pseudo_lock_init(struct rdtgroup *rdtgrp)
325{
326 struct pseudo_lock_region *plr;
327
328 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
329 if (!plr)
330 return -ENOMEM;
331
332 init_waitqueue_head(&plr->lock_thread_wq);
333 INIT_LIST_HEAD(&plr->pm_reqs);
334 rdtgrp->plr = plr;
335 return 0;
336}
337
338/**
339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
340 * @plr: pseudo-lock region
341 *
342 * Initialize the details required to set up the pseudo-locked region and
343 * allocate the contiguous memory that will be pseudo-locked to the cache.
344 *
345 * Return: 0 on success, <0 on failure. Descriptive error will be written
346 * to last_cmd_status buffer.
347 */
348static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
349{
350 int ret;
351
352 ret = pseudo_lock_region_init(plr);
353 if (ret < 0)
354 return ret;
355
356 /*
357 * We do not yet support contiguous regions larger than
358 * KMALLOC_MAX_SIZE.
359 */
360 if (plr->size > KMALLOC_MAX_SIZE) {
361 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
362 ret = -E2BIG;
363 goto out_region;
364 }
365
366 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
367 if (!plr->kmem) {
368 rdt_last_cmd_puts("Unable to allocate memory\n");
369 ret = -ENOMEM;
370 goto out_region;
371 }
372
373 ret = 0;
374 goto out;
375out_region:
376 pseudo_lock_region_clear(plr);
377out:
378 return ret;
379}
380
381/**
382 * pseudo_lock_free - Free a pseudo-locked region
383 * @rdtgrp: resource group to which pseudo-locked region belonged
384 *
385 * The pseudo-locked region's resources have already been released, or not
386 * yet created at this point. Now it can be freed and disassociated from the
387 * resource group.
388 *
389 * Return: void
390 */
391static void pseudo_lock_free(struct rdtgroup *rdtgrp)
392{
393 pseudo_lock_region_clear(rdtgrp->plr);
394 kfree(rdtgrp->plr);
395 rdtgrp->plr = NULL;
396}
397
398/**
399 * pseudo_lock_fn - Load kernel memory into cache
400 * @_rdtgrp: resource group to which pseudo-lock region belongs
401 *
402 * This is the core pseudo-locking flow.
403 *
404 * First we ensure that the kernel memory cannot be found in the cache.
405 * Then, while taking care that there will be as little interference as
406 * possible, the memory to be loaded is accessed while core is running
407 * with class of service set to the bitmask of the pseudo-locked region.
408 * After this is complete no future CAT allocations will be allowed to
409 * overlap with this bitmask.
410 *
411 * Local register variables are utilized to ensure that the memory region
412 * to be locked is the only memory access made during the critical locking
413 * loop.
414 *
415 * Return: 0. Waiter on waitqueue will be woken on completion.
416 */
417static int pseudo_lock_fn(void *_rdtgrp)
418{
419 struct rdtgroup *rdtgrp = _rdtgrp;
420 struct pseudo_lock_region *plr = rdtgrp->plr;
421 u32 rmid_p, closid_p;
422 unsigned long i;
423#ifdef CONFIG_KASAN
424 /*
425 * The registers used for local register variables are also used
426 * when KASAN is active. When KASAN is active we use a regular
427 * variable to ensure we always use a valid pointer, but the cost
428 * is that this variable will enter the cache through evicting the
429 * memory we are trying to lock into the cache. Thus expect lower
430 * pseudo-locking success rate when KASAN is active.
431 */
432 unsigned int line_size;
433 unsigned int size;
434 void *mem_r;
435#else
436 register unsigned int line_size asm("esi");
437 register unsigned int size asm("edi");
438 register void *mem_r asm(_ASM_BX);
439#endif /* CONFIG_KASAN */
440
441 /*
442 * Make sure none of the allocated memory is cached. If it is we
443 * will get a cache hit in below loop from outside of pseudo-locked
444 * region.
445 * wbinvd (as opposed to clflush/clflushopt) is required to
446 * increase likelihood that allocated cache portion will be filled
447 * with associated memory.
448 */
449 native_wbinvd();
450
451 /*
452 * Always called with interrupts enabled. By disabling interrupts
453 * ensure that we will not be preempted during this critical section.
454 */
455 local_irq_disable();
456
457 /*
458 * Call wrmsr and rdmsr as directly as possible to avoid tracing
459 * clobbering local register variables or affecting cache accesses.
460 *
461 * Disable the hardware prefetcher so that when the end of the memory
462 * being pseudo-locked is reached the hardware will not read beyond
463 * the buffer and evict pseudo-locked memory read earlier from the
464 * cache.
