Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  4 *
 
 
 
 
 
  5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  6 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
  7 *						 original idea by Martin Devera
 
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/string.h>
 14#include <linux/errno.h>
 15#include <linux/skbuff.h>
 16#include <net/gso.h>
 17#include <net/netlink.h>
 18#include <net/sch_generic.h>
 19#include <net/pkt_cls.h>
 20#include <net/pkt_sched.h>
 21
 22
 23/*	Simple Token Bucket Filter.
 24	=======================================
 25
 26	SOURCE.
 27	-------
 28
 29	None.
 30
 31	Description.
 32	------------
 33
 34	A data flow obeys TBF with rate R and depth B, if for any
 35	time interval t_i...t_f the number of transmitted bits
 36	does not exceed B + R*(t_f-t_i).
 37
 38	Packetized version of this definition:
 39	The sequence of packets of sizes s_i served at moments t_i
 40	obeys TBF, if for any i<=k:
 41
 42	s_i+....+s_k <= B + R*(t_k - t_i)
 43
 44	Algorithm.
 45	----------
 46
 47	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 48
 49	N(t+delta) = min{B/R, N(t) + delta}
 50
 51	If the first packet in queue has length S, it may be
 52	transmitted only at the time t_* when S/R <= N(t_*),
 53	and in this case N(t) jumps:
 54
 55	N(t_* + 0) = N(t_* - 0) - S/R.
 56
 57
 58
 59	Actually, QoS requires two TBF to be applied to a data stream.
 60	One of them controls steady state burst size, another
 61	one with rate P (peak rate) and depth M (equal to link MTU)
 62	limits bursts at a smaller time scale.
 63
 64	It is easy to see that P>R, and B>M. If P is infinity, this double
 65	TBF is equivalent to a single one.
 66
 67	When TBF works in reshaping mode, latency is estimated as:
 68
 69	lat = max ((L-B)/R, (L-M)/P)
 70
 71
 72	NOTES.
 73	------
 74
 75	If TBF throttles, it starts a watchdog timer, which will wake it up
 76	when it is ready to transmit.
 77	Note that the minimal timer resolution is 1/HZ.
 78	If no new packets arrive during this period,
 79	or if the device is not awaken by EOI for some previous packet,
 80	TBF can stop its activity for 1/HZ.
 81
 82
 83	This means, that with depth B, the maximal rate is
 84
 85	R_crit = B*HZ
 86
 87	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 88
 89	Note that the peak rate TBF is much more tough: with MTU 1500
 90	P_crit = 150Kbytes/sec. So, if you need greater peak
 91	rates, use alpha with HZ=1000 :-)
 92
 93	With classful TBF, limit is just kept for backwards compatibility.
 94	It is passed to the default bfifo qdisc - if the inner qdisc is
 95	changed the limit is not effective anymore.
 96*/
 97
 98struct tbf_sched_data {
 99/* Parameters */
100	u32		limit;		/* Maximal length of backlog: bytes */
101	u32		max_size;
102	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
103	s64		mtu;
104	struct psched_ratecfg rate;
105	struct psched_ratecfg peak;
106
107/* Variables */
108	s64	tokens;			/* Current number of B tokens */
109	s64	ptokens;		/* Current number of P tokens */
110	s64	t_c;			/* Time check-point */
111	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
112	struct qdisc_watchdog watchdog;	/* Watchdog timer */
113};
114
115
116/* Time to Length, convert time in ns to length in bytes
117 * to determinate how many bytes can be sent in given time.
118 */
119static u64 psched_ns_t2l(const struct psched_ratecfg *r,
120			 u64 time_in_ns)
121{
122	/* The formula is :
123	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
124	 */
125	u64 len = time_in_ns * r->rate_bytes_ps;
126
127	do_div(len, NSEC_PER_SEC);
128
129	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
130		do_div(len, 53);
131		len = len * 48;
132	}
133
134	if (len > r->overhead)
135		len -= r->overhead;
136	else
137		len = 0;
138
139	return len;
140}
141
142static void tbf_offload_change(struct Qdisc *sch)
143{
144	struct tbf_sched_data *q = qdisc_priv(sch);
145	struct net_device *dev = qdisc_dev(sch);
146	struct tc_tbf_qopt_offload qopt;
147
148	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
149		return;
150
151	qopt.command = TC_TBF_REPLACE;
152	qopt.handle = sch->handle;
153	qopt.parent = sch->parent;
154	qopt.replace_params.rate = q->rate;
155	qopt.replace_params.max_size = q->max_size;
156	qopt.replace_params.qstats = &sch->qstats;
157
158	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
159}
160
161static void tbf_offload_destroy(struct Qdisc *sch)
162{
163	struct net_device *dev = qdisc_dev(sch);
164	struct tc_tbf_qopt_offload qopt;
165
166	if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc)
167		return;
168
169	qopt.command = TC_TBF_DESTROY;
170	qopt.handle = sch->handle;
171	qopt.parent = sch->parent;
172	dev->netdev_ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TBF, &qopt);
173}
174
175static int tbf_offload_dump(struct Qdisc *sch)
176{
177	struct tc_tbf_qopt_offload qopt;
178
179	qopt.command = TC_TBF_STATS;
180	qopt.handle = sch->handle;
181	qopt.parent = sch->parent;
182	qopt.stats.bstats = &sch->bstats;
183	qopt.stats.qstats = &sch->qstats;
184
185	return qdisc_offload_dump_helper(sch, TC_SETUP_QDISC_TBF, &qopt);
186}
187
188static void tbf_offload_graft(struct Qdisc *sch, struct Qdisc *new,
189			      struct Qdisc *old, struct netlink_ext_ack *extack)
190{
191	struct tc_tbf_qopt_offload graft_offload = {
192		.handle		= sch->handle,
193		.parent		= sch->parent,
194		.child_handle	= new->handle,
195		.command	= TC_TBF_GRAFT,
196	};
197
198	qdisc_offload_graft_helper(qdisc_dev(sch), sch, new, old,
199				   TC_SETUP_QDISC_TBF, &graft_offload, extack);
200}
201
202/* GSO packet is too big, segment it so that tbf can transmit
203 * each segment in time
204 */
205static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch,
206		       struct sk_buff **to_free)
207{
208	struct tbf_sched_data *q = qdisc_priv(sch);
209	struct sk_buff *segs, *nskb;
210	netdev_features_t features = netif_skb_features(skb);
211	unsigned int len = 0, prev_len = qdisc_pkt_len(skb), seg_len;
212	int ret, nb;
213
214	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
215
216	if (IS_ERR_OR_NULL(segs))
217		return qdisc_drop(skb, sch, to_free);
218
219	nb = 0;
220	skb_list_walk_safe(segs, segs, nskb) {
221		skb_mark_not_on_list(segs);
222		seg_len = segs->len;
223		qdisc_skb_cb(segs)->pkt_len = seg_len;
224		ret = qdisc_enqueue(segs, q->qdisc, to_free);
 
