Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/sunrpc/bc_xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76
77/**
78 * svc_reg_xprt_class - Register a server-side RPC transport class
79 * @xcl: New transport class to be registered
80 *
81 * Returns zero on success; otherwise a negative errno is returned.
82 */
83int svc_reg_xprt_class(struct svc_xprt_class *xcl)
84{
85 struct svc_xprt_class *cl;
86 int res = -EEXIST;
87
88 INIT_LIST_HEAD(&xcl->xcl_list);
89 spin_lock(&svc_xprt_class_lock);
90 /* Make sure there isn't already a class with the same name */
91 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
92 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
93 goto out;
94 }
95 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
96 res = 0;
97out:
98 spin_unlock(&svc_xprt_class_lock);
99 return res;
100}
101EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
102
103/**
104 * svc_unreg_xprt_class - Unregister a server-side RPC transport class
105 * @xcl: Transport class to be unregistered
106 *
107 */
108void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
109{
110 spin_lock(&svc_xprt_class_lock);
111 list_del_init(&xcl->xcl_list);
112 spin_unlock(&svc_xprt_class_lock);
113}
114EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
115
116/**
117 * svc_print_xprts - Format the transport list for printing
118 * @buf: target buffer for formatted address
119 * @maxlen: length of target buffer
120 *
121 * Fills in @buf with a string containing a list of transport names, each name
122 * terminated with '\n'. If the buffer is too small, some entries may be
123 * missing, but it is guaranteed that all lines in the output buffer are
124 * complete.
125 *
126 * Returns positive length of the filled-in string.
127 */
128int svc_print_xprts(char *buf, int maxlen)
129{
130 struct svc_xprt_class *xcl;
131 char tmpstr[80];
132 int len = 0;
133 buf[0] = '\0';
134
135 spin_lock(&svc_xprt_class_lock);
136 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
137 int slen;
138
139 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
140 xcl->xcl_name, xcl->xcl_max_payload);
141 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
142 break;
143 len += slen;
144 strcat(buf, tmpstr);
145 }
146 spin_unlock(&svc_xprt_class_lock);
147
148 return len;
149}
150
151/**
152 * svc_xprt_deferred_close - Close a transport
153 * @xprt: transport instance
154 *
155 * Used in contexts that need to defer the work of shutting down
156 * the transport to an nfsd thread.
157 */
158void svc_xprt_deferred_close(struct svc_xprt *xprt)
159{
160 trace_svc_xprt_close(xprt);
161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 svc_xprt_enqueue(xprt);
163}
164EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165
166static void svc_xprt_free(struct kref *kref)
167{
168 struct svc_xprt *xprt =
169 container_of(kref, struct svc_xprt, xpt_ref);
170 struct module *owner = xprt->xpt_class->xcl_owner;
171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 svcauth_unix_info_release(xprt);
173 put_cred(xprt->xpt_cred);
174 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 /* See comment on corresponding get in xs_setup_bc_tcp(): */
176 if (xprt->xpt_bc_xprt)
177 xprt_put(xprt->xpt_bc_xprt);
178 if (xprt->xpt_bc_xps)
179 xprt_switch_put(xprt->xpt_bc_xps);
180 trace_svc_xprt_free(xprt);
181 xprt->xpt_ops->xpo_free(xprt);
182 module_put(owner);
183}
184
185void svc_xprt_put(struct svc_xprt *xprt)
186{
187 kref_put(&xprt->xpt_ref, svc_xprt_free);
188}
189EXPORT_SYMBOL_GPL(svc_xprt_put);
190
191/*
192 * Called by transport drivers to initialize the transport independent
193 * portion of the transport instance.
194 */
195void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 struct svc_xprt *xprt, struct svc_serv *serv)
197{
198 memset(xprt, 0, sizeof(*xprt));
199 xprt->xpt_class = xcl;
200 xprt->xpt_ops = xcl->xcl_ops;
201 kref_init(&xprt->xpt_ref);
202 xprt->xpt_server = serv;
203 INIT_LIST_HEAD(&xprt->xpt_list);
204 INIT_LIST_HEAD(&xprt->xpt_deferred);
205 INIT_LIST_HEAD(&xprt->xpt_users);
206 mutex_init(&xprt->xpt_mutex);
207 spin_lock_init(&xprt->xpt_lock);
208 set_bit(XPT_BUSY, &xprt->xpt_flags);
209 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 strcpy(xprt->xpt_remotebuf, "uninitialized");
211}
212EXPORT_SYMBOL_GPL(svc_xprt_init);
213
214/**
215 * svc_xprt_received - start next receiver thread
216 * @xprt: controlling transport
217 *
218 * The caller must hold the XPT_BUSY bit and must
219 * not thereafter touch transport data.
220 *
221 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
222 * insufficient) data.
223 */
224void svc_xprt_received(struct svc_xprt *xprt)
225{
226 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
227 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
228 return;
229 }
230
231 /* As soon as we clear busy, the xprt could be closed and
232 * 'put', so we need a reference to call svc_xprt_enqueue with:
233 */
234 svc_xprt_get(xprt);
235 smp_mb__before_atomic();
236 clear_bit(XPT_BUSY, &xprt->xpt_flags);
237 svc_xprt_enqueue(xprt);
238 svc_xprt_put(xprt);
239}
240EXPORT_SYMBOL_GPL(svc_xprt_received);
241
242void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
243{
244 clear_bit(XPT_TEMP, &new->xpt_flags);
245 spin_lock_bh(&serv->sv_lock);
246 list_add(&new->xpt_list, &serv->sv_permsocks);
247 spin_unlock_bh(&serv->sv_lock);
248 svc_xprt_received(new);
249}
250
251static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
252 struct net *net, struct sockaddr *sap,
253 size_t len, int flags, const struct cred *cred)
254{
255 struct svc_xprt_class *xcl;
256
257 spin_lock(&svc_xprt_class_lock);
258 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
259 struct svc_xprt *newxprt;
260 unsigned short newport;
261
262 if (strcmp(xprt_name, xcl->xcl_name))
263 continue;
264
265 if (!try_module_get(xcl->xcl_owner))
266 goto err;
267
268 spin_unlock(&svc_xprt_class_lock);
269 newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
270 if (IS_ERR(newxprt)) {
271 trace_svc_xprt_create_err(serv->sv_programs->pg_name,
272 xcl->xcl_name, sap, len,
273 newxprt);
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 newxprt->xpt_cred = get_cred(cred);
278 svc_add_new_perm_xprt(serv, newxprt);
279 newport = svc_xprt_local_port(newxprt);
280 return newport;
281 }
282 err:
283 spin_unlock(&svc_xprt_class_lock);
284 /* This errno is exposed to user space. Provide a reasonable
285 * perror msg for a bad transport. */
286 return -EPROTONOSUPPORT;
287}
288
289/**
290 * svc_xprt_create_from_sa - Add a new listener to @serv from socket address
291 * @serv: target RPC service
292 * @xprt_name: transport class name
293 * @net: network namespace
294 * @sap: socket address pointer
295 * @flags: SVC_SOCK flags
296 * @cred: credential to bind to this transport
297 *
298 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
299 */
300int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name,
301 struct net *net, struct sockaddr *sap,
302 int flags, const struct cred *cred)
303{
304 size_t len;
305 int err;
306
307 switch (sap->sa_family) {
308 case AF_INET:
309 len = sizeof(struct sockaddr_in);
310 break;
311#if IS_ENABLED(CONFIG_IPV6)
312 case AF_INET6:
313 len = sizeof(struct sockaddr_in6);
314 break;
315#endif
316 default:
317 return -EAFNOSUPPORT;
318 }
319
320 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred);
321 if (err == -EPROTONOSUPPORT) {
322 request_module("svc%s", xprt_name);
323 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags,
324 cred);
325 }
326
327 return err;
328}
329EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa);
330
331/**
332 * svc_xprt_create - Add a new listener to @serv
333 * @serv: target RPC service
334 * @xprt_name: transport class name
335 * @net: network namespace
336 * @family: network address family
337 * @port: listener port
338 * @flags: SVC_SOCK flags
339 * @cred: credential to bind to this transport
340 *
341 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
342 */
343int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
344 struct net *net, const int family,
345 const unsigned short port, int flags,
346 const struct cred *cred)
347{
348 struct sockaddr_in sin = {
349 .sin_family = AF_INET,
350 .sin_addr.s_addr = htonl(INADDR_ANY),
351 .sin_port = htons(port),
352 };
353#if IS_ENABLED(CONFIG_IPV6)
354 struct sockaddr_in6 sin6 = {
355 .sin6_family = AF_INET6,
356 .sin6_addr = IN6ADDR_ANY_INIT,
357 .sin6_port = htons(port),
358 };
359#endif
360 struct sockaddr *sap;
361
362 switch (family) {
363 case PF_INET:
364 sap = (struct sockaddr *)&sin;
365 break;
366#if IS_ENABLED(CONFIG_IPV6)
367 case PF_INET6:
368 sap = (struct sockaddr *)&sin6;
369 break;
370#endif
371 default:
372 return -EAFNOSUPPORT;
373 }
374
375 return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred);
376}
377EXPORT_SYMBOL_GPL(svc_xprt_create);
378
379/*
380 * Copy the local and remote xprt addresses to the rqstp structure
381 */
382void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
383{
384 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
385 rqstp->rq_addrlen = xprt->xpt_remotelen;
386
387 /*
388 * Destination address in request is needed for binding the
389 * source address in RPC replies/callbacks later.
