Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2003-2014, 2018-2024 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2016-2017 Intel Deutschland GmbH
   6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/sched.h>
   8#include <linux/wait.h>
   9#include <linux/gfp.h>
  10
  11#include "iwl-prph.h"
  12#include "iwl-io.h"
  13#include "internal.h"
  14#include "iwl-op-mode.h"
  15#include "iwl-context-info-gen3.h"
  16
  17/******************************************************************************
  18 *
  19 * RX path functions
  20 *
  21 ******************************************************************************/
  22
  23/*
  24 * Rx theory of operation
  25 *
  26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  27 * each of which point to Receive Buffers to be filled by the NIC.  These get
  28 * used not only for Rx frames, but for any command response or notification
  29 * from the NIC.  The driver and NIC manage the Rx buffers by means
  30 * of indexes into the circular buffer.
  31 *
  32 * Rx Queue Indexes
  33 * The host/firmware share two index registers for managing the Rx buffers.
  34 *
  35 * The READ index maps to the first position that the firmware may be writing
  36 * to -- the driver can read up to (but not including) this position and get
  37 * good data.
  38 * The READ index is managed by the firmware once the card is enabled.
  39 *
  40 * The WRITE index maps to the last position the driver has read from -- the
  41 * position preceding WRITE is the last slot the firmware can place a packet.
  42 *
  43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
  44 * WRITE = READ.
  45 *
  46 * During initialization, the host sets up the READ queue position to the first
  47 * INDEX position, and WRITE to the last (READ - 1 wrapped)
  48 *
  49 * When the firmware places a packet in a buffer, it will advance the READ index
  50 * and fire the RX interrupt.  The driver can then query the READ index and
  51 * process as many packets as possible, moving the WRITE index forward as it
  52 * resets the Rx queue buffers with new memory.
  53 *
  54 * The management in the driver is as follows:
  55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
  56 *   When the interrupt handler is called, the request is processed.
  57 *   The page is either stolen - transferred to the upper layer
  58 *   or reused - added immediately to the iwl->rxq->rx_free list.
  59 * + When the page is stolen - the driver updates the matching queue's used
  60 *   count, detaches the RBD and transfers it to the queue used list.
  61 *   When there are two used RBDs - they are transferred to the allocator empty
  62 *   list. Work is then scheduled for the allocator to start allocating
  63 *   eight buffers.
  64 *   When there are another 6 used RBDs - they are transferred to the allocator
  65 *   empty list and the driver tries to claim the pre-allocated buffers and
  66 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
  67 *   until ready.
  68 *   When there are 8+ buffers in the free list - either from allocation or from
  69 *   8 reused unstolen pages - restock is called to update the FW and indexes.
  70 * + In order to make sure the allocator always has RBDs to use for allocation
  71 *   the allocator has initial pool in the size of num_queues*(8-2) - the
  72 *   maximum missing RBDs per allocation request (request posted with 2
  73 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
  74 *   The queues supplies the recycle of the rest of the RBDs.
  75 * + A received packet is processed and handed to the kernel network stack,
  76 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
  77 * + If there are no allocated buffers in iwl->rxq->rx_free,
  78 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
  79 *   If there were enough free buffers and RX_STALLED is set it is cleared.
  80 *
  81 *
  82 * Driver sequence:
  83 *
  84 * iwl_rxq_alloc()            Allocates rx_free
  85 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
  86 *                            iwl_pcie_rxq_restock.
  87 *                            Used only during initialization.
  88 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
  89 *                            queue, updates firmware pointers, and updates
  90 *                            the WRITE index.
  91 * iwl_pcie_rx_allocator()     Background work for allocating pages.
  92 *
  93 * -- enable interrupts --
  94 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
  95 *                            READ INDEX, detaching the SKB from the pool.
  96 *                            Moves the packet buffer from queue to rx_used.
  97 *                            Posts and claims requests to the allocator.
  98 *                            Calls iwl_pcie_rxq_restock to refill any empty
  99 *                            slots.
 100 *
 101 * RBD life-cycle:
 102 *
 103 * Init:
 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 105 *
 106 * Regular Receive interrupt:
 107 * Page Stolen:
 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 110 * Page not Stolen:
 111 * rxq.queue -> rxq.rx_free -> rxq.queue
 112 * ...
 113 *
 114 */
 115
 116/*
 117 * iwl_rxq_space - Return number of free slots available in queue.
 118 */
 119static int iwl_rxq_space(const struct iwl_rxq *rxq)
 120{
 121	/* Make sure rx queue size is a power of 2 */
 122	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 123
 124	/*
 125	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 126	 * between empty and completely full queues.
 127	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 128	 * defined for negative dividends.
 129	 */
 130	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 131}
 132
 133/*
 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 135 */
 136static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 137{
 138	return cpu_to_le32((u32)(dma_addr >> 8));
 139}
 140
 
 
 
 
 
 
 141/*
 142 * iwl_pcie_rx_stop - stops the Rx DMA
 143 */
 144int iwl_pcie_rx_stop(struct iwl_trans *trans)
 145{
 146	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 147		/* TODO: remove this once fw does it */
 148		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
 149		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
 150					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 151	} else if (trans->trans_cfg->mq_rx_supported) {
 152		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 153		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
 154					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
 155	} else {
 156		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 157		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 158					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
 159					   1000);
 160	}
 161}
 162
 163/*
 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 165 */
 166static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 167				    struct iwl_rxq *rxq)
 168{
 169	u32 reg;
 170
 171	lockdep_assert_held(&rxq->lock);
 172
 173	/*
 174	 * explicitly wake up the NIC if:
 175	 * 1. shadow registers aren't enabled
 176	 * 2. there is a chance that the NIC is asleep
 177	 */
 178	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
 179	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 180		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 181
 182		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 183			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 184				       reg);
 185			iwl_set_bit(trans, CSR_GP_CNTRL,
 186				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
 187			rxq->need_update = true;
 188			return;
 189		}
 190	}
 191
 192	rxq->write_actual = round_down(rxq->write, 8);
 193	if (!trans->trans_cfg->mq_rx_supported)
 194		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 195	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 196		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
 197			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
 198	else
 199		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
 200			    rxq->write_actual);
 201}
 202
 203static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 204{
 205	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 206	int i;
 207
 208	for (i = 0; i < trans->num_rx_queues; i++) {
 209		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 210
 211		if (!rxq->need_update)
 212			continue;
 213		spin_lock_bh(&rxq->lock);
 214		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 215		rxq->need_update = false;
 216		spin_unlock_bh(&rxq->lock);
 217	}
 218}
 219
 220static void iwl_pcie_restock_bd(struct iwl_trans *trans,
 221				struct iwl_rxq *rxq,
 222				struct iwl_rx_mem_buffer *rxb)
 223{
 224	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 225		struct iwl_rx_transfer_desc *bd = rxq->bd;
 226
 227		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
 228
 229		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
 230		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
 231	} else {
 232		__le64 *bd = rxq->bd;
 233
 234		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 235	}
 236
 237	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
 238		     (u32)rxb->vid, rxq->id, rxq->write);
 239}
 240
 241/*
 242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
 243 */
 244static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
 245				  struct iwl_rxq *rxq)
 246{
 247	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 248	struct iwl_rx_mem_buffer *rxb;
 249
 250	/*
 251	 * If the device isn't enabled - no need to try to add buffers...
 252	 * This can happen when we stop the device and still have an interrupt
 253	 * pending. We stop the APM before we sync the interrupts because we
 254	 * have to (see comment there). On the other hand, since the APM is
 255	 * stopped, we cannot access the HW (in particular not prph).
 256	 * So don't try to restock if the APM has been already stopped.
 257	 */
 258	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 259		return;
 260
 261	spin_lock_bh(&rxq->lock);
 262	while (rxq->free_count) {
 
 
 263		/* Get next free Rx buffer, remove from free list */
 264		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 265				       list);
 266		list_del(&rxb->list);
 267		rxb->invalid = false;
 268		/* some low bits are expected to be unset (depending on hw) */
 269		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
 270		/* Point to Rx buffer via next RBD in circular buffer */
 271		iwl_pcie_restock_bd(trans, rxq, rxb);
 272		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
 273		rxq->free_count--;
 274	}
 275	spin_unlock_bh(&rxq->lock);
 276
 277	/*
 278	 * If we've added more space for the firmware to place data, tell it.
 279	 * Increment device's write pointer in multiples of 8.
 280	 */
 281	if (rxq->write_actual != (rxq->write & ~0x7)) {
 282		spin_lock_bh(&rxq->lock);
 283		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 284		spin_unlock_bh(&rxq->lock);
 285	}
 286}
 287
 288/*
 289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx
 290 */
 291static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
 292				  struct iwl_rxq *rxq)
 293{
 294	struct iwl_rx_mem_buffer *rxb;
 295
 296	/*
 297	 * If the device isn't enabled - not need to try to add buffers...
 298	 * This can happen when we stop the device and still have an interrupt
 299	 * pending. We stop the APM before we sync the interrupts because we
 300	 * have to (see comment there). On the other hand, since the APM is
 301	 * stopped, we cannot access the HW (in particular not prph).
 302	 * So don't try to restock if the APM has been already stopped.
 303	 */
 304	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 305		return;
 306
 307	spin_lock_bh(&rxq->lock);
 308	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 309		__le32 *bd = (__le32 *)rxq->bd;
 310		/* The overwritten rxb must be a used one */
 311		rxb = rxq->queue[rxq->write];
 312		BUG_ON(rxb && rxb->page);
 313
 314		/* Get next free Rx buffer, remove from free list */
 315		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 316				       list);
 317		list_del(&rxb->list);
 318		rxb->invalid = false;
 319
 320		/* Point to Rx buffer via next RBD in circular buffer */
 321		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 322		rxq->queue[rxq->write] = rxb;
 323		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 324		rxq->free_count--;
 325	}
 326	spin_unlock_bh(&rxq->lock);
 327
 328	/* If we've added more space for the firmware to place data, tell it.
 329	 * Increment device's write pointer in multiples of 8. */
 330	if (rxq->write_actual != (rxq->write & ~0x7)) {
 331		spin_lock_bh(&rxq->lock);
 332		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 333		spin_unlock_bh(&rxq->lock);
 334	}
 335}
 336
 337/*
 338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 339 *
 340 * If there are slots in the RX queue that need to be restocked,
 341 * and we have free pre-allocated buffers, fill the ranks as much
 342 * as we can, pulling from rx_free.
 343 *
 344 * This moves the 'write' index forward to catch up with 'processed', and
 345 * also updates the memory address in the firmware to reference the new
 346 * target buffer.
 347 */
 348static
 349void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 350{
 351	if (trans->trans_cfg->mq_rx_supported)
 352		iwl_pcie_rxmq_restock(trans, rxq);
 353	else
 354		iwl_pcie_rxsq_restock(trans, rxq);
 355}
 356
 357/*
 358 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 359 *
 360 */
 361static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 362					   u32 *offset, gfp_t priority)
 363{
 364	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 365	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
 366	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
 367	struct page *page;
 368	gfp_t gfp_mask = priority;
 369
 370	if (trans_pcie->rx_page_order > 0)
 371		gfp_mask |= __GFP_COMP;
 372
 373	if (trans_pcie->alloc_page) {
 374		spin_lock_bh(&trans_pcie->alloc_page_lock);
 375		/* recheck */
 376		if (trans_pcie->alloc_page) {
 377			*offset = trans_pcie->alloc_page_used;
 378			page = trans_pcie->alloc_page;
 379			trans_pcie->alloc_page_used += rbsize;
 380			if (trans_pcie->alloc_page_used >= allocsize)
 381				trans_pcie->alloc_page = NULL;
 382			else
 383				get_page(page);
 384			spin_unlock_bh(&trans_pcie->alloc_page_lock);
 385			return page;
 386		}
 387		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 388	}
 389
 390	/* Alloc a new receive buffer */
 391	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 392	if (!page) {
 393		if (net_ratelimit())
 394			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 395				       trans_pcie->rx_page_order);
 396		/*
 397		 * Issue an error if we don't have enough pre-allocated
 398		  * buffers.
 399		 */
 400		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 401			IWL_CRIT(trans,
 402				 "Failed to alloc_pages\n");
 403		return NULL;
 404	}
 405
 406	if (2 * rbsize <= allocsize) {
 407		spin_lock_bh(&trans_pcie->alloc_page_lock);
 408		if (!trans_pcie->alloc_page) {
 409			get_page(page);
 410			trans_pcie->alloc_page = page;
 411			trans_pcie->alloc_page_used = rbsize;
 412		}
 413		spin_unlock_bh(&trans_pcie->alloc_page_lock);
 414	}
 415
 416	*offset = 0;
 417	return page;
 418}
 419
 420/*
 421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 422 *
 423 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 424 * a page must be allocated and the RBD must point to the page. This function
 425 * doesn't change the HW pointer but handles the list of pages that is used by
 426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 427 * allocated buffers.
 428 */
 429void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 430			    struct iwl_rxq *rxq)
 431{
 432	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 433	struct iwl_rx_mem_buffer *rxb;
 434	struct page *page;
 435
 436	while (1) {
 437		unsigned int offset;
 438
 439		spin_lock_bh(&rxq->lock);
 440		if (list_empty(&rxq->rx_used)) {
 441			spin_unlock_bh(&rxq->lock);
 442			return;
 443		}
 444		spin_unlock_bh(&rxq->lock);
 445
 446		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
 
 447		if (!page)
 448			return;
 449
 450		spin_lock_bh(&rxq->lock);
 451
 452		if (list_empty(&rxq->rx_used)) {
 453			spin_unlock_bh(&rxq->lock);
 454			__free_pages(page, trans_pcie->rx_page_order);
 455			return;
 456		}
 457		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 458				       list);
 459		list_del(&rxb->list);
 460		spin_unlock_bh(&rxq->lock);
 461
 462		BUG_ON(rxb->page);
 463		rxb->page = page;
 464		rxb->offset = offset;
 465		/* Get physical address of the RB */
 466		rxb->page_dma =
 467			dma_map_page(trans->dev, page, rxb->offset,
 468				     trans_pcie->rx_buf_bytes,
 469				     DMA_FROM_DEVICE);
 470		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 471			rxb->page = NULL;
 472			spin_lock_bh(&rxq->lock);
 473			list_add(&rxb->list, &rxq->rx_used);
 474			spin_unlock_bh(&rxq->lock);
 475			__free_pages(page, trans_pcie->rx_page_order);
 476			return;
 477		}
 478
 479		spin_lock_bh(&rxq->lock);
 480
 481		list_add_tail(&rxb->list, &rxq->rx_free);
 482		rxq->free_count++;
 483
 484		spin_unlock_bh(&rxq->lock);
 485	}
 486}
 487
 488void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 489{
 490	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 491	int i;
 492
 493	if (!trans_pcie->rx_pool)
 494		return;
 495
 496	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
 497		if (!trans_pcie->rx_pool[i].page)
 498			continue;
 499		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 500			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
 
