Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This contains functions for filename crypto management
4 *
5 * Copyright (C) 2015, Google, Inc.
6 * Copyright (C) 2015, Motorola Mobility
7 *
8 * Written by Uday Savagaonkar, 2014.
9 * Modified by Jaegeuk Kim, 2015.
10 *
11 * This has not yet undergone a rigorous security audit.
12 */
13
14#include <linux/namei.h>
15#include <linux/scatterlist.h>
16#include <crypto/hash.h>
17#include <crypto/sha2.h>
18#include <crypto/skcipher.h>
19#include "fscrypt_private.h"
20
21/*
22 * The minimum message length (input and output length), in bytes, for all
23 * filenames encryption modes. Filenames shorter than this will be zero-padded
24 * before being encrypted.
25 */
26#define FSCRYPT_FNAME_MIN_MSG_LEN 16
27
28/*
29 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
30 *
31 * When userspace lists an encrypted directory without access to the key, the
32 * filesystem must present a unique "no-key name" for each filename that allows
33 * it to find the directory entry again if requested. Naively, that would just
34 * mean using the ciphertext filenames. However, since the ciphertext filenames
35 * can contain illegal characters ('\0' and '/'), they must be encoded in some
36 * way. We use base64url. But that can cause names to exceed NAME_MAX (255
37 * bytes), so we also need to use a strong hash to abbreviate long names.
38 *
39 * The filesystem may also need another kind of hash, the "dirhash", to quickly
40 * find the directory entry. Since filesystems normally compute the dirhash
41 * over the on-disk filename (i.e. the ciphertext), it's not computable from
42 * no-key names that abbreviate the ciphertext using the strong hash to fit in
43 * NAME_MAX. It's also not computable if it's a keyed hash taken over the
44 * plaintext (but it may still be available in the on-disk directory entry);
45 * casefolded directories use this type of dirhash. At least in these cases,
46 * each no-key name must include the name's dirhash too.
47 *
48 * To meet all these requirements, we base64url-encode the following
49 * variable-length structure. It contains the dirhash, or 0's if the filesystem
50 * didn't provide one; up to 149 bytes of the ciphertext name; and for
51 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
52 *
53 * This ensures that each no-key name contains everything needed to find the
54 * directory entry again, contains only legal characters, doesn't exceed
55 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
56 * take the performance hit of SHA-256 on very long filenames (which are rare).
57 */
58struct fscrypt_nokey_name {
59 u32 dirhash[2];
60 u8 bytes[149];
61 u8 sha256[SHA256_DIGEST_SIZE];
62}; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
63
64/*
65 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
66 * the strong hash and thus includes the 'sha256' field. This isn't simply
67 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
68 */
69#define FSCRYPT_NOKEY_NAME_MAX offsetofend(struct fscrypt_nokey_name, sha256)
70
71/* Encoded size of max-size no-key name */
72#define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
73 FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
74
75static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
76{
77 return is_dot_dotdot(str->name, str->len);
78}
79
80/**
81 * fscrypt_fname_encrypt() - encrypt a filename
82 * @inode: inode of the parent directory (for regular filenames)
83 * or of the symlink (for symlink targets). Key must already be
84 * set up.
85 * @iname: the filename to encrypt
86 * @out: (output) the encrypted filename
87 * @olen: size of the encrypted filename. It must be at least @iname->len.
88 * Any extra space is filled with NUL padding before encryption.
89 *
90 * Return: 0 on success, -errno on failure
91 */
92int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
93 u8 *out, unsigned int olen)
94{
95 struct skcipher_request *req = NULL;
96 DECLARE_CRYPTO_WAIT(wait);
97 const struct fscrypt_inode_info *ci = inode->i_crypt_info;
98 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
99 union fscrypt_iv iv;
100 struct scatterlist sg;
101 int res;
102
103 /*
104 * Copy the filename to the output buffer for encrypting in-place and
105 * pad it with the needed number of NUL bytes.
