Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
 
 
 
 
  33
  34#if IS_REACHABLE(CONFIG_GAMEPORT)
  35#define SUPPORT_JOYSTICK 1
  36#endif
  37
  38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  44#ifdef SUPPORT_JOYSTICK
  45static int joystick_port[SNDRV_CARDS];
  46#endif
  47
  48module_param_array(index, int, NULL, 0444);
  49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  50module_param_array(id, charp, NULL, 0444);
  51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  52module_param_array(enable, bool, NULL, 0444);
  53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  57MODULE_PARM_DESC(fm_port, "FM port.");
  58module_param_array(soft_ac3, bool, NULL, 0444);
  59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  60#ifdef SUPPORT_JOYSTICK
  61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  63#endif
  64
  65/*
  66 * CM8x38 registers definition
  67 */
  68
  69#define CM_REG_FUNCTRL0		0x00
  70#define CM_RST_CH1		0x00080000
  71#define CM_RST_CH0		0x00040000
  72#define CM_CHEN1		0x00020000	/* ch1: enable */
  73#define CM_CHEN0		0x00010000	/* ch0: enable */
  74#define CM_PAUSE1		0x00000008	/* ch1: pause */
  75#define CM_PAUSE0		0x00000004	/* ch0: pause */
  76#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  77#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  78
  79#define CM_REG_FUNCTRL1		0x04
  80#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  81#define CM_DSFC_SHIFT		13
  82#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
  83#define CM_ASFC_SHIFT		10
  84#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
  85#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
  86#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
  87#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
  88#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
  89#define CM_BREQ			0x00000010	/* bus master enabled */
  90#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
  91#define CM_UART_EN		0x00000004	/* legacy UART */
  92#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
  93#define CM_ZVPORT		0x00000001	/* ZVPORT */
  94
  95#define CM_REG_CHFORMAT		0x08
  96
  97#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
  98#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
  99#define CM_CHB3D		0x20000000	/* 4 channels */
 100
 101#define CM_CHIP_MASK1		0x1f000000
 102#define CM_CHIP_037		0x01000000
 103#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 104#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 105#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 106#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 107#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 108#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 109/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 110
 111#define CM_ADCBITLEN_MASK	0x0000C000	
 112#define CM_ADCBITLEN_16		0x00000000
 113#define CM_ADCBITLEN_15		0x00004000
 114#define CM_ADCBITLEN_14		0x00008000
 115#define CM_ADCBITLEN_13		0x0000C000
 116
 117#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 118#define CM_ADCDACLEN_060	0x00000000
 119#define CM_ADCDACLEN_066	0x00001000
 120#define CM_ADCDACLEN_130	0x00002000
 121#define CM_ADCDACLEN_280	0x00003000
 122
 123#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 124#define CM_ADCDLEN_ORIGINAL	0x00000000
 125#define CM_ADCDLEN_EXTRA	0x00001000
 126#define CM_ADCDLEN_24K		0x00002000
 127#define CM_ADCDLEN_WEIGHT	0x00003000
 128
 129#define CM_CH1_SRATE_176K	0x00000800
 130#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 131#define CM_CH1_SRATE_88K	0x00000400
 132#define CM_CH0_SRATE_176K	0x00000200
 133#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 134#define CM_CH0_SRATE_88K	0x00000100
 135#define CM_CH0_SRATE_128K	0x00000300
 136#define CM_CH0_SRATE_MASK	0x00000300
 137
 138#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 139#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 140#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 141#define CM_SPDLOCKED		0x00000010
 142
 143#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 144#define CM_CH1FMT_SHIFT		2
 145#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 146#define CM_CH0FMT_SHIFT		0
 147
 148#define CM_REG_INT_HLDCLR	0x0C
 149#define CM_CHIP_MASK2		0xff000000
 150#define CM_CHIP_8768		0x20000000
 151#define CM_CHIP_055		0x08000000
 152#define CM_CHIP_039		0x04000000
 153#define CM_CHIP_039_6CH		0x01000000
 154#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 155#define CM_TDMA_INT_EN		0x00040000
 156#define CM_CH1_INT_EN		0x00020000
 157#define CM_CH0_INT_EN		0x00010000
 158
 159#define CM_REG_INT_STATUS	0x10
 160#define CM_INTR			0x80000000
 161#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 162#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 163#define CM_UARTINT		0x00010000
 164#define CM_LTDMAINT		0x00008000
 165#define CM_HTDMAINT		0x00004000
 166#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 167#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 168#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 169#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 170#define CM_CH1BUSY		0x00000008
 171#define CM_CH0BUSY		0x00000004
 172#define CM_CHINT1		0x00000002
 173#define CM_CHINT0		0x00000001
 174
 175#define CM_REG_LEGACY_CTRL	0x14
 176#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 177#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 178#define CM_VMPU_330		0x00000000
 179#define CM_VMPU_320		0x20000000
 180#define CM_VMPU_310		0x40000000
 181#define CM_VMPU_300		0x60000000
 182#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 183#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 184#define CM_VSBSEL_220		0x00000000
 185#define CM_VSBSEL_240		0x04000000
 186#define CM_VSBSEL_260		0x08000000
 187#define CM_VSBSEL_280		0x0C000000
 188#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 189#define CM_FMSEL_388		0x00000000
 190#define CM_FMSEL_3C8		0x01000000
 191#define CM_FMSEL_3E0		0x02000000
 192#define CM_FMSEL_3E8		0x03000000
 193#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 194#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 195#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 196#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 197#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 198#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 199#define CM_C_EECS		0x00040000
 200#define CM_C_EEDI46		0x00020000
 201#define CM_C_EECK46		0x00010000
 202#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 203#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 204#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 205#define CM_EXBASEN		0x00001000	/* external bass input enable */
 206
 207#define CM_REG_MISC_CTRL	0x18
 208#define CM_PWD			0x80000000	/* power down */
 209#define CM_RESET		0x40000000
 210#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 211#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 212#define CM_TXVX			0x08000000	/* model 037? */
 213#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 214#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 215#define CM_SPDIF48K		0x01000000	/* write */
 216#define CM_SPATUS48K		0x01000000	/* read */
 217#define CM_ENDBDAC		0x00800000	/* enable double dac */
 218#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 219#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 220#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 221#define CM_FM_EN		0x00080000	/* enable legacy FM */
 222#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 223#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 224#define CM_VIDWPDSB		0x00010000	/* model 037? */
 225#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 226#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 227#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 228#define CM_VIDWPPRT		0x00002000	/* model 037? */
 229#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 230#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 231#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 232#define CM_ENCENTER		0x00000080
 233#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 234#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 235#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 236#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 237#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 238#define CM_UPDDMA_2048		0x00000000
 239#define CM_UPDDMA_1024		0x00000004
 240#define CM_UPDDMA_512		0x00000008
 241#define CM_UPDDMA_256		0x0000000C		
 242#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 243#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 244#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 245
 246#define CM_REG_TDMA_POSITION	0x1C
 247#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 248#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 249
 250	/* byte */
 251#define CM_REG_MIXER0		0x20
 252#define CM_REG_SBVR		0x20		/* write: sb16 version */
 253#define CM_REG_DEV		0x20		/* read: hardware device version */
 254
 255#define CM_REG_MIXER21		0x21
 256#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 257#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 258#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 259#define CM_X_SB16		0x01		/* SB16 compatible */
 260
 261#define CM_REG_SB16_DATA	0x22
 262#define CM_REG_SB16_ADDR	0x23
 263
 264#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 265#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 266#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 267#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 268
 269#define CM_REG_MIXER1		0x24
 270#define CM_FMMUTE		0x80	/* mute FM */
 271#define CM_FMMUTE_SHIFT		7
 272#define CM_WSMUTE		0x40	/* mute PCM */
 273#define CM_WSMUTE_SHIFT		6
 274#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 275#define CM_REAR2LIN_SHIFT	5
 276#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 277#define CM_REAR2FRONT_SHIFT	4
 278#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 279#define CM_WAVEINL_SHIFT	3
 280#define CM_WAVEINR		0x04	/* digical wave rec. right */
 281#define CM_WAVEINR_SHIFT	2
 282#define CM_X3DEN		0x02	/* 3D surround enable */
 283#define CM_X3DEN_SHIFT		1
 284#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 285#define CM_CDPLAY_SHIFT		0
 286
 287#define CM_REG_MIXER2		0x25
 288#define CM_RAUXREN		0x80	/* AUX right capture */
 289#define CM_RAUXREN_SHIFT	7
 290#define CM_RAUXLEN		0x40	/* AUX left capture */
 291#define CM_RAUXLEN_SHIFT	6
 292#define CM_VAUXRM		0x20	/* AUX right mute */
 293#define CM_VAUXRM_SHIFT		5
 294#define CM_VAUXLM		0x10	/* AUX left mute */
 295#define CM_VAUXLM_SHIFT		4
 296#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 297#define CM_VADMIC_SHIFT		1
 298#define CM_MICGAINZ		0x01	/* mic boost */
 299#define CM_MICGAINZ_SHIFT	0
 300
 
 301#define CM_REG_AUX_VOL		0x26
 302#define CM_VAUXL_MASK		0xf0
 303#define CM_VAUXR_MASK		0x0f
 304
 305#define CM_REG_MISC		0x27
 306#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 307#define CM_XGPO1		0x20
 308// #define CM_XGPBIO		0x04
 309#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 310#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 311#define CM_SPDVALID		0x02	/* spdif input valid check */
 312#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 313
 314#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 315/*
 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 317 * or identical with AC97 codec?
 318 */
 319#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 320
 321/*
 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 323 */
 324#define CM_REG_MPU_PCI		0x40
 325
 326/*
 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_FM_PCI		0x50
 330
 331/*
 332 * access from SB-mixer port
 333 */
 334#define CM_REG_EXTENT_IND	0xf0
 335#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 336#define CM_VPHONE_SHIFT		5
 337#define CM_VPHOM		0x10	/* Phone mute control */
 338#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 339#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 340#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 341#define CM_VADMIC3		0x01	/* Mic record boost */
 342
 343/*
 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 346 * unit (readonly?).
 347 */
 348#define CM_REG_PLL		0xf8
 349
 350/*
 351 * extended registers
 352 */
 353#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 354#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 355#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 356#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 357
 358#define CM_REG_EXT_MISC		0x90
 359#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 360#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 361#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 362#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 363#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 364#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 365#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 366#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 367
 368/*
 369 * size of i/o region
 370 */
 371#define CM_EXTENT_CODEC	  0x100
 372#define CM_EXTENT_MIDI	  0x2
 373#define CM_EXTENT_SYNTH	  0x4
 374
 375
 376/*
 377 * channels for playback / capture
 378 */
 379#define CM_CH_PLAY	0
 380#define CM_CH_CAPT	1
 381
 382/*
 383 * flags to check device open/close
 384 */
 385#define CM_OPEN_NONE	0
 386#define CM_OPEN_CH_MASK	0x01
 387#define CM_OPEN_DAC	0x10
 388#define CM_OPEN_ADC	0x20
 389#define CM_OPEN_SPDIF	0x40
 390#define CM_OPEN_MCHAN	0x80
 391#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 392#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 393#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 394#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 395#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 396#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 397
 398
 399#if CM_CH_PLAY == 1
 400#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 401#define CM_PLAYBACK_SPDF	CM_SPDF_1
 402#define CM_CAPTURE_SPDF		CM_SPDF_0
 403#else
 404#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 405#define CM_PLAYBACK_SPDF	CM_SPDF_0
 406#define CM_CAPTURE_SPDF		CM_SPDF_1
 407#endif
 408
 409
 410/*
 411 * driver data
 412 */
 413
 414struct cmipci_pcm {
 415	struct snd_pcm_substream *substream;
 416	u8 running;		/* dac/adc running? */
 417	u8 fmt;			/* format bits */
 418	u8 is_dac;
 419	u8 needs_silencing;
 420	unsigned int dma_size;	/* in frames */
 421	unsigned int shift;
 422	unsigned int ch;	/* channel (0/1) */
 423	unsigned int offset;	/* physical address of the buffer */
 424};
 425
 426/* mixer elements toggled/resumed during ac3 playback */
 427struct cmipci_mixer_auto_switches {
 428	const char *name;	/* switch to toggle */
 429	int toggle_on;		/* value to change when ac3 mode */
 430};
 431static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 432	{"PCM Playback Switch", 0},
 433	{"IEC958 Output Switch", 1},
 434	{"IEC958 Mix Analog", 0},
 435	// {"IEC958 Out To DAC", 1}, // no longer used
 436	{"IEC958 Loop", 0},
 437};
 438#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 439
 440struct cmipci {
 441	struct snd_card *card;
 442
 443	struct pci_dev *pci;
 444	unsigned int device;	/* device ID */
 445	int irq;
 446
 447	unsigned long iobase;
 448	unsigned int ctrl;	/* FUNCTRL0 current value */
 449
 450	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 451	struct snd_pcm *pcm2;	/* 2nd DAC */
 452	struct snd_pcm *pcm_spdif;	/* SPDIF */
 453
 454	int chip_version;
 455	int max_channels;
 456	unsigned int can_ac3_sw: 1;
 457	unsigned int can_ac3_hw: 1;
 458	unsigned int can_multi_ch: 1;
 459	unsigned int can_96k: 1;	/* samplerate above 48k */
 460	unsigned int do_soft_ac3: 1;
 461
 462	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 463	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 464	int spdif_counter;	/* for software AC3 */
 465
 466	unsigned int dig_status;
 467	unsigned int dig_pcm_status;
 468
 469	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 470
 471	int opened[2];	/* open mode */
 472	struct mutex open_mutex;
 473
 474	unsigned int mixer_insensitive: 1;
 475	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 476	int mixer_res_status[CM_SAVED_MIXERS];
 477
 478	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 479
 480	/* external MIDI */
 481	struct snd_rawmidi *rmidi;
 482
 483#ifdef SUPPORT_JOYSTICK
 484	struct gameport *gameport;
 485#endif
 486
 487	spinlock_t reg_lock;
 488
 
 489	unsigned int saved_regs[0x20];
 490	unsigned char saved_mixers[0x20];
 
 491};
 492
 493
 494/* read/write operations for dword register */
 495static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 496{
 497	outl(data, cm->iobase + cmd);
 498}
 499
 500static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 501{
 502	return inl(cm->iobase + cmd);
 503}
 504
 505/* read/write operations for word register */
 506static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 507{
 508	outw(data, cm->iobase + cmd);
 509}
 510
 511static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 512{
 513	return inw(cm->iobase + cmd);
 514}
 515
 516/* read/write operations for byte register */
 517static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 518{
 519	outb(data, cm->iobase + cmd);
 520}
 521
 522static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 523{
 524	return inb(cm->iobase + cmd);
 525}
 526
 527/* bit operations for dword register */
 528static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 529{
 530	unsigned int val, oval;
 531	val = oval = inl(cm->iobase + cmd);
 532	val |= flag;
 533	if (val == oval)
 534		return 0;
 535	outl(val, cm->iobase + cmd);
 536	return 1;
 537}
 538
 539static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 540{
 541	unsigned int val, oval;
 542	val = oval = inl(cm->iobase + cmd);
 543	val &= ~flag;
 544	if (val == oval)
 545		return 0;
 546	outl(val, cm->iobase + cmd);
 547	return 1;
 548}
 549
 550/* bit operations for byte register */
 551static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 552{
 553	unsigned char val, oval;
 554	val = oval = inb(cm->iobase + cmd);
 555	val |= flag;
 556	if (val == oval)
 557		return 0;
 558	outb(val, cm->iobase + cmd);
 559	return 1;
 560}
 561
 562static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 563{
 564	unsigned char val, oval;
 565	val = oval = inb(cm->iobase + cmd);
 566	val &= ~flag;
 567	if (val == oval)
 568		return 0;
 569	outb(val, cm->iobase + cmd);
 570	return 1;
 571}
 572
 573
 574/*
 575 * PCM interface
 576 */
 577
 578/*
 579 * calculate frequency
 580 */
 581
 582static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 583
 584static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 585{
 586	unsigned int i;
 587
 588	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 589		if (rates[i] == rate)
 590			return i;
 591	}
 592	snd_BUG();
 593	return 0;
 594}
 595
 596#ifdef USE_VAR48KRATE
 597/*
 598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 599 * does it this way .. maybe not.  Never get any information from C-Media about
 600 * that <werner@suse.de>.
 601 */
 602static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 603{
 604	unsigned int delta, tolerance;
 605	int xm, xn, xr;
 606
 607	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 608		rate <<= 1;
 609	*n = -1;
 610	if (*r > 0xff)
 611		goto out;
 612	tolerance = rate*CM_TOLERANCE_RATE;
 613
 614	for (xn = (1+2); xn < (0x1f+2); xn++) {
 615		for (xm = (1+2); xm < (0xff+2); xm++) {
 616			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 617
 618			if (xr < rate)
 619				delta = rate - xr;
 620			else
 621				delta = xr - rate;
 622
 623			/*
 624			 * If we found one, remember this,
 625			 * and try to find a closer one
 626			 */
 627			if (delta < tolerance) {
 628				tolerance = delta;
 629				*m = xm - 2;
 630				*n = xn - 2;
 631			}
 632		}
 633	}
 634out:
 635	return (*n > -1);
 636}
 637
 638/*
 639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 641 * at the register CM_REG_FUNCTRL1 (0x04).
 642 * Problem: other ways are also possible (any information about that?)
 643 */
 644static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 645{
 646	unsigned int reg = CM_REG_PLL + slot;
 647	/*
 648	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 649	 * for DSFC/ASFC (000 up to 111).
 650	 */
 651
 652	/* FIXME: Init (Do we've to set an other register first before programming?) */
 653
 654	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 655	snd_cmipci_write_b(cm, reg, rate>>8);
 656	snd_cmipci_write_b(cm, reg, rate&0xff);
 657
 658	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 659}
 660#endif /* USE_VAR48KRATE */
 661
 
 
 
 
 
 
 662static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 663					  struct snd_pcm_hw_params *hw_params)
 664{
 665	struct cmipci *cm = snd_pcm_substream_chip(substream);
 666	if (params_channels(hw_params) > 2) {
 667		mutex_lock(&cm->open_mutex);
 668		if (cm->opened[CM_CH_PLAY]) {
 669			mutex_unlock(&cm->open_mutex);
 670			return -EBUSY;
 671		}
 672		/* reserve the channel A */
 673		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 674		mutex_unlock(&cm->open_mutex);
 675	}
 676	return 0;
 677}
 678
 679static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 680{
 681	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 682	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 683	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 684	udelay(10);
 685}
 686
 
 
 
 
 
