Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a cache that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
 
 
 
 
 
 
 
 
 
 
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
 
 
  23#include <linux/swap.h>
  24#include <linux/crypto.h>
  25#include <linux/scatterlist.h>
  26#include <linux/mempolicy.h>
  27#include <linux/mempool.h>
  28#include <linux/zpool.h>
  29#include <crypto/acompress.h>
  30#include <linux/zswap.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
  33#include <linux/swapops.h>
  34#include <linux/writeback.h>
  35#include <linux/pagemap.h>
  36#include <linux/workqueue.h>
  37#include <linux/list_lru.h>
  38
  39#include "swap.h"
  40#include "internal.h"
  41
  42/*********************************
  43* statistics
  44**********************************/
 
 
  45/* The number of compressed pages currently stored in zswap */
  46atomic_long_t zswap_stored_pages = ATOMIC_INIT(0);
  47
  48/*
  49 * The statistics below are not protected from concurrent access for
  50 * performance reasons so they may not be a 100% accurate.  However,
  51 * they do provide useful information on roughly how many times a
  52 * certain event is occurring.
  53*/
  54
  55/* Pool limit was hit (see zswap_max_pool_percent) */
  56static u64 zswap_pool_limit_hit;
  57/* Pages written back when pool limit was reached */
  58static u64 zswap_written_back_pages;
  59/* Store failed due to a reclaim failure after pool limit was reached */
  60static u64 zswap_reject_reclaim_fail;
  61/* Store failed due to compression algorithm failure */
  62static u64 zswap_reject_compress_fail;
  63/* Compressed page was too big for the allocator to (optimally) store */
  64static u64 zswap_reject_compress_poor;
  65/* Store failed because underlying allocator could not get memory */
  66static u64 zswap_reject_alloc_fail;
  67/* Store failed because the entry metadata could not be allocated (rare) */
  68static u64 zswap_reject_kmemcache_fail;
  69
  70/* Shrinker work queue */
  71static struct workqueue_struct *shrink_wq;
  72/* Pool limit was hit, we need to calm down */
  73static bool zswap_pool_reached_full;
  74
  75/*********************************
  76* tunables
  77**********************************/
  78
  79#define ZSWAP_PARAM_UNSET ""
  80
  81static int zswap_setup(void);
  82
  83/* Enable/disable zswap */
  84static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
  85static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
  86static int zswap_enabled_param_set(const char *,
  87				   const struct kernel_param *);
  88static const struct kernel_param_ops zswap_enabled_param_ops = {
  89	.set =		zswap_enabled_param_set,
  90	.get =		param_get_bool,
  91};
  92module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  93
  94/* Crypto compressor to use */
  95static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 
  96static int zswap_compressor_param_set(const char *,
  97				      const struct kernel_param *);
  98static const struct kernel_param_ops zswap_compressor_param_ops = {
  99	.set =		zswap_compressor_param_set,
 100	.get =		param_get_charp,
 101	.free =		param_free_charp,
 102};
 103module_param_cb(compressor, &zswap_compressor_param_ops,
 104		&zswap_compressor, 0644);
 105
 106/* Compressed storage zpool to use */
 107static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 
 108static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 109static const struct kernel_param_ops zswap_zpool_param_ops = {
 110	.set =		zswap_zpool_param_set,
 111	.get =		param_get_charp,
 112	.free =		param_free_charp,
 113};
 114module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 115
 116/* The maximum percentage of memory that the compressed pool can occupy */
 117static unsigned int zswap_max_pool_percent = 20;
 118module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 119
 120/* The threshold for accepting new pages after the max_pool_percent was hit */
 121static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
 122module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
 123		   uint, 0644);
 124
 125/* Enable/disable memory pressure-based shrinker. */
 126static bool zswap_shrinker_enabled = IS_ENABLED(
 127		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
 128module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
 129
 130bool zswap_is_enabled(void)
 131{
 132	return zswap_enabled;
 133}
 134
 135bool zswap_never_enabled(void)
 136{
 137	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
 138}
 139
 140/*********************************
 141* data structures
 142**********************************/
 143
 144struct crypto_acomp_ctx {
 145	struct crypto_acomp *acomp;
 146	struct acomp_req *req;
 147	struct crypto_wait wait;
 148	u8 *buffer;
 149	struct mutex mutex;
 150	bool is_sleepable;
 151};
 152
 153/*
 154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
 155 * The only case where lru_lock is not acquired while holding tree.lock is
 156 * when a zswap_entry is taken off the lru for writeback, in that case it
 157 * needs to be verified that it's still valid in the tree.
 158 */
 159struct zswap_pool {
 160	struct zpool *zpool;
 161	struct crypto_acomp_ctx __percpu *acomp_ctx;
 162	struct percpu_ref ref;
 163	struct list_head list;
 164	struct work_struct release_work;
 165	struct hlist_node node;
 166	char tfm_name[CRYPTO_MAX_ALG_NAME];
 167};
 168
 169/* Global LRU lists shared by all zswap pools. */
 170static struct list_lru zswap_list_lru;
 171
 172/* The lock protects zswap_next_shrink updates. */
 173static DEFINE_SPINLOCK(zswap_shrink_lock);
 174static struct mem_cgroup *zswap_next_shrink;
 175static struct work_struct zswap_shrink_work;
 176static struct shrinker *zswap_shrinker;
 177
 178/*
 179 * struct zswap_entry
 180 *
 181 * This structure contains the metadata for tracking a single compressed
 182 * page within zswap.
 183 *
 184 * swpentry - associated swap entry, the offset indexes into the red-black tree
 
 
 
 
 
 
 
 185 * length - the length in bytes of the compressed page data.  Needed during
 186 *          decompression.
 187 * referenced - true if the entry recently entered the zswap pool. Unset by the
 188 *              writeback logic. The entry is only reclaimed by the writeback
 189 *              logic if referenced is unset. See comments in the shrinker
 190 *              section for context.
 191 * pool - the zswap_pool the entry's data is in
 192 * handle - zpool allocation handle that stores the compressed page data
 193 * objcg - the obj_cgroup that the compressed memory is charged to
 194 * lru - handle to the pool's lru used to evict pages.
 195 */
 196struct zswap_entry {
 197	swp_entry_t swpentry;
 
 
 198	unsigned int length;
 199	bool referenced;
 200	struct zswap_pool *pool;
 201	unsigned long handle;
 202	struct obj_cgroup *objcg;
 203	struct list_head lru;
 204};
 205
 206static struct xarray *zswap_trees[MAX_SWAPFILES];
 207static unsigned int nr_zswap_trees[MAX_SWAPFILES];
 
 
 
 
 
 
 
 
 
 
 
 
 
 208
 209/* RCU-protected iteration */
 210static LIST_HEAD(zswap_pools);
 211/* protects zswap_pools list modification */
 212static DEFINE_SPINLOCK(zswap_pools_lock);
 213/* pool counter to provide unique names to zpool */
 214static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 215
 216enum zswap_init_type {
 217	ZSWAP_UNINIT,
 218	ZSWAP_INIT_SUCCEED,
 219	ZSWAP_INIT_FAILED
 220};
 221
 222static enum zswap_init_type zswap_init_state;
 223
 224/* used to ensure the integrity of initialization */
 225static DEFINE_MUTEX(zswap_init_lock);
 226
 227/* init completed, but couldn't create the initial pool */
 228static bool zswap_has_pool;
 229
 230/*********************************
 231* helpers and fwd declarations
 232**********************************/
 233
 234static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
 235{
 236	return &zswap_trees[swp_type(swp)][swp_offset(swp)
 237		>> SWAP_ADDRESS_SPACE_SHIFT];
 238}
 239
 240#define zswap_pool_debug(msg, p)				\
 241	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 242		 zpool_get_type((p)->zpool))
 243
 244/*********************************
 245* pool functions
 246**********************************/
 247static void __zswap_pool_empty(struct percpu_ref *ref);
 248
 249static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 
 
 
 
 
 
 
 
 
 
 250{
 251	struct zswap_pool *pool;
 252	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 253	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 254	int ret, cpu;
 255
 256	if (!zswap_has_pool) {
 257		/* if either are unset, pool initialization failed, and we
 258		 * need both params to be set correctly before trying to
 259		 * create a pool.
 260		 */
 261		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 262			return NULL;
 263		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 264			return NULL;
 265	}
 266
 267	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 268	if (!pool)
 269		return NULL;
 270
 271	/* unique name for each pool specifically required by zsmalloc */
 272	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 273	pool->zpool = zpool_create_pool(type, name, gfp);
 274	if (!pool->zpool) {
 275		pr_err("%s zpool not available\n", type);
 276		goto error;
 277	}
 278	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 279
 280	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 
 281
 282	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
 283	if (!pool->acomp_ctx) {
 284		pr_err("percpu alloc failed\n");
 285		goto error;
 286	}
 287
 288	for_each_possible_cpu(cpu)
 289		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
 
 
 
 290
 291	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 292				       &pool->node);
 293	if (ret)
 294		goto error;
 295
 296	/* being the current pool takes 1 ref; this func expects the
 297	 * caller to always add the new pool as the current pool
 298	 */
 299	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
 300			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
 301	if (ret)
 302		goto ref_fail;
 303	INIT_LIST_HEAD(&pool->list);
 
 
 304
 305	zswap_pool_debug("created", pool);
 
 
 
 306
 307	return pool;
 
 
 
 
 
 
 308
 309ref_fail:
 310	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 311error:
 312	if (pool->acomp_ctx)
 313		free_percpu(pool->acomp_ctx);
 314	if (pool->zpool)
 315		zpool_destroy_pool(pool->zpool);
 316	kfree(pool);
 
 317	return NULL;
 318}
 319
 320static struct zswap_pool *__zswap_pool_create_fallback(void)
 
 
 
 
 
 321{
 322	bool has_comp, has_zpool;
 
 323
 324	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 325	if (!has_comp && strcmp(zswap_compressor,
 326				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
 327		pr_err("compressor %s not available, using default %s\n",
 328		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
 329		param_free_charp(&zswap_compressor);
 330		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 331		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 332	}
 333	if (!has_comp) {
 334		pr_err("default compressor %s not available\n",
 335		       zswap_compressor);
 336		param_free_charp(&zswap_compressor);
 337		zswap_compressor = ZSWAP_PARAM_UNSET;
 338	}
 
 
 
 
 339
 340	has_zpool = zpool_has_pool(zswap_zpool_type);
 341	if (!has_zpool && strcmp(zswap_zpool_type,
 342				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
 343		pr_err("zpool %s not available, using default %s\n",
 344		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
 345		param_free_charp(&zswap_zpool_type);
 346		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 347		has_zpool = zpool_has_pool(zswap_zpool_type);
 348	}
 349	if (!has_zpool) {
 350		pr_err("default zpool %s not available\n",
 351		       zswap_zpool_type);
 352		param_free_charp(&zswap_zpool_type);
 353		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 354	}
 
 355
 356	if (!has_comp || !has_zpool)
 357		return NULL;
 358
 359	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 
 
 
 
 
 
 
 360}
 361
 362static void zswap_pool_destroy(struct zswap_pool *pool)
 
 363{
 364	zswap_pool_debug("destroying", pool);
 
 365
 366	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 367	free_percpu(pool->acomp_ctx);
 
 
 
 
 
 368
 369	zpool_destroy_pool(pool->zpool);
 370	kfree(pool);
 
 
 
 371}
 372
 373static void __zswap_pool_release(struct work_struct *work)
 
 
 374{
 375	struct zswap_pool *pool = container_of(work, typeof(*pool),
 376						release_work);
 
 
 
 377
 378	synchronize_rcu();
 
 379
 380	/* nobody should have been able to get a ref... */
 381	WARN_ON(!percpu_ref_is_zero(&pool->ref));
 382	percpu_ref_exit(&pool->ref);
 
 383
 384	/* pool is now off zswap_pools list and has no references. */
 385	zswap_pool_destroy(pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386}
 387
 388static struct zswap_pool *zswap_pool_current(void);
 
 
 
 
 389
 390static void __zswap_pool_empty(struct percpu_ref *ref)
 
 
 
 
 391{
 392	struct zswap_pool *pool;
 393
 394	pool = container_of(ref, typeof(*pool), ref);
 
 
 
 
 
 
 
 395
 396	spin_lock_bh(&zswap_pools_lock);
 
 
 
 
 
 397
 398	WARN_ON(pool == zswap_pool_current());
 
