Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This contains functions for filename crypto management
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Uday Savagaonkar, 2014.
  9 * Modified by Jaegeuk Kim, 2015.
 10 *
 11 * This has not yet undergone a rigorous security audit.
 12 */
 13
 14#include <linux/namei.h>
 
 15#include <linux/scatterlist.h>
 16#include <crypto/hash.h>
 17#include <crypto/sha2.h>
 18#include <crypto/skcipher.h>
 19#include "fscrypt_private.h"
 20
 21/*
 22 * The minimum message length (input and output length), in bytes, for all
 23 * filenames encryption modes.  Filenames shorter than this will be zero-padded
 24 * before being encrypted.
 25 */
 26#define FSCRYPT_FNAME_MIN_MSG_LEN 16
 27
 28/*
 29 * struct fscrypt_nokey_name - identifier for directory entry when key is absent
 30 *
 31 * When userspace lists an encrypted directory without access to the key, the
 32 * filesystem must present a unique "no-key name" for each filename that allows
 33 * it to find the directory entry again if requested.  Naively, that would just
 34 * mean using the ciphertext filenames.  However, since the ciphertext filenames
 35 * can contain illegal characters ('\0' and '/'), they must be encoded in some
 36 * way.  We use base64url.  But that can cause names to exceed NAME_MAX (255
 37 * bytes), so we also need to use a strong hash to abbreviate long names.
 38 *
 39 * The filesystem may also need another kind of hash, the "dirhash", to quickly
 40 * find the directory entry.  Since filesystems normally compute the dirhash
 41 * over the on-disk filename (i.e. the ciphertext), it's not computable from
 42 * no-key names that abbreviate the ciphertext using the strong hash to fit in
 43 * NAME_MAX.  It's also not computable if it's a keyed hash taken over the
 44 * plaintext (but it may still be available in the on-disk directory entry);
 45 * casefolded directories use this type of dirhash.  At least in these cases,
 46 * each no-key name must include the name's dirhash too.
 47 *
 48 * To meet all these requirements, we base64url-encode the following
 49 * variable-length structure.  It contains the dirhash, or 0's if the filesystem
 50 * didn't provide one; up to 149 bytes of the ciphertext name; and for
 51 * ciphertexts longer than 149 bytes, also the SHA-256 of the remaining bytes.
 52 *
 53 * This ensures that each no-key name contains everything needed to find the
 54 * directory entry again, contains only legal characters, doesn't exceed
 55 * NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only
 56 * take the performance hit of SHA-256 on very long filenames (which are rare).
 57 */
 58struct fscrypt_nokey_name {
 59	u32 dirhash[2];
 60	u8 bytes[149];
 61	u8 sha256[SHA256_DIGEST_SIZE];
 62}; /* 189 bytes => 252 bytes base64url-encoded, which is <= NAME_MAX (255) */
 63
 64/*
 65 * Decoded size of max-size no-key name, i.e. a name that was abbreviated using
 66 * the strong hash and thus includes the 'sha256' field.  This isn't simply
 67 * sizeof(struct fscrypt_nokey_name), as the padding at the end isn't included.
 68 */
 69#define FSCRYPT_NOKEY_NAME_MAX	offsetofend(struct fscrypt_nokey_name, sha256)
 70
 71/* Encoded size of max-size no-key name */
 72#define FSCRYPT_NOKEY_NAME_MAX_ENCODED \
 73		FSCRYPT_BASE64URL_CHARS(FSCRYPT_NOKEY_NAME_MAX)
 74
 75static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
 76{
 77	return is_dot_dotdot(str->name, str->len);
 
 
 
 
 
 78}
 79
 80/**
 81 * fscrypt_fname_encrypt() - encrypt a filename
 82 * @inode: inode of the parent directory (for regular filenames)
 83 *	   or of the symlink (for symlink targets). Key must already be
 84 *	   set up.
 85 * @iname: the filename to encrypt
 86 * @out: (output) the encrypted filename
 87 * @olen: size of the encrypted filename.  It must be at least @iname->len.
 88 *	  Any extra space is filled with NUL padding before encryption.
 89 *
 90 * Return: 0 on success, -errno on failure
 
 
 91 */
 92int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
 93			  u8 *out, unsigned int olen)
 94{
 
 95	struct skcipher_request *req = NULL;
 96	DECLARE_CRYPTO_WAIT(wait);
 97	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
 98	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 99	union fscrypt_iv iv;
100	struct scatterlist sg;
101	int res;
102
103	/*
104	 * Copy the filename to the output buffer for encrypting in-place and
105	 * pad it with the needed number of NUL bytes.
106	 */
107	if (WARN_ON_ONCE(olen < iname->len))
108		return -ENOBUFS;
109	memcpy(out, iname->name, iname->len);
110	memset(out + iname->len, 0, olen - iname->len);
 
 
 
111
112	/* Initialize the IV */
113	fscrypt_generate_iv(&iv, 0, ci);
 
 
 
 
 