225		if (ret != NET_XMIT_SUCCESS) {
226			if (net_xmit_drop_count(ret))
227				qdisc_qstats_drop(sch);
228		} else {
229			nb++;
230			len += seg_len;
231		}
 
232	}
233	sch->q.qlen += nb;
234	sch->qstats.backlog += len;
235	if (nb > 0) {
236		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
237		consume_skb(skb);
238		return NET_XMIT_SUCCESS;
239	}
240
241	kfree_skb(skb);
242	return NET_XMIT_DROP;
243}
244
245static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
246		       struct sk_buff **to_free)
247{
248	struct tbf_sched_data *q = qdisc_priv(sch);
249	unsigned int len = qdisc_pkt_len(skb);
250	int ret;
251
252	if (qdisc_pkt_len(skb) > q->max_size) {
253		if (skb_is_gso(skb) &&
254		    skb_gso_validate_mac_len(skb, q->max_size))
255			return tbf_segment(skb, sch, to_free);
256		return qdisc_drop(skb, sch, to_free);
257	}
258	ret = qdisc_enqueue(skb, q->qdisc, to_free);
259	if (ret != NET_XMIT_SUCCESS) {
260		if (net_xmit_drop_count(ret))
261			qdisc_qstats_drop(sch);
262		return ret;
263	}
264
265	sch->qstats.backlog += len;
266	sch->q.qlen++;
267	return NET_XMIT_SUCCESS;
268}
269
 
 
 
 
 
 
 
 
 
 
 
 
270static bool tbf_peak_present(const struct tbf_sched_data *q)
271{
272	return q->peak.rate_bytes_ps;
273}
274
275static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
276{
277	struct tbf_sched_data *q = qdisc_priv(sch);
278	struct sk_buff *skb;
279
280	skb = q->qdisc->ops->peek(q->qdisc);
281
282	if (skb) {
283		s64 now;
284		s64 toks;
285		s64 ptoks = 0;
286		unsigned int len = qdisc_pkt_len(skb);
287
288		now = ktime_get_ns();
289		toks = min_t(s64, now - q->t_c, q->buffer);
290
291		if (tbf_peak_present(q)) {
292			ptoks = toks + q->ptokens;
293			if (ptoks > q->mtu)
294				ptoks = q->mtu;
295			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
296		}
297		toks += q->tokens;
298		if (toks > q->buffer)
299			toks = q->buffer;
300		toks -= (s64) psched_l2t_ns(&q->rate, len);
301
302		if ((toks|ptoks) >= 0) {
303			skb = qdisc_dequeue_peeked(q->qdisc);
304			if (unlikely(!skb))
305				return NULL;
306
307			q->t_c = now;
308			q->tokens = toks;
309			q->ptokens = ptoks;
310			qdisc_qstats_backlog_dec(sch, skb);
311			sch->q.qlen--;
 