 687
 688/*
 689 */
 690
 691static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 692static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 693	.count = 3,
 694	.list = hw_channels,
 695	.mask = 0,
 696};
 697static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 698	.count = 4,
 699	.list = hw_channels,
 700	.mask = 0,
 701};
 702static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 703	.count = 5,
 704	.list = hw_channels,
 705	.mask = 0,
 706};
 707
 708static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 709{
 710	if (channels > 2) {
 711		if (!cm->can_multi_ch || !rec->ch)
 712			return -EINVAL;
 713		if (rec->fmt != 0x03) /* stereo 16bit only */
 714			return -EINVAL;
 715	}
 716
 717	if (cm->can_multi_ch) {
 718		spin_lock_irq(&cm->reg_lock);
 719		if (channels > 2) {
 720			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 721			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 722		} else {
 723			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 724			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 725		}
 726		if (channels == 8)
 727			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 728		else
 729			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 730		if (channels == 6) {
 731			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 732			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 733		} else {
 734			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 735			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 736		}
 737		if (channels == 4)
 738			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 739		else
 740			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 741		spin_unlock_irq(&cm->reg_lock);
 742	}
 743	return 0;
 744}
 745
 746
 747/*
 748 * prepare playback/capture channel
 749 * channel to be used must have been set in rec->ch.
 750 */
 751static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 752				 struct snd_pcm_substream *substream)
 753{
 754	unsigned int reg, freq, freq_ext, val;
 755	unsigned int period_size;
 756	struct snd_pcm_runtime *runtime = substream->runtime;
 757
 758	rec->fmt = 0;
 759	rec->shift = 0;
 760	if (snd_pcm_format_width(runtime->format) >= 16) {
 761		rec->fmt |= 0x02;
 762		if (snd_pcm_format_width(runtime->format) > 16)
 763			rec->shift++; /* 24/32bit */
 764	}
 765	if (runtime->channels > 1)
 766		rec->fmt |= 0x01;
 767	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 768		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 769		return -EINVAL;
 770	}
 771
 772	rec->offset = runtime->dma_addr;
 773	/* buffer and period sizes in frame */
 774	rec->dma_size = runtime->buffer_size << rec->shift;
 775	period_size = runtime->period_size << rec->shift;
 776	if (runtime->channels > 2) {
 777		/* multi-channels */
 778		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 779		period_size = (period_size * runtime->channels) / 2;
 780	}
 781
 782	spin_lock_irq(&cm->reg_lock);
 783
 784	/* set buffer address */
 785	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 786	snd_cmipci_write(cm, reg, rec->offset);
 787	/* program sample counts */
 788	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 789	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 790	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 791
 792	/* set adc/dac flag */
 793	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 794	if (rec->is_dac)
 795		cm->ctrl &= ~val;
 796	else
 797		cm->ctrl |= val;
 798	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 799	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 800
 801	/* set sample rate */
 802	freq = 0;
 803	freq_ext = 0;
 804	if (runtime->rate > 48000)
 805		switch (runtime->rate) {
 806		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 807		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 808		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 809		default:     snd_BUG(); break;
 810		}
 811	else
 812		freq = snd_cmipci_rate_freq(runtime->rate);
 813	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 814	if (rec->ch) {
 815		val &= ~CM_DSFC_MASK;
 816		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 817	} else {
 818		val &= ~CM_ASFC_MASK;
 819		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 820	}
 821	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 822	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 823
 824	/* set format */
 825	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 826	if (rec->ch) {
 827		val &= ~CM_CH1FMT_MASK;
 828		val |= rec->fmt << CM_CH1FMT_SHIFT;
 829	} else {
 830		val &= ~CM_CH0FMT_MASK;
 831		val |= rec->fmt << CM_CH0FMT_SHIFT;
 832	}
 833	if (cm->can_96k) {
 834		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 835		val |= freq_ext << (rec->ch * 2);
 836	}
 837	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 838	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 839
 840	if (!rec->is_dac && cm->chip_version) {
 841		if (runtime->rate > 44100)
 842			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 843		else
 844			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 845	}
 846
 847	rec->running = 0;
 848	spin_unlock_irq(&cm->reg_lock);
 849
 850	return 0;
 851}
 852
 853/*
 854 * PCM trigger/stop
 855 */
 856static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 857				  int cmd)
 858{
 859	unsigned int inthld, chen, reset, pause;
 860	int result = 0;
 861
 862	inthld = CM_CH0_INT_EN << rec->ch;
 863	chen = CM_CHEN0 << rec->ch;
 864	reset = CM_RST_CH0 << rec->ch;
 865	pause = CM_PAUSE0 << rec->ch;
 866
 867	spin_lock(&cm->reg_lock);
 868	switch (cmd) {
 869	case SNDRV_PCM_TRIGGER_START:
 870		rec->running = 1;
 871		/* set interrupt */
 872		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 873		cm->ctrl |= chen;
 874		/* enable channel */
 875		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 876		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 877		break;
 878	case SNDRV_PCM_TRIGGER_STOP:
 879		rec->running = 0;
 880		/* disable interrupt */
 881		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 882		/* reset */
 883		cm->ctrl &= ~chen;
 884		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 885		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 886		rec->needs_silencing = rec->is_dac;
 887		break;
 888	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 889	case SNDRV_PCM_TRIGGER_SUSPEND:
 890		cm->ctrl |= pause;
 891		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 892		break;
 893	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 894	case SNDRV_PCM_TRIGGER_RESUME:
 895		cm->ctrl &= ~pause;
 896		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 897		break;
 898	default:
 899		result = -EINVAL;
 900		break;
 901	}
 902	spin_unlock(&cm->reg_lock);
 903	return result;
 904}
 905
 906/*
 907 * return the current pointer
 908 */
 909static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 910						struct snd_pcm_substream *substream)
 911{
 912	size_t ptr;
 913	unsigned int reg, rem, tries;
 914
 915	if (!rec->running)
 916		return 0;
 917#if 1 // this seems better..
 918	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 919	for (tries = 0; tries < 3; tries++) {
 920		rem = snd_cmipci_read_w(cm, reg);
 921		if (rem < rec->dma_size)
 922			goto ok;
 923	} 
 924	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 925	return SNDRV_PCM_POS_XRUN;
 926ok:
 927	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 928#else
 929	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 930	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 931	ptr = bytes_to_frames(substream->runtime, ptr);
 932#endif
 933	if (substream->runtime->channels > 2)
 934		ptr = (ptr * 2) / substream->runtime->channels;
 935	return ptr;
 936}
 937
 938/*
 939 * playback
 940 */
 941
 942static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 943				       int cmd)
 944{
 945	struct cmipci *cm = snd_pcm_substream_chip(substream);
 946	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 947}
 948
 949static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 950{
 951	struct cmipci *cm = snd_pcm_substream_chip(substream);
 952	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 953}
 954
 955
 956
 957/*
 958 * capture
 959 */
 960
 961static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 962				     int cmd)
 963{
 964	struct cmipci *cm = snd_pcm_substream_chip(substream);
 965	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 966}
 967
 968static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 969{
 970	struct cmipci *cm = snd_pcm_substream_chip(substream);
 971	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 972}
 973
 974
 975/*
 976 * hw preparation for spdif
 977 */
 978
 979static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 980					 struct snd_ctl_elem_info *uinfo)
 981{
 982	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 983	uinfo->count = 1;
 984	return 0;
 985}
 986
 987static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 988					struct snd_ctl_elem_value *ucontrol)
 989{
 990	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 991	int i;
 992
 993	spin_lock_irq(&chip->reg_lock);
 994	for (i = 0; i < 4; i++)
 995		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
 996	spin_unlock_irq(&chip->reg_lock);
 997	return 0;
 998}
 999
1000static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001					 struct snd_ctl_elem_value *ucontrol)
1002{
1003	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004	int i, change;
1005	unsigned int val;
1006
1007	val = 0;
1008	spin_lock_irq(&chip->reg_lock);
1009	for (i = 0; i < 4; i++)
1010		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011	change = val != chip->dig_status;
1012	chip->dig_status = val;
1013	spin_unlock_irq(&chip->reg_lock);
1014	return change;
1015}
1016
1017static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018{
1019	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1020	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021	.info =		snd_cmipci_spdif_default_info,
1022	.get =		snd_cmipci_spdif_default_get,
1023	.put =		snd_cmipci_spdif_default_put
1024};
1025
1026static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027				      struct snd_ctl_elem_info *uinfo)
1028{
1029	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030	uinfo->count = 1;
1031	return 0;
1032}
1033
1034static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035				     struct snd_ctl_elem_value *ucontrol)
1036{
1037	ucontrol->value.iec958.status[0] = 0xff;
1038	ucontrol->value.iec958.status[1] = 0xff;
1039	ucontrol->value.iec958.status[2] = 0xff;
1040	ucontrol->value.iec958.status[3] = 0xff;
1041	return 0;
1042}
1043
1044static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045{
1046	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1047	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1048	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049	.info =		snd_cmipci_spdif_mask_info,
1050	.get =		snd_cmipci_spdif_mask_get,
1051};
1052
1053static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054					struct snd_ctl_elem_info *uinfo)
1055{
1056	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057	uinfo->count = 1;
1058	return 0;
1059}
1060
1061static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062				       struct snd_ctl_elem_value *ucontrol)
1063{
1064	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065	int i;
1066
1067	spin_lock_irq(&chip->reg_lock);
1068	for (i = 0; i < 4; i++)
1069		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070	spin_unlock_irq(&chip->reg_lock);
1071	return 0;
1072}
1073
1074static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075				       struct snd_ctl_elem_value *ucontrol)
1076{
1077	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078	int i, change;
1079	unsigned int val;
1080
1081	val = 0;
1082	spin_lock_irq(&chip->reg_lock);
1083	for (i = 0; i < 4; i++)
1084		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085	change = val != chip->dig_pcm_status;
1086	chip->dig_pcm_status = val;
1087	spin_unlock_irq(&chip->reg_lock);
1088	return change;
1089}
1090
1091static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092{
1093	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1095	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096	.info =		snd_cmipci_spdif_stream_info,
1097	.get =		snd_cmipci_spdif_stream_get,
1098	.put =		snd_cmipci_spdif_stream_put
1099};
1100
1101/*
1102 */
1103
1104/* save mixer setting and mute for AC3 playback */
1105static int save_mixer_state(struct cmipci *cm)
1106{
1107	if (! cm->mixer_insensitive) {
1108		struct snd_ctl_elem_value *val;
1109		unsigned int i;
1110
1111		val = kmalloc(sizeof(*val), GFP_KERNEL);
1112		if (!val)
1113			return -ENOMEM;
1114		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116			if (ctl) {
1117				int event;
1118				memset(val, 0, sizeof(*val));
1119				ctl->get(ctl, val);
1120				cm->mixer_res_status[i] = val->value.integer.value[0];
1121				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122				event = SNDRV_CTL_EVENT_MASK_INFO;
1123				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124					ctl->put(ctl, val); /* toggle */
1125					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126				}
1127				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128				snd_ctl_notify(cm->card, event, &ctl->id);
1129			}
1130		}
1131		kfree(val);
1132		cm->mixer_insensitive = 1;
1133	}
1134	return 0;
1135}
1136
1137
1138/* restore the previously saved mixer status */
1139static void restore_mixer_state(struct cmipci *cm)
1140{
1141	if (cm->mixer_insensitive) {
1142		struct snd_ctl_elem_value *val;
1143		unsigned int i;
1144
1145		val = kmalloc(sizeof(*val), GFP_KERNEL);
1146		if (!val)
1147			return;
1148		cm->mixer_insensitive = 0; /* at first clear this;
1149					      otherwise the changes will be ignored */
1150		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152			if (ctl) {
1153				int event;
1154
1155				memset(val, 0, sizeof(*val));
1156				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157				ctl->get(ctl, val);
1158				event = SNDRV_CTL_EVENT_MASK_INFO;
1159				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160					val->value.integer.value[0] = cm->mixer_res_status[i];
1161					ctl->put(ctl, val);
1162					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163				}
1164				snd_ctl_notify(cm->card, event, &ctl->id);
1165			}
1166		}
1167		kfree(val);
1168	}
1169}
1170
1171/* spinlock held! */
1172static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173{
1174	if (do_ac3) {
1175		/* AC3EN for 037 */
1176		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177		/* AC3EN for 039 */
1178		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179	
1180		if (cm->can_ac3_hw) {
1181			/* SPD24SEL for 037, 0x02 */
1182			/* SPD24SEL for 039, 0x20, but cannot be set */
1183			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185		} else { /* can_ac3_sw */
1186			/* SPD32SEL for 037 & 039, 0x20 */
1187			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188			/* set 176K sample rate to fix 033 HW bug */
1189			if (cm->chip_version == 33) {
1190				if (rate >= 48000) {
1191					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192				} else {
1193					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194				}
1195			}
1196		}
1197
1198	} else {
1199		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202		if (cm->can_ac3_hw) {
1203			/* chip model >= 37 */
1204			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1205				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207			} else {
1208				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210			}
1211		} else {
1212			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215		}
1216	}
1217}
1218
1219static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220{
1221	int rate, err;
1222
1223	rate = subs->runtime->rate;
1224
1225	if (up && do_ac3) {
1226		err = save_mixer_state(cm);
1227		if (err < 0)
1228			return err;
1229	}
1230
1231	spin_lock_irq(&cm->reg_lock);
1232	cm->spdif_playback_avail = up;
1233	if (up) {
1234		/* they are controlled via "IEC958 Output Switch" */
1235		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237		if (cm->spdif_playback_enabled)
1238			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239		setup_ac3(cm, subs, do_ac3, rate);
1240
1241		if (rate == 48000 || rate == 96000)
1242			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243		else
1244			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245		if (rate > 48000)
1246			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247		else
1248			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249	} else {
1250		/* they are controlled via "IEC958 Output Switch" */
1251		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255		setup_ac3(cm, subs, 0, 0);
1256	}
1257	spin_unlock_irq(&cm->reg_lock);
1258	return 0;
1259}
1260
1261
1262/*
1263 * preparation
1264 */
1265
1266/* playback - enable spdif only on the certain condition */
1267static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268{
1269	struct cmipci *cm = snd_pcm_substream_chip(substream);
1270	int rate = substream->runtime->rate;
1271	int err, do_spdif, do_ac3 = 0;
1272
1273	do_spdif = (rate >= 44100 && rate <= 96000 &&
1274		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275		    substream->runtime->channels == 2);
1276	if (do_spdif && cm->can_ac3_hw) 
1277		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1279	if (err < 0)
1280		return err;
1281	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282}
1283
1284/* playback  (via device #2) - enable spdif always */
1285static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286{
1287	struct cmipci *cm = snd_pcm_substream_chip(substream);
1288	int err, do_ac3;
1289
1290	if (cm->can_ac3_hw) 
1291		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292	else
1293		do_ac3 = 1; /* doesn't matter */
1294	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1295	if (err < 0)
1296		return err;
1297	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1298}
1299
1300/*
1301 * Apparently, the samples last played on channel A stay in some buffer, even
1302 * after the channel is reset, and get added to the data for the rear DACs when
1303 * playing a multichannel stream on channel B.  This is likely to generate
1304 * wraparounds and thus distortions.
1305 * To avoid this, we play at least one zero sample after the actual stream has
1306 * stopped.
1307 */
1308static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309{
1310	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311	unsigned int reg, val;
1312
1313	if (rec->needs_silencing && runtime && runtime->dma_area) {
1314		/* set up a small silence buffer */
1315		memset(runtime->dma_area, 0, PAGE_SIZE);
1316		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318		snd_cmipci_write(cm, reg, val);
1319	
1320		/* configure for 16 bits, 2 channels, 8 kHz */
1321		if (runtime->channels > 2)
1322			set_dac_channels(cm, rec, 2);
1323		spin_lock_irq(&cm->reg_lock);
1324		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1328		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331		if (cm->can_96k)
1332			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1334	
1335		/* start stream (we don't need interrupts) */
1336		cm->ctrl |= CM_CHEN0 << rec->ch;
1337		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1338		spin_unlock_irq(&cm->reg_lock);
1339
1340		msleep(1);
1341
1342		/* stop and reset stream */
1343		spin_lock_irq(&cm->reg_lock);
1344		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345		val = CM_RST_CH0 << rec->ch;
1346		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1347		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1348		spin_unlock_irq(&cm->reg_lock);
1349
1350		rec->needs_silencing = 0;
1351	}
1352}
1353
1354static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355{
1356	struct cmipci *cm = snd_pcm_substream_chip(substream);
1357	setup_spdif_playback(cm, substream, 0, 0);
1358	restore_mixer_state(cm);
1359	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1360	return 0;
1361}
1362
1363static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364{
1365	struct cmipci *cm = snd_pcm_substream_chip(substream);
1366	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1367	return 0;
1368}
1369
1370/* capture */
1371static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372{
1373	struct cmipci *cm = snd_pcm_substream_chip(substream);
1374	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1375}
1376
1377/* capture with spdif (via device #2) */
1378static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379{
1380	struct cmipci *cm = snd_pcm_substream_chip(substream);
1381
1382	spin_lock_irq(&cm->reg_lock);
1383	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384	if (cm->can_96k) {
1385		if (substream->runtime->rate > 48000)
1386			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387		else
1388			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389	}
1390	if (snd_pcm_format_width(substream->runtime->format) > 16)
1391		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392	else
1393		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394
1395	spin_unlock_irq(&cm->reg_lock);
1396
1397	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398}
1399
1400static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401{
1402	struct cmipci *cm = snd_pcm_substream_chip(subs);
1403
1404	spin_lock_irq(&cm->reg_lock);
1405	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407	spin_unlock_irq(&cm->reg_lock);
1408
1409	return 0;
1410}
1411
1412
1413/*
1414 * interrupt handler
1415 */
1416static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417{
1418	struct cmipci *cm = dev_id;
1419	unsigned int status, mask = 0;
1420	
1421	/* fastpath out, to ease interrupt sharing */
1422	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423	if (!(status & CM_INTR))
1424		return IRQ_NONE;
1425
1426	/* acknowledge interrupt */
1427	spin_lock(&cm->reg_lock);
1428	if (status & CM_CHINT0)
1429		mask |= CM_CH0_INT_EN;
1430	if (status & CM_CHINT1)
1431		mask |= CM_CH1_INT_EN;
1432	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1433	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1434	spin_unlock(&cm->reg_lock);
1435
1436	if (cm->rmidi && (status & CM_UARTINT))
1437		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438
1439	if (cm->pcm) {
1440		if ((status & CM_CHINT0) && cm->channel[0].running)
1441			snd_pcm_period_elapsed(cm->channel[0].substream);
1442		if ((status & CM_CHINT1) && cm->channel[1].running)
1443			snd_pcm_period_elapsed(cm->channel[1].substream);
1444	}
1445	return IRQ_HANDLED;
1446}
1447
1448/*
1449 * h/w infos
1450 */
1451
1452/* playback on channel A */
1453static const struct snd_pcm_hardware snd_cmipci_playback =
1454{
1455	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460	.rate_min =		5512,
1461	.rate_max =		48000,
1462	.channels_min =		1,
1463	.channels_max =		2,
1464	.buffer_bytes_max =	(128*1024),
1465	.period_bytes_min =	64,
1466	.period_bytes_max =	(128*1024),
1467	.periods_min =		2,
1468	.periods_max =		1024,
1469	.fifo_size =		0,
1470};
1471
1472/* capture on channel B */
1473static const struct snd_pcm_hardware snd_cmipci_capture =
1474{
1475	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480	.rate_min =		5512,
1481	.rate_max =		48000,
1482	.channels_min =		1,
1483	.channels_max =		2,
1484	.buffer_bytes_max =	(128*1024),
1485	.period_bytes_min =	64,
1486	.period_bytes_max =	(128*1024),
1487	.periods_min =		2,
1488	.periods_max =		1024,
1489	.fifo_size =		0,
1490};
1491
1492/* playback on channel B - stereo 16bit only? */
1493static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494{
1495	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1499	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500	.rate_min =		5512,
1501	.rate_max =		48000,
1502	.channels_min =		2,
1503	.channels_max =		2,
1504	.buffer_bytes_max =	(128*1024),
1505	.period_bytes_min =	64,
1506	.period_bytes_max =	(128*1024),
1507	.periods_min =		2,
1508	.periods_max =		1024,
1509	.fifo_size =		0,
1510};
1511
1512/* spdif playback on channel A */
1513static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514{
1515	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1519	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520	.rate_min =		44100,
1521	.rate_max =		48000,
1522	.channels_min =		2,
1523	.channels_max =		2,
1524	.buffer_bytes_max =	(128*1024),
1525	.period_bytes_min =	64,
1526	.period_bytes_max =	(128*1024),
1527	.periods_min =		2,
1528	.periods_max =		1024,
1529	.fifo_size =		0,
1530};
1531
1532/* spdif playback on channel A (32bit, IEC958 subframes) */
1533static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534{
1535	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540	.rate_min =		44100,
1541	.rate_max =		48000,
1542	.channels_min =		2,
1543	.channels_max =		2,
1544	.buffer_bytes_max =	(128*1024),
1545	.period_bytes_min =	64,
1546	.period_bytes_max =	(128*1024),
1547	.periods_min =		2,
1548	.periods_max =		1024,
1549	.fifo_size =		0,
1550};
1551
1552/* spdif capture on channel B */
1553static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554{
1555	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1559				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561	.rate_min =		44100,
1562	.rate_max =		48000,
1563	.channels_min =		2,
1564	.channels_max =		2,
1565	.buffer_bytes_max =	(128*1024),
1566	.period_bytes_min =	64,
1567	.period_bytes_max =	(128*1024),
1568	.periods_min =		2,
1569	.periods_max =		1024,
1570	.fifo_size =		0,
1571};
1572
 
 
 
 
 
 
 
 
1573/*
1574 * check device open/close
1575 */
1576static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1577{
1578	int ch = mode & CM_OPEN_CH_MASK;
1579
1580	/* FIXME: a file should wait until the device becomes free
1581	 * when it's opened on blocking mode.  however, since the current
1582	 * pcm framework doesn't pass file pointer before actually opened,
1583	 * we can't know whether blocking mode or not in open callback..
1584	 */
1585	mutex_lock(&cm->open_mutex);
1586	if (cm->opened[ch]) {
1587		mutex_unlock(&cm->open_mutex);
1588		return -EBUSY;
1589	}
1590	cm->opened[ch] = mode;
1591	cm->channel[ch].substream = subs;
1592	if (! (mode & CM_OPEN_DAC)) {
1593		/* disable dual DAC mode */
1594		cm->channel[ch].is_dac = 0;
1595		spin_lock_irq(&cm->reg_lock);
1596		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1597		spin_unlock_irq(&cm->reg_lock);
1598	}
1599	mutex_unlock(&cm->open_mutex);
1600	return 0;
1601}
1602
1603static void close_device_check(struct cmipci *cm, int mode)
1604{
1605	int ch = mode & CM_OPEN_CH_MASK;
1606
1607	mutex_lock(&cm->open_mutex);
1608	if (cm->opened[ch] == mode) {
1609		if (cm->channel[ch].substream) {
1610			snd_cmipci_ch_reset(cm, ch);
1611			cm->channel[ch].running = 0;
1612			cm->channel[ch].substream = NULL;
1613		}
1614		cm->opened[ch] = 0;
1615		if (! cm->channel[ch].is_dac) {
1616			/* enable dual DAC mode again */
1617			cm->channel[ch].is_dac = 1;
1618			spin_lock_irq(&cm->reg_lock);
1619			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1620			spin_unlock_irq(&cm->reg_lock);
1621		}
1622	}
1623	mutex_unlock(&cm->open_mutex);
1624}
1625
1626/*
1627 */
1628
1629static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1630{
1631	struct cmipci *cm = snd_pcm_substream_chip(substream);
1632	struct snd_pcm_runtime *runtime = substream->runtime;
1633	int err;
1634
1635	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1636	if (err < 0)
1637		return err;
1638	runtime->hw = snd_cmipci_playback;
1639	if (cm->chip_version == 68) {
1640		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1641				     SNDRV_PCM_RATE_96000;
1642		runtime->hw.rate_max = 96000;
1643	} else if (cm->chip_version == 55) {
1644		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1645				     SNDRV_PCM_RATE_96000 |
1646				     SNDRV_PCM_RATE_128000;
 
 
1647		runtime->hw.rate_max = 128000;
1648	}
1649	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1650	cm->dig_pcm_status = cm->dig_status;
1651	return 0;
1652}
1653
1654static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1655{
1656	struct cmipci *cm = snd_pcm_substream_chip(substream);
1657	struct snd_pcm_runtime *runtime = substream->runtime;
1658	int err;
1659
1660	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1661	if (err < 0)
1662		return err;
1663	runtime->hw = snd_cmipci_capture;
1664	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1665		runtime->hw.rate_min = 41000;
1666		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1667	} else if (cm->chip_version == 55) {
1668		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1669				     SNDRV_PCM_RATE_96000 |
1670				     SNDRV_PCM_RATE_128000;
 