106 */
107 if (WARN_ON_ONCE(olen < iname->len))
108 return -ENOBUFS;
109 memcpy(out, iname->name, iname->len);
110 memset(out + iname->len, 0, olen - iname->len);
111
112 /* Initialize the IV */
113 fscrypt_generate_iv(&iv, 0, ci);
114
115 /* Set up the encryption request */
116 req = skcipher_request_alloc(tfm, GFP_NOFS);
117 if (!req)
118 return -ENOMEM;
119 skcipher_request_set_callback(req,
120 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
121 crypto_req_done, &wait);
122 sg_init_one(&sg, out, olen);
123 skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
124
125 /* Do the encryption */
126 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127 skcipher_request_free(req);
128 if (res < 0) {
129 fscrypt_err(inode, "Filename encryption failed: %d", res);
130 return res;
131 }
132
133 return 0;
134}
135EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
136
137/**
138 * fname_decrypt() - decrypt a filename
139 * @inode: inode of the parent directory (for regular filenames)
140 * or of the symlink (for symlink targets)
141 * @iname: the encrypted filename to decrypt
142 * @oname: (output) the decrypted filename. The caller must have allocated
143 * enough space for this, e.g. using fscrypt_fname_alloc_buffer().
144 *
145 * Return: 0 on success, -errno on failure
146 */
147static int fname_decrypt(const struct inode *inode,
148 const struct fscrypt_str *iname,
149 struct fscrypt_str *oname)
150{
151 struct skcipher_request *req = NULL;
152 DECLARE_CRYPTO_WAIT(wait);
153 struct scatterlist src_sg, dst_sg;
154 const struct fscrypt_inode_info *ci = inode->i_crypt_info;
155 struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
156 union fscrypt_iv iv;
157 int res;
158
159 /* Allocate request */
160 req = skcipher_request_alloc(tfm, GFP_NOFS);
161 if (!req)
162 return -ENOMEM;
163 skcipher_request_set_callback(req,
164 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
165 crypto_req_done, &wait);
166
167 /* Initialize IV */
168 fscrypt_generate_iv(&iv, 0, ci);
169
170 /* Create decryption request */
171 sg_init_one(&src_sg, iname->name, iname->len);
172 sg_init_one(&dst_sg, oname->name, oname->len);
173 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
174 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
175 skcipher_request_free(req);
176 if (res < 0) {
177 fscrypt_err(inode, "Filename decryption failed: %d", res);
178 return res;
179 }
180
181 oname->len = strnlen(oname->name, iname->len);
182 return 0;
183}
184
185static const char base64url_table[65] =
186 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
187
188#define FSCRYPT_BASE64URL_CHARS(nbytes) DIV_ROUND_UP((nbytes) * 4, 3)
189
190/**
191 * fscrypt_base64url_encode() - base64url-encode some binary data
192 * @src: the binary data to encode
193 * @srclen: the length of @src in bytes
194 * @dst: (output) the base64url-encoded string. Not NUL-terminated.
195 *
196 * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
197 * and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't used,
198 * as it's unneeded and not required by the RFC. base64url is used instead of
199 * base64 to avoid the '/' character, which isn't allowed in filenames.
200 *
201 * Return: the length of the resulting base64url-encoded string in bytes.
202 * This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
203 */
204static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
205{
206 u32 ac = 0;
207 int bits = 0;
208 int i;
209 char *cp = dst;
210
211 for (i = 0; i < srclen; i++) {
212 ac = (ac << 8) | src[i];
213 bits += 8;
214 do {
215 bits -= 6;
216 *cp++ = base64url_table[(ac >> bits) & 0x3f];
217 } while (bits >= 6);
218 }
219 if (bits)
220 *cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
221 return cp - dst;
222}
223
224/**
225 * fscrypt_base64url_decode() - base64url-decode a string
226 * @src: the string to decode. Doesn't need to be NUL-terminated.
227 * @srclen: the length of @src in bytes
228 * @dst: (output) the decoded binary data
229 *
230 * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
231 * URL and Filename Safe Alphabet" specified by RFC 4648. '='-padding isn't
232 * accepted, nor are non-encoding characters such as whitespace.
233 *
234 * This implementation hasn't been optimized for performance.
235 *
236 * Return: the length of the resulting decoded binary data in bytes,
237 * or -1 if the string isn't a valid base64url string.