 501		__free_pages(trans_pcie->rx_pool[i].page,
 502			     trans_pcie->rx_page_order);
 503		trans_pcie->rx_pool[i].page = NULL;
 504	}
 505}
 506
 507/*
 508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 509 *
 510 * Allocates for each received request 8 pages
 511 * Called as a scheduled work item.
 512 */
 513static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 514{
 515	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 516	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 517	struct list_head local_empty;
 518	int pending = atomic_read(&rba->req_pending);
 519
 520	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
 521
 522	/* If we were scheduled - there is at least one request */
 523	spin_lock_bh(&rba->lock);
 524	/* swap out the rba->rbd_empty to a local list */
 525	list_replace_init(&rba->rbd_empty, &local_empty);
 526	spin_unlock_bh(&rba->lock);
 527
 528	while (pending) {
 529		int i;
 530		LIST_HEAD(local_allocated);
 531		gfp_t gfp_mask = GFP_KERNEL;
 532
 533		/* Do not post a warning if there are only a few requests */
 534		if (pending < RX_PENDING_WATERMARK)
 535			gfp_mask |= __GFP_NOWARN;
 536
 
 
 537		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 538			struct iwl_rx_mem_buffer *rxb;
 539			struct page *page;
 540
 541			/* List should never be empty - each reused RBD is
 542			 * returned to the list, and initial pool covers any
 543			 * possible gap between the time the page is allocated
 544			 * to the time the RBD is added.
 545			 */
 546			BUG_ON(list_empty(&local_empty));
 547			/* Get the first rxb from the rbd list */
 548			rxb = list_first_entry(&local_empty,
 549					       struct iwl_rx_mem_buffer, list);
 550			BUG_ON(rxb->page);
 551
 552			/* Alloc a new receive buffer */
 553			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
 554						      gfp_mask);
 555			if (!page)
 556				continue;
 557			rxb->page = page;
 558
 559			/* Get physical address of the RB */
 560			rxb->page_dma = dma_map_page(trans->dev, page,
 561						     rxb->offset,
 562						     trans_pcie->rx_buf_bytes,
 563						     DMA_FROM_DEVICE);
 564			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 565				rxb->page = NULL;
 566				__free_pages(page, trans_pcie->rx_page_order);
 567				continue;
 568			}
 569
 570			/* move the allocated entry to the out list */
 571			list_move(&rxb->list, &local_allocated);
 572			i++;
 573		}
 574
 575		atomic_dec(&rba->req_pending);
 576		pending--;
 577
 578		if (!pending) {
 579			pending = atomic_read(&rba->req_pending);
 580			if (pending)
 581				IWL_DEBUG_TPT(trans,
 582					      "Got more pending allocation requests = %d\n",
 583					      pending);
 584		}
 585
 586		spin_lock_bh(&rba->lock);
 587		/* add the allocated rbds to the allocator allocated list */
 588		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 589		/* get more empty RBDs for current pending requests */
 590		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 591		spin_unlock_bh(&rba->lock);
 592
 593		atomic_inc(&rba->req_ready);
 594
 595	}
 596
 597	spin_lock_bh(&rba->lock);
 598	/* return unused rbds to the allocator empty list */
 599	list_splice_tail(&local_empty, &rba->rbd_empty);
 600	spin_unlock_bh(&rba->lock);
 601
 602	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
 603}
 604
 605/*
 606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 607.*
 608.* Called by queue when the queue posted allocation request and
 609 * has freed 8 RBDs in order to restock itself.
 610 * This function directly moves the allocated RBs to the queue's ownership
 611 * and updates the relevant counters.
 612 */
 613static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 614				      struct iwl_rxq *rxq)
 615{
 616	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 617	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 618	int i;
 619
 620	lockdep_assert_held(&rxq->lock);
 621
 622	/*
 623	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 624	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 625	 * function will return early, as there are no ready requests.
 626	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 627	 * req_ready > 0, i.e. - there are ready requests and the function
 628	 * hands one request to the caller.
 629	 */
 630	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 631		return;
 632
 633	spin_lock(&rba->lock);
 634	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 635		/* Get next free Rx buffer, remove it from free list */
 636		struct iwl_rx_mem_buffer *rxb =
 637			list_first_entry(&rba->rbd_allocated,
 638					 struct iwl_rx_mem_buffer, list);
 639
 640		list_move(&rxb->list, &rxq->rx_free);
 641	}
 642	spin_unlock(&rba->lock);
 643
 644	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 645	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 646}
 647
 648void iwl_pcie_rx_allocator_work(struct work_struct *data)
 649{
 650	struct iwl_rb_allocator *rba_p =
 651		container_of(data, struct iwl_rb_allocator, rx_alloc);
 652	struct iwl_trans_pcie *trans_pcie =
 653		container_of(rba_p, struct iwl_trans_pcie, rba);
 654
 655	iwl_pcie_rx_allocator(trans_pcie->trans);
 656}
 657
 658static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
 659{
 660	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 661		return sizeof(struct iwl_rx_transfer_desc);
 662
 663	return trans->trans_cfg->mq_rx_supported ?
 664			sizeof(__le64) : sizeof(__le32);
 665}
 666
 667static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
 668{
 669	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
 670		return sizeof(struct iwl_rx_completion_desc_bz);
 671
 672	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
 673		return sizeof(struct iwl_rx_completion_desc);
 674
 675	return sizeof(__le32);
 676}
 677
 678static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
 679				  struct iwl_rxq *rxq)
 680{
 681	int free_size = iwl_pcie_free_bd_size(trans);
 682
 683	if (rxq->bd)
 684		dma_free_coherent(trans->dev,
 685				  free_size * rxq->queue_size,
 686				  rxq->bd, rxq->bd_dma);
 687	rxq->bd_dma = 0;
 688	rxq->bd = NULL;
 689
 690	rxq->rb_stts_dma = 0;
 691	rxq->rb_stts = NULL;
 692
 693	if (rxq->used_bd)
 694		dma_free_coherent(trans->dev,
 695				  iwl_pcie_used_bd_size(trans) *
 696					rxq->queue_size,
 697				  rxq->used_bd, rxq->used_bd_dma);
 698	rxq->used_bd_dma = 0;
 699	rxq->used_bd = NULL;
 700}
 701
 702static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
 703{
 704	bool use_rx_td = (trans->trans_cfg->device_family >=
 705			  IWL_DEVICE_FAMILY_AX210);
 706
 707	if (use_rx_td)
 708		return sizeof(__le16);
 709
 710	return sizeof(struct iwl_rb_status);
 711}
 712
 713static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
 714				  struct iwl_rxq *rxq)
 715{
 716	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 717	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 718	struct device *dev = trans->dev;
 719	int i;
 720	int free_size;
 721
 722	spin_lock_init(&rxq->lock);
 723	if (trans->trans_cfg->mq_rx_supported)
 724		rxq->queue_size = trans->cfg->num_rbds;
 725	else
 726		rxq->queue_size = RX_QUEUE_SIZE;
 727
 728	free_size = iwl_pcie_free_bd_size(trans);
 729
 730	/*
 731	 * Allocate the circular buffer of Read Buffer Descriptors
 732	 * (RBDs)
 733	 */
 734	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
 735				     &rxq->bd_dma, GFP_KERNEL);
 736	if (!rxq->bd)
 737		goto err;
 738
 739	if (trans->trans_cfg->mq_rx_supported) {
 740		rxq->used_bd = dma_alloc_coherent(dev,
 741						  iwl_pcie_used_bd_size(trans) *
 742							rxq->queue_size,
 743						  &rxq->used_bd_dma,
 744						  GFP_KERNEL);
 745		if (!rxq->used_bd)
 746			goto err;
 747	}
 748
 749	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
 750	rxq->rb_stts_dma =
 751		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
 752
 753	return 0;
 754
 755err:
 756	for (i = 0; i < trans->num_rx_queues; i++) {
 757		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 758
 759		iwl_pcie_free_rxq_dma(trans, rxq);
 760	}
 761
 762	return -ENOMEM;
 763}
 764
 765static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 766{
 767	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 768	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
 769	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 770	int i, ret;
 
 
 
 771
 772	if (WARN_ON(trans_pcie->rxq))
 773		return -EINVAL;
 774
 775	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 776				  GFP_KERNEL);
 777	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 778				      sizeof(trans_pcie->rx_pool[0]),
 779				      GFP_KERNEL);
 780	trans_pcie->global_table =
 781		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
 782			sizeof(trans_pcie->global_table[0]),
 783			GFP_KERNEL);
 784	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
 785	    !trans_pcie->global_table) {
 786		ret = -ENOMEM;
 787		goto err;
 788	}
 789
 790	spin_lock_init(&rba->lock);
 791
 792	/*
 793	 * Allocate the driver's pointer to receive buffer status.
 794	 * Allocate for all queues continuously (HW requirement).
 795	 */
 796	trans_pcie->base_rb_stts =
 797			dma_alloc_coherent(trans->dev,
 798					   rb_stts_size * trans->num_rx_queues,
 799					   &trans_pcie->base_rb_stts_dma,
 800					   GFP_KERNEL);
 801	if (!trans_pcie->base_rb_stts) {
 802		ret = -ENOMEM;
 803		goto err;
 804	}
 805
 806	for (i = 0; i < trans->num_rx_queues; i++) {
 807		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 808
 809		rxq->id = i;
 810		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
 811		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812			goto err;
 813	}
 814	return 0;
 815
 816err:
 817	if (trans_pcie->base_rb_stts) {
 818		dma_free_coherent(trans->dev,
 819				  rb_stts_size * trans->num_rx_queues,
 820				  trans_pcie->base_rb_stts,
 821				  trans_pcie->base_rb_stts_dma);
 822		trans_pcie->base_rb_stts = NULL;
 823		trans_pcie->base_rb_stts_dma = 0;
 824	}
 825	kfree(trans_pcie->rx_pool);
 826	trans_pcie->rx_pool = NULL;
 827	kfree(trans_pcie->global_table);
 828	trans_pcie->global_table = NULL;
 
 
 
 
 
 
 
 
 829	kfree(trans_pcie->rxq);
 830	trans_pcie->rxq = NULL;
 831
 832	return ret;
 833}
 834
 835static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 836{
 837	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 838	u32 rb_size;
 839	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 840
 841	switch (trans_pcie->rx_buf_size) {
 842	case IWL_AMSDU_4K:
 843		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 844		break;
 845	case IWL_AMSDU_8K:
 846		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 847		break;
 848	case IWL_AMSDU_12K:
 849		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 850		break;
 851	default:
 852		WARN_ON(1);
 853		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 854	}
 855
 856	if (!iwl_trans_grab_nic_access(trans))
 857		return;
 858
 859	/* Stop Rx DMA */
 860	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 861	/* reset and flush pointers */
 862	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 863	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 864	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 865
 866	/* Reset driver's Rx queue write index */
 867	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 868
 869	/* Tell device where to find RBD circular buffer in DRAM */
 870	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 871		    (u32)(rxq->bd_dma >> 8));
 872
 873	/* Tell device where in DRAM to update its Rx status */
 874	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 875		    rxq->rb_stts_dma >> 4);
 876
 877	/* Enable Rx DMA
 878	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 879	 *      the credit mechanism in 5000 HW RX FIFO
 880	 * Direct rx interrupts to hosts
 881	 * Rx buffer size 4 or 8k or 12k
 882	 * RB timeout 0x10
 883	 * 256 RBDs
 884	 */
 885	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 886		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 887		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 888		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 889		    rb_size |
 890		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
 891		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 892
 893	iwl_trans_release_nic_access(trans);
 894
 895	/* Set interrupt coalescing timer to default (2048 usecs) */
 896	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 897
 898	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 899	if (trans->cfg->host_interrupt_operation_mode)
 900		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 901}
 902
 903static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 904{
 905	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 906	u32 rb_size, enabled = 0;
 907	int i;
 908
 909	switch (trans_pcie->rx_buf_size) {
 910	case IWL_AMSDU_2K:
 911		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
 912		break;
 913	case IWL_AMSDU_4K:
 914		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 915		break;
 916	case IWL_AMSDU_8K:
 917		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 918		break;
 919	case IWL_AMSDU_12K:
 920		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 921		break;
 922	default:
 923		WARN_ON(1);
 924		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 925	}
 926
 927	if (!iwl_trans_grab_nic_access(trans))
 928		return;
 929
 930	/* Stop Rx DMA */
 931	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
 932	/* disable free amd used rx queue operation */
 933	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
 934
 935	for (i = 0; i < trans->num_rx_queues; i++) {
 936		/* Tell device where to find RBD free table in DRAM */
 937		iwl_write_prph64_no_grab(trans,
 938					 RFH_Q_FRBDCB_BA_LSB(i),
 939					 trans_pcie->rxq[i].bd_dma);
 940		/* Tell device where to find RBD used table in DRAM */
 941		iwl_write_prph64_no_grab(trans,
 942					 RFH_Q_URBDCB_BA_LSB(i),
 943					 trans_pcie->rxq[i].used_bd_dma);
 944		/* Tell device where in DRAM to update its Rx status */
 945		iwl_write_prph64_no_grab(trans,
 946					 RFH_Q_URBD_STTS_WPTR_LSB(i),
 947					 trans_pcie->rxq[i].rb_stts_dma);
 948		/* Reset device indice tables */
 949		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 950		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 951		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
 952
 953		enabled |= BIT(i) | BIT(i + 16);
 954	}
 955
 
 
 