312			qdisc_bstats_update(sch, skb);
313			return skb;
314		}
315
316		qdisc_watchdog_schedule_ns(&q->watchdog,
317					   now + max_t(long, -toks, -ptoks));
 
318
319		/* Maybe we have a shorter packet in the queue,
320		   which can be sent now. It sounds cool,
321		   but, however, this is wrong in principle.
322		   We MUST NOT reorder packets under these circumstances.
323
324		   Really, if we split the flow into independent
325		   subflows, it would be a very good solution.
326		   This is the main idea of all FQ algorithms
327		   (cf. CSZ, HPFQ, HFSC)
328		 */
329
330		qdisc_qstats_overlimit(sch);
331	}
332	return NULL;
333}
334
335static void tbf_reset(struct Qdisc *sch)
336{
337	struct tbf_sched_data *q = qdisc_priv(sch);
338
339	qdisc_reset(q->qdisc);
 
340	q->t_c = ktime_get_ns();
341	q->tokens = q->buffer;
342	q->ptokens = q->mtu;
343	qdisc_watchdog_cancel(&q->watchdog);
344}
345
346static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
347	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
348	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
349	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
350	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
351	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
352	[TCA_TBF_BURST] = { .type = NLA_U32 },
353	[TCA_TBF_PBURST] = { .type = NLA_U32 },
354};
355
356static int tbf_change(struct Qdisc *sch, struct nlattr *opt,
357		      struct netlink_ext_ack *extack)
358{
359	int err;
360	struct tbf_sched_data *q = qdisc_priv(sch);
361	struct nlattr *tb[TCA_TBF_MAX + 1];
362	struct tc_tbf_qopt *qopt;
363	struct Qdisc *child = NULL;
364	struct Qdisc *old = NULL;
365	struct psched_ratecfg rate;
366	struct psched_ratecfg peak;
367	u64 max_size;
368	s64 buffer, mtu;
369	u64 rate64 = 0, prate64 = 0;
370
371	err = nla_parse_nested_deprecated(tb, TCA_TBF_MAX, opt, tbf_policy,
372					  NULL);
373	if (err < 0)
374		return err;
375
376	err = -EINVAL;
377	if (tb[TCA_TBF_PARMS] == NULL)
378		goto done;
379
380	qopt = nla_data(tb[TCA_TBF_PARMS]);
381	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
382		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
383					      tb[TCA_TBF_RTAB],
384					      NULL));
385
386	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
387			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
388						      tb[TCA_TBF_PTAB],
389						      NULL));
390
391	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
392	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
393
394	if (tb[TCA_TBF_RATE64])
395		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
396	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
397
398	if (tb[TCA_TBF_BURST]) {
399		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
400		buffer = psched_l2t_ns(&rate, max_size);
401	} else {
402		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
403	}
404
405	if (qopt->peakrate.rate) {
406		if (tb[TCA_TBF_PRATE64])
407			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
408		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
409		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
410			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
411					peak.rate_bytes_ps, rate.rate_bytes_ps);
412			err = -EINVAL;
413			goto done;
414		}
415
416		if (tb[TCA_TBF_PBURST]) {
417			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
418			max_size = min_t(u32, max_size, pburst);
419			mtu = psched_l2t_ns(&peak, pburst);
420		} else {
421			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
422		}
423	} else {
424		memset(&peak, 0, sizeof(peak));
425	}
426
427	if (max_size < psched_mtu(qdisc_dev(sch)))
428		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
429				    max_size, qdisc_dev(sch)->name,
430				    psched_mtu(qdisc_dev(sch)));
431
432	if (!max_size) {
433		err = -EINVAL;
434		goto done;
435	}
436
437	if (q->qdisc != &noop_qdisc) {
438		err = fifo_set_limit(q->qdisc, qopt->limit);
439		if (err)
440			goto done;
441	} else if (qopt->limit > 0) {
442		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit,
443					 extack);
444		if (IS_ERR(child)) {
445			err = PTR_ERR(child);
446			goto done;
447		}
448
449		/* child is fifo, no need to check for noop_qdisc */
450		qdisc_hash_add(child, true);
451	}
452
453	sch_tree_lock(sch);
454	if (child) {
455		qdisc_tree_flush_backlog(q->qdisc);
456		old = q->qdisc;
 