 
 399
 400	list_del_rcu(&pool->list);
 
 
 
 
 
 401
 402	INIT_WORK(&pool->release_work, __zswap_pool_release);
 403	schedule_work(&pool->release_work);
 
 
 404
 405	spin_unlock_bh(&zswap_pools_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406}
 407
 408static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
 
 409{
 410	if (!pool)
 411		return 0;
 412
 413	return percpu_ref_tryget(&pool->ref);
 414}
 415
 416/* The caller must already have a reference. */
 417static void zswap_pool_get(struct zswap_pool *pool)
 418{
 419	percpu_ref_get(&pool->ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420}
 421
 422static void zswap_pool_put(struct zswap_pool *pool)
 423{
 424	percpu_ref_put(&pool->ref);
 
 
 
 
 
 
 425}
 426
 
 
 
 
 427static struct zswap_pool *__zswap_pool_current(void)
 428{
 429	struct zswap_pool *pool;
 430
 431	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 432	WARN_ONCE(!pool && zswap_has_pool,
 433		  "%s: no page storage pool!\n", __func__);
 434
 435	return pool;
 436}
 437
 438static struct zswap_pool *zswap_pool_current(void)
 439{
 440	assert_spin_locked(&zswap_pools_lock);
 441
 442	return __zswap_pool_current();
 443}
 444
 445static struct zswap_pool *zswap_pool_current_get(void)
 446{
 447	struct zswap_pool *pool;
 448
 449	rcu_read_lock();
 450
 451	pool = __zswap_pool_current();
 452	if (!zswap_pool_tryget(pool))
 453		pool = NULL;
 454
 455	rcu_read_unlock();
 456
 457	return pool;
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460/* type and compressor must be null-terminated */
 461static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 462{
 463	struct zswap_pool *pool;
 464
 465	assert_spin_locked(&zswap_pools_lock);
 466
 467	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 468		if (strcmp(pool->tfm_name, compressor))
 469			continue;
 470		if (strcmp(zpool_get_type(pool->zpool), type))
 471			continue;
 472		/* if we can't get it, it's about to be destroyed */
 473		if (!zswap_pool_tryget(pool))
 474			continue;
 475		return pool;
 476	}
 477
 478	return NULL;
 479}
 480
 481static unsigned long zswap_max_pages(void)
 482{
 483	return totalram_pages() * zswap_max_pool_percent / 100;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484}
 485
 486static unsigned long zswap_accept_thr_pages(void)
 487{
 488	return zswap_max_pages() * zswap_accept_thr_percent / 100;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489}
 490
 491unsigned long zswap_total_pages(void)
 492{
 493	struct zswap_pool *pool;
 494	unsigned long total = 0;
 495
 496	rcu_read_lock();
 497	list_for_each_entry_rcu(pool, &zswap_pools, list)
 498		total += zpool_get_total_pages(pool->zpool);
 499	rcu_read_unlock();
 
 500
 501	return total;
 
 
 502}
 503
 504static bool zswap_check_limits(void)
 505{
 506	unsigned long cur_pages = zswap_total_pages();
 507	unsigned long max_pages = zswap_max_pages();
 508
 509	if (cur_pages >= max_pages) {
 510		zswap_pool_limit_hit++;
 511		zswap_pool_reached_full = true;
 512	} else if (zswap_pool_reached_full &&
 513		   cur_pages <= zswap_accept_thr_pages()) {
 514			zswap_pool_reached_full = false;
 515	}
 516	return zswap_pool_reached_full;
 517}
 518
 519/*********************************
 520* param callbacks
 521**********************************/
 
 
 
 
 
 
 
 
 
 522
 523static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
 
 
 
 524{
 525	/* no change required */
 526	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 527		return false;
 528	return true;
 529}
 530
 
 
 
 
 531/* val must be a null-terminated string */
 532static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 533			     char *type, char *compressor)
 534{
 535	struct zswap_pool *pool, *put_pool = NULL;
 536	char *s = strstrip((char *)val);
 537	int ret = 0;
 538	bool new_pool = false;
 539
 540	mutex_lock(&zswap_init_lock);
 541	switch (zswap_init_state) {
 542	case ZSWAP_UNINIT:
 543		/* if this is load-time (pre-init) param setting,
 544		 * don't create a pool; that's done during init.
 545		 */
 546		ret = param_set_charp(s, kp);
 547		break;
 548	case ZSWAP_INIT_SUCCEED:
 549		new_pool = zswap_pool_changed(s, kp);
 550		break;
 551	case ZSWAP_INIT_FAILED:
 552		pr_err("can't set param, initialization failed\n");
 553		ret = -ENODEV;
 554	}
 555	mutex_unlock(&zswap_init_lock);
 556
 557	/* no need to create a new pool, return directly */
 558	if (!new_pool)
 559		return ret;
 
 
 560
 561	if (!type) {
 562		if (!zpool_has_pool(s)) {
 563			pr_err("zpool %s not available\n", s);
 564			return -ENOENT;
 565		}
 566		type = s;
 567	} else if (!compressor) {
 568		if (!crypto_has_acomp(s, 0, 0)) {
 569			pr_err("compressor %s not available\n", s);
 570			return -ENOENT;
 571		}
 572		compressor = s;
 573	} else {
 574		WARN_ON(1);
 575		return -EINVAL;
 576	}
 577
 578	spin_lock_bh(&zswap_pools_lock);
 579
 580	pool = zswap_pool_find_get(type, compressor);
 581	if (pool) {
 582		zswap_pool_debug("using existing", pool);
 583		WARN_ON(pool == zswap_pool_current());
 584		list_del_rcu(&pool->list);
 585	}
 586
 587	spin_unlock_bh(&zswap_pools_lock);
 588
 589	if (!pool)
 590		pool = zswap_pool_create(type, compressor);
 591	else {
 592		/*
 593		 * Restore the initial ref dropped by percpu_ref_kill()
 594		 * when the pool was decommissioned and switch it again
 595		 * to percpu mode.
 596		 */
 597		percpu_ref_resurrect(&pool->ref);
 598
 599		/* Drop the ref from zswap_pool_find_get(). */
 600		zswap_pool_put(pool);
 601	}
 602
 603	if (pool)
 604		ret = param_set_charp(s, kp);
 605	else
 606		ret = -EINVAL;
 607
 608	spin_lock_bh(&zswap_pools_lock);
 609
 610	if (!ret) {
 611		put_pool = zswap_pool_current();
 612		list_add_rcu(&pool->list, &zswap_pools);
 613		zswap_has_pool = true;
 614	} else if (pool) {
 615		/* add the possibly pre-existing pool to the end of the pools
 616		 * list; if it's new (and empty) then it'll be removed and
 617		 * destroyed by the put after we drop the lock
 618		 */
 619		list_add_tail_rcu(&pool->list, &zswap_pools);
 620		put_pool = pool;
 621	}
 622
 623	spin_unlock_bh(&zswap_pools_lock);
 624
 625	if (!zswap_has_pool && !pool) {
 626		/* if initial pool creation failed, and this pool creation also
 627		 * failed, maybe both compressor and zpool params were bad.
 628		 * Allow changing this param, so pool creation will succeed
 629		 * when the other param is changed. We already verified this
 630		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
 631		 * checks above.
 632		 */
 633		ret = param_set_charp(s, kp);
 634	}
 635
 636	/* drop the ref from either the old current pool,
 637	 * or the new pool we failed to add
 638	 */
 639	if (put_pool)
 640		percpu_ref_kill(&put_pool->ref);
 641
 642	return ret;
 643}
 644
 645static int zswap_compressor_param_set(const char *val,
 646				      const struct kernel_param *kp)
 647{
 648	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 649}
 650
 651static int zswap_zpool_param_set(const char *val,
 652				 const struct kernel_param *kp)
 653{
 654	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 655}
 656
 657static int zswap_enabled_param_set(const char *val,
 658				   const struct kernel_param *kp)
 659{
 660	int ret = -ENODEV;
 661
 662	/* if this is load-time (pre-init) param setting, only set param. */
 663	if (system_state != SYSTEM_RUNNING)
 664		return param_set_bool(val, kp);
 665
 666	mutex_lock(&zswap_init_lock);
 667	switch (zswap_init_state) {
 668	case ZSWAP_UNINIT:
 669		if (zswap_setup())
 670			break;
 671		fallthrough;
 672	case ZSWAP_INIT_SUCCEED:
 673		if (!zswap_has_pool)
 674			pr_err("can't enable, no pool configured\n");
 675		else
 676			ret = param_set_bool(val, kp);
 677		break;
 678	case ZSWAP_INIT_FAILED:
 679		pr_err("can't enable, initialization failed\n");
 680	}
 681	mutex_unlock(&zswap_init_lock);
 682
 683	return ret;
 684}
 685
 686/*********************************
 687* lru functions
 688**********************************/
 689
 690/* should be called under RCU */
 691#ifdef CONFIG_MEMCG
 692static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 693{
 694	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
 695}
 696#else
 697static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 698{
 699	return NULL;
 700}
 701#endif
 702
 703static inline int entry_to_nid(struct zswap_entry *entry)
 704{
 705	return page_to_nid(virt_to_page(entry));
 706}
 707
 708static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
 709{
 710	int nid = entry_to_nid(entry);
 711	struct mem_cgroup *memcg;
 712
 713	/*
 714	 * Note that it is safe to use rcu_read_lock() here, even in the face of
 715	 * concurrent memcg offlining:
 716	 *
 717	 * 1. list_lru_add() is called before list_lru_one is dead. The
 718	 *    new entry will be reparented to memcg's parent's list_lru.
 719	 * 2. list_lru_add() is called after list_lru_one is dead. The
 720	 *    new entry will be added directly to memcg's parent's list_lru.
 721	 *
 722	 * Similar reasoning holds for list_lru_del().
 723	 */
 724	rcu_read_lock();
 725	memcg = mem_cgroup_from_entry(entry);
 726	/* will always succeed */
 727	list_lru_add(list_lru, &entry->lru, nid, memcg);
 728	rcu_read_unlock();
 729}
 730
 731static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
 732{
 733	int nid = entry_to_nid(entry);
 734	struct mem_cgroup *memcg;
 735
 736	rcu_read_lock();
 737	memcg = mem_cgroup_from_entry(entry);
 738	/* will always succeed */
 739	list_lru_del(list_lru, &entry->lru, nid, memcg);
 740	rcu_read_unlock();
 741}
 742
 743void zswap_lruvec_state_init(struct lruvec *lruvec)
 744{
 745	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
 746}
 747
 748void zswap_folio_swapin(struct folio *folio)
 749{
 750	struct lruvec *lruvec;
 751
 752	if (folio) {
 753		lruvec = folio_lruvec(folio);
 754		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
 755	}
 756}
 757
 758/*
 759 * This function should be called when a memcg is being offlined.
 760 *
 761 * Since the global shrinker shrink_worker() may hold a reference
 762 * of the memcg, we must check and release the reference in
 763 * zswap_next_shrink.
 764 *
 765 * shrink_worker() must handle the case where this function releases
 766 * the reference of memcg being shrunk.
 