465 */
466 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
467 closid_p = this_cpu_read(pqr_state.cur_closid);
468 rmid_p = this_cpu_read(pqr_state.cur_rmid);
469 mem_r = plr->kmem;
470 size = plr->size;
471 line_size = plr->line_size;
472 /*
473 * Critical section begin: start by writing the closid associated
474 * with the capacity bitmask of the cache region being
475 * pseudo-locked followed by reading of kernel memory to load it
476 * into the cache.
477 */
478 __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
479 /*
480 * Cache was flushed earlier. Now access kernel memory to read it
481 * into cache region associated with just activated plr->closid.
482 * Loop over data twice:
483 * - In first loop the cache region is shared with the page walker
484 * as it populates the paging structure caches (including TLB).
485 * - In the second loop the paging structure caches are used and
486 * cache region is populated with the memory being referenced.
487 */
488 for (i = 0; i < size; i += PAGE_SIZE) {
489 /*
490 * Add a barrier to prevent speculative execution of this
491 * loop reading beyond the end of the buffer.
492 */
493 rmb();
494 asm volatile("mov (%0,%1,1), %%eax\n\t"
495 :
496 : "r" (mem_r), "r" (i)
497 : "%eax", "memory");
498 }
499 for (i = 0; i < size; i += line_size) {
500 /*
501 * Add a barrier to prevent speculative execution of this
502 * loop reading beyond the end of the buffer.
503 */
504 rmb();
505 asm volatile("mov (%0,%1,1), %%eax\n\t"
506 :
507 : "r" (mem_r), "r" (i)
508 : "%eax", "memory");
509 }
510 /*
511 * Critical section end: restore closid with capacity bitmask that
512 * does not overlap with pseudo-locked region.
513 */
514 __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
515
516 /* Re-enable the hardware prefetcher(s) */
517 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
518 local_irq_enable();
519
520 plr->thread_done = 1;
521 wake_up_interruptible(&plr->lock_thread_wq);
522 return 0;
523}
524
525/**
526 * rdtgroup_monitor_in_progress - Test if monitoring in progress
527 * @rdtgrp: resource group being queried
528 *
529 * Return: 1 if monitor groups have been created for this resource
530 * group, 0 otherwise.
531 */
532static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
533{
534 return !list_empty(&rdtgrp->mon.crdtgrp_list);
535}
536
537/**
538 * rdtgroup_locksetup_user_restrict - Restrict user access to group
539 * @rdtgrp: resource group needing access restricted
540 *
541 * A resource group used for cache pseudo-locking cannot have cpus or tasks
542 * assigned to it. This is communicated to the user by restricting access
543 * to all the files that can be used to make such changes.
544 *
545 * Permissions restored with rdtgroup_locksetup_user_restore()
546 *
547 * Return: 0 on success, <0 on failure. If a failure occurs during the
548 * restriction of access an attempt will be made to restore permissions but
549 * the state of the mode of these files will be uncertain when a failure
550 * occurs.
551 */
552static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
553{
554 int ret;
555
556 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
557 if (ret)
558 return ret;
559
560 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
561 if (ret)
562 goto err_tasks;
563
564 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
565 if (ret)
566 goto err_cpus;
567
568 if (rdt_mon_capable) {
569 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
570 if (ret)
571 goto err_cpus_list;
572 }
573
574 ret = 0;
575 goto out;
576
577err_cpus_list:
578 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
579err_cpus:
580 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
581err_tasks:
582 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
583out:
584 return ret;
585}
586
587/**
588 * rdtgroup_locksetup_user_restore - Restore user access to group
589 * @rdtgrp: resource group needing access restored
590 *
591 * Restore all file access previously removed using
592 * rdtgroup_locksetup_user_restrict()
593 *
594 * Return: 0 on success, <0 on failure. If a failure occurs during the
595 * restoration of access an attempt will be made to restrict permissions
596 * again but the state of the mode of these files will be uncertain when
597 * a failure occurs.
598 */
599static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
600{
601 int ret;
602
603 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
604 if (ret)
605 return ret;
606
607 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
608 if (ret)
609 goto err_tasks;
610
611 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
612 if (ret)
613 goto err_cpus;
614
615 if (rdt_mon_capable) {
616 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
617 if (ret)
618 goto err_cpus_list;
619 }
620
621 ret = 0;
622 goto out;
623
624err_cpus_list:
625 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
626err_cpus:
627 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
628err_tasks:
629 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
630out:
631 return ret;
632}
633
634/**
635 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
636 * @rdtgrp: resource group requested to enter locksetup mode
637 *
638 * A resource group enters locksetup mode to reflect that it would be used
639 * to represent a pseudo-locked region and is in the process of being set
640 * up to do so. A resource group used for a pseudo-locked region would
641 * lose the closid associated with it so we cannot allow it to have any
642 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
643 * future. Monitoring of a pseudo-locked region is not allowed either.
644 *
645 * The above and more restrictions on a pseudo-locked region are checked
646 * for and enforced before the resource group enters the locksetup mode.