 
1671		runtime->hw.rate_max = 128000;
1672	}
1673	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1674	return 0;
1675}
1676
1677static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1678{
1679	struct cmipci *cm = snd_pcm_substream_chip(substream);
1680	struct snd_pcm_runtime *runtime = substream->runtime;
1681	int err;
1682
1683	/* use channel B */
1684	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1685	if (err < 0)
1686		return err;
1687	runtime->hw = snd_cmipci_playback2;
1688	mutex_lock(&cm->open_mutex);
1689	if (! cm->opened[CM_CH_PLAY]) {
1690		if (cm->can_multi_ch) {
1691			runtime->hw.channels_max = cm->max_channels;
1692			if (cm->max_channels == 4)
1693				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1694			else if (cm->max_channels == 6)
1695				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1696			else if (cm->max_channels == 8)
1697				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1698		}
1699	}
1700	mutex_unlock(&cm->open_mutex);
1701	if (cm->chip_version == 68) {
1702		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1703				     SNDRV_PCM_RATE_96000;
1704		runtime->hw.rate_max = 96000;
1705	} else if (cm->chip_version == 55) {
1706		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1707				     SNDRV_PCM_RATE_96000 |
1708				     SNDRV_PCM_RATE_128000;
 
 
1709		runtime->hw.rate_max = 128000;
1710	}
1711	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1712	return 0;
1713}
1714
1715static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1716{
1717	struct cmipci *cm = snd_pcm_substream_chip(substream);
1718	struct snd_pcm_runtime *runtime = substream->runtime;
1719	int err;
1720
1721	/* use channel A */
1722	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1723	if (err < 0)
1724		return err;
1725	if (cm->can_ac3_hw) {
1726		runtime->hw = snd_cmipci_playback_spdif;
1727		if (cm->chip_version >= 37) {
1728			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1729			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1730		}
1731		if (cm->can_96k) {
1732			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1733					     SNDRV_PCM_RATE_96000;
1734			runtime->hw.rate_max = 96000;
1735		}
1736	} else {
1737		runtime->hw = snd_cmipci_playback_iec958_subframe;
1738	}
1739	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1740	cm->dig_pcm_status = cm->dig_status;
1741	return 0;
1742}
1743
1744static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1745{
1746	struct cmipci *cm = snd_pcm_substream_chip(substream);
1747	struct snd_pcm_runtime *runtime = substream->runtime;
1748	int err;
1749
1750	/* use channel B */
1751	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1752	if (err < 0)
1753		return err;
1754	runtime->hw = snd_cmipci_capture_spdif;
1755	if (cm->can_96k && !(cm->chip_version == 68)) {
1756		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1757				     SNDRV_PCM_RATE_96000;
1758		runtime->hw.rate_max = 96000;
1759	}
1760	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761	return 0;
1762}
1763
1764
1765/*
1766 */
1767
1768static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1769{
1770	struct cmipci *cm = snd_pcm_substream_chip(substream);
1771	close_device_check(cm, CM_OPEN_PLAYBACK);
1772	return 0;
1773}
1774
1775static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1776{
1777	struct cmipci *cm = snd_pcm_substream_chip(substream);
1778	close_device_check(cm, CM_OPEN_CAPTURE);
1779	return 0;
1780}
1781
1782static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1783{
1784	struct cmipci *cm = snd_pcm_substream_chip(substream);
1785	close_device_check(cm, CM_OPEN_PLAYBACK2);
1786	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1787	return 0;
1788}
1789
1790static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1791{
1792	struct cmipci *cm = snd_pcm_substream_chip(substream);
1793	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1794	return 0;
1795}
1796
1797static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1798{
1799	struct cmipci *cm = snd_pcm_substream_chip(substream);
1800	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1801	return 0;
1802}
1803
1804
1805/*
1806 */
1807
1808static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1809	.open =		snd_cmipci_playback_open,
1810	.close =	snd_cmipci_playback_close,
 
 
1811	.hw_free =	snd_cmipci_playback_hw_free,
1812	.prepare =	snd_cmipci_playback_prepare,
1813	.trigger =	snd_cmipci_playback_trigger,
1814	.pointer =	snd_cmipci_playback_pointer,
1815};
1816
1817static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1818	.open =		snd_cmipci_capture_open,
1819	.close =	snd_cmipci_capture_close,
 
 
 
1820	.prepare =	snd_cmipci_capture_prepare,
1821	.trigger =	snd_cmipci_capture_trigger,
1822	.pointer =	snd_cmipci_capture_pointer,
1823};
1824
1825static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1826	.open =		snd_cmipci_playback2_open,
1827	.close =	snd_cmipci_playback2_close,
 
1828	.hw_params =	snd_cmipci_playback2_hw_params,
1829	.hw_free =	snd_cmipci_playback2_hw_free,
1830	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1831	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1832	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1833};
1834
1835static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1836	.open =		snd_cmipci_playback_spdif_open,
1837	.close =	snd_cmipci_playback_spdif_close,
 
 
1838	.hw_free =	snd_cmipci_playback_hw_free,
1839	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1840	.trigger =	snd_cmipci_playback_trigger,
1841	.pointer =	snd_cmipci_playback_pointer,
1842};
1843
1844static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1845	.open =		snd_cmipci_capture_spdif_open,
1846	.close =	snd_cmipci_capture_spdif_close,
 
 
1847	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1848	.prepare =	snd_cmipci_capture_spdif_prepare,
1849	.trigger =	snd_cmipci_capture_trigger,
1850	.pointer =	snd_cmipci_capture_pointer,
1851};
1852
1853
1854/*
1855 */
1856
1857static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1858{
1859	struct snd_pcm *pcm;
1860	int err;
1861
1862	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1863	if (err < 0)
1864		return err;
1865
1866	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1867	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1868
1869	pcm->private_data = cm;
1870	pcm->info_flags = 0;
1871	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1872	cm->pcm = pcm;
1873
1874	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1875				       &cm->pci->dev, 64*1024, 128*1024);
1876
1877	return 0;
1878}
1879
1880static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1881{
1882	struct snd_pcm *pcm;
1883	int err;
1884
1885	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1886	if (err < 0)
1887		return err;
1888
1889	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1890
1891	pcm->private_data = cm;
1892	pcm->info_flags = 0;
1893	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1894	cm->pcm2 = pcm;
1895
1896	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1897				       &cm->pci->dev, 64*1024, 128*1024);
1898
1899	return 0;
1900}
1901
1902static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1903{
1904	struct snd_pcm *pcm;
1905	int err;
1906
1907	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1908	if (err < 0)
1909		return err;
1910
1911	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1912	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1913
1914	pcm->private_data = cm;
1915	pcm->info_flags = 0;
1916	strcpy(pcm->name, "C-Media PCI IEC958");
1917	cm->pcm_spdif = pcm;
1918
1919	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1920				       &cm->pci->dev, 64*1024, 128*1024);
1921
1922	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1923				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1924				     NULL);
1925	if (err < 0)
1926		return err;
1927
1928	return 0;
1929}
1930
1931/*
1932 * mixer interface:
1933 * - CM8338/8738 has a compatible mixer interface with SB16, but
1934 *   lack of some elements like tone control, i/o gain and AGC.
1935 * - Access to native registers:
1936 *   - A 3D switch
1937 *   - Output mute switches
1938 */
1939
1940static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1941{
1942	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1943	outb(data, s->iobase + CM_REG_SB16_DATA);
1944}
1945
1946static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1947{
1948	unsigned char v;
1949
1950	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951	v = inb(s->iobase + CM_REG_SB16_DATA);
1952	return v;
1953}
1954
1955/*
1956 * general mixer element
1957 */
1958struct cmipci_sb_reg {
1959	unsigned int left_reg, right_reg;
1960	unsigned int left_shift, right_shift;
1961	unsigned int mask;
1962	unsigned int invert: 1;
1963	unsigned int stereo: 1;
1964};
1965
1966#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1967 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1968
1969#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1970{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1971  .info = snd_cmipci_info_volume, \
1972  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1973  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1974}
1975
1976#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1977#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1978#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1979#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1980
1981static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1982{
1983	r->left_reg = val & 0xff;
1984	r->right_reg = (val >> 8) & 0xff;
1985	r->left_shift = (val >> 16) & 0x07;
1986	r->right_shift = (val >> 19) & 0x07;
1987	r->invert = (val >> 22) & 1;
1988	r->stereo = (val >> 23) & 1;
1989	r->mask = (val >> 24) & 0xff;
1990}
1991
1992static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1993				  struct snd_ctl_elem_info *uinfo)
1994{
1995	struct cmipci_sb_reg reg;
1996
1997	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1998	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1999	uinfo->count = reg.stereo + 1;
2000	uinfo->value.integer.min = 0;
2001	uinfo->value.integer.max = reg.mask;
2002	return 0;
2003}
2004 
2005static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2006				 struct snd_ctl_elem_value *ucontrol)
2007{
2008	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2009	struct cmipci_sb_reg reg;
2010	int val;
2011
2012	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2013	spin_lock_irq(&cm->reg_lock);
2014	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2015	if (reg.invert)
2016		val = reg.mask - val;
2017	ucontrol->value.integer.value[0] = val;
2018	if (reg.stereo) {
2019		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2020		if (reg.invert)
2021			val = reg.mask - val;
2022		ucontrol->value.integer.value[1] = val;
2023	}
2024	spin_unlock_irq(&cm->reg_lock);
2025	return 0;
2026}
2027
2028static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2029				 struct snd_ctl_elem_value *ucontrol)
2030{
2031	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032	struct cmipci_sb_reg reg;
2033	int change;
2034	int left, right, oleft, oright;
2035
2036	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2037	left = ucontrol->value.integer.value[0] & reg.mask;
2038	if (reg.invert)
2039		left = reg.mask - left;
2040	left <<= reg.left_shift;
2041	if (reg.stereo) {
2042		right = ucontrol->value.integer.value[1] & reg.mask;
2043		if (reg.invert)
2044			right = reg.mask - right;
2045		right <<= reg.right_shift;
2046	} else
2047		right = 0;
2048	spin_lock_irq(&cm->reg_lock);
2049	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2050	left |= oleft & ~(reg.mask << reg.left_shift);
2051	change = left != oleft;
2052	if (reg.stereo) {
2053		if (reg.left_reg != reg.right_reg) {
2054			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2055			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2056		} else
2057			oright = left;
2058		right |= oright & ~(reg.mask << reg.right_shift);
2059		change |= right != oright;
2060		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2061	} else
2062		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063	spin_unlock_irq(&cm->reg_lock);
2064	return change;
2065}
2066
2067/*
2068 * input route (left,right) -> (left,right)
2069 */
2070#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2071{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2072  .info = snd_cmipci_info_input_sw, \
2073  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2074  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2075}
2076
2077static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2078				    struct snd_ctl_elem_info *uinfo)
2079{
2080	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2081	uinfo->count = 4;
2082	uinfo->value.integer.min = 0;
2083	uinfo->value.integer.max = 1;
2084	return 0;
2085}
2086 
2087static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2088				   struct snd_ctl_elem_value *ucontrol)
2089{
2090	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2091	struct cmipci_sb_reg reg;
2092	int val1, val2;
2093
2094	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2095	spin_lock_irq(&cm->reg_lock);
2096	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2097	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2098	spin_unlock_irq(&cm->reg_lock);
2099	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2100	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2101	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2102	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2103	return 0;
2104}
2105
2106static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2107				   struct snd_ctl_elem_value *ucontrol)
2108{
2109	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2110	struct cmipci_sb_reg reg;
2111	int change;
2112	int val1, val2, oval1, oval2;
2113
2114	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2115	spin_lock_irq(&cm->reg_lock);
2116	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2117	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2118	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2119	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2120	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2121	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2122	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2123	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2124	change = val1 != oval1 || val2 != oval2;
2125	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2126	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2127	spin_unlock_irq(&cm->reg_lock);
2128	return change;
2129}
2130
2131/*
2132 * native mixer switches/volumes
2133 */
2134
2135#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2136{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2137  .info = snd_cmipci_info_native_mixer, \
2138  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2139  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2140}
2141
2142#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2143{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2144  .info = snd_cmipci_info_native_mixer, \
2145  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2146  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2147}
2148
2149#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2150{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151  .info = snd_cmipci_info_native_mixer, \
2152  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2154}
2155
2156#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2157{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158  .info = snd_cmipci_info_native_mixer, \
2159  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2161}
2162
2163static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2164					struct snd_ctl_elem_info *uinfo)
2165{
2166	struct cmipci_sb_reg reg;
2167
2168	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2169	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2170	uinfo->count = reg.stereo + 1;
2171	uinfo->value.integer.min = 0;
2172	uinfo->value.integer.max = reg.mask;
2173	return 0;
2174
2175}
2176
2177static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2178				       struct snd_ctl_elem_value *ucontrol)
2179{
2180	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2181	struct cmipci_sb_reg reg;
2182	unsigned char oreg, val;
2183
2184	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185	spin_lock_irq(&cm->reg_lock);
2186	oreg = inb(cm->iobase + reg.left_reg);
2187	val = (oreg >> reg.left_shift) & reg.mask;
2188	if (reg.invert)
2189		val = reg.mask - val;
2190	ucontrol->value.integer.value[0] = val;
2191	if (reg.stereo) {
2192		val = (oreg >> reg.right_shift) & reg.mask;
2193		if (reg.invert)
2194			val = reg.mask - val;
2195		ucontrol->value.integer.value[1] = val;
2196	}
2197	spin_unlock_irq(&cm->reg_lock);
2198	return 0;
2199}
2200
2201static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2202				       struct snd_ctl_elem_value *ucontrol)
2203{
2204	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2205	struct cmipci_sb_reg reg;
2206	unsigned char oreg, nreg, val;
2207
2208	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2209	spin_lock_irq(&cm->reg_lock);
2210	oreg = inb(cm->iobase + reg.left_reg);
2211	val = ucontrol->value.integer.value[0] & reg.mask;
2212	if (reg.invert)
2213		val = reg.mask - val;
2214	nreg = oreg & ~(reg.mask << reg.left_shift);
2215	nreg |= (val << reg.left_shift);
2216	if (reg.stereo) {
2217		val = ucontrol->value.integer.value[1] & reg.mask;
2218		if (reg.invert)
2219			val = reg.mask - val;
2220		nreg &= ~(reg.mask << reg.right_shift);
2221		nreg |= (val << reg.right_shift);
2222	}
2223	outb(nreg, cm->iobase + reg.left_reg);
2224	spin_unlock_irq(&cm->reg_lock);
2225	return (nreg != oreg);
2226}
2227
2228/*
2229 * special case - check mixer sensitivity
2230 */
2231static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2232						 struct snd_ctl_elem_value *ucontrol)
2233{
2234	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2236}
2237
2238static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2239						 struct snd_ctl_elem_value *ucontrol)
2240{
2241	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242	if (cm->mixer_insensitive) {
2243		/* ignored */
2244		return 0;
2245	}
2246	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2247}
2248
2249
2250static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2251	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2252	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2253	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2254	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2255	{ /* switch with sensitivity */
2256		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2257		.name = "PCM Playback Switch",
2258		.info = snd_cmipci_info_native_mixer,
2259		.get = snd_cmipci_get_native_mixer_sensitive,
2260		.put = snd_cmipci_put_native_mixer_sensitive,
2261		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2262	},
2263	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2264	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2265	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2266	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2267	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2268	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2269	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2270	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2271	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2272	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2273	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2274	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2275	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2276	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2277	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2278	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2279	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2280	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2281	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2282	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2283	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2284	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2285	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2286};
2287
2288/*
2289 * other switches
2290 */
2291
2292struct cmipci_switch_args {
2293	int reg;		/* register index */
2294	unsigned int mask;	/* mask bits */
2295	unsigned int mask_on;	/* mask bits to turn on */
2296	unsigned int is_byte: 1;		/* byte access? */
2297	unsigned int ac3_sensitive: 1;	/* access forbidden during
2298					 * non-audio operation?
2299					 */
2300};
2301
2302#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2303
2304static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2305				   struct snd_ctl_elem_value *ucontrol,
2306				   struct cmipci_switch_args *args)
2307{
2308	unsigned int val;
2309	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2310
2311	spin_lock_irq(&cm->reg_lock);
2312	if (args->ac3_sensitive && cm->mixer_insensitive) {
2313		ucontrol->value.integer.value[0] = 0;
2314		spin_unlock_irq(&cm->reg_lock);
2315		return 0;
2316	}
2317	if (args->is_byte)
2318		val = inb(cm->iobase + args->reg);
2319	else
2320		val = snd_cmipci_read(cm, args->reg);
2321	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2322	spin_unlock_irq(&cm->reg_lock);
2323	return 0;
2324}
2325
2326static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2327				  struct snd_ctl_elem_value *ucontrol)
2328{
2329	struct cmipci_switch_args *args;
2330	args = (struct cmipci_switch_args *)kcontrol->private_value;
2331	if (snd_BUG_ON(!args))
2332		return -EINVAL;
2333	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2334}
2335
2336static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2337				   struct snd_ctl_elem_value *ucontrol,
2338				   struct cmipci_switch_args *args)
2339{
2340	unsigned int val;
2341	int change;
2342	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2343
2344	spin_lock_irq(&cm->reg_lock);
2345	if (args->ac3_sensitive && cm->mixer_insensitive) {
2346		/* ignored */
2347		spin_unlock_irq(&cm->reg_lock);
2348		return 0;
2349	}
2350	if (args->is_byte)
2351		val = inb(cm->iobase + args->reg);
2352	else
2353		val = snd_cmipci_read(cm, args->reg);
2354	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2355			args->mask_on : (args->mask & ~args->mask_on));
2356	if (change) {
2357		val &= ~args->mask;
2358		if (ucontrol->value.integer.value[0])
2359			val |= args->mask_on;
2360		else
2361			val |= (args->mask & ~args->mask_on);
2362		if (args->is_byte)
2363			outb((unsigned char)val, cm->iobase + args->reg);
2364		else
2365			snd_cmipci_write(cm, args->reg, val);
2366	}
2367	spin_unlock_irq(&cm->reg_lock);
2368	return change;
2369}
2370
2371static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2372				  struct snd_ctl_elem_value *ucontrol)
2373{
2374	struct cmipci_switch_args *args;
2375	args = (struct cmipci_switch_args *)kcontrol->private_value;
2376	if (snd_BUG_ON(!args))
2377		return -EINVAL;
2378	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2379}
2380
2381#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2382static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2383  .reg = xreg, \
2384  .mask = xmask, \
2385  .mask_on = xmask_on, \
2386  .is_byte = xis_byte, \
2387  .ac3_sensitive = xac3, \
2388}
2389	
2390#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2391	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2392
2393#if 0 /* these will be controlled in pcm device */
2394DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2395DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2396#endif
2397DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2398DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2399DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2400DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2401DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2402DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2403DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2404DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2405// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2406DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2407DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2408/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2409DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2410DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2411#if CM_CH_PLAY == 1
2412DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2413#else
2414DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2415#endif
2416DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2417// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2418// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2419// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2420DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2421
2422#define DEFINE_SWITCH(sname, stype, sarg) \
2423{ .name = sname, \
2424  .iface = stype, \
2425  .info = snd_cmipci_uswitch_info, \
2426  .get = snd_cmipci_uswitch_get, \
2427  .put = snd_cmipci_uswitch_put, \
2428  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2429}
2430
2431#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2432#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2433
2434
2435/*
2436 * callbacks for spdif output switch
2437 * needs toggle two registers..
2438 */
2439static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2440					struct snd_ctl_elem_value *ucontrol)
2441{
2442	int changed;
2443	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2444	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2445	return changed;
2446}
2447
2448static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2449					struct snd_ctl_elem_value *ucontrol)
2450{
2451	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2452	int changed;
2453	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2454	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2455	if (changed) {
2456		if (ucontrol->value.integer.value[0]) {
2457			if (chip->spdif_playback_avail)
2458				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2459		} else {
2460			if (chip->spdif_playback_avail)
2461				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2462		}
2463	}
2464	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2465	return changed;
2466}
2467
2468
2469static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2470					struct snd_ctl_elem_info *uinfo)
2471{
2472	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2473	static const char *const texts[3] = {
2474		"Line-In", "Rear Output", "Bass Output"
2475	};
2476
2477	return snd_ctl_enum_info(uinfo, 1,
2478				 cm->chip_version >= 39 ? 3 : 2, texts);
2479}
2480
2481static inline unsigned int get_line_in_mode(struct cmipci *cm)
2482{
2483	unsigned int val;
2484	if (cm->chip_version >= 39) {
2485		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2486		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2487			return 2;
2488	}
2489	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2490	if (val & CM_REAR2LIN)
2491		return 1;
2492	return 0;
2493}
2494
2495static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2496				       struct snd_ctl_elem_value *ucontrol)
2497{
2498	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2499
2500	spin_lock_irq(&cm->reg_lock);
2501	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2502	spin_unlock_irq(&cm->reg_lock);
2503	return 0;
2504}
2505
2506static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2507				       struct snd_ctl_elem_value *ucontrol)
2508{
2509	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510	int change;
2511
2512	spin_lock_irq(&cm->reg_lock);
2513	if (ucontrol->value.enumerated.item[0] == 2)
2514		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2515	else
2516		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2517	if (ucontrol->value.enumerated.item[0] == 1)
2518		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2519	else
2520		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2521	spin_unlock_irq(&cm->reg_lock);
2522	return change;
2523}
2524
2525static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2526				       struct snd_ctl_elem_info *uinfo)
2527{
2528	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2529
2530	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2531}
2532
2533static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2534				      struct snd_ctl_elem_value *ucontrol)
2535{
2536	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2537	/* same bit as spdi_phase */
2538	spin_lock_irq(&cm->reg_lock);
2539	ucontrol->value.enumerated.item[0] = 
2540		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2541	spin_unlock_irq(&cm->reg_lock);
2542	return 0;
2543}
2544
2545static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2546				      struct snd_ctl_elem_value *ucontrol)
2547{
2548	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2549	int change;
2550
2551	spin_lock_irq(&cm->reg_lock);
2552	if (ucontrol->value.enumerated.item[0])
2553		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2554	else
2555		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2556	spin_unlock_irq(&cm->reg_lock);
2557	return change;
2558}
2559
2560/* both for CM8338/8738 */
2561static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2562	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2563	{
2564		.name = "Line-In Mode",
2565		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2566		.info = snd_cmipci_line_in_mode_info,
2567		.get = snd_cmipci_line_in_mode_get,
2568		.put = snd_cmipci_line_in_mode_put,
2569	},
2570};
2571
2572/* for non-multichannel chips */
2573static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2574DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2575
2576/* only for CM8738 */
2577static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2578#if 0 /* controlled in pcm device */
2579	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2580	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2581	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2582#endif
2583	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2584	{ .name = "IEC958 Output Switch",
2585	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2586	  .info = snd_cmipci_uswitch_info,
2587	  .get = snd_cmipci_spdout_enable_get,
2588	  .put = snd_cmipci_spdout_enable_put,
2589	},
2590	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2591	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2592	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2593//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2594	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2595	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2596};
2597
2598/* only for model 033/037 */
2599static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2600	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2601	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2602	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2603};
2604
2605/* only for model 039 or later */
2606static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2607	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2608	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2609	{
2610		.name = "Mic-In Mode",
2611		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2612		.info = snd_cmipci_mic_in_mode_info,
2613		.get = snd_cmipci_mic_in_mode_get,
2614		.put = snd_cmipci_mic_in_mode_put,
2615	}
2616};
2617
2618/* card control switches */
2619static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2620DEFINE_CARD_SWITCH("Modem", modem);
2621
2622
2623static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2624{
2625	struct snd_card *card;
2626	const struct snd_kcontrol_new *sw;
2627	struct snd_kcontrol *kctl;
2628	unsigned int idx;
2629	int err;
2630
2631	if (snd_BUG_ON(!cm || !cm->card))
2632		return -EINVAL;
2633
2634	card = cm->card;
2635
2636	strcpy(card->mixername, "CMedia PCI");
2637
2638	spin_lock_irq(&cm->reg_lock);
2639	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2640	spin_unlock_irq(&cm->reg_lock);
2641
2642	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2643		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2644			if (!strcmp(snd_cmipci_mixers[idx].name,
2645				"PCM Playback Volume"))
2646				continue;
2647		}
2648		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2649		if (err < 0)
2650			return err;
2651	}
2652
2653	/* mixer switches */
2654	sw = snd_cmipci_mixer_switches;
2655	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2656		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2657		if (err < 0)
2658			return err;
2659	}
2660	if (! cm->can_multi_ch) {
2661		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2662		if (err < 0)
2663			return err;
2664	}
2665	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2666	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2667		sw = snd_cmipci_8738_mixer_switches;
2668		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2669			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2670			if (err < 0)
2671				return err;
2672		}
2673		if (cm->can_ac3_hw) {
2674			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2675			kctl->id.device = pcm_spdif_device;
2676			err = snd_ctl_add(card, kctl);
2677			if (err < 0)
2678				return err;
2679			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2680			kctl->id.device = pcm_spdif_device;
2681			err = snd_ctl_add(card, kctl);
2682			if (err < 0)
2683				return err;
2684			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2685			kctl->id.device = pcm_spdif_device;
2686			err = snd_ctl_add(card, kctl);
2687			if (err < 0)
2688				return err;
 