390 */
391 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
392 rqstp->rq_daddrlen = xprt->xpt_locallen;
393}
394EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
395
396/**
397 * svc_print_addr - Format rq_addr field for printing
398 * @rqstp: svc_rqst struct containing address to print
399 * @buf: target buffer for formatted address
400 * @len: length of target buffer
401 *
402 */
403char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
404{
405 return __svc_print_addr(svc_addr(rqstp), buf, len);
406}
407EXPORT_SYMBOL_GPL(svc_print_addr);
408
409static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
410{
411 unsigned int limit = svc_rpc_per_connection_limit;
412 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
413
414 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
415}
416
417static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
418{
419 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
420 if (!svc_xprt_slots_in_range(xprt))
421 return false;
422 atomic_inc(&xprt->xpt_nr_rqsts);
423 set_bit(RQ_DATA, &rqstp->rq_flags);
424 }
425 return true;
426}
427
428static void svc_xprt_release_slot(struct svc_rqst *rqstp)
429{
430 struct svc_xprt *xprt = rqstp->rq_xprt;
431 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
432 atomic_dec(&xprt->xpt_nr_rqsts);
433 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
434 svc_xprt_enqueue(xprt);
435 }
436}
437
438static bool svc_xprt_ready(struct svc_xprt *xprt)
439{
440 unsigned long xpt_flags;
441
442 /*
443 * If another cpu has recently updated xpt_flags,
444 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
445 * know about it; otherwise it's possible that both that cpu and
446 * this one could call svc_xprt_enqueue() without either
447 * svc_xprt_enqueue() recognizing that the conditions below
448 * are satisfied, and we could stall indefinitely:
449 */
450 smp_rmb();
451 xpt_flags = READ_ONCE(xprt->xpt_flags);
452
453 trace_svc_xprt_enqueue(xprt, xpt_flags);
454 if (xpt_flags & BIT(XPT_BUSY))
455 return false;
456 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
457 return true;
458 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
459 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
460 svc_xprt_slots_in_range(xprt))
461 return true;
462 trace_svc_xprt_no_write_space(xprt);
463 return false;
464 }
465 return false;
466}
467
468/**
469 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
470 * @xprt: transport with data pending
471 *
472 */
473void svc_xprt_enqueue(struct svc_xprt *xprt)
474{
475 struct svc_pool *pool;
476
477 if (!svc_xprt_ready(xprt))
478 return;
479
480 /* Mark transport as busy. It will remain in this state until
481 * the provider calls svc_xprt_received. We update XPT_BUSY
482 * atomically because it also guards against trying to enqueue
483 * the transport twice.
484 */
485 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
486 return;
487
488 pool = svc_pool_for_cpu(xprt->xpt_server);
489
490 percpu_counter_inc(&pool->sp_sockets_queued);
491 lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
492
493 svc_pool_wake_idle_thread(pool);
494}
495EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
496
497/*
498 * Dequeue the first transport, if there is one.
499 */
500static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
501{
502 struct svc_xprt *xprt = NULL;
503
504 xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
505 if (xprt)
506 svc_xprt_get(xprt);
507 return xprt;
508}
509
510/**
511 * svc_reserve - change the space reserved for the reply to a request.
512 * @rqstp: The request in question
513 * @space: new max space to reserve
514 *
515 * Each request reserves some space on the output queue of the transport
516 * to make sure the reply fits. This function reduces that reserved
517 * space to be the amount of space used already, plus @space.
518 *
519 */
520void svc_reserve(struct svc_rqst *rqstp, int space)
521{
522 struct svc_xprt *xprt = rqstp->rq_xprt;
523
524 space += rqstp->rq_res.head[0].iov_len;
525
526 if (xprt && space < rqstp->rq_reserved) {
527 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
528 rqstp->rq_reserved = space;
529 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
530 svc_xprt_enqueue(xprt);
531 }
532}
533EXPORT_SYMBOL_GPL(svc_reserve);
534
535static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
536{
537 if (!dr)
538 return;
539
540 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
541 kfree(dr);
542}
543
544static void svc_xprt_release(struct svc_rqst *rqstp)
545{
546 struct svc_xprt *xprt = rqstp->rq_xprt;
547
548 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
549 rqstp->rq_xprt_ctxt = NULL;
550
551 free_deferred(xprt, rqstp->rq_deferred);
552 rqstp->rq_deferred = NULL;
553
554 svc_rqst_release_pages(rqstp);
555 rqstp->rq_res.page_len = 0;
556 rqstp->rq_res.page_base = 0;
557
558 /* Reset response buffer and release
559 * the reservation.
560 * But first, check that enough space was reserved
561 * for the reply, otherwise we have a bug!
562 */
563 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
564 printk(KERN_ERR "RPC request reserved %d but used %d\n",
565 rqstp->rq_reserved,
566 rqstp->rq_res.len);
567
568 rqstp->rq_res.head[0].iov_len = 0;
569 svc_reserve(rqstp, 0);
570 svc_xprt_release_slot(rqstp);
571 rqstp->rq_xprt = NULL;
572 svc_xprt_put(xprt);
573}
574
575/**
576 * svc_wake_up - Wake up a service thread for non-transport work
577 * @serv: RPC service
578 *
579 * Some svc_serv's will have occasional work to do, even when a xprt is not
580 * waiting to be serviced. This function is there to "kick" a task in one of
581 * those services so that it can wake up and do that work. Note that we only
582 * bother with pool 0 as we don't need to wake up more than one thread for
583 * this purpose.
584 */
585void svc_wake_up(struct svc_serv *serv)
586{
587 struct svc_pool *pool = &serv->sv_pools[0];
588
589 set_bit(SP_TASK_PENDING, &pool->sp_flags);
590 svc_pool_wake_idle_thread(pool);
591}
592EXPORT_SYMBOL_GPL(svc_wake_up);
593
594int svc_port_is_privileged(struct sockaddr *sin)
595{
596 switch (sin->sa_family) {
597 case AF_INET:
598 return ntohs(((struct sockaddr_in *)sin)->sin_port)
599 < PROT_SOCK;
600 case AF_INET6:
601 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
602 < PROT_SOCK;
603 default:
604 return 0;
605 }
606}
607
608/*
609 * Make sure that we don't have too many active connections. If we have,
610 * something must be dropped. It's not clear what will happen if we allow
611 * "too many" connections, but when dealing with network-facing software,
612 * we have to code defensively. Here we do that by imposing hard limits.
613 *
614 * There's no point in trying to do random drop here for DoS
615 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
616 * attacker can easily beat that.
617 *
618 * The only somewhat efficient mechanism would be if drop old
619 * connections from the same IP first. But right now we don't even
620 * record the client IP in svc_sock.
621 *
622 * single-threaded services that expect a lot of clients will probably
623 * need to set sv_maxconn to override the default value which is based
624 * on the number of threads
625 */
626static void svc_check_conn_limits(struct svc_serv *serv)
627{
628 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
629 (serv->sv_nrthreads+3) * 20;
630
631 if (serv->sv_tmpcnt > limit) {
632 struct svc_xprt *xprt = NULL;
633 spin_lock_bh(&serv->sv_lock);
634 if (!list_empty(&serv->sv_tempsocks)) {
635 /* Try to help the admin */
636 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
637 serv->sv_name, serv->sv_maxconn ?
638 "max number of connections" :
639 "number of threads");
640 /*
641 * Always select the oldest connection. It's not fair,
642 * but so is life
643 */
644 xprt = list_entry(serv->sv_tempsocks.prev,
645 struct svc_xprt,
646 xpt_list);
647 set_bit(XPT_CLOSE, &xprt->xpt_flags);
648 svc_xprt_get(xprt);
649 }
650 spin_unlock_bh(&serv->sv_lock);
651
652 if (xprt) {
653 svc_xprt_enqueue(xprt);
654 svc_xprt_put(xprt);
655 }
656 }
657}
658
659static bool svc_alloc_arg(struct svc_rqst *rqstp)
660{
661 struct svc_serv *serv = rqstp->rq_server;
662 struct xdr_buf *arg = &rqstp->rq_arg;
663 unsigned long pages, filled, ret;
664
665 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
666 if (pages > RPCSVC_MAXPAGES) {
667 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
668 pages, RPCSVC_MAXPAGES);
669 /* use as many pages as possible */
670 pages = RPCSVC_MAXPAGES;
671 }
672
673 for (filled = 0; filled < pages; filled = ret) {
674 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
675 rqstp->rq_pages);
676 if (ret > filled)
677 /* Made progress, don't sleep yet */
678 continue;
679
680 set_current_state(TASK_IDLE);
681 if (svc_thread_should_stop(rqstp)) {
682 set_current_state(TASK_RUNNING);
683 return false;
684 }
685 trace_svc_alloc_arg_err(pages, ret);
686 memalloc_retry_wait(GFP_KERNEL);
687 }
688 rqstp->rq_page_end = &rqstp->rq_pages[pages];
689 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
690
691 /* Make arg->head point to first page and arg->pages point to rest */
692 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
693 arg->head[0].iov_len = PAGE_SIZE;
694 arg->pages = rqstp->rq_pages + 1;
695 arg->page_base = 0;
696 /* save at least one page for response */
697 arg->page_len = (pages-2)*PAGE_SIZE;
698 arg->len = (pages-1)*PAGE_SIZE;
699 arg->tail[0].iov_len = 0;
700
701 rqstp->rq_xid = xdr_zero;
702 return true;
703}
704
705static bool
706svc_thread_should_sleep(struct svc_rqst *rqstp)
707{
708 struct svc_pool *pool = rqstp->rq_pool;
709
710 /* did someone call svc_wake_up? */
711 if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
712 return false;
713
714 /* was a socket queued? */
715 if (!lwq_empty(&pool->sp_xprts))
716 return false;
717
718 /* are we shutting down? */
719 if (svc_thread_should_stop(rqstp))
720 return false;
721
722#if defined(CONFIG_SUNRPC_BACKCHANNEL)
723 if (svc_is_backchannel(rqstp)) {
724 if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
725 return false;
726 }
727#endif
728
729 return true;
730}
731
732static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
733{
734 struct svc_pool *pool = rqstp->rq_pool;
735
736 if (svc_thread_should_sleep(rqstp)) {
737 set_current_state(TASK_IDLE | TASK_FREEZABLE);
738 llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
739 if (likely(svc_thread_should_sleep(rqstp)))
740 schedule();
741
742 while (!llist_del_first_this(&pool->sp_idle_threads,
743 &rqstp->rq_idle)) {
744 /* Work just became available. This thread can only
745 * handle it after removing rqstp from the idle
746 * list. If that attempt failed, some other thread
747 * must have queued itself after finding no
748 * work to do, so that thread has taken responsibly
749 * for this new work. This thread can safely sleep
750 * until woken again.