238 */
239static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
240{
241 u32 ac = 0;
242 int bits = 0;
243 int i;
244 u8 *bp = dst;
245
246 for (i = 0; i < srclen; i++) {
247 const char *p = strchr(base64url_table, src[i]);
248
249 if (p == NULL || src[i] == 0)
250 return -1;
251 ac = (ac << 6) | (p - base64url_table);
252 bits += 6;
253 if (bits >= 8) {
254 bits -= 8;
255 *bp++ = (u8)(ac >> bits);
256 }
257 }
258 if (ac & ((1 << bits) - 1))
259 return -1;
260 return bp - dst;
261}
262
263bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
264 u32 orig_len, u32 max_len,
265 u32 *encrypted_len_ret)
266{
267 int padding = 4 << (fscrypt_policy_flags(policy) &
268 FSCRYPT_POLICY_FLAGS_PAD_MASK);
269 u32 encrypted_len;
270
271 if (orig_len > max_len)
272 return false;
273 encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
274 encrypted_len = round_up(encrypted_len, padding);
275 *encrypted_len_ret = min(encrypted_len, max_len);
276 return true;
277}
278
279/**
280 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
281 * @inode: parent inode of dentry name being encrypted. Key must
282 * already be set up.
283 * @orig_len: length of the original filename
284 * @max_len: maximum length to return
285 * @encrypted_len_ret: where calculated length should be returned (on success)
286 *
287 * Filenames that are shorter than the maximum length may have their lengths
288 * increased slightly by encryption, due to padding that is applied.
289 *
290 * Return: false if the orig_len is greater than max_len. Otherwise, true and
291 * fill out encrypted_len_ret with the length (up to max_len).
292 */
293bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
294 u32 max_len, u32 *encrypted_len_ret)
295{
296 return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
297 orig_len, max_len,
298 encrypted_len_ret);
299}
300EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
301
302/**
303 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
304 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
305 * used to present
306 * @crypto_str: (output) buffer to allocate
307 *
308 * Allocate a buffer that is large enough to hold any decrypted or encoded
309 * filename (null-terminated), for the given maximum encrypted filename length.
310 *
311 * Return: 0 on success, -errno on failure
312 */
313int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
314 struct fscrypt_str *crypto_str)
315{
316 u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
317 max_encrypted_len);
318
319 crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
320 if (!crypto_str->name)
321 return -ENOMEM;
322 crypto_str->len = max_presented_len;
323 return 0;
324}
325EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
326
327/**
328 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
329 * @crypto_str: the buffer to free
330 *
331 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
332 */
333void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
334{
335 if (!crypto_str)
336 return;
337 kfree(crypto_str->name);
338 crypto_str->name = NULL;
339}
340EXPORT_SYMBOL(fscrypt_fname_free_buffer);
341
342/**
343 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
344 * user-presentable form
345 * @inode: inode of the parent directory (for regular filenames)
346 * or of the symlink (for symlink targets)
347 * @hash: first part of the name's dirhash, if applicable. This only needs to
348 * be provided if the filename is located in an indexed directory whose
349 * encryption key may be unavailable. Not needed for symlink targets.
350 * @minor_hash: second part of the name's dirhash, if applicable
351 * @iname: encrypted filename to convert. May also be "." or "..", which
352 * aren't actually encrypted.
353 * @oname: output buffer for the user-presentable filename. The caller must
354 * have allocated enough space for this, e.g. using
355 * fscrypt_fname_alloc_buffer().
356 *
357 * If the key is available, we'll decrypt the disk name. Otherwise, we'll
358 * encode it for presentation in fscrypt_nokey_name format.
359 * See struct fscrypt_nokey_name for details.
360 *
361 * Return: 0 on success, -errno on failure
362 */
363int fscrypt_fname_disk_to_usr(const struct inode *inode,
364 u32 hash, u32 minor_hash,
365 const struct fscrypt_str *iname,
366 struct fscrypt_str *oname)
367{
368 const struct qstr qname = FSTR_TO_QSTR(iname);
369 struct fscrypt_nokey_name nokey_name;
370 u32 size; /* size of the unencoded no-key name */
371
372 if (fscrypt_is_dot_dotdot(&qname)) {
373 oname->name[0] = '.';
374 oname->name[iname->len - 1] = '.';
375 oname->len = iname->len;
376 return 0;
377 }
378
379 if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
380 return -EUCLEAN;
381
382 if (fscrypt_has_encryption_key(inode))
383 return fname_decrypt(inode, iname, oname);
384
385 /*
386 * Sanity check that struct fscrypt_nokey_name doesn't have padding
387 * between fields and that its encoded size never exceeds NAME_MAX.