 956	/*
 957	 * Enable Rx DMA
 
 958	 * Rx buffer size 4 or 8k or 12k
 959	 * Min RB size 4 or 8
 960	 * Drop frames that exceed RB size
 961	 * 512 RBDs
 962	 */
 963	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
 964			       RFH_DMA_EN_ENABLE_VAL | rb_size |
 965			       RFH_RXF_DMA_MIN_RB_4_8 |
 966			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 967			       RFH_RXF_DMA_RBDCB_SIZE_512);
 
 968
 969	/*
 970	 * Activate DMA snooping.
 971	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
 972	 * Default queue is 0
 973	 */
 974	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
 975			       RFH_GEN_CFG_RFH_DMA_SNOOP |
 976			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
 977			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
 978			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
 979					       trans->trans_cfg->integrated ?
 980					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
 981					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
 982	/* Enable the relevant rx queues */
 983	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
 984
 985	iwl_trans_release_nic_access(trans);
 986
 987	/* Set interrupt coalescing timer to default (2048 usecs) */
 988	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 989}
 990
 991void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
 992{
 993	lockdep_assert_held(&rxq->lock);
 994
 995	INIT_LIST_HEAD(&rxq->rx_free);
 996	INIT_LIST_HEAD(&rxq->rx_used);
 997	rxq->free_count = 0;
 998	rxq->used_count = 0;
 999}
1000
1001static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1002
1003static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev)
1004{
1005	return *(struct iwl_trans_pcie **)netdev_priv(dev);
1006}
1007
1008static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1009{
1010	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1011	struct iwl_trans_pcie *trans_pcie;
1012	struct iwl_trans *trans;
1013	int ret;
1014
1015	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1016	trans = trans_pcie->trans;
1017
1018	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1019
1020	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1021		      rxq->id, ret, budget);
1022
1023	if (ret < budget) {
1024		spin_lock(&trans_pcie->irq_lock);
1025		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1026			_iwl_enable_interrupts(trans);
1027		spin_unlock(&trans_pcie->irq_lock);
1028
1029		napi_complete_done(&rxq->napi, ret);
1030	}
1031
1032	return ret;
1033}
1034
1035static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1036{
1037	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1038	struct iwl_trans_pcie *trans_pcie;
1039	struct iwl_trans *trans;
1040	int ret;
1041
1042	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1043	trans = trans_pcie->trans;
1044
1045	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1046	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1047		      budget);
1048
1049	if (ret < budget) {
1050		int irq_line = rxq->id;
1051
1052		/* FIRST_RSS is shared with line 0 */
1053		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1054		    rxq->id == 1)
1055			irq_line = 0;
1056
1057		spin_lock(&trans_pcie->irq_lock);
1058		iwl_pcie_clear_irq(trans, irq_line);
1059		spin_unlock(&trans_pcie->irq_lock);
1060
1061		napi_complete_done(&rxq->napi, ret);
1062	}
1063
1064	return ret;
1065}
1066
1067void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1068{
1069	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1070	int i;
1071
1072	if (unlikely(!trans_pcie->rxq))
1073		return;
1074
1075	for (i = 0; i < trans->num_rx_queues; i++) {
1076		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1077
1078		if (rxq && rxq->napi.poll)
1079			napi_synchronize(&rxq->napi);
1080	}
1081}
1082
1083static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1084{
1085	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086	struct iwl_rxq *def_rxq;
1087	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1088	int i, err, queue_size, allocator_pool_size, num_alloc;
1089
1090	if (!trans_pcie->rxq) {
1091		err = iwl_pcie_rx_alloc(trans);
1092		if (err)
1093			return err;
1094	}
1095	def_rxq = trans_pcie->rxq;
 
 
 
 
1096
1097	cancel_work_sync(&rba->rx_alloc);
1098
1099	spin_lock_bh(&rba->lock);
1100	atomic_set(&rba->req_pending, 0);
1101	atomic_set(&rba->req_ready, 0);
1102	INIT_LIST_HEAD(&rba->rbd_allocated);
1103	INIT_LIST_HEAD(&rba->rbd_empty);
1104	spin_unlock_bh(&rba->lock);
1105
1106	/* free all first - we overwrite everything here */
1107	iwl_pcie_free_rbs_pool(trans);
1108
1109	for (i = 0; i < RX_QUEUE_SIZE; i++)
1110		def_rxq->queue[i] = NULL;
1111
1112	for (i = 0; i < trans->num_rx_queues; i++) {
1113		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1114
1115		spin_lock_bh(&rxq->lock);
 
 
1116		/*
1117		 * Set read write pointer to reflect that we have processed
1118		 * and used all buffers, but have not restocked the Rx queue
1119		 * with fresh buffers
1120		 */
1121		rxq->read = 0;
1122		rxq->write = 0;
1123		rxq->write_actual = 0;
1124		memset(rxq->rb_stts, 0,
1125		       (trans->trans_cfg->device_family >=
1126			IWL_DEVICE_FAMILY_AX210) ?
1127		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1128
1129		iwl_pcie_rx_init_rxb_lists(rxq);
1130
1131		spin_unlock_bh(&rxq->lock);
1132
1133		if (!rxq->napi.poll) {
1134			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1135
1136			if (trans_pcie->msix_enabled)
1137				poll = iwl_pcie_napi_poll_msix;
1138
1139			netif_napi_add(trans_pcie->napi_dev, &rxq->napi,
1140				       poll);
1141			napi_enable(&rxq->napi);
1142		}
1143
 
1144	}
1145
1146	/* move the pool to the default queue and allocator ownerships */
1147	queue_size = trans->trans_cfg->mq_rx_supported ?
1148			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1149	allocator_pool_size = trans->num_rx_queues *
1150		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1151	num_alloc = queue_size + allocator_pool_size;
1152
1153	for (i = 0; i < num_alloc; i++) {
1154		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1155
1156		if (i < allocator_pool_size)
1157			list_add(&rxb->list, &rba->rbd_empty);
1158		else
1159			list_add(&rxb->list, &def_rxq->rx_used);
1160		trans_pcie->global_table[i] = rxb;
1161		rxb->vid = (u16)(i + 1);
1162		rxb->invalid = true;
1163	}
1164
1165	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1166
1167	return 0;
1168}
1169
1170int iwl_pcie_rx_init(struct iwl_trans *trans)
1171{
1172	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173	int ret = _iwl_pcie_rx_init(trans);
1174
1175	if (ret)
1176		return ret;
1177
1178	if (trans->trans_cfg->mq_rx_supported)
1179		iwl_pcie_rx_mq_hw_init(trans);
1180	else
1181		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1182
1183	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1184
1185	spin_lock_bh(&trans_pcie->rxq->lock);
1186	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1187	spin_unlock_bh(&trans_pcie->rxq->lock);
1188
1189	return 0;
1190}
1191
1192int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1193{
1194	/* Set interrupt coalescing timer to default (2048 usecs) */
1195	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1196
1197	/*
1198	 * We don't configure the RFH.
1199	 * Restock will be done at alive, after firmware configured the RFH.
1200	 */
1201	return _iwl_pcie_rx_init(trans);
1202}
1203
1204void iwl_pcie_rx_free(struct iwl_trans *trans)
1205{
1206	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1207	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1208	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 
 
1209	int i;
1210
1211	/*
1212	 * if rxq is NULL, it means that nothing has been allocated,
1213	 * exit now
1214	 */
1215	if (!trans_pcie->rxq) {
1216		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1217		return;
1218	}
1219
1220	cancel_work_sync(&rba->rx_alloc);
 
 
 
 
1221
1222	iwl_pcie_free_rbs_pool(trans);
1223
1224	if (trans_pcie->base_rb_stts) {
1225		dma_free_coherent(trans->dev,
1226				  rb_stts_size * trans->num_rx_queues,
1227				  trans_pcie->base_rb_stts,
1228				  trans_pcie->base_rb_stts_dma);
1229		trans_pcie->base_rb_stts = NULL;
1230		trans_pcie->base_rb_stts_dma = 0;
1231	}
1232
1233	for (i = 0; i < trans->num_rx_queues; i++) {
1234		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1235
1236		iwl_pcie_free_rxq_dma(trans, rxq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238		if (rxq->napi.poll) {
1239			napi_disable(&rxq->napi);
1240			netif_napi_del(&rxq->napi);
1241		}
1242	}
1243	kfree(trans_pcie->rx_pool);
1244	kfree(trans_pcie->global_table);
1245	kfree(trans_pcie->rxq);
1246
1247	if (trans_pcie->alloc_page)
1248		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1249}
1250
1251static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1252					  struct iwl_rb_allocator *rba)
1253{
1254	spin_lock(&rba->lock);
1255	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1256	spin_unlock(&rba->lock);
1257}
1258
1259/*
1260 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1261 *
1262 * Called when a RBD can be reused. The RBD is transferred to the allocator.
1263 * When there are 2 empty RBDs - a request for allocation is posted
1264 */
1265static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1266				  struct iwl_rx_mem_buffer *rxb,
1267				  struct iwl_rxq *rxq, bool emergency)
1268{
1269	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1270	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1271
1272	/* Move the RBD to the used list, will be moved to allocator in batches
1273	 * before claiming or posting a request*/
1274	list_add_tail(&rxb->list, &rxq->rx_used);
1275
1276	if (unlikely(emergency))
1277		return;
1278
1279	/* Count the allocator owned RBDs */
1280	rxq->used_count++;
1281
1282	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1283	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1284	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1285	 * after but we still need to post another request.
1286	 */
1287	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1288		/* Move the 2 RBDs to the allocator ownership.
1289		 Allocator has another 6 from pool for the request completion*/
1290		iwl_pcie_rx_move_to_allocator(rxq, rba);
 
 
1291
1292		atomic_inc(&rba->req_pending);
1293		queue_work(rba->alloc_wq, &rba->rx_alloc);
1294	}
1295}
1296
1297static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1298				struct iwl_rxq *rxq,
1299				struct iwl_rx_mem_buffer *rxb,
1300				bool emergency,
1301				int i)
1302{
1303	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1304	struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id];
1305	bool page_stolen = false;
1306	int max_len = trans_pcie->rx_buf_bytes;
1307	u32 offset = 0;
1308
1309	if (WARN_ON(!rxb))
1310		return;
1311
1312	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1313
1314	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1315		struct iwl_rx_packet *pkt;
 
1316		bool reclaim;
1317		int len;
1318		struct iwl_rx_cmd_buffer rxcb = {
1319			._offset = rxb->offset + offset,
1320			._rx_page_order = trans_pcie->rx_page_order,
1321			._page = rxb->page,
1322			._page_stolen = false,
1323			.truesize = max_len,
1324		};
1325
1326		pkt = rxb_addr(&rxcb);
1327
1328		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1329			IWL_DEBUG_RX(trans,
1330				     "Q %d: RB end marker at offset %d\n",
1331				     rxq->id, offset);
1332			break;
1333		}
1334
1335		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1336			FH_RSCSR_RXQ_POS != rxq->id,
1337		     "frame on invalid queue - is on %d and indicates %d\n",
1338		     rxq->id,
1339		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1340			FH_RSCSR_RXQ_POS);
1341
1342		IWL_DEBUG_RX(trans,
1343			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1344			     rxq->id, offset,
1345			     iwl_get_cmd_string(trans,
1346						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1347			     pkt->hdr.group_id, pkt->hdr.cmd,
1348			     le16_to_cpu(pkt->hdr.sequence));
 
1349
1350		len = iwl_rx_packet_len(pkt);
1351		len += sizeof(u32); /* account for status word */
1352
1353		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1354
1355		/* check that what the device tells us made sense */
1356		if (len < sizeof(*pkt) || offset > max_len)
1357			break;
1358
1359		maybe_trace_iwlwifi_dev_rx(trans, pkt, len);
1360
1361		/* Reclaim a command buffer only if this packet is a response
1362		 *   to a (driver-originated) command.
1363		 * If the packet (e.g. Rx frame) originated from uCode,
1364		 *   there is no command buffer to reclaim.
1365		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1366		 *   but apparently a few don't get set; catch them here. */
1367		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1368		if (reclaim && !pkt->hdr.group_id) {
1369			int i;
1370
1371			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1372				if (trans_pcie->no_reclaim_cmds[i] ==
1373							pkt->hdr.cmd) {
1374					reclaim = false;
1375					break;
1376				}
1377			}
1378		}
1379
1380		if (rxq->id == IWL_DEFAULT_RX_QUEUE)
 
 
 
 
1381			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1382				       &rxcb);
1383		else
1384			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1385					   &rxcb, rxq->id);
1386
 
 
 
 
 
