Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Cryptographic API for algorithms (i.e., low-level API).
4 *
5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7#ifndef _CRYPTO_ALGAPI_H
8#define _CRYPTO_ALGAPI_H
9
10#include <crypto/utils.h>
11#include <linux/align.h>
12#include <linux/cache.h>
13#include <linux/crypto.h>
14#include <linux/types.h>
15#include <linux/workqueue.h>
16
17/*
18 * Maximum values for blocksize and alignmask, used to allocate
19 * static buffers that are big enough for any combination of
20 * algs and architectures. Ciphers have a lower maximum size.
21 */
22#define MAX_ALGAPI_BLOCKSIZE 160
23#define MAX_ALGAPI_ALIGNMASK 127
24#define MAX_CIPHER_BLOCKSIZE 16
25#define MAX_CIPHER_ALIGNMASK 15
26
27#ifdef ARCH_DMA_MINALIGN
28#define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN
29#else
30#define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN
31#endif
32
33#define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
34
35/*
36 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
37 * arbitrary modules to be loaded. Loading from userspace may still need the
38 * unprefixed names, so retains those aliases as well.
39 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
40 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
41 * expands twice on the same line. Instead, use a separate base name for the
42 * alias.
43 */
44#define MODULE_ALIAS_CRYPTO(name) \
45 __MODULE_INFO(alias, alias_userspace, name); \
46 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
47
48struct crypto_aead;
49struct crypto_instance;
50struct module;
51struct notifier_block;
52struct rtattr;
53struct scatterlist;
54struct seq_file;
55struct sk_buff;
56
57struct crypto_type {
58 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
59 unsigned int (*extsize)(struct crypto_alg *alg);
60 int (*init_tfm)(struct crypto_tfm *tfm);
61 void (*show)(struct seq_file *m, struct crypto_alg *alg);
62 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
63 void (*free)(struct crypto_instance *inst);
64
65 unsigned int type;
66 unsigned int maskclear;
67 unsigned int maskset;
68 unsigned int tfmsize;
69};
70
71struct crypto_instance {
72 struct crypto_alg alg;
73
74 struct crypto_template *tmpl;
75
76 union {
77 /* Node in list of instances after registration. */
78 struct hlist_node list;
79 /* List of attached spawns before registration. */
80 struct crypto_spawn *spawns;
81 };
82
83 struct work_struct free_work;
84
85 void *__ctx[] CRYPTO_MINALIGN_ATTR;
86};
87
88struct crypto_template {
89 struct list_head list;
90 struct hlist_head instances;
91 struct module *module;
92
93 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
94
95 char name[CRYPTO_MAX_ALG_NAME];
96};
97
98struct crypto_spawn {
99 struct list_head list;
100 struct crypto_alg *alg;
101 union {
102 /* Back pointer to instance after registration.*/
103 struct crypto_instance *inst;
104 /* Spawn list pointer prior to registration. */
105 struct crypto_spawn *next;
106 };
107 const struct crypto_type *frontend;
108 u32 mask;
109 bool dead;
110 bool registered;
111};
112
113struct crypto_queue {
114 struct list_head list;
115 struct list_head *backlog;
116
117 unsigned int qlen;
118 unsigned int max_qlen;
119};
120
121struct scatter_walk {
122 struct scatterlist *sg;
123 unsigned int offset;
124};
125
126struct crypto_attr_alg {
127 char name[CRYPTO_MAX_ALG_NAME];
128};
129
130struct crypto_attr_type {
131 u32 type;
132 u32 mask;
133};
134
135/*
136 * Algorithm registration interface.