457		q->qdisc = child;
458	}
459	q->limit = qopt->limit;
460	if (tb[TCA_TBF_PBURST])
461		q->mtu = mtu;
462	else
463		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
464	q->max_size = max_size;
465	if (tb[TCA_TBF_BURST])
466		q->buffer = buffer;
467	else
468		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
469	q->tokens = q->buffer;
470	q->ptokens = q->mtu;
471
472	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
473	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
474
475	sch_tree_unlock(sch);
476	qdisc_put(old);
477	err = 0;
478
479	tbf_offload_change(sch);
480done:
481	return err;
482}
483
484static int tbf_init(struct Qdisc *sch, struct nlattr *opt,
485		    struct netlink_ext_ack *extack)
486{
487	struct tbf_sched_data *q = qdisc_priv(sch);
488
489	qdisc_watchdog_init(&q->watchdog, sch);
490	q->qdisc = &noop_qdisc;
491
492	if (!opt)
493		return -EINVAL;
494
495	q->t_c = ktime_get_ns();
 
 
496
497	return tbf_change(sch, opt, extack);
498}
499
500static void tbf_destroy(struct Qdisc *sch)
501{
502	struct tbf_sched_data *q = qdisc_priv(sch);
503
504	qdisc_watchdog_cancel(&q->watchdog);
505	tbf_offload_destroy(sch);
506	qdisc_put(q->qdisc);
507}
508
509static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
510{
511	struct tbf_sched_data *q = qdisc_priv(sch);
512	struct nlattr *nest;
513	struct tc_tbf_qopt opt;
514	int err;
515
516	err = tbf_offload_dump(sch);
517	if (err)
518		return err;
519
520	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
521	if (nest == NULL)
522		goto nla_put_failure;
523
524	opt.limit = q->limit;
525	psched_ratecfg_getrate(&opt.rate, &q->rate);
526	if (tbf_peak_present(q))
527		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
528	else
529		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
530	opt.mtu = PSCHED_NS2TICKS(q->mtu);
531	opt.buffer = PSCHED_NS2TICKS(q->buffer);
532	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
533		goto nla_put_failure;
534	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
535	    nla_put_u64_64bit(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps,
536			      TCA_TBF_PAD))
537		goto nla_put_failure;
538	if (tbf_peak_present(q) &&
539	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
540	    nla_put_u64_64bit(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps,
541			      TCA_TBF_PAD))
542		goto nla_put_failure;
543
544	return nla_nest_end(skb, nest);
545
546nla_put_failure:
547	nla_nest_cancel(skb, nest);
548	return -1;
549}
550
551static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
552			  struct sk_buff *skb, struct tcmsg *tcm)
553{
554	struct tbf_sched_data *q = qdisc_priv(sch);
555
556	tcm->tcm_handle |= TC_H_MIN(1);
557	tcm->tcm_info = q->qdisc->handle;
558
559	return 0;
560}
561
562static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
563		     struct Qdisc **old, struct netlink_ext_ack *extack)
564{
565	struct tbf_sched_data *q = qdisc_priv(sch);
566
567	if (new == NULL)
568		new = &noop_qdisc;
569
570	*old = qdisc_replace(sch, new, &q->qdisc);
571
572	tbf_offload_graft(sch, new, *old, extack);
573	return 0;
574}
575
576static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
577{
578	struct tbf_sched_data *q = qdisc_priv(sch);
579	return q->qdisc;
580}
581
582static unsigned long tbf_find(struct Qdisc *sch, u32 classid)
583{
584	return 1;
585}
586
 
 
 
 
587static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
588{
589	if (!walker->stop) {
590		tc_qdisc_stats_dump(sch, 1, walker);
 
 
 
 
 
591	}
592}
593
594static const struct Qdisc_class_ops tbf_class_ops = {
595	.graft		=	tbf_graft,
596	.leaf		=	tbf_leaf,
597	.find		=	tbf_find,
 
598	.walk		=	tbf_walk,
599	.dump		=	tbf_dump_class,
600};
601
602static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
603	.next		=	NULL,
604	.cl_ops		=	&tbf_class_ops,
605	.id		=	"tbf",
606	.priv_size	=	sizeof(struct tbf_sched_data),
607	.enqueue	=	tbf_enqueue,
608	.dequeue	=	tbf_dequeue,
609	.peek		=	qdisc_peek_dequeued,
 
610	.init		=	tbf_init,
611	.reset		=	tbf_reset,
612	.destroy	=	tbf_destroy,
613	.change		=	tbf_change,
614	.dump		=	tbf_dump,
615	.owner		=	THIS_MODULE,
616};
617MODULE_ALIAS_NET_SCH("tbf");
618
619static int __init tbf_module_init(void)
620{
621	return register_qdisc(&tbf_qdisc_ops);
622}
623
624static void __exit tbf_module_exit(void)
625{
626	unregister_qdisc(&tbf_qdisc_ops);
627}
628module_init(tbf_module_init)
629module_exit(tbf_module_exit)
630MODULE_LICENSE("GPL");
631MODULE_DESCRIPTION("Token Bucket Filter qdisc");
v4.6
 