2689		}
2690		if (cm->chip_version <= 37) {
2691			sw = snd_cmipci_old_mixer_switches;
2692			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2693				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2694				if (err < 0)
2695					return err;
2696			}
2697		}
2698	}
2699	if (cm->chip_version >= 39) {
2700		sw = snd_cmipci_extra_mixer_switches;
2701		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2702			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2703			if (err < 0)
2704				return err;
2705		}
2706	}
2707
2708	/* card switches */
2709	/*
2710	 * newer chips don't have the register bits to force modem link
2711	 * detection; the bit that was FLINKON now mutes CH1
2712	 */
2713	if (cm->chip_version < 39) {
2714		err = snd_ctl_add(cm->card,
2715				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2716		if (err < 0)
2717			return err;
2718	}
2719
2720	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
 
2721		struct snd_kcontrol *ctl;
2722		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
 
 
 
2723		if (ctl)
2724			cm->mixer_res_ctl[idx] = ctl;
2725	}
2726
2727	return 0;
2728}
2729
2730
2731/*
2732 * proc interface
2733 */
2734
2735static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2736				 struct snd_info_buffer *buffer)
2737{
2738	struct cmipci *cm = entry->private_data;
2739	int i, v;
2740	
2741	snd_iprintf(buffer, "%s\n", cm->card->longname);
2742	for (i = 0; i < 0x94; i++) {
2743		if (i == 0x28)
2744			i = 0x90;
2745		v = inb(cm->iobase + i);
2746		if (i % 4 == 0)
2747			snd_iprintf(buffer, "\n%02x:", i);
2748		snd_iprintf(buffer, " %02x", v);
2749	}
2750	snd_iprintf(buffer, "\n");
2751}
2752
2753static void snd_cmipci_proc_init(struct cmipci *cm)
2754{
2755	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
 
 
 
2756}
2757
2758static const struct pci_device_id snd_cmipci_ids[] = {
2759	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2760	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2761	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2762	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2763	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2764	{0,},
2765};
2766
2767
2768/*
2769 * check chip version and capabilities
2770 * driver name is modified according to the chip model
2771 */
2772static void query_chip(struct cmipci *cm)
2773{
2774	unsigned int detect;
2775
2776	/* check reg 0Ch, bit 24-31 */
2777	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2778	if (! detect) {
2779		/* check reg 08h, bit 24-28 */
2780		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2781		switch (detect) {
2782		case 0:
2783			cm->chip_version = 33;
2784			if (cm->do_soft_ac3)
2785				cm->can_ac3_sw = 1;
2786			else
2787				cm->can_ac3_hw = 1;
2788			break;
2789		case CM_CHIP_037:
2790			cm->chip_version = 37;
2791			cm->can_ac3_hw = 1;
2792			break;
2793		default:
2794			cm->chip_version = 39;
2795			cm->can_ac3_hw = 1;
2796			break;
2797		}
2798		cm->max_channels = 2;
2799	} else {
2800		if (detect & CM_CHIP_039) {
2801			cm->chip_version = 39;
2802			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2803				cm->max_channels = 6;
2804			else
2805				cm->max_channels = 4;
2806		} else if (detect & CM_CHIP_8768) {
2807			cm->chip_version = 68;
2808			cm->max_channels = 8;
2809			cm->can_96k = 1;
2810		} else {
2811			cm->chip_version = 55;
2812			cm->max_channels = 6;
2813			cm->can_96k = 1;
2814		}
2815		cm->can_ac3_hw = 1;
2816		cm->can_multi_ch = 1;
2817	}
2818}
2819
2820#ifdef SUPPORT_JOYSTICK
2821static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2822{
2823	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2824	struct gameport *gp;
2825	struct resource *r = NULL;
2826	int i, io_port = 0;
2827
2828	if (joystick_port[dev] == 0)
2829		return -ENODEV;
2830
2831	if (joystick_port[dev] == 1) { /* auto-detect */
2832		for (i = 0; ports[i]; i++) {
2833			io_port = ports[i];
2834			r = devm_request_region(&cm->pci->dev, io_port, 1,
2835						"CMIPCI gameport");
2836			if (r)
2837				break;
2838		}
2839	} else {
2840		io_port = joystick_port[dev];
2841		r = devm_request_region(&cm->pci->dev, io_port, 1,
2842					"CMIPCI gameport");
2843	}
2844
2845	if (!r) {
2846		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2847		return -EBUSY;
2848	}
2849
2850	cm->gameport = gp = gameport_allocate_port();
2851	if (!gp) {
2852		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
 
2853		return -ENOMEM;
2854	}
2855	gameport_set_name(gp, "C-Media Gameport");
2856	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2857	gameport_set_dev_parent(gp, &cm->pci->dev);
2858	gp->io = io_port;
 
2859
2860	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2861
2862	gameport_register_port(cm->gameport);
2863
2864	return 0;
2865}
2866
2867static void snd_cmipci_free_gameport(struct cmipci *cm)
2868{
2869	if (cm->gameport) {
 
 
2870		gameport_unregister_port(cm->gameport);
2871		cm->gameport = NULL;
2872
2873		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
 
2874	}
2875}
2876#else
2877static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2878static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2879#endif
2880
2881static void snd_cmipci_free(struct snd_card *card)
2882{
2883	struct cmipci *cm = card->private_data;
 
 
 
 
 
 
 
2884
2885	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2886	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2887	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2888	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2889	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2890	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2891	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2892
2893	/* reset mixer */
2894	snd_cmipci_mixer_write(cm, 0, 0);
2895
2896	snd_cmipci_free_gameport(cm);
 
 
 
 
 
 
 
 
 
 
2897}
2898
2899static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2900{
2901	long iosynth;
2902	unsigned int val;
2903	struct snd_opl3 *opl3;
2904	int err;
2905
2906	if (!fm_port)
2907		goto disable_fm;
2908
2909	if (cm->chip_version >= 39) {
2910		/* first try FM regs in PCI port range */
2911		iosynth = cm->iobase + CM_REG_FM_PCI;
2912		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2913				      OPL3_HW_OPL3, 1, &opl3);
2914	} else {
2915		err = -EIO;
2916	}
2917	if (err < 0) {
2918		/* then try legacy ports */
2919		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2920		iosynth = fm_port;
2921		switch (iosynth) {
2922		case 0x3E8: val |= CM_FMSEL_3E8; break;
2923		case 0x3E0: val |= CM_FMSEL_3E0; break;
2924		case 0x3C8: val |= CM_FMSEL_3C8; break;
2925		case 0x388: val |= CM_FMSEL_388; break;
2926		default:
2927			goto disable_fm;
2928		}
2929		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2930		/* enable FM */
2931		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2932
2933		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2935			dev_err(cm->card->dev,
2936				"no OPL device at %#lx, skipping...\n",
2937				iosynth);
2938			goto disable_fm;
2939		}
2940	}
2941	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2942	if (err < 0) {
2943		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2944		return err;
2945	}
2946	return 0;
2947
2948 disable_fm:
2949	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2950	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2951	return 0;
2952}
2953
2954static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2955			     int dev)
2956{
2957	struct cmipci *cm = card->private_data;
2958	int err;
 
 
 
2959	unsigned int val;
2960	long iomidi = 0;
2961	int integrated_midi = 0;
2962	char modelstr[16];
2963	int pcm_index, pcm_spdif_index;
2964	static const struct pci_device_id intel_82437vx[] = {
2965		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2966		{ },
2967	};
2968
2969	err = pcim_enable_device(pci);
2970	if (err < 0)
 
2971		return err;
2972
 
 
 
 
 
 
2973	spin_lock_init(&cm->reg_lock);
2974	mutex_init(&cm->open_mutex);
2975	cm->device = pci->device;
2976	cm->card = card;
2977	cm->pci = pci;
2978	cm->irq = -1;
2979	cm->channel[0].ch = 0;
2980	cm->channel[1].ch = 1;
2981	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2982
2983	err = pci_request_regions(pci, card->driver);
2984	if (err < 0)
 
2985		return err;
 
2986	cm->iobase = pci_resource_start(pci, 0);
2987
2988	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
2989			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
2990		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
 
2991		return -EBUSY;
2992	}
2993	cm->irq = pci->irq;
2994	card->sync_irq = cm->irq;
2995	card->private_free = snd_cmipci_free;
2996
2997	pci_set_master(cm->pci);
2998
2999	/*
3000	 * check chip version, max channels and capabilities
3001	 */
3002
3003	cm->chip_version = 0;
3004	cm->max_channels = 2;
3005	cm->do_soft_ac3 = soft_ac3[dev];
3006
3007	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3008	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3009		query_chip(cm);
3010	/* added -MCx suffix for chip supporting multi-channels */
3011	if (cm->can_multi_ch)
3012		sprintf(cm->card->driver + strlen(cm->card->driver),
3013			"-MC%d", cm->max_channels);
3014	else if (cm->can_ac3_sw)
3015		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3016
3017	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3018	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3019
3020#if CM_CH_PLAY == 1
3021	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3022#else
3023	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3024#endif
3025
3026	/* initialize codec registers */
3027	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3028	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3029	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3030	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3031	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3032	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3033	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3034
3035	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3036	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3037#if CM_CH_PLAY == 1
3038	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3039#else
3040	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3041#endif
3042	if (cm->chip_version) {
3043		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3044		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3045	}
3046	/* Set Bus Master Request */
3047	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3048
3049	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3050	switch (pci->device) {
3051	case PCI_DEVICE_ID_CMEDIA_CM8738:
3052	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3053		if (!pci_dev_present(intel_82437vx)) 
3054			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3055		break;
3056	default:
3057		break;
3058	}
3059
3060	if (cm->chip_version < 68) {
3061		val = pci->device < 0x110 ? 8338 : 8738;
3062	} else {
3063		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3064		case 0:
3065			val = 8769;
3066			break;
3067		case 2:
3068			val = 8762;
3069			break;
3070		default:
3071			switch ((pci->subsystem_vendor << 16) |
3072				pci->subsystem_device) {
3073			case 0x13f69761:
3074			case 0x584d3741:
3075			case 0x584d3751:
3076			case 0x584d3761:
3077			case 0x584d3771:
3078			case 0x72848384:
3079				val = 8770;
3080				break;
3081			default:
3082				val = 8768;
3083				break;
3084			}
3085		}
3086	}
3087	sprintf(card->shortname, "C-Media CMI%d", val);
3088	if (cm->chip_version < 68)
3089		scnprintf(modelstr, sizeof(modelstr),
3090			  " (model %d)", cm->chip_version);
3091	else
3092		modelstr[0] = '\0';
3093	scnprintf(card->longname, sizeof(card->longname),
3094		  "%s%s at %#lx, irq %i",
3095		  card->shortname, modelstr, cm->iobase, cm->irq);
 
 
 
 
3096
3097	if (cm->chip_version >= 39) {
3098		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3099		if (val != 0x00 && val != 0xff) {
3100			if (mpu_port[dev])
3101				iomidi = cm->iobase + CM_REG_MPU_PCI;
3102			integrated_midi = 1;
3103		}
3104	}
3105	if (!integrated_midi) {
3106		val = 0;
3107		iomidi = mpu_port[dev];
3108		switch (iomidi) {
3109		case 0x320: val = CM_VMPU_320; break;
3110		case 0x310: val = CM_VMPU_310; break;
3111		case 0x300: val = CM_VMPU_300; break;
3112		case 0x330: val = CM_VMPU_330; break;
3113		default:
3114			    iomidi = 0; break;
3115		}
3116		if (iomidi > 0) {
3117			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3118			/* enable UART */
3119			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3120			if (inb(iomidi + 1) == 0xff) {
3121				dev_err(cm->card->dev,
3122					"cannot enable MPU-401 port at %#lx\n",
3123					iomidi);
3124				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3125						     CM_UART_EN);
3126				iomidi = 0;
3127			}
3128		}
3129	}
3130
3131	if (cm->chip_version < 68) {
3132		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3133		if (err < 0)
3134			return err;
3135	}
3136
3137	/* reset mixer */
3138	snd_cmipci_mixer_write(cm, 0, 0);
3139
3140	snd_cmipci_proc_init(cm);
3141
3142	/* create pcm devices */
3143	pcm_index = pcm_spdif_index = 0;
3144	err = snd_cmipci_pcm_new(cm, pcm_index);
3145	if (err < 0)
3146		return err;
3147	pcm_index++;
3148	err = snd_cmipci_pcm2_new(cm, pcm_index);
3149	if (err < 0)
3150		return err;
3151	pcm_index++;
3152	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3153		pcm_spdif_index = pcm_index;
3154		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3155		if (err < 0)
3156			return err;
3157	}
3158
3159	/* create mixer interface & switches */
3160	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3161	if (err < 0)
3162		return err;
3163
3164	if (iomidi > 0) {
3165		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3166					  iomidi,
3167					  (integrated_midi ?
3168					   MPU401_INFO_INTEGRATED : 0) |
3169					  MPU401_INFO_IRQ_HOOK,
3170					  -1, &cm->rmidi);
3171		if (err < 0)
3172			dev_err(cm->card->dev,
3173				"no UART401 device at 0x%lx\n", iomidi);
 
3174	}
3175
3176#ifdef USE_VAR48KRATE
3177	for (val = 0; val < ARRAY_SIZE(rates); val++)
3178		snd_cmipci_set_pll(cm, rates[val], val);
3179
3180	/*
3181	 * (Re-)Enable external switch spdo_48k
3182	 */
3183	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3184#endif /* USE_VAR48KRATE */
3185
3186	if (snd_cmipci_create_gameport(cm, dev) < 0)
3187		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3188
 
3189	return 0;
3190}
3191
3192/*
3193 */
3194
3195MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3196
3197static int snd_cmipci_probe(struct pci_dev *pci,
3198			    const struct pci_device_id *pci_id)
3199{
3200	static int dev;
3201	struct snd_card *card;
 
3202	int err;
3203
3204	if (dev >= SNDRV_CARDS)
3205		return -ENODEV;
3206	if (! enable[dev]) {
3207		dev++;
3208		return -ENOENT;
3209	}
3210
3211	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3212				sizeof(struct cmipci), &card);
3213	if (err < 0)
3214		return err;
3215	
3216	switch (pci->device) {
3217	case PCI_DEVICE_ID_CMEDIA_CM8738:
3218	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3219		strcpy(card->driver, "CMI8738");
3220		break;
3221	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3222	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3223		strcpy(card->driver, "CMI8338");
3224		break;
3225	default:
3226		strcpy(card->driver, "CMIPCI");
3227		break;
3228	}
3229
3230	err = snd_cmipci_create(card, pci, dev);
3231	if (err < 0)
3232		goto error;
3233
3234	err = snd_card_register(card);
3235	if (err < 0)
3236		goto error;
3237
 
 
 
 
3238	pci_set_drvdata(pci, card);
3239	dev++;
3240	return 0;
3241
3242 error:
3243	snd_card_free(card);
3244	return err;
3245}
3246
 
 
 
 
 
 
 
3247/*
3248 * power management
3249 */
3250static const unsigned char saved_regs[] = {
3251	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3252	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3253	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3254	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3255	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3256};
3257
3258static const unsigned char saved_mixers[] = {
3259	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3260	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3261	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3262	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3263	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3264	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3265	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3266	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3267};
3268
3269static int snd_cmipci_suspend(struct device *dev)
3270{
3271	struct snd_card *card = dev_get_drvdata(dev);
3272	struct cmipci *cm = card->private_data;
3273	int i;
3274
3275	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3276	
 
 
 
 
3277	/* save registers */
3278	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3279		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3280	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3281		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3282
3283	/* disable ints */
3284	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3285	return 0;
3286}
3287
3288static int snd_cmipci_resume(struct device *dev)
3289{
3290	struct snd_card *card = dev_get_drvdata(dev);
3291	struct cmipci *cm = card->private_data;
3292	int i;
3293
3294	/* reset / initialize to a sane state */
3295	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3296	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3297	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3298	snd_cmipci_mixer_write(cm, 0, 0);
3299
3300	/* restore registers */
3301	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3302		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3303	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3304		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3305
3306	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3307	return 0;
3308}
3309
3310static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
 
 
 
 
3311
3312static struct pci_driver cmipci_driver = {
3313	.name = KBUILD_MODNAME,
3314	.id_table = snd_cmipci_ids,
3315	.probe = snd_cmipci_probe,
 
3316	.driver = {
3317		.pm = &snd_cmipci_pm,
3318	},
3319};
3320	
3321module_pci_driver(cmipci_driver);
v4.6
 