137 */
138int crypto_register_alg(struct crypto_alg *alg);
139void crypto_unregister_alg(struct crypto_alg *alg);
140int crypto_register_algs(struct crypto_alg *algs, int count);
141void crypto_unregister_algs(struct crypto_alg *algs, int count);
142
143void crypto_mod_put(struct crypto_alg *alg);
144
145int crypto_register_template(struct crypto_template *tmpl);
146int crypto_register_templates(struct crypto_template *tmpls, int count);
147void crypto_unregister_template(struct crypto_template *tmpl);
148void crypto_unregister_templates(struct crypto_template *tmpls, int count);
149struct crypto_template *crypto_lookup_template(const char *name);
150
151int crypto_register_instance(struct crypto_template *tmpl,
152 struct crypto_instance *inst);
153void crypto_unregister_instance(struct crypto_instance *inst);
154
155int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
156 const char *name, u32 type, u32 mask);
157void crypto_drop_spawn(struct crypto_spawn *spawn);
158struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
159 u32 mask);
160void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
161
162struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
163int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret);
164const char *crypto_attr_alg_name(struct rtattr *rta);
165int crypto_inst_setname(struct crypto_instance *inst, const char *name,
166 struct crypto_alg *alg);
167
168void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
169int crypto_enqueue_request(struct crypto_queue *queue,
170 struct crypto_async_request *request);
171void crypto_enqueue_request_head(struct crypto_queue *queue,
172 struct crypto_async_request *request);
173struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
174static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
175{
176 return queue->qlen;
177}
178
179void crypto_inc(u8 *a, unsigned int size);
180
181static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
182{
183 return tfm->__crt_ctx;
184}
185
186static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm,
187 unsigned int align)
188{
189 if (align <= crypto_tfm_ctx_alignment())
190 align = 1;
191
192 return PTR_ALIGN(crypto_tfm_ctx(tfm), align);
193}
194
195static inline unsigned int crypto_dma_align(void)
196{
197 return CRYPTO_DMA_ALIGN;
198}
199
200static inline unsigned int crypto_dma_padding(void)
201{
202 return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
203}
204
205static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm)
206{
207 return crypto_tfm_ctx_align(tfm, crypto_dma_align());
208}
209
210static inline struct crypto_instance *crypto_tfm_alg_instance(
211 struct crypto_tfm *tfm)
212{
213 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
214}
215
216static inline void *crypto_instance_ctx(struct crypto_instance *inst)
217{
218 return inst->__ctx;
219}
220
221static inline struct crypto_async_request *crypto_get_backlog(
222 struct crypto_queue *queue)
223{
224 return queue->backlog == &queue->list ? NULL :
225 container_of(queue->backlog, struct crypto_async_request, list);
226}
227
228static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off)
229{
230 return (algt->type ^ off) & algt->mask & off;
231}
232
233/*
234 * When an algorithm uses another algorithm (e.g., if it's an instance of a
235 * template), these are the flags that should always be set on the "outer"
236 * algorithm if any "inner" algorithm has them set.
237 */
238#define CRYPTO_ALG_INHERITED_FLAGS \
239 (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \
240 CRYPTO_ALG_ALLOCATES_MEMORY)
241
242/*
243 * Given the type and mask that specify the flags restrictions on a template
244 * instance being created, return the mask that should be passed to
245 * crypto_grab_*() (along with type=0) to honor any request the user made to
246 * have any of the CRYPTO_ALG_INHERITED_FLAGS clear.
247 */
248static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt)
249{
250 return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS);
251}
252
253int crypto_register_notifier(struct notifier_block *nb);
254int crypto_unregister_notifier(struct notifier_block *nb);
255
256/* Crypto notification events. */
257enum {
258 CRYPTO_MSG_ALG_REQUEST,
259 CRYPTO_MSG_ALG_REGISTER,
260 CRYPTO_MSG_ALG_LOADED,
261};
262
263static inline void crypto_request_complete(struct crypto_async_request *req,
264 int err)
265{
266 req->complete(req->data, err);
267}
268
269static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
270{
271 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
272}
273
274#endif /* _CRYPTO_ALGAPI_H */
1/*
2 * Cryptographic API for algorithms (i.e., low-level API).