 
 
 
 
 
 
 
 767 */
 768void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
 769{
 770	/* lock out zswap shrinker walking memcg tree */
 771	spin_lock(&zswap_shrink_lock);
 772	if (zswap_next_shrink == memcg) {
 773		do {
 774			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
 775		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
 776	}
 777	spin_unlock(&zswap_shrink_lock);
 778}
 779
 780/*********************************
 781* zswap entry functions
 782**********************************/
 783static struct kmem_cache *zswap_entry_cache;
 784
 785static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
 786{
 787	struct zswap_entry *entry;
 788	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
 789	if (!entry)
 790		return NULL;
 791	return entry;
 792}
 793
 794static void zswap_entry_cache_free(struct zswap_entry *entry)
 795{
 796	kmem_cache_free(zswap_entry_cache, entry);
 
 
 
 
 797}
 798
 799/*
 800 * Carries out the common pattern of freeing and entry's zpool allocation,
 801 * freeing the entry itself, and decrementing the number of stored pages.
 802 */
 803static void zswap_entry_free(struct zswap_entry *entry)
 804{
 805	zswap_lru_del(&zswap_list_lru, entry);
 806	zpool_free(entry->pool->zpool, entry->handle);
 807	zswap_pool_put(entry->pool);
 808	if (entry->objcg) {
 809		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
 810		obj_cgroup_put(entry->objcg);
 811	}
 812	zswap_entry_cache_free(entry);
 813	atomic_long_dec(&zswap_stored_pages);
 814}
 815
 816/*********************************
 817* compressed storage functions
 818**********************************/
 819static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 820{
 821	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 822	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 823	struct crypto_acomp *acomp = NULL;
 824	struct acomp_req *req = NULL;
 825	u8 *buffer = NULL;
 826	int ret;
 827
 828	buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 829	if (!buffer) {
 830		ret = -ENOMEM;
 831		goto fail;
 832	}
 833
 834	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
 835	if (IS_ERR(acomp)) {
 836		pr_err("could not alloc crypto acomp %s : %ld\n",
 837				pool->tfm_name, PTR_ERR(acomp));
 838		ret = PTR_ERR(acomp);
 839		goto fail;
 840	}
 841
 842	req = acomp_request_alloc(acomp);
 843	if (!req) {
 844		pr_err("could not alloc crypto acomp_request %s\n",
 845		       pool->tfm_name);
 846		ret = -ENOMEM;
 847		goto fail;
 848	}
 849
 850	/*
 851	 * Only hold the mutex after completing allocations, otherwise we may
 852	 * recurse into zswap through reclaim and attempt to hold the mutex
 853	 * again resulting in a deadlock.
 854	 */
 855	mutex_lock(&acomp_ctx->mutex);
 856	crypto_init_wait(&acomp_ctx->wait);
 857
 858	/*
 859	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
 860	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
 861	 * won't be called, crypto_wait_req() will return without blocking.
 862	 */
 863	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 864				   crypto_req_done, &acomp_ctx->wait);
 865
 866	acomp_ctx->buffer = buffer;
 867	acomp_ctx->acomp = acomp;
 868	acomp_ctx->is_sleepable = acomp_is_async(acomp);
 869	acomp_ctx->req = req;
 870	mutex_unlock(&acomp_ctx->mutex);
 871	return 0;
 872
 873fail:
 874	if (acomp)
 875		crypto_free_acomp(acomp);
 876	kfree(buffer);
 877	return ret;
 878}
 879
 880static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 881{
 882	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 883	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 884
 885	mutex_lock(&acomp_ctx->mutex);
 886	if (!IS_ERR_OR_NULL(acomp_ctx)) {
 887		if (!IS_ERR_OR_NULL(acomp_ctx->req))
 888			acomp_request_free(acomp_ctx->req);
 889		acomp_ctx->req = NULL;
 890		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
 891			crypto_free_acomp(acomp_ctx->acomp);
 892		kfree(acomp_ctx->buffer);
 893	}
 894	mutex_unlock(&acomp_ctx->mutex);
 895
 896	return 0;
 897}
 898
 899static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
 900{
 901	struct crypto_acomp_ctx *acomp_ctx;
 902
 903	for (;;) {
 904		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
 905		mutex_lock(&acomp_ctx->mutex);
 906		if (likely(acomp_ctx->req))
 907			return acomp_ctx;
 908		/*
 909		 * It is possible that we were migrated to a different CPU after
 910		 * getting the per-CPU ctx but before the mutex was acquired. If
 911		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
 912		 * already freed ctx->req (among other things) and set it to
 913		 * NULL. Just try again on the new CPU that we ended up on.
 914		 */
 915		mutex_unlock(&acomp_ctx->mutex);
 916	}
 917}
 918
 919static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
 920{
 921	mutex_unlock(&acomp_ctx->mutex);
 922}
 923
 924static bool zswap_compress(struct page *page, struct zswap_entry *entry,
 925			   struct zswap_pool *pool)
 926{
 927	struct crypto_acomp_ctx *acomp_ctx;
 928	struct scatterlist input, output;
 929	int comp_ret = 0, alloc_ret = 0;
 930	unsigned int dlen = PAGE_SIZE;
 931	unsigned long handle;
 932	struct zpool *zpool;
 933	char *buf;
 934	gfp_t gfp;
 935	u8 *dst;
 936
 937	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
 938	dst = acomp_ctx->buffer;
 939	sg_init_table(&input, 1);
 940	sg_set_page(&input, page, PAGE_SIZE, 0);
 941
 942	/*
 943	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
 944	 * and hardware-accelerators may won't check the dst buffer size, so
 945	 * giving the dst buffer with enough length to avoid buffer overflow.
 946	 */
 947	sg_init_one(&output, dst, PAGE_SIZE * 2);
 948	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
 949
 950	/*
 951	 * it maybe looks a little bit silly that we send an asynchronous request,
 952	 * then wait for its completion synchronously. This makes the process look
 953	 * synchronous in fact.
 954	 * Theoretically, acomp supports users send multiple acomp requests in one
 955	 * acomp instance, then get those requests done simultaneously. but in this
 956	 * case, zswap actually does store and load page by page, there is no
 957	 * existing method to send the second page before the first page is done
 958	 * in one thread doing zwap.
 959	 * but in different threads running on different cpu, we have different
 960	 * acomp instance, so multiple threads can do (de)compression in parallel.
 961	 */
 962	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
 963	dlen = acomp_ctx->req->dlen;
 964	if (comp_ret)
 965		goto unlock;
 966
 967	zpool = pool->zpool;
 968	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 969	if (zpool_malloc_support_movable(zpool))
 970		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
 971	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
 972	if (alloc_ret)
 973		goto unlock;
 974
 975	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
 976	memcpy(buf, dst, dlen);
 977	zpool_unmap_handle(zpool, handle);
 978
 979	entry->handle = handle;
 980	entry->length = dlen;
 981
 982unlock:
 983	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
 984		zswap_reject_compress_poor++;
 985	else if (comp_ret)
 986		zswap_reject_compress_fail++;
 987	else if (alloc_ret)
 988		zswap_reject_alloc_fail++;
 989
 990	acomp_ctx_put_unlock(acomp_ctx);
 991	return comp_ret == 0 && alloc_ret == 0;
 992}
 993
 994static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
 995{
 996	struct zpool *zpool = entry->pool->zpool;
 997	struct scatterlist input, output;
 998	struct crypto_acomp_ctx *acomp_ctx;
 999	u8 *src;
1000
1001	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1002	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1003	/*
1004	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1005	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1006	 * resort to copying the buffer to a temporary one.
1007	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1008	 * such as a kmap address of high memory or even ever a vmap address.
1009	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1010	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1011	 */
1012	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1013	    !virt_addr_valid(src)) {
1014		memcpy(acomp_ctx->buffer, src, entry->length);
1015		src = acomp_ctx->buffer;
1016		zpool_unmap_handle(zpool, entry->handle);
1017	}
1018
1019	sg_init_one(&input, src, entry->length);
1020	sg_init_table(&output, 1);
1021	sg_set_folio(&output, folio, PAGE_SIZE, 0);
1022	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1023	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1024	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1025
1026	if (src != acomp_ctx->buffer)
1027		zpool_unmap_handle(zpool, entry->handle);
1028	acomp_ctx_put_unlock(acomp_ctx);
1029}
1030
1031/*********************************
1032* writeback code
1033**********************************/
1034/*
1035 * Attempts to free an entry by adding a folio to the swap cache,
1036 * decompressing the entry data into the folio, and issuing a
1037 * bio write to write the folio back to the swap device.
1038 *
1039 * This can be thought of as a "resumed writeback" of the folio
1040 * to the swap device.  We are basically resuming the same swap
1041 * writeback path that was intercepted with the zswap_store()
1042 * in the first place.  After the folio has been decompressed into
1043 * the swap cache, the compressed version stored by zswap can be
1044 * freed.
1045 */
1046static int zswap_writeback_entry(struct zswap_entry *entry,
1047				 swp_entry_t swpentry)
1048{
1049	struct xarray *tree;
1050	pgoff_t offset = swp_offset(swpentry);
1051	struct folio *folio;
1052	struct mempolicy *mpol;
1053	bool folio_was_allocated;
 
 
 
 
 
1054	struct writeback_control wbc = {
1055		.sync_mode = WB_SYNC_NONE,
1056	};
1057
1058	/* try to allocate swap cache folio */
1059	mpol = get_task_policy(current);
1060	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1061				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1062	if (!folio)
1063		return -ENOMEM;
1064
1065	/*
1066	 * Found an existing folio, we raced with swapin or concurrent
1067	 * shrinker. We generally writeback cold folios from zswap, and
1068	 * swapin means the folio just became hot, so skip this folio.
1069	 * For unlikely concurrent shrinker case, it will be unlinked
1070	 * and freed when invalidated by the concurrent shrinker anyway.
1071	 */
1072	if (!folio_was_allocated) {
1073		folio_put(folio);
1074		return -EEXIST;
1075	}
1076
1077	/*
1078	 * folio is locked, and the swapcache is now secured against
1079	 * concurrent swapping to and from the slot, and concurrent
1080	 * swapoff so we can safely dereference the zswap tree here.
1081	 * Verify that the swap entry hasn't been invalidated and recycled
1082	 * behind our backs, to avoid overwriting a new swap folio with
1083	 * old compressed data. Only when this is successful can the entry
1084	 * be dereferenced.
1085	 */
1086	tree = swap_zswap_tree(swpentry);
1087	if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1088		delete_from_swap_cache(folio);
1089		folio_unlock(folio);
1090		folio_put(folio);
1091		return -ENOMEM;
1092	}
 
 
1093
1094	zswap_decompress(entry, folio);
 
 
 
 
1095
1096	count_vm_event(ZSWPWB);
1097	if (entry->objcg)
1098		count_objcg_events(entry->objcg, ZSWPWB, 1);
 
 
1099
1100	zswap_entry_free(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
1101
1102	/* folio is up to date */
1103	folio_mark_uptodate(folio);
 
1104
1105	/* move it to the tail of the inactive list after end_writeback */
1106	folio_set_reclaim(folio);
1107
1108	/* start writeback */
1109	__swap_writepage(folio, &wbc);
1110	folio_put(folio);
1111
1112	return 0;
1113}
1114
1115/*********************************
1116* shrinker functions
1117**********************************/
1118/*
1119 * The dynamic shrinker is modulated by the following factors:
1120 *
1121 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1122 *    the entry a second chance) before rotating it in the LRU list. If the
1123 *    entry is considered again by the shrinker, with its referenced bit unset,
1124 *    it is written back. The writeback rate as a result is dynamically
1125 *    adjusted by the pool activities - if the pool is dominated by new entries
1126 *    (i.e lots of recent zswapouts), these entries will be protected and
1127 *    the writeback rate will slow down. On the other hand, if the pool has a
1128 *    lot of stagnant entries, these entries will be reclaimed immediately,
1129 *    effectively increasing the writeback rate.
1130 *
1131 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1132 *    overshrinking and should slow down. We maintain a swapins counter, which
1133 *    is consumed and subtract from the number of eligible objects on the LRU
1134 *    in zswap_shrinker_count().
1135 *
1136 * 3. Compression ratio. The better the workload compresses, the less gains we
1137 *    can expect from writeback. We scale down the number of objects available
1138 *    for reclaim by this ratio.
1139 */
1140static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1141				       void *arg)
1142{
1143	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1144	bool *encountered_page_in_swapcache = (bool *)arg;
1145	swp_entry_t swpentry;
1146	enum lru_status ret = LRU_REMOVED_RETRY;
1147	int writeback_result;
1148
1149	/*
1150	 * Second chance algorithm: if the entry has its referenced bit set, give it
1151	 * a second chance. Only clear the referenced bit and rotate it in the
1152	 * zswap's LRU list.
1153	 */
1154	if (entry->referenced) {
1155		entry->referenced = false;
1156		return LRU_ROTATE;
1157	}
1158
1159	/*
1160	 * As soon as we drop the LRU lock, the entry can be freed by
1161	 * a concurrent invalidation. This means the following:
1162	 *
1163	 * 1. We extract the swp_entry_t to the stack, allowing
1164	 *    zswap_writeback_entry() to pin the swap entry and
1165	 *    then validate the zwap entry against that swap entry's
1166	 *    tree using pointer value comparison. Only when that
1167	 *    is successful can the entry be dereferenced.
1168	 *
1169	 * 2. Usually, objects are taken off the LRU for reclaim. In
1170	 *    this case this isn't possible, because if reclaim fails
1171	 *    for whatever reason, we have no means of knowing if the
1172	 *    entry is alive to put it back on the LRU.
1173	 *
1174	 *    So rotate it before dropping the lock. If the entry is
1175	 *    written back or invalidated, the free path will unlink
1176	 *    it. For failures, rotation is the right thing as well.
1177	 *
1178	 *    Temporary failures, where the same entry should be tried
1179	 *    again immediately, almost never happen for this shrinker.
1180	 *    We don't do any trylocking; -ENOMEM comes closest,
1181	 *    but that's extremely rare and doesn't happen spuriously
1182	 *    either. Don't bother distinguishing this case.
1183	 */
1184	list_move_tail(item, &l->list);
1185
1186	/*
1187	 * Once the lru lock is dropped, the entry might get freed. The
1188	 * swpentry is copied to the stack, and entry isn't deref'd again
1189	 * until the entry is verified to still be alive in the tree.
1190	 */
1191	swpentry = entry->swpentry;
1192
1193	/*
1194	 * It's safe to drop the lock here because we return either
1195	 * LRU_REMOVED_RETRY or LRU_RETRY.
1196	 */
1197	spin_unlock(&l->lock);
1198
1199	writeback_result = zswap_writeback_entry(entry, swpentry);
1200
1201	if (writeback_result) {
1202		zswap_reject_reclaim_fail++;
1203		ret = LRU_RETRY;
1204
1205		/*
1206		 * Encountering a page already in swap cache is a sign that we are shrinking
1207		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1208		 * shrinker context).
1209		 */
1210		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1211			ret = LRU_STOP;
1212			*encountered_page_in_swapcache = true;
1213		}
1214	} else {
1215		zswap_written_back_pages++;
1216	}
1217
 