751 */
752 schedule();
753 set_current_state(TASK_IDLE | TASK_FREEZABLE);
754 }
755 __set_current_state(TASK_RUNNING);
756 } else {
757 cond_resched();
758 }
759 try_to_freeze();
760}
761
762static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
763{
764 spin_lock_bh(&serv->sv_lock);
765 set_bit(XPT_TEMP, &newxpt->xpt_flags);
766 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
767 serv->sv_tmpcnt++;
768 if (serv->sv_temptimer.function == NULL) {
769 /* setup timer to age temp transports */
770 serv->sv_temptimer.function = svc_age_temp_xprts;
771 mod_timer(&serv->sv_temptimer,
772 jiffies + svc_conn_age_period * HZ);
773 }
774 spin_unlock_bh(&serv->sv_lock);
775 svc_xprt_received(newxpt);
776}
777
778static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
779{
780 struct svc_serv *serv = rqstp->rq_server;
781 int len = 0;
782
783 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
784 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
785 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
786 svc_delete_xprt(xprt);
787 /* Leave XPT_BUSY set on the dead xprt: */
788 goto out;
789 }
790 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
791 struct svc_xprt *newxpt;
792 /*
793 * We know this module_get will succeed because the
794 * listener holds a reference too
795 */
796 __module_get(xprt->xpt_class->xcl_owner);
797 svc_check_conn_limits(xprt->xpt_server);
798 newxpt = xprt->xpt_ops->xpo_accept(xprt);
799 if (newxpt) {
800 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
801 svc_add_new_temp_xprt(serv, newxpt);
802 trace_svc_xprt_accept(newxpt, serv->sv_name);
803 } else {
804 module_put(xprt->xpt_class->xcl_owner);
805 }
806 svc_xprt_received(xprt);
807 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
808 xprt->xpt_ops->xpo_handshake(xprt);
809 svc_xprt_received(xprt);
810 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
811 /* XPT_DATA|XPT_DEFERRED case: */
812 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
813 if (rqstp->rq_deferred)
814 len = svc_deferred_recv(rqstp);
815 else
816 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
817 rqstp->rq_reserved = serv->sv_max_mesg;
818 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
819 if (len <= 0)
820 goto out;
821
822 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
823
824 clear_bit(XPT_OLD, &xprt->xpt_flags);
825
826 rqstp->rq_chandle.defer = svc_defer;
827
828 if (serv->sv_stats)
829 serv->sv_stats->netcnt++;
830 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
831 rqstp->rq_stime = ktime_get();
832 svc_process(rqstp);
833 } else
834 svc_xprt_received(xprt);
835
836out:
837 rqstp->rq_res.len = 0;
838 svc_xprt_release(rqstp);
839}
840
841static void svc_thread_wake_next(struct svc_rqst *rqstp)
842{
843 if (!svc_thread_should_sleep(rqstp))
844 /* More work pending after I dequeued some,
845 * wake another worker
846 */
847 svc_pool_wake_idle_thread(rqstp->rq_pool);
848}
849
850/**
851 * svc_recv - Receive and process the next request on any transport
852 * @rqstp: an idle RPC service thread
853 *
854 * This code is carefully organised not to touch any cachelines in
855 * the shared svc_serv structure, only cachelines in the local
856 * svc_pool.
857 */
858void svc_recv(struct svc_rqst *rqstp)
859{
860 struct svc_pool *pool = rqstp->rq_pool;
861
862 if (!svc_alloc_arg(rqstp))
863 return;
864
865 svc_thread_wait_for_work(rqstp);
866
867 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
868
869 if (svc_thread_should_stop(rqstp)) {
870 svc_thread_wake_next(rqstp);
871 return;
872 }
873
874 rqstp->rq_xprt = svc_xprt_dequeue(pool);
875 if (rqstp->rq_xprt) {
876 struct svc_xprt *xprt = rqstp->rq_xprt;
877
878 svc_thread_wake_next(rqstp);
879 /* Normally we will wait up to 5 seconds for any required
880 * cache information to be provided. When there are no
881 * idle threads, we reduce the wait time.
882 */
883 if (pool->sp_idle_threads.first)
884 rqstp->rq_chandle.thread_wait = 5 * HZ;
885 else
886 rqstp->rq_chandle.thread_wait = 1 * HZ;
887
888 trace_svc_xprt_dequeue(rqstp);
889 svc_handle_xprt(rqstp, xprt);
890 }
891
892#if defined(CONFIG_SUNRPC_BACKCHANNEL)
893 if (svc_is_backchannel(rqstp)) {
894 struct svc_serv *serv = rqstp->rq_server;
895 struct rpc_rqst *req;
896
897 req = lwq_dequeue(&serv->sv_cb_list,
898 struct rpc_rqst, rq_bc_list);
899 if (req) {
900 svc_thread_wake_next(rqstp);
901 svc_process_bc(req, rqstp);
902 }
903 }
904#endif
905}
906EXPORT_SYMBOL_GPL(svc_recv);
907
908/**
909 * svc_send - Return reply to client
910 * @rqstp: RPC transaction context
911 *
912 */
913void svc_send(struct svc_rqst *rqstp)
914{
915 struct svc_xprt *xprt;
916 struct xdr_buf *xb;
917 int status;
918
919 xprt = rqstp->rq_xprt;
920
921 /* calculate over-all length */
922 xb = &rqstp->rq_res;
923 xb->len = xb->head[0].iov_len +
924 xb->page_len +
925 xb->tail[0].iov_len;
926 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
927 trace_svc_stats_latency(rqstp);
928
929 status = xprt->xpt_ops->xpo_sendto(rqstp);
930
931 trace_svc_send(rqstp, status);
932}
933
934/*
935 * Timer function to close old temporary transports, using
936 * a mark-and-sweep algorithm.
937 */
938static void svc_age_temp_xprts(struct timer_list *t)
939{
940 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
941 struct svc_xprt *xprt;
942 struct list_head *le, *next;
943
944 dprintk("svc_age_temp_xprts\n");
945
946 if (!spin_trylock_bh(&serv->sv_lock)) {
947 /* busy, try again 1 sec later */
948 dprintk("svc_age_temp_xprts: busy\n");
949 mod_timer(&serv->sv_temptimer, jiffies + HZ);
950 return;
951 }
952
953 list_for_each_safe(le, next, &serv->sv_tempsocks) {
954 xprt = list_entry(le, struct svc_xprt, xpt_list);
955
956 /* First time through, just mark it OLD. Second time
957 * through, close it. */
958 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
959 continue;
960 if (kref_read(&xprt->xpt_ref) > 1 ||
961 test_bit(XPT_BUSY, &xprt->xpt_flags))
962 continue;
963 list_del_init(le);
964 set_bit(XPT_CLOSE, &xprt->xpt_flags);
965 dprintk("queuing xprt %p for closing\n", xprt);
966
967 /* a thread will dequeue and close it soon */
968 svc_xprt_enqueue(xprt);
969 }
970 spin_unlock_bh(&serv->sv_lock);
971
972 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
973}
974
975/* Close temporary transports whose xpt_local matches server_addr immediately
976 * instead of waiting for them to be picked up by the timer.
977 *
978 * This is meant to be called from a notifier_block that runs when an ip
979 * address is deleted.
980 */
981void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
982{
983 struct svc_xprt *xprt;
984 struct list_head *le, *next;
985 LIST_HEAD(to_be_closed);
986
987 spin_lock_bh(&serv->sv_lock);
988 list_for_each_safe(le, next, &serv->sv_tempsocks) {
989 xprt = list_entry(le, struct svc_xprt, xpt_list);
990 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
991 &xprt->xpt_local)) {
992 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
993 list_move(le, &to_be_closed);
994 }
995 }
996 spin_unlock_bh(&serv->sv_lock);
997
998 while (!list_empty(&to_be_closed)) {
999 le = to_be_closed.next;
1000 list_del_init(le);
1001 xprt = list_entry(le, struct svc_xprt, xpt_list);
1002 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1003 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1004 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1005 xprt);
1006 svc_xprt_enqueue(xprt);
1007 }
1008}
1009EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1010
1011static void call_xpt_users(struct svc_xprt *xprt)
1012{
1013 struct svc_xpt_user *u;
1014
1015 spin_lock(&xprt->xpt_lock);
1016 while (!list_empty(&xprt->xpt_users)) {
1017 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1018 list_del_init(&u->list);
1019 u->callback(u);
1020 }
1021 spin_unlock(&xprt->xpt_lock);
1022}
1023
1024/*
1025 * Remove a dead transport
1026 */
1027static void svc_delete_xprt(struct svc_xprt *xprt)
1028{
1029 struct svc_serv *serv = xprt->xpt_server;
1030 struct svc_deferred_req *dr;
1031
1032 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1033 return;
1034
1035 trace_svc_xprt_detach(xprt);
1036 xprt->xpt_ops->xpo_detach(xprt);
1037 if (xprt->xpt_bc_xprt)
1038 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1039
1040 spin_lock_bh(&serv->sv_lock);
1041 list_del_init(&xprt->xpt_list);
1042 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1043 serv->sv_tmpcnt--;
1044 spin_unlock_bh(&serv->sv_lock);
1045
1046 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1047 free_deferred(xprt, dr);
1048
1049 call_xpt_users(xprt);
1050 svc_xprt_put(xprt);
1051}
1052
1053/**
1054 * svc_xprt_close - Close a client connection
1055 * @xprt: transport to disconnect
1056 *
1057 */
1058void svc_xprt_close(struct svc_xprt *xprt)
1059{
1060 trace_svc_xprt_close(xprt);
1061 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1062 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1063 /* someone else will have to effect the close */
1064 return;
1065 /*
1066 * We expect svc_close_xprt() to work even when no threads are
1067 * running (e.g., while configuring the server before starting
1068 * any threads), so if the transport isn't busy, we delete
1069 * it ourself:
1070 */
1071 svc_delete_xprt(xprt);
1072}
1073EXPORT_SYMBOL_GPL(svc_xprt_close);
1074
1075static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1076{
1077 struct svc_xprt *xprt;
1078 int ret = 0;
1079
1080 spin_lock_bh(&serv->sv_lock);
1081 list_for_each_entry(xprt, xprt_list, xpt_list) {
1082 if (xprt->xpt_net != net)
1083 continue;
1084 ret++;
1085 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1086 svc_xprt_enqueue(xprt);
1087 }
1088 spin_unlock_bh(&serv->sv_lock);
1089 return ret;
1090}
1091
1092static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1093{
1094 struct svc_xprt *xprt;
1095 int i;
1096
1097 for (i = 0; i < serv->sv_nrpools; i++) {
1098 struct svc_pool *pool = &serv->sv_pools[i];
1099 struct llist_node *q, **t1, *t2;
1100
1101 q = lwq_dequeue_all(&pool->sp_xprts);
1102 lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1103 if (xprt->xpt_net == net) {
1104 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1105 svc_delete_xprt(xprt);
1106 xprt = NULL;
1107 }
1108 }
1109
1110 if (q)
1111 lwq_enqueue_batch(q, &pool->sp_xprts);
1112 }
1113}
1114
1115/**
1116 * svc_xprt_destroy_all - Destroy transports associated with @serv
1117 * @serv: RPC service to be shut down
1118 * @net: target network namespace
1119 *
1120 * Server threads may still be running (especially in the case where the
1121 * service is still running in other network namespaces).
1122 *
1123 * So we shut down sockets the same way we would on a running server, by
1124 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1125 * the close. In the case there are no such other threads,
1126 * threads running, svc_clean_up_xprts() does a simple version of a
1127 * server's main event loop, and in the case where there are other
1128 * threads, we may need to wait a little while and then check again to
1129 * see if they're done.