3 *
4 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12#ifndef _CRYPTO_ALGAPI_H
13#define _CRYPTO_ALGAPI_H
14
15#include <linux/crypto.h>
16#include <linux/list.h>
17#include <linux/kernel.h>
18#include <linux/kthread.h>
19#include <linux/skbuff.h>
20
21struct crypto_aead;
22struct crypto_instance;
23struct module;
24struct rtattr;
25struct seq_file;
26
27struct crypto_type {
28 unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask);
29 unsigned int (*extsize)(struct crypto_alg *alg);
30 int (*init)(struct crypto_tfm *tfm, u32 type, u32 mask);
31 int (*init_tfm)(struct crypto_tfm *tfm);
32 void (*show)(struct seq_file *m, struct crypto_alg *alg);
33 int (*report)(struct sk_buff *skb, struct crypto_alg *alg);
34 struct crypto_alg *(*lookup)(const char *name, u32 type, u32 mask);
35 void (*free)(struct crypto_instance *inst);
36
37 unsigned int type;
38 unsigned int maskclear;
39 unsigned int maskset;
40 unsigned int tfmsize;
41};
42
43struct crypto_instance {
44 struct crypto_alg alg;
45
46 struct crypto_template *tmpl;
47 struct hlist_node list;
48
49 void *__ctx[] CRYPTO_MINALIGN_ATTR;
50};
51
52struct crypto_template {
53 struct list_head list;
54 struct hlist_head instances;
55 struct module *module;
56
57 struct crypto_instance *(*alloc)(struct rtattr **tb);
58 void (*free)(struct crypto_instance *inst);
59 int (*create)(struct crypto_template *tmpl, struct rtattr **tb);
60
61 char name[CRYPTO_MAX_ALG_NAME];
62};
63
64struct crypto_spawn {
65 struct list_head list;
66 struct crypto_alg *alg;
67 struct crypto_instance *inst;
68 const struct crypto_type *frontend;
69 u32 mask;
70};
71
72struct crypto_queue {
73 struct list_head list;
74 struct list_head *backlog;
75
76 unsigned int qlen;
77 unsigned int max_qlen;
78};
79
80struct scatter_walk {
81 struct scatterlist *sg;
82 unsigned int offset;
83};
84
85struct blkcipher_walk {
86 union {
87 struct {
88 struct page *page;
89 unsigned long offset;
90 } phys;
91
92 struct {
93 u8 *page;
94 u8 *addr;
95 } virt;
96 } src, dst;
97
98 struct scatter_walk in;
99 unsigned int nbytes;
100
101 struct scatter_walk out;
102 unsigned int total;
103
104 void *page;
105 u8 *buffer;
106 u8 *iv;
107 unsigned int ivsize;
108
109 int flags;
110 unsigned int walk_blocksize;
111 unsigned int cipher_blocksize;
112 unsigned int alignmask;
113};
114
115struct ablkcipher_walk {
116 struct {
117 struct page *page;
118 unsigned int offset;
119 } src, dst;
120
121 struct scatter_walk in;
122 unsigned int nbytes;
123 struct scatter_walk out;
124 unsigned int total;
125 struct list_head buffers;
126 u8 *iv_buffer;
127 u8 *iv;
128 int flags;
129 unsigned int blocksize;
130};
131
132#define ENGINE_NAME_LEN 30
133/*
134 * struct crypto_engine - crypto hardware engine
135 * @name: the engine name
136 * @idling: the engine is entering idle state
137 * @busy: request pump is busy
138 * @running: the engine is on working
139 * @cur_req_prepared: current request is prepared
140 * @list: link with the global crypto engine list
141 * @queue_lock: spinlock to syncronise access to request queue
142 * @queue: the crypto queue of the engine
143 * @rt: whether this queue is set to run as a realtime task
144 * @prepare_crypt_hardware: a request will soon arrive from the queue
145 * so the subsystem requests the driver to prepare the hardware
146 * by issuing this call