1218	return ret;
1219}
1220
1221static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1222		struct shrink_control *sc)
1223{
1224	unsigned long shrink_ret;
1225	bool encountered_page_in_swapcache = false;
1226
1227	if (!zswap_shrinker_enabled ||
1228			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1229		sc->nr_scanned = 0;
1230		return SHRINK_STOP;
1231	}
1232
1233	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1234		&encountered_page_in_swapcache);
1235
1236	if (encountered_page_in_swapcache)
1237		return SHRINK_STOP;
1238
1239	return shrink_ret ? shrink_ret : SHRINK_STOP;
1240}
1241
1242static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1243		struct shrink_control *sc)
1244{
1245	struct mem_cgroup *memcg = sc->memcg;
1246	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1247	atomic_long_t *nr_disk_swapins =
1248		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1249	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1250		nr_remain;
1251
1252	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1253		return 0;
1254
1255	/*
1256	 * The shrinker resumes swap writeback, which will enter block
1257	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1258	 * rules (may_enter_fs()), which apply on a per-folio basis.
1259	 */
1260	if (!gfp_has_io_fs(sc->gfp_mask))
1261		return 0;
1262
1263	/*
1264	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1265	 * have them per-node and thus per-lruvec. Careful if memcg is
1266	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1267	 * for the lruvec, but not for memcg_page_state().
1268	 *
1269	 * Without memcg, use the zswap pool-wide metrics.
1270	 */
1271	if (!mem_cgroup_disabled()) {
1272		mem_cgroup_flush_stats(memcg);
1273		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1274		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1275	} else {
1276		nr_backing = zswap_total_pages();
1277		nr_stored = atomic_long_read(&zswap_stored_pages);
1278	}
1279
1280	if (!nr_stored)
1281		return 0;
1282
1283	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1284	if (!nr_freeable)
1285		return 0;
1286
1287	/*
1288	 * Subtract from the lru size the number of pages that are recently swapped
1289	 * in from disk. The idea is that had we protect the zswap's LRU by this
1290	 * amount of pages, these disk swapins would not have happened.
1291	 */
1292	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1293	do {
1294		if (nr_freeable >= nr_disk_swapins_cur)
1295			nr_remain = 0;
1296		else
1297			nr_remain = nr_disk_swapins_cur - nr_freeable;
1298	} while (!atomic_long_try_cmpxchg(
1299		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1300
1301	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1302	if (!nr_freeable)
1303		return 0;
1304
1305	/*
1306	 * Scale the number of freeable pages by the memory saving factor.
1307	 * This ensures that the better zswap compresses memory, the fewer
1308	 * pages we will evict to swap (as it will otherwise incur IO for
1309	 * relatively small memory saving).
1310	 */
1311	return mult_frac(nr_freeable, nr_backing, nr_stored);
1312}
1313
1314static struct shrinker *zswap_alloc_shrinker(void)
1315{
1316	struct shrinker *shrinker;
1317
1318	shrinker =
1319		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1320	if (!shrinker)
1321		return NULL;
1322
1323	shrinker->scan_objects = zswap_shrinker_scan;
1324	shrinker->count_objects = zswap_shrinker_count;
1325	shrinker->batch = 0;
1326	shrinker->seeks = DEFAULT_SEEKS;
1327	return shrinker;
1328}
1329
1330static int shrink_memcg(struct mem_cgroup *memcg)
1331{
1332	int nid, shrunk = 0, scanned = 0;
1333
1334	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1335		return -ENOENT;
1336
1337	/*
1338	 * Skip zombies because their LRUs are reparented and we would be
1339	 * reclaiming from the parent instead of the dead memcg.
1340	 */
1341	if (memcg && !mem_cgroup_online(memcg))
1342		return -ENOENT;
1343
1344	for_each_node_state(nid, N_NORMAL_MEMORY) {
1345		unsigned long nr_to_walk = 1;
1346
1347		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1348					    &shrink_memcg_cb, NULL, &nr_to_walk);
1349		scanned += 1 - nr_to_walk;
1350	}
1351
1352	if (!scanned)
 
1353		return -ENOENT;
1354
1355	return shrunk ? 0 : -EAGAIN;
1356}
1357
1358static void shrink_worker(struct work_struct *w)
1359{
1360	struct mem_cgroup *memcg;
1361	int ret, failures = 0, attempts = 0;
1362	unsigned long thr;
1363
1364	/* Reclaim down to the accept threshold */
1365	thr = zswap_accept_thr_pages();
1366
1367	/*
1368	 * Global reclaim will select cgroup in a round-robin fashion from all
1369	 * online memcgs, but memcgs that have no pages in zswap and
1370	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1371	 * candidates for shrinking.
1372	 *
1373	 * Shrinking will be aborted if we encounter the following
1374	 * MAX_RECLAIM_RETRIES times:
1375	 * - No writeback-candidate memcgs found in a memcg tree walk.
1376	 * - Shrinking a writeback-candidate memcg failed.
1377	 *
1378	 * We save iteration cursor memcg into zswap_next_shrink,
1379	 * which can be modified by the offline memcg cleaner
1380	 * zswap_memcg_offline_cleanup().
1381	 *
1382	 * Since the offline cleaner is called only once, we cannot leave an
1383	 * offline memcg reference in zswap_next_shrink.
1384	 * We can rely on the cleaner only if we get online memcg under lock.
1385	 *
1386	 * If we get an offline memcg, we cannot determine if the cleaner has
1387	 * already been called or will be called later. We must put back the
1388	 * reference before returning from this function. Otherwise, the
1389	 * offline memcg left in zswap_next_shrink will hold the reference
1390	 * until the next run of shrink_worker().
1391	 */
1392	do {
1393		/*
1394		 * Start shrinking from the next memcg after zswap_next_shrink.
1395		 * When the offline cleaner has already advanced the cursor,
1396		 * advancing the cursor here overlooks one memcg, but this
1397		 * should be negligibly rare.
1398		 *
1399		 * If we get an online memcg, keep the extra reference in case
1400		 * the original one obtained by mem_cgroup_iter() is dropped by
1401		 * zswap_memcg_offline_cleanup() while we are shrinking the
1402		 * memcg.
1403		 */
1404		spin_lock(&zswap_shrink_lock);
1405		do {
1406			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1407			zswap_next_shrink = memcg;
1408		} while (memcg && !mem_cgroup_tryget_online(memcg));
1409		spin_unlock(&zswap_shrink_lock);
1410
1411		if (!memcg) {
1412			/*
1413			 * Continue shrinking without incrementing failures if
1414			 * we found candidate memcgs in the last tree walk.
1415			 */
1416			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1417				break;
1418
1419			attempts = 0;
1420			goto resched;
1421		}
1422
1423		ret = shrink_memcg(memcg);
1424		/* drop the extra reference */
1425		mem_cgroup_put(memcg);
1426
1427		/*
1428		 * There are no writeback-candidate pages in the memcg.
1429		 * This is not an issue as long as we can find another memcg
1430		 * with pages in zswap. Skip this without incrementing attempts
1431		 * and failures.
1432		 */
1433		if (ret == -ENOENT)
1434			continue;
1435		++attempts;
1436
1437		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1438			break;
1439resched:
1440		cond_resched();
1441	} while (zswap_total_pages() > thr);
1442}
1443
1444/*********************************
1445* main API
1446**********************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448static bool zswap_store_page(struct page *page,
1449			     struct obj_cgroup *objcg,
1450			     struct zswap_pool *pool)
1451{
1452	swp_entry_t page_swpentry = page_swap_entry(page);
1453	struct zswap_entry *entry, *old;
 
 
 
 
 
 
 
 
1454
1455	/* allocate entry */
1456	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1457	if (!entry) {
1458		zswap_reject_kmemcache_fail++;
1459		return false;
 
1460	}
1461
1462	if (!zswap_compress(page, entry, pool))
1463		goto compress_failed;
1464
1465	old = xa_store(swap_zswap_tree(page_swpentry),
1466		       swp_offset(page_swpentry),
1467		       entry, GFP_KERNEL);
1468	if (xa_is_err(old)) {
1469		int err = xa_err(old);
1470
1471		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1472		zswap_reject_alloc_fail++;
1473		goto store_failed;
1474	}
1475
1476	/*
1477	 * We may have had an existing entry that became stale when
1478	 * the folio was redirtied and now the new version is being
1479	 * swapped out. Get rid of the old.
1480	 */
1481	if (old)
1482		zswap_entry_free(old);
1483
1484	/*
1485	 * The entry is successfully compressed and stored in the tree, there is
1486	 * no further possibility of failure. Grab refs to the pool and objcg,
1487	 * charge zswap memory, and increment zswap_stored_pages.
1488	 * The opposite actions will be performed by zswap_entry_free()
1489	 * when the entry is removed from the tree.
1490	 */
1491	zswap_pool_get(pool);
1492	if (objcg) {
1493		obj_cgroup_get(objcg);
1494		obj_cgroup_charge_zswap(objcg, entry->length);
1495	}
1496	atomic_long_inc(&zswap_stored_pages);
1497
1498	/*
1499	 * We finish initializing the entry while it's already in xarray.
1500	 * This is safe because:
1501	 *
1502	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1503	 *
1504	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1505	 *    The publishing order matters to prevent writeback from seeing
1506	 *    an incoherent entry.
1507	 */
1508	entry->pool = pool;
1509	entry->swpentry = page_swpentry;
1510	entry->objcg = objcg;
1511	entry->referenced = true;
1512	if (entry->length) {
1513		INIT_LIST_HEAD(&entry->lru);
1514		zswap_lru_add(&zswap_list_lru, entry);
1515	}
1516
1517	return true;
1518
1519store_failed:
1520	zpool_free(pool->zpool, entry->handle);
1521compress_failed:
1522	zswap_entry_cache_free(entry);
1523	return false;
1524}
1525
1526bool zswap_store(struct folio *folio)
1527{
1528	long nr_pages = folio_nr_pages(folio);
1529	swp_entry_t swp = folio->swap;
1530	struct obj_cgroup *objcg = NULL;
1531	struct mem_cgroup *memcg = NULL;
1532	struct zswap_pool *pool;
1533	bool ret = false;
1534	long index;
1535
1536	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1537	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1538
1539	if (!zswap_enabled)
1540		goto check_old;
1541
1542	objcg = get_obj_cgroup_from_folio(folio);
1543	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1544		memcg = get_mem_cgroup_from_objcg(objcg);
1545		if (shrink_memcg(memcg)) {
1546			mem_cgroup_put(memcg);
1547			goto put_objcg;
1548		}
1549		mem_cgroup_put(memcg);
1550	}
 
 
 
 
 
 
1551
1552	if (zswap_check_limits())
1553		goto put_objcg;
1554
1555	pool = zswap_pool_current_get();
1556	if (!pool)
1557		goto put_objcg;
1558
1559	if (objcg) {
1560		memcg = get_mem_cgroup_from_objcg(objcg);
1561		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1562			mem_cgroup_put(memcg);
1563			goto put_pool;
 