388 */
389 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
390 offsetof(struct fscrypt_nokey_name, bytes));
391 BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
392 offsetof(struct fscrypt_nokey_name, sha256));
393 BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
394
395 nokey_name.dirhash[0] = hash;
396 nokey_name.dirhash[1] = minor_hash;
397
398 if (iname->len <= sizeof(nokey_name.bytes)) {
399 memcpy(nokey_name.bytes, iname->name, iname->len);
400 size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
401 } else {
402 memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
403 /* Compute strong hash of remaining part of name. */
404 sha256(&iname->name[sizeof(nokey_name.bytes)],
405 iname->len - sizeof(nokey_name.bytes),
406 nokey_name.sha256);
407 size = FSCRYPT_NOKEY_NAME_MAX;
408 }
409 oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
410 oname->name);
411 return 0;
412}
413EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
414
415/**
416 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
417 * @dir: the directory that will be searched
418 * @iname: the user-provided filename being searched for
419 * @lookup: 1 if we're allowed to proceed without the key because it's
420 * ->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
421 * proceed without the key because we're going to create the dir_entry.
422 * @fname: the filename information to be filled in
423 *
424 * Given a user-provided filename @iname, this function sets @fname->disk_name
425 * to the name that would be stored in the on-disk directory entry, if possible.
426 * If the directory is unencrypted this is simply @iname. Else, if we have the
427 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
428 * get the disk_name.
429 *
430 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
431 * decode it to get the struct fscrypt_nokey_name. Non-@lookup operations will
432 * be impossible in this case, so we fail them with ENOKEY.
433 *
434 * If successful, fscrypt_free_filename() must be called later to clean up.
435 *
436 * Return: 0 on success, -errno on failure
437 */
438int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
439 int lookup, struct fscrypt_name *fname)
440{
441 struct fscrypt_nokey_name *nokey_name;
442 int ret;
443
444 memset(fname, 0, sizeof(struct fscrypt_name));
445 fname->usr_fname = iname;
446
447 if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
448 fname->disk_name.name = (unsigned char *)iname->name;
449 fname->disk_name.len = iname->len;
450 return 0;
451 }
452 ret = fscrypt_get_encryption_info(dir, lookup);
453 if (ret)
454 return ret;
455
456 if (fscrypt_has_encryption_key(dir)) {
457 if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
458 &fname->crypto_buf.len))
459 return -ENAMETOOLONG;
460 fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
461 GFP_NOFS);
462 if (!fname->crypto_buf.name)
463 return -ENOMEM;
464
465 ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
466 fname->crypto_buf.len);
467 if (ret)
468 goto errout;
469 fname->disk_name.name = fname->crypto_buf.name;
470 fname->disk_name.len = fname->crypto_buf.len;
471 return 0;
472 }
473 if (!lookup)
474 return -ENOKEY;
475 fname->is_nokey_name = true;
476
477 /*
478 * We don't have the key and we are doing a lookup; decode the
479 * user-supplied name
480 */
481
482 if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
483 return -ENOENT;
484
485 fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
486 if (fname->crypto_buf.name == NULL)
487 return -ENOMEM;
488
489 ret = fscrypt_base64url_decode(iname->name, iname->len,
490 fname->crypto_buf.name);
491 if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
492 (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
493 ret != FSCRYPT_NOKEY_NAME_MAX)) {
494 ret = -ENOENT;
495 goto errout;
496 }
497 fname->crypto_buf.len = ret;
498
499 nokey_name = (void *)fname->crypto_buf.name;
500 fname->hash = nokey_name->dirhash[0];
501 fname->minor_hash = nokey_name->dirhash[1];
502 if (ret != FSCRYPT_NOKEY_NAME_MAX) {
503 /* The full ciphertext filename is available. */
504 fname->disk_name.name = nokey_name->bytes;
505 fname->disk_name.len =
506 ret - offsetof(struct fscrypt_nokey_name, bytes);
507 }
508 return 0;
509
510errout:
511 kfree(fname->crypto_buf.name);
512 return ret;
513}
514EXPORT_SYMBOL(fscrypt_setup_filename);
515
516/**
517 * fscrypt_match_name() - test whether the given name matches a directory entry
518 * @fname: the name being searched for
519 * @de_name: the name from the directory entry
520 * @de_name_len: the length of @de_name in bytes
521 *
522 * Normally @fname->disk_name will be set, and in that case we simply compare
523 * that to the name stored in the directory entry. The only exception is that
524 * if we don't have the key for an encrypted directory and the name we're
525 * looking for is very long, then we won't have the full disk_name and instead
526 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
527 *
528 * Return: %true if the name matches, otherwise %false.