1387		/*
1388		 * After here, we should always check rxcb._page_stolen,
1389		 * if it is true then one of the handlers took the page.
1390		 */
1391
1392		if (reclaim && txq) {
1393			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1394			int index = SEQ_TO_INDEX(sequence);
1395			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1396
1397			kfree_sensitive(txq->entries[cmd_index].free_buf);
1398			txq->entries[cmd_index].free_buf = NULL;
1399
1400			/* Invoke any callbacks, transfer the buffer to caller,
1401			 * and fire off the (possibly) blocking
1402			 * iwl_trans_send_cmd()
1403			 * as we reclaim the driver command queue */
1404			if (!rxcb._page_stolen)
1405				iwl_pcie_hcmd_complete(trans, &rxcb);
1406			else
1407				IWL_WARN(trans, "Claim null rxb?\n");
1408		}
1409
1410		page_stolen |= rxcb._page_stolen;
1411		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1412			break;
1413	}
1414
1415	/* page was stolen from us -- free our reference */
1416	if (page_stolen) {
1417		__free_pages(rxb->page, trans_pcie->rx_page_order);
1418		rxb->page = NULL;
1419	}
1420
1421	/* Reuse the page if possible. For notification packets and
1422	 * SKBs that fail to Rx correctly, add them back into the
1423	 * rx_free list for reuse later. */
1424	if (rxb->page != NULL) {
1425		rxb->page_dma =
1426			dma_map_page(trans->dev, rxb->page, rxb->offset,
1427				     trans_pcie->rx_buf_bytes,
1428				     DMA_FROM_DEVICE);
1429		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1430			/*
1431			 * free the page(s) as well to not break
1432			 * the invariant that the items on the used
1433			 * list have no page(s)
1434			 */
1435			__free_pages(rxb->page, trans_pcie->rx_page_order);
1436			rxb->page = NULL;
1437			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1438		} else {
1439			list_add_tail(&rxb->list, &rxq->rx_free);
1440			rxq->free_count++;
1441		}
1442	} else
1443		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1444}
1445
1446static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1447						  struct iwl_rxq *rxq, int i,
1448						  bool *join)
1449{
1450	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1451	struct iwl_rx_mem_buffer *rxb;
1452	u16 vid;
1453
1454	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1455	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1456
1457	if (!trans->trans_cfg->mq_rx_supported) {
1458		rxb = rxq->queue[i];
1459		rxq->queue[i] = NULL;
1460		return rxb;
1461	}
1462
1463	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1464		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1465
1466		vid = le16_to_cpu(cd[i].rbid);
1467		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1468	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1469		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1470
1471		vid = le16_to_cpu(cd[i].rbid);
1472		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1473	} else {
1474		__le32 *cd = rxq->used_bd;
1475
1476		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1477	}
1478
1479	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1480		goto out_err;
1481
1482	rxb = trans_pcie->global_table[vid - 1];
1483	if (rxb->invalid)
1484		goto out_err;
1485
1486	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1487
1488	rxb->invalid = true;
1489
1490	return rxb;
1491
1492out_err:
1493	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1494	iwl_force_nmi(trans);
1495	return NULL;
1496}
1497
1498/*
1499 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1500 */
1501static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1502{
1503	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1504	struct iwl_rxq *rxq;
1505	u32 r, i, count = 0, handled = 0;
1506	bool emergency = false;
1507
1508	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1509		return budget;
1510
1511	rxq = &trans_pcie->rxq[queue];
1512
1513restart:
1514	spin_lock(&rxq->lock);
1515	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1516	 * buffer that the driver may process (last buffer filled by ucode). */
1517	r = iwl_get_closed_rb_stts(trans, rxq);
1518	i = rxq->read;
1519
1520	/* W/A 9000 device step A0 wrap-around bug */
1521	r &= (rxq->queue_size - 1);
1522
1523	/* Rx interrupt, but nothing sent from uCode */
1524	if (i == r)
1525		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1526
1527	while (i != r && ++handled < budget) {
1528		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1529		struct iwl_rx_mem_buffer *rxb;
1530		/* number of RBDs still waiting for page allocation */
1531		u32 rb_pending_alloc =
1532			atomic_read(&trans_pcie->rba.req_pending) *
1533			RX_CLAIM_REQ_ALLOC;
1534		bool join = false;
1535
1536		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1537			     !emergency)) {
1538			iwl_pcie_rx_move_to_allocator(rxq, rba);
1539			emergency = true;
1540			IWL_DEBUG_TPT(trans,
1541				      "RX path is in emergency. Pending allocations %d\n",
1542				      rb_pending_alloc);
1543		}
1544
1545		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1546
1547		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1548		if (!rxb)
1549			goto out;
1550
1551		if (unlikely(join || rxq->next_rb_is_fragment)) {
1552			rxq->next_rb_is_fragment = join;
1553			/*
1554			 * We can only get a multi-RB in the following cases:
1555			 *  - firmware issue, sending a too big notification
1556			 *  - sniffer mode with a large A-MSDU
1557			 *  - large MTU frames (>2k)
1558			 * since the multi-RB functionality is limited to newer
1559			 * hardware that cannot put multiple entries into a
1560			 * single RB.
1561			 *
1562			 * Right now, the higher layers aren't set up to deal
1563			 * with that, so discard all of these.
1564			 */
1565			list_add_tail(&rxb->list, &rxq->rx_free);
1566			rxq->free_count++;
 
 
 
 
1567		} else {
1568			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
 
1569		}
1570
 
 
 
1571		i = (i + 1) & (rxq->queue_size - 1);
1572
1573		/*
1574		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1575		 * try to claim the pre-allocated buffers from the allocator.
1576		 * If not ready - will try to reclaim next time.
1577		 * There is no need to reschedule work - allocator exits only
1578		 * on success
1579		 */
1580		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1581			iwl_pcie_rx_allocator_get(trans, rxq);
1582
1583		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
 
 
1584			/* Add the remaining empty RBDs for allocator use */
1585			iwl_pcie_rx_move_to_allocator(rxq, rba);
 
 
1586		} else if (emergency) {
1587			count++;
1588			if (count == 8) {
1589				count = 0;
1590				if (rb_pending_alloc < rxq->queue_size / 3) {
1591					IWL_DEBUG_TPT(trans,
1592						      "RX path exited emergency. Pending allocations %d\n",
1593						      rb_pending_alloc);
1594					emergency = false;
1595				}
1596
1597				rxq->read = i;
1598				spin_unlock(&rxq->lock);
1599				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1600				iwl_pcie_rxq_restock(trans, rxq);
1601				goto restart;
1602			}
1603		}
1604	}
1605out:
1606	/* Backtrack one entry */
1607	rxq->read = i;
1608	spin_unlock(&rxq->lock);
1609
1610	/*
1611	 * handle a case where in emergency there are some unallocated RBDs.
1612	 * those RBDs are in the used list, but are not tracked by the queue's
1613	 * used_count which counts allocator owned RBDs.
1614	 * unallocated emergency RBDs must be allocated on exit, otherwise
1615	 * when called again the function may not be in emergency mode and
1616	 * they will be handed to the allocator with no tracking in the RBD
1617	 * allocator counters, which will lead to them never being claimed back
1618	 * by the queue.
1619	 * by allocating them here, they are now in the queue free list, and
1620	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1621	 */
1622	if (unlikely(emergency && count))
1623		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1624
1625	iwl_pcie_rxq_restock(trans, rxq);
 
1626
1627	return handled;
1628}
1629
1630static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1631{
1632	u8 queue = entry->entry;
1633	struct msix_entry *entries = entry - queue;
1634
1635	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1636}
1637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638/*
1639 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1640 * This interrupt handler should be used with RSS queue only.
1641 */
1642irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1643{
1644	struct msix_entry *entry = dev_id;
1645	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1646	struct iwl_trans *trans = trans_pcie->trans;
1647	struct iwl_rxq *rxq;
1648
1649	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1650
1651	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1652		return IRQ_NONE;
1653
1654	if (!trans_pcie->rxq) {
1655		if (net_ratelimit())
1656			IWL_ERR(trans,
1657				"[%d] Got MSI-X interrupt before we have Rx queues\n",
1658				entry->entry);
1659		return IRQ_NONE;
1660	}
1661
1662	rxq = &trans_pcie->rxq[entry->entry];
1663	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1664	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1665
1666	local_bh_disable();
1667	if (!napi_schedule(&rxq->napi))
1668		iwl_pcie_clear_irq(trans, entry->entry);
1669	local_bh_enable();
1670
 
 
1671	lock_map_release(&trans->sync_cmd_lockdep_map);
1672
1673	return IRQ_HANDLED;
1674}
1675
1676/*
1677 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1678 */
1679static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1680{
1681	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1682	int i;
1683
1684	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1685	if (trans->cfg->internal_wimax_coex &&
1686	    !trans->cfg->apmg_not_supported &&
1687	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1688			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1689	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1690			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1691		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1692		iwl_op_mode_wimax_active(trans->op_mode);
1693		wake_up(&trans->wait_command_queue);
1694		return;
1695	}
1696
1697	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1698		if (!trans_pcie->txqs.txq[i])
1699			continue;
1700		del_timer(&trans_pcie->txqs.txq[i]->stuck_timer);
1701	}
1702
 
1703	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1704	 * before we wake up the command caller, to ensure a proper cleanup. */
1705	iwl_trans_fw_error(trans, false);
 
 
 
 
1706
1707	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1708	wake_up(&trans->wait_command_queue);
1709}
1710
1711static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1712{
1713	u32 inta;
1714
1715	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1716
1717	trace_iwlwifi_dev_irq(trans->dev);
1718
1719	/* Discover which interrupts are active/pending */
1720	inta = iwl_read32(trans, CSR_INT);
1721
1722	/* the thread will service interrupts and re-enable them */
1723	return inta;
1724}
1725
1726/* a device (PCI-E) page is 4096 bytes long */
1727#define ICT_SHIFT	12
1728#define ICT_SIZE	(1 << ICT_SHIFT)
1729#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1730
1731/* interrupt handler using ict table, with this interrupt driver will
1732 * stop using INTA register to get device's interrupt, reading this register
1733 * is expensive, device will write interrupts in ICT dram table, increment
1734 * index then will fire interrupt to driver, driver will OR all ICT table
1735 * entries from current index up to table entry with 0 value. the result is
1736 * the interrupt we need to service, driver will set the entries back to 0 and
1737 * set index.
1738 */
1739static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1740{
1741	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1742	u32 inta;
1743	u32 val = 0;
1744	u32 read;
1745
1746	trace_iwlwifi_dev_irq(trans->dev);
1747
1748	/* Ignore interrupt if there's nothing in NIC to service.
1749	 * This may be due to IRQ shared with another device,
1750	 * or due to sporadic interrupts thrown from our NIC. */
1751	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1752	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1753	if (!read)
1754		return 0;
1755
1756	/*
1757	 * Collect all entries up to the first 0, starting from ict_index;
1758	 * note we already read at ict_index.
1759	 */
1760	do {
1761		val |= read;
1762		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1763				trans_pcie->ict_index, read);
1764		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1765		trans_pcie->ict_index =
1766			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1767
1768		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1769		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1770					   read);
1771	} while (read);
1772
1773	/* We should not get this value, just ignore it. */
1774	if (val == 0xffffffff)
1775		val = 0;
1776
1777	/*
1778	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1779	 * (bit 15 before shifting it to 31) to clear when using interrupt
1780	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1781	 * so we use them to decide on the real state of the Rx bit.
1782	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1783	 */
1784	if (val & 0xC0000)
1785		val |= 0x8000;
1786
1787	inta = (0xff & val) | ((0xff00 & val) << 16);
1788	return inta;
1789}
1790
1791void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1792{
1793	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1794	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1795	bool hw_rfkill, prev, report;
1796
1797	mutex_lock(&trans_pcie->mutex);
1798	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1799	hw_rfkill = iwl_is_rfkill_set(trans);
1800	if (hw_rfkill) {
1801		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1802		set_bit(STATUS_RFKILL_HW, &trans->status);
1803	}
1804	if (trans_pcie->opmode_down)
1805		report = hw_rfkill;
1806	else
1807		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1808
1809	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1810		 hw_rfkill ? "disable radio" : "enable radio");
1811
1812	isr_stats->rfkill++;
1813
1814	if (prev != report)
1815		iwl_trans_pcie_rf_kill(trans, report, from_irq);
1816	mutex_unlock(&trans_pcie->mutex);
1817
1818	if (hw_rfkill) {
1819		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1820				       &trans->status))
1821			IWL_DEBUG_RF_KILL(trans,
1822					  "Rfkill while SYNC HCMD in flight\n");
1823		wake_up(&trans->wait_command_queue);
1824	} else {
1825		clear_bit(STATUS_RFKILL_HW, &trans->status);
1826		if (trans_pcie->opmode_down)
1827			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1828	}
1829}
1830
1831irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1832{
1833	struct iwl_trans *trans = dev_id;
1834	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1835	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1836	u32 inta = 0;
1837	u32 handled = 0;
1838	bool polling = false;
1839
1840	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1841
1842	spin_lock_bh(&trans_pcie->irq_lock);
1843
1844	/* dram interrupt table not set yet,
1845	 * use legacy interrupt.
1846	 */
1847	if (likely(trans_pcie->use_ict))
1848		inta = iwl_pcie_int_cause_ict(trans);
1849	else
1850		inta = iwl_pcie_int_cause_non_ict(trans);
1851
1852	if (iwl_have_debug_level(IWL_DL_ISR)) {
1853		IWL_DEBUG_ISR(trans,
1854			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1855			      inta, trans_pcie->inta_mask,
1856			      iwl_read32(trans, CSR_INT_MASK),
1857			      iwl_read32(trans, CSR_FH_INT_STATUS));
1858		if (inta & (~trans_pcie->inta_mask))
1859			IWL_DEBUG_ISR(trans,
1860				      "We got a masked interrupt (0x%08x)\n",
1861				      inta & (~trans_pcie->inta_mask));
1862	}
1863
1864	inta &= trans_pcie->inta_mask;
1865
1866	/*
1867	 * Ignore interrupt if there's nothing in NIC to service.
1868	 * This may be due to IRQ shared with another device,
1869	 * or due to sporadic interrupts thrown from our NIC.
1870	 */
1871	if (unlikely(!inta)) {
1872		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1873		/*
1874		 * Re-enable interrupts here since we don't
1875		 * have anything to service
1876		 */
1877		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1878			_iwl_enable_interrupts(trans);
1879		spin_unlock_bh(&trans_pcie->irq_lock);
1880		lock_map_release(&trans->sync_cmd_lockdep_map);
1881		return IRQ_NONE;
1882	}
1883
1884	if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1885		/*
1886		 * Hardware disappeared. It might have
1887		 * already raised an interrupt.
1888		 */
1889		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1890		spin_unlock_bh(&trans_pcie->irq_lock);
1891		goto out;
1892	}
1893
1894	/* Ack/clear/reset pending uCode interrupts.
1895	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1896	 */
1897	/* There is a hardware bug in the interrupt mask function that some
1898	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1899	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1900	 * ICT interrupt handling mechanism has another bug that might cause
1901	 * these unmasked interrupts fail to be detected. We workaround the
1902	 * hardware bugs here by ACKing all the possible interrupts so that
1903	 * interrupt coalescing can still be achieved.
1904	 */
1905	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1906
1907	if (iwl_have_debug_level(IWL_DL_ISR))
1908		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1909			      inta, iwl_read32(trans, CSR_INT_MASK));
1910
1911	spin_unlock_bh(&trans_pcie->irq_lock);
1912
1913	/* Now service all interrupt bits discovered above. */
1914	if (inta & CSR_INT_BIT_HW_ERR) {
1915		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1916
1917		/* Tell the device to stop sending interrupts */
1918		iwl_disable_interrupts(trans);
1919
1920		isr_stats->hw++;
1921		iwl_pcie_irq_handle_error(trans);
1922
1923		handled |= CSR_INT_BIT_HW_ERR;
1924
1925		goto out;
1926	}
1927
1928	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1929	if (inta & CSR_INT_BIT_SCD) {
1930		IWL_DEBUG_ISR(trans,
1931			      "Scheduler finished to transmit the frame/frames.\n");
1932		isr_stats->sch++;
1933	}
1934
1935	/* Alive notification via Rx interrupt will do the real work */
1936	if (inta & CSR_INT_BIT_ALIVE) {
1937		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1938		isr_stats->alive++;
1939		if (trans->trans_cfg->gen2) {
1940			/*
1941			 * We can restock, since firmware configured
1942			 * the RFH
1943			 */
1944			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1945		}
1946
1947		handled |= CSR_INT_BIT_ALIVE;
 