 
114
115	/* Set up the encryption request */
116	req = skcipher_request_alloc(tfm, GFP_NOFS);
117	if (!req)
 
 
 
118		return -ENOMEM;
 
119	skcipher_request_set_callback(req,
120			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
121			crypto_req_done, &wait);
122	sg_init_one(&sg, out, olen);
123	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
124
125	/* Do the encryption */
126	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
127	skcipher_request_free(req);
128	if (res < 0) {
129		fscrypt_err(inode, "Filename encryption failed: %d", res);
130		return res;
 
 
 
 
 
 
 
 
 
 
131	}
 
 
 
 
 
132
133	return 0;
 
134}
135EXPORT_SYMBOL_GPL(fscrypt_fname_encrypt);
136
137/**
138 * fname_decrypt() - decrypt a filename
139 * @inode: inode of the parent directory (for regular filenames)
140 *	   or of the symlink (for symlink targets)
141 * @iname: the encrypted filename to decrypt
142 * @oname: (output) the decrypted filename.  The caller must have allocated
143 *	   enough space for this, e.g. using fscrypt_fname_alloc_buffer().
144 *
145 * Return: 0 on success, -errno on failure
146 */
147static int fname_decrypt(const struct inode *inode,
148			 const struct fscrypt_str *iname,
149			 struct fscrypt_str *oname)
150{
151	struct skcipher_request *req = NULL;
152	DECLARE_CRYPTO_WAIT(wait);
153	struct scatterlist src_sg, dst_sg;
154	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
155	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
156	union fscrypt_iv iv;
157	int res;
 
 
 
 
 
158
159	/* Allocate request */
160	req = skcipher_request_alloc(tfm, GFP_NOFS);
161	if (!req)
 
 
162		return -ENOMEM;
 
163	skcipher_request_set_callback(req,
164		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
165		crypto_req_done, &wait);
166
167	/* Initialize IV */
168	fscrypt_generate_iv(&iv, 0, ci);
169
170	/* Create decryption request */
171	sg_init_one(&src_sg, iname->name, iname->len);
172	sg_init_one(&dst_sg, oname->name, oname->len);
173	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
174	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
 
 
 
 
175	skcipher_request_free(req);
176	if (res < 0) {
177		fscrypt_err(inode, "Filename decryption failed: %d", res);
 
178		return res;
179	}
180
181	oname->len = strnlen(oname->name, iname->len);
182	return 0;
183}
184
185static const char base64url_table[65] =
186	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
187
188#define FSCRYPT_BASE64URL_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
189
190/**
191 * fscrypt_base64url_encode() - base64url-encode some binary data
192 * @src: the binary data to encode
193 * @srclen: the length of @src in bytes
194 * @dst: (output) the base64url-encoded string.  Not NUL-terminated.
195 *
196 * Encodes data using base64url encoding, i.e. the "Base 64 Encoding with URL
197 * and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't used,
198 * as it's unneeded and not required by the RFC.  base64url is used instead of
199 * base64 to avoid the '/' character, which isn't allowed in filenames.
200 *
201 * Return: the length of the resulting base64url-encoded string in bytes.
202 *	   This will be equal to FSCRYPT_BASE64URL_CHARS(srclen).
203 */
204static int fscrypt_base64url_encode(const u8 *src, int srclen, char *dst)
205{
206	u32 ac = 0;
207	int bits = 0;
208	int i;
209	char *cp = dst;
210
211	for (i = 0; i < srclen; i++) {
212		ac = (ac << 8) | src[i];
213		bits += 8;
214		do {
 
 
215			bits -= 6;
216			*cp++ = base64url_table[(ac >> bits) & 0x3f];
217		} while (bits >= 6);
 
218	}
219	if (bits)
220		*cp++ = base64url_table[(ac << (6 - bits)) & 0x3f];
221	return cp - dst;
222}
223
224/**
225 * fscrypt_base64url_decode() - base64url-decode a string
226 * @src: the string to decode.  Doesn't need to be NUL-terminated.
227 * @srclen: the length of @src in bytes
228 * @dst: (output) the decoded binary data
229 *
230 * Decodes a string using base64url encoding, i.e. the "Base 64 Encoding with
231 * URL and Filename Safe Alphabet" specified by RFC 4648.  '='-padding isn't
232 * accepted, nor are non-encoding characters such as whitespace.
233 *
234 * This implementation hasn't been optimized for performance.
235 *
236 * Return: the length of the resulting decoded binary data in bytes,
237 *	   or -1 if the string isn't a valid base64url string.
238 */
239static int fscrypt_base64url_decode(const char *src, int srclen, u8 *dst)
240{
241	u32 ac = 0;
242	int bits = 0;
243	int i;
244	u8 *bp = dst;
245
246	for (i = 0; i < srclen; i++) {
247		const char *p = strchr(base64url_table, src[i]);
248
 
 
249		if (p == NULL || src[i] == 0)
250			return -1;
251		ac = (ac << 6) | (p - base64url_table);
252		bits += 6;
253		if (bits >= 8) {
 