  1/*
  2 * net/sched/sch_tbf.c	Token Bucket Filter queue.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *		Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
 11 *						 original idea by Martin Devera
 12 *
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/string.h>
 19#include <linux/errno.h>
 20#include <linux/skbuff.h>
 
 21#include <net/netlink.h>
 22#include <net/sch_generic.h>
 
 23#include <net/pkt_sched.h>
 24
 25
 26/*	Simple Token Bucket Filter.
 27	=======================================
 28
 29	SOURCE.
 30	-------
 31
 32	None.
 33
 34	Description.
 35	------------
 36
 37	A data flow obeys TBF with rate R and depth B, if for any
 38	time interval t_i...t_f the number of transmitted bits
 39	does not exceed B + R*(t_f-t_i).
 40
 41	Packetized version of this definition:
 42	The sequence of packets of sizes s_i served at moments t_i
 43	obeys TBF, if for any i<=k:
 44
 45	s_i+....+s_k <= B + R*(t_k - t_i)
 46
 47	Algorithm.
 48	----------
 49
 50	Let N(t_i) be B/R initially and N(t) grow continuously with time as:
 51
 52	N(t+delta) = min{B/R, N(t) + delta}
 53
 54	If the first packet in queue has length S, it may be
 55	transmitted only at the time t_* when S/R <= N(t_*),
 56	and in this case N(t) jumps:
 57
 58	N(t_* + 0) = N(t_* - 0) - S/R.
 59
 60
 61
 62	Actually, QoS requires two TBF to be applied to a data stream.
 63	One of them controls steady state burst size, another
 64	one with rate P (peak rate) and depth M (equal to link MTU)
 65	limits bursts at a smaller time scale.
 66
 67	It is easy to see that P>R, and B>M. If P is infinity, this double
 68	TBF is equivalent to a single one.
 69
 70	When TBF works in reshaping mode, latency is estimated as:
 71
 72	lat = max ((L-B)/R, (L-M)/P)
 73
 74
 75	NOTES.
 76	------
 77
 78	If TBF throttles, it starts a watchdog timer, which will wake it up
 79	when it is ready to transmit.
 80	Note that the minimal timer resolution is 1/HZ.
 81	If no new packets arrive during this period,
 82	or if the device is not awaken by EOI for some previous packet,
 83	TBF can stop its activity for 1/HZ.
 84
 85
 86	This means, that with depth B, the maximal rate is
 87
 88	R_crit = B*HZ
 89
 90	F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
 91
 92	Note that the peak rate TBF is much more tough: with MTU 1500
 93	P_crit = 150Kbytes/sec. So, if you need greater peak
 94	rates, use alpha with HZ=1000 :-)
 95
 96	With classful TBF, limit is just kept for backwards compatibility.
 97	It is passed to the default bfifo qdisc - if the inner qdisc is
 98	changed the limit is not effective anymore.
 99*/
100
101struct tbf_sched_data {
102/* Parameters */
103	u32		limit;		/* Maximal length of backlog: bytes */
104	u32		max_size;
105	s64		buffer;		/* Token bucket depth/rate: MUST BE >= MTU/B */
106	s64		mtu;
107	struct psched_ratecfg rate;
108	struct psched_ratecfg peak;
109
110/* Variables */
111	s64	tokens;			/* Current number of B tokens */
112	s64	ptokens;		/* Current number of P tokens */
113	s64	t_c;			/* Time check-point */
114	struct Qdisc	*qdisc;		/* Inner qdisc, default - bfifo queue */
115	struct qdisc_watchdog watchdog;	/* Watchdog timer */
116};
117
118
119/* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
121 */
122static u64 psched_ns_t2l(const struct psched_ratecfg *r,
123			 u64 time_in_ns)
124{
125	/* The formula is :
126	 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
127	 */
128	u64 len = time_in_ns * r->rate_bytes_ps;
129
130	do_div(len, NSEC_PER_SEC);
131
132	if (unlikely(r->linklayer == TC_LINKLAYER_ATM)) {
133		do_div(len, 53);
134		len = len * 48;
135	}
136
137	if (len > r->overhead)
138		len -= r->overhead;
139	else
140		len = 0;
141
142	return len;
143}
144
145/*
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
148 */
149static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150{
151	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
152	return hdr_len + skb_gso_transport_seglen(skb);
 
 
 
 
 
 
 
153}
154
155/* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
157 */
158static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
 