647 *
648 * Returns: 0 if the resource group successfully entered locksetup mode, <0
649 * on failure. On failure the last_cmd_status buffer is updated with text to
650 * communicate details of failure to the user.
651 */
652int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
653{
654 int ret;
655
656 /*
657 * The default resource group can neither be removed nor lose the
658 * default closid associated with it.
659 */
660 if (rdtgrp == &rdtgroup_default) {
661 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
662 return -EINVAL;
663 }
664
665 /*
666 * Cache Pseudo-locking not supported when CDP is enabled.
667 *
668 * Some things to consider if you would like to enable this
669 * support (using L3 CDP as example):
670 * - When CDP is enabled two separate resources are exposed,
671 * L3DATA and L3CODE, but they are actually on the same cache.
672 * The implication for pseudo-locking is that if a
673 * pseudo-locked region is created on a domain of one
674 * resource (eg. L3CODE), then a pseudo-locked region cannot
675 * be created on that same domain of the other resource
676 * (eg. L3DATA). This is because the creation of a
677 * pseudo-locked region involves a call to wbinvd that will
678 * affect all cache allocations on particular domain.
679 * - Considering the previous, it may be possible to only
680 * expose one of the CDP resources to pseudo-locking and
681 * hide the other. For example, we could consider to only
682 * expose L3DATA and since the L3 cache is unified it is
683 * still possible to place instructions there are execute it.
684 * - If only one region is exposed to pseudo-locking we should
685 * still keep in mind that availability of a portion of cache
686 * for pseudo-locking should take into account both resources.
687 * Similarly, if a pseudo-locked region is created in one
688 * resource, the portion of cache used by it should be made
689 * unavailable to all future allocations from both resources.
690 */
691 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
692 rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
693 rdt_last_cmd_puts("CDP enabled\n");
694 return -EINVAL;
695 }
696
697 /*
698 * Not knowing the bits to disable prefetching implies that this
699 * platform does not support Cache Pseudo-Locking.
700 */
701 prefetch_disable_bits = get_prefetch_disable_bits();
702 if (prefetch_disable_bits == 0) {
703 rdt_last_cmd_puts("Pseudo-locking not supported\n");
704 return -EINVAL;
705 }
706
707 if (rdtgroup_monitor_in_progress(rdtgrp)) {
708 rdt_last_cmd_puts("Monitoring in progress\n");
709 return -EINVAL;
710 }
711
712 if (rdtgroup_tasks_assigned(rdtgrp)) {
713 rdt_last_cmd_puts("Tasks assigned to resource group\n");
714 return -EINVAL;
715 }
716
717 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
718 rdt_last_cmd_puts("CPUs assigned to resource group\n");
719 return -EINVAL;
720 }
721
722 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
723 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
724 return -EIO;
725 }
726
727 ret = pseudo_lock_init(rdtgrp);
728 if (ret) {
729 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
730 goto out_release;
731 }
732
733 /*
734 * If this system is capable of monitoring a rmid would have been
735 * allocated when the control group was created. This is not needed
736 * anymore when this group would be used for pseudo-locking. This
737 * is safe to call on platforms not capable of monitoring.
738 */
739 free_rmid(rdtgrp->mon.rmid);
740
741 ret = 0;
742 goto out;
743
744out_release:
745 rdtgroup_locksetup_user_restore(rdtgrp);
746out:
747 return ret;
748}
749
750/**
751 * rdtgroup_locksetup_exit - resource group exist locksetup mode
752 * @rdtgrp: resource group
753 *
754 * When a resource group exits locksetup mode the earlier restrictions are
755 * lifted.
756 *
757 * Return: 0 on success, <0 on failure
758 */
759int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
760{
761 int ret;
762
763 if (rdt_mon_capable) {
764 ret = alloc_rmid();
765 if (ret < 0) {
766 rdt_last_cmd_puts("Out of RMIDs\n");
767 return ret;
768 }
769 rdtgrp->mon.rmid = ret;
770 }
771
772 ret = rdtgroup_locksetup_user_restore(rdtgrp);
773 if (ret) {
774 free_rmid(rdtgrp->mon.rmid);
775 return ret;
776 }
777
778 pseudo_lock_free(rdtgrp);
779 return 0;
780}
781
782/**
783 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
784 * @d: RDT domain
785 * @cbm: CBM to test
786 *
787 * @d represents a cache instance and @cbm a capacity bitmask that is
788 * considered for it. Determine if @cbm overlaps with any existing
789 * pseudo-locked region on @d.
790 *
791 * @cbm is unsigned long, even if only 32 bits are used, to make the
792 * bitmap functions work correctly.
793 *
794 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
795 * otherwise.