   1/*
   2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   4 *
   5 *   This program is free software; you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *   GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program; if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19 
  20/* Does not work. Warning may block system in capture mode */
  21/* #define USE_VAR48KRATE */
  22
  23#include <linux/io.h>
  24#include <linux/delay.h>
  25#include <linux/interrupt.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/gameport.h>
  30#include <linux/module.h>
  31#include <linux/mutex.h>
  32#include <sound/core.h>
  33#include <sound/info.h>
  34#include <sound/control.h>
  35#include <sound/pcm.h>
  36#include <sound/rawmidi.h>
  37#include <sound/mpu401.h>
  38#include <sound/opl3.h>
  39#include <sound/sb.h>
  40#include <sound/asoundef.h>
  41#include <sound/initval.h>
  42
  43MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  44MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  45MODULE_LICENSE("GPL");
  46MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  47		"{C-Media,CMI8738B},"
  48		"{C-Media,CMI8338A},"
  49		"{C-Media,CMI8338B}}");
  50
  51#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
  52#define SUPPORT_JOYSTICK 1
  53#endif
  54
  55static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  56static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  57static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  58static long mpu_port[SNDRV_CARDS];
  59static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  60static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  61#ifdef SUPPORT_JOYSTICK
  62static int joystick_port[SNDRV_CARDS];
  63#endif
  64
  65module_param_array(index, int, NULL, 0444);
  66MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  67module_param_array(id, charp, NULL, 0444);
  68MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  69module_param_array(enable, bool, NULL, 0444);
  70MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  71module_param_array(mpu_port, long, NULL, 0444);
  72MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  73module_param_array(fm_port, long, NULL, 0444);
  74MODULE_PARM_DESC(fm_port, "FM port.");
  75module_param_array(soft_ac3, bool, NULL, 0444);
  76MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  77#ifdef SUPPORT_JOYSTICK
  78module_param_array(joystick_port, int, NULL, 0444);
  79MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  80#endif
  81
  82/*
  83 * CM8x38 registers definition
  84 */
  85
  86#define CM_REG_FUNCTRL0		0x00
  87#define CM_RST_CH1		0x00080000
  88#define CM_RST_CH0		0x00040000
  89#define CM_CHEN1		0x00020000	/* ch1: enable */
  90#define CM_CHEN0		0x00010000	/* ch0: enable */
  91#define CM_PAUSE1		0x00000008	/* ch1: pause */
  92#define CM_PAUSE0		0x00000004	/* ch0: pause */
  93#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  94#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  95
  96#define CM_REG_FUNCTRL1		0x04
  97#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  98#define CM_DSFC_SHIFT		13
  99#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
 100#define CM_ASFC_SHIFT		10
 101#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
 102#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
 103#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
 104#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
 105#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
 106#define CM_BREQ			0x00000010	/* bus master enabled */
 107#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
 108#define CM_UART_EN		0x00000004	/* legacy UART */
 109#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
 110#define CM_ZVPORT		0x00000001	/* ZVPORT */
 111
 112#define CM_REG_CHFORMAT		0x08
 113
 114#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
 115#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
 116#define CM_CHB3D		0x20000000	/* 4 channels */
 117
 118#define CM_CHIP_MASK1		0x1f000000
 119#define CM_CHIP_037		0x01000000
 120#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 121#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 122#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 123#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 124#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 125#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 126/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 127
 128#define CM_ADCBITLEN_MASK	0x0000C000	
 129#define CM_ADCBITLEN_16		0x00000000
 130#define CM_ADCBITLEN_15		0x00004000
 131#define CM_ADCBITLEN_14		0x00008000
 132#define CM_ADCBITLEN_13		0x0000C000
 133
 134#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 135#define CM_ADCDACLEN_060	0x00000000
 136#define CM_ADCDACLEN_066	0x00001000
 137#define CM_ADCDACLEN_130	0x00002000
 138#define CM_ADCDACLEN_280	0x00003000
 139
 140#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 141#define CM_ADCDLEN_ORIGINAL	0x00000000
 142#define CM_ADCDLEN_EXTRA	0x00001000
 143#define CM_ADCDLEN_24K		0x00002000
 144#define CM_ADCDLEN_WEIGHT	0x00003000
 145
 146#define CM_CH1_SRATE_176K	0x00000800
 147#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 148#define CM_CH1_SRATE_88K	0x00000400
 149#define CM_CH0_SRATE_176K	0x00000200
 150#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 151#define CM_CH0_SRATE_88K	0x00000100
 152#define CM_CH0_SRATE_128K	0x00000300
 153#define CM_CH0_SRATE_MASK	0x00000300
 154
 155#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 156#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 157#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 158#define CM_SPDLOCKED		0x00000010
 159
 160#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 161#define CM_CH1FMT_SHIFT		2
 162#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 163#define CM_CH0FMT_SHIFT		0
 164
 165#define CM_REG_INT_HLDCLR	0x0C
 166#define CM_CHIP_MASK2		0xff000000
 167#define CM_CHIP_8768		0x20000000
 168#define CM_CHIP_055		0x08000000
 169#define CM_CHIP_039		0x04000000
 170#define CM_CHIP_039_6CH		0x01000000
 171#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 172#define CM_TDMA_INT_EN		0x00040000
 173#define CM_CH1_INT_EN		0x00020000
 174#define CM_CH0_INT_EN		0x00010000
 175
 176#define CM_REG_INT_STATUS	0x10
 177#define CM_INTR			0x80000000
 178#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 179#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 180#define CM_UARTINT		0x00010000
 181#define CM_LTDMAINT		0x00008000
 182#define CM_HTDMAINT		0x00004000
 183#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 184#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 185#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 186#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 187#define CM_CH1BUSY		0x00000008
 188#define CM_CH0BUSY		0x00000004
 189#define CM_CHINT1		0x00000002
 190#define CM_CHINT0		0x00000001
 191
 192#define CM_REG_LEGACY_CTRL	0x14
 193#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 194#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 195#define CM_VMPU_330		0x00000000
 196#define CM_VMPU_320		0x20000000
 197#define CM_VMPU_310		0x40000000
 198#define CM_VMPU_300		0x60000000
 199#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 200#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 201#define CM_VSBSEL_220		0x00000000
 202#define CM_VSBSEL_240		0x04000000
 203#define CM_VSBSEL_260		0x08000000
 204#define CM_VSBSEL_280		0x0C000000
 205#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 206#define CM_FMSEL_388		0x00000000
 207#define CM_FMSEL_3C8		0x01000000
 208#define CM_FMSEL_3E0		0x02000000
 209#define CM_FMSEL_3E8		0x03000000
 210#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 211#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 212#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 213#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 214#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 215#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 216#define CM_C_EECS		0x00040000
 217#define CM_C_EEDI46		0x00020000
 218#define CM_C_EECK46		0x00010000
 219#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 220#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 221#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 222#define CM_EXBASEN		0x00001000	/* external bass input enable */
 223
 224#define CM_REG_MISC_CTRL	0x18
 225#define CM_PWD			0x80000000	/* power down */
 226#define CM_RESET		0x40000000
 227#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 228#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 229#define CM_TXVX			0x08000000	/* model 037? */
 230#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 231#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 232#define CM_SPDIF48K		0x01000000	/* write */
 233#define CM_SPATUS48K		0x01000000	/* read */
 234#define CM_ENDBDAC		0x00800000	/* enable double dac */
 235#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 236#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 237#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 238#define CM_FM_EN		0x00080000	/* enable legacy FM */
 239#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 240#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 241#define CM_VIDWPDSB		0x00010000	/* model 037? */
 242#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 243#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 244#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 245#define CM_VIDWPPRT		0x00002000	/* model 037? */
 246#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 247#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 248#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 249#define CM_ENCENTER		0x00000080
 250#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 251#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 252#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 253#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 254#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 255#define CM_UPDDMA_2048		0x00000000
 256#define CM_UPDDMA_1024		0x00000004
 257#define CM_UPDDMA_512		0x00000008
 258#define CM_UPDDMA_256		0x0000000C		
 259#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 260#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 261#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 262
 263#define CM_REG_TDMA_POSITION	0x1C
 264#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 265#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 266
 267	/* byte */
 268#define CM_REG_MIXER0		0x20
 269#define CM_REG_SBVR		0x20		/* write: sb16 version */
 270#define CM_REG_DEV		0x20		/* read: hardware device version */
 271
 272#define CM_REG_MIXER21		0x21
 273#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 274#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 275#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 276#define CM_X_SB16		0x01		/* SB16 compatible */
 277
 278#define CM_REG_SB16_DATA	0x22
 279#define CM_REG_SB16_ADDR	0x23
 280
 281#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 282#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 283#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 284#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 285
 286#define CM_REG_MIXER1		0x24
 287#define CM_FMMUTE		0x80	/* mute FM */
 288#define CM_FMMUTE_SHIFT		7
 289#define CM_WSMUTE		0x40	/* mute PCM */
 290#define CM_WSMUTE_SHIFT		6
 291#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 292#define CM_REAR2LIN_SHIFT	5
 293#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 294#define CM_REAR2FRONT_SHIFT	4
 295#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 296#define CM_WAVEINL_SHIFT	3
 297#define CM_WAVEINR		0x04	/* digical wave rec. right */
 298#define CM_WAVEINR_SHIFT	2
 299#define CM_X3DEN		0x02	/* 3D surround enable */
 300#define CM_X3DEN_SHIFT		1
 301#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 302#define CM_CDPLAY_SHIFT		0
 303
 304#define CM_REG_MIXER2		0x25
 305#define CM_RAUXREN		0x80	/* AUX right capture */
 306#define CM_RAUXREN_SHIFT	7
 307#define CM_RAUXLEN		0x40	/* AUX left capture */
 308#define CM_RAUXLEN_SHIFT	6
 309#define CM_VAUXRM		0x20	/* AUX right mute */
 310#define CM_VAUXRM_SHIFT		5
 311#define CM_VAUXLM		0x10	/* AUX left mute */
 312#define CM_VAUXLM_SHIFT		4
 313#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 314#define CM_VADMIC_SHIFT		1
 315#define CM_MICGAINZ		0x01	/* mic boost */
 316#define CM_MICGAINZ_SHIFT	0
 317
 318#define CM_REG_MIXER3		0x24
 319#define CM_REG_AUX_VOL		0x26
 320#define CM_VAUXL_MASK		0xf0
 321#define CM_VAUXR_MASK		0x0f
 322
 323#define CM_REG_MISC		0x27
 324#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 325#define CM_XGPO1		0x20
 326// #define CM_XGPBIO		0x04
 327#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 328#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 329#define CM_SPDVALID		0x02	/* spdif input valid check */
 330#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 331
 332#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 333/*
 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 335 * or identical with AC97 codec?
 336 */
 337#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 338
 339/*
 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 341 */
 342#define CM_REG_MPU_PCI		0x40
 343
 344/*
 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 346 */
 347#define CM_REG_FM_PCI		0x50
 348
 349/*
 350 * access from SB-mixer port
 351 */
 352#define CM_REG_EXTENT_IND	0xf0
 353#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 354#define CM_VPHONE_SHIFT		5
 355#define CM_VPHOM		0x10	/* Phone mute control */
 356#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 357#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 358#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 359#define CM_VADMIC3		0x01	/* Mic record boost */
 360
 361/*
 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 364 * unit (readonly?).
 365 */
 366#define CM_REG_PLL		0xf8
 367
 368/*
 369 * extended registers
 370 */
 371#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 372#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 373#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 374#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 375
 376#define CM_REG_EXT_MISC		0x90
 377#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 378#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 379#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 380#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 381#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 382#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 383#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 384#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 385
 386/*
 387 * size of i/o region
 388 */
 389#define CM_EXTENT_CODEC	  0x100
 390#define CM_EXTENT_MIDI	  0x2
 391#define CM_EXTENT_SYNTH	  0x4
 392
 393
 394/*
 395 * channels for playback / capture
 396 */
 397#define CM_CH_PLAY	0
 398#define CM_CH_CAPT	1
 399
 400/*
 401 * flags to check device open/close
 402 */
 403#define CM_OPEN_NONE	0
 404#define CM_OPEN_CH_MASK	0x01
 405#define CM_OPEN_DAC	0x10
 406#define CM_OPEN_ADC	0x20
 407#define CM_OPEN_SPDIF	0x40
 408#define CM_OPEN_MCHAN	0x80
 409#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 410#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 411#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 412#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 413#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 414#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 415
 416
 417#if CM_CH_PLAY == 1
 418#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 419#define CM_PLAYBACK_SPDF	CM_SPDF_1
 420#define CM_CAPTURE_SPDF		CM_SPDF_0
 421#else
 422#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 423#define CM_PLAYBACK_SPDF	CM_SPDF_0
 424#define CM_CAPTURE_SPDF		CM_SPDF_1
 425#endif
 426
 427
 428/*
 429 * driver data
 430 */
 431
 432struct cmipci_pcm {
 433	struct snd_pcm_substream *substream;
 434	u8 running;		/* dac/adc running? */
 435	u8 fmt;			/* format bits */
 436	u8 is_dac;
 437	u8 needs_silencing;
 438	unsigned int dma_size;	/* in frames */
 439	unsigned int shift;
 440	unsigned int ch;	/* channel (0/1) */
 441	unsigned int offset;	/* physical address of the buffer */
 442};
 443
 444/* mixer elements toggled/resumed during ac3 playback */
 445struct cmipci_mixer_auto_switches {
 446	const char *name;	/* switch to toggle */
 447	int toggle_on;		/* value to change when ac3 mode */
 448};
 449static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 450	{"PCM Playback Switch", 0},
 451	{"IEC958 Output Switch", 1},
 452	{"IEC958 Mix Analog", 0},
 453	// {"IEC958 Out To DAC", 1}, // no longer used
 454	{"IEC958 Loop", 0},
 455};
 456#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 457
 458struct cmipci {
 459	struct snd_card *card;
 460
 461	struct pci_dev *pci;
 462	unsigned int device;	/* device ID */
 463	int irq;
 464
 465	unsigned long iobase;
 466	unsigned int ctrl;	/* FUNCTRL0 current value */
 467
 468	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 469	struct snd_pcm *pcm2;	/* 2nd DAC */
 470	struct snd_pcm *pcm_spdif;	/* SPDIF */
 471
 472	int chip_version;
 473	int max_channels;
 474	unsigned int can_ac3_sw: 1;
 475	unsigned int can_ac3_hw: 1;
 476	unsigned int can_multi_ch: 1;
 477	unsigned int can_96k: 1;	/* samplerate above 48k */
 478	unsigned int do_soft_ac3: 1;
 479
 480	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 481	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 482	int spdif_counter;	/* for software AC3 */
 483
 484	unsigned int dig_status;
 485	unsigned int dig_pcm_status;
 486
 487	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 488
 489	int opened[2];	/* open mode */
 490	struct mutex open_mutex;
 491
 492	unsigned int mixer_insensitive: 1;
 493	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 494	int mixer_res_status[CM_SAVED_MIXERS];
 495
 496	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 497
 498	/* external MIDI */
 499	struct snd_rawmidi *rmidi;
 500
 501#ifdef SUPPORT_JOYSTICK
 502	struct gameport *gameport;
 503#endif
 504
 505	spinlock_t reg_lock;
 506
 507#ifdef CONFIG_PM_SLEEP
 508	unsigned int saved_regs[0x20];
 509	unsigned char saved_mixers[0x20];
 510#endif
 511};
 512
 513
 514/* read/write operations for dword register */
 515static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 516{
 517	outl(data, cm->iobase + cmd);
 518}
 519
 520static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 521{
 522	return inl(cm->iobase + cmd);
 523}
 524
 525/* read/write operations for word register */
 526static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 527{
 528	outw(data, cm->iobase + cmd);
 529}
 530
 531static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 532{
 533	return inw(cm->iobase + cmd);
 534}
 535
 536/* read/write operations for byte register */
 537static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 538{
 539	outb(data, cm->iobase + cmd);
 540}
 541
 542static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 543{
 544	return inb(cm->iobase + cmd);
 545}
 546
 547/* bit operations for dword register */
 548static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 549{
 550	unsigned int val, oval;
 551	val = oval = inl(cm->iobase + cmd);
 552	val |= flag;
 553	if (val == oval)
 554		return 0;
 555	outl(val, cm->iobase + cmd);
 556	return 1;
 557}
 558
 559static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 560{
 561	unsigned int val, oval;
 562	val = oval = inl(cm->iobase + cmd);
 563	val &= ~flag;
 564	if (val == oval)
 565		return 0;
 566	outl(val, cm->iobase + cmd);
 567	return 1;
 568}
 569
 570/* bit operations for byte register */
 571static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 572{
 573	unsigned char val, oval;
 574	val = oval = inb(cm->iobase + cmd);
 575	val |= flag;
 576	if (val == oval)
 577		return 0;
 578	outb(val, cm->iobase + cmd);
 579	return 1;
 580}
 581
 582static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 583{
 584	unsigned char val, oval;
 585	val = oval = inb(cm->iobase + cmd);
 586	val &= ~flag;
 587	if (val == oval)
 588		return 0;
 589	outb(val, cm->iobase + cmd);
 590	return 1;
 591}
 592
 593
 594/*
 595 * PCM interface
 596 */
 597
 598/*
 599 * calculate frequency
 600 */
 601
 602static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 603
 604static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 605{
 606	unsigned int i;
 607
 608	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 609		if (rates[i] == rate)
 610			return i;
 611	}
 612	snd_BUG();
 613	return 0;
 614}
 615
 616#ifdef USE_VAR48KRATE
 617/*
 618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 619 * does it this way .. maybe not.  Never get any information from C-Media about
 620 * that <werner@suse.de>.
 621 */
 622static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 623{
 624	unsigned int delta, tolerance;
 625	int xm, xn, xr;
 626
 627	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 628		rate <<= 1;
 629	*n = -1;
 630	if (*r > 0xff)
 631		goto out;
 632	tolerance = rate*CM_TOLERANCE_RATE;
 633
 634	for (xn = (1+2); xn < (0x1f+2); xn++) {
 635		for (xm = (1+2); xm < (0xff+2); xm++) {
 636			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 637
 638			if (xr < rate)
 639				delta = rate - xr;
 640			else
 641				delta = xr - rate;
 642
 643			/*
 644			 * If we found one, remember this,
 645			 * and try to find a closer one
 646			 */
 647			if (delta < tolerance) {
 648				tolerance = delta;
 649				*m = xm - 2;
 650				*n = xn - 2;
 651			}
 652		}
 653	}
 654out:
 655	return (*n > -1);
 656}
 657
 658/*
 659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 661 * at the register CM_REG_FUNCTRL1 (0x04).
 662 * Problem: other ways are also possible (any information about that?)
 663 */
 664static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 665{
 666	unsigned int reg = CM_REG_PLL + slot;
 667	/*
 668	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 669	 * for DSFC/ASFC (000 up to 111).
 670	 */
 671
 672	/* FIXME: Init (Do we've to set an other register first before programming?) */
 673
 674	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 675	snd_cmipci_write_b(cm, reg, rate>>8);
 676	snd_cmipci_write_b(cm, reg, rate&0xff);
 677
 678	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 679}
 680#endif /* USE_VAR48KRATE */
 681
 682static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
 683				struct snd_pcm_hw_params *hw_params)
 684{
 685	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 686}
 687
 688static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 689					  struct snd_pcm_hw_params *hw_params)
 690{
 691	struct cmipci *cm = snd_pcm_substream_chip(substream);
 692	if (params_channels(hw_params) > 2) {
 693		mutex_lock(&cm->open_mutex);
 694		if (cm->opened[CM_CH_PLAY]) {
 695			mutex_unlock(&cm->open_mutex);
 696			return -EBUSY;
 697		}
 698		/* reserve the channel A */
 699		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 700		mutex_unlock(&cm->open_mutex);
 701	}
 702	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 703}
 704
 705static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 706{
 707	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 708	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 709	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 710	udelay(10);
 711}
 712
 713static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
 714{
 715	return snd_pcm_lib_free_pages(substream);
 716}
 717
 718
 719/*
 720 */
 721
 722static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 723static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 724	.count = 3,
 725	.list = hw_channels,
 726	.mask = 0,
 727};
 728static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 729	.count = 4,
 730	.list = hw_channels,
 731	.mask = 0,
 732};
 733static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 734	.count = 5,
 735	.list = hw_channels,
 736	.mask = 0,
 737};
 738
 739static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 740{
 741	if (channels > 2) {
 742		if (!cm->can_multi_ch || !rec->ch)
 743			return -EINVAL;
 744		if (rec->fmt != 0x03) /* stereo 16bit only */
 745			return -EINVAL;
 746	}
 747
 748	if (cm->can_multi_ch) {
 749		spin_lock_irq(&cm->reg_lock);
 750		if (channels > 2) {
 751			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 752			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 753		} else {
 754			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 755			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 756		}
 757		if (channels == 8)
 758			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 759		else
 760			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 761		if (channels == 6) {
 762			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 763			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 764		} else {
 765			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 766			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 767		}
 768		if (channels == 4)
 769			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 770		else
 771			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 772		spin_unlock_irq(&cm->reg_lock);
 773	}
 774	return 0;
 775}
 776
 777
 778/*
 779 * prepare playback/capture channel
 780 * channel to be used must have been set in rec->ch.
 781 */
 782static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 783				 struct snd_pcm_substream *substream)
 784{
 785	unsigned int reg, freq, freq_ext, val;
 786	unsigned int period_size;
 787	struct snd_pcm_runtime *runtime = substream->runtime;
 788
 789	rec->fmt = 0;
 790	rec->shift = 0;
 791	if (snd_pcm_format_width(runtime->format) >= 16) {
 792		rec->fmt |= 0x02;
 793		if (snd_pcm_format_width(runtime->format) > 16)
 794			rec->shift++; /* 24/32bit */
 795	}
 796	if (runtime->channels > 1)
 797		rec->fmt |= 0x01;
 798	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 799		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 800		return -EINVAL;
 801	}
 802
 803	rec->offset = runtime->dma_addr;
 804	/* buffer and period sizes in frame */
 805	rec->dma_size = runtime->buffer_size << rec->shift;
 806	period_size = runtime->period_size << rec->shift;
 807	if (runtime->channels > 2) {
 808		/* multi-channels */
 809		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 810		period_size = (period_size * runtime->channels) / 2;
 811	}
 812
 813	spin_lock_irq(&cm->reg_lock);
 814
 815	/* set buffer address */
 816	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 817	snd_cmipci_write(cm, reg, rec->offset);
 818	/* program sample counts */
 819	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 820	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 821	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 822
 823	/* set adc/dac flag */
 824	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 825	if (rec->is_dac)
 826		cm->ctrl &= ~val;
 827	else
 828		cm->ctrl |= val;
 829	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 830	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 831
 832	/* set sample rate */
 833	freq = 0;
 834	freq_ext = 0;
 835	if (runtime->rate > 48000)
 836		switch (runtime->rate) {
 837		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 838		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 839		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 840		default:     snd_BUG(); break;
 841		}
 842	else
 843		freq = snd_cmipci_rate_freq(runtime->rate);
 844	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 845	if (rec->ch) {
 846		val &= ~CM_DSFC_MASK;
 847		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 848	} else {
 849		val &= ~CM_ASFC_MASK;
 850		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 851	}
 852	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 853	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 854
 855	/* set format */
 856	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 857	if (rec->ch) {
 858		val &= ~CM_CH1FMT_MASK;
 859		val |= rec->fmt << CM_CH1FMT_SHIFT;
 860	} else {
 861		val &= ~CM_CH0FMT_MASK;
 862		val |= rec->fmt << CM_CH0FMT_SHIFT;
 863	}
 864	if (cm->can_96k) {
 865		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 866		val |= freq_ext << (rec->ch * 2);
 867	}
 868	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 869	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 870
 871	if (!rec->is_dac && cm->chip_version) {
 872		if (runtime->rate > 44100)
 873			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 874		else
 875			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 876	}
 877
 878	rec->running = 0;
 879	spin_unlock_irq(&cm->reg_lock);
 880
 881	return 0;
 882}
 883
 884/*
 885 * PCM trigger/stop
 886 */
 887static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 888				  int cmd)
 889{
 890	unsigned int inthld, chen, reset, pause;
 891	int result = 0;
 892
 893	inthld = CM_CH0_INT_EN << rec->ch;
 894	chen = CM_CHEN0 << rec->ch;
 895	reset = CM_RST_CH0 << rec->ch;
 896	pause = CM_PAUSE0 << rec->ch;
 897
 898	spin_lock(&cm->reg_lock);
 899	switch (cmd) {
 900	case SNDRV_PCM_TRIGGER_START:
 901		rec->running = 1;
 902		/* set interrupt */
 903		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 904		cm->ctrl |= chen;
 905		/* enable channel */
 906		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 907		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 908		break;
 909	case SNDRV_PCM_TRIGGER_STOP:
 910		rec->running = 0;
 911		/* disable interrupt */
 912		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 913		/* reset */
 914		cm->ctrl &= ~chen;
 915		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 916		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 917		rec->needs_silencing = rec->is_dac;
 918		break;
 919	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 920	case SNDRV_PCM_TRIGGER_SUSPEND:
 921		cm->ctrl |= pause;
 922		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 923		break;
 924	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 925	case SNDRV_PCM_TRIGGER_RESUME:
 926		cm->ctrl &= ~pause;
 927		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 928		break;
 929	default:
 930		result = -EINVAL;
 931		break;
 932	}
 933	spin_unlock(&cm->reg_lock);
 934	return result;
 935}
 936
 937/*
 938 * return the current pointer
 939 */
 940static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 941						struct snd_pcm_substream *substream)
 942{
 943	size_t ptr;
 944	unsigned int reg, rem, tries;
 945
 946	if (!rec->running)
 947		return 0;
 948#if 1 // this seems better..
 949	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 950	for (tries = 0; tries < 3; tries++) {
 951		rem = snd_cmipci_read_w(cm, reg);
 952		if (rem < rec->dma_size)
 953			goto ok;
 954	} 
 955	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 956	return SNDRV_PCM_POS_XRUN;
 957ok:
 958	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 959#else
 960	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 961	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 962	ptr = bytes_to_frames(substream->runtime, ptr);
 963#endif
 964	if (substream->runtime->channels > 2)
 965		ptr = (ptr * 2) / substream->runtime->channels;
 966	return ptr;
 967}
 968
 969/*
 970 * playback
 971 */
 972
 973static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 974				       int cmd)
 975{
 976	struct cmipci *cm = snd_pcm_substream_chip(substream);
 977	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 978}
 979
 980static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 981{
 982	struct cmipci *cm = snd_pcm_substream_chip(substream);
 983	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 984}
 985
 986
 987
 988/*
 989 * capture
 990 */
 991
 992static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 993				     int cmd)
 994{
 995	struct cmipci *cm = snd_pcm_substream_chip(substream);
 996	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 997}
 998
 999static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000{
1001	struct cmipci *cm = snd_pcm_substream_chip(substream);
1002	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003}
1004
1005
1006/*
1007 * hw preparation for spdif
1008 */
1009
1010static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011					 struct snd_ctl_elem_info *uinfo)
1012{
1013	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014	uinfo->count = 1;
1015	return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019					struct snd_ctl_elem_value *ucontrol)
1020{
1021	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022	int i;
1023
1024	spin_lock_irq(&chip->reg_lock);
1025	for (i = 0; i < 4; i++)
1026		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027	spin_unlock_irq(&chip->reg_lock);
1028	return 0;
1029}
1030
1031static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032					 struct snd_ctl_elem_value *ucontrol)
1033{
1034	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035	int i, change;
1036	unsigned int val;
1037
1038	val = 0;
1039	spin_lock_irq(&chip->reg_lock);
1040	for (i = 0; i < 4; i++)
1041		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042	change = val != chip->dig_status;
1043	chip->dig_status = val;
1044	spin_unlock_irq(&chip->reg_lock);
1045	return change;
1046}
1047
1048static struct snd_kcontrol_new snd_cmipci_spdif_default =
1049{
1050	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052	.info =		snd_cmipci_spdif_default_info,
1053	.get =		snd_cmipci_spdif_default_get,
1054	.put =		snd_cmipci_spdif_default_put
1055};
1056
1057static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058				      struct snd_ctl_elem_info *uinfo)
1059{
1060	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061	uinfo->count = 1;
1062	return 0;
1063}
1064
1065static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066				     struct snd_ctl_elem_value *ucontrol)
1067{
1068	ucontrol->value.iec958.status[0] = 0xff;
1069	ucontrol->value.iec958.status[1] = 0xff;
1070	ucontrol->value.iec958.status[2] = 0xff;
1071	ucontrol->value.iec958.status[3] = 0xff;
1072	return 0;
1073}
1074
1075static struct snd_kcontrol_new snd_cmipci_spdif_mask =
1076{
1077	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1078	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1079	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080	.info =		snd_cmipci_spdif_mask_info,
1081	.get =		snd_cmipci_spdif_mask_get,
1082};
1083
1084static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085					struct snd_ctl_elem_info *uinfo)
1086{
1087	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088	uinfo->count = 1;
1089	return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093				       struct snd_ctl_elem_value *ucontrol)
1094{
1095	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096	int i;
1097
1098	spin_lock_irq(&chip->reg_lock);
1099	for (i = 0; i < 4; i++)
1100		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101	spin_unlock_irq(&chip->reg_lock);
1102	return 0;
1103}
1104
1105static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106				       struct snd_ctl_elem_value *ucontrol)
1107{
1108	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109	int i, change;
1110	unsigned int val;
1111
1112	val = 0;
1113	spin_lock_irq(&chip->reg_lock);
1114	for (i = 0; i < 4; i++)
1115		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116	change = val != chip->dig_pcm_status;
1117	chip->dig_pcm_status = val;
1118	spin_unlock_irq(&chip->reg_lock);
1119	return change;
1120}
1121
1122static struct snd_kcontrol_new snd_cmipci_spdif_stream =
1123{
1124	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1126	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127	.info =		snd_cmipci_spdif_stream_info,
1128	.get =		snd_cmipci_spdif_stream_get,
1129	.put =		snd_cmipci_spdif_stream_put
1130};
1131
1132/*
1133 */
1134
1135/* save mixer setting and mute for AC3 playback */
1136static int save_mixer_state(struct cmipci *cm)
1137{
1138	if (! cm->mixer_insensitive) {
1139		struct snd_ctl_elem_value *val;
1140		unsigned int i;
1141
1142		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143		if (!val)
1144			return -ENOMEM;
1145		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147			if (ctl) {
1148				int event;
1149				memset(val, 0, sizeof(*val));
1150				ctl->get(ctl, val);
1151				cm->mixer_res_status[i] = val->value.integer.value[0];
1152				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153				event = SNDRV_CTL_EVENT_MASK_INFO;
1154				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155					ctl->put(ctl, val); /* toggle */
1156					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157				}
1158				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159				snd_ctl_notify(cm->card, event, &ctl->id);
1160			}
1161		}
1162		kfree(val);
1163		cm->mixer_insensitive = 1;
1164	}
1165	return 0;
1166}
1167
1168
1169/* restore the previously saved mixer status */
1170static void restore_mixer_state(struct cmipci *cm)
1171{
1172	if (cm->mixer_insensitive) {
1173		struct snd_ctl_elem_value *val;
1174		unsigned int i;
1175
1176		val = kmalloc(sizeof(*val), GFP_KERNEL);
1177		if (!val)
1178			return;
1179		cm->mixer_insensitive = 0; /* at first clear this;
1180					      otherwise the changes will be ignored */
1181		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183			if (ctl) {
1184				int event;
1185
1186				memset(val, 0, sizeof(*val));
1187				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188				ctl->get(ctl, val);
1189				event = SNDRV_CTL_EVENT_MASK_INFO;
1190				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191					val->value.integer.value[0] = cm->mixer_res_status[i];
1192					ctl->put(ctl, val);
1193					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194				}
1195				snd_ctl_notify(cm->card, event, &ctl->id);
1196			}
1197		}
1198		kfree(val);
1199	}
1200}
1201
1202/* spinlock held! */
1203static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204{
1205	if (do_ac3) {
1206		/* AC3EN for 037 */
1207		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208		/* AC3EN for 039 */
1209		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210	
1211		if (cm->can_ac3_hw) {
1212			/* SPD24SEL for 037, 0x02 */
1213			/* SPD24SEL for 039, 0x20, but cannot be set */
1214			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216		} else { /* can_ac3_sw */
1217			/* SPD32SEL for 037 & 039, 0x20 */
1218			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219			/* set 176K sample rate to fix 033 HW bug */
1220			if (cm->chip_version == 33) {
1221				if (rate >= 48000) {
1222					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223				} else {
1224					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225				}
1226			}
1227		}
1228
1229	} else {
1230		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232
1233		if (cm->can_ac3_hw) {
1234			/* chip model >= 37 */
1235			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238			} else {
1239				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241			}
1242		} else {
1243			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246		}
1247	}
1248}
1249
1250static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251{
1252	int rate, err;
1253
1254	rate = subs->runtime->rate;
1255
1256	if (up && do_ac3)
1257		if ((err = save_mixer_state(cm)) < 0)
 