159{
160	struct tbf_sched_data *q = qdisc_priv(sch);
161	struct sk_buff *segs, *nskb;
162	netdev_features_t features = netif_skb_features(skb);
163	unsigned int len = 0, prev_len = qdisc_pkt_len(skb);
164	int ret, nb;
165
166	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
167
168	if (IS_ERR_OR_NULL(segs))
169		return qdisc_reshape_fail(skb, sch);
170
171	nb = 0;
172	while (segs) {
173		nskb = segs->next;
174		segs->next = NULL;
175		qdisc_skb_cb(segs)->pkt_len = segs->len;
176		len += segs->len;
177		ret = qdisc_enqueue(segs, q->qdisc);
178		if (ret != NET_XMIT_SUCCESS) {
179			if (net_xmit_drop_count(ret))
180				qdisc_qstats_drop(sch);
181		} else {
182			nb++;
 
183		}
184		segs = nskb;
185	}
186	sch->q.qlen += nb;
187	if (nb > 1)
 
188		qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
189	consume_skb(skb);
190	return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
 
 
 
 
191}
192
193static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
194{
195	struct tbf_sched_data *q = qdisc_priv(sch);
 
196	int ret;
197
198	if (qdisc_pkt_len(skb) > q->max_size) {
199		if (skb_is_gso(skb) && skb_gso_mac_seglen(skb) <= q->max_size)
200			return tbf_segment(skb, sch);
201		return qdisc_reshape_fail(skb, sch);
 
202	}
203	ret = qdisc_enqueue(skb, q->qdisc);
204	if (ret != NET_XMIT_SUCCESS) {
205		if (net_xmit_drop_count(ret))
206			qdisc_qstats_drop(sch);
207		return ret;
208	}
209
 
210	sch->q.qlen++;
211	return NET_XMIT_SUCCESS;
212}
213
214static unsigned int tbf_drop(struct Qdisc *sch)
215{
216	struct tbf_sched_data *q = qdisc_priv(sch);
217	unsigned int len = 0;
218
219	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
220		sch->q.qlen--;
221		qdisc_qstats_drop(sch);
222	}
223	return len;
224}
225
226static bool tbf_peak_present(const struct tbf_sched_data *q)
227{
228	return q->peak.rate_bytes_ps;
229}
230
231static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
232{
233	struct tbf_sched_data *q = qdisc_priv(sch);
234	struct sk_buff *skb;
235
236	skb = q->qdisc->ops->peek(q->qdisc);
237
238	if (skb) {
239		s64 now;
240		s64 toks;
241		s64 ptoks = 0;
242		unsigned int len = qdisc_pkt_len(skb);
243
244		now = ktime_get_ns();
245		toks = min_t(s64, now - q->t_c, q->buffer);
246
247		if (tbf_peak_present(q)) {
248			ptoks = toks + q->ptokens;
249			if (ptoks > q->mtu)
250				ptoks = q->mtu;
251			ptoks -= (s64) psched_l2t_ns(&q->peak, len);
252		}
253		toks += q->tokens;
254		if (toks > q->buffer)
255			toks = q->buffer;
256		toks -= (s64) psched_l2t_ns(&q->rate, len);
257
258		if ((toks|ptoks) >= 0) {
259			skb = qdisc_dequeue_peeked(q->qdisc);
260			if (unlikely(!skb))
261				return NULL;
262
263			q->t_c = now;
264			q->tokens = toks;
265			q->ptokens = ptoks;
 
266			sch->q.qlen--;
267			qdisc_unthrottled(sch);
268			qdisc_bstats_update(sch, skb);
269			return skb;
270		}
271
272		qdisc_watchdog_schedule_ns(&q->watchdog,
273					   now + max_t(long, -toks, -ptoks),
274					   true);
275
276		/* Maybe we have a shorter packet in the queue,
277		   which can be sent now. It sounds cool,
278		   but, however, this is wrong in principle.
279		   We MUST NOT reorder packets under these circumstances.
280
281		   Really, if we split the flow into independent
282		   subflows, it would be a very good solution.
283		   This is the main idea of all FQ algorithms
284		   (cf. CSZ, HPFQ, HFSC)
285		 */
286
287		qdisc_qstats_overlimit(sch);
288	}
289	return NULL;
290}
291
292static void tbf_reset(struct Qdisc *sch)
293{
294	struct tbf_sched_data *q = qdisc_priv(sch);
295
296	qdisc_reset(q->qdisc);
297	sch->q.qlen = 0;
298	q->t_c = ktime_get_ns();
299	q->tokens = q->buffer;
300	q->ptokens = q->mtu;
301	qdisc_watchdog_cancel(&q->watchdog);
302}
303
304static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
305	[TCA_TBF_PARMS]	= { .len = sizeof(struct tc_tbf_qopt) },
306	[TCA_TBF_RTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
307	[TCA_TBF_PTAB]	= { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
308	[TCA_TBF_RATE64]	= { .type = NLA_U64 },
309	[TCA_TBF_PRATE64]	= { .type = NLA_U64 },
310	[TCA_TBF_BURST] = { .type = NLA_U32 },
311	[TCA_TBF_PBURST] = { .type = NLA_U32 },
312};
313
314static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
 