 
254			bits -= 8;
255			*bp++ = (u8)(ac >> bits);
256		}
 
257	}
258	if (ac & ((1 << bits) - 1))
259		return -1;
260	return bp - dst;
261}
262
263bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
264				    u32 orig_len, u32 max_len,
265				    u32 *encrypted_len_ret)
266{
267	int padding = 4 << (fscrypt_policy_flags(policy) &
268			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
269	u32 encrypted_len;
270
271	if (orig_len > max_len)
272		return false;
273	encrypted_len = max_t(u32, orig_len, FSCRYPT_FNAME_MIN_MSG_LEN);
274	encrypted_len = round_up(encrypted_len, padding);
275	*encrypted_len_ret = min(encrypted_len, max_len);
276	return true;
277}
278
279/**
280 * fscrypt_fname_encrypted_size() - calculate length of encrypted filename
281 * @inode:		parent inode of dentry name being encrypted. Key must
282 *			already be set up.
283 * @orig_len:		length of the original filename
284 * @max_len:		maximum length to return
285 * @encrypted_len_ret:	where calculated length should be returned (on success)
286 *
287 * Filenames that are shorter than the maximum length may have their lengths
288 * increased slightly by encryption, due to padding that is applied.
289 *
290 * Return: false if the orig_len is greater than max_len. Otherwise, true and
291 *	   fill out encrypted_len_ret with the length (up to max_len).
292 */
293bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
294				  u32 max_len, u32 *encrypted_len_ret)
295{
296	return __fscrypt_fname_encrypted_size(&inode->i_crypt_info->ci_policy,
297					      orig_len, max_len,
298					      encrypted_len_ret);
 
 
 
 
 
299}
300EXPORT_SYMBOL_GPL(fscrypt_fname_encrypted_size);
301
302/**
303 * fscrypt_fname_alloc_buffer() - allocate a buffer for presented filenames
304 * @max_encrypted_len: maximum length of encrypted filenames the buffer will be
305 *		       used to present
306 * @crypto_str: (output) buffer to allocate
307 *
308 * Allocate a buffer that is large enough to hold any decrypted or encoded
309 * filename (null-terminated), for the given maximum encrypted filename length.
310 *
311 * Return: 0 on success, -errno on failure
 
312 */
313int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
314			       struct fscrypt_str *crypto_str)
315{
316	u32 max_presented_len = max_t(u32, FSCRYPT_NOKEY_NAME_MAX_ENCODED,
317				      max_encrypted_len);
318
319	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
320	if (!crypto_str->name)
 
 
 
 
 
 
 
321		return -ENOMEM;
322	crypto_str->len = max_presented_len;
323	return 0;
324}
325EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
326
327/**
328 * fscrypt_fname_free_buffer() - free a buffer for presented filenames
329 * @crypto_str: the buffer to free
330 *
331 * Free a buffer that was allocated by fscrypt_fname_alloc_buffer().
332 */
333void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
334{
335	if (!crypto_str)
336		return;
337	kfree(crypto_str->name);
338	crypto_str->name = NULL;
339}
340EXPORT_SYMBOL(fscrypt_fname_free_buffer);
341
342/**
343 * fscrypt_fname_disk_to_usr() - convert an encrypted filename to
344 *				 user-presentable form
345 * @inode: inode of the parent directory (for regular filenames)
346 *	   or of the symlink (for symlink targets)
347 * @hash: first part of the name's dirhash, if applicable.  This only needs to
348 *	  be provided if the filename is located in an indexed directory whose
349 *	  encryption key may be unavailable.  Not needed for symlink targets.
350 * @minor_hash: second part of the name's dirhash, if applicable
351 * @iname: encrypted filename to convert.  May also be "." or "..", which
352 *	   aren't actually encrypted.
353 * @oname: output buffer for the user-presentable filename.  The caller must
354 *	   have allocated enough space for this, e.g. using
355 *	   fscrypt_fname_alloc_buffer().
356 *
357 * If the key is available, we'll decrypt the disk name.  Otherwise, we'll
358 * encode it for presentation in fscrypt_nokey_name format.
359 * See struct fscrypt_nokey_name for details.
360 *
361 * Return: 0 on success, -errno on failure
362 */
363int fscrypt_fname_disk_to_usr(const struct inode *inode,
364			      u32 hash, u32 minor_hash,
365			      const struct fscrypt_str *iname,
366			      struct fscrypt_str *oname)
367{
368	const struct qstr qname = FSTR_TO_QSTR(iname);
369	struct fscrypt_nokey_name nokey_name;
370	u32 size; /* size of the unencoded no-key name */
371
372	if (fscrypt_is_dot_dotdot(&qname)) {
373		oname->name[0] = '.';
374		oname->name[iname->len - 1] = '.';
375		oname->len = iname->len;
376		return 0;
377	}
378
379	if (iname->len < FSCRYPT_FNAME_MIN_MSG_LEN)
380		return -EUCLEAN;
381
382	if (fscrypt_has_encryption_key(inode))
383		return fname_decrypt(inode, iname, oname);
384
385	/*
386	 * Sanity check that struct fscrypt_nokey_name doesn't have padding
387	 * between fields and that its encoded size never exceeds NAME_MAX.
388	 */
389	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, dirhash) !=
390		     offsetof(struct fscrypt_nokey_name, bytes));
391	BUILD_BUG_ON(offsetofend(struct fscrypt_nokey_name, bytes) !=
392		     offsetof(struct fscrypt_nokey_name, sha256));
393	BUILD_BUG_ON(FSCRYPT_NOKEY_NAME_MAX_ENCODED > NAME_MAX);
394
395	nokey_name.dirhash[0] = hash;
396	nokey_name.dirhash[1] = minor_hash;
397
398	if (iname->len <= sizeof(nokey_name.bytes)) {
399		memcpy(nokey_name.bytes, iname->name, iname->len);
400		size = offsetof(struct fscrypt_nokey_name, bytes[iname->len]);
401	} else {
402		memcpy(nokey_name.bytes, iname->name, sizeof(nokey_name.bytes));
403		/* Compute strong hash of remaining part of name. */
404		sha256(&iname->name[sizeof(nokey_name.bytes)],
405		       iname->len - sizeof(nokey_name.bytes),
406		       nokey_name.sha256);
407		size = FSCRYPT_NOKEY_NAME_MAX;
408	}
409	oname->len = fscrypt_base64url_encode((const u8 *)&nokey_name, size,
410					      oname->name);
411	return 0;
 