796 */
797bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
798{
799 unsigned int cbm_len;
800 unsigned long cbm_b;
801
802 if (d->plr) {
803 cbm_len = d->plr->r->cache.cbm_len;
804 cbm_b = d->plr->cbm;
805 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
806 return true;
807 }
808 return false;
809}
810
811/**
812 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
813 * @d: RDT domain under test
814 *
815 * The setup of a pseudo-locked region affects all cache instances within
816 * the hierarchy of the region. It is thus essential to know if any
817 * pseudo-locked regions exist within a cache hierarchy to prevent any
818 * attempts to create new pseudo-locked regions in the same hierarchy.
819 *
820 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
821 * if it is not possible to test due to memory allocation issue,
822 * false otherwise.
823 */
824bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
825{
826 cpumask_var_t cpu_with_psl;
827 struct rdt_resource *r;
828 struct rdt_domain *d_i;
829 bool ret = false;
830
831 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
832 return true;
833
834 /*
835 * First determine which cpus have pseudo-locked regions
836 * associated with them.
837 */
838 for_each_alloc_enabled_rdt_resource(r) {
839 list_for_each_entry(d_i, &r->domains, list) {
840 if (d_i->plr)
841 cpumask_or(cpu_with_psl, cpu_with_psl,
842 &d_i->cpu_mask);
843 }
844 }
845
846 /*
847 * Next test if new pseudo-locked region would intersect with
848 * existing region.
849 */
850 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
851 ret = true;
852
853 free_cpumask_var(cpu_with_psl);
854 return ret;
855}
856
857/**
858 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
859 * @_plr: pseudo-lock region to measure
860 *
861 * There is no deterministic way to test if a memory region is cached. One
862 * way is to measure how long it takes to read the memory, the speed of
863 * access is a good way to learn how close to the cpu the data was. Even
864 * more, if the prefetcher is disabled and the memory is read at a stride
865 * of half the cache line, then a cache miss will be easy to spot since the
866 * read of the first half would be significantly slower than the read of
867 * the second half.
868 *
869 * Return: 0. Waiter on waitqueue will be woken on completion.
870 */
871static int measure_cycles_lat_fn(void *_plr)
872{
873 struct pseudo_lock_region *plr = _plr;
874 unsigned long i;
875 u64 start, end;
876 void *mem_r;
877
878 local_irq_disable();
879 /*
880 * Disable hardware prefetchers.
881 */
882 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
883 mem_r = READ_ONCE(plr->kmem);
884 /*
885 * Dummy execute of the time measurement to load the needed
886 * instructions into the L1 instruction cache.
887 */
888 start = rdtsc_ordered();
889 for (i = 0; i < plr->size; i += 32) {
890 start = rdtsc_ordered();
891 asm volatile("mov (%0,%1,1), %%eax\n\t"
892 :
893 : "r" (mem_r), "r" (i)
894 : "%eax", "memory");
895 end = rdtsc_ordered();
896 trace_pseudo_lock_mem_latency((u32)(end - start));
897 }
898 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
899 local_irq_enable();
900 plr->thread_done = 1;
901 wake_up_interruptible(&plr->lock_thread_wq);
902 return 0;
903}
904
905/*
906 * Create a perf_event_attr for the hit and miss perf events that will
907 * be used during the performance measurement. A perf_event maintains
908 * a pointer to its perf_event_attr so a unique attribute structure is
909 * created for each perf_event.
910 *
911 * The actual configuration of the event is set right before use in order
912 * to use the X86_CONFIG macro.
913 */
914static struct perf_event_attr perf_miss_attr = {
915 .type = PERF_TYPE_RAW,
916 .size = sizeof(struct perf_event_attr),
917 .pinned = 1,
918 .disabled = 0,
919 .exclude_user = 1,
920};
921
922static struct perf_event_attr perf_hit_attr = {
923 .type = PERF_TYPE_RAW,
924 .size = sizeof(struct perf_event_attr),
925 .pinned = 1,
926 .disabled = 0,
927 .exclude_user = 1,
928};
929
930struct residency_counts {
931 u64 miss_before, hits_before;
932 u64 miss_after, hits_after;
933};
934
935static int measure_residency_fn(struct perf_event_attr *miss_attr,
936 struct perf_event_attr *hit_attr,
937 struct pseudo_lock_region *plr,
938 struct residency_counts *counts)
939{
940 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
941 struct perf_event *miss_event, *hit_event;
942 int hit_pmcnum, miss_pmcnum;
943 unsigned int line_size;
944 unsigned int size;
945 unsigned long i;
946 void *mem_r;
947 u64 tmp;
948
949 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
950 NULL, NULL, NULL);
951 if (IS_ERR(miss_event))
952 goto out;
953
954 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
955 NULL, NULL, NULL);
956 if (IS_ERR(hit_event))
957 goto out_miss;
958
959 local_irq_disable();
960 /*
961 * Check any possible error state of events used by performing
962 * one local read.