 
 
 
1948	}
1949
1950	/* Safely ignore these bits for debug checks below */
1951	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1952
1953	/* HW RF KILL switch toggled */
1954	if (inta & CSR_INT_BIT_RF_KILL) {
1955		iwl_pcie_handle_rfkill_irq(trans, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956		handled |= CSR_INT_BIT_RF_KILL;
1957	}
1958
1959	/* Chip got too hot and stopped itself */
1960	if (inta & CSR_INT_BIT_CT_KILL) {
1961		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1962		isr_stats->ctkill++;
1963		handled |= CSR_INT_BIT_CT_KILL;
1964	}
1965
1966	/* Error detected by uCode */
1967	if (inta & CSR_INT_BIT_SW_ERR) {
1968		IWL_ERR(trans, "Microcode SW error detected. "
1969			" Restarting 0x%X.\n", inta);
1970		isr_stats->sw++;
1971		iwl_pcie_irq_handle_error(trans);
1972		handled |= CSR_INT_BIT_SW_ERR;
1973	}
1974
1975	/* uCode wakes up after power-down sleep */
1976	if (inta & CSR_INT_BIT_WAKEUP) {
1977		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1978		iwl_pcie_rxq_check_wrptr(trans);
1979		iwl_pcie_txq_check_wrptrs(trans);
1980
1981		isr_stats->wakeup++;
1982
1983		handled |= CSR_INT_BIT_WAKEUP;
1984	}
1985
1986	/* All uCode command responses, including Tx command responses,
1987	 * Rx "responses" (frame-received notification), and other
1988	 * notifications from uCode come through here*/
1989	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1990		    CSR_INT_BIT_RX_PERIODIC)) {
1991		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1992		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1993			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1994			iwl_write32(trans, CSR_FH_INT_STATUS,
1995					CSR_FH_INT_RX_MASK);
1996		}
1997		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1998			handled |= CSR_INT_BIT_RX_PERIODIC;
1999			iwl_write32(trans,
2000				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
2001		}
2002		/* Sending RX interrupt require many steps to be done in the
2003		 * device:
2004		 * 1- write interrupt to current index in ICT table.
2005		 * 2- dma RX frame.
2006		 * 3- update RX shared data to indicate last write index.
2007		 * 4- send interrupt.
2008		 * This could lead to RX race, driver could receive RX interrupt
2009		 * but the shared data changes does not reflect this;
2010		 * periodic interrupt will detect any dangling Rx activity.
2011		 */
2012
2013		/* Disable periodic interrupt; we use it as just a one-shot. */
2014		iwl_write8(trans, CSR_INT_PERIODIC_REG,
2015			    CSR_INT_PERIODIC_DIS);
2016
2017		/*
2018		 * Enable periodic interrupt in 8 msec only if we received
2019		 * real RX interrupt (instead of just periodic int), to catch
2020		 * any dangling Rx interrupt.  If it was just the periodic
2021		 * interrupt, there was no dangling Rx activity, and no need
2022		 * to extend the periodic interrupt; one-shot is enough.
2023		 */
2024		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2025			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2026				   CSR_INT_PERIODIC_ENA);
2027
2028		isr_stats->rx++;
2029
2030		local_bh_disable();
2031		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2032			polling = true;
2033			__napi_schedule(&trans_pcie->rxq[0].napi);
2034		}
2035		local_bh_enable();
2036	}
2037
2038	/* This "Tx" DMA channel is used only for loading uCode */
2039	if (inta & CSR_INT_BIT_FH_TX) {
2040		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2041		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2042		isr_stats->tx++;
2043		handled |= CSR_INT_BIT_FH_TX;
2044		/* Wake up uCode load routine, now that load is complete */
2045		trans_pcie->ucode_write_complete = true;
2046		wake_up(&trans_pcie->ucode_write_waitq);
2047		/* Wake up IMR write routine, now that write to SRAM is complete */
2048		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2049			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2050			wake_up(&trans_pcie->ucode_write_waitq);
2051		}
2052	}
2053
2054	if (inta & ~handled) {
2055		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2056		isr_stats->unhandled++;
2057	}
2058
2059	if (inta & ~(trans_pcie->inta_mask)) {
2060		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2061			 inta & ~trans_pcie->inta_mask);
2062	}
2063
2064	if (!polling) {
2065		spin_lock_bh(&trans_pcie->irq_lock);
2066		/* only Re-enable all interrupt if disabled by irq */
2067		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2068			_iwl_enable_interrupts(trans);
2069		/* we are loading the firmware, enable FH_TX interrupt only */
2070		else if (handled & CSR_INT_BIT_FH_TX)
2071			iwl_enable_fw_load_int(trans);
2072		/* Re-enable RF_KILL if it occurred */
2073		else if (handled & CSR_INT_BIT_RF_KILL)
2074			iwl_enable_rfkill_int(trans);
2075		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2076		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2077			iwl_enable_fw_load_int_ctx_info(trans);
2078		spin_unlock_bh(&trans_pcie->irq_lock);
2079	}
2080
2081out:
2082	lock_map_release(&trans->sync_cmd_lockdep_map);
2083	return IRQ_HANDLED;
2084}
2085
2086/******************************************************************************
2087 *
2088 * ICT functions
2089 *
2090 ******************************************************************************/
2091
2092/* Free dram table */
2093void iwl_pcie_free_ict(struct iwl_trans *trans)
2094{
2095	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2096
2097	if (trans_pcie->ict_tbl) {
2098		dma_free_coherent(trans->dev, ICT_SIZE,
2099				  trans_pcie->ict_tbl,
2100				  trans_pcie->ict_tbl_dma);
2101		trans_pcie->ict_tbl = NULL;
2102		trans_pcie->ict_tbl_dma = 0;
2103	}
2104}
2105
2106/*
2107 * allocate dram shared table, it is an aligned memory
2108 * block of ICT_SIZE.
2109 * also reset all data related to ICT table interrupt.
2110 */
2111int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2112{
2113	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2114
2115	trans_pcie->ict_tbl =
2116		dma_alloc_coherent(trans->dev, ICT_SIZE,
2117				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
 
2118	if (!trans_pcie->ict_tbl)
2119		return -ENOMEM;
2120
2121	/* just an API sanity check ... it is guaranteed to be aligned */
2122	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2123		iwl_pcie_free_ict(trans);
2124		return -EINVAL;
2125	}
2126
2127	return 0;
2128}
2129
2130/* Device is going up inform it about using ICT interrupt table,
2131 * also we need to tell the driver to start using ICT interrupt.
2132 */
2133void iwl_pcie_reset_ict(struct iwl_trans *trans)
2134{
2135	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2136	u32 val;
2137
2138	if (!trans_pcie->ict_tbl)
2139		return;
2140
2141	spin_lock_bh(&trans_pcie->irq_lock);
2142	_iwl_disable_interrupts(trans);
2143
2144	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2145
2146	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2147
2148	val |= CSR_DRAM_INT_TBL_ENABLE |
2149	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2150	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2151
2152	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2153
2154	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2155	trans_pcie->use_ict = true;
2156	trans_pcie->ict_index = 0;
2157	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2158	_iwl_enable_interrupts(trans);
2159	spin_unlock_bh(&trans_pcie->irq_lock);
2160}
2161
2162/* Device is going down disable ict interrupt usage */
2163void iwl_pcie_disable_ict(struct iwl_trans *trans)
2164{
2165	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2166
2167	spin_lock_bh(&trans_pcie->irq_lock);
2168	trans_pcie->use_ict = false;
2169	spin_unlock_bh(&trans_pcie->irq_lock);
2170}
2171
2172irqreturn_t iwl_pcie_isr(int irq, void *data)
2173{
2174	struct iwl_trans *trans = data;
2175
2176	if (!trans)
2177		return IRQ_NONE;
2178
2179	/* Disable (but don't clear!) interrupts here to avoid
2180	 * back-to-back ISRs and sporadic interrupts from our NIC.
2181	 * If we have something to service, the tasklet will re-enable ints.
2182	 * If we *don't* have something, we'll re-enable before leaving here.
2183	 */
2184	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2185
2186	return IRQ_WAKE_THREAD;
2187}
2188
2189irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2190{
2191	return IRQ_WAKE_THREAD;
2192}
2193
2194irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2195{
2196	struct msix_entry *entry = dev_id;
2197	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2198	struct iwl_trans *trans = trans_pcie->trans;
2199	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2200	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2201	u32 inta_fh, inta_hw;
2202	bool polling = false;
2203	bool sw_err;
2204
2205	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2206		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2207
2208	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2209		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2210
2211	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2212
2213	spin_lock_bh(&trans_pcie->irq_lock);
2214	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2215	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2216	/*
2217	 * Clear causes registers to avoid being handling the same cause.
2218	 */
2219	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2220	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2221	spin_unlock_bh(&trans_pcie->irq_lock);
2222
2223	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2224
2225	if (unlikely(!(inta_fh | inta_hw))) {
2226		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2227		lock_map_release(&trans->sync_cmd_lockdep_map);
2228		return IRQ_NONE;
2229	}
2230
2231	if (iwl_have_debug_level(IWL_DL_ISR)) {
2232		IWL_DEBUG_ISR(trans,
2233			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2234			      entry->entry, inta_fh, trans_pcie->fh_mask,
2235			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2236		if (inta_fh & ~trans_pcie->fh_mask)
2237			IWL_DEBUG_ISR(trans,
2238				      "We got a masked interrupt (0x%08x)\n",
2239				      inta_fh & ~trans_pcie->fh_mask);
2240	}
2241
2242	inta_fh &= trans_pcie->fh_mask;
2243
2244	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2245	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2246		local_bh_disable();
2247		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2248			polling = true;
2249			__napi_schedule(&trans_pcie->rxq[0].napi);
2250		}
2251		local_bh_enable();
2252	}
2253
2254	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2255	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2256		local_bh_disable();
2257		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2258			polling = true;
2259			__napi_schedule(&trans_pcie->rxq[1].napi);
2260		}
2261		local_bh_enable();
2262	}
2263
2264	/* This "Tx" DMA channel is used only for loading uCode */
2265	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2266	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2267		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2268		isr_stats->tx++;
2269
2270		/* Wake up IMR routine once write to SRAM is complete */
2271		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2272			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2273			wake_up(&trans_pcie->ucode_write_waitq);
2274		}
2275	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2276		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2277		isr_stats->tx++;
2278		/*
2279		 * Wake up uCode load routine,
2280		 * now that load is complete
2281		 */
2282		trans_pcie->ucode_write_complete = true;
2283		wake_up(&trans_pcie->ucode_write_waitq);
2284
2285		/* Wake up IMR routine once write to SRAM is complete */
2286		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2287			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2288			wake_up(&trans_pcie->ucode_write_waitq);
2289		}
2290	}
2291
2292	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2293		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2294	else
2295		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2296
2297	if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) {
2298		IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n",
2299			inta_hw);
2300		/* TODO: PLDR flow required here for >= Bz */
2301	}
2302
2303	/* Error detected by uCode */
2304	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
 
2305		IWL_ERR(trans,
2306			"Microcode SW error detected. Restarting 0x%X.\n",
2307			inta_fh);
2308		isr_stats->sw++;
2309		/* during FW reset flow report errors from there */
2310		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2311			trans_pcie->imr_status = IMR_D2S_ERROR;
2312			wake_up(&trans_pcie->imr_waitq);
2313		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2314			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2315			wake_up(&trans_pcie->fw_reset_waitq);
2316		} else {
2317			iwl_pcie_irq_handle_error(trans);
2318		}
2319	}
2320
2321	/* After checking FH register check HW register */
2322	if (iwl_have_debug_level(IWL_DL_ISR)) {
2323		IWL_DEBUG_ISR(trans,
2324			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2325			      entry->entry, inta_hw, trans_pcie->hw_mask,
2326			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2327		if (inta_hw & ~trans_pcie->hw_mask)
2328			IWL_DEBUG_ISR(trans,
2329				      "We got a masked interrupt 0x%08x\n",
2330				      inta_hw & ~trans_pcie->hw_mask);
2331	}
2332
2333	inta_hw &= trans_pcie->hw_mask;
2334
2335	/* Alive notification via Rx interrupt will do the real work */
2336	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2337		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2338		isr_stats->alive++;
2339		if (trans->trans_cfg->gen2) {
2340			/* We can restock, since firmware configured the RFH */
2341			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2342		}
2343	}
2344
2345	/*
2346	 * In some rare cases when the HW is in a bad state, we may
2347	 * get this interrupt too early, when prph_info is still NULL.
2348	 * So make sure that it's not NULL to prevent crashing.
2349	 */
2350	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2351		u32 sleep_notif =
2352			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2353		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2354		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2355			IWL_DEBUG_ISR(trans,
2356				      "Sx interrupt: sleep notification = 0x%x\n",
2357				      sleep_notif);
2358			trans_pcie->sx_complete = true;
2359			wake_up(&trans_pcie->sx_waitq);
2360		} else {
2361			/* uCode wakes up after power-down sleep */
2362			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2363			iwl_pcie_rxq_check_wrptr(trans);
2364			iwl_pcie_txq_check_wrptrs(trans);
2365
2366			isr_stats->wakeup++;
2367		}
2368	}
2369
2370	/* Chip got too hot and stopped itself */
2371	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2372		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2373		isr_stats->ctkill++;
2374	}
2375
2376	/* HW RF KILL switch toggled */
2377	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2378		iwl_pcie_handle_rfkill_irq(trans, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379
2380	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2381		IWL_ERR(trans,
2382			"Hardware error detected. Restarting.\n");
2383
2384		isr_stats->hw++;
2385		trans->dbg.hw_error = true;
2386		iwl_pcie_irq_handle_error(trans);
2387	}
2388
2389	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2390		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2391		trans_pcie->fw_reset_state = FW_RESET_OK;
2392		wake_up(&trans_pcie->fw_reset_waitq);
2393	}
2394
2395	if (!polling)
2396		iwl_pcie_clear_irq(trans, entry->entry);
2397
2398	lock_map_release(&trans->sync_cmd_lockdep_map);
2399
2400	return IRQ_HANDLED;
2401}
v4.6
   1/******************************************************************************
   2 *
   3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
   4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
   5 * Copyright(c) 2016 Intel Deutschland GmbH
   6 *
   7 * Portions of this file are derived from the ipw3945 project, as well
   8 * as portions of the ieee80211 subsystem header files.
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along with
  20 * this program; if not, write to the Free Software Foundation, Inc.,
  21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  22 *
  23 * The full GNU General Public License is included in this distribution in the
  24 * file called LICENSE.
  25 *
  26 * Contact Information:
  27 *  Intel Linux Wireless <linuxwifi@intel.com>
  28 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  29 *
  30 *****************************************************************************/
  31#include <linux/sched.h>
  32#include <linux/wait.h>
  33#include <linux/gfp.h>
  34
  35#include "iwl-prph.h"
  36#include "iwl-io.h"
  37#include "internal.h"
  38#include "iwl-op-mode.h"
 