1258			return err;
 
1259
1260	spin_lock_irq(&cm->reg_lock);
1261	cm->spdif_playback_avail = up;
1262	if (up) {
1263		/* they are controlled via "IEC958 Output Switch" */
1264		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266		if (cm->spdif_playback_enabled)
1267			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268		setup_ac3(cm, subs, do_ac3, rate);
1269
1270		if (rate == 48000 || rate == 96000)
1271			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272		else
1273			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274		if (rate > 48000)
1275			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276		else
1277			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278	} else {
1279		/* they are controlled via "IEC958 Output Switch" */
1280		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284		setup_ac3(cm, subs, 0, 0);
1285	}
1286	spin_unlock_irq(&cm->reg_lock);
1287	return 0;
1288}
1289
1290
1291/*
1292 * preparation
1293 */
1294
1295/* playback - enable spdif only on the certain condition */
1296static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297{
1298	struct cmipci *cm = snd_pcm_substream_chip(substream);
1299	int rate = substream->runtime->rate;
1300	int err, do_spdif, do_ac3 = 0;
1301
1302	do_spdif = (rate >= 44100 && rate <= 96000 &&
1303		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304		    substream->runtime->channels == 2);
1305	if (do_spdif && cm->can_ac3_hw) 
1306		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
 
1308		return err;
1309	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310}
1311
1312/* playback  (via device #2) - enable spdif always */
1313static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314{
1315	struct cmipci *cm = snd_pcm_substream_chip(substream);
1316	int err, do_ac3;
1317
1318	if (cm->can_ac3_hw) 
1319		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320	else
1321		do_ac3 = 1; /* doesn't matter */
1322	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
 
1323		return err;
1324	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325}
1326
1327/*
1328 * Apparently, the samples last played on channel A stay in some buffer, even
1329 * after the channel is reset, and get added to the data for the rear DACs when
1330 * playing a multichannel stream on channel B.  This is likely to generate
1331 * wraparounds and thus distortions.
1332 * To avoid this, we play at least one zero sample after the actual stream has
1333 * stopped.
1334 */
1335static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336{
1337	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338	unsigned int reg, val;
1339
1340	if (rec->needs_silencing && runtime && runtime->dma_area) {
1341		/* set up a small silence buffer */
1342		memset(runtime->dma_area, 0, PAGE_SIZE);
1343		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345		snd_cmipci_write(cm, reg, val);
1346	
1347		/* configure for 16 bits, 2 channels, 8 kHz */
1348		if (runtime->channels > 2)
1349			set_dac_channels(cm, rec, 2);
1350		spin_lock_irq(&cm->reg_lock);
1351		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358		if (cm->can_96k)
1359			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361	
1362		/* start stream (we don't need interrupts) */
1363		cm->ctrl |= CM_CHEN0 << rec->ch;
1364		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365		spin_unlock_irq(&cm->reg_lock);
1366
1367		msleep(1);
1368
1369		/* stop and reset stream */
1370		spin_lock_irq(&cm->reg_lock);
1371		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372		val = CM_RST_CH0 << rec->ch;
1373		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375		spin_unlock_irq(&cm->reg_lock);
1376
1377		rec->needs_silencing = 0;
1378	}
1379}
1380
1381static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384	setup_spdif_playback(cm, substream, 0, 0);
1385	restore_mixer_state(cm);
1386	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387	return snd_cmipci_hw_free(substream);
1388}
1389
1390static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391{
1392	struct cmipci *cm = snd_pcm_substream_chip(substream);
1393	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394	return snd_cmipci_hw_free(substream);
1395}
1396
1397/* capture */
1398static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399{
1400	struct cmipci *cm = snd_pcm_substream_chip(substream);
1401	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402}
1403
1404/* capture with spdif (via device #2) */
1405static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406{
1407	struct cmipci *cm = snd_pcm_substream_chip(substream);
1408
1409	spin_lock_irq(&cm->reg_lock);
1410	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411	if (cm->can_96k) {
1412		if (substream->runtime->rate > 48000)
1413			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414		else
1415			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416	}
1417	if (snd_pcm_format_width(substream->runtime->format) > 16)
1418		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419	else
1420		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421
1422	spin_unlock_irq(&cm->reg_lock);
1423
1424	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425}
1426
1427static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428{
1429	struct cmipci *cm = snd_pcm_substream_chip(subs);
1430
1431	spin_lock_irq(&cm->reg_lock);
1432	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434	spin_unlock_irq(&cm->reg_lock);
1435
1436	return snd_cmipci_hw_free(subs);
1437}
1438
1439
1440/*
1441 * interrupt handler
1442 */
1443static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444{
1445	struct cmipci *cm = dev_id;
1446	unsigned int status, mask = 0;
1447	
1448	/* fastpath out, to ease interrupt sharing */
1449	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450	if (!(status & CM_INTR))
1451		return IRQ_NONE;
1452
1453	/* acknowledge interrupt */
1454	spin_lock(&cm->reg_lock);
1455	if (status & CM_CHINT0)
1456		mask |= CM_CH0_INT_EN;
1457	if (status & CM_CHINT1)
1458		mask |= CM_CH1_INT_EN;
1459	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461	spin_unlock(&cm->reg_lock);
1462
1463	if (cm->rmidi && (status & CM_UARTINT))
1464		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465
1466	if (cm->pcm) {
1467		if ((status & CM_CHINT0) && cm->channel[0].running)
1468			snd_pcm_period_elapsed(cm->channel[0].substream);
1469		if ((status & CM_CHINT1) && cm->channel[1].running)
1470			snd_pcm_period_elapsed(cm->channel[1].substream);
1471	}
1472	return IRQ_HANDLED;
1473}
1474
1475/*
1476 * h/w infos
1477 */
1478
1479/* playback on channel A */
1480static struct snd_pcm_hardware snd_cmipci_playback =
1481{
1482	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487	.rate_min =		5512,
1488	.rate_max =		48000,
1489	.channels_min =		1,
1490	.channels_max =		2,
1491	.buffer_bytes_max =	(128*1024),
1492	.period_bytes_min =	64,
1493	.period_bytes_max =	(128*1024),
1494	.periods_min =		2,
1495	.periods_max =		1024,
1496	.fifo_size =		0,
1497};
1498
1499/* capture on channel B */
1500static struct snd_pcm_hardware snd_cmipci_capture =
1501{
1502	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507	.rate_min =		5512,
1508	.rate_max =		48000,
1509	.channels_min =		1,
1510	.channels_max =		2,
1511	.buffer_bytes_max =	(128*1024),
1512	.period_bytes_min =	64,
1513	.period_bytes_max =	(128*1024),
1514	.periods_min =		2,
1515	.periods_max =		1024,
1516	.fifo_size =		0,
1517};
1518
1519/* playback on channel B - stereo 16bit only? */
1520static struct snd_pcm_hardware snd_cmipci_playback2 =
1521{
1522	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1526	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527	.rate_min =		5512,
1528	.rate_max =		48000,
1529	.channels_min =		2,
1530	.channels_max =		2,
1531	.buffer_bytes_max =	(128*1024),
1532	.period_bytes_min =	64,
1533	.period_bytes_max =	(128*1024),
1534	.periods_min =		2,
1535	.periods_max =		1024,
1536	.fifo_size =		0,
1537};
1538
1539/* spdif playback on channel A */
1540static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541{
1542	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1546	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547	.rate_min =		44100,
1548	.rate_max =		48000,
1549	.channels_min =		2,
1550	.channels_max =		2,
1551	.buffer_bytes_max =	(128*1024),
1552	.period_bytes_min =	64,
1553	.period_bytes_max =	(128*1024),
1554	.periods_min =		2,
1555	.periods_max =		1024,
1556	.fifo_size =		0,
1557};
1558
1559/* spdif playback on channel A (32bit, IEC958 subframes) */
1560static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561{
1562	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567	.rate_min =		44100,
1568	.rate_max =		48000,
1569	.channels_min =		2,
1570	.channels_max =		2,
1571	.buffer_bytes_max =	(128*1024),
1572	.period_bytes_min =	64,
1573	.period_bytes_max =	(128*1024),
1574	.periods_min =		2,
1575	.periods_max =		1024,
1576	.fifo_size =		0,
1577};
1578
1579/* spdif capture on channel B */
1580static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581{
1582	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1586				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588	.rate_min =		44100,
1589	.rate_max =		48000,
1590	.channels_min =		2,
1591	.channels_max =		2,
1592	.buffer_bytes_max =	(128*1024),
1593	.period_bytes_min =	64,
1594	.period_bytes_max =	(128*1024),
1595	.periods_min =		2,
1596	.periods_max =		1024,
1597	.fifo_size =		0,
1598};
1599
1600static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601			32000, 44100, 48000, 88200, 96000, 128000 };
1602static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603		.count = ARRAY_SIZE(rate_constraints),
1604		.list = rate_constraints,
1605		.mask = 0,
1606};
1607
1608/*
1609 * check device open/close
1610 */
1611static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612{
1613	int ch = mode & CM_OPEN_CH_MASK;
1614
1615	/* FIXME: a file should wait until the device becomes free
1616	 * when it's opened on blocking mode.  however, since the current
1617	 * pcm framework doesn't pass file pointer before actually opened,
1618	 * we can't know whether blocking mode or not in open callback..
1619	 */
1620	mutex_lock(&cm->open_mutex);
1621	if (cm->opened[ch]) {
1622		mutex_unlock(&cm->open_mutex);
1623		return -EBUSY;
1624	}
1625	cm->opened[ch] = mode;
1626	cm->channel[ch].substream = subs;
1627	if (! (mode & CM_OPEN_DAC)) {
1628		/* disable dual DAC mode */
1629		cm->channel[ch].is_dac = 0;
1630		spin_lock_irq(&cm->reg_lock);
1631		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632		spin_unlock_irq(&cm->reg_lock);
1633	}
1634	mutex_unlock(&cm->open_mutex);
1635	return 0;
1636}
1637
1638static void close_device_check(struct cmipci *cm, int mode)
1639{
1640	int ch = mode & CM_OPEN_CH_MASK;
1641
1642	mutex_lock(&cm->open_mutex);
1643	if (cm->opened[ch] == mode) {
1644		if (cm->channel[ch].substream) {
1645			snd_cmipci_ch_reset(cm, ch);
1646			cm->channel[ch].running = 0;
1647			cm->channel[ch].substream = NULL;
1648		}
1649		cm->opened[ch] = 0;
1650		if (! cm->channel[ch].is_dac) {
1651			/* enable dual DAC mode again */
1652			cm->channel[ch].is_dac = 1;
1653			spin_lock_irq(&cm->reg_lock);
1654			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655			spin_unlock_irq(&cm->reg_lock);
1656		}
1657	}
1658	mutex_unlock(&cm->open_mutex);
1659}
1660
1661/*
1662 */
1663
1664static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665{
1666	struct cmipci *cm = snd_pcm_substream_chip(substream);
1667	struct snd_pcm_runtime *runtime = substream->runtime;
1668	int err;
1669
1670	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
 
1671		return err;
1672	runtime->hw = snd_cmipci_playback;
1673	if (cm->chip_version == 68) {
1674		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675				     SNDRV_PCM_RATE_96000;
1676		runtime->hw.rate_max = 96000;
1677	} else if (cm->chip_version == 55) {
1678		err = snd_pcm_hw_constraint_list(runtime, 0,
1679			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680		if (err < 0)
1681			return err;
1682		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683		runtime->hw.rate_max = 128000;
1684	}
1685	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686	cm->dig_pcm_status = cm->dig_status;
1687	return 0;
1688}
1689
1690static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691{
1692	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693	struct snd_pcm_runtime *runtime = substream->runtime;
1694	int err;
1695
1696	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
 