315{
316	int err;
317	struct tbf_sched_data *q = qdisc_priv(sch);
318	struct nlattr *tb[TCA_TBF_MAX + 1];
319	struct tc_tbf_qopt *qopt;
320	struct Qdisc *child = NULL;
 
321	struct psched_ratecfg rate;
322	struct psched_ratecfg peak;
323	u64 max_size;
324	s64 buffer, mtu;
325	u64 rate64 = 0, prate64 = 0;
326
327	err = nla_parse_nested(tb, TCA_TBF_MAX, opt, tbf_policy);
 
328	if (err < 0)
329		return err;
330
331	err = -EINVAL;
332	if (tb[TCA_TBF_PARMS] == NULL)
333		goto done;
334
335	qopt = nla_data(tb[TCA_TBF_PARMS]);
336	if (qopt->rate.linklayer == TC_LINKLAYER_UNAWARE)
337		qdisc_put_rtab(qdisc_get_rtab(&qopt->rate,
338					      tb[TCA_TBF_RTAB]));
 
339
340	if (qopt->peakrate.linklayer == TC_LINKLAYER_UNAWARE)
341			qdisc_put_rtab(qdisc_get_rtab(&qopt->peakrate,
342						      tb[TCA_TBF_PTAB]));
 
343
344	buffer = min_t(u64, PSCHED_TICKS2NS(qopt->buffer), ~0U);
345	mtu = min_t(u64, PSCHED_TICKS2NS(qopt->mtu), ~0U);
346
347	if (tb[TCA_TBF_RATE64])
348		rate64 = nla_get_u64(tb[TCA_TBF_RATE64]);
349	psched_ratecfg_precompute(&rate, &qopt->rate, rate64);
350
351	if (tb[TCA_TBF_BURST]) {
352		max_size = nla_get_u32(tb[TCA_TBF_BURST]);
353		buffer = psched_l2t_ns(&rate, max_size);
354	} else {
355		max_size = min_t(u64, psched_ns_t2l(&rate, buffer), ~0U);
356	}
357
358	if (qopt->peakrate.rate) {
359		if (tb[TCA_TBF_PRATE64])
360			prate64 = nla_get_u64(tb[TCA_TBF_PRATE64]);
361		psched_ratecfg_precompute(&peak, &qopt->peakrate, prate64);
362		if (peak.rate_bytes_ps <= rate.rate_bytes_ps) {
363			pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
364					peak.rate_bytes_ps, rate.rate_bytes_ps);
365			err = -EINVAL;
366			goto done;
367		}
368
369		if (tb[TCA_TBF_PBURST]) {
370			u32 pburst = nla_get_u32(tb[TCA_TBF_PBURST]);
371			max_size = min_t(u32, max_size, pburst);
372			mtu = psched_l2t_ns(&peak, pburst);
373		} else {
374			max_size = min_t(u64, max_size, psched_ns_t2l(&peak, mtu));
375		}
376	} else {
377		memset(&peak, 0, sizeof(peak));
378	}
379
380	if (max_size < psched_mtu(qdisc_dev(sch)))
381		pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
382				    max_size, qdisc_dev(sch)->name,
383				    psched_mtu(qdisc_dev(sch)));
384
385	if (!max_size) {
386		err = -EINVAL;
387		goto done;
388	}
389
390	if (q->qdisc != &noop_qdisc) {
391		err = fifo_set_limit(q->qdisc, qopt->limit);
392		if (err)
393			goto done;
394	} else if (qopt->limit > 0) {
395		child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
 
396		if (IS_ERR(child)) {
397			err = PTR_ERR(child);
398			goto done;
399		}
 
 
 
400	}
401
402	sch_tree_lock(sch);
403	if (child) {
404		qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen,
405					  q->qdisc->qstats.backlog);
406		qdisc_destroy(q->qdisc);
407		q->qdisc = child;
408	}
409	q->limit = qopt->limit;
410	if (tb[TCA_TBF_PBURST])
411		q->mtu = mtu;
412	else
413		q->mtu = PSCHED_TICKS2NS(qopt->mtu);
414	q->max_size = max_size;
415	if (tb[TCA_TBF_BURST])
416		q->buffer = buffer;
417	else
418		q->buffer = PSCHED_TICKS2NS(qopt->buffer);
419	q->tokens = q->buffer;
420	q->ptokens = q->mtu;
421
422	memcpy(&q->rate, &rate, sizeof(struct psched_ratecfg));
423	memcpy(&q->peak, &peak, sizeof(struct psched_ratecfg));
424
425	sch_tree_unlock(sch);
 