  39
  40/******************************************************************************
  41 *
  42 * RX path functions
  43 *
  44 ******************************************************************************/
  45
  46/*
  47 * Rx theory of operation
  48 *
  49 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
  50 * each of which point to Receive Buffers to be filled by the NIC.  These get
  51 * used not only for Rx frames, but for any command response or notification
  52 * from the NIC.  The driver and NIC manage the Rx buffers by means
  53 * of indexes into the circular buffer.
  54 *
  55 * Rx Queue Indexes
  56 * The host/firmware share two index registers for managing the Rx buffers.
  57 *
  58 * The READ index maps to the first position that the firmware may be writing
  59 * to -- the driver can read up to (but not including) this position and get
  60 * good data.
  61 * The READ index is managed by the firmware once the card is enabled.
  62 *
  63 * The WRITE index maps to the last position the driver has read from -- the
  64 * position preceding WRITE is the last slot the firmware can place a packet.
  65 *
  66 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
  67 * WRITE = READ.
  68 *
  69 * During initialization, the host sets up the READ queue position to the first
  70 * INDEX position, and WRITE to the last (READ - 1 wrapped)
  71 *
  72 * When the firmware places a packet in a buffer, it will advance the READ index
  73 * and fire the RX interrupt.  The driver can then query the READ index and
  74 * process as many packets as possible, moving the WRITE index forward as it
  75 * resets the Rx queue buffers with new memory.
  76 *
  77 * The management in the driver is as follows:
  78 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
  79 *   When the interrupt handler is called, the request is processed.
  80 *   The page is either stolen - transferred to the upper layer
  81 *   or reused - added immediately to the iwl->rxq->rx_free list.
  82 * + When the page is stolen - the driver updates the matching queue's used
  83 *   count, detaches the RBD and transfers it to the queue used list.
  84 *   When there are two used RBDs - they are transferred to the allocator empty
  85 *   list. Work is then scheduled for the allocator to start allocating
  86 *   eight buffers.
  87 *   When there are another 6 used RBDs - they are transferred to the allocator
  88 *   empty list and the driver tries to claim the pre-allocated buffers and
  89 *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
  90 *   until ready.
  91 *   When there are 8+ buffers in the free list - either from allocation or from
  92 *   8 reused unstolen pages - restock is called to update the FW and indexes.
  93 * + In order to make sure the allocator always has RBDs to use for allocation
  94 *   the allocator has initial pool in the size of num_queues*(8-2) - the
  95 *   maximum missing RBDs per allocation request (request posted with 2
  96 *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
  97 *   The queues supplies the recycle of the rest of the RBDs.
  98 * + A received packet is processed and handed to the kernel network stack,
  99 *   detached from the iwl->rxq.  The driver 'processed' index is updated.
 100 * + If there are no allocated buffers in iwl->rxq->rx_free,
 101 *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
 102 *   If there were enough free buffers and RX_STALLED is set it is cleared.
 103 *
 104 *
 105 * Driver sequence:
 106 *
 107 * iwl_rxq_alloc()            Allocates rx_free
 108 * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
 109 *                            iwl_pcie_rxq_restock.
 110 *                            Used only during initialization.
 111 * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
 112 *                            queue, updates firmware pointers, and updates
 113 *                            the WRITE index.
 114 * iwl_pcie_rx_allocator()     Background work for allocating pages.
 115 *
 116 * -- enable interrupts --
 117 * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
 118 *                            READ INDEX, detaching the SKB from the pool.
 119 *                            Moves the packet buffer from queue to rx_used.
 120 *                            Posts and claims requests to the allocator.
 121 *                            Calls iwl_pcie_rxq_restock to refill any empty
 122 *                            slots.
 123 *
 124 * RBD life-cycle:
 125 *
 126 * Init:
 127 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
 128 *
 129 * Regular Receive interrupt:
 130 * Page Stolen:
 131 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
 132 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
 133 * Page not Stolen:
 134 * rxq.queue -> rxq.rx_free -> rxq.queue
 135 * ...
 136 *
 137 */
 138
 139/*
 140 * iwl_rxq_space - Return number of free slots available in queue.
 141 */
 142static int iwl_rxq_space(const struct iwl_rxq *rxq)
 143{
 144	/* Make sure rx queue size is a power of 2 */
 145	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
 146
 147	/*
 148	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
 149	 * between empty and completely full queues.
 150	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
 151	 * defined for negative dividends.
 152	 */
 153	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
 154}
 155
 156/*
 157 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
 158 */
 159static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
 160{
 161	return cpu_to_le32((u32)(dma_addr >> 8));
 162}
 163
 164static void iwl_pcie_write_prph_64(struct iwl_trans *trans, u64 ofs, u64 val)
 165{
 166	iwl_write_prph(trans, ofs, val & 0xffffffff);
 167	iwl_write_prph(trans, ofs + 4, val >> 32);
 168}
 169
 170/*
 171 * iwl_pcie_rx_stop - stops the Rx DMA
 172 */
 173int iwl_pcie_rx_stop(struct iwl_trans *trans)
 174{
 175	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 176	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
 177				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180/*
 181 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
 182 */
 183static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
 184				    struct iwl_rxq *rxq)
 185{
 186	u32 reg;
 187
 188	lockdep_assert_held(&rxq->lock);
 189
 190	/*
 191	 * explicitly wake up the NIC if:
 192	 * 1. shadow registers aren't enabled
 193	 * 2. there is a chance that the NIC is asleep
 194	 */
 195	if (!trans->cfg->base_params->shadow_reg_enable &&
 196	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
 197		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
 198
 199		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
 200			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
 201				       reg);
 202			iwl_set_bit(trans, CSR_GP_CNTRL,
 203				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
 204			rxq->need_update = true;
 205			return;
 206		}
 207	}
 208
 209	rxq->write_actual = round_down(rxq->write, 8);
 210	if (trans->cfg->mq_rx_supported)
 211		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(rxq->id),
 212			       rxq->write_actual);
 
 
 213	else
 214		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
 
 215}
 216
 217static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
 218{
 219	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 220	int i;
 221
 222	for (i = 0; i < trans->num_rx_queues; i++) {
 223		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 224
 225		if (!rxq->need_update)
 226			continue;
 227		spin_lock(&rxq->lock);
 228		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 229		rxq->need_update = false;
 230		spin_unlock(&rxq->lock);
 231	}
 232}
 233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234/*
 235 * iwl_pcie_rxq_mq_restock - restock implementation for multi-queue rx
 236 */
 237static void iwl_pcie_rxq_mq_restock(struct iwl_trans *trans,
 238				    struct iwl_rxq *rxq)
 239{
 
 240	struct iwl_rx_mem_buffer *rxb;
 241
 242	/*
 243	 * If the device isn't enabled - no need to try to add buffers...
 244	 * This can happen when we stop the device and still have an interrupt
 245	 * pending. We stop the APM before we sync the interrupts because we
 246	 * have to (see comment there). On the other hand, since the APM is
 247	 * stopped, we cannot access the HW (in particular not prph).
 248	 * So don't try to restock if the APM has been already stopped.
 249	 */
 250	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 251		return;
 252
 253	spin_lock(&rxq->lock);
 254	while (rxq->free_count) {
 255		__le64 *bd = (__le64 *)rxq->bd;
 256
 257		/* Get next free Rx buffer, remove from free list */
 258		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 259				       list);
 260		list_del(&rxb->list);
 261
 262		/* 12 first bits are expected to be empty */
 263		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
 264		/* Point to Rx buffer via next RBD in circular buffer */
 265		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
 266		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
 267		rxq->free_count--;
 268	}
 269	spin_unlock(&rxq->lock);
 270
 271	/*
 272	 * If we've added more space for the firmware to place data, tell it.
 273	 * Increment device's write pointer in multiples of 8.
 274	 */
 275	if (rxq->write_actual != (rxq->write & ~0x7)) {
 276		spin_lock(&rxq->lock);
 277		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 278		spin_unlock(&rxq->lock);
 279	}
 280}
 281
 282/*
 283 * iwl_pcie_rxq_sq_restock - restock implementation for single queue rx
 284 */
 285static void iwl_pcie_rxq_sq_restock(struct iwl_trans *trans,
 286				    struct iwl_rxq *rxq)
 287{
 288	struct iwl_rx_mem_buffer *rxb;
 289
 290	/*
 291	 * If the device isn't enabled - not need to try to add buffers...
 292	 * This can happen when we stop the device and still have an interrupt
 293	 * pending. We stop the APM before we sync the interrupts because we
 294	 * have to (see comment there). On the other hand, since the APM is
 295	 * stopped, we cannot access the HW (in particular not prph).
 296	 * So don't try to restock if the APM has been already stopped.
 297	 */
 298	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
 299		return;
 300
 301	spin_lock(&rxq->lock);
 302	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
 303		__le32 *bd = (__le32 *)rxq->bd;
 304		/* The overwritten rxb must be a used one */
 305		rxb = rxq->queue[rxq->write];
 306		BUG_ON(rxb && rxb->page);
 307
 308		/* Get next free Rx buffer, remove from free list */
 309		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
 310				       list);
 311		list_del(&rxb->list);
 
 312
 313		/* Point to Rx buffer via next RBD in circular buffer */
 314		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
 315		rxq->queue[rxq->write] = rxb;
 316		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
 317		rxq->free_count--;
 318	}
 319	spin_unlock(&rxq->lock);
 320
 321	/* If we've added more space for the firmware to place data, tell it.
 322	 * Increment device's write pointer in multiples of 8. */
 323	if (rxq->write_actual != (rxq->write & ~0x7)) {
 324		spin_lock(&rxq->lock);
 325		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
 326		spin_unlock(&rxq->lock);
 327	}
 328}
 329
 330/*
 331 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
 332 *
 333 * If there are slots in the RX queue that need to be restocked,
 334 * and we have free pre-allocated buffers, fill the ranks as much
 335 * as we can, pulling from rx_free.
 336 *
 337 * This moves the 'write' index forward to catch up with 'processed', and
 338 * also updates the memory address in the firmware to reference the new
 339 * target buffer.
 340 */
 341static
 342void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
 343{
 344	if (trans->cfg->mq_rx_supported)
 345		iwl_pcie_rxq_mq_restock(trans, rxq);
 346	else
 347		iwl_pcie_rxq_sq_restock(trans, rxq);
 348}
 349
 350/*
 351 * iwl_pcie_rx_alloc_page - allocates and returns a page.
 352 *
 353 */
 354static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
 355					   gfp_t priority)
 356{
 357	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 
 358	struct page *page;
 359	gfp_t gfp_mask = priority;
 360
 361	if (trans_pcie->rx_page_order > 0)
 362		gfp_mask |= __GFP_COMP;
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364	/* Alloc a new receive buffer */
 365	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
 366	if (!page) {
 367		if (net_ratelimit())
 368			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
 369				       trans_pcie->rx_page_order);
 370		/*
 371		 * Issue an error if we don't have enough pre-allocated
 372		  * buffers.
 373`		 */
 374		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
 375			IWL_CRIT(trans,
 376				 "Failed to alloc_pages\n");
 377		return NULL;
 378	}
 
 
 
 
 
 
 
 
 
 
 
 
 379	return page;
 380}
 381
 382/*
 383 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
 384 *
 385 * A used RBD is an Rx buffer that has been given to the stack. To use it again
 386 * a page must be allocated and the RBD must point to the page. This function
 387 * doesn't change the HW pointer but handles the list of pages that is used by
 388 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
 389 * allocated buffers.
 390 */
 391static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
 392				   struct iwl_rxq *rxq)
 393{
 394	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 395	struct iwl_rx_mem_buffer *rxb;
 396	struct page *page;
 397
 398	while (1) {
 399		spin_lock(&rxq->lock);
 
 
 400		if (list_empty(&rxq->rx_used)) {
 401			spin_unlock(&rxq->lock);
 402			return;
 403		}
 404		spin_unlock(&rxq->lock);
 405
 406		/* Alloc a new receive buffer */
 407		page = iwl_pcie_rx_alloc_page(trans, priority);
 408		if (!page)
 409			return;
 410
 411		spin_lock(&rxq->lock);
 412
 413		if (list_empty(&rxq->rx_used)) {
 414			spin_unlock(&rxq->lock);
 415			__free_pages(page, trans_pcie->rx_page_order);
 416			return;
 417		}
 418		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
 419				       list);
 420		list_del(&rxb->list);
 421		spin_unlock(&rxq->lock);
 422
 423		BUG_ON(rxb->page);
 424		rxb->page = page;
 
 425		/* Get physical address of the RB */
 426		rxb->page_dma =
 427			dma_map_page(trans->dev, page, 0,
 428				     PAGE_SIZE << trans_pcie->rx_page_order,
 429				     DMA_FROM_DEVICE);
 430		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 431			rxb->page = NULL;
 432			spin_lock(&rxq->lock);
 433			list_add(&rxb->list, &rxq->rx_used);
 434			spin_unlock(&rxq->lock);
 435			__free_pages(page, trans_pcie->rx_page_order);
 436			return;
 437		}
 438
 439		spin_lock(&rxq->lock);
 440
 441		list_add_tail(&rxb->list, &rxq->rx_free);
 442		rxq->free_count++;
 443
 444		spin_unlock(&rxq->lock);
 445	}
 446}
 447
 448static void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
 449{
 450	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 451	int i;
 452
 453	for (i = 0; i < RX_POOL_SIZE; i++) {
 