 
 
 
1564		}
1565		mem_cgroup_put(memcg);
1566	}
1567
1568	for (index = 0; index < nr_pages; ++index) {
1569		struct page *page = folio_page(folio, index);
 
1570
1571		if (!zswap_store_page(page, objcg, pool))
1572			goto put_pool;
1573	}
1574
1575	if (objcg)
1576		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1577
1578	count_vm_events(ZSWPOUT, nr_pages);
1579
1580	ret = true;
1581
1582put_pool:
1583	zswap_pool_put(pool);
1584put_objcg:
1585	obj_cgroup_put(objcg);
1586	if (!ret && zswap_pool_reached_full)
1587		queue_work(shrink_wq, &zswap_shrink_work);
1588check_old:
1589	/*
1590	 * If the zswap store fails or zswap is disabled, we must invalidate
1591	 * the possibly stale entries which were previously stored at the
1592	 * offsets corresponding to each page of the folio. Otherwise,
1593	 * writeback could overwrite the new data in the swapfile.
1594	 */
1595	if (!ret) {
1596		unsigned type = swp_type(swp);
1597		pgoff_t offset = swp_offset(swp);
1598		struct zswap_entry *entry;
1599		struct xarray *tree;
1600
1601		for (index = 0; index < nr_pages; ++index) {
1602			tree = swap_zswap_tree(swp_entry(type, offset + index));
1603			entry = xa_erase(tree, offset + index);
1604			if (entry)
1605				zswap_entry_free(entry);
1606		}
1607	}
1608
 
 
 
 
 
 
1609	return ret;
1610}
1611
1612bool zswap_load(struct folio *folio)
 
 
 
 
 
1613{
1614	swp_entry_t swp = folio->swap;
1615	pgoff_t offset = swp_offset(swp);
1616	bool swapcache = folio_test_swapcache(folio);
1617	struct xarray *tree = swap_zswap_tree(swp);
1618	struct zswap_entry *entry;
 
 
 
 
1619
1620	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1621
1622	if (zswap_never_enabled())
1623		return false;
1624
1625	/*
1626	 * Large folios should not be swapped in while zswap is being used, as
1627	 * they are not properly handled. Zswap does not properly load large
1628	 * folios, and a large folio may only be partially in zswap.
1629	 *
1630	 * Return true without marking the folio uptodate so that an IO error is
1631	 * emitted (e.g. do_swap_page() will sigbus).
1632	 */
1633	if (WARN_ON_ONCE(folio_test_large(folio)))
1634		return true;
 
 
 
 
 
 
 
 
 
 
1635
1636	/*
1637	 * When reading into the swapcache, invalidate our entry. The
1638	 * swapcache can be the authoritative owner of the page and
1639	 * its mappings, and the pressure that results from having two
1640	 * in-memory copies outweighs any benefits of caching the
1641	 * compression work.
1642	 *
1643	 * (Most swapins go through the swapcache. The notable
1644	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1645	 * files, which reads into a private page and may free it if
1646	 * the fault fails. We remain the primary owner of the entry.)
1647	 */
1648	if (swapcache)
1649		entry = xa_erase(tree, offset);
1650	else
1651		entry = xa_load(tree, offset);
1652
1653	if (!entry)
1654		return false;
 
 
 
1655
1656	zswap_decompress(entry, folio);
 
 
 
 
 
 
 
1657
1658	count_vm_event(ZSWPIN);
1659	if (entry->objcg)
1660		count_objcg_events(entry->objcg, ZSWPIN, 1);
1661
1662	if (swapcache) {
1663		zswap_entry_free(entry);
1664		folio_mark_dirty(folio);
1665	}
1666
1667	folio_mark_uptodate(folio);
1668	return true;
1669}
1670
1671void zswap_invalidate(swp_entry_t swp)
 
1672{
1673	pgoff_t offset = swp_offset(swp);
1674	struct xarray *tree = swap_zswap_tree(swp);
1675	struct zswap_entry *entry;
1676
1677	if (xa_empty(tree))
1678		return;
1679
1680	entry = xa_erase(tree, offset);
1681	if (entry)
1682		zswap_entry_free(entry);
 
 
 
 
 
1683}
1684
1685int zswap_swapon(int type, unsigned long nr_pages)
1686{
1687	struct xarray *trees, *tree;
1688	unsigned int nr, i;
1689
1690	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1691	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1692	if (!trees) {
1693		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1694		return -ENOMEM;
1695	}
1696
1697	for (i = 0; i < nr; i++)
1698		xa_init(trees + i);
1699
1700	nr_zswap_trees[type] = nr;
1701	zswap_trees[type] = trees;
1702	return 0;
1703}
1704
1705void zswap_swapoff(int type)
1706{
1707	struct xarray *trees = zswap_trees[type];
1708	unsigned int i;
1709
1710	if (!trees)
1711		return;
1712
1713	/* try_to_unuse() invalidated all the entries already */
1714	for (i = 0; i < nr_zswap_trees[type]; i++)
1715		WARN_ON_ONCE(!xa_empty(trees + i));
1716
1717	kvfree(trees);
1718	nr_zswap_trees[type] = 0;
1719	zswap_trees[type] = NULL;
1720}
1721
1722/*********************************
1723* debugfs functions
1724**********************************/
1725#ifdef CONFIG_DEBUG_FS
1726#include <linux/debugfs.h>
1727
1728static struct dentry *zswap_debugfs_root;
1729
1730static int debugfs_get_total_size(void *data, u64 *val)
1731{
1732	*val = zswap_total_pages() * PAGE_SIZE;
1733	return 0;
1734}
1735DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1736
1737static int debugfs_get_stored_pages(void *data, u64 *val)
1738{
1739	*val = atomic_long_read(&zswap_stored_pages);
1740	return 0;
1741}
1742DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1743
1744static int zswap_debugfs_init(void)
1745{
1746	if (!debugfs_initialized())
1747		return -ENODEV;
1748
1749	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
 
 
1750
1751	debugfs_create_u64("pool_limit_hit", 0444,
1752			   zswap_debugfs_root, &zswap_pool_limit_hit);
1753	debugfs_create_u64("reject_reclaim_fail", 0444,
1754			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1755	debugfs_create_u64("reject_alloc_fail", 0444,
1756			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1757	debugfs_create_u64("reject_kmemcache_fail", 0444,
1758			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1759	debugfs_create_u64("reject_compress_fail", 0444,
1760			   zswap_debugfs_root, &zswap_reject_compress_fail);
1761	debugfs_create_u64("reject_compress_poor", 0444,
1762			   zswap_debugfs_root, &zswap_reject_compress_poor);
1763	debugfs_create_u64("written_back_pages", 0444,
1764			   zswap_debugfs_root, &zswap_written_back_pages);
1765	debugfs_create_file("pool_total_size", 0444,
1766			    zswap_debugfs_root, NULL, &total_size_fops);
1767	debugfs_create_file("stored_pages", 0444,
1768			    zswap_debugfs_root, NULL, &stored_pages_fops);
1769
1770	return 0;
1771}
 
 
 
 
 
1772#else
1773static int zswap_debugfs_init(void)
1774{
1775	return 0;
1776}
 
 
1777#endif
1778
1779/*********************************
1780* module init and exit
1781**********************************/
1782static int zswap_setup(void)
1783{
1784	struct zswap_pool *pool;
1785	int ret;
1786
1787	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1788	if (!zswap_entry_cache) {
 
1789		pr_err("entry cache creation failed\n");
1790		goto cache_fail;
1791	}
1792
1793	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1794				      "mm/zswap_pool:prepare",
1795				      zswap_cpu_comp_prepare,
1796				      zswap_cpu_comp_dead);
1797	if (ret)
1798		goto hp_fail;
1799
1800	shrink_wq = alloc_workqueue("zswap-shrink",
1801			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1802	if (!shrink_wq)
1803		goto shrink_wq_fail;
1804
1805	zswap_shrinker = zswap_alloc_shrinker();
1806	if (!zswap_shrinker)
1807		goto shrinker_fail;
1808	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1809		goto lru_fail;
1810	shrinker_register(zswap_shrinker);
1811
1812	INIT_WORK(&zswap_shrink_work, shrink_worker);
1813
1814	pool = __zswap_pool_create_fallback();
1815	if (pool) {
1816		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1817			zpool_get_type(pool->zpool));
1818		list_add(&pool->list, &zswap_pools);
1819		zswap_has_pool = true;
1820		static_branch_enable(&zswap_ever_enabled);
1821	} else {
1822		pr_err("pool creation failed\n");
1823		zswap_enabled = false;
1824	}
 
 
 
 
1825
 
1826	if (zswap_debugfs_init())
1827		pr_warn("debugfs initialization failed\n");
1828	zswap_init_state = ZSWAP_INIT_SUCCEED;
1829	return 0;
1830
1831lru_fail:
1832	shrinker_free(zswap_shrinker);
1833shrinker_fail:
1834	destroy_workqueue(shrink_wq);
1835shrink_wq_fail:
1836	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1837hp_fail:
1838	kmem_cache_destroy(zswap_entry_cache);
1839cache_fail:
1840	/* if built-in, we aren't unloaded on failure; don't allow use */
1841	zswap_init_state = ZSWAP_INIT_FAILED;
1842	zswap_enabled = false;
1843	return -ENOMEM;
1844}
1845
1846static int __init zswap_init(void)
1847{
1848	if (!zswap_enabled)
1849		return 0;
1850	return zswap_setup();
1851}
1852/* must be late so crypto has time to come up */
1853late_initcall(zswap_init);
1854
 
1855MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1856MODULE_DESCRIPTION("Compressed cache for swap pages");
v4.6
 
   1/*
   2 * zswap.c - zswap driver file
   3 *
   4 * zswap is a backend for frontswap that takes pages that are in the process
   5 * of being swapped out and attempts to compress and store them in a
   6 * RAM-based memory pool.  This can result in a significant I/O reduction on
   7 * the swap device and, in the case where decompressing from RAM is faster
   8 * than reading from the swap device, can also improve workload performance.
   9 *
  10 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License
  14 * as published by the Free Software Foundation; either version 2
  15 * of the License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21*/
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/cpu.h>
  27#include <linux/highmem.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/types.h>
  31#include <linux/atomic.h>
  32#include <linux/frontswap.h>
  33#include <linux/rbtree.h>
  34#include <linux/swap.h>
  35#include <linux/crypto.h>
 
 
  36#include <linux/mempool.h>
  37#include <linux/zpool.h>
  38
 
  39#include <linux/mm_types.h>
  40#include <linux/page-flags.h>
  41#include <linux/swapops.h>
  42#include <linux/writeback.h>
  43#include <linux/pagemap.h>
 
 
 
 
 
  44
  45/*********************************
  46* statistics
  47**********************************/
  48/* Total bytes used by the compressed storage */
  49static u64 zswap_pool_total_size;
  50/* The number of compressed pages currently stored in zswap */
  51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  52
  53/*
  54 * The statistics below are not protected from concurrent access for
  55 * performance reasons so they may not be a 100% accurate.  However,
  56 * they do provide useful information on roughly how many times a
  57 * certain event is occurring.
  58*/
  59
  60/* Pool limit was hit (see zswap_max_pool_percent) */
  61static u64 zswap_pool_limit_hit;
  62/* Pages written back when pool limit was reached */
  63static u64 zswap_written_back_pages;
  64/* Store failed due to a reclaim failure after pool limit was reached */
  65static u64 zswap_reject_reclaim_fail;
 
 
  66/* Compressed page was too big for the allocator to (optimally) store */
  67static u64 zswap_reject_compress_poor;
  68/* Store failed because underlying allocator could not get memory */
  69static u64 zswap_reject_alloc_fail;
  70/* Store failed because the entry metadata could not be allocated (rare) */
  71static u64 zswap_reject_kmemcache_fail;
  72/* Duplicate store was encountered (rare) */
  73static u64 zswap_duplicate_entry;
 
 
 
  74
  75/*********************************
  76* tunables
  77**********************************/
  78
  79/* Enable/disable zswap (disabled by default) */
  80static bool zswap_enabled;
  81module_param_named(enabled, zswap_enabled, bool, 0644);
 
 
 
 
 
 
 
 
 
 
 