 
412}
413EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
414
415/**
416 * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
417 * @dir: the directory that will be searched
418 * @iname: the user-provided filename being searched for
419 * @lookup: 1 if we're allowed to proceed without the key because it's
420 *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
421 *	proceed without the key because we're going to create the dir_entry.
422 * @fname: the filename information to be filled in
423 *
424 * Given a user-provided filename @iname, this function sets @fname->disk_name
425 * to the name that would be stored in the on-disk directory entry, if possible.
426 * If the directory is unencrypted this is simply @iname.  Else, if we have the
427 * directory's encryption key, then @iname is the plaintext, so we encrypt it to
428 * get the disk_name.
429 *
430 * Else, for keyless @lookup operations, @iname should be a no-key name, so we
431 * decode it to get the struct fscrypt_nokey_name.  Non-@lookup operations will
432 * be impossible in this case, so we fail them with ENOKEY.
433 *
434 * If successful, fscrypt_free_filename() must be called later to clean up.
435 *
436 * Return: 0 on success, -errno on failure
437 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
439			      int lookup, struct fscrypt_name *fname)
440{
441	struct fscrypt_nokey_name *nokey_name;
442	int ret;
443
444	memset(fname, 0, sizeof(struct fscrypt_name));
445	fname->usr_fname = iname;
446
447	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
 
448		fname->disk_name.name = (unsigned char *)iname->name;
449		fname->disk_name.len = iname->len;
450		return 0;
451	}
452	ret = fscrypt_get_encryption_info(dir, lookup);
453	if (ret)
454		return ret;
455
456	if (fscrypt_has_encryption_key(dir)) {
457		if (!fscrypt_fname_encrypted_size(dir, iname->len, NAME_MAX,
458						  &fname->crypto_buf.len))
459			return -ENAMETOOLONG;
460		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
461						 GFP_NOFS);
462		if (!fname->crypto_buf.name)
463			return -ENOMEM;
464
465		ret = fscrypt_fname_encrypt(dir, iname, fname->crypto_buf.name,
466					    fname->crypto_buf.len);
467		if (ret)
468			goto errout;
469		fname->disk_name.name = fname->crypto_buf.name;
470		fname->disk_name.len = fname->crypto_buf.len;
471		return 0;
472	}
473	if (!lookup)
474		return -ENOKEY;
475	fname->is_nokey_name = true;
476
477	/*
478	 * We don't have the key and we are doing a lookup; decode the
479	 * user-supplied name
480	 */
481
482	if (iname->len > FSCRYPT_NOKEY_NAME_MAX_ENCODED)
 