529 */
530bool fscrypt_match_name(const struct fscrypt_name *fname,
531 const u8 *de_name, u32 de_name_len)
532{
533 const struct fscrypt_nokey_name *nokey_name =
534 (const void *)fname->crypto_buf.name;
535 u8 digest[SHA256_DIGEST_SIZE];
536
537 if (likely(fname->disk_name.name)) {
538 if (de_name_len != fname->disk_name.len)
539 return false;
540 return !memcmp(de_name, fname->disk_name.name, de_name_len);
541 }
542 if (de_name_len <= sizeof(nokey_name->bytes))
543 return false;
544 if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
545 return false;
546 sha256(&de_name[sizeof(nokey_name->bytes)],
547 de_name_len - sizeof(nokey_name->bytes), digest);
548 return !memcmp(digest, nokey_name->sha256, sizeof(digest));
549}
550EXPORT_SYMBOL_GPL(fscrypt_match_name);
551
552/**
553 * fscrypt_fname_siphash() - calculate the SipHash of a filename
554 * @dir: the parent directory
555 * @name: the filename to calculate the SipHash of
556 *
557 * Given a plaintext filename @name and a directory @dir which uses SipHash as
558 * its dirhash method and has had its fscrypt key set up, this function
559 * calculates the SipHash of that name using the directory's secret dirhash key.
560 *
561 * Return: the SipHash of @name using the hash key of @dir
562 */
563u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
564{
565 const struct fscrypt_inode_info *ci = dir->i_crypt_info;
566
567 WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
568
569 return siphash(name->name, name->len, &ci->ci_dirhash_key);
570}
571EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
572
573/*
574 * Validate dentries in encrypted directories to make sure we aren't potentially
575 * caching stale dentries after a key has been added.
576 */
577int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
578{
579 struct dentry *dir;
580 int err;
581 int valid;
582
583 /*
584 * Plaintext names are always valid, since fscrypt doesn't support
585 * reverting to no-key names without evicting the directory's inode
586 * -- which implies eviction of the dentries in the directory.
587 */
588 if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
589 return 1;
590
591 /*
592 * No-key name; valid if the directory's key is still unavailable.
593 *
594 * Although fscrypt forbids rename() on no-key names, we still must use
595 * dget_parent() here rather than use ->d_parent directly. That's
596 * because a corrupted fs image may contain directory hard links, which
597 * the VFS handles by moving the directory's dentry tree in the dcache
598 * each time ->lookup() finds the directory and it already has a dentry
599 * elsewhere. Thus ->d_parent can be changing, and we must safely grab
600 * a reference to some ->d_parent to prevent it from being freed.
601 */
602
603 if (flags & LOOKUP_RCU)
604 return -ECHILD;
605
606 dir = dget_parent(dentry);
607 /*
608 * Pass allow_unsupported=true, so that files with an unsupported
609 * encryption policy can be deleted.
610 */
611 err = fscrypt_get_encryption_info(d_inode(dir), true);
612 valid = !fscrypt_has_encryption_key(d_inode(dir));
613 dput(dir);
614
615 if (err < 0)
616 return err;
617
618 return valid;
619}
620EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);
1/*
2 * This contains functions for filename crypto management
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Uday Savagaonkar, 2014.
8 * Modified by Jaegeuk Kim, 2015.
9 *
10 * This has not yet undergone a rigorous security audit.
11 */
12
13#include <keys/encrypted-type.h>
14#include <keys/user-type.h>
15#include <linux/scatterlist.h>
16#include <linux/ratelimit.h>
17#include <linux/fscrypto.h>
18
19static u32 size_round_up(size_t size, size_t blksize)
20{
21 return ((size + blksize - 1) / blksize) * blksize;
22}
23
24/**
25 * dir_crypt_complete() -
26 */
27static void dir_crypt_complete(struct crypto_async_request *req, int res)
28{
29 struct fscrypt_completion_result *ecr = req->data;
30
31 if (res == -EINPROGRESS)
32 return;
33 ecr->res = res;
34 complete(&ecr->completion);
35}
36
37/**
38 * fname_encrypt() -
39 *
40 * This function encrypts the input filename, and returns the length of the
41 * ciphertext. Errors are returned as negative numbers. We trust the caller to
42 * allocate sufficient memory to oname string.