426	err = 0;
 
 
427done:
428	return err;
429}
430
431static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
 
432{
433	struct tbf_sched_data *q = qdisc_priv(sch);
434
435	if (opt == NULL)
 
 
 
436		return -EINVAL;
437
438	q->t_c = ktime_get_ns();
439	qdisc_watchdog_init(&q->watchdog, sch);
440	q->qdisc = &noop_qdisc;
441
442	return tbf_change(sch, opt);
443}
444
445static void tbf_destroy(struct Qdisc *sch)
446{
447	struct tbf_sched_data *q = qdisc_priv(sch);
448
449	qdisc_watchdog_cancel(&q->watchdog);
450	qdisc_destroy(q->qdisc);
 
451}
452
453static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
454{
455	struct tbf_sched_data *q = qdisc_priv(sch);
456	struct nlattr *nest;
457	struct tc_tbf_qopt opt;
 
458
459	sch->qstats.backlog = q->qdisc->qstats.backlog;
460	nest = nla_nest_start(skb, TCA_OPTIONS);
 
 
 
461	if (nest == NULL)
462		goto nla_put_failure;
463
464	opt.limit = q->limit;
465	psched_ratecfg_getrate(&opt.rate, &q->rate);
466	if (tbf_peak_present(q))
467		psched_ratecfg_getrate(&opt.peakrate, &q->peak);
468	else
469		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
470	opt.mtu = PSCHED_NS2TICKS(q->mtu);
471	opt.buffer = PSCHED_NS2TICKS(q->buffer);
472	if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
473		goto nla_put_failure;
474	if (q->rate.rate_bytes_ps >= (1ULL << 32) &&
475	    nla_put_u64(skb, TCA_TBF_RATE64, q->rate.rate_bytes_ps))
 
476		goto nla_put_failure;
477	if (tbf_peak_present(q) &&
478	    q->peak.rate_bytes_ps >= (1ULL << 32) &&
479	    nla_put_u64(skb, TCA_TBF_PRATE64, q->peak.rate_bytes_ps))
 
480		goto nla_put_failure;
481
482	return nla_nest_end(skb, nest);
483
484nla_put_failure:
485	nla_nest_cancel(skb, nest);
486	return -1;
487}
488
489static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
490			  struct sk_buff *skb, struct tcmsg *tcm)
491{
492	struct tbf_sched_data *q = qdisc_priv(sch);
493
494	tcm->tcm_handle |= TC_H_MIN(1);
495	tcm->tcm_info = q->qdisc->handle;
496
497	return 0;
498}
499
500static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
501		     struct Qdisc **old)
502{
503	struct tbf_sched_data *q = qdisc_priv(sch);
504
505	if (new == NULL)
506		new = &noop_qdisc;
507
508	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
509	return 0;
510}
511
512static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
513{
514	struct tbf_sched_data *q = qdisc_priv(sch);
515	return q->qdisc;
516}
517
518static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
519{
520	return 1;
521}
522
523static void tbf_put(struct Qdisc *sch, unsigned long arg)
524{
525}
526
527static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
528{
529	if (!walker->stop) {
530		if (walker->count >= walker->skip)
531			if (walker->fn(sch, 1, walker) < 0) {
532				walker->stop = 1;
533				return;
534			}
535		walker->count++;
536	}
537}
538
539static const struct Qdisc_class_ops tbf_class_ops = {
540	.graft		=	tbf_graft,
541	.leaf		=	tbf_leaf,
542	.get		=	tbf_get,
543	.put		=	tbf_put,
544	.walk		=	tbf_walk,
545	.dump		=	tbf_dump_class,
546};
547
548static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
549	.next		=	NULL,
550	.cl_ops		=	&tbf_class_ops,
551	.id		=	"tbf",
552	.priv_size	=	sizeof(struct tbf_sched_data),
553	.enqueue	=	tbf_enqueue,
554	.dequeue	=	tbf_dequeue,
555	.peek		=	qdisc_peek_dequeued,
556	.drop		=	tbf_drop,
557	.init		=	tbf_init,
558	.reset		=	tbf_reset,
559	.destroy	=	tbf_destroy,
560	.change		=	tbf_change,
561	.dump		=	tbf_dump,
562	.owner		=	THIS_MODULE,
563};
 
564
565static int __init tbf_module_init(void)
566{
567	return register_qdisc(&tbf_qdisc_ops);
568}
569
570static void __exit tbf_module_exit(void)
571{
572	unregister_qdisc(&tbf_qdisc_ops);
573}
574module_init(tbf_module_init)
575module_exit(tbf_module_exit)
576MODULE_LICENSE("GPL");