  82
  83/* Crypto compressor to use */
  84#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  85static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  86static int zswap_compressor_param_set(const char *,
  87				      const struct kernel_param *);
  88static struct kernel_param_ops zswap_compressor_param_ops = {
  89	.set =		zswap_compressor_param_set,
  90	.get =		param_get_charp,
  91	.free =		param_free_charp,
  92};
  93module_param_cb(compressor, &zswap_compressor_param_ops,
  94		&zswap_compressor, 0644);
  95
  96/* Compressed storage zpool to use */
  97#define ZSWAP_ZPOOL_DEFAULT "zbud"
  98static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
  99static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 100static struct kernel_param_ops zswap_zpool_param_ops = {
 101	.set =		zswap_zpool_param_set,
 102	.get =		param_get_charp,
 103	.free =		param_free_charp,
 104};
 105module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 106
 107/* The maximum percentage of memory that the compressed pool can occupy */
 108static unsigned int zswap_max_pool_percent = 20;
 109module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/*********************************
 112* data structures
 113**********************************/
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115struct zswap_pool {
 116	struct zpool *zpool;
 117	struct crypto_comp * __percpu *tfm;
 118	struct kref kref;
 119	struct list_head list;
 120	struct rcu_head rcu_head;
 121	struct notifier_block notifier;
 122	char tfm_name[CRYPTO_MAX_ALG_NAME];
 123};
 124
 
 
 
 
 
 
 
 
 
 125/*
 126 * struct zswap_entry
 127 *
 128 * This structure contains the metadata for tracking a single compressed
 129 * page within zswap.
 130 *
 131 * rbnode - links the entry into red-black tree for the appropriate swap type
 132 * offset - the swap offset for the entry.  Index into the red-black tree.
 133 * refcount - the number of outstanding reference to the entry. This is needed
 134 *            to protect against premature freeing of the entry by code
 135 *            concurrent calls to load, invalidate, and writeback.  The lock
 136 *            for the zswap_tree structure that contains the entry must
 137 *            be held while changing the refcount.  Since the lock must
 138 *            be held, there is no reason to also make refcount atomic.
 139 * length - the length in bytes of the compressed page data.  Needed during
 140 *          decompression
 
 
 
 
 141 * pool - the zswap_pool the entry's data is in
 142 * handle - zpool allocation handle that stores the compressed page data
 
 
 143 */
 144struct zswap_entry {
 145	struct rb_node rbnode;
 146	pgoff_t offset;
 147	int refcount;
 148	unsigned int length;
 
 149	struct zswap_pool *pool;
 150	unsigned long handle;
 
 
 151};
 152
 153struct zswap_header {
 154	swp_entry_t swpentry;
 155};
 156
 157/*
 158 * The tree lock in the zswap_tree struct protects a few things:
 159 * - the rbtree
 160 * - the refcount field of each entry in the tree
 161 */
 162struct zswap_tree {
 163	struct rb_root rbroot;
 164	spinlock_t lock;
 165};
 166
 167static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 168
 169/* RCU-protected iteration */
 170static LIST_HEAD(zswap_pools);
 171/* protects zswap_pools list modification */
 172static DEFINE_SPINLOCK(zswap_pools_lock);
 173/* pool counter to provide unique names to zpool */
 174static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 175
 176/* used by param callback function */
 177static bool zswap_init_started;
 
 
 
 
 
 
 
 
 
 
 
 178
 179/*********************************
 180* helpers and fwd declarations
 181**********************************/
 182
 
 
 
 
 
 
 183#define zswap_pool_debug(msg, p)				\
 184	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 185		 zpool_get_type((p)->zpool))
 186
 187static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 188static int zswap_pool_get(struct zswap_pool *pool);
 189static void zswap_pool_put(struct zswap_pool *pool);
 
 190
 191static const struct zpool_ops zswap_zpool_ops = {
 192	.evict = zswap_writeback_entry
 193};
 194
 195static bool zswap_is_full(void)
 196{
 197	return totalram_pages * zswap_max_pool_percent / 100 <
 198		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 199}
 200
 201static void zswap_update_total_size(void)
 202{
 203	struct zswap_pool *pool;
 204	u64 total = 0;
 
 
 205
 206	rcu_read_lock();
 
 
 
 
 
 
 
 
 
 207
 208	list_for_each_entry_rcu(pool, &zswap_pools, list)
 209		total += zpool_get_total_size(pool->zpool);
 
 210
 211	rcu_read_unlock();
 
 
 
 
 
 
 
 212
 213	zswap_pool_total_size = total;
 214}
 215
 216/*********************************
 217* zswap entry functions
 218**********************************/
 219static struct kmem_cache *zswap_entry_cache;
 
 220
 221static int __init zswap_entry_cache_create(void)
 222{
 223	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 224	return zswap_entry_cache == NULL;
 225}
 226
 227static void __init zswap_entry_cache_destroy(void)
 228{
 229	kmem_cache_destroy(zswap_entry_cache);
 230}
 231
 232static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 233{
 234	struct zswap_entry *entry;
 235	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 236	if (!entry)
 237		return NULL;
 238	entry->refcount = 1;
 239	RB_CLEAR_NODE(&entry->rbnode);
 240	return entry;
 241}
 242
 243static void zswap_entry_cache_free(struct zswap_entry *entry)
 244{
 245	kmem_cache_free(zswap_entry_cache, entry);
 246}
 247
 248/*********************************
 249* rbtree functions
 250**********************************/
 251static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 252{
 253	struct rb_node *node = root->rb_node;
 254	struct zswap_entry *entry;
 255
 256	while (node) {
 257		entry = rb_entry(node, struct zswap_entry, rbnode);
 258		if (entry->offset > offset)
 259			node = node->rb_left;
 260		else if (entry->offset < offset)
 261			node = node->rb_right;
 262		else
 263			return entry;
 264	}
 265	return NULL;
 266}
 267
 268/*
 269 * In the case that a entry with the same offset is found, a pointer to
 270 * the existing entry is stored in dupentry and the function returns -EEXIST
 271 */
 272static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 273			struct zswap_entry **dupentry)
 274{
 275	struct rb_node **link = &root->rb_node, *parent = NULL;
 276	struct zswap_entry *myentry;
 277
 278	while (*link) {
 279		parent = *link;
 280		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 281		if (myentry->offset > entry->offset)
 282			link = &(*link)->rb_left;
 283		else if (myentry->offset < entry->offset)
 284			link = &(*link)->rb_right;
 285		else {
 286			*dupentry = myentry;
 287			return -EEXIST;
 288		}
 
 
 
 289	}
 290	rb_link_node(&entry->rbnode, parent, link);
 291	rb_insert_color(&entry->rbnode, root);
 292	return 0;
 293}
 294
 295static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 296{
 297	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 298		rb_erase(&entry->rbnode, root);
 299		RB_CLEAR_NODE(&entry->rbnode);
 
 
 
 
 
 
 
 
 
 300	}
 301}
 302
 303/*
 304 * Carries out the common pattern of freeing and entry's zpool allocation,
 305 * freeing the entry itself, and decrementing the number of stored pages.
 306 */
 307static void zswap_free_entry(struct zswap_entry *entry)
 308{
 309	zpool_free(entry->pool->zpool, entry->handle);
 310	zswap_pool_put(entry->pool);
 311	zswap_entry_cache_free(entry);
 312	atomic_dec(&zswap_stored_pages);
 313	zswap_update_total_size();
 314}
 315
 316/* caller must hold the tree lock */
 317static void zswap_entry_get(struct zswap_entry *entry)
 318{
 319	entry->refcount++;
 320}
 321
 322/* caller must hold the tree lock
 323* remove from the tree and free it, if nobody reference the entry
 324*/
 325static void zswap_entry_put(struct zswap_tree *tree,
 326			struct zswap_entry *entry)
 327{
 328	int refcount = --entry->refcount;
 329
 330	BUG_ON(refcount < 0);
 331	if (refcount == 0) {
 332		zswap_rb_erase(&tree->rbroot, entry);
 333		zswap_free_entry(entry);
 334	}
 335}
 336
 337/* caller must hold the tree lock */
 338static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 339				pgoff_t offset)
 340{
 341	struct zswap_entry *entry;
 342
 343	entry = zswap_rb_search(root, offset);
 344	if (entry)
 345		zswap_entry_get(entry);
 346
 347	return entry;
 348}
 349
 350/*********************************
 351* per-cpu code
 352**********************************/
 353static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 354
 355static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
 356{
 357	u8 *dst;
 358
 359	switch (action) {
 360	case CPU_UP_PREPARE:
 361		dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 362		if (!dst) {
 363			pr_err("can't allocate compressor buffer\n");
 364			return NOTIFY_BAD;
 365		}
 366		per_cpu(zswap_dstmem, cpu) = dst;
 367		break;
 368	case CPU_DEAD:
 369	case CPU_UP_CANCELED:
 370		dst = per_cpu(zswap_dstmem, cpu);
 371		kfree(dst);
 372		per_cpu(zswap_dstmem, cpu) = NULL;
 373		break;
 374	default:
 375		break;
 376	}
 377	return NOTIFY_OK;
 378}
 379
 380static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
 381				     unsigned long action, void *pcpu)
 382{
 383	return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
 384}
 385
 386static struct notifier_block zswap_dstmem_notifier = {
 387	.notifier_call =	zswap_cpu_dstmem_notifier,
 388};
 389
 390static int __init zswap_cpu_dstmem_init(void)
 391{
 392	unsigned long cpu;
 393
 394	cpu_notifier_register_begin();
 395	for_each_online_cpu(cpu)
 396		if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
 397		    NOTIFY_BAD)
 398			goto cleanup;
 399	__register_cpu_notifier(&zswap_dstmem_notifier);
 400	cpu_notifier_register_done();
 401	return 0;
 402
 403cleanup:
 404	for_each_online_cpu(cpu)
 405		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
 406	cpu_notifier_register_done();
 407	return -ENOMEM;
 408}
 409
 410static void zswap_cpu_dstmem_destroy(void)
 411{
 412	unsigned long cpu;
 413
 414	cpu_notifier_register_begin();
 415	for_each_online_cpu(cpu)
 416		__zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
 417	__unregister_cpu_notifier(&zswap_dstmem_notifier);
 418	cpu_notifier_register_done();
 419}
 420
 421static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
 422				     unsigned long action, unsigned long cpu)
 423{
 424	struct crypto_comp *tfm;
 425
 426	switch (action) {
 427	case CPU_UP_PREPARE:
 428		if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
 429			break;
 430		tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
 431		if (IS_ERR_OR_NULL(tfm)) {
 432			pr_err("could not alloc crypto comp %s : %ld\n",
 433			       pool->tfm_name, PTR_ERR(tfm));
 434			return NOTIFY_BAD;
 435		}
 436		*per_cpu_ptr(pool->tfm, cpu) = tfm;
 437		break;
 438	case CPU_DEAD:
 439	case CPU_UP_CANCELED:
 440		tfm = *per_cpu_ptr(pool->tfm, cpu);
 441		if (!IS_ERR_OR_NULL(tfm))
 442			crypto_free_comp(tfm);
 443		*per_cpu_ptr(pool->tfm, cpu) = NULL;
 444		break;
 445	default:
 446		break;
 447	}
 448	return NOTIFY_OK;
 449}
 450
 451static int zswap_cpu_comp_notifier(struct notifier_block *nb,
 452				   unsigned long action, void *pcpu)
 453{
 454	unsigned long cpu = (unsigned long)pcpu;
 455	struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
 456
 457	return __zswap_cpu_comp_notifier(pool, action, cpu);
 458}
 459
 460static int zswap_cpu_comp_init(struct zswap_pool *pool)
 
 461{
 462	unsigned long cpu;
 463
 464	memset(&pool->notifier, 0, sizeof(pool->notifier));
 465	pool->notifier.notifier_call = zswap_cpu_comp_notifier;
 466
 467	cpu_notifier_register_begin();
 468	for_each_online_cpu(cpu)
 469		if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
 470		    NOTIFY_BAD)
 471			goto cleanup;
 472	__register_cpu_notifier(&pool->notifier);
 473	cpu_notifier_register_done();
 474	return 0;
 475
 476cleanup:
 477	for_each_online_cpu(cpu)
 478		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
 479	cpu_notifier_register_done();
 480	return -ENOMEM;
 481}
 482
 483static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
 484{
 485	unsigned long cpu;
 486
 487	cpu_notifier_register_begin();
 488	for_each_online_cpu(cpu)
 489		__zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
 490	__unregister_cpu_notifier(&pool->notifier);
 491	cpu_notifier_register_done();
 492}
 493
 494/*********************************
 495* pool functions
 496**********************************/
 497
 498static struct zswap_pool *__zswap_pool_current(void)
 499{
 500	struct zswap_pool *pool;
 501
 502	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 503	WARN_ON(!pool);
 