483		return -ENOENT;
484
485	fname->crypto_buf.name = kmalloc(FSCRYPT_NOKEY_NAME_MAX, GFP_KERNEL);
486	if (fname->crypto_buf.name == NULL)
487		return -ENOMEM;
488
489	ret = fscrypt_base64url_decode(iname->name, iname->len,
490				       fname->crypto_buf.name);
491	if (ret < (int)offsetof(struct fscrypt_nokey_name, bytes[1]) ||
492	    (ret > offsetof(struct fscrypt_nokey_name, sha256) &&
493	     ret != FSCRYPT_NOKEY_NAME_MAX)) {
494		ret = -ENOENT;
495		goto errout;
496	}
497	fname->crypto_buf.len = ret;
498
499	nokey_name = (void *)fname->crypto_buf.name;
500	fname->hash = nokey_name->dirhash[0];
501	fname->minor_hash = nokey_name->dirhash[1];
502	if (ret != FSCRYPT_NOKEY_NAME_MAX) {
503		/* The full ciphertext filename is available. */
504		fname->disk_name.name = nokey_name->bytes;
505		fname->disk_name.len =
506			ret - offsetof(struct fscrypt_nokey_name, bytes);
507	}
508	return 0;
509
510errout:
511	kfree(fname->crypto_buf.name);
512	return ret;
513}
514EXPORT_SYMBOL(fscrypt_setup_filename);
515
516/**
517 * fscrypt_match_name() - test whether the given name matches a directory entry
518 * @fname: the name being searched for
519 * @de_name: the name from the directory entry
520 * @de_name_len: the length of @de_name in bytes
521 *
522 * Normally @fname->disk_name will be set, and in that case we simply compare
523 * that to the name stored in the directory entry.  The only exception is that
524 * if we don't have the key for an encrypted directory and the name we're
525 * looking for is very long, then we won't have the full disk_name and instead
526 * we'll need to match against a fscrypt_nokey_name that includes a strong hash.
527 *
528 * Return: %true if the name matches, otherwise %false.
529 */
530bool fscrypt_match_name(const struct fscrypt_name *fname,
531			const u8 *de_name, u32 de_name_len)
532{
533	const struct fscrypt_nokey_name *nokey_name =
534		(const void *)fname->crypto_buf.name;
535	u8 digest[SHA256_DIGEST_SIZE];
536
537	if (likely(fname->disk_name.name)) {
538		if (de_name_len != fname->disk_name.len)
539			return false;
540		return !memcmp(de_name, fname->disk_name.name, de_name_len);
541	}
542	if (de_name_len <= sizeof(nokey_name->bytes))
543		return false;
544	if (memcmp(de_name, nokey_name->bytes, sizeof(nokey_name->bytes)))
545		return false;
546	sha256(&de_name[sizeof(nokey_name->bytes)],
547	       de_name_len - sizeof(nokey_name->bytes), digest);
548	return !memcmp(digest, nokey_name->sha256, sizeof(digest));
549}
550EXPORT_SYMBOL_GPL(fscrypt_match_name);
551
552/**
553 * fscrypt_fname_siphash() - calculate the SipHash of a filename
554 * @dir: the parent directory
555 * @name: the filename to calculate the SipHash of
556 *
557 * Given a plaintext filename @name and a directory @dir which uses SipHash as
558 * its dirhash method and has had its fscrypt key set up, this function
559 * calculates the SipHash of that name using the directory's secret dirhash key.
560 *
561 * Return: the SipHash of @name using the hash key of @dir
562 */
563u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name)
564{
565	const struct fscrypt_inode_info *ci = dir->i_crypt_info;
566
567	WARN_ON_ONCE(!ci->ci_dirhash_key_initialized);
568
569	return siphash(name->name, name->len, &ci->ci_dirhash_key);
570}
571EXPORT_SYMBOL_GPL(fscrypt_fname_siphash);
572
573/*
574 * Validate dentries in encrypted directories to make sure we aren't potentially
575 * caching stale dentries after a key has been added.
576 */
577int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
578{
579	struct dentry *dir;
580	int err;
581	int valid;
582
583	/*
584	 * Plaintext names are always valid, since fscrypt doesn't support
585	 * reverting to no-key names without evicting the directory's inode
586	 * -- which implies eviction of the dentries in the directory.
587	 */
588	if (!(dentry->d_flags & DCACHE_NOKEY_NAME))
589		return 1;
590
591	/*
592	 * No-key name; valid if the directory's key is still unavailable.
593	 *
594	 * Although fscrypt forbids rename() on no-key names, we still must use
595	 * dget_parent() here rather than use ->d_parent directly.  That's
596	 * because a corrupted fs image may contain directory hard links, which
597	 * the VFS handles by moving the directory's dentry tree in the dcache
598	 * each time ->lookup() finds the directory and it already has a dentry
599	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
600	 * a reference to some ->d_parent to prevent it from being freed.
601	 */
602
603	if (flags & LOOKUP_RCU)
604		return -ECHILD;
605
606	dir = dget_parent(dentry);
607	/*
608	 * Pass allow_unsupported=true, so that files with an unsupported
609	 * encryption policy can be deleted.
610	 */
611	err = fscrypt_get_encryption_info(d_inode(dir), true);
612	valid = !fscrypt_has_encryption_key(d_inode(dir));
613	dput(dir);
614
615	if (err < 0)
616		return err;
617
618	return valid;
619}
620EXPORT_SYMBOL_GPL(fscrypt_d_revalidate);
v4.6
 
  1/*
  2 * This contains functions for filename crypto management
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Uday Savagaonkar, 2014.
  8 * Modified by Jaegeuk Kim, 2015.
  9 *
 10 * This has not yet undergone a rigorous security audit.
 11 */
 12
 13#include <keys/encrypted-type.h>
 14#include <keys/user-type.h>
 15#include <linux/scatterlist.h>
 16#include <linux/ratelimit.h>
 17#include <linux/fscrypto.h>
 