 
 
 454		if (!trans_pcie->rx_pool[i].page)
 455			continue;
 456		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
 457			       PAGE_SIZE << trans_pcie->rx_page_order,
 458			       DMA_FROM_DEVICE);
 459		__free_pages(trans_pcie->rx_pool[i].page,
 460			     trans_pcie->rx_page_order);
 461		trans_pcie->rx_pool[i].page = NULL;
 462	}
 463}
 464
 465/*
 466 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
 467 *
 468 * Allocates for each received request 8 pages
 469 * Called as a scheduled work item.
 470 */
 471static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
 472{
 473	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 474	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 475	struct list_head local_empty;
 476	int pending = atomic_xchg(&rba->req_pending, 0);
 477
 478	IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending);
 479
 480	/* If we were scheduled - there is at least one request */
 481	spin_lock(&rba->lock);
 482	/* swap out the rba->rbd_empty to a local list */
 483	list_replace_init(&rba->rbd_empty, &local_empty);
 484	spin_unlock(&rba->lock);
 485
 486	while (pending) {
 487		int i;
 488		struct list_head local_allocated;
 489		gfp_t gfp_mask = GFP_KERNEL;
 490
 491		/* Do not post a warning if there are only a few requests */
 492		if (pending < RX_PENDING_WATERMARK)
 493			gfp_mask |= __GFP_NOWARN;
 494
 495		INIT_LIST_HEAD(&local_allocated);
 496
 497		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
 498			struct iwl_rx_mem_buffer *rxb;
 499			struct page *page;
 500
 501			/* List should never be empty - each reused RBD is
 502			 * returned to the list, and initial pool covers any
 503			 * possible gap between the time the page is allocated
 504			 * to the time the RBD is added.
 505			 */
 506			BUG_ON(list_empty(&local_empty));
 507			/* Get the first rxb from the rbd list */
 508			rxb = list_first_entry(&local_empty,
 509					       struct iwl_rx_mem_buffer, list);
 510			BUG_ON(rxb->page);
 511
 512			/* Alloc a new receive buffer */
 513			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
 
 514			if (!page)
 515				continue;
 516			rxb->page = page;
 517
 518			/* Get physical address of the RB */
 519			rxb->page_dma = dma_map_page(trans->dev, page, 0,
 520					PAGE_SIZE << trans_pcie->rx_page_order,
 521					DMA_FROM_DEVICE);
 
 522			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
 523				rxb->page = NULL;
 524				__free_pages(page, trans_pcie->rx_page_order);
 525				continue;
 526			}
 527
 528			/* move the allocated entry to the out list */
 529			list_move(&rxb->list, &local_allocated);
 530			i++;
 531		}
 532
 
 533		pending--;
 
 534		if (!pending) {
 535			pending = atomic_xchg(&rba->req_pending, 0);
 536			IWL_DEBUG_RX(trans,
 537				     "Pending allocation requests = %d\n",
 538				     pending);
 
 539		}
 540
 541		spin_lock(&rba->lock);
 542		/* add the allocated rbds to the allocator allocated list */
 543		list_splice_tail(&local_allocated, &rba->rbd_allocated);
 544		/* get more empty RBDs for current pending requests */
 545		list_splice_tail_init(&rba->rbd_empty, &local_empty);
 546		spin_unlock(&rba->lock);
 547
 548		atomic_inc(&rba->req_ready);
 
 549	}
 550
 551	spin_lock(&rba->lock);
 552	/* return unused rbds to the allocator empty list */
 553	list_splice_tail(&local_empty, &rba->rbd_empty);
 554	spin_unlock(&rba->lock);
 
 
 555}
 556
 557/*
 558 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
 559.*
 560.* Called by queue when the queue posted allocation request and
 561 * has freed 8 RBDs in order to restock itself.
 562 * This function directly moves the allocated RBs to the queue's ownership
 563 * and updates the relevant counters.
 564 */
 565static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
 566				      struct iwl_rxq *rxq)
 567{
 568	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 569	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 570	int i;
 571
 572	lockdep_assert_held(&rxq->lock);
 573
 574	/*
 575	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
 576	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
 577	 * function will return early, as there are no ready requests.
 578	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
 579	 * req_ready > 0, i.e. - there are ready requests and the function
 580	 * hands one request to the caller.
 581	 */
 582	if (atomic_dec_if_positive(&rba->req_ready) < 0)
 583		return;
 584
 585	spin_lock(&rba->lock);
 586	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
 587		/* Get next free Rx buffer, remove it from free list */
 588		struct iwl_rx_mem_buffer *rxb =
 589			list_first_entry(&rba->rbd_allocated,
 590					 struct iwl_rx_mem_buffer, list);
 591
 592		list_move(&rxb->list, &rxq->rx_free);
 593	}
 594	spin_unlock(&rba->lock);
 595
 596	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
 597	rxq->free_count += RX_CLAIM_REQ_ALLOC;
 598}
 599
 600static void iwl_pcie_rx_allocator_work(struct work_struct *data)
 601{
 602	struct iwl_rb_allocator *rba_p =
 603		container_of(data, struct iwl_rb_allocator, rx_alloc);
 604	struct iwl_trans_pcie *trans_pcie =
 605		container_of(rba_p, struct iwl_trans_pcie, rba);
 606
 607	iwl_pcie_rx_allocator(trans_pcie->trans);
 608}
 609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
 611{
 612	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 613	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 614	struct device *dev = trans->dev;
 615	int i;
 616	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
 617						      sizeof(__le32);
 618
 619	if (WARN_ON(trans_pcie->rxq))
 620		return -EINVAL;
 621
 622	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
 623				  GFP_KERNEL);
 624	if (!trans_pcie->rxq)
 625		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 626
 627	spin_lock_init(&rba->lock);
 628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629	for (i = 0; i < trans->num_rx_queues; i++) {
 630		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 631
 632		spin_lock_init(&rxq->lock);
 633		if (trans->cfg->mq_rx_supported)
 634			rxq->queue_size = MQ_RX_TABLE_SIZE;
 635		else
 636			rxq->queue_size = RX_QUEUE_SIZE;
 637
 638		/*
 639		 * Allocate the circular buffer of Read Buffer Descriptors
 640		 * (RBDs)
 641		 */
 642		rxq->bd = dma_zalloc_coherent(dev,
 643					     free_size * rxq->queue_size,
 644					     &rxq->bd_dma, GFP_KERNEL);
 645		if (!rxq->bd)
 646			goto err;
 647
 648		if (trans->cfg->mq_rx_supported) {
 649			rxq->used_bd = dma_zalloc_coherent(dev,
 650							   sizeof(__le32) *
 651							   rxq->queue_size,
 652							   &rxq->used_bd_dma,
 653							   GFP_KERNEL);
 654			if (!rxq->used_bd)
 655				goto err;
 656		}
 657
 658		/*Allocate the driver's pointer to receive buffer status */
 659		rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
 660						   &rxq->rb_stts_dma,
 661						   GFP_KERNEL);
 662		if (!rxq->rb_stts)
 663			goto err;
 664	}
 665	return 0;
 666
 667err:
 668	for (i = 0; i < trans->num_rx_queues; i++) {
 669		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 670
 671		if (rxq->bd)
 672			dma_free_coherent(dev, free_size * rxq->queue_size,
 673					  rxq->bd, rxq->bd_dma);
 674		rxq->bd_dma = 0;
 675		rxq->bd = NULL;
 676
 677		if (rxq->rb_stts)
 678			dma_free_coherent(trans->dev,
 679					  sizeof(struct iwl_rb_status),
 680					  rxq->rb_stts, rxq->rb_stts_dma);
 681
 682		if (rxq->used_bd)
 683			dma_free_coherent(dev, sizeof(__le32) * rxq->queue_size,
 684					  rxq->used_bd, rxq->used_bd_dma);
 685		rxq->used_bd_dma = 0;
 686		rxq->used_bd = NULL;
 687	}
 688	kfree(trans_pcie->rxq);
 
 689
 690	return -ENOMEM;
 691}
 692
 693static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
 694{
 695	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 696	u32 rb_size;
 697	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
 698
 699	switch (trans_pcie->rx_buf_size) {
 700	case IWL_AMSDU_4K:
 701		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 702		break;
 703	case IWL_AMSDU_8K:
 704		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
 705		break;
 706	case IWL_AMSDU_12K:
 707		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
 708		break;
 709	default:
 710		WARN_ON(1);
 711		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
 712	}
 713
 
 
 
 714	/* Stop Rx DMA */
 715	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
 716	/* reset and flush pointers */
 717	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
 718	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
 719	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
 720
 721	/* Reset driver's Rx queue write index */
 722	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
 723
 724	/* Tell device where to find RBD circular buffer in DRAM */
 725	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
 726			   (u32)(rxq->bd_dma >> 8));
 727
 728	/* Tell device where in DRAM to update its Rx status */
 729	iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
 730			   rxq->rb_stts_dma >> 4);
 731
 732	/* Enable Rx DMA
 733	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
 734	 *      the credit mechanism in 5000 HW RX FIFO
 735	 * Direct rx interrupts to hosts
 736	 * Rx buffer size 4 or 8k or 12k
 737	 * RB timeout 0x10
 738	 * 256 RBDs
 739	 */
 740	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
 741			   FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
 742			   FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
 743			   FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
 744			   rb_size|
 745			   (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
 746			   (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
 
 
 747
 748	/* Set interrupt coalescing timer to default (2048 usecs) */
 749	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 750
 751	/* W/A for interrupt coalescing bug in 7260 and 3160 */
 752	if (trans->cfg->host_interrupt_operation_mode)
 753		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
 754}
 755
 756static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
 757{
 758	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 759	u32 rb_size, enabled = 0;
 760	int i;
 761
 762	switch (trans_pcie->rx_buf_size) {
 
 
 
 763	case IWL_AMSDU_4K:
 764		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 765		break;
 766	case IWL_AMSDU_8K:
 767		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
 768		break;
 769	case IWL_AMSDU_12K:
 770		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
 771		break;
 772	default:
 773		WARN_ON(1);
 774		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
 775	}
 776
 
 
 
 777	/* Stop Rx DMA */
 778	iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
 779	/* disable free amd used rx queue operation */
 780	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, 0);
 781
 782	for (i = 0; i < trans->num_rx_queues; i++) {
 783		/* Tell device where to find RBD free table in DRAM */
 784		iwl_pcie_write_prph_64(trans, RFH_Q_FRBDCB_BA_LSB(i),
 785				       (u64)(trans_pcie->rxq[i].bd_dma));
 
 786		/* Tell device where to find RBD used table in DRAM */
 787		iwl_pcie_write_prph_64(trans, RFH_Q_URBDCB_BA_LSB(i),
 788				       (u64)(trans_pcie->rxq[i].used_bd_dma));
 
 789		/* Tell device where in DRAM to update its Rx status */
 790		iwl_pcie_write_prph_64(trans, RFH_Q_URBD_STTS_WPTR_LSB(i),
 791				       trans_pcie->rxq[i].rb_stts_dma);
 
 792		/* Reset device indice tables */
 793		iwl_write_prph(trans, RFH_Q_FRBDCB_WIDX(i), 0);
 794		iwl_write_prph(trans, RFH_Q_FRBDCB_RIDX(i), 0);
 795		iwl_write_prph(trans, RFH_Q_URBDCB_WIDX(i), 0);
 796
 797		enabled |= BIT(i) | BIT(i + 16);
 798	}
 799
 800	/* restock default queue */
 801	iwl_pcie_rxq_mq_restock(trans, &trans_pcie->rxq[0]);
 802
 803	/*
 804	 * Enable Rx DMA
 805	 * Single frame mode
 806	 * Rx buffer size 4 or 8k or 12k
 807	 * Min RB size 4 or 8
 808	 * Drop frames that exceed RB size
 809	 * 512 RBDs
 810	 */
 811	iwl_write_prph(trans, RFH_RXF_DMA_CFG,
 812		       RFH_DMA_EN_ENABLE_VAL |
 813		       rb_size | RFH_RXF_DMA_SINGLE_FRAME_MASK |
 814		       RFH_RXF_DMA_MIN_RB_4_8 |
 815		       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
 816		       RFH_RXF_DMA_RBDCB_SIZE_512);
 817
 818	/*
 819	 * Activate DMA snooping.
 820	 * Set RX DMA chunk size to 64B
 821	 * Default queue is 0
 822	 */
 823	iwl_write_prph(trans, RFH_GEN_CFG, RFH_GEN_CFG_RFH_DMA_SNOOP |
 824		       (DEFAULT_RXQ_NUM << RFH_GEN_CFG_DEFAULT_RXQ_NUM_POS) |
 825		       RFH_GEN_CFG_SERVICE_DMA_SNOOP);
 
 
 
 
 
 826	/* Enable the relevant rx queues */
 827	iwl_write_prph(trans, RFH_RXF_RXQ_ACTIVE, enabled);
 
 
 828
 829	/* Set interrupt coalescing timer to default (2048 usecs) */
 830	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
 831}
 832
 833static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
 834{
 835	lockdep_assert_held(&rxq->lock);
 836
 837	INIT_LIST_HEAD(&rxq->rx_free);
 838	INIT_LIST_HEAD(&rxq->rx_used);
 839	rxq->free_count = 0;
 840	rxq->used_count = 0;
 841}
 842
 843static int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844{
 845	WARN_ON(1);
 846	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849int iwl_pcie_rx_init(struct iwl_trans *trans)
 850{
 851	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 852	struct iwl_rxq *def_rxq;
 853	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 854	int i, err, queue_size, allocator_pool_size, num_alloc;
 855
 856	if (!trans_pcie->rxq) {
 857		err = iwl_pcie_rx_alloc(trans);
 858		if (err)
 859			return err;
 860	}
 861	def_rxq = trans_pcie->rxq;
 862	if (!rba->alloc_wq)
 863		rba->alloc_wq = alloc_workqueue("rb_allocator",
 864						WQ_HIGHPRI | WQ_UNBOUND, 1);
 865	INIT_WORK(&rba->rx_alloc, iwl_pcie_rx_allocator_work);
 866
 867	spin_lock(&rba->lock);
 