43 */
44static int fname_encrypt(struct inode *inode,
45 const struct qstr *iname, struct fscrypt_str *oname)
46{
47 u32 ciphertext_len;
48 struct skcipher_request *req = NULL;
49 DECLARE_FS_COMPLETION_RESULT(ecr);
50 struct fscrypt_info *ci = inode->i_crypt_info;
51 struct crypto_skcipher *tfm = ci->ci_ctfm;
52 int res = 0;
53 char iv[FS_CRYPTO_BLOCK_SIZE];
54 struct scatterlist src_sg, dst_sg;
55 int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
56 char *workbuf, buf[32], *alloc_buf = NULL;
57 unsigned lim;
58
59 lim = inode->i_sb->s_cop->max_namelen(inode);
60 if (iname->len <= 0 || iname->len > lim)
61 return -EIO;
62
63 ciphertext_len = (iname->len < FS_CRYPTO_BLOCK_SIZE) ?
64 FS_CRYPTO_BLOCK_SIZE : iname->len;
65 ciphertext_len = size_round_up(ciphertext_len, padding);
66 ciphertext_len = (ciphertext_len > lim) ? lim : ciphertext_len;
67
68 if (ciphertext_len <= sizeof(buf)) {
69 workbuf = buf;
70 } else {
71 alloc_buf = kmalloc(ciphertext_len, GFP_NOFS);
72 if (!alloc_buf)
73 return -ENOMEM;
74 workbuf = alloc_buf;
75 }
76
77 /* Allocate request */
78 req = skcipher_request_alloc(tfm, GFP_NOFS);
79 if (!req) {
80 printk_ratelimited(KERN_ERR
81 "%s: crypto_request_alloc() failed\n", __func__);
82 kfree(alloc_buf);
83 return -ENOMEM;
84 }
85 skcipher_request_set_callback(req,
86 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
87 dir_crypt_complete, &ecr);
88
89 /* Copy the input */
90 memcpy(workbuf, iname->name, iname->len);
91 if (iname->len < ciphertext_len)
92 memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
93
94 /* Initialize IV */
95 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
96
97 /* Create encryption request */
98 sg_init_one(&src_sg, workbuf, ciphertext_len);
99 sg_init_one(&dst_sg, oname->name, ciphertext_len);
100 skcipher_request_set_crypt(req, &src_sg, &dst_sg, ciphertext_len, iv);
101 res = crypto_skcipher_encrypt(req);
102 if (res == -EINPROGRESS || res == -EBUSY) {
103 wait_for_completion(&ecr.completion);
104 res = ecr.res;
105 }
106 kfree(alloc_buf);
107 skcipher_request_free(req);
108 if (res < 0)
109 printk_ratelimited(KERN_ERR
110 "%s: Error (error code %d)\n", __func__, res);
111
112 oname->len = ciphertext_len;
113 return res;
114}
115
116/*
117 * fname_decrypt()
118 * This function decrypts the input filename, and returns
119 * the length of the plaintext.
120 * Errors are returned as negative numbers.
121 * We trust the caller to allocate sufficient memory to oname string.
122 */
123static int fname_decrypt(struct inode *inode,
124 const struct fscrypt_str *iname,
125 struct fscrypt_str *oname)
126{
127 struct skcipher_request *req = NULL;
128 DECLARE_FS_COMPLETION_RESULT(ecr);
129 struct scatterlist src_sg, dst_sg;
130 struct fscrypt_info *ci = inode->i_crypt_info;
131 struct crypto_skcipher *tfm = ci->ci_ctfm;
132 int res = 0;
133 char iv[FS_CRYPTO_BLOCK_SIZE];
134 unsigned lim;
135
136 lim = inode->i_sb->s_cop->max_namelen(inode);
137 if (iname->len <= 0 || iname->len > lim)
138 return -EIO;
139
140 /* Allocate request */
141 req = skcipher_request_alloc(tfm, GFP_NOFS);
142 if (!req) {
143 printk_ratelimited(KERN_ERR
144 "%s: crypto_request_alloc() failed\n", __func__);
145 return -ENOMEM;
146 }
147 skcipher_request_set_callback(req,
148 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
149 dir_crypt_complete, &ecr);
150
151 /* Initialize IV */
152 memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
153
154 /* Create decryption request */
155 sg_init_one(&src_sg, iname->name, iname->len);
156 sg_init_one(&dst_sg, oname->name, oname->len);
157 skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
158 res = crypto_skcipher_decrypt(req);
159 if (res == -EINPROGRESS || res == -EBUSY) {
160 wait_for_completion(&ecr.completion);
161 res = ecr.res;
162 }
163 skcipher_request_free(req);
164 if (res < 0) {
165 printk_ratelimited(KERN_ERR
166 "%s: Error (error code %d)\n", __func__, res);
167 return res;
168 }
169
170 oname->len = strnlen(oname->name, iname->len);
171 return oname->len;
172}
173
174static const char *lookup_table =
175 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
176
177/**
178 * digest_encode() -
179 *
180 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
181 * The encoded string is roughly 4/3 times the size of the input string.