1697		return err;
1698	runtime->hw = snd_cmipci_capture;
1699	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1700		runtime->hw.rate_min = 41000;
1701		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702	} else if (cm->chip_version == 55) {
1703		err = snd_pcm_hw_constraint_list(runtime, 0,
1704			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705		if (err < 0)
1706			return err;
1707		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708		runtime->hw.rate_max = 128000;
1709	}
1710	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711	return 0;
1712}
1713
1714static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715{
1716	struct cmipci *cm = snd_pcm_substream_chip(substream);
1717	struct snd_pcm_runtime *runtime = substream->runtime;
1718	int err;
1719
1720	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
 
 
1721		return err;
1722	runtime->hw = snd_cmipci_playback2;
1723	mutex_lock(&cm->open_mutex);
1724	if (! cm->opened[CM_CH_PLAY]) {
1725		if (cm->can_multi_ch) {
1726			runtime->hw.channels_max = cm->max_channels;
1727			if (cm->max_channels == 4)
1728				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729			else if (cm->max_channels == 6)
1730				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731			else if (cm->max_channels == 8)
1732				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733		}
1734	}
1735	mutex_unlock(&cm->open_mutex);
1736	if (cm->chip_version == 68) {
1737		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738				     SNDRV_PCM_RATE_96000;
1739		runtime->hw.rate_max = 96000;
1740	} else if (cm->chip_version == 55) {
1741		err = snd_pcm_hw_constraint_list(runtime, 0,
1742			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743		if (err < 0)
1744			return err;
1745		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746		runtime->hw.rate_max = 128000;
1747	}
1748	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749	return 0;
1750}
1751
1752static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753{
1754	struct cmipci *cm = snd_pcm_substream_chip(substream);
1755	struct snd_pcm_runtime *runtime = substream->runtime;
1756	int err;
1757
1758	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
 
 
1759		return err;
1760	if (cm->can_ac3_hw) {
1761		runtime->hw = snd_cmipci_playback_spdif;
1762		if (cm->chip_version >= 37) {
1763			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765		}
1766		if (cm->can_96k) {
1767			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768					     SNDRV_PCM_RATE_96000;
1769			runtime->hw.rate_max = 96000;
1770		}
1771	} else {
1772		runtime->hw = snd_cmipci_playback_iec958_subframe;
1773	}
1774	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775	cm->dig_pcm_status = cm->dig_status;
1776	return 0;
1777}
1778
1779static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780{
1781	struct cmipci *cm = snd_pcm_substream_chip(substream);
1782	struct snd_pcm_runtime *runtime = substream->runtime;
1783	int err;
1784
1785	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
 
 
1786		return err;
1787	runtime->hw = snd_cmipci_capture_spdif;
1788	if (cm->can_96k && !(cm->chip_version == 68)) {
1789		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790				     SNDRV_PCM_RATE_96000;
1791		runtime->hw.rate_max = 96000;
1792	}
1793	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794	return 0;
1795}
1796
1797
1798/*
1799 */
1800
1801static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802{
1803	struct cmipci *cm = snd_pcm_substream_chip(substream);
1804	close_device_check(cm, CM_OPEN_PLAYBACK);
1805	return 0;
1806}
1807
1808static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809{
1810	struct cmipci *cm = snd_pcm_substream_chip(substream);
1811	close_device_check(cm, CM_OPEN_CAPTURE);
1812	return 0;
1813}
1814
1815static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816{
1817	struct cmipci *cm = snd_pcm_substream_chip(substream);
1818	close_device_check(cm, CM_OPEN_PLAYBACK2);
1819	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820	return 0;
1821}
1822
1823static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824{
1825	struct cmipci *cm = snd_pcm_substream_chip(substream);
1826	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827	return 0;
1828}
1829
1830static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831{
1832	struct cmipci *cm = snd_pcm_substream_chip(substream);
1833	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834	return 0;
1835}
1836
1837
1838/*
1839 */
1840
1841static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842	.open =		snd_cmipci_playback_open,
1843	.close =	snd_cmipci_playback_close,
1844	.ioctl =	snd_pcm_lib_ioctl,
1845	.hw_params =	snd_cmipci_hw_params,
1846	.hw_free =	snd_cmipci_playback_hw_free,
1847	.prepare =	snd_cmipci_playback_prepare,
1848	.trigger =	snd_cmipci_playback_trigger,
1849	.pointer =	snd_cmipci_playback_pointer,
1850};
1851
1852static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853	.open =		snd_cmipci_capture_open,
1854	.close =	snd_cmipci_capture_close,
1855	.ioctl =	snd_pcm_lib_ioctl,
1856	.hw_params =	snd_cmipci_hw_params,
1857	.hw_free =	snd_cmipci_hw_free,
1858	.prepare =	snd_cmipci_capture_prepare,
1859	.trigger =	snd_cmipci_capture_trigger,
1860	.pointer =	snd_cmipci_capture_pointer,
1861};
1862
1863static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864	.open =		snd_cmipci_playback2_open,
1865	.close =	snd_cmipci_playback2_close,
1866	.ioctl =	snd_pcm_lib_ioctl,
1867	.hw_params =	snd_cmipci_playback2_hw_params,
1868	.hw_free =	snd_cmipci_playback2_hw_free,
1869	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1870	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1871	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1872};
1873
1874static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875	.open =		snd_cmipci_playback_spdif_open,
1876	.close =	snd_cmipci_playback_spdif_close,
1877	.ioctl =	snd_pcm_lib_ioctl,
1878	.hw_params =	snd_cmipci_hw_params,
1879	.hw_free =	snd_cmipci_playback_hw_free,
1880	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1881	.trigger =	snd_cmipci_playback_trigger,
1882	.pointer =	snd_cmipci_playback_pointer,
1883};
1884
1885static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886	.open =		snd_cmipci_capture_spdif_open,
1887	.close =	snd_cmipci_capture_spdif_close,
1888	.ioctl =	snd_pcm_lib_ioctl,
1889	.hw_params =	snd_cmipci_hw_params,
1890	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1891	.prepare =	snd_cmipci_capture_spdif_prepare,
1892	.trigger =	snd_cmipci_capture_trigger,
1893	.pointer =	snd_cmipci_capture_pointer,
1894};
1895
1896
1897/*
1898 */
1899
1900static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901{
1902	struct snd_pcm *pcm;
1903	int err;
1904
1905	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906	if (err < 0)
1907		return err;
1908
1909	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911
1912	pcm->private_data = cm;
1913	pcm->info_flags = 0;
1914	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915	cm->pcm = pcm;
1916
1917	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919
1920	return 0;
1921}
1922
1923static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924{
1925	struct snd_pcm *pcm;
1926	int err;
1927
1928	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929	if (err < 0)
1930		return err;
1931
1932	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933
1934	pcm->private_data = cm;
1935	pcm->info_flags = 0;
1936	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937	cm->pcm2 = pcm;
1938
1939	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941
1942	return 0;
1943}
1944
1945static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946{
1947	struct snd_pcm *pcm;
1948	int err;
1949
1950	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951	if (err < 0)
1952		return err;
1953
1954	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956
1957	pcm->private_data = cm;
1958	pcm->info_flags = 0;
1959	strcpy(pcm->name, "C-Media PCI IEC958");
1960	cm->pcm_spdif = pcm;
1961
1962	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964
1965	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1966				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1967				     NULL);
1968	if (err < 0)
1969		return err;
1970
1971	return 0;
1972}
1973
1974/*
1975 * mixer interface:
1976 * - CM8338/8738 has a compatible mixer interface with SB16, but
1977 *   lack of some elements like tone control, i/o gain and AGC.
1978 * - Access to native registers:
1979 *   - A 3D switch
1980 *   - Output mute switches
1981 */
1982
1983static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1984{
1985	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1986	outb(data, s->iobase + CM_REG_SB16_DATA);
1987}
1988
1989static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1990{
1991	unsigned char v;
1992
1993	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1994	v = inb(s->iobase + CM_REG_SB16_DATA);
1995	return v;
1996}
1997
1998/*
1999 * general mixer element
2000 */
2001struct cmipci_sb_reg {
2002	unsigned int left_reg, right_reg;
2003	unsigned int left_shift, right_shift;
2004	unsigned int mask;
2005	unsigned int invert: 1;
2006	unsigned int stereo: 1;
2007};
2008
2009#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2010 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2011
2012#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2013{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2014  .info = snd_cmipci_info_volume, \
2015  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2016  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2017}
2018
2019#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2020#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2021#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2022#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2023
2024static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2025{
2026	r->left_reg = val & 0xff;
2027	r->right_reg = (val >> 8) & 0xff;
2028	r->left_shift = (val >> 16) & 0x07;
2029	r->right_shift = (val >> 19) & 0x07;
2030	r->invert = (val >> 22) & 1;
2031	r->stereo = (val >> 23) & 1;
2032	r->mask = (val >> 24) & 0xff;
2033}
2034
2035static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2036				  struct snd_ctl_elem_info *uinfo)
2037{
2038	struct cmipci_sb_reg reg;
2039
2040	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2041	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2042	uinfo->count = reg.stereo + 1;
2043	uinfo->value.integer.min = 0;
2044	uinfo->value.integer.max = reg.mask;
2045	return 0;
2046}
2047 
2048static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2049				 struct snd_ctl_elem_value *ucontrol)
2050{
2051	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2052	struct cmipci_sb_reg reg;
2053	int val;
2054
2055	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2056	spin_lock_irq(&cm->reg_lock);
2057	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2058	if (reg.invert)
2059		val = reg.mask - val;
2060	ucontrol->value.integer.value[0] = val;
2061	if (reg.stereo) {
2062		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2063		if (reg.invert)
2064			val = reg.mask - val;
2065		ucontrol->value.integer.value[1] = val;
2066	}
2067	spin_unlock_irq(&cm->reg_lock);
2068	return 0;
2069}
2070
2071static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2072				 struct snd_ctl_elem_value *ucontrol)
2073{
2074	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2075	struct cmipci_sb_reg reg;
2076	int change;
2077	int left, right, oleft, oright;
2078
2079	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2080	left = ucontrol->value.integer.value[0] & reg.mask;
2081	if (reg.invert)
2082		left = reg.mask - left;
2083	left <<= reg.left_shift;
2084	if (reg.stereo) {
2085		right = ucontrol->value.integer.value[1] & reg.mask;
2086		if (reg.invert)
2087			right = reg.mask - right;
2088		right <<= reg.right_shift;
2089	} else
2090		right = 0;
2091	spin_lock_irq(&cm->reg_lock);
2092	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2093	left |= oleft & ~(reg.mask << reg.left_shift);
2094	change = left != oleft;
2095	if (reg.stereo) {
2096		if (reg.left_reg != reg.right_reg) {
2097			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2098			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2099		} else
2100			oright = left;
2101		right |= oright & ~(reg.mask << reg.right_shift);
2102		change |= right != oright;
2103		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2104	} else
2105		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2106	spin_unlock_irq(&cm->reg_lock);
2107	return change;
2108}
2109
2110/*
2111 * input route (left,right) -> (left,right)
2112 */
2113#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2114{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2115  .info = snd_cmipci_info_input_sw, \
2116  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2117  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2118}
2119
2120static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2121				    struct snd_ctl_elem_info *uinfo)
2122{
2123	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2124	uinfo->count = 4;
2125	uinfo->value.integer.min = 0;
2126	uinfo->value.integer.max = 1;
2127	return 0;
2128}
2129 
2130static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2131				   struct snd_ctl_elem_value *ucontrol)
2132{
2133	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2134	struct cmipci_sb_reg reg;
2135	int val1, val2;
2136
2137	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2138	spin_lock_irq(&cm->reg_lock);
2139	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2140	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2141	spin_unlock_irq(&cm->reg_lock);
2142	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2143	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2144	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2145	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2146	return 0;
2147}
2148
2149static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2150				   struct snd_ctl_elem_value *ucontrol)
2151{
2152	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2153	struct cmipci_sb_reg reg;
2154	int change;
2155	int val1, val2, oval1, oval2;
2156
2157	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2158	spin_lock_irq(&cm->reg_lock);
2159	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2160	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2161	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2162	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2163	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2164	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2165	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2166	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2167	change = val1 != oval1 || val2 != oval2;
2168	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2169	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2170	spin_unlock_irq(&cm->reg_lock);
2171	return change;
2172}
2173
2174/*
2175 * native mixer switches/volumes
2176 */
2177
2178#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2179{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180  .info = snd_cmipci_info_native_mixer, \
2181  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2183}
2184
2185#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187  .info = snd_cmipci_info_native_mixer, \
2188  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2190}
2191
2192#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2194  .info = snd_cmipci_info_native_mixer, \
2195  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2196  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2197}
2198
2199#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2200{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2201  .info = snd_cmipci_info_native_mixer, \
2202  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2203  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2204}
2205
2206static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2207					struct snd_ctl_elem_info *uinfo)
2208{
2209	struct cmipci_sb_reg reg;
2210
2211	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2212	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2213	uinfo->count = reg.stereo + 1;
2214	uinfo->value.integer.min = 0;
2215	uinfo->value.integer.max = reg.mask;
2216	return 0;
2217
2218}
2219
2220static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2221				       struct snd_ctl_elem_value *ucontrol)
2222{
2223	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2224	struct cmipci_sb_reg reg;
2225	unsigned char oreg, val;
2226
2227	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2228	spin_lock_irq(&cm->reg_lock);
2229	oreg = inb(cm->iobase + reg.left_reg);
2230	val = (oreg >> reg.left_shift) & reg.mask;
2231	if (reg.invert)
2232		val = reg.mask - val;
2233	ucontrol->value.integer.value[0] = val;
2234	if (reg.stereo) {
2235		val = (oreg >> reg.right_shift) & reg.mask;
2236		if (reg.invert)
2237			val = reg.mask - val;
2238		ucontrol->value.integer.value[1] = val;
2239	}
2240	spin_unlock_irq(&cm->reg_lock);
2241	return 0;
2242}
2243
2244static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2245				       struct snd_ctl_elem_value *ucontrol)
2246{
2247	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2248	struct cmipci_sb_reg reg;
2249	unsigned char oreg, nreg, val;
2250
2251	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2252	spin_lock_irq(&cm->reg_lock);
2253	oreg = inb(cm->iobase + reg.left_reg);
2254	val = ucontrol->value.integer.value[0] & reg.mask;
2255	if (reg.invert)
2256		val = reg.mask - val;
2257	nreg = oreg & ~(reg.mask << reg.left_shift);
2258	nreg |= (val << reg.left_shift);
2259	if (reg.stereo) {
2260		val = ucontrol->value.integer.value[1] & reg.mask;
2261		if (reg.invert)
2262			val = reg.mask - val;
2263		nreg &= ~(reg.mask << reg.right_shift);
2264		nreg |= (val << reg.right_shift);
2265	}
2266	outb(nreg, cm->iobase + reg.left_reg);
2267	spin_unlock_irq(&cm->reg_lock);
2268	return (nreg != oreg);
2269}
2270
2271/*
2272 * special case - check mixer sensitivity
2273 */
2274static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2275						 struct snd_ctl_elem_value *ucontrol)
2276{
2277	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2278	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2279}
2280
2281static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2282						 struct snd_ctl_elem_value *ucontrol)
2283{
2284	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285	if (cm->mixer_insensitive) {
2286		/* ignored */
2287		return 0;
2288	}
2289	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2290}
2291
2292
2293static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2294	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2295	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2296	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2297	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2298	{ /* switch with sensitivity */
2299		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2300		.name = "PCM Playback Switch",
2301		.info = snd_cmipci_info_native_mixer,
2302		.get = snd_cmipci_get_native_mixer_sensitive,
2303		.put = snd_cmipci_put_native_mixer_sensitive,
2304		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2305	},
2306	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2307	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2308	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2309	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2310	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2311	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2312	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2313	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2314	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2315	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2316	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2317	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2318	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2319	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2320	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2321	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2322	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2323	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2324	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2325	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2326	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2327	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2328	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2329};
2330
2331/*
2332 * other switches
2333 */
2334
2335struct cmipci_switch_args {
2336	int reg;		/* register index */
2337	unsigned int mask;	/* mask bits */
2338	unsigned int mask_on;	/* mask bits to turn on */
2339	unsigned int is_byte: 1;		/* byte access? */
2340	unsigned int ac3_sensitive: 1;	/* access forbidden during
2341					 * non-audio operation?
2342					 */
2343};
2344
2345#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2346
2347static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2348				   struct snd_ctl_elem_value *ucontrol,
2349				   struct cmipci_switch_args *args)
2350{
2351	unsigned int val;
2352	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2353
2354	spin_lock_irq(&cm->reg_lock);
2355	if (args->ac3_sensitive && cm->mixer_insensitive) {
2356		ucontrol->value.integer.value[0] = 0;
2357		spin_unlock_irq(&cm->reg_lock);
2358		return 0;
2359	}
2360	if (args->is_byte)
2361		val = inb(cm->iobase + args->reg);
2362	else
2363		val = snd_cmipci_read(cm, args->reg);
2364	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2365	spin_unlock_irq(&cm->reg_lock);
2366	return 0;
2367}
2368
2369static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2370				  struct snd_ctl_elem_value *ucontrol)
2371{
2372	struct cmipci_switch_args *args;
2373	args = (struct cmipci_switch_args *)kcontrol->private_value;
2374	if (snd_BUG_ON(!args))
2375		return -EINVAL;
2376	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2377}
2378
2379static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2380				   struct snd_ctl_elem_value *ucontrol,
2381				   struct cmipci_switch_args *args)
2382{
2383	unsigned int val;
2384	int change;
2385	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2386
2387	spin_lock_irq(&cm->reg_lock);
2388	if (args->ac3_sensitive && cm->mixer_insensitive) {
2389		/* ignored */
2390		spin_unlock_irq(&cm->reg_lock);
2391		return 0;
2392	}
2393	if (args->is_byte)
2394		val = inb(cm->iobase + args->reg);
2395	else
2396		val = snd_cmipci_read(cm, args->reg);
2397	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2398			args->mask_on : (args->mask & ~args->mask_on));
2399	if (change) {
2400		val &= ~args->mask;
2401		if (ucontrol->value.integer.value[0])
2402			val |= args->mask_on;
2403		else
2404			val |= (args->mask & ~args->mask_on);
2405		if (args->is_byte)
2406			outb((unsigned char)val, cm->iobase + args->reg);
2407		else
2408			snd_cmipci_write(cm, args->reg, val);
2409	}
2410	spin_unlock_irq(&cm->reg_lock);
2411	return change;
2412}
2413
2414static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2415				  struct snd_ctl_elem_value *ucontrol)
2416{
2417	struct cmipci_switch_args *args;
2418	args = (struct cmipci_switch_args *)kcontrol->private_value;
2419	if (snd_BUG_ON(!args))
2420		return -EINVAL;
2421	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2422}
2423
2424#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2425static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2426  .reg = xreg, \
2427  .mask = xmask, \
2428  .mask_on = xmask_on, \
2429  .is_byte = xis_byte, \
2430  .ac3_sensitive = xac3, \
2431}
2432	
2433#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2434	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2435
2436#if 0 /* these will be controlled in pcm device */
2437DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2438DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2439#endif
2440DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2441DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2442DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2443DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2444DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2445DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2446DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2447DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2448// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2449DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2450DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2451/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2452DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2453DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2454#if CM_CH_PLAY == 1
2455DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2456#else
2457DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2458#endif
2459DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2460// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2461// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2462// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2463DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2464
2465#define DEFINE_SWITCH(sname, stype, sarg) \
2466{ .name = sname, \
2467  .iface = stype, \
2468  .info = snd_cmipci_uswitch_info, \
2469  .get = snd_cmipci_uswitch_get, \
2470  .put = snd_cmipci_uswitch_put, \
2471  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2472}
2473
2474#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2475#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2476
2477
2478/*
2479 * callbacks for spdif output switch
2480 * needs toggle two registers..
2481 */
2482static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2483					struct snd_ctl_elem_value *ucontrol)
2484{
2485	int changed;
2486	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2487	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2488	return changed;
2489}
2490
2491static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2492					struct snd_ctl_elem_value *ucontrol)
2493{
2494	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2495	int changed;
2496	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2497	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2498	if (changed) {
2499		if (ucontrol->value.integer.value[0]) {
2500			if (chip->spdif_playback_avail)
2501				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2502		} else {
2503			if (chip->spdif_playback_avail)
2504				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2505		}
2506	}
2507	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2508	return changed;
2509}
2510
2511
2512static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2513					struct snd_ctl_elem_info *uinfo)
2514{
2515	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516	static const char *const texts[3] = {
2517		"Line-In", "Rear Output", "Bass Output"
2518	};
2519
2520	return snd_ctl_enum_info(uinfo, 1,
2521				 cm->chip_version >= 39 ? 3 : 2, texts);
2522}
2523
2524static inline unsigned int get_line_in_mode(struct cmipci *cm)
2525{
2526	unsigned int val;
2527	if (cm->chip_version >= 39) {
2528		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2529		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2530			return 2;
2531	}
2532	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2533	if (val & CM_REAR2LIN)
2534		return 1;
2535	return 0;
2536}
2537
2538static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2539				       struct snd_ctl_elem_value *ucontrol)
2540{
2541	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542
2543	spin_lock_irq(&cm->reg_lock);
2544	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2545	spin_unlock_irq(&cm->reg_lock);
2546	return 0;
2547}
2548
2549static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2550				       struct snd_ctl_elem_value *ucontrol)
2551{
2552	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553	int change;
2554
2555	spin_lock_irq(&cm->reg_lock);
2556	if (ucontrol->value.enumerated.item[0] == 2)
2557		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2558	else
2559		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2560	if (ucontrol->value.enumerated.item[0] == 1)
2561		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2562	else
2563		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2564	spin_unlock_irq(&cm->reg_lock);
2565	return change;
2566}
2567
2568static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2569				       struct snd_ctl_elem_info *uinfo)
2570{
2571	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2572
2573	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2574}
2575
2576static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2577				      struct snd_ctl_elem_value *ucontrol)
2578{
2579	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2580	/* same bit as spdi_phase */
2581	spin_lock_irq(&cm->reg_lock);
2582	ucontrol->value.enumerated.item[0] = 
2583		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2584	spin_unlock_irq(&cm->reg_lock);
2585	return 0;
2586}
2587
2588static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2589				      struct snd_ctl_elem_value *ucontrol)
2590{
2591	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2592	int change;
2593
2594	spin_lock_irq(&cm->reg_lock);
2595	if (ucontrol->value.enumerated.item[0])
2596		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2597	else
2598		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2599	spin_unlock_irq(&cm->reg_lock);
2600	return change;
2601}
2602
2603/* both for CM8338/8738 */
2604static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2605	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2606	{
2607		.name = "Line-In Mode",
2608		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2609		.info = snd_cmipci_line_in_mode_info,
2610		.get = snd_cmipci_line_in_mode_get,
2611		.put = snd_cmipci_line_in_mode_put,
2612	},
2613};
2614
2615/* for non-multichannel chips */
2616static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2617DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2618
2619/* only for CM8738 */
2620static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2621#if 0 /* controlled in pcm device */
2622	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2623	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2624	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2625#endif
2626	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2627	{ .name = "IEC958 Output Switch",
2628	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629	  .info = snd_cmipci_uswitch_info,
2630	  .get = snd_cmipci_spdout_enable_get,
2631	  .put = snd_cmipci_spdout_enable_put,
2632	},
2633	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2634	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2635	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2636//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2637	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2638	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2639};
2640
2641/* only for model 033/037 */
2642static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2643	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2644	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2645	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2646};
2647
2648/* only for model 039 or later */
2649static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2650	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2651	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2652	{
2653		.name = "Mic-In Mode",
2654		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2655		.info = snd_cmipci_mic_in_mode_info,
2656		.get = snd_cmipci_mic_in_mode_get,
2657		.put = snd_cmipci_mic_in_mode_put,
2658	}
2659};
2660
2661/* card control switches */
2662static struct snd_kcontrol_new snd_cmipci_modem_switch =
2663DEFINE_CARD_SWITCH("Modem", modem);
2664
2665
2666static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2667{
2668	struct snd_card *card;
2669	struct snd_kcontrol_new *sw;
2670	struct snd_kcontrol *kctl;
2671	unsigned int idx;
2672	int err;
2673
2674	if (snd_BUG_ON(!cm || !cm->card))
2675		return -EINVAL;
2676
2677	card = cm->card;
2678
2679	strcpy(card->mixername, "CMedia PCI");
2680
2681	spin_lock_irq(&cm->reg_lock);
2682	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2683	spin_unlock_irq(&cm->reg_lock);
2684
2685	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2686		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2687			if (!strcmp(snd_cmipci_mixers[idx].name,
2688				"PCM Playback Volume"))
2689				continue;
2690		}
2691		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
 