 
 18
 19static u32 size_round_up(size_t size, size_t blksize)
 20{
 21	return ((size + blksize - 1) / blksize) * blksize;
 22}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24/**
 25 * dir_crypt_complete() -
 
 
 26 */
 27static void dir_crypt_complete(struct crypto_async_request *req, int res)
 
 
 
 
 
 
 28{
 29	struct fscrypt_completion_result *ecr = req->data;
 30
 31	if (res == -EINPROGRESS)
 32		return;
 33	ecr->res = res;
 34	complete(&ecr->completion);
 35}
 36
 37/**
 38 * fname_encrypt() -
 
 
 
 
 
 
 
 39 *
 40 * This function encrypts the input filename, and returns the length of the
 41 * ciphertext. Errors are returned as negative numbers.  We trust the caller to
 42 * allocate sufficient memory to oname string.
 43 */
 44static int fname_encrypt(struct inode *inode,
 45			const struct qstr *iname, struct fscrypt_str *oname)
 46{
 47	u32 ciphertext_len;
 48	struct skcipher_request *req = NULL;
 49	DECLARE_FS_COMPLETION_RESULT(ecr);
 50	struct fscrypt_info *ci = inode->i_crypt_info;
 51	struct crypto_skcipher *tfm = ci->ci_ctfm;
 52	int res = 0;
 53	char iv[FS_CRYPTO_BLOCK_SIZE];
 54	struct scatterlist src_sg, dst_sg;
 55	int padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
 56	char *workbuf, buf[32], *alloc_buf = NULL;
 57	unsigned lim;
 58
 59	lim = inode->i_sb->s_cop->max_namelen(inode);
 60	if (iname->len <= 0 || iname->len > lim)
 61		return -EIO;
 62
 63	ciphertext_len = (iname->len < FS_CRYPTO_BLOCK_SIZE) ?
 64					FS_CRYPTO_BLOCK_SIZE : iname->len;
 65	ciphertext_len = size_round_up(ciphertext_len, padding);
 66	ciphertext_len = (ciphertext_len > lim) ? lim : ciphertext_len;
 67
 68	if (ciphertext_len <= sizeof(buf)) {
 69		workbuf = buf;
 70	} else {
 71		alloc_buf = kmalloc(ciphertext_len, GFP_NOFS);
 72		if (!alloc_buf)
 73			return -ENOMEM;
 74		workbuf = alloc_buf;
 75	}
 76
 77	/* Allocate request */
 78	req = skcipher_request_alloc(tfm, GFP_NOFS);
 79	if (!req) {
 80		printk_ratelimited(KERN_ERR
 81			"%s: crypto_request_alloc() failed\n", __func__);
 82		kfree(alloc_buf);
 83		return -ENOMEM;
 84	}
 85	skcipher_request_set_callback(req,
 86			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 87			dir_crypt_complete, &ecr);
 
 
 88
 89	/* Copy the input */
 90	memcpy(workbuf, iname->name, iname->len);
 91	if (iname->len < ciphertext_len)
 92		memset(workbuf + iname->len, 0, ciphertext_len - iname->len);
 93
 94	/* Initialize IV */
 95	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
 96
 97	/* Create encryption request */
 98	sg_init_one(&src_sg, workbuf, ciphertext_len);
 99	sg_init_one(&dst_sg, oname->name, ciphertext_len);
100	skcipher_request_set_crypt(req, &src_sg, &dst_sg, ciphertext_len, iv);
101	res = crypto_skcipher_encrypt(req);
102	if (res == -EINPROGRESS || res == -EBUSY) {
103		wait_for_completion(&ecr.completion);
104		res = ecr.res;
105	}
106	kfree(alloc_buf);
107	skcipher_request_free(req);
108	if (res < 0)
109		printk_ratelimited(KERN_ERR
110				"%s: Error (error code %d)\n", __func__, res);
111
112	oname->len = ciphertext_len;
113	return res;
114}
 
115
116/*
117 * fname_decrypt()
118 *	This function decrypts the input filename, and returns
119 *	the length of the plaintext.
120 *	Errors are returned as negative numbers.
121 *	We trust the caller to allocate sufficient memory to oname string.
122 */
123static int fname_decrypt(struct inode *inode,
124				const struct fscrypt_str *iname,
125				struct fscrypt_str *oname)
 
 
 