1130 */
1131void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1132{
1133 int delay = 0;
1134
1135 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1136 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1137
1138 svc_clean_up_xprts(serv, net);
1139 msleep(delay++);
1140 }
1141}
1142EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1143
1144/*
1145 * Handle defer and revisit of requests
1146 */
1147
1148static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1149{
1150 struct svc_deferred_req *dr =
1151 container_of(dreq, struct svc_deferred_req, handle);
1152 struct svc_xprt *xprt = dr->xprt;
1153
1154 spin_lock(&xprt->xpt_lock);
1155 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1156 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1157 spin_unlock(&xprt->xpt_lock);
1158 trace_svc_defer_drop(dr);
1159 free_deferred(xprt, dr);
1160 svc_xprt_put(xprt);
1161 return;
1162 }
1163 dr->xprt = NULL;
1164 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1165 spin_unlock(&xprt->xpt_lock);
1166 trace_svc_defer_queue(dr);
1167 svc_xprt_enqueue(xprt);
1168 svc_xprt_put(xprt);
1169}
1170
1171/*
1172 * Save the request off for later processing. The request buffer looks
1173 * like this:
1174 *
1175 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1176 *
1177 * This code can only handle requests that consist of an xprt-header
1178 * and rpc-header.
1179 */
1180static struct cache_deferred_req *svc_defer(struct cache_req *req)
1181{
1182 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1183 struct svc_deferred_req *dr;
1184
1185 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1186 return NULL; /* if more than a page, give up FIXME */
1187 if (rqstp->rq_deferred) {
1188 dr = rqstp->rq_deferred;
1189 rqstp->rq_deferred = NULL;
1190 } else {
1191 size_t skip;
1192 size_t size;
1193 /* FIXME maybe discard if size too large */
1194 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1195 dr = kmalloc(size, GFP_KERNEL);
1196 if (dr == NULL)
1197 return NULL;
1198
1199 dr->handle.owner = rqstp->rq_server;
1200 dr->prot = rqstp->rq_prot;
1201 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1202 dr->addrlen = rqstp->rq_addrlen;
1203 dr->daddr = rqstp->rq_daddr;
1204 dr->argslen = rqstp->rq_arg.len >> 2;
1205
1206 /* back up head to the start of the buffer and copy */
1207 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1208 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1209 dr->argslen << 2);
1210 }
1211 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1212 rqstp->rq_xprt_ctxt = NULL;
1213 trace_svc_defer(rqstp);
1214 svc_xprt_get(rqstp->rq_xprt);
1215 dr->xprt = rqstp->rq_xprt;
1216 set_bit(RQ_DROPME, &rqstp->rq_flags);
1217
1218 dr->handle.revisit = svc_revisit;
1219 return &dr->handle;
1220}
1221
1222/*
1223 * recv data from a deferred request into an active one
1224 */
1225static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1226{
1227 struct svc_deferred_req *dr = rqstp->rq_deferred;
1228
1229 trace_svc_defer_recv(dr);
1230
1231 /* setup iov_base past transport header */
1232 rqstp->rq_arg.head[0].iov_base = dr->args;
1233 /* The iov_len does not include the transport header bytes */
1234 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1235 rqstp->rq_arg.page_len = 0;
1236 /* The rq_arg.len includes the transport header bytes */
1237 rqstp->rq_arg.len = dr->argslen << 2;
1238 rqstp->rq_prot = dr->prot;
1239 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1240 rqstp->rq_addrlen = dr->addrlen;
1241 /* Save off transport header len in case we get deferred again */
1242 rqstp->rq_daddr = dr->daddr;
1243 rqstp->rq_respages = rqstp->rq_pages;
1244 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1245
1246 dr->xprt_ctxt = NULL;
1247 svc_xprt_received(rqstp->rq_xprt);
1248 return dr->argslen << 2;
1249}
1250
1251
1252static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1253{
1254 struct svc_deferred_req *dr = NULL;
1255
1256 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1257 return NULL;
1258 spin_lock(&xprt->xpt_lock);
1259 if (!list_empty(&xprt->xpt_deferred)) {
1260 dr = list_entry(xprt->xpt_deferred.next,
1261 struct svc_deferred_req,
1262 handle.recent);
1263 list_del_init(&dr->handle.recent);
1264 } else
1265 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1266 spin_unlock(&xprt->xpt_lock);
1267 return dr;
1268}
1269
1270/**
1271 * svc_find_listener - find an RPC transport instance
1272 * @serv: pointer to svc_serv to search
1273 * @xcl_name: C string containing transport's class name
1274 * @net: owner net pointer
1275 * @sa: sockaddr containing address
1276 *
1277 * Return the transport instance pointer for the endpoint accepting
1278 * connections/peer traffic from the specified transport class,
1279 * and matching sockaddr.
1280 */
1281struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name,
1282 struct net *net, const struct sockaddr *sa)
1283{
1284 struct svc_xprt *xprt;
1285 struct svc_xprt *found = NULL;
1286
1287 spin_lock_bh(&serv->sv_lock);
1288 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1289 if (xprt->xpt_net != net)
1290 continue;
1291 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1292 continue;
1293 if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local))
1294 continue;
1295 found = xprt;
1296 svc_xprt_get(xprt);
1297 break;
1298 }
1299 spin_unlock_bh(&serv->sv_lock);
1300 return found;
1301}
1302EXPORT_SYMBOL_GPL(svc_find_listener);
1303
1304/**
1305 * svc_find_xprt - find an RPC transport instance
1306 * @serv: pointer to svc_serv to search
1307 * @xcl_name: C string containing transport's class name
1308 * @net: owner net pointer
1309 * @af: Address family of transport's local address
1310 * @port: transport's IP port number
1311 *
1312 * Return the transport instance pointer for the endpoint accepting
1313 * connections/peer traffic from the specified transport class,
1314 * address family and port.
1315 *
1316 * Specifying 0 for the address family or port is effectively a
1317 * wild-card, and will result in matching the first transport in the
1318 * service's list that has a matching class name.
1319 */
1320struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1321 struct net *net, const sa_family_t af,
1322 const unsigned short port)
1323{
1324 struct svc_xprt *xprt;
1325 struct svc_xprt *found = NULL;
1326
1327 /* Sanity check the args */
1328 if (serv == NULL || xcl_name == NULL)
1329 return found;
1330
1331 spin_lock_bh(&serv->sv_lock);
1332 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1333 if (xprt->xpt_net != net)
1334 continue;
1335 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1336 continue;
1337 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1338 continue;
1339 if (port != 0 && port != svc_xprt_local_port(xprt))
1340 continue;
1341 found = xprt;
1342 svc_xprt_get(xprt);
1343 break;
1344 }
1345 spin_unlock_bh(&serv->sv_lock);
1346 return found;
1347}
1348EXPORT_SYMBOL_GPL(svc_find_xprt);
1349
1350static int svc_one_xprt_name(const struct svc_xprt *xprt,
1351 char *pos, int remaining)
1352{
1353 int len;
1354
1355 len = snprintf(pos, remaining, "%s %u\n",
1356 xprt->xpt_class->xcl_name,
1357 svc_xprt_local_port(xprt));
1358 if (len >= remaining)
1359 return -ENAMETOOLONG;
1360 return len;
1361}
1362
1363/**
1364 * svc_xprt_names - format a buffer with a list of transport names
1365 * @serv: pointer to an RPC service
1366 * @buf: pointer to a buffer to be filled in
1367 * @buflen: length of buffer to be filled in
1368 *
1369 * Fills in @buf with a string containing a list of transport names,
1370 * each name terminated with '\n'.
1371 *
1372 * Returns positive length of the filled-in string on success; otherwise
1373 * a negative errno value is returned if an error occurs.
1374 */
1375int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1376{
1377 struct svc_xprt *xprt;
1378 int len, totlen;
1379 char *pos;
1380
1381 /* Sanity check args */
1382 if (!serv)
1383 return 0;
1384
1385 spin_lock_bh(&serv->sv_lock);
1386
1387 pos = buf;
1388 totlen = 0;
1389 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1390 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1391 if (len < 0) {
1392 *buf = '\0';
1393 totlen = len;
1394 }
1395 if (len <= 0)
1396 break;
1397
1398 pos += len;
1399 totlen += len;
1400 }
1401
1402 spin_unlock_bh(&serv->sv_lock);
1403 return totlen;
1404}
1405EXPORT_SYMBOL_GPL(svc_xprt_names);
1406
1407/*----------------------------------------------------------------------------*/
1408
1409static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1410{
1411 unsigned int pidx = (unsigned int)*pos;
1412 struct svc_info *si = m->private;
1413
1414 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1415
1416 mutex_lock(si->mutex);
1417
1418 if (!pidx)
1419 return SEQ_START_TOKEN;
1420 if (!si->serv)
1421 return NULL;
1422 return pidx > si->serv->sv_nrpools ? NULL
1423 : &si->serv->sv_pools[pidx - 1];
1424}
1425
1426static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1427{
1428 struct svc_pool *pool = p;
1429 struct svc_info *si = m->private;
1430 struct svc_serv *serv = si->serv;
1431
1432 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1433
1434 if (!serv) {
1435 pool = NULL;
1436 } else if (p == SEQ_START_TOKEN) {
1437 pool = &serv->sv_pools[0];
1438 } else {
1439 unsigned int pidx = (pool - &serv->sv_pools[0]);
1440 if (pidx < serv->sv_nrpools-1)
1441 pool = &serv->sv_pools[pidx+1];
1442 else
1443 pool = NULL;
1444 }
1445 ++*pos;
1446 return pool;
1447}
1448
1449static void svc_pool_stats_stop(struct seq_file *m, void *p)
1450{
1451 struct svc_info *si = m->private;
1452
1453 mutex_unlock(si->mutex);
1454}
1455
1456static int svc_pool_stats_show(struct seq_file *m, void *p)
1457{
1458 struct svc_pool *pool = p;
1459
1460 if (p == SEQ_START_TOKEN) {
1461 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1462 return 0;
1463 }
1464
1465 seq_printf(m, "%u %llu %llu %llu 0\n",
1466 pool->sp_id,
1467 percpu_counter_sum_positive(&pool->sp_messages_arrived),
1468 percpu_counter_sum_positive(&pool->sp_sockets_queued),
1469 percpu_counter_sum_positive(&pool->sp_threads_woken));
1470
1471 return 0;
1472}
1473
1474static const struct seq_operations svc_pool_stats_seq_ops = {
1475 .start = svc_pool_stats_start,
1476 .next = svc_pool_stats_next,
1477 .stop = svc_pool_stats_stop,
1478 .show = svc_pool_stats_show,
1479};
1480
1481int svc_pool_stats_open(struct svc_info *info, struct file *file)
1482{
1483 struct seq_file *seq;
1484 int err;
1485
1486 err = seq_open(file, &svc_pool_stats_seq_ops);
1487 if (err)
1488 return err;
1489 seq = file->private_data;
1490 seq->private = info;
1491
1492 return 0;
1493}
1494EXPORT_SYMBOL(svc_pool_stats_open);
1495
1496/*----------------------------------------------------------------------------*/
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <linux/slab.h>
12#include <net/sock.h>
13#include <linux/sunrpc/addr.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17#include <linux/sunrpc/xprt.h>
18#include <linux/module.h>
19#include <linux/netdevice.h>
20#include <trace/events/sunrpc.h>
21
22#define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
25static int svc_deferred_recv(struct svc_rqst *rqstp);
26static struct cache_deferred_req *svc_defer(struct cache_req *req);
27static void svc_age_temp_xprts(unsigned long closure);
28static void svc_delete_xprt(struct svc_xprt *xprt);
29
30/* apparently the "standard" is that clients close
31 * idle connections after 5 minutes, servers after
32 * 6 minutes
33 * http://www.connectathon.org/talks96/nfstcp.pdf
34 */
35static int svc_conn_age_period = 6*60;
36
37/* List of registered transport classes */
38static DEFINE_SPINLOCK(svc_xprt_class_lock);
39static LIST_HEAD(svc_xprt_class_list);
40
41/* SMP locking strategy:
42 *
43 * svc_pool->sp_lock protects most of the fields of that pool.