182 */
183static int digest_encode(const char *src, int len, char *dst)
184{
185 int i = 0, bits = 0, ac = 0;
186 char *cp = dst;
187
188 while (i < len) {
189 ac += (((unsigned char) src[i]) << bits);
190 bits += 8;
191 do {
192 *cp++ = lookup_table[ac & 0x3f];
193 ac >>= 6;
194 bits -= 6;
195 } while (bits >= 6);
196 i++;
197 }
198 if (bits)
199 *cp++ = lookup_table[ac & 0x3f];
200 return cp - dst;
201}
202
203static int digest_decode(const char *src, int len, char *dst)
204{
205 int i = 0, bits = 0, ac = 0;
206 const char *p;
207 char *cp = dst;
208
209 while (i < len) {
210 p = strchr(lookup_table, src[i]);
211 if (p == NULL || src[i] == 0)
212 return -2;
213 ac += (p - lookup_table) << bits;
214 bits += 6;
215 if (bits >= 8) {
216 *cp++ = ac & 0xff;
217 ac >>= 8;
218 bits -= 8;
219 }
220 i++;
221 }
222 if (ac)
223 return -1;
224 return cp - dst;
225}
226
227u32 fscrypt_fname_encrypted_size(struct inode *inode, u32 ilen)
228{
229 int padding = 32;
230 struct fscrypt_info *ci = inode->i_crypt_info;
231
232 if (ci)
233 padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
234 if (ilen < FS_CRYPTO_BLOCK_SIZE)
235 ilen = FS_CRYPTO_BLOCK_SIZE;
236 return size_round_up(ilen, padding);
237}
238EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
239
240/**
241 * fscrypt_fname_crypto_alloc_obuff() -
242 *
243 * Allocates an output buffer that is sufficient for the crypto operation
244 * specified by the context and the direction.
245 */
246int fscrypt_fname_alloc_buffer(struct inode *inode,
247 u32 ilen, struct fscrypt_str *crypto_str)
248{
249 unsigned int olen = fscrypt_fname_encrypted_size(inode, ilen);
250
251 crypto_str->len = olen;
252 if (olen < FS_FNAME_CRYPTO_DIGEST_SIZE * 2)
253 olen = FS_FNAME_CRYPTO_DIGEST_SIZE * 2;
254 /*
255 * Allocated buffer can hold one more character to null-terminate the
256 * string
257 */
258 crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
259 if (!(crypto_str->name))
260 return -ENOMEM;
261 return 0;
262}
263EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
264
265/**
266 * fscrypt_fname_crypto_free_buffer() -
267 *
268 * Frees the buffer allocated for crypto operation.