126{
127	struct skcipher_request *req = NULL;
128	DECLARE_FS_COMPLETION_RESULT(ecr);
129	struct scatterlist src_sg, dst_sg;
130	struct fscrypt_info *ci = inode->i_crypt_info;
131	struct crypto_skcipher *tfm = ci->ci_ctfm;
132	int res = 0;
133	char iv[FS_CRYPTO_BLOCK_SIZE];
134	unsigned lim;
135
136	lim = inode->i_sb->s_cop->max_namelen(inode);
137	if (iname->len <= 0 || iname->len > lim)
138		return -EIO;
139
140	/* Allocate request */
141	req = skcipher_request_alloc(tfm, GFP_NOFS);
142	if (!req) {
143		printk_ratelimited(KERN_ERR
144			"%s: crypto_request_alloc() failed\n",  __func__);
145		return -ENOMEM;
146	}
147	skcipher_request_set_callback(req,
148		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
149		dir_crypt_complete, &ecr);
150
151	/* Initialize IV */
152	memset(iv, 0, FS_CRYPTO_BLOCK_SIZE);
153
154	/* Create decryption request */
155	sg_init_one(&src_sg, iname->name, iname->len);
156	sg_init_one(&dst_sg, oname->name, oname->len);
157	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, iv);
158	res = crypto_skcipher_decrypt(req);
159	if (res == -EINPROGRESS || res == -EBUSY) {
160		wait_for_completion(&ecr.completion);
161		res = ecr.res;
162	}
163	skcipher_request_free(req);
164	if (res < 0) {
165		printk_ratelimited(KERN_ERR
166				"%s: Error (error code %d)\n", __func__, res);
167		return res;
168	}
169
170	oname->len = strnlen(oname->name, iname->len);
171	return oname->len;
172}
173
174static const char *lookup_table =
175	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
 
 
176
177/**
178 * digest_encode() -
 
 
 
 
 
 
 
 
179 *
180 * Encodes the input digest using characters from the set [a-zA-Z0-9_+].
181 * The encoded string is roughly 4/3 times the size of the input string.
182 */
183static int digest_encode(const char *src, int len, char *dst)
184{
185	int i = 0, bits = 0, ac = 0;
 
 
186	char *cp = dst;
187
188	while (i < len) {
189		ac += (((unsigned char) src[i]) << bits);
190		bits += 8;
191		do {
192			*cp++ = lookup_table[ac & 0x3f];
193			ac >>= 6;
194			bits -= 6;
 
195		} while (bits >= 6);
196		i++;
197	}
198	if (bits)
199		*cp++ = lookup_table[ac & 0x3f];
200	return cp - dst;
201}
202
203static int digest_decode(const char *src, int len, char *dst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204{
205	int i = 0, bits = 0, ac = 0;
206	const char *p;
207	char *cp = dst;
 
 
 
 
208
209	while (i < len) {
210		p = strchr(lookup_table, src[i]);
211		if (p == NULL || src[i] == 0)
212			return -2;
213		ac += (p - lookup_table) << bits;
214		bits += 6;
215		if (bits >= 8) {
216			*cp++ = ac & 0xff;
217			ac >>= 8;
218			bits -= 8;
 
219		}
220		i++;
221	}
222	if (ac)
223		return -1;
224	return cp - dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225}
226
227u32 fscrypt_fname_encrypted_size(struct inode *inode, u32 ilen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228{
229	int padding = 32;
230	struct fscrypt_info *ci = inode->i_crypt_info;
231
232	if (ci)
233		padding = 4 << (ci->ci_flags & FS_POLICY_FLAGS_PAD_MASK);
234	if (ilen < FS_CRYPTO_BLOCK_SIZE)
235		ilen = FS_CRYPTO_BLOCK_SIZE;
236	return size_round_up(ilen, padding);
237}
238EXPORT_SYMBOL(fscrypt_fname_encrypted_size);
239
240/**
241 * fscrypt_fname_crypto_alloc_obuff() -
 
 
 
 
 
 
242 *
243 * Allocates an output buffer that is sufficient for the crypto operation
244 * specified by the context and the direction.
245 */
246int fscrypt_fname_alloc_buffer(struct inode *inode,
247				u32 ilen, struct fscrypt_str *crypto_str)
248{
249	unsigned int olen = fscrypt_fname_encrypted_size(inode, ilen);
 
250
251	crypto_str->len = olen;
252	if (olen < FS_FNAME_CRYPTO_DIGEST_SIZE * 2)
253		olen = FS_FNAME_CRYPTO_DIGEST_SIZE * 2;
254	/*
255	 * Allocated buffer can hold one more character to null-terminate the
256	 * string
257	 */
258	crypto_str->name = kmalloc(olen + 1, GFP_NOFS);
259	if (!(crypto_str->name))
260		return -ENOMEM;
 
261	return 0;
262}
263EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
264
265/**
266 * fscrypt_fname_crypto_free_buffer() -
 