44 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
45 * when both need to be taken (rare), svc_serv->sv_lock is first.
46 * The "service mutex" protects svc_serv->sv_nrthread.
47 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
48 * and the ->sk_info_authunix cache.
49 *
50 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
51 * enqueued multiply. During normal transport processing this bit
52 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
53 * Providers should not manipulate this bit directly.
54 *
55 * Some flags can be set to certain values at any time
56 * providing that certain rules are followed:
57 *
58 * XPT_CONN, XPT_DATA:
59 * - Can be set or cleared at any time.
60 * - After a set, svc_xprt_enqueue must be called to enqueue
61 * the transport for processing.
62 * - After a clear, the transport must be read/accepted.
63 * If this succeeds, it must be set again.
64 * XPT_CLOSE:
65 * - Can set at any time. It is never cleared.
66 * XPT_DEAD:
67 * - Can only be set while XPT_BUSY is held which ensures
68 * that no other thread will be using the transport or will
69 * try to set XPT_DEAD.
70 */
71int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72{
73 struct svc_xprt_class *cl;
74 int res = -EEXIST;
75
76 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77
78 INIT_LIST_HEAD(&xcl->xcl_list);
79 spin_lock(&svc_xprt_class_lock);
80 /* Make sure there isn't already a class with the same name */
81 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 goto out;
84 }
85 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 res = 0;
87out:
88 spin_unlock(&svc_xprt_class_lock);
89 return res;
90}
91EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92
93void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94{
95 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 spin_lock(&svc_xprt_class_lock);
97 list_del_init(&xcl->xcl_list);
98 spin_unlock(&svc_xprt_class_lock);
99}
100EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101
102/*
103 * Format the transport list for printing
104 */
105int svc_print_xprts(char *buf, int maxlen)
106{
107 struct svc_xprt_class *xcl;
108 char tmpstr[80];
109 int len = 0;
110 buf[0] = '\0';
111
112 spin_lock(&svc_xprt_class_lock);
113 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 int slen;
115
116 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 slen = strlen(tmpstr);
118 if (len + slen > maxlen)
119 break;
120 len += slen;
121 strcat(buf, tmpstr);
122 }
123 spin_unlock(&svc_xprt_class_lock);
124
125 return len;
126}
127
128static void svc_xprt_free(struct kref *kref)
129{
130 struct svc_xprt *xprt =
131 container_of(kref, struct svc_xprt, xpt_ref);
132 struct module *owner = xprt->xpt_class->xcl_owner;
133 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 svcauth_unix_info_release(xprt);
135 put_net(xprt->xpt_net);
136 /* See comment on corresponding get in xs_setup_bc_tcp(): */
137 if (xprt->xpt_bc_xprt)
138 xprt_put(xprt->xpt_bc_xprt);
139 xprt->xpt_ops->xpo_free(xprt);
140 module_put(owner);
141}
142
143void svc_xprt_put(struct svc_xprt *xprt)
144{
145 kref_put(&xprt->xpt_ref, svc_xprt_free);
146}
147EXPORT_SYMBOL_GPL(svc_xprt_put);
148
149/*
150 * Called by transport drivers to initialize the transport independent
151 * portion of the transport instance.
152 */
153void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 struct svc_xprt *xprt, struct svc_serv *serv)
155{
156 memset(xprt, 0, sizeof(*xprt));
157 xprt->xpt_class = xcl;
158 xprt->xpt_ops = xcl->xcl_ops;
159 kref_init(&xprt->xpt_ref);
160 xprt->xpt_server = serv;
161 INIT_LIST_HEAD(&xprt->xpt_list);
162 INIT_LIST_HEAD(&xprt->xpt_ready);
163 INIT_LIST_HEAD(&xprt->xpt_deferred);
164 INIT_LIST_HEAD(&xprt->xpt_users);
165 mutex_init(&xprt->xpt_mutex);
166 spin_lock_init(&xprt->xpt_lock);
167 set_bit(XPT_BUSY, &xprt->xpt_flags);
168 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 xprt->xpt_net = get_net(net);
170}
171EXPORT_SYMBOL_GPL(svc_xprt_init);
172
173static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 struct svc_serv *serv,
175 struct net *net,
176 const int family,
177 const unsigned short port,
178 int flags)
179{
180 struct sockaddr_in sin = {
181 .sin_family = AF_INET,
182 .sin_addr.s_addr = htonl(INADDR_ANY),
183 .sin_port = htons(port),
184 };
185#if IS_ENABLED(CONFIG_IPV6)
186 struct sockaddr_in6 sin6 = {
187 .sin6_family = AF_INET6,
188 .sin6_addr = IN6ADDR_ANY_INIT,
189 .sin6_port = htons(port),
190 };
191#endif
192 struct sockaddr *sap;
193 size_t len;
194
195 switch (family) {
196 case PF_INET:
197 sap = (struct sockaddr *)&sin;
198 len = sizeof(sin);
199 break;
200#if IS_ENABLED(CONFIG_IPV6)
201 case PF_INET6:
202 sap = (struct sockaddr *)&sin6;
203 len = sizeof(sin6);
204 break;
205#endif
206 default:
207 return ERR_PTR(-EAFNOSUPPORT);
208 }
209
210 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211}
212
213/*
214 * svc_xprt_received conditionally queues the transport for processing
215 * by another thread. The caller must hold the XPT_BUSY bit and must
216 * not thereafter touch transport data.
217 *
218 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219 * insufficient) data.
220 */
221static void svc_xprt_received(struct svc_xprt *xprt)
222{
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
224 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
225 return;
226 }
227
228 /* As soon as we clear busy, the xprt could be closed and
229 * 'put', so we need a reference to call svc_enqueue_xprt with:
230 */
231 svc_xprt_get(xprt);
232 smp_mb__before_atomic();
233 clear_bit(XPT_BUSY, &xprt->xpt_flags);
234 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
235 svc_xprt_put(xprt);
236}
237
238void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
239{
240 clear_bit(XPT_TEMP, &new->xpt_flags);
241 spin_lock_bh(&serv->sv_lock);
242 list_add(&new->xpt_list, &serv->sv_permsocks);
243 spin_unlock_bh(&serv->sv_lock);
244 svc_xprt_received(new);
245}
246
247int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
248 struct net *net, const int family,
249 const unsigned short port, int flags)
250{
251 struct svc_xprt_class *xcl;
252
253 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
254 spin_lock(&svc_xprt_class_lock);
255 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
256 struct svc_xprt *newxprt;
257 unsigned short newport;
258
259 if (strcmp(xprt_name, xcl->xcl_name))
260 continue;
261
262 if (!try_module_get(xcl->xcl_owner))
263 goto err;
264
265 spin_unlock(&svc_xprt_class_lock);
266 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
267 if (IS_ERR(newxprt)) {
268 module_put(xcl->xcl_owner);
269 return PTR_ERR(newxprt);
270 }
271 svc_add_new_perm_xprt(serv, newxprt);
272 newport = svc_xprt_local_port(newxprt);
273 return newport;
274 }
275 err:
276 spin_unlock(&svc_xprt_class_lock);
277 dprintk("svc: transport %s not found\n", xprt_name);
278
279 /* This errno is exposed to user space. Provide a reasonable
280 * perror msg for a bad transport. */
281 return -EPROTONOSUPPORT;
282}
283EXPORT_SYMBOL_GPL(svc_create_xprt);
284
285/*
286 * Copy the local and remote xprt addresses to the rqstp structure
287 */
288void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
289{
290 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
291 rqstp->rq_addrlen = xprt->xpt_remotelen;
292
293 /*
294 * Destination address in request is needed for binding the
295 * source address in RPC replies/callbacks later.
296 */
297 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
298 rqstp->rq_daddrlen = xprt->xpt_locallen;
299}
300EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
301
302/**
303 * svc_print_addr - Format rq_addr field for printing
304 * @rqstp: svc_rqst struct containing address to print
305 * @buf: target buffer for formatted address
306 * @len: length of target buffer
307 *
308 */
309char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
310{
311 return __svc_print_addr(svc_addr(rqstp), buf, len);
312}
313EXPORT_SYMBOL_GPL(svc_print_addr);
314
315static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
316{
317 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
318 return true;
319 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
320 return xprt->xpt_ops->xpo_has_wspace(xprt);
321 return false;
322}
323
324void svc_xprt_do_enqueue(struct svc_xprt *xprt)
325{
326 struct svc_pool *pool;
327 struct svc_rqst *rqstp = NULL;
328 int cpu;
329 bool queued = false;
330
331 if (!svc_xprt_has_something_to_do(xprt))
332 goto out;
333
334 /* Mark transport as busy. It will remain in this state until
335 * the provider calls svc_xprt_received. We update XPT_BUSY
336 * atomically because it also guards against trying to enqueue
337 * the transport twice.
338 */
339 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
340 /* Don't enqueue transport while already enqueued */
341 dprintk("svc: transport %p busy, not enqueued\n", xprt);
342 goto out;
343 }
344
345 cpu = get_cpu();
346 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
347
348 atomic_long_inc(&pool->sp_stats.packets);
349
350redo_search:
351 /* find a thread for this xprt */
352 rcu_read_lock();
353 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
354 /* Do a lockless check first */
355 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
356 continue;
357
358 /*
359 * Once the xprt has been queued, it can only be dequeued by
360 * the task that intends to service it. All we can do at that
361 * point is to try to wake this thread back up so that it can
362 * do so.