 504
 505	return pool;
 506}
 507
 508static struct zswap_pool *zswap_pool_current(void)
 509{
 510	assert_spin_locked(&zswap_pools_lock);
 511
 512	return __zswap_pool_current();
 513}
 514
 515static struct zswap_pool *zswap_pool_current_get(void)
 516{
 517	struct zswap_pool *pool;
 518
 519	rcu_read_lock();
 520
 521	pool = __zswap_pool_current();
 522	if (!pool || !zswap_pool_get(pool))
 523		pool = NULL;
 524
 525	rcu_read_unlock();
 526
 527	return pool;
 528}
 529
 530static struct zswap_pool *zswap_pool_last_get(void)
 531{
 532	struct zswap_pool *pool, *last = NULL;
 533
 534	rcu_read_lock();
 535
 536	list_for_each_entry_rcu(pool, &zswap_pools, list)
 537		last = pool;
 538	if (!WARN_ON(!last) && !zswap_pool_get(last))
 539		last = NULL;
 540
 541	rcu_read_unlock();
 542
 543	return last;
 544}
 545
 546/* type and compressor must be null-terminated */
 547static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 548{
 549	struct zswap_pool *pool;
 550
 551	assert_spin_locked(&zswap_pools_lock);
 552
 553	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 554		if (strcmp(pool->tfm_name, compressor))
 555			continue;
 556		if (strcmp(zpool_get_type(pool->zpool), type))
 557			continue;
 558		/* if we can't get it, it's about to be destroyed */
 559		if (!zswap_pool_get(pool))
 560			continue;
 561		return pool;
 562	}
 563
 564	return NULL;
 565}
 566
 567static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 568{
 569	struct zswap_pool *pool;
 570	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 571	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 572
 573	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 574	if (!pool) {
 575		pr_err("pool alloc failed\n");
 576		return NULL;
 577	}
 578
 579	/* unique name for each pool specifically required by zsmalloc */
 580	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 581
 582	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 583	if (!pool->zpool) {
 584		pr_err("%s zpool not available\n", type);
 585		goto error;
 586	}
 587	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 588
 589	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 590	pool->tfm = alloc_percpu(struct crypto_comp *);
 591	if (!pool->tfm) {
 592		pr_err("percpu alloc failed\n");
 593		goto error;
 594	}
 595
 596	if (zswap_cpu_comp_init(pool))
 597		goto error;
 598	pr_debug("using %s compressor\n", pool->tfm_name);
 599
 600	/* being the current pool takes 1 ref; this func expects the
 601	 * caller to always add the new pool as the current pool
 602	 */
 603	kref_init(&pool->kref);
 604	INIT_LIST_HEAD(&pool->list);
 605
 606	zswap_pool_debug("created", pool);
 607
 608	return pool;
 609
 610error:
 611	free_percpu(pool->tfm);
 612	if (pool->zpool)
 613		zpool_destroy_pool(pool->zpool);
 614	kfree(pool);
 615	return NULL;
 616}
 617
 618static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 619{
 620	if (!crypto_has_comp(zswap_compressor, 0, 0)) {
 621		if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
 622			pr_err("default compressor %s not available\n",
 623			       zswap_compressor);
 624			return NULL;
 625		}
 626		pr_err("compressor %s not available, using default %s\n",
 627		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
 628		param_free_charp(&zswap_compressor);
 629		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 630	}
 631	if (!zpool_has_pool(zswap_zpool_type)) {
 632		if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
 633			pr_err("default zpool %s not available\n",
 634			       zswap_zpool_type);
 635			return NULL;
 636		}
 637		pr_err("zpool %s not available, using default %s\n",
 638		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
 639		param_free_charp(&zswap_zpool_type);
 640		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 641	}
 642
 643	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 644}
 645
 646static void zswap_pool_destroy(struct zswap_pool *pool)
 647{
 648	zswap_pool_debug("destroying", pool);
 
 649
 650	zswap_cpu_comp_destroy(pool);
 651	free_percpu(pool->tfm);
 652	zpool_destroy_pool(pool->zpool);
 653	kfree(pool);
 654}
 655
 656static int __must_check zswap_pool_get(struct zswap_pool *pool)
 657{
 658	return kref_get_unless_zero(&pool->kref);
 659}
 660
 661static void __zswap_pool_release(struct rcu_head *head)
 662{
 663	struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
 
 664
 665	/* nobody should have been able to get a kref... */
 666	WARN_ON(kref_get_unless_zero(&pool->kref));
 667
 668	/* pool is now off zswap_pools list and has no references. */
 669	zswap_pool_destroy(pool);
 
 
 
 670}
 671
 672static void __zswap_pool_empty(struct kref *kref)
 673{
 674	struct zswap_pool *pool;
 675
 676	pool = container_of(kref, typeof(*pool), kref);
 677
 678	spin_lock(&zswap_pools_lock);
 679
 680	WARN_ON(pool == zswap_pool_current());
 681
 682	list_del_rcu(&pool->list);
 683	call_rcu(&pool->rcu_head, __zswap_pool_release);
 684
 685	spin_unlock(&zswap_pools_lock);
 686}
 687
 688static void zswap_pool_put(struct zswap_pool *pool)
 689{
 690	kref_put(&pool->kref, __zswap_pool_empty);
 
 
 
 691}
 692
 693/*********************************
 694* param callbacks
 695**********************************/
 696
 697/* val must be a null-terminated string */
 698static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 699			     char *type, char *compressor)
 700{
 701	struct zswap_pool *pool, *put_pool = NULL;
 702	char *s = strstrip((char *)val);
 703	int ret;
 
 704
 705	/* no change required */
 706	if (!strcmp(s, *(char **)kp->arg))
 707		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	/* if this is load-time (pre-init) param setting,
 710	 * don't create a pool; that's done during init.
 711	 */
 712	if (!zswap_init_started)
 713		return param_set_charp(s, kp);
 714
 715	if (!type) {
 716		if (!zpool_has_pool(s)) {
 717			pr_err("zpool %s not available\n", s);
 718			return -ENOENT;
 719		}
 720		type = s;
 721	} else if (!compressor) {
 722		if (!crypto_has_comp(s, 0, 0)) {
 723			pr_err("compressor %s not available\n", s);
 724			return -ENOENT;
 725		}
 726		compressor = s;
 727	} else {
 728		WARN_ON(1);
 729		return -EINVAL;
 730	}
 731
 732	spin_lock(&zswap_pools_lock);
 733
 734	pool = zswap_pool_find_get(type, compressor);
 735	if (pool) {
 736		zswap_pool_debug("using existing", pool);
 
 737		list_del_rcu(&pool->list);
 738	} else {
 739		spin_unlock(&zswap_pools_lock);
 
 
 
 740		pool = zswap_pool_create(type, compressor);
 741		spin_lock(&zswap_pools_lock);
 
 
 
 
 
 
 
 
 
 742	}
 743
 744	if (pool)
 745		ret = param_set_charp(s, kp);
 746	else
 747		ret = -EINVAL;
 748
 
 
 749	if (!ret) {
 750		put_pool = zswap_pool_current();
 751		list_add_rcu(&pool->list, &zswap_pools);
 
 752	} else if (pool) {
 753		/* add the possibly pre-existing pool to the end of the pools
 754		 * list; if it's new (and empty) then it'll be removed and
 755		 * destroyed by the put after we drop the lock
 756		 */
 757		list_add_tail_rcu(&pool->list, &zswap_pools);
 758		put_pool = pool;
 759	}
 760
 761	spin_unlock(&zswap_pools_lock);
 
 
 
 
 
 
 
 
 
 
 
 762
 763	/* drop the ref from either the old current pool,
 764	 * or the new pool we failed to add
 765	 */
 766	if (put_pool)
 767		zswap_pool_put(put_pool);
 768
 769	return ret;
 770}
 771
 772static int zswap_compressor_param_set(const char *val,
 773				      const struct kernel_param *kp)
 774{
 775	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 776}
 777
 778static int zswap_zpool_param_set(const char *val,
 779				 const struct kernel_param *kp)
 780{
 781	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 782}
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784/*********************************
 785* writeback code
 786**********************************/
 787/* return enum for zswap_get_swap_cache_page */
 788enum zswap_get_swap_ret {
 789	ZSWAP_SWAPCACHE_NEW,
 790	ZSWAP_SWAPCACHE_EXIST,
 791	ZSWAP_SWAPCACHE_FAIL,
 792};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793
 794/*
 795 * zswap_get_swap_cache_page
 796 *
 797 * This is an adaption of read_swap_cache_async()
 
 
 798 *
 799 * This function tries to find a page with the given swap entry
 800 * in the swapper_space address space (the swap cache).  If the page
 801 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 802 * added to the swap cache, and returned in retpage.
 803 *
 804 * If success, the swap cache page is returned in retpage
 805 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 806 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 807 *     the new page is added to swapcache and locked
 808 * Returns ZSWAP_SWAPCACHE_FAIL on error
 809 */
 810static int zswap_get_swap_cache_page(swp_entry_t entry,
 811				struct page **retpage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812{
 813	bool page_was_allocated;
 
 
 
 
 
 814
 815	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 816			NULL, 0, &page_was_allocated);
 817	if (page_was_allocated)
 818		return ZSWAP_SWAPCACHE_NEW;
 819	if (!*retpage)
 820		return ZSWAP_SWAPCACHE_FAIL;
 821	return ZSWAP_SWAPCACHE_EXIST;
 822}
 823
 824/*
 825 * Attempts to free an entry by adding a page to the swap cache,
 826 * decompressing the entry data into the page, and issuing a
 827 * bio write to write the page back to the swap device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828 *
 829 * This can be thought of as a "resumed writeback" of the page
 830 * to the swap device.  We are basically resuming the same swap
 831 * writeback path that was intercepted with the frontswap_store()
 832 * in the first place.  After the page has been decompressed into
 833 * the swap cache, the compressed version stored by zswap can be
 834 * freed.
 835 */
 836static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 
 837{
 838	struct zswap_header *zhdr;
 839	swp_entry_t swpentry;
 840	struct zswap_tree *tree;
 841	pgoff_t offset;
 842	struct zswap_entry *entry;
 843	struct page *page;
 844	struct crypto_comp *tfm;
 845	u8 *src, *dst;
 846	unsigned int dlen;
 847	int ret;
 848	struct writeback_control wbc = {
 849		.sync_mode = WB_SYNC_NONE,
 850	};
 851
 852	/* extract swpentry from data */
 853	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 854	swpentry = zhdr->swpentry; /* here */
 855	zpool_unmap_handle(pool, handle);
 856	tree = zswap_trees[swp_type(swpentry)];
 857	offset = swp_offset(swpentry);
 858
 859	/* find and ref zswap entry */
 860	spin_lock(&tree->lock);
 861	entry = zswap_entry_find_get(&tree->rbroot, offset);
 862	if (!entry) {
 863		/* entry was invalidated */
 864		spin_unlock(&tree->lock);
 865		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866	}
 867	spin_unlock(&tree->lock);
 868	BUG_ON(offset != entry->offset);
 869
 870	/* try to allocate swap cache page */
 871	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 872	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 873		ret = -ENOMEM;
 874		goto fail;
 875
 876	case ZSWAP_SWAPCACHE_EXIST:
 877		/* page is already in the swap cache, ignore for now */
 878		put_page(page);
 879		ret = -EEXIST;
 880		goto fail;
 881
 882	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 883		/* decompress */
 884		dlen = PAGE_SIZE;
 885		src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
 886				ZPOOL_MM_RO) + sizeof(struct zswap_header);
 887		dst = kmap_atomic(page);
 888		tfm = *get_cpu_ptr(entry->pool->tfm);
 889		ret = crypto_comp_decompress(tfm, src, entry->length,
 890					     dst, &dlen);
 891		put_cpu_ptr(entry->pool->tfm);
 892		kunmap_atomic(dst);
 893		zpool_unmap_handle(entry->pool->zpool, entry->handle);
 894		BUG_ON(ret);
 895		BUG_ON(dlen != PAGE_SIZE);
 896
 897		/* page is up to date */
 898		SetPageUptodate(page);
 899	}
 900
 901	/* move it to the tail of the inactive list after end_writeback */
 902	SetPageReclaim(page);
 903
 904	/* start writeback */
 905	__swap_writepage(page, &wbc, end_swap_bio_write);
 906	put_page(page);
 907	zswap_written_back_pages++;
 908
 909	spin_lock(&tree->lock);
 910	/* drop local reference */
 911	zswap_entry_put(tree, entry);
 912
 913	/*
 914	* There are two possible situations for entry here:
 915	* (1) refcount is 1(normal case),  entry is valid and on the tree
 916	* (2) refcount is 0, entry is freed and not on the tree
 917	*     because invalidate happened during writeback
 918	*  search the tree and free the entry if find entry
 919	*/
 920	if (entry == zswap_rb_search(&tree->rbroot, offset))
 921		zswap_entry_put(tree, entry);
 922	spin_unlock(&tree->lock);
 923
 924	goto end;
 925
 926	/*
 927	* if we get here due to ZSWAP_SWAPCACHE_EXIST
 928	* a load may happening concurrently
 929	* it is safe and okay to not free the entry
 930	* if we free the entry in the following put
 931	* it it either okay to return !0
 932	*/
 933fail:
 934	spin_lock(&tree->lock);
 935	zswap_entry_put(tree, entry);
 936	spin_unlock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 938end:
 939	return ret;
 940}
 941
 942static int zswap_shrink(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943{
 944	struct zswap_pool *pool;
 945	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946
 947	pool = zswap_pool_last_get();
 948	if (!pool)
 949		return -ENOENT;
 950
 951	ret = zpool_shrink(pool->zpool, 1, NULL);
 