963 */
964 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
965 local_irq_enable();
966 goto out_hit;
967 }
968 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
969 local_irq_enable();
970 goto out_hit;
971 }
972
973 /*
974 * Disable hardware prefetchers.
975 */
976 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
977
978 /* Initialize rest of local variables */
979 /*
980 * Performance event has been validated right before this with
981 * interrupts disabled - it is thus safe to read the counter index.
982 */
983 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
984 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
985 line_size = READ_ONCE(plr->line_size);
986 mem_r = READ_ONCE(plr->kmem);
987 size = READ_ONCE(plr->size);
988
989 /*
990 * Read counter variables twice - first to load the instructions
991 * used in L1 cache, second to capture accurate value that does not
992 * include cache misses incurred because of instruction loads.
993 */
994 rdpmcl(hit_pmcnum, hits_before);
995 rdpmcl(miss_pmcnum, miss_before);
996 /*
997 * From SDM: Performing back-to-back fast reads are not guaranteed
998 * to be monotonic.
999 * Use LFENCE to ensure all previous instructions are retired
1000 * before proceeding.
1001 */
1002 rmb();
1003 rdpmcl(hit_pmcnum, hits_before);
1004 rdpmcl(miss_pmcnum, miss_before);
1005 /*
1006 * Use LFENCE to ensure all previous instructions are retired
1007 * before proceeding.
1008 */
1009 rmb();
1010 for (i = 0; i < size; i += line_size) {
1011 /*
1012 * Add a barrier to prevent speculative execution of this
1013 * loop reading beyond the end of the buffer.
1014 */
1015 rmb();
1016 asm volatile("mov (%0,%1,1), %%eax\n\t"
1017 :
1018 : "r" (mem_r), "r" (i)
1019 : "%eax", "memory");
1020 }
1021 /*
1022 * Use LFENCE to ensure all previous instructions are retired
1023 * before proceeding.
1024 */
1025 rmb();
1026 rdpmcl(hit_pmcnum, hits_after);
1027 rdpmcl(miss_pmcnum, miss_after);
1028 /*
1029 * Use LFENCE to ensure all previous instructions are retired
1030 * before proceeding.
1031 */
1032 rmb();
1033 /* Re-enable hardware prefetchers */
1034 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1035 local_irq_enable();
1036out_hit:
1037 perf_event_release_kernel(hit_event);
1038out_miss:
1039 perf_event_release_kernel(miss_event);
1040out:
1041 /*
1042 * All counts will be zero on failure.
1043 */
1044 counts->miss_before = miss_before;
1045 counts->hits_before = hits_before;
1046 counts->miss_after = miss_after;
1047 counts->hits_after = hits_after;
1048 return 0;
1049}
1050
1051static int measure_l2_residency(void *_plr)
1052{
1053 struct pseudo_lock_region *plr = _plr;
1054 struct residency_counts counts = {0};
1055
1056 /*
1057 * Non-architectural event for the Goldmont Microarchitecture
1058 * from Intel x86 Architecture Software Developer Manual (SDM):
1059 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1060 * Umask values:
1061 * L2_HIT 02H
1062 * L2_MISS 10H
1063 */
1064 switch (boot_cpu_data.x86_model) {
1065 case INTEL_FAM6_ATOM_GOLDMONT:
1066 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1067 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1068 .umask = 0x10);
1069 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1070 .umask = 0x2);
1071 break;
1072 default:
1073 goto out;
1074 }
1075
1076 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1077 /*
1078 * If a failure prevented the measurements from succeeding
1079 * tracepoints will still be written and all counts will be zero.
1080 */
1081 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1082 counts.miss_after - counts.miss_before);
1083out:
1084 plr->thread_done = 1;
1085 wake_up_interruptible(&plr->lock_thread_wq);
1086 return 0;
1087}
1088
1089static int measure_l3_residency(void *_plr)
1090{
1091 struct pseudo_lock_region *plr = _plr;
1092 struct residency_counts counts = {0};
1093
1094 /*
1095 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1096 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1097 * this platform the following events are used instead:
1098 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1099 * REFERENCE 4FH
1100 * MISS 41H
1101 */
1102
1103 switch (boot_cpu_data.x86_model) {
1104 case INTEL_FAM6_BROADWELL_X:
1105 /* On BDW the hit event counts references, not hits */
1106 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1107 .umask = 0x4f);
1108 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1109 .umask = 0x41);
1110 break;
1111 default:
1112 goto out;
1113 }
1114
1115 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1116 /*
1117 * If a failure prevented the measurements from succeeding
1118 * tracepoints will still be written and all counts will be zero.
1119 */
1120
1121 counts.miss_after -= counts.miss_before;
1122 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1123 /*
1124 * On BDW references and misses are counted, need to adjust.
1125 * Sometimes the "hits" counter is a bit more than the
1126 * references, for example, x references but x + 1 hits.