2692			return err;
2693	}
2694
2695	/* mixer switches */
2696	sw = snd_cmipci_mixer_switches;
2697	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2698		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699		if (err < 0)
2700			return err;
2701	}
2702	if (! cm->can_multi_ch) {
2703		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2704		if (err < 0)
2705			return err;
2706	}
2707	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2708	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2709		sw = snd_cmipci_8738_mixer_switches;
2710		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2711			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2712			if (err < 0)
2713				return err;
2714		}
2715		if (cm->can_ac3_hw) {
2716			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
 
 
 
2717				return err;
 
2718			kctl->id.device = pcm_spdif_device;
2719			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
 
2720				return err;
 
2721			kctl->id.device = pcm_spdif_device;
2722			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
 
2723				return err;
2724			kctl->id.device = pcm_spdif_device;
2725		}
2726		if (cm->chip_version <= 37) {
2727			sw = snd_cmipci_old_mixer_switches;
2728			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2729				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2730				if (err < 0)
2731					return err;
2732			}
2733		}
2734	}
2735	if (cm->chip_version >= 39) {
2736		sw = snd_cmipci_extra_mixer_switches;
2737		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2738			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2739			if (err < 0)
2740				return err;
2741		}
2742	}
2743
2744	/* card switches */
2745	/*
2746	 * newer chips don't have the register bits to force modem link
2747	 * detection; the bit that was FLINKON now mutes CH1
2748	 */
2749	if (cm->chip_version < 39) {
2750		err = snd_ctl_add(cm->card,
2751				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2752		if (err < 0)
2753			return err;
2754	}
2755
2756	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2757		struct snd_ctl_elem_id elem_id;
2758		struct snd_kcontrol *ctl;
2759		memset(&elem_id, 0, sizeof(elem_id));
2760		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2761		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2762		ctl = snd_ctl_find_id(cm->card, &elem_id);
2763		if (ctl)
2764			cm->mixer_res_ctl[idx] = ctl;
2765	}
2766
2767	return 0;
2768}
2769
2770
2771/*
2772 * proc interface
2773 */
2774
2775static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2776				 struct snd_info_buffer *buffer)
2777{
2778	struct cmipci *cm = entry->private_data;
2779	int i, v;
2780	
2781	snd_iprintf(buffer, "%s\n", cm->card->longname);
2782	for (i = 0; i < 0x94; i++) {
2783		if (i == 0x28)
2784			i = 0x90;
2785		v = inb(cm->iobase + i);
2786		if (i % 4 == 0)
2787			snd_iprintf(buffer, "\n%02x:", i);
2788		snd_iprintf(buffer, " %02x", v);
2789	}
2790	snd_iprintf(buffer, "\n");
2791}
2792
2793static void snd_cmipci_proc_init(struct cmipci *cm)
2794{
2795	struct snd_info_entry *entry;
2796
2797	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2798		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2799}
2800
2801static const struct pci_device_id snd_cmipci_ids[] = {
2802	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2803	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2804	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2805	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2806	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2807	{0,},
2808};
2809
2810
2811/*
2812 * check chip version and capabilities
2813 * driver name is modified according to the chip model
2814 */
2815static void query_chip(struct cmipci *cm)
2816{
2817	unsigned int detect;
2818
2819	/* check reg 0Ch, bit 24-31 */
2820	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2821	if (! detect) {
2822		/* check reg 08h, bit 24-28 */
2823		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2824		switch (detect) {
2825		case 0:
2826			cm->chip_version = 33;
2827			if (cm->do_soft_ac3)
2828				cm->can_ac3_sw = 1;
2829			else
2830				cm->can_ac3_hw = 1;
2831			break;
2832		case CM_CHIP_037:
2833			cm->chip_version = 37;
2834			cm->can_ac3_hw = 1;
2835			break;
2836		default:
2837			cm->chip_version = 39;
2838			cm->can_ac3_hw = 1;
2839			break;
2840		}
2841		cm->max_channels = 2;
2842	} else {
2843		if (detect & CM_CHIP_039) {
2844			cm->chip_version = 39;
2845			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2846				cm->max_channels = 6;
2847			else
2848				cm->max_channels = 4;
2849		} else if (detect & CM_CHIP_8768) {
2850			cm->chip_version = 68;
2851			cm->max_channels = 8;
2852			cm->can_96k = 1;
2853		} else {
2854			cm->chip_version = 55;
2855			cm->max_channels = 6;
2856			cm->can_96k = 1;
2857		}
2858		cm->can_ac3_hw = 1;
2859		cm->can_multi_ch = 1;
2860	}
2861}
2862
2863#ifdef SUPPORT_JOYSTICK
2864static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2865{
2866	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2867	struct gameport *gp;
2868	struct resource *r = NULL;
2869	int i, io_port = 0;
2870
2871	if (joystick_port[dev] == 0)
2872		return -ENODEV;
2873
2874	if (joystick_port[dev] == 1) { /* auto-detect */
2875		for (i = 0; ports[i]; i++) {
2876			io_port = ports[i];
2877			r = request_region(io_port, 1, "CMIPCI gameport");
 
2878			if (r)
2879				break;
2880		}
2881	} else {
2882		io_port = joystick_port[dev];
2883		r = request_region(io_port, 1, "CMIPCI gameport");
 
2884	}
2885
2886	if (!r) {
2887		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2888		return -EBUSY;
2889	}
2890
2891	cm->gameport = gp = gameport_allocate_port();
2892	if (!gp) {
2893		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2894		release_and_free_resource(r);
2895		return -ENOMEM;
2896	}
2897	gameport_set_name(gp, "C-Media Gameport");
2898	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2899	gameport_set_dev_parent(gp, &cm->pci->dev);
2900	gp->io = io_port;
2901	gameport_set_port_data(gp, r);
2902
2903	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2904
2905	gameport_register_port(cm->gameport);
2906
2907	return 0;
2908}
2909
2910static void snd_cmipci_free_gameport(struct cmipci *cm)
2911{
2912	if (cm->gameport) {
2913		struct resource *r = gameport_get_port_data(cm->gameport);
2914
2915		gameport_unregister_port(cm->gameport);
2916		cm->gameport = NULL;
2917
2918		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2919		release_and_free_resource(r);
2920	}
2921}
2922#else
2923static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2924static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2925#endif
2926
2927static int snd_cmipci_free(struct cmipci *cm)
2928{
2929	if (cm->irq >= 0) {
2930		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2931		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2932		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2933		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2934		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2935		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2936		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2937
2938		/* reset mixer */
2939		snd_cmipci_mixer_write(cm, 0, 0);
 
 
 
 
 
2940
2941		free_irq(cm->irq, cm);
2942	}
2943
2944	snd_cmipci_free_gameport(cm);
2945	pci_release_regions(cm->pci);
2946	pci_disable_device(cm->pci);
2947	kfree(cm);
2948	return 0;
2949}
2950
2951static int snd_cmipci_dev_free(struct snd_device *device)
2952{
2953	struct cmipci *cm = device->device_data;
2954	return snd_cmipci_free(cm);
2955}
2956
2957static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2958{
2959	long iosynth;
2960	unsigned int val;
2961	struct snd_opl3 *opl3;
2962	int err;
2963
2964	if (!fm_port)
2965		goto disable_fm;
2966
2967	if (cm->chip_version >= 39) {
2968		/* first try FM regs in PCI port range */
2969		iosynth = cm->iobase + CM_REG_FM_PCI;
2970		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2971				      OPL3_HW_OPL3, 1, &opl3);
2972	} else {
2973		err = -EIO;
2974	}
2975	if (err < 0) {
2976		/* then try legacy ports */
2977		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2978		iosynth = fm_port;
2979		switch (iosynth) {
2980		case 0x3E8: val |= CM_FMSEL_3E8; break;
2981		case 0x3E0: val |= CM_FMSEL_3E0; break;
2982		case 0x3C8: val |= CM_FMSEL_3C8; break;
2983		case 0x388: val |= CM_FMSEL_388; break;
2984		default:
2985			goto disable_fm;
2986		}
2987		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2988		/* enable FM */
2989		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2990
2991		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2992				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2993			dev_err(cm->card->dev,
2994				"no OPL device at %#lx, skipping...\n",
2995				iosynth);
2996			goto disable_fm;
2997		}
2998	}
2999	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
 
3000		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
3001		return err;
3002	}
3003	return 0;
3004
3005 disable_fm:
3006	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3007	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3008	return 0;
3009}
3010
3011static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3012			     int dev, struct cmipci **rcmipci)
3013{
3014	struct cmipci *cm;
3015	int err;
3016	static struct snd_device_ops ops = {
3017		.dev_free =	snd_cmipci_dev_free,
3018	};
3019	unsigned int val;
3020	long iomidi = 0;
3021	int integrated_midi = 0;
3022	char modelstr[16];
3023	int pcm_index, pcm_spdif_index;
3024	static const struct pci_device_id intel_82437vx[] = {
3025		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3026		{ },
3027	};
3028
3029	*rcmipci = NULL;
3030
3031	if ((err = pci_enable_device(pci)) < 0)
3032		return err;
3033
3034	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3035	if (cm == NULL) {
3036		pci_disable_device(pci);
3037		return -ENOMEM;
3038	}
3039
3040	spin_lock_init(&cm->reg_lock);
3041	mutex_init(&cm->open_mutex);
3042	cm->device = pci->device;
3043	cm->card = card;
3044	cm->pci = pci;
3045	cm->irq = -1;
3046	cm->channel[0].ch = 0;
3047	cm->channel[1].ch = 1;
3048	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3049
3050	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3051		kfree(cm);
3052		pci_disable_device(pci);
3053		return err;
3054	}
3055	cm->iobase = pci_resource_start(pci, 0);
3056
3057	if (request_irq(pci->irq, snd_cmipci_interrupt,
3058			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3059		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3060		snd_cmipci_free(cm);
3061		return -EBUSY;
3062	}
3063	cm->irq = pci->irq;
 
 
3064
3065	pci_set_master(cm->pci);
3066
3067	/*
3068	 * check chip version, max channels and capabilities
3069	 */
3070
3071	cm->chip_version = 0;
3072	cm->max_channels = 2;
3073	cm->do_soft_ac3 = soft_ac3[dev];
3074
3075	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3076	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3077		query_chip(cm);
3078	/* added -MCx suffix for chip supporting multi-channels */
3079	if (cm->can_multi_ch)
3080		sprintf(cm->card->driver + strlen(cm->card->driver),
3081			"-MC%d", cm->max_channels);
3082	else if (cm->can_ac3_sw)
3083		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3084
3085	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3086	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3087
3088#if CM_CH_PLAY == 1
3089	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3090#else
3091	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3092#endif
3093
3094	/* initialize codec registers */
3095	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3096	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3097	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3098	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3099	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3100	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3101	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3102
3103	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3104	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3105#if CM_CH_PLAY == 1
3106	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3107#else
3108	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3109#endif
3110	if (cm->chip_version) {
3111		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3112		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3113	}
3114	/* Set Bus Master Request */
3115	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3116
3117	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3118	switch (pci->device) {
3119	case PCI_DEVICE_ID_CMEDIA_CM8738:
3120	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3121		if (!pci_dev_present(intel_82437vx)) 
3122			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3123		break;
3124	default:
3125		break;
3126	}
3127
3128	if (cm->chip_version < 68) {
3129		val = pci->device < 0x110 ? 8338 : 8738;
3130	} else {
3131		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3132		case 0:
3133			val = 8769;
3134			break;
3135		case 2:
3136			val = 8762;
3137			break;
3138		default:
3139			switch ((pci->subsystem_vendor << 16) |
3140				pci->subsystem_device) {
3141			case 0x13f69761:
3142			case 0x584d3741:
3143			case 0x584d3751:
3144			case 0x584d3761:
3145			case 0x584d3771:
3146			case 0x72848384:
3147				val = 8770;
3148				break;
3149			default:
3150				val = 8768;
3151				break;
3152			}
3153		}
3154	}
3155	sprintf(card->shortname, "C-Media CMI%d", val);
3156	if (cm->chip_version < 68)
3157		sprintf(modelstr, " (model %d)", cm->chip_version);
 
3158	else
3159		modelstr[0] = '\0';
3160	sprintf(card->longname, "%s%s at %#lx, irq %i",
3161		card->shortname, modelstr, cm->iobase, cm->irq);
3162
3163	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3164		snd_cmipci_free(cm);
3165		return err;
3166	}
3167
3168	if (cm->chip_version >= 39) {
3169		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3170		if (val != 0x00 && val != 0xff) {
3171			iomidi = cm->iobase + CM_REG_MPU_PCI;
 
3172			integrated_midi = 1;
3173		}
3174	}
3175	if (!integrated_midi) {
3176		val = 0;
3177		iomidi = mpu_port[dev];
3178		switch (iomidi) {
3179		case 0x320: val = CM_VMPU_320; break;
3180		case 0x310: val = CM_VMPU_310; break;
3181		case 0x300: val = CM_VMPU_300; break;
3182		case 0x330: val = CM_VMPU_330; break;
3183		default:
3184			    iomidi = 0; break;
3185		}
3186		if (iomidi > 0) {
3187			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3188			/* enable UART */
3189			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3190			if (inb(iomidi + 1) == 0xff) {
3191				dev_err(cm->card->dev,
3192					"cannot enable MPU-401 port at %#lx\n",
3193					iomidi);
3194				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3195						     CM_UART_EN);
3196				iomidi = 0;
3197			}
3198		}
3199	}
3200
3201	if (cm->chip_version < 68) {
3202		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3203		if (err < 0)
3204			return err;
3205	}
3206
3207	/* reset mixer */
3208	snd_cmipci_mixer_write(cm, 0, 0);
3209
3210	snd_cmipci_proc_init(cm);
3211
3212	/* create pcm devices */
3213	pcm_index = pcm_spdif_index = 0;
3214	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
 
3215		return err;
3216	pcm_index++;
3217	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
 
3218		return err;
3219	pcm_index++;
3220	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3221		pcm_spdif_index = pcm_index;
3222		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
 
3223			return err;
3224	}
3225
3226	/* create mixer interface & switches */
3227	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
 
3228		return err;
3229
3230	if (iomidi > 0) {
3231		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3232					       iomidi,
3233					       (integrated_midi ?
3234						MPU401_INFO_INTEGRATED : 0) |
3235					       MPU401_INFO_IRQ_HOOK,
3236					       -1, &cm->rmidi)) < 0) {
 
3237			dev_err(cm->card->dev,
3238				"no UART401 device at 0x%lx\n", iomidi);
3239		}
3240	}
3241
3242#ifdef USE_VAR48KRATE
3243	for (val = 0; val < ARRAY_SIZE(rates); val++)
3244		snd_cmipci_set_pll(cm, rates[val], val);
3245
3246	/*
3247	 * (Re-)Enable external switch spdo_48k
3248	 */
3249	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3250#endif /* USE_VAR48KRATE */
3251
3252	if (snd_cmipci_create_gameport(cm, dev) < 0)
3253		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3254
3255	*rcmipci = cm;
3256	return 0;
3257}
3258
3259/*
3260 */
3261
3262MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3263
3264static int snd_cmipci_probe(struct pci_dev *pci,
3265			    const struct pci_device_id *pci_id)
3266{
3267	static int dev;
3268	struct snd_card *card;
3269	struct cmipci *cm;
3270	int err;
3271
3272	if (dev >= SNDRV_CARDS)
3273		return -ENODEV;
3274	if (! enable[dev]) {
3275		dev++;
3276		return -ENOENT;
3277	}
3278
3279	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3280			   0, &card);
3281	if (err < 0)
3282		return err;
3283	
3284	switch (pci->device) {
3285	case PCI_DEVICE_ID_CMEDIA_CM8738:
3286	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3287		strcpy(card->driver, "CMI8738");
3288		break;
3289	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3290	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3291		strcpy(card->driver, "CMI8338");
3292		break;
3293	default:
3294		strcpy(card->driver, "CMIPCI");
3295		break;
3296	}
3297
3298	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3299		snd_card_free(card);
3300		return err;
3301	}
3302	card->private_data = cm;
 
 
3303
3304	if ((err = snd_card_register(card)) < 0) {
3305		snd_card_free(card);
3306		return err;
3307	}
3308	pci_set_drvdata(pci, card);
3309	dev++;
3310	return 0;
3311
 
 
 
3312}
3313
3314static void snd_cmipci_remove(struct pci_dev *pci)
3315{
3316	snd_card_free(pci_get_drvdata(pci));
3317}
3318
3319
3320#ifdef CONFIG_PM_SLEEP
3321/*
3322 * power management
3323 */
3324static unsigned char saved_regs[] = {
3325	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3326	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3327	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3328	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3329	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3330};
3331
3332static unsigned char saved_mixers[] = {
3333	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3334	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3335	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3336	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3337	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3338	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3339	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3340	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3341};
3342
3343static int snd_cmipci_suspend(struct device *dev)
3344{
3345	struct snd_card *card = dev_get_drvdata(dev);
3346	struct cmipci *cm = card->private_data;
3347	int i;
3348
3349	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3350	
3351	snd_pcm_suspend_all(cm->pcm);
3352	snd_pcm_suspend_all(cm->pcm2);
3353	snd_pcm_suspend_all(cm->pcm_spdif);
3354
3355	/* save registers */
3356	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3357		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3358	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3359		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3360
3361	/* disable ints */
3362	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3363	return 0;
3364}
3365
3366static int snd_cmipci_resume(struct device *dev)
3367{
3368	struct snd_card *card = dev_get_drvdata(dev);
3369	struct cmipci *cm = card->private_data;
3370	int i;
3371
3372	/* reset / initialize to a sane state */
3373	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3374	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3375	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3376	snd_cmipci_mixer_write(cm, 0, 0);
3377
3378	/* restore registers */
3379	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3380		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3381	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3382		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3383
3384	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3385	return 0;
3386}
3387
3388static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3389#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3390#else
3391#define SND_CMIPCI_PM_OPS	NULL
3392#endif /* CONFIG_PM_SLEEP */
3393
3394static struct pci_driver cmipci_driver = {
3395	.name = KBUILD_MODNAME,
3396	.id_table = snd_cmipci_ids,
3397	.probe = snd_cmipci_probe,
3398	.remove = snd_cmipci_remove,
3399	.driver = {
3400		.pm = SND_CMIPCI_PM_OPS,
3401	},
3402};
3403	
3404module_pci_driver(cmipci_driver);