 
 
 
 
 
 
 
 
 
 952
 953	zswap_pool_put(pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954
 955	return ret;
 
 
 
 
 956}
 957
 958/*********************************
 959* frontswap hooks
 960**********************************/
 961/* attempts to compress and store an single page */
 962static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 963				struct page *page)
 964{
 965	struct zswap_tree *tree = zswap_trees[type];
 966	struct zswap_entry *entry, *dupentry;
 967	struct crypto_comp *tfm;
 968	int ret;
 969	unsigned int dlen = PAGE_SIZE, len;
 970	unsigned long handle;
 971	char *buf;
 972	u8 *src, *dst;
 973	struct zswap_header *zhdr;
 974
 975	if (!zswap_enabled || !tree) {
 976		ret = -ENODEV;
 977		goto reject;
 978	}
 979
 980	/* reclaim space if needed */
 981	if (zswap_is_full()) {
 982		zswap_pool_limit_hit++;
 983		if (zswap_shrink()) {
 984			zswap_reject_reclaim_fail++;
 985			ret = -ENOMEM;
 986			goto reject;
 987		}
 988	}
 989
 990	/* allocate entry */
 991	entry = zswap_entry_cache_alloc(GFP_KERNEL);
 992	if (!entry) {
 993		zswap_reject_kmemcache_fail++;
 994		ret = -ENOMEM;
 995		goto reject;
 996	}
 997
 998	/* if entry is successfully added, it keeps the reference */
 999	entry->pool = zswap_pool_current_get();
1000	if (!entry->pool) {
1001		ret = -EINVAL;
1002		goto freepage;
 
 
 
 
 
 
 
1003	}
1004
1005	/* compress */
1006	dst = get_cpu_var(zswap_dstmem);
1007	tfm = *get_cpu_ptr(entry->pool->tfm);
1008	src = kmap_atomic(page);
1009	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1010	kunmap_atomic(src);
1011	put_cpu_ptr(entry->pool->tfm);
1012	if (ret) {
1013		ret = -EINVAL;
1014		goto put_dstmem;
 
 
 
 
 
 
 
 
 
1015	}
 
1016
1017	/* store */
1018	len = dlen + sizeof(struct zswap_header);
1019	ret = zpool_malloc(entry->pool->zpool, len,
1020			   __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1021			   &handle);
1022	if (ret == -ENOSPC) {
1023		zswap_reject_compress_poor++;
1024		goto put_dstmem;
 
 
 
 
 
 
 
 
 
1025	}
1026	if (ret) {
1027		zswap_reject_alloc_fail++;
1028		goto put_dstmem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029	}
1030	zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1031	zhdr->swpentry = swp_entry(type, offset);
1032	buf = (u8 *)(zhdr + 1);
1033	memcpy(buf, dst, dlen);
1034	zpool_unmap_handle(entry->pool->zpool, handle);
1035	put_cpu_var(zswap_dstmem);
1036
1037	/* populate entry */
1038	entry->offset = offset;
1039	entry->handle = handle;
1040	entry->length = dlen;
 
 
1041
1042	/* map */
1043	spin_lock(&tree->lock);
1044	do {
1045		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1046		if (ret == -EEXIST) {
1047			zswap_duplicate_entry++;
1048			/* remove from rbtree */
1049			zswap_rb_erase(&tree->rbroot, dupentry);
1050			zswap_entry_put(tree, dupentry);
1051		}
1052	} while (ret == -EEXIST);
1053	spin_unlock(&tree->lock);
1054
1055	/* update stats */
1056	atomic_inc(&zswap_stored_pages);
1057	zswap_update_total_size();
1058
1059	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060
1061put_dstmem:
1062	put_cpu_var(zswap_dstmem);
1063	zswap_pool_put(entry->pool);
1064freepage:
1065	zswap_entry_cache_free(entry);
1066reject:
1067	return ret;
1068}
1069
1070/*
1071 * returns 0 if the page was successfully decompressed
1072 * return -1 on entry not found or error
1073*/
1074static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1075				struct page *page)
1076{
1077	struct zswap_tree *tree = zswap_trees[type];
 
 
 
1078	struct zswap_entry *entry;
1079	struct crypto_comp *tfm;
1080	u8 *src, *dst;
1081	unsigned int dlen;
1082	int ret;
1083
1084	/* find */
1085	spin_lock(&tree->lock);
1086	entry = zswap_entry_find_get(&tree->rbroot, offset);
1087	if (!entry) {
1088		/* entry was written back */
1089		spin_unlock(&tree->lock);
1090		return -1;
1091	}
1092	spin_unlock(&tree->lock);
1093
1094	/* decompress */
1095	dlen = PAGE_SIZE;
1096	src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1097			ZPOOL_MM_RO) + sizeof(struct zswap_header);
1098	dst = kmap_atomic(page);
1099	tfm = *get_cpu_ptr(entry->pool->tfm);
1100	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1101	put_cpu_ptr(entry->pool->tfm);
1102	kunmap_atomic(dst);
1103	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1104	BUG_ON(ret);
1105
1106	spin_lock(&tree->lock);
1107	zswap_entry_put(tree, entry);
1108	spin_unlock(&tree->lock);
1109
1110	return 0;
1111}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112
1113/* frees an entry in zswap */
1114static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1115{
1116	struct zswap_tree *tree = zswap_trees[type];
1117	struct zswap_entry *entry;
1118
1119	/* find */
1120	spin_lock(&tree->lock);
1121	entry = zswap_rb_search(&tree->rbroot, offset);
1122	if (!entry) {
1123		/* entry was written back */
1124		spin_unlock(&tree->lock);
1125		return;
1126	}
1127
1128	/* remove from rbtree */
1129	zswap_rb_erase(&tree->rbroot, entry);
 
1130
1131	/* drop the initial reference from entry creation */
1132	zswap_entry_put(tree, entry);
 
 
1133
1134	spin_unlock(&tree->lock);
 
1135}
1136
1137/* frees all zswap entries for the given swap type */
1138static void zswap_frontswap_invalidate_area(unsigned type)
1139{
1140	struct zswap_tree *tree = zswap_trees[type];
1141	struct zswap_entry *entry, *n;
 
1142
1143	if (!tree)
1144		return;
1145
1146	/* walk the tree and free everything */
1147	spin_lock(&tree->lock);
1148	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1149		zswap_free_entry(entry);
1150	tree->rbroot = RB_ROOT;
1151	spin_unlock(&tree->lock);
1152	kfree(tree);
1153	zswap_trees[type] = NULL;
1154}
1155
1156static void zswap_frontswap_init(unsigned type)
1157{
1158	struct zswap_tree *tree;
 
1159
1160	tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1161	if (!tree) {
 
1162		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1163		return;
1164	}
1165
1166	tree->rbroot = RB_ROOT;
1167	spin_lock_init(&tree->lock);
1168	zswap_trees[type] = tree;
 
 
 
1169}
1170
1171static struct frontswap_ops zswap_frontswap_ops = {
1172	.store = zswap_frontswap_store,
1173	.load = zswap_frontswap_load,
1174	.invalidate_page = zswap_frontswap_invalidate_page,
1175	.invalidate_area = zswap_frontswap_invalidate_area,
1176	.init = zswap_frontswap_init
1177};
 
 
 
 
 
 
 
 
 
1178
1179/*********************************
1180* debugfs functions
1181**********************************/
1182#ifdef CONFIG_DEBUG_FS
1183#include <linux/debugfs.h>
1184
1185static struct dentry *zswap_debugfs_root;
1186
1187static int __init zswap_debugfs_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188{
1189	if (!debugfs_initialized())
1190		return -ENODEV;
1191
1192	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1193	if (!zswap_debugfs_root)
1194		return -ENOMEM;
1195
1196	debugfs_create_u64("pool_limit_hit", S_IRUGO,
1197			zswap_debugfs_root, &zswap_pool_limit_hit);
1198	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1199			zswap_debugfs_root, &zswap_reject_reclaim_fail);
1200	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1201			zswap_debugfs_root, &zswap_reject_alloc_fail);
1202	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1203			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1204	debugfs_create_u64("reject_compress_poor", S_IRUGO,
1205			zswap_debugfs_root, &zswap_reject_compress_poor);
1206	debugfs_create_u64("written_back_pages", S_IRUGO,
1207			zswap_debugfs_root, &zswap_written_back_pages);
1208	debugfs_create_u64("duplicate_entry", S_IRUGO,
1209			zswap_debugfs_root, &zswap_duplicate_entry);
1210	debugfs_create_u64("pool_total_size", S_IRUGO,
1211			zswap_debugfs_root, &zswap_pool_total_size);
1212	debugfs_create_atomic_t("stored_pages", S_IRUGO,
1213			zswap_debugfs_root, &zswap_stored_pages);
1214
1215	return 0;
1216}
1217
1218static void __exit zswap_debugfs_exit(void)
1219{
1220	debugfs_remove_recursive(zswap_debugfs_root);
1221}
1222#else
1223static int __init zswap_debugfs_init(void)
1224{
1225	return 0;
1226}
1227
1228static void __exit zswap_debugfs_exit(void) { }
1229#endif
1230
1231/*********************************
1232* module init and exit
1233**********************************/
1234static int __init init_zswap(void)
1235{
1236	struct zswap_pool *pool;
 
1237
1238	zswap_init_started = true;
1239
1240	if (zswap_entry_cache_create()) {
1241		pr_err("entry cache creation failed\n");
1242		goto cache_fail;
1243	}
1244
1245	if (zswap_cpu_dstmem_init()) {
1246		pr_err("dstmem alloc failed\n");
1247		goto dstmem_fail;
1248	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249
1250	pool = __zswap_pool_create_fallback();
1251	if (!pool) {
 
 
 
 
 
 
1252		pr_err("pool creation failed\n");
1253		goto pool_fail;
1254	}
1255	pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1256		zpool_get_type(pool->zpool));
1257
1258	list_add(&pool->list, &zswap_pools);
1259
1260	frontswap_register_ops(&zswap_frontswap_ops);
1261	if (zswap_debugfs_init())
1262		pr_warn("debugfs initialization failed\n");
 
1263	return 0;
1264
1265pool_fail:
1266	zswap_cpu_dstmem_destroy();
1267dstmem_fail:
1268	zswap_entry_cache_destroy();
 
 
 
 
1269cache_fail:
 
 
 
1270	return -ENOMEM;
1271}
 
 
 
 
 
 
 
1272/* must be late so crypto has time to come up */
1273late_initcall(init_zswap);
1274
1275MODULE_LICENSE("GPL");
1276MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1277MODULE_DESCRIPTION("Compressed cache for swap pages");