1127 * To not report invalid hit values in this case we treat
1128 * that as misses equal to references.
1129 */
1130 /* First compute the number of cache references measured */
1131 counts.hits_after -= counts.hits_before;
1132 /* Next convert references to cache hits */
1133 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1134 } else {
1135 counts.hits_after -= counts.hits_before;
1136 }
1137
1138 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1139out:
1140 plr->thread_done = 1;
1141 wake_up_interruptible(&plr->lock_thread_wq);
1142 return 0;
1143}
1144
1145/**
1146 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1147 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1148 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1149 *
1150 * The measurement of latency to access a pseudo-locked region should be
1151 * done from a cpu that is associated with that pseudo-locked region.
1152 * Determine which cpu is associated with this region and start a thread on
1153 * that cpu to perform the measurement, wait for that thread to complete.
1154 *
1155 * Return: 0 on success, <0 on failure
1156 */
1157static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1158{
1159 struct pseudo_lock_region *plr = rdtgrp->plr;
1160 struct task_struct *thread;
1161 unsigned int cpu;
1162 int ret = -1;
1163
1164 cpus_read_lock();
1165 mutex_lock(&rdtgroup_mutex);
1166
1167 if (rdtgrp->flags & RDT_DELETED) {
1168 ret = -ENODEV;
1169 goto out;
1170 }
1171
1172 if (!plr->d) {
1173 ret = -ENODEV;
1174 goto out;
1175 }
1176
1177 plr->thread_done = 0;
1178 cpu = cpumask_first(&plr->d->cpu_mask);
1179 if (!cpu_online(cpu)) {
1180 ret = -ENODEV;
1181 goto out;
1182 }
1183
1184 plr->cpu = cpu;
1185
1186 if (sel == 1)
1187 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1188 cpu_to_node(cpu),
1189 "pseudo_lock_measure/%u",
1190 cpu);
1191 else if (sel == 2)
1192 thread = kthread_create_on_node(measure_l2_residency, plr,
1193 cpu_to_node(cpu),
1194 "pseudo_lock_measure/%u",
1195 cpu);
1196 else if (sel == 3)
1197 thread = kthread_create_on_node(measure_l3_residency, plr,
1198 cpu_to_node(cpu),
1199 "pseudo_lock_measure/%u",
1200 cpu);
1201 else
1202 goto out;
1203
1204 if (IS_ERR(thread)) {
1205 ret = PTR_ERR(thread);
1206 goto out;
1207 }
1208 kthread_bind(thread, cpu);
1209 wake_up_process(thread);
1210
1211 ret = wait_event_interruptible(plr->lock_thread_wq,
1212 plr->thread_done == 1);
1213 if (ret < 0)
1214 goto out;
1215
1216 ret = 0;
1217
1218out:
1219 mutex_unlock(&rdtgroup_mutex);
1220 cpus_read_unlock();
1221 return ret;
1222}
1223
1224static ssize_t pseudo_lock_measure_trigger(struct file *file,
1225 const char __user *user_buf,
1226 size_t count, loff_t *ppos)
1227{
1228 struct rdtgroup *rdtgrp = file->private_data;
1229 size_t buf_size;
1230 char buf[32];
1231 int ret;
1232 int sel;
1233
1234 buf_size = min(count, (sizeof(buf) - 1));
1235 if (copy_from_user(buf, user_buf, buf_size))
1236 return -EFAULT;
1237
1238 buf[buf_size] = '\0';
1239 ret = kstrtoint(buf, 10, &sel);
1240 if (ret == 0) {
1241 if (sel != 1 && sel != 2 && sel != 3)
1242 return -EINVAL;
1243 ret = debugfs_file_get(file->f_path.dentry);
1244 if (ret)
1245 return ret;
1246 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1247 if (ret == 0)
1248 ret = count;
1249 debugfs_file_put(file->f_path.dentry);
1250 }
1251
1252 return ret;
1253}
1254
1255static const struct file_operations pseudo_measure_fops = {
1256 .write = pseudo_lock_measure_trigger,
1257 .open = simple_open,
1258 .llseek = default_llseek,
1259};
1260
1261/**
1262 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1263 * @rdtgrp: resource group to which pseudo-lock region belongs
1264 *
1265 * Called when a resource group in the pseudo-locksetup mode receives a
1266 * valid schemata that should be pseudo-locked. Since the resource group is
1267 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1268 * allocated and initialized with the essential information. If a failure
1269 * occurs the resource group remains in the pseudo-locksetup mode with the
1270 * &struct pseudo_lock_region associated with it, but cleared from all
1271 * information and ready for the user to re-attempt pseudo-locking by
1272 * writing the schemata again.
1273 *
1274 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1275 * on failure. Descriptive error will be written to last_cmd_status buffer.