147 * @unprepare_crypt_hardware: there are currently no more requests on the
148 * queue so the subsystem notifies the driver that it may relax the
149 * hardware by issuing this call
150 * @prepare_request: do some prepare if need before handle the current request
151 * @unprepare_request: undo any work done by prepare_message()
152 * @crypt_one_request: do encryption for current request
153 * @kworker: thread struct for request pump
154 * @kworker_task: pointer to task for request pump kworker thread
155 * @pump_requests: work struct for scheduling work to the request pump
156 * @priv_data: the engine private data
157 * @cur_req: the current request which is on processing
158 */
159struct crypto_engine {
160 char name[ENGINE_NAME_LEN];
161 bool idling;
162 bool busy;
163 bool running;
164 bool cur_req_prepared;
165
166 struct list_head list;
167 spinlock_t queue_lock;
168 struct crypto_queue queue;
169
170 bool rt;
171
172 int (*prepare_crypt_hardware)(struct crypto_engine *engine);
173 int (*unprepare_crypt_hardware)(struct crypto_engine *engine);
174
175 int (*prepare_request)(struct crypto_engine *engine,
176 struct ablkcipher_request *req);
177 int (*unprepare_request)(struct crypto_engine *engine,
178 struct ablkcipher_request *req);
179 int (*crypt_one_request)(struct crypto_engine *engine,
180 struct ablkcipher_request *req);
181
182 struct kthread_worker kworker;
183 struct task_struct *kworker_task;
184 struct kthread_work pump_requests;
185
186 void *priv_data;
187 struct ablkcipher_request *cur_req;
188};
189
190int crypto_transfer_request(struct crypto_engine *engine,
191 struct ablkcipher_request *req, bool need_pump);
192int crypto_transfer_request_to_engine(struct crypto_engine *engine,
193 struct ablkcipher_request *req);
194void crypto_finalize_request(struct crypto_engine *engine,
195 struct ablkcipher_request *req, int err);
196int crypto_engine_start(struct crypto_engine *engine);
197int crypto_engine_stop(struct crypto_engine *engine);
198struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt);
199int crypto_engine_exit(struct crypto_engine *engine);
200
201extern const struct crypto_type crypto_ablkcipher_type;
202extern const struct crypto_type crypto_blkcipher_type;
203
204void crypto_mod_put(struct crypto_alg *alg);
205
206int crypto_register_template(struct crypto_template *tmpl);
207void crypto_unregister_template(struct crypto_template *tmpl);
208struct crypto_template *crypto_lookup_template(const char *name);
209
210int crypto_register_instance(struct crypto_template *tmpl,
211 struct crypto_instance *inst);
212int crypto_unregister_instance(struct crypto_instance *inst);
213
214int crypto_init_spawn(struct crypto_spawn *spawn, struct crypto_alg *alg,
215 struct crypto_instance *inst, u32 mask);
216int crypto_init_spawn2(struct crypto_spawn *spawn, struct crypto_alg *alg,
217 struct crypto_instance *inst,
218 const struct crypto_type *frontend);
219int crypto_grab_spawn(struct crypto_spawn *spawn, const char *name,
220 u32 type, u32 mask);
221
222void crypto_drop_spawn(struct crypto_spawn *spawn);
223struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
224 u32 mask);
225void *crypto_spawn_tfm2(struct crypto_spawn *spawn);
226
227static inline void crypto_set_spawn(struct crypto_spawn *spawn,
228 struct crypto_instance *inst)
229{
230 spawn->inst = inst;
231}
232
233struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb);
234int crypto_check_attr_type(struct rtattr **tb, u32 type);
235const char *crypto_attr_alg_name(struct rtattr *rta);
236struct crypto_alg *crypto_attr_alg2(struct rtattr *rta,
237 const struct crypto_type *frontend,
238 u32 type, u32 mask);
239
240static inline struct crypto_alg *crypto_attr_alg(struct rtattr *rta,
241 u32 type, u32 mask)
242{
243 return crypto_attr_alg2(rta, NULL, type, mask);
244}
245
246int crypto_attr_u32(struct rtattr *rta, u32 *num);
247void *crypto_alloc_instance2(const char *name, struct crypto_alg *alg,
248 unsigned int head);
249struct crypto_instance *crypto_alloc_instance(const char *name,
250 struct crypto_alg *alg);
251
252void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen);
253int crypto_enqueue_request(struct crypto_queue *queue,
254 struct crypto_async_request *request);
255struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue);
256int crypto_tfm_in_queue(struct crypto_queue *queue, struct crypto_tfm *tfm);
257static inline unsigned int crypto_queue_len(struct crypto_queue *queue)
258{
259 return queue->qlen;
260}
261
262/* These functions require the input/output to be aligned as u32. */
263void crypto_inc(u8 *a, unsigned int size);
264void crypto_xor(u8 *dst, const u8 *src, unsigned int size);
265
266int blkcipher_walk_done(struct blkcipher_desc *desc,
267 struct blkcipher_walk *walk, int err);
268int blkcipher_walk_virt(struct blkcipher_desc *desc,
269 struct blkcipher_walk *walk);
270int blkcipher_walk_phys(struct blkcipher_desc *desc,
271 struct blkcipher_walk *walk);
272int blkcipher_walk_virt_block(struct blkcipher_desc *desc,
273 struct blkcipher_walk *walk,
274 unsigned int blocksize);
275int blkcipher_aead_walk_virt_block(struct blkcipher_desc *desc,
276 struct blkcipher_walk *walk,
277 struct crypto_aead *tfm,
278 unsigned int blocksize);
279
280int ablkcipher_walk_done(struct ablkcipher_request *req,
281 struct ablkcipher_walk *walk, int err);
282int ablkcipher_walk_phys(struct ablkcipher_request *req,
283 struct ablkcipher_walk *walk);
284void __ablkcipher_walk_complete(struct ablkcipher_walk *walk);
285
286static inline void *crypto_tfm_ctx_aligned(struct crypto_tfm *tfm)
287{
288 return PTR_ALIGN(crypto_tfm_ctx(tfm),
289 crypto_tfm_alg_alignmask(tfm) + 1);
290}
291
292static inline struct crypto_instance *crypto_tfm_alg_instance(
293 struct crypto_tfm *tfm)
294{
295 return container_of(tfm->__crt_alg, struct crypto_instance, alg);
296}
297
298static inline void *crypto_instance_ctx(struct crypto_instance *inst)
299{
300 return inst->__ctx;
301}
302
303static inline struct ablkcipher_alg *crypto_ablkcipher_alg(
304 struct crypto_ablkcipher *tfm)
305{
306 return &crypto_ablkcipher_tfm(tfm)->__crt_alg->cra_ablkcipher;
307}
308
309static inline void *crypto_ablkcipher_ctx(struct crypto_ablkcipher *tfm)
310{
311 return crypto_tfm_ctx(&tfm->base);
312}
313
314static inline void *crypto_ablkcipher_ctx_aligned(struct crypto_ablkcipher *tfm)
315{
316 return crypto_tfm_ctx_aligned(&tfm->base);
317}
318
319static inline struct crypto_blkcipher *crypto_spawn_blkcipher(
320 struct crypto_spawn *spawn)
321{
322 u32 type = CRYPTO_ALG_TYPE_BLKCIPHER;
323 u32 mask = CRYPTO_ALG_TYPE_MASK;
324
325 return __crypto_blkcipher_cast(crypto_spawn_tfm(spawn, type, mask));
326}
327