267 *
268 * Frees the buffer allocated for crypto operation.
269 */
270void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
271{
272	if (!crypto_str)
273		return;
274	kfree(crypto_str->name);
275	crypto_str->name = NULL;
276}
277EXPORT_SYMBOL(fscrypt_fname_free_buffer);
278
279/**
280 * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
281 * space
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282 */
283int fscrypt_fname_disk_to_usr(struct inode *inode,
284			u32 hash, u32 minor_hash,
285			const struct fscrypt_str *iname,
286			struct fscrypt_str *oname)
287{
288	const struct qstr qname = FSTR_TO_QSTR(iname);
289	char buf[24];
290	int ret;
291
292	if (fscrypt_is_dot_dotdot(&qname)) {
293		oname->name[0] = '.';
294		oname->name[iname->len - 1] = '.';
295		oname->len = iname->len;
296		return oname->len;
297	}
298
299	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
300		return -EUCLEAN;
301
302	if (inode->i_crypt_info)
303		return fname_decrypt(inode, iname, oname);
304
305	if (iname->len <= FS_FNAME_CRYPTO_DIGEST_SIZE) {
306		ret = digest_encode(iname->name, iname->len, oname->name);
307		oname->len = ret;
308		return ret;
309	}
310	if (hash) {
311		memcpy(buf, &hash, 4);
312		memcpy(buf + 4, &minor_hash, 4);
 
 
 
 
 
 
 
 
313	} else {
314		memset(buf, 0, 8);
 
 
 
 
 
315	}
316	memcpy(buf + 8, iname->name + iname->len - 16, 16);
317	oname->name[0] = '_';
318	ret = digest_encode(buf, 24, oname->name + 1);
319	oname->len = ret + 1;
320	return ret + 1;
321}
322EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
323
324/**
325 * fscrypt_fname_usr_to_disk() - converts a filename from user space to disk
326 * space
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327 */
328int fscrypt_fname_usr_to_disk(struct inode *inode,
329			const struct qstr *iname,
330			struct fscrypt_str *oname)
331{
332	if (fscrypt_is_dot_dotdot(iname)) {
333		oname->name[0] = '.';
334		oname->name[iname->len - 1] = '.';
335		oname->len = iname->len;
336		return oname->len;
337	}
338	if (inode->i_crypt_info)
339		return fname_encrypt(inode, iname, oname);
340	/*
341	 * Without a proper key, a user is not allowed to modify the filenames
342	 * in a directory. Consequently, a user space name cannot be mapped to
343	 * a disk-space name
344	 */
345	return -EACCES;
346}
347EXPORT_SYMBOL(fscrypt_fname_usr_to_disk);
348
349int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
350			      int lookup, struct fscrypt_name *fname)
351{
352	int ret = 0, bigname = 0;
 
353
354	memset(fname, 0, sizeof(struct fscrypt_name));
355	fname->usr_fname = iname;
356
357	if (!dir->i_sb->s_cop->is_encrypted(dir) ||
358				fscrypt_is_dot_dotdot(iname)) {
359		fname->disk_name.name = (unsigned char *)iname->name;
360		fname->disk_name.len = iname->len;
361		return 0;
362	}
363	ret = get_crypt_info(dir);
364	if (ret && ret != -EOPNOTSUPP)
365		return ret;
366
367	if (dir->i_crypt_info) {
368		ret = fscrypt_fname_alloc_buffer(dir, iname->len,
369							&fname->crypto_buf);
370		if (ret < 0)
371			return ret;
372		ret = fname_encrypt(dir, iname, &fname->crypto_buf);
373		if (ret < 0)
 
 
 
 
 
374			goto errout;
375		fname->disk_name.name = fname->crypto_buf.name;
376		fname->disk_name.len = fname->crypto_buf.len;
377		return 0;
378	}
379	if (!lookup)
380		return -EACCES;
 
381
382	/*
383	 * We don't have the key and we are doing a lookup; decode the
384	 * user-supplied name
385	 */
386	if (iname->name[0] == '_')
387		bigname = 1;
388	if ((bigname && (iname->len != 33)) || (!bigname && (iname->len > 43)))
389		return -ENOENT;
390
391	fname->crypto_buf.name = kmalloc(32, GFP_KERNEL);
392	if (fname->crypto_buf.name == NULL)
393		return -ENOMEM;
394
395	ret = digest_decode(iname->name + bigname, iname->len - bigname,
396				fname->crypto_buf.name);
397	if (ret < 0) {
 
 
398		ret = -ENOENT;
399		goto errout;
400	}
401	fname->crypto_buf.len = ret;
402	if (bigname) {
403		memcpy(&fname->hash, fname->crypto_buf.name, 4);
404		memcpy(&fname->minor_hash, fname->crypto_buf.name + 4, 4);
405	} else {
406		fname->disk_name.name = fname->crypto_buf.name;
407		fname->disk_name.len = fname->crypto_buf.len;
 
 
 
408	}
409	return 0;
410
411errout:
412	fscrypt_fname_free_buffer(&fname->crypto_buf);
413	return ret;
414}
415EXPORT_SYMBOL(fscrypt_setup_filename);
416
417void fscrypt_free_filename(struct fscrypt_name *fname)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418{
419	kfree(fname->crypto_buf.name);
420	fname->crypto_buf.name = NULL;
421	fname->usr_fname = NULL;
422	fname->disk_name.name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423}
424EXPORT_SYMBOL(fscrypt_free_filename);