1276 */
1277int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1278{
1279 struct pseudo_lock_region *plr = rdtgrp->plr;
1280 struct task_struct *thread;
1281 unsigned int new_minor;
1282 struct device *dev;
1283 int ret;
1284
1285 ret = pseudo_lock_region_alloc(plr);
1286 if (ret < 0)
1287 return ret;
1288
1289 ret = pseudo_lock_cstates_constrain(plr);
1290 if (ret < 0) {
1291 ret = -EINVAL;
1292 goto out_region;
1293 }
1294
1295 plr->thread_done = 0;
1296
1297 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1298 cpu_to_node(plr->cpu),
1299 "pseudo_lock/%u", plr->cpu);
1300 if (IS_ERR(thread)) {
1301 ret = PTR_ERR(thread);
1302 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1303 goto out_cstates;
1304 }
1305
1306 kthread_bind(thread, plr->cpu);
1307 wake_up_process(thread);
1308
1309 ret = wait_event_interruptible(plr->lock_thread_wq,
1310 plr->thread_done == 1);
1311 if (ret < 0) {
1312 /*
1313 * If the thread does not get on the CPU for whatever
1314 * reason and the process which sets up the region is
1315 * interrupted then this will leave the thread in runnable
1316 * state and once it gets on the CPU it will dereference
1317 * the cleared, but not freed, plr struct resulting in an
1318 * empty pseudo-locking loop.
1319 */
1320 rdt_last_cmd_puts("Locking thread interrupted\n");
1321 goto out_cstates;
1322 }
1323
1324 ret = pseudo_lock_minor_get(&new_minor);
1325 if (ret < 0) {
1326 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1327 goto out_cstates;
1328 }
1329
1330 /*
1331 * Unlock access but do not release the reference. The
1332 * pseudo-locked region will still be here on return.
1333 *
1334 * The mutex has to be released temporarily to avoid a potential
1335 * deadlock with the mm->mmap_lock which is obtained in the
1336 * device_create() and debugfs_create_dir() callpath below as well as
1337 * before the mmap() callback is called.
1338 */
1339 mutex_unlock(&rdtgroup_mutex);
1340
1341 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1342 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1343 debugfs_resctrl);
1344 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1345 debugfs_create_file("pseudo_lock_measure", 0200,
1346 plr->debugfs_dir, rdtgrp,
1347 &pseudo_measure_fops);
1348 }
1349
1350 dev = device_create(pseudo_lock_class, NULL,
1351 MKDEV(pseudo_lock_major, new_minor),
1352 rdtgrp, "%s", rdtgrp->kn->name);
1353
1354 mutex_lock(&rdtgroup_mutex);
1355
1356 if (IS_ERR(dev)) {
1357 ret = PTR_ERR(dev);
1358 rdt_last_cmd_printf("Failed to create character device: %d\n",
1359 ret);
1360 goto out_debugfs;
1361 }
1362
1363 /* We released the mutex - check if group was removed while we did so */
1364 if (rdtgrp->flags & RDT_DELETED) {
1365 ret = -ENODEV;
1366 goto out_device;
1367 }
1368
1369 plr->minor = new_minor;
1370
1371 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1372 closid_free(rdtgrp->closid);
1373 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1374 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1375
1376 ret = 0;
1377 goto out;
1378
1379out_device:
1380 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1381out_debugfs:
1382 debugfs_remove_recursive(plr->debugfs_dir);
1383 pseudo_lock_minor_release(new_minor);
1384out_cstates:
1385 pseudo_lock_cstates_relax(plr);
1386out_region:
1387 pseudo_lock_region_clear(plr);
1388out:
1389 return ret;
1390}
1391
1392/**
1393 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1394 * @rdtgrp: resource group to which the pseudo-locked region belongs
1395 *
1396 * The removal of a pseudo-locked region can be initiated when the resource
1397 * group is removed from user space via a "rmdir" from userspace or the
1398 * unmount of the resctrl filesystem. On removal the resource group does
1399 * not go back to pseudo-locksetup mode before it is removed, instead it is
1400 * removed directly. There is thus asymmetry with the creation where the
1401 * &struct pseudo_lock_region is removed here while it was not created in
1402 * rdtgroup_pseudo_lock_create().
1403 *
1404 * Return: void
1405 */
1406void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1407{
1408 struct pseudo_lock_region *plr = rdtgrp->plr;
1409
1410 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1411 /*
1412 * Default group cannot be a pseudo-locked region so we can
1413 * free closid here.