328static inline void *crypto_blkcipher_ctx(struct crypto_blkcipher *tfm)
329{
330 return crypto_tfm_ctx(&tfm->base);
331}
332
333static inline void *crypto_blkcipher_ctx_aligned(struct crypto_blkcipher *tfm)
334{
335 return crypto_tfm_ctx_aligned(&tfm->base);
336}
337
338static inline struct crypto_cipher *crypto_spawn_cipher(
339 struct crypto_spawn *spawn)
340{
341 u32 type = CRYPTO_ALG_TYPE_CIPHER;
342 u32 mask = CRYPTO_ALG_TYPE_MASK;
343
344 return __crypto_cipher_cast(crypto_spawn_tfm(spawn, type, mask));
345}
346
347static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
348{
349 return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
350}
351
352static inline void blkcipher_walk_init(struct blkcipher_walk *walk,
353 struct scatterlist *dst,
354 struct scatterlist *src,
355 unsigned int nbytes)
356{
357 walk->in.sg = src;
358 walk->out.sg = dst;
359 walk->total = nbytes;
360}
361
362static inline void ablkcipher_walk_init(struct ablkcipher_walk *walk,
363 struct scatterlist *dst,
364 struct scatterlist *src,
365 unsigned int nbytes)
366{
367 walk->in.sg = src;
368 walk->out.sg = dst;
369 walk->total = nbytes;
370 INIT_LIST_HEAD(&walk->buffers);
371}
372
373static inline void ablkcipher_walk_complete(struct ablkcipher_walk *walk)
374{
375 if (unlikely(!list_empty(&walk->buffers)))
376 __ablkcipher_walk_complete(walk);
377}
378
379static inline struct crypto_async_request *crypto_get_backlog(
380 struct crypto_queue *queue)
381{
382 return queue->backlog == &queue->list ? NULL :
383 container_of(queue->backlog, struct crypto_async_request, list);
384}
385
386static inline int ablkcipher_enqueue_request(struct crypto_queue *queue,
387 struct ablkcipher_request *request)
388{
389 return crypto_enqueue_request(queue, &request->base);
390}
391
392static inline struct ablkcipher_request *ablkcipher_dequeue_request(
393 struct crypto_queue *queue)
394{
395 return ablkcipher_request_cast(crypto_dequeue_request(queue));
396}
397
398static inline void *ablkcipher_request_ctx(struct ablkcipher_request *req)
399{
400 return req->__ctx;
401}
402
403static inline int ablkcipher_tfm_in_queue(struct crypto_queue *queue,
404 struct crypto_ablkcipher *tfm)
405{
406 return crypto_tfm_in_queue(queue, crypto_ablkcipher_tfm(tfm));
407}
408
409static inline struct crypto_alg *crypto_get_attr_alg(struct rtattr **tb,
410 u32 type, u32 mask)
411{
412 return crypto_attr_alg(tb[1], type, mask);
413}
414
415/*
416 * Returns CRYPTO_ALG_ASYNC if type/mask requires the use of sync algorithms.
417 * Otherwise returns zero.
418 */
419static inline int crypto_requires_sync(u32 type, u32 mask)
420{
421 return (type ^ CRYPTO_ALG_ASYNC) & mask & CRYPTO_ALG_ASYNC;
422}
423
424noinline unsigned long __crypto_memneq(const void *a, const void *b, size_t size);
425
426/**
427 * crypto_memneq - Compare two areas of memory without leaking
428 * timing information.
429 *
430 * @a: One area of memory
431 * @b: Another area of memory
432 * @size: The size of the area.
433 *
434 * Returns 0 when data is equal, 1 otherwise.
435 */
436static inline int crypto_memneq(const void *a, const void *b, size_t size)
437{
438 return __crypto_memneq(a, b, size) != 0UL ? 1 : 0;
439}
440
441static inline void crypto_yield(u32 flags)
442{
443 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP)
444 cond_resched();
445}
446
447#endif /* _CRYPTO_ALGAPI_H */