363 */
364 if (!queued) {
365 spin_lock_bh(&rqstp->rq_lock);
366 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
367 /* already busy, move on... */
368 spin_unlock_bh(&rqstp->rq_lock);
369 continue;
370 }
371
372 /* this one will do */
373 rqstp->rq_xprt = xprt;
374 svc_xprt_get(xprt);
375 spin_unlock_bh(&rqstp->rq_lock);
376 }
377 rcu_read_unlock();
378
379 atomic_long_inc(&pool->sp_stats.threads_woken);
380 wake_up_process(rqstp->rq_task);
381 put_cpu();
382 goto out;
383 }
384 rcu_read_unlock();
385
386 /*
387 * We didn't find an idle thread to use, so we need to queue the xprt.
388 * Do so and then search again. If we find one, we can't hook this one
389 * up to it directly but we can wake the thread up in the hopes that it
390 * will pick it up once it searches for a xprt to service.
391 */
392 if (!queued) {
393 queued = true;
394 dprintk("svc: transport %p put into queue\n", xprt);
395 spin_lock_bh(&pool->sp_lock);
396 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
397 pool->sp_stats.sockets_queued++;
398 spin_unlock_bh(&pool->sp_lock);
399 goto redo_search;
400 }
401 rqstp = NULL;
402 put_cpu();
403out:
404 trace_svc_xprt_do_enqueue(xprt, rqstp);
405}
406EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
407
408/*
409 * Queue up a transport with data pending. If there are idle nfsd
410 * processes, wake 'em up.
411 *
412 */
413void svc_xprt_enqueue(struct svc_xprt *xprt)
414{
415 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
416 return;
417 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
418}
419EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
420
421/*
422 * Dequeue the first transport, if there is one.
423 */
424static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
425{
426 struct svc_xprt *xprt = NULL;
427
428 if (list_empty(&pool->sp_sockets))
429 goto out;
430
431 spin_lock_bh(&pool->sp_lock);
432 if (likely(!list_empty(&pool->sp_sockets))) {
433 xprt = list_first_entry(&pool->sp_sockets,
434 struct svc_xprt, xpt_ready);
435 list_del_init(&xprt->xpt_ready);
436 svc_xprt_get(xprt);
437
438 dprintk("svc: transport %p dequeued, inuse=%d\n",
439 xprt, atomic_read(&xprt->xpt_ref.refcount));
440 }
441 spin_unlock_bh(&pool->sp_lock);
442out:
443 trace_svc_xprt_dequeue(xprt);
444 return xprt;
445}
446
447/**
448 * svc_reserve - change the space reserved for the reply to a request.
449 * @rqstp: The request in question
450 * @space: new max space to reserve
451 *
452 * Each request reserves some space on the output queue of the transport
453 * to make sure the reply fits. This function reduces that reserved
454 * space to be the amount of space used already, plus @space.
455 *
456 */
457void svc_reserve(struct svc_rqst *rqstp, int space)
458{
459 space += rqstp->rq_res.head[0].iov_len;
460
461 if (space < rqstp->rq_reserved) {
462 struct svc_xprt *xprt = rqstp->rq_xprt;
463 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
464 rqstp->rq_reserved = space;
465
466 if (xprt->xpt_ops->xpo_adjust_wspace)
467 xprt->xpt_ops->xpo_adjust_wspace(xprt);
468 svc_xprt_enqueue(xprt);
469 }
470}
471EXPORT_SYMBOL_GPL(svc_reserve);
472
473static void svc_xprt_release(struct svc_rqst *rqstp)
474{
475 struct svc_xprt *xprt = rqstp->rq_xprt;
476
477 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
478
479 kfree(rqstp->rq_deferred);
480 rqstp->rq_deferred = NULL;
481
482 svc_free_res_pages(rqstp);
483 rqstp->rq_res.page_len = 0;
484 rqstp->rq_res.page_base = 0;
485
486 /* Reset response buffer and release
487 * the reservation.
488 * But first, check that enough space was reserved
489 * for the reply, otherwise we have a bug!
490 */
491 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
492 printk(KERN_ERR "RPC request reserved %d but used %d\n",
493 rqstp->rq_reserved,
494 rqstp->rq_res.len);
495
496 rqstp->rq_res.head[0].iov_len = 0;
497 svc_reserve(rqstp, 0);
498 rqstp->rq_xprt = NULL;
499
500 svc_xprt_put(xprt);
501}
502
503/*
504 * Some svc_serv's will have occasional work to do, even when a xprt is not
505 * waiting to be serviced. This function is there to "kick" a task in one of
506 * those services so that it can wake up and do that work. Note that we only
507 * bother with pool 0 as we don't need to wake up more than one thread for
508 * this purpose.
509 */
510void svc_wake_up(struct svc_serv *serv)
511{
512 struct svc_rqst *rqstp;
513 struct svc_pool *pool;
514
515 pool = &serv->sv_pools[0];
516
517 rcu_read_lock();
518 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
519 /* skip any that aren't queued */
520 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
521 continue;
522 rcu_read_unlock();
523 dprintk("svc: daemon %p woken up.\n", rqstp);
524 wake_up_process(rqstp->rq_task);
525 trace_svc_wake_up(rqstp->rq_task->pid);
526 return;
527 }
528 rcu_read_unlock();
529
530 /* No free entries available */
531 set_bit(SP_TASK_PENDING, &pool->sp_flags);
532 smp_wmb();
533 trace_svc_wake_up(0);
534}
535EXPORT_SYMBOL_GPL(svc_wake_up);
536
537int svc_port_is_privileged(struct sockaddr *sin)
538{
539 switch (sin->sa_family) {
540 case AF_INET:
541 return ntohs(((struct sockaddr_in *)sin)->sin_port)
542 < PROT_SOCK;
543 case AF_INET6:
544 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
545 < PROT_SOCK;
546 default:
547 return 0;
548 }
549}
550
551/*
552 * Make sure that we don't have too many active connections. If we have,
553 * something must be dropped. It's not clear what will happen if we allow
554 * "too many" connections, but when dealing with network-facing software,
555 * we have to code defensively. Here we do that by imposing hard limits.
556 *
557 * There's no point in trying to do random drop here for DoS
558 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
559 * attacker can easily beat that.
560 *
561 * The only somewhat efficient mechanism would be if drop old
562 * connections from the same IP first. But right now we don't even
563 * record the client IP in svc_sock.
564 *
565 * single-threaded services that expect a lot of clients will probably
566 * need to set sv_maxconn to override the default value which is based
567 * on the number of threads
568 */
569static void svc_check_conn_limits(struct svc_serv *serv)
570{
571 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
572 (serv->sv_nrthreads+3) * 20;
573
574 if (serv->sv_tmpcnt > limit) {
575 struct svc_xprt *xprt = NULL;
576 spin_lock_bh(&serv->sv_lock);
577 if (!list_empty(&serv->sv_tempsocks)) {
578 /* Try to help the admin */
579 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
580 serv->sv_name, serv->sv_maxconn ?
581 "max number of connections" :
582 "number of threads");
583 /*
584 * Always select the oldest connection. It's not fair,
585 * but so is life
586 */
587 xprt = list_entry(serv->sv_tempsocks.prev,
588 struct svc_xprt,
589 xpt_list);
590 set_bit(XPT_CLOSE, &xprt->xpt_flags);
591 svc_xprt_get(xprt);
592 }
593 spin_unlock_bh(&serv->sv_lock);
594
595 if (xprt) {
596 svc_xprt_enqueue(xprt);
597 svc_xprt_put(xprt);
598 }
599 }
600}
601
602static int svc_alloc_arg(struct svc_rqst *rqstp)
603{
604 struct svc_serv *serv = rqstp->rq_server;
605 struct xdr_buf *arg;
606 int pages;
607 int i;
608
609 /* now allocate needed pages. If we get a failure, sleep briefly */
610 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
611 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
612 if (pages >= RPCSVC_MAXPAGES)
613 /* use as many pages as possible */
614 pages = RPCSVC_MAXPAGES - 1;
615 for (i = 0; i < pages ; i++)
616 while (rqstp->rq_pages[i] == NULL) {
617 struct page *p = alloc_page(GFP_KERNEL);
618 if (!p) {
619 set_current_state(TASK_INTERRUPTIBLE);
620 if (signalled() || kthread_should_stop()) {
621 set_current_state(TASK_RUNNING);
622 return -EINTR;
623 }
624 schedule_timeout(msecs_to_jiffies(500));
625 }
626 rqstp->rq_pages[i] = p;
627 }
628 rqstp->rq_page_end = &rqstp->rq_pages[i];
629 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
630
631 /* Make arg->head point to first page and arg->pages point to rest */
632 arg = &rqstp->rq_arg;
633 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
634 arg->head[0].iov_len = PAGE_SIZE;
635 arg->pages = rqstp->rq_pages + 1;
636 arg->page_base = 0;
637 /* save at least one page for response */
638 arg->page_len = (pages-2)*PAGE_SIZE;
639 arg->len = (pages-1)*PAGE_SIZE;
640 arg->tail[0].iov_len = 0;
641 return 0;
642}
643
644static bool
645rqst_should_sleep(struct svc_rqst *rqstp)
646{
647 struct svc_pool *pool = rqstp->rq_pool;
648
649 /* did someone call svc_wake_up? */
650 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
651 return false;
652
653 /* was a socket queued? */
654 if (!list_empty(&pool->sp_sockets))
655 return false;
656
657 /* are we shutting down? */
658 if (signalled() || kthread_should_stop())
659 return false;
660
661 /* are we freezing? */
662 if (freezing(current))
663 return false;
664
665 return true;
666}
667
668static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
669{
670 struct svc_xprt *xprt;
671 struct svc_pool *pool = rqstp->rq_pool;
672 long time_left = 0;
673
674 /* rq_xprt should be clear on entry */
675 WARN_ON_ONCE(rqstp->rq_xprt);
676
677 /* Normally we will wait up to 5 seconds for any required
678 * cache information to be provided.
679 */
680 rqstp->rq_chandle.thread_wait = 5*HZ;
681
682 xprt = svc_xprt_dequeue(pool);
683 if (xprt) {
684 rqstp->rq_xprt = xprt;
685
686 /* As there is a shortage of threads and this request
687 * had to be queued, don't allow the thread to wait so
688 * long for cache updates.
689 */
690 rqstp->rq_chandle.thread_wait = 1*HZ;
691 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
692 return xprt;
693 }
694
695 /*
696 * We have to be able to interrupt this wait
697 * to bring down the daemons ...