1414 */
1415 closid_free(rdtgrp->closid);
1416 goto free;
1417 }
1418
1419 pseudo_lock_cstates_relax(plr);
1420 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1421 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1422 pseudo_lock_minor_release(plr->minor);
1423
1424free:
1425 pseudo_lock_free(rdtgrp);
1426}
1427
1428static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1429{
1430 struct rdtgroup *rdtgrp;
1431
1432 mutex_lock(&rdtgroup_mutex);
1433
1434 rdtgrp = region_find_by_minor(iminor(inode));
1435 if (!rdtgrp) {
1436 mutex_unlock(&rdtgroup_mutex);
1437 return -ENODEV;
1438 }
1439
1440 filp->private_data = rdtgrp;
1441 atomic_inc(&rdtgrp->waitcount);
1442 /* Perform a non-seekable open - llseek is not supported */
1443 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1444
1445 mutex_unlock(&rdtgroup_mutex);
1446
1447 return 0;
1448}
1449
1450static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1451{
1452 struct rdtgroup *rdtgrp;
1453
1454 mutex_lock(&rdtgroup_mutex);
1455 rdtgrp = filp->private_data;
1456 WARN_ON(!rdtgrp);
1457 if (!rdtgrp) {
1458 mutex_unlock(&rdtgroup_mutex);
1459 return -ENODEV;
1460 }
1461 filp->private_data = NULL;
1462 atomic_dec(&rdtgrp->waitcount);
1463 mutex_unlock(&rdtgroup_mutex);
1464 return 0;
1465}
1466
1467static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1468{
1469 /* Not supported */
1470 return -EINVAL;
1471}
1472
1473static const struct vm_operations_struct pseudo_mmap_ops = {
1474 .mremap = pseudo_lock_dev_mremap,
1475};
1476
1477static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1478{
1479 unsigned long vsize = vma->vm_end - vma->vm_start;
1480 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1481 struct pseudo_lock_region *plr;
1482 struct rdtgroup *rdtgrp;
1483 unsigned long physical;
1484 unsigned long psize;
1485
1486 mutex_lock(&rdtgroup_mutex);
1487
1488 rdtgrp = filp->private_data;
1489 WARN_ON(!rdtgrp);
1490 if (!rdtgrp) {
1491 mutex_unlock(&rdtgroup_mutex);
1492 return -ENODEV;
1493 }
1494
1495 plr = rdtgrp->plr;
1496
1497 if (!plr->d) {
1498 mutex_unlock(&rdtgroup_mutex);
1499 return -ENODEV;
1500 }
1501
1502 /*
1503 * Task is required to run with affinity to the cpus associated
1504 * with the pseudo-locked region. If this is not the case the task
1505 * may be scheduled elsewhere and invalidate entries in the
1506 * pseudo-locked region.
1507 */
1508 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1509 mutex_unlock(&rdtgroup_mutex);
1510 return -EINVAL;
1511 }
1512
1513 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1514 psize = plr->size - off;
1515
1516 if (off > plr->size) {
1517 mutex_unlock(&rdtgroup_mutex);
1518 return -ENOSPC;
1519 }
1520
1521 /*
1522 * Ensure changes are carried directly to the memory being mapped,
1523 * do not allow copy-on-write mapping.
1524 */
1525 if (!(vma->vm_flags & VM_SHARED)) {
1526 mutex_unlock(&rdtgroup_mutex);
1527 return -EINVAL;
1528 }
1529
1530 if (vsize > psize) {
1531 mutex_unlock(&rdtgroup_mutex);
1532 return -ENOSPC;
1533 }
1534
1535 memset(plr->kmem + off, 0, vsize);
1536
1537 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1538 vsize, vma->vm_page_prot)) {
1539 mutex_unlock(&rdtgroup_mutex);
1540 return -EAGAIN;
1541 }
1542 vma->vm_ops = &pseudo_mmap_ops;
1543 mutex_unlock(&rdtgroup_mutex);
1544 return 0;
1545}
1546
1547static const struct file_operations pseudo_lock_dev_fops = {
1548 .owner = THIS_MODULE,
1549 .llseek = no_llseek,
1550 .read = NULL,
1551 .write = NULL,
1552 .open = pseudo_lock_dev_open,
1553 .release = pseudo_lock_dev_release,
1554 .mmap = pseudo_lock_dev_mmap,
1555};
1556
1557static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1558{
1559 struct rdtgroup *rdtgrp;
1560
1561 rdtgrp = dev_get_drvdata(dev);
1562 if (mode)
1563 *mode = 0600;
1564 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1565}
1566
1567int rdt_pseudo_lock_init(void)
1568{
1569 int ret;
1570
1571 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1572 if (ret < 0)
1573 return ret;
1574
1575 pseudo_lock_major = ret;
1576
1577 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1578 if (IS_ERR(pseudo_lock_class)) {
1579 ret = PTR_ERR(pseudo_lock_class);
1580 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1581 return ret;
1582 }
1583
1584 pseudo_lock_class->devnode = pseudo_lock_devnode;
1585 return 0;
1586}
1587
1588void rdt_pseudo_lock_release(void)
1589{
1590 class_destroy(pseudo_lock_class);
1591 pseudo_lock_class = NULL;
1592 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1593 pseudo_lock_major = 0;
1594}