269 */
270void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
271{
272 if (!crypto_str)
273 return;
274 kfree(crypto_str->name);
275 crypto_str->name = NULL;
276}
277EXPORT_SYMBOL(fscrypt_fname_free_buffer);
278
279/**
280 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
281 * space
282 */
283int fscrypt_fname_disk_to_usr(struct inode *inode,
284 u32 hash, u32 minor_hash,
285 const struct fscrypt_str *iname,
286 struct fscrypt_str *oname)
287{
288 const struct qstr qname = FSTR_TO_QSTR(iname);
289 char buf[24];
290 int ret;
291
292 if (fscrypt_is_dot_dotdot(&qname)) {
293 oname->name[0] = '.';
294 oname->name[iname->len - 1] = '.';
295 oname->len = iname->len;
296 return oname->len;
297 }
298
299 if (iname->len < FS_CRYPTO_BLOCK_SIZE)
300 return -EUCLEAN;
301
302 if (inode->i_crypt_info)
303 return fname_decrypt(inode, iname, oname);
304
305 if (iname->len <= FS_FNAME_CRYPTO_DIGEST_SIZE) {
306 ret = digest_encode(iname->name, iname->len, oname->name);
307 oname->len = ret;
308 return ret;
309 }
310 if (hash) {
311 memcpy(buf, &hash, 4);
312 memcpy(buf + 4, &minor_hash, 4);
313 } else {
314 memset(buf, 0, 8);
315 }
316 memcpy(buf + 8, iname->name + iname->len - 16, 16);
317 oname->name[0] = '_';
318 ret = digest_encode(buf, 24, oname->name + 1);
319 oname->len = ret + 1;
320 return ret + 1;
321}
322EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
323
324/**
325 * fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
326 * space
327 */
328int fscrypt_fname_usr_to_disk(struct inode *inode,
329 const struct qstr *iname,
330 struct fscrypt_str *oname)
331{
332 if (fscrypt_is_dot_dotdot(iname)) {
333 oname->name[0] = '.';
334 oname->name[iname->len - 1] = '.';
335 oname->len = iname->len;
336 return oname->len;
337 }
338 if (inode->i_crypt_info)
339 return fname_encrypt(inode, iname, oname);
340 /*
341 * Without a proper key, a user is not allowed to modify the filenames
342 * in a directory. Consequently, a user space name cannot be mapped to
343 * a disk-space name
344 */
345 return -EACCES;
346}
347EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
348
349int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
350 int lookup, struct fscrypt_name *fname)
351{
352 int ret = 0, bigname = 0;
353
354 memset(fname, 0, sizeof(struct fscrypt_name));
355 fname->usr_fname = iname;
356
357 if (!dir->i_sb->s_cop->is_encrypted(dir) ||
358 fscrypt_is_dot_dotdot(iname)) {
359 fname->disk_name.name = (unsigned char *)iname->name;
360 fname->disk_name.len = iname->len;
361 return 0;
362 }
363 ret = get_crypt_info(dir);
364 if (ret && ret != -EOPNOTSUPP)
365 return ret;
366
367 if (dir->i_crypt_info) {
368 ret = fscrypt_fname_alloc_buffer(dir, iname->len,
369 &fname->crypto_buf);
370 if (ret < 0)
371 return ret;
372 ret = fname_encrypt(dir, iname, &fname->crypto_buf);
373 if (ret < 0)
374 goto errout;
375 fname->disk_name.name = fname->crypto_buf.name;
376 fname->disk_name.len = fname->crypto_buf.len;
377 return 0;
378 }
379 if (!lookup)
380 return -EACCES;
381
382 /*
383 * We don't have the key and we are doing a lookup; decode the
384 * user-supplied name
385 */
386 if (iname->name[0] == '_')
387 bigname = 1;
388 if ((bigname && (iname->len != 33)) || (!bigname && (iname->len > 43)))
389 return -ENOENT;
390
391 fname->crypto_buf.name = kmalloc(32, GFP_KERNEL);
392 if (fname->crypto_buf.name == NULL)
393 return -ENOMEM;
394
395 ret = digest_decode(iname->name + bigname, iname->len - bigname,
396 fname->crypto_buf.name);
397 if (ret < 0) {
398 ret = -ENOENT;
399 goto errout;
400 }
401 fname->crypto_buf.len = ret;
402 if (bigname) {
403 memcpy(&fname->hash, fname->crypto_buf.name, 4);
404 memcpy(&fname->minor_hash, fname->crypto_buf.name + 4, 4);
405 } else {
406 fname->disk_name.name = fname->crypto_buf.name;
407 fname->disk_name.len = fname->crypto_buf.len;
408 }
409 return 0;
410
411errout:
412 fscrypt_fname_free_buffer(&fname->crypto_buf);
413 return ret;
414}
415EXPORT_SYMBOL(fscrypt_setup_filename);
416
417void fscrypt_free_filename(struct fscrypt_name *fname)
418{
419 kfree(fname->crypto_buf.name);
420 fname->crypto_buf.name = NULL;
421 fname->usr_fname = NULL;
422 fname->disk_name.name = NULL;
423}
424EXPORT_SYMBOL(fscrypt_free_filename);