698 */
699 set_current_state(TASK_INTERRUPTIBLE);
700 clear_bit(RQ_BUSY, &rqstp->rq_flags);
701 smp_mb();
702
703 if (likely(rqst_should_sleep(rqstp)))
704 time_left = schedule_timeout(timeout);
705 else
706 __set_current_state(TASK_RUNNING);
707
708 try_to_freeze();
709
710 spin_lock_bh(&rqstp->rq_lock);
711 set_bit(RQ_BUSY, &rqstp->rq_flags);
712 spin_unlock_bh(&rqstp->rq_lock);
713
714 xprt = rqstp->rq_xprt;
715 if (xprt != NULL)
716 return xprt;
717
718 if (!time_left)
719 atomic_long_inc(&pool->sp_stats.threads_timedout);
720
721 if (signalled() || kthread_should_stop())
722 return ERR_PTR(-EINTR);
723 return ERR_PTR(-EAGAIN);
724}
725
726static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
727{
728 spin_lock_bh(&serv->sv_lock);
729 set_bit(XPT_TEMP, &newxpt->xpt_flags);
730 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
731 serv->sv_tmpcnt++;
732 if (serv->sv_temptimer.function == NULL) {
733 /* setup timer to age temp transports */
734 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
735 (unsigned long)serv);
736 mod_timer(&serv->sv_temptimer,
737 jiffies + svc_conn_age_period * HZ);
738 }
739 spin_unlock_bh(&serv->sv_lock);
740 svc_xprt_received(newxpt);
741}
742
743static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
744{
745 struct svc_serv *serv = rqstp->rq_server;
746 int len = 0;
747
748 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
749 dprintk("svc_recv: found XPT_CLOSE\n");
750 svc_delete_xprt(xprt);
751 /* Leave XPT_BUSY set on the dead xprt: */
752 goto out;
753 }
754 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
755 struct svc_xprt *newxpt;
756 /*
757 * We know this module_get will succeed because the
758 * listener holds a reference too
759 */
760 __module_get(xprt->xpt_class->xcl_owner);
761 svc_check_conn_limits(xprt->xpt_server);
762 newxpt = xprt->xpt_ops->xpo_accept(xprt);
763 if (newxpt)
764 svc_add_new_temp_xprt(serv, newxpt);
765 else
766 module_put(xprt->xpt_class->xcl_owner);
767 } else {
768 /* XPT_DATA|XPT_DEFERRED case: */
769 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
770 rqstp, rqstp->rq_pool->sp_id, xprt,
771 atomic_read(&xprt->xpt_ref.refcount));
772 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
773 if (rqstp->rq_deferred)
774 len = svc_deferred_recv(rqstp);
775 else
776 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
777 dprintk("svc: got len=%d\n", len);
778 rqstp->rq_reserved = serv->sv_max_mesg;
779 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
780 }
781 /* clear XPT_BUSY: */
782 svc_xprt_received(xprt);
783out:
784 trace_svc_handle_xprt(xprt, len);
785 return len;
786}
787
788/*
789 * Receive the next request on any transport. This code is carefully
790 * organised not to touch any cachelines in the shared svc_serv
791 * structure, only cachelines in the local svc_pool.
792 */
793int svc_recv(struct svc_rqst *rqstp, long timeout)
794{
795 struct svc_xprt *xprt = NULL;
796 struct svc_serv *serv = rqstp->rq_server;
797 int len, err;
798
799 dprintk("svc: server %p waiting for data (to = %ld)\n",
800 rqstp, timeout);
801
802 if (rqstp->rq_xprt)
803 printk(KERN_ERR
804 "svc_recv: service %p, transport not NULL!\n",
805 rqstp);
806
807 err = svc_alloc_arg(rqstp);
808 if (err)
809 goto out;
810
811 try_to_freeze();
812 cond_resched();
813 err = -EINTR;
814 if (signalled() || kthread_should_stop())
815 goto out;
816
817 xprt = svc_get_next_xprt(rqstp, timeout);
818 if (IS_ERR(xprt)) {
819 err = PTR_ERR(xprt);
820 goto out;
821 }
822
823 len = svc_handle_xprt(rqstp, xprt);
824
825 /* No data, incomplete (TCP) read, or accept() */
826 err = -EAGAIN;
827 if (len <= 0)
828 goto out_release;
829
830 clear_bit(XPT_OLD, &xprt->xpt_flags);
831
832 if (xprt->xpt_ops->xpo_secure_port(rqstp))
833 set_bit(RQ_SECURE, &rqstp->rq_flags);
834 else
835 clear_bit(RQ_SECURE, &rqstp->rq_flags);
836 rqstp->rq_chandle.defer = svc_defer;
837 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
838
839 if (serv->sv_stats)
840 serv->sv_stats->netcnt++;
841 trace_svc_recv(rqstp, len);
842 return len;
843out_release:
844 rqstp->rq_res.len = 0;
845 svc_xprt_release(rqstp);
846out:
847 trace_svc_recv(rqstp, err);
848 return err;
849}
850EXPORT_SYMBOL_GPL(svc_recv);
851
852/*
853 * Drop request
854 */
855void svc_drop(struct svc_rqst *rqstp)
856{
857 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
858 svc_xprt_release(rqstp);
859}
860EXPORT_SYMBOL_GPL(svc_drop);
861
862/*
863 * Return reply to client.
864 */
865int svc_send(struct svc_rqst *rqstp)
866{
867 struct svc_xprt *xprt;
868 int len = -EFAULT;
869 struct xdr_buf *xb;
870
871 xprt = rqstp->rq_xprt;
872 if (!xprt)
873 goto out;
874
875 /* release the receive skb before sending the reply */
876 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
877
878 /* calculate over-all length */
879 xb = &rqstp->rq_res;
880 xb->len = xb->head[0].iov_len +
881 xb->page_len +
882 xb->tail[0].iov_len;
883
884 /* Grab mutex to serialize outgoing data. */
885 mutex_lock(&xprt->xpt_mutex);
886 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
887 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
888 len = -ENOTCONN;
889 else
890 len = xprt->xpt_ops->xpo_sendto(rqstp);
891 mutex_unlock(&xprt->xpt_mutex);
892 rpc_wake_up(&xprt->xpt_bc_pending);
893 svc_xprt_release(rqstp);
894
895 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
896 len = 0;
897out:
898 trace_svc_send(rqstp, len);
899 return len;
900}
901
902/*
903 * Timer function to close old temporary transports, using
904 * a mark-and-sweep algorithm.
905 */
906static void svc_age_temp_xprts(unsigned long closure)
907{
908 struct svc_serv *serv = (struct svc_serv *)closure;
909 struct svc_xprt *xprt;
910 struct list_head *le, *next;
911
912 dprintk("svc_age_temp_xprts\n");
913
914 if (!spin_trylock_bh(&serv->sv_lock)) {
915 /* busy, try again 1 sec later */
916 dprintk("svc_age_temp_xprts: busy\n");
917 mod_timer(&serv->sv_temptimer, jiffies + HZ);
918 return;
919 }
920
921 list_for_each_safe(le, next, &serv->sv_tempsocks) {
922 xprt = list_entry(le, struct svc_xprt, xpt_list);
923
924 /* First time through, just mark it OLD. Second time
925 * through, close it. */
926 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
927 continue;
928 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
929 test_bit(XPT_BUSY, &xprt->xpt_flags))
930 continue;
931 list_del_init(le);
932 set_bit(XPT_CLOSE, &xprt->xpt_flags);
933 dprintk("queuing xprt %p for closing\n", xprt);
934
935 /* a thread will dequeue and close it soon */
936 svc_xprt_enqueue(xprt);
937 }
938 spin_unlock_bh(&serv->sv_lock);
939
940 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
941}
942
943/* Close temporary transports whose xpt_local matches server_addr immediately
944 * instead of waiting for them to be picked up by the timer.
945 *
946 * This is meant to be called from a notifier_block that runs when an ip
947 * address is deleted.
948 */
949void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
950{
951 struct svc_xprt *xprt;
952 struct svc_sock *svsk;
953 struct socket *sock;
954 struct list_head *le, *next;
955 LIST_HEAD(to_be_closed);
956 struct linger no_linger = {
957 .l_onoff = 1,
958 .l_linger = 0,
959 };
960
961 spin_lock_bh(&serv->sv_lock);
962 list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 xprt = list_entry(le, struct svc_xprt, xpt_list);
964 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 &xprt->xpt_local)) {
966 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 list_move(le, &to_be_closed);
968 }
969 }
970 spin_unlock_bh(&serv->sv_lock);
971
972 while (!list_empty(&to_be_closed)) {
973 le = to_be_closed.next;
974 list_del_init(le);
975 xprt = list_entry(le, struct svc_xprt, xpt_list);
976 dprintk("svc_age_temp_xprts_now: closing %p\n", xprt);
977 svsk = container_of(xprt, struct svc_sock, sk_xprt);
978 sock = svsk->sk_sock;
979 kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
980 (char *)&no_linger, sizeof(no_linger));
981 svc_close_xprt(xprt);
982 }
983}
984EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
985
986static void call_xpt_users(struct svc_xprt *xprt)
987{
988 struct svc_xpt_user *u;
989
990 spin_lock(&xprt->xpt_lock);
991 while (!list_empty(&xprt->xpt_users)) {
992 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
993 list_del(&u->list);
994 u->callback(u);
995 }
996 spin_unlock(&xprt->xpt_lock);
997}
998
999/*
1000 * Remove a dead transport
1001 */
1002static void svc_delete_xprt(struct svc_xprt *xprt)
1003{
1004 struct svc_serv *serv = xprt->xpt_server;
1005 struct svc_deferred_req *dr;
1006
1007 /* Only do this once */
1008 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1009 BUG();
1010
1011 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1012 xprt->xpt_ops->xpo_detach(xprt);
1013
1014 spin_lock_bh(&serv->sv_lock);
1015 list_del_init(&xprt->xpt_list);
1016 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1017 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1018 serv->sv_tmpcnt--;
1019 spin_unlock_bh(&serv->sv_lock);
1020
1021 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1022 kfree(dr);
1023
1024 call_xpt_users(xprt);
1025 svc_xprt_put(xprt);
1026}
1027
1028void svc_close_xprt(struct svc_xprt *xprt)
1029{
1030 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1031 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1032 /* someone else will have to effect the close */
1033 return;
1034 /*
1035 * We expect svc_close_xprt() to work even when no threads are
1036 * running (e.g., while configuring the server before starting
1037 * any threads), so if the transport isn't busy, we delete
1038 * it ourself:
1039 */
1040 svc_delete_xprt(xprt);
1041}
1042EXPORT_SYMBOL_GPL(svc_close_xprt);
1043
1044static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1045{
1046 struct svc_xprt *xprt;
1047 int ret = 0;
1048
1049 spin_lock(&serv->sv_lock);
1050 list_for_each_entry(xprt, xprt_list, xpt_list) {
1051 if (xprt->xpt_net != net)
1052 continue;
1053 ret++;
1054 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 svc_xprt_enqueue(xprt);
1056 }
1057 spin_unlock(&serv->sv_lock);
1058 return ret;
1059}
1060
1061static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1062{
1063 struct svc_pool *pool;
1064 struct svc_xprt *xprt;
1065 struct svc_xprt *tmp;
1066 int i;
1067
1068 for (i = 0; i < serv->sv_nrpools; i++) {
1069 pool = &serv->sv_pools[i];
1070
1071 spin_lock_bh(&pool->sp_lock);
1072 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1073 if (xprt->xpt_net != net)
1074 continue;
1075 list_del_init(&xprt->xpt_ready);
1076 spin_unlock_bh(&pool->sp_lock);
1077 return xprt;
1078 }
1079 spin_unlock_bh(&pool->sp_lock);
1080 }
1081 return NULL;
1082}
1083
1084static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1085{
1086 struct svc_xprt *xprt;
1087
1088 while ((xprt = svc_dequeue_net(serv, net))) {
1089 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1090 svc_delete_xprt(xprt);
1091 }
1092}
1093
1094/*
1095 * Server threads may still be running (especially in the case where the
1096 * service is still running in other network namespaces).
1097 *
1098 * So we shut down sockets the same way we would on a running server, by
1099 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1100 * the close. In the case there are no such other threads,
1101 * threads running, svc_clean_up_xprts() does a simple version of a
1102 * server's main event loop, and in the case where there are other
1103 * threads, we may need to wait a little while and then check again to
1104 * see if they're done.
1105 */
1106void svc_close_net(struct svc_serv *serv, struct net *net)
1107{
1108 int delay = 0;
1109
1110 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1111 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1112
1113 svc_clean_up_xprts(serv, net);
1114 msleep(delay++);
1115 }
1116}
1117
1118/*
1119 * Handle defer and revisit of requests
1120 */
1121
1122static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1123{
1124 struct svc_deferred_req *dr =
1125 container_of(dreq, struct svc_deferred_req, handle);
1126 struct svc_xprt *xprt = dr->xprt;
1127
1128 spin_lock(&xprt->xpt_lock);
1129 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1130 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1131 spin_unlock(&xprt->xpt_lock);
1132 dprintk("revisit canceled\n");
1133 svc_xprt_put(xprt);
1134 kfree(dr);
1135 return;
1136 }
1137 dprintk("revisit queued\n");
1138 dr->xprt = NULL;
1139 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 spin_unlock(&xprt->xpt_lock);
1141 svc_xprt_enqueue(xprt);
1142 svc_xprt_put(xprt);
1143}
1144
1145/*
1146 * Save the request off for later processing. The request buffer looks
1147 * like this:
1148 *
1149 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150 *
1151 * This code can only handle requests that consist of an xprt-header
1152 * and rpc-header.
1153 */
1154static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155{
1156 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 struct svc_deferred_req *dr;
1158
1159 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 return NULL; /* if more than a page, give up FIXME */
1161 if (rqstp->rq_deferred) {
1162 dr = rqstp->rq_deferred;
1163 rqstp->rq_deferred = NULL;
1164 } else {
1165 size_t skip;
1166 size_t size;
1167 /* FIXME maybe discard if size too large */
1168 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 dr = kmalloc(size, GFP_KERNEL);
1170 if (dr == NULL)
1171 return NULL;
1172
1173 dr->handle.owner = rqstp->rq_server;
1174 dr->prot = rqstp->rq_prot;
1175 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 dr->addrlen = rqstp->rq_addrlen;
1177 dr->daddr = rqstp->rq_daddr;
1178 dr->argslen = rqstp->rq_arg.len >> 2;
1179 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180
1181 /* back up head to the start of the buffer and copy */
1182 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 dr->argslen << 2);
1185 }
1186 svc_xprt_get(rqstp->rq_xprt);
1187 dr->xprt = rqstp->rq_xprt;
1188 set_bit(RQ_DROPME, &rqstp->rq_flags);
1189
1190 dr->handle.revisit = svc_revisit;
1191 return &dr->handle;
1192}
1193
1194/*
1195 * recv data from a deferred request into an active one
1196 */
1197static int svc_deferred_recv(struct svc_rqst *rqstp)
1198{
1199 struct svc_deferred_req *dr = rqstp->rq_deferred;
1200
1201 /* setup iov_base past transport header */
1202 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1203 /* The iov_len does not include the transport header bytes */
1204 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1205 rqstp->rq_arg.page_len = 0;
1206 /* The rq_arg.len includes the transport header bytes */
1207 rqstp->rq_arg.len = dr->argslen<<2;
1208 rqstp->rq_prot = dr->prot;
1209 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1210 rqstp->rq_addrlen = dr->addrlen;
1211 /* Save off transport header len in case we get deferred again */
1212 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1213 rqstp->rq_daddr = dr->daddr;
1214 rqstp->rq_respages = rqstp->rq_pages;
1215 return (dr->argslen<<2) - dr->xprt_hlen;
1216}
1217
1218
1219static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1220{
1221 struct svc_deferred_req *dr = NULL;
1222
1223 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1224 return NULL;
1225 spin_lock(&xprt->xpt_lock);
1226 if (!list_empty(&xprt->xpt_deferred)) {
1227 dr = list_entry(xprt->xpt_deferred.next,
1228 struct svc_deferred_req,
1229 handle.recent);
1230 list_del_init(&dr->handle.recent);
1231 } else
1232 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1233 spin_unlock(&xprt->xpt_lock);
1234 return dr;
1235}
1236
1237/**
1238 * svc_find_xprt - find an RPC transport instance
1239 * @serv: pointer to svc_serv to search
1240 * @xcl_name: C string containing transport's class name
1241 * @net: owner net pointer
1242 * @af: Address family of transport's local address
1243 * @port: transport's IP port number
1244 *
1245 * Return the transport instance pointer for the endpoint accepting
1246 * connections/peer traffic from the specified transport class,
1247 * address family and port.
1248 *
1249 * Specifying 0 for the address family or port is effectively a
1250 * wild-card, and will result in matching the first transport in the
1251 * service's list that has a matching class name.
1252 */
1253struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1254 struct net *net, const sa_family_t af,
1255 const unsigned short port)
1256{
1257 struct svc_xprt *xprt;
1258 struct svc_xprt *found = NULL;
1259
1260 /* Sanity check the args */
1261 if (serv == NULL || xcl_name == NULL)
1262 return found;
1263
1264 spin_lock_bh(&serv->sv_lock);
1265 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1266 if (xprt->xpt_net != net)
1267 continue;
1268 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1269 continue;
1270 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1271 continue;
1272 if (port != 0 && port != svc_xprt_local_port(xprt))
1273 continue;
1274 found = xprt;
1275 svc_xprt_get(xprt);
1276 break;
1277 }
1278 spin_unlock_bh(&serv->sv_lock);
1279 return found;
1280}
1281EXPORT_SYMBOL_GPL(svc_find_xprt);
1282
1283static int svc_one_xprt_name(const struct svc_xprt *xprt,
1284 char *pos, int remaining)
1285{
1286 int len;
1287
1288 len = snprintf(pos, remaining, "%s %u\n",
1289 xprt->xpt_class->xcl_name,
1290 svc_xprt_local_port(xprt));
1291 if (len >= remaining)
1292 return -ENAMETOOLONG;
1293 return len;
1294}
1295
1296/**
1297 * svc_xprt_names - format a buffer with a list of transport names
1298 * @serv: pointer to an RPC service
1299 * @buf: pointer to a buffer to be filled in
1300 * @buflen: length of buffer to be filled in
1301 *
1302 * Fills in @buf with a string containing a list of transport names,
1303 * each name terminated with '\n'.
1304 *
1305 * Returns positive length of the filled-in string on success; otherwise
1306 * a negative errno value is returned if an error occurs.
1307 */
1308int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1309{
1310 struct svc_xprt *xprt;
1311 int len, totlen;
1312 char *pos;
1313
1314 /* Sanity check args */
1315 if (!serv)
1316 return 0;
1317
1318 spin_lock_bh(&serv->sv_lock);
1319
1320 pos = buf;
1321 totlen = 0;
1322 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1323 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1324 if (len < 0) {
1325 *buf = '\0';
1326 totlen = len;
1327 }
1328 if (len <= 0)
1329 break;
1330
1331 pos += len;
1332 totlen += len;
1333 }
1334
1335 spin_unlock_bh(&serv->sv_lock);
1336 return totlen;
1337}
1338EXPORT_SYMBOL_GPL(svc_xprt_names);
1339
1340
1341/*----------------------------------------------------------------------------*/
1342
1343static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1344{
1345 unsigned int pidx = (unsigned int)*pos;
1346 struct svc_serv *serv = m->private;
1347
1348 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1349
1350 if (!pidx)
1351 return SEQ_START_TOKEN;
1352 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1353}
1354
1355static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1356{
1357 struct svc_pool *pool = p;
1358 struct svc_serv *serv = m->private;
1359
1360 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1361
1362 if (p == SEQ_START_TOKEN) {
1363 pool = &serv->sv_pools[0];
1364 } else {
1365 unsigned int pidx = (pool - &serv->sv_pools[0]);
1366 if (pidx < serv->sv_nrpools-1)
1367 pool = &serv->sv_pools[pidx+1];
1368 else
1369 pool = NULL;
1370 }
1371 ++*pos;
1372 return pool;
1373}
1374
1375static void svc_pool_stats_stop(struct seq_file *m, void *p)
1376{
1377}
1378
1379static int svc_pool_stats_show(struct seq_file *m, void *p)
1380{
1381 struct svc_pool *pool = p;
1382
1383 if (p == SEQ_START_TOKEN) {
1384 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1385 return 0;
1386 }
1387
1388 seq_printf(m, "%u %lu %lu %lu %lu\n",
1389 pool->sp_id,
1390 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1391 pool->sp_stats.sockets_queued,
1392 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1393 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1394
1395 return 0;
1396}
1397
1398static const struct seq_operations svc_pool_stats_seq_ops = {
1399 .start = svc_pool_stats_start,
1400 .next = svc_pool_stats_next,
1401 .stop = svc_pool_stats_stop,
1402 .show = svc_pool_stats_show,
1403};
1404
1405int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1406{
1407 int err;
1408
1409 err = seq_open(file, &svc_pool_stats_seq_ops);
1410 if (!err)
1411 ((struct seq_file *) file->private_data)->private = serv;
1412 return err;
1413}
1414EXPORT_SYMBOL(svc_pool_stats_open);
1415
1416/*----------------------------------------------------------------------------*/