 
 868	atomic_set(&rba->req_pending, 0);
 869	atomic_set(&rba->req_ready, 0);
 870	INIT_LIST_HEAD(&rba->rbd_allocated);
 871	INIT_LIST_HEAD(&rba->rbd_empty);
 872	spin_unlock(&rba->lock);
 873
 874	/* free all first - we might be reconfigured for a different size */
 875	iwl_pcie_free_rbs_pool(trans);
 876
 877	for (i = 0; i < RX_QUEUE_SIZE; i++)
 878		def_rxq->queue[i] = NULL;
 879
 880	for (i = 0; i < trans->num_rx_queues; i++) {
 881		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 882
 883		rxq->id = i;
 884
 885		spin_lock(&rxq->lock);
 886		/*
 887		 * Set read write pointer to reflect that we have processed
 888		 * and used all buffers, but have not restocked the Rx queue
 889		 * with fresh buffers
 890		 */
 891		rxq->read = 0;
 892		rxq->write = 0;
 893		rxq->write_actual = 0;
 894		memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
 
 
 
 895
 896		iwl_pcie_rx_init_rxb_lists(rxq);
 897
 898		if (!rxq->napi.poll)
 899			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
 900				       iwl_pcie_dummy_napi_poll, 64);
 
 
 
 
 
 
 
 
 
 901
 902		spin_unlock(&rxq->lock);
 903	}
 904
 905	/* move the pool to the default queue and allocator ownerships */
 906	queue_size = trans->cfg->mq_rx_supported ?
 907		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
 908	allocator_pool_size = trans->num_rx_queues *
 909		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
 910	num_alloc = queue_size + allocator_pool_size;
 
 911	for (i = 0; i < num_alloc; i++) {
 912		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
 913
 914		if (i < allocator_pool_size)
 915			list_add(&rxb->list, &rba->rbd_empty);
 916		else
 917			list_add(&rxb->list, &def_rxq->rx_used);
 918		trans_pcie->global_table[i] = rxb;
 919		rxb->vid = (u16)i;
 
 920	}
 921
 922	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
 923	if (trans->cfg->mq_rx_supported) {
 
 
 
 
 
 
 
 
 
 
 
 
 924		iwl_pcie_rx_mq_hw_init(trans);
 925	} else {
 926		iwl_pcie_rxq_sq_restock(trans, def_rxq);
 927		iwl_pcie_rx_hw_init(trans, def_rxq);
 928	}
 929
 930	spin_lock(&def_rxq->lock);
 931	iwl_pcie_rxq_inc_wr_ptr(trans, def_rxq);
 932	spin_unlock(&def_rxq->lock);
 933
 934	return 0;
 935}
 936
 
 
 
 
 
 
 
 
 
 
 
 
 937void iwl_pcie_rx_free(struct iwl_trans *trans)
 938{
 939	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
 
 940	struct iwl_rb_allocator *rba = &trans_pcie->rba;
 941	int free_size = trans->cfg->mq_rx_supported ? sizeof(__le64) :
 942					      sizeof(__le32);
 943	int i;
 944
 945	/*
 946	 * if rxq is NULL, it means that nothing has been allocated,
 947	 * exit now
 948	 */
 949	if (!trans_pcie->rxq) {
 950		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
 951		return;
 952	}
 953
 954	cancel_work_sync(&rba->rx_alloc);
 955	if (rba->alloc_wq) {
 956		destroy_workqueue(rba->alloc_wq);
 957		rba->alloc_wq = NULL;
 958	}
 959
 960	iwl_pcie_free_rbs_pool(trans);
 961
 
 
 
 
 
 
 
 
 
 962	for (i = 0; i < trans->num_rx_queues; i++) {
 963		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
 964
 965		if (rxq->bd)
 966			dma_free_coherent(trans->dev,
 967					  free_size * rxq->queue_size,
 968					  rxq->bd, rxq->bd_dma);
 969		rxq->bd_dma = 0;
 970		rxq->bd = NULL;
 971
 972		if (rxq->rb_stts)
 973			dma_free_coherent(trans->dev,
 974					  sizeof(struct iwl_rb_status),
 975					  rxq->rb_stts, rxq->rb_stts_dma);
 976		else
 977			IWL_DEBUG_INFO(trans,
 978				       "Free rxq->rb_stts which is NULL\n");
 979
 980		if (rxq->used_bd)
 981			dma_free_coherent(trans->dev,
 982					  sizeof(__le32) * rxq->queue_size,
 983					  rxq->used_bd, rxq->used_bd_dma);
 984		rxq->used_bd_dma = 0;
 985		rxq->used_bd = NULL;
 986
 987		if (rxq->napi.poll)
 
 988			netif_napi_del(&rxq->napi);
 
 989	}
 
 
 990	kfree(trans_pcie->rxq);
 
 
 
 
 
 
 
 
 
 
 
 991}
 992
 993/*
 994 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
 995 *
 996 * Called when a RBD can be reused. The RBD is transferred to the allocator.
 997 * When there are 2 empty RBDs - a request for allocation is posted
 998 */
 999static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1000				  struct iwl_rx_mem_buffer *rxb,
1001				  struct iwl_rxq *rxq, bool emergency)
1002{
1003	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1004	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1005
1006	/* Move the RBD to the used list, will be moved to allocator in batches
1007	 * before claiming or posting a request*/
1008	list_add_tail(&rxb->list, &rxq->rx_used);
1009
1010	if (unlikely(emergency))
1011		return;
1012
1013	/* Count the allocator owned RBDs */
1014	rxq->used_count++;
1015
1016	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1017	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1018	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1019	 * after but we still need to post another request.
1020	 */
1021	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1022		/* Move the 2 RBDs to the allocator ownership.
1023		 Allocator has another 6 from pool for the request completion*/
1024		spin_lock(&rba->lock);
1025		list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1026		spin_unlock(&rba->lock);
1027
1028		atomic_inc(&rba->req_pending);
1029		queue_work(rba->alloc_wq, &rba->rx_alloc);
1030	}
1031}
1032
1033static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1034				struct iwl_rxq *rxq,
1035				struct iwl_rx_mem_buffer *rxb,
1036				bool emergency)
 
1037{
1038	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1039	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
1040	bool page_stolen = false;
1041	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1042	u32 offset = 0;
1043
1044	if (WARN_ON(!rxb))
1045		return;
1046
1047	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1048
1049	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1050		struct iwl_rx_packet *pkt;
1051		u16 sequence;
1052		bool reclaim;
1053		int index, cmd_index, len;
1054		struct iwl_rx_cmd_buffer rxcb = {
1055			._offset = offset,
1056			._rx_page_order = trans_pcie->rx_page_order,
1057			._page = rxb->page,
1058			._page_stolen = false,
1059			.truesize = max_len,
1060		};
1061
1062		pkt = rxb_addr(&rxcb);
1063
1064		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
 
 
 
1065			break;
 
 
 
 
 
 
 
 
1066
1067		IWL_DEBUG_RX(trans,
1068			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
1069			     rxcb._offset,
1070			     iwl_get_cmd_string(trans,
1071						iwl_cmd_id(pkt->hdr.cmd,
1072							   pkt->hdr.group_id,
1073							   0)),
1074			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
1075
1076		len = iwl_rx_packet_len(pkt);
1077		len += sizeof(u32); /* account for status word */
1078		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1079		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
 
 
 
 
 
 
1080
1081		/* Reclaim a command buffer only if this packet is a response
1082		 *   to a (driver-originated) command.
1083		 * If the packet (e.g. Rx frame) originated from uCode,
1084		 *   there is no command buffer to reclaim.
1085		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1086		 *   but apparently a few don't get set; catch them here. */
1087		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1088		if (reclaim) {
1089			int i;
1090
1091			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1092				if (trans_pcie->no_reclaim_cmds[i] ==
1093							pkt->hdr.cmd) {
1094					reclaim = false;
1095					break;
1096				}
1097			}
1098		}
1099
1100		sequence = le16_to_cpu(pkt->hdr.sequence);
1101		index = SEQ_TO_INDEX(sequence);
1102		cmd_index = get_cmd_index(&txq->q, index);
1103
1104		if (rxq->id == 0)
1105			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1106				       &rxcb);
1107		else
1108			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1109					   &rxcb, rxq->id);
1110
1111		if (reclaim) {
1112			kzfree(txq->entries[cmd_index].free_buf);
1113			txq->entries[cmd_index].free_buf = NULL;
1114		}
1115
1116		/*
1117		 * After here, we should always check rxcb._page_stolen,
1118		 * if it is true then one of the handlers took the page.
1119		 */
1120
1121		if (reclaim) {
 
 
 
 
 
 
 
1122			/* Invoke any callbacks, transfer the buffer to caller,
1123			 * and fire off the (possibly) blocking
1124			 * iwl_trans_send_cmd()
1125			 * as we reclaim the driver command queue */
1126			if (!rxcb._page_stolen)
1127				iwl_pcie_hcmd_complete(trans, &rxcb);
1128			else
1129				IWL_WARN(trans, "Claim null rxb?\n");
1130		}
1131
1132		page_stolen |= rxcb._page_stolen;
1133		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
 
1134	}
1135
1136	/* page was stolen from us -- free our reference */
1137	if (page_stolen) {
1138		__free_pages(rxb->page, trans_pcie->rx_page_order);
1139		rxb->page = NULL;
1140	}
1141
1142	/* Reuse the page if possible. For notification packets and
1143	 * SKBs that fail to Rx correctly, add them back into the
1144	 * rx_free list for reuse later. */
1145	if (rxb->page != NULL) {
1146		rxb->page_dma =
1147			dma_map_page(trans->dev, rxb->page, 0,
1148				     PAGE_SIZE << trans_pcie->rx_page_order,
1149				     DMA_FROM_DEVICE);
1150		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1151			/*
1152			 * free the page(s) as well to not break
1153			 * the invariant that the items on the used
1154			 * list have no page(s)
1155			 */
1156			__free_pages(rxb->page, trans_pcie->rx_page_order);
1157			rxb->page = NULL;
1158			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1159		} else {
1160			list_add_tail(&rxb->list, &rxq->rx_free);
1161			rxq->free_count++;
1162		}
1163	} else
1164		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1165}
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167/*
1168 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1169 */
1170static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1171{
1172	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173	struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1174	u32 r, i, count = 0;
1175	bool emergency = false;
1176
 
 
 
 
 
1177restart:
1178	spin_lock(&rxq->lock);
1179	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1180	 * buffer that the driver may process (last buffer filled by ucode). */
1181	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
1182	i = rxq->read;
1183
1184	/* W/A 9000 device step A0 wrap-around bug */
1185	r &= (rxq->queue_size - 1);
1186
1187	/* Rx interrupt, but nothing sent from uCode */
1188	if (i == r)
1189		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1190
1191	while (i != r) {
 
1192		struct iwl_rx_mem_buffer *rxb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1193
1194		if (unlikely(rxq->used_count == rxq->queue_size / 2))
1195			emergency = true;
 
1196
1197		if (trans->cfg->mq_rx_supported) {
 
1198			/*
1199			 * used_bd is a 32 bit but only 12 are used to retrieve
1200			 * the vid
 
 
 
 
 
 
 
 
1201			 */
1202			u16 vid = le32_to_cpu(rxq->used_bd[i]) & 0x0FFF;
1203
1204			if (WARN(vid >= ARRAY_SIZE(trans_pcie->global_table),
1205				 "Invalid rxb index from HW %u\n", (u32)vid))
1206				goto out;
1207			rxb = trans_pcie->global_table[vid];
1208		} else {
1209			rxb = rxq->queue[i];
1210			rxq->queue[i] = NULL;
1211		}
1212
1213		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1214		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency);
1215
1216		i = (i + 1) & (rxq->queue_size - 1);
1217
1218		/*
1219		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1220		 * try to claim the pre-allocated buffers from the allocator.
1221		 * If not ready - will try to reclaim next time.
1222		 * There is no need to reschedule work - allocator exits only
1223		 * on success
1224		 */
1225		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1226			iwl_pcie_rx_allocator_get(trans, rxq);
1227
1228		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1229			struct iwl_rb_allocator *rba = &trans_pcie->rba;
1230
1231			/* Add the remaining empty RBDs for allocator use */
1232			spin_lock(&rba->lock);
1233			list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1234			spin_unlock(&rba->lock);
1235		} else if (emergency) {
1236			count++;
1237			if (count == 8) {
1238				count = 0;
1239				if (rxq->used_count < rxq->queue_size / 3)
 
 
 
1240					emergency = false;
 
1241
1242				rxq->read = i;
1243				spin_unlock(&rxq->lock);
1244				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1245				iwl_pcie_rxq_restock(trans, rxq);
1246				goto restart;
1247			}
1248		}
1249	}
1250out:
1251	/* Backtrack one entry */
1252	rxq->read = i;
1253	spin_unlock(&rxq->lock);
1254
1255	/*
1256	 * handle a case where in emergency there are some unallocated RBDs.
1257	 * those RBDs are in the used list, but are not tracked by the queue's
1258	 * used_count which counts allocator owned RBDs.
1259	 * unallocated emergency RBDs must be allocated on exit, otherwise
1260	 * when called again the function may not be in emergency mode and
1261	 * they will be handed to the allocator with no tracking in the RBD
1262	 * allocator counters, which will lead to them never being claimed back
1263	 * by the queue.
1264	 * by allocating them here, they are now in the queue free list, and
1265	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1266	 */
1267	if (unlikely(emergency && count))
1268		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1269
1270	if (rxq->napi.poll)
1271		napi_gro_flush(&rxq->napi, false);
1272
1273	iwl_pcie_rxq_restock(trans, rxq);
1274}
1275
1276static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1277{
1278	u8 queue = entry->entry;
1279	struct msix_entry *entries = entry - queue;
1280
1281	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1282}
1283
1284static inline void iwl_pcie_clear_irq(struct iwl_trans *trans,
1285				      struct msix_entry *entry)
1286{
1287	/*
1288	 * Before sending the interrupt the HW disables it to prevent
1289	 * a nested interrupt. This is done by writing 1 to the corresponding
1290	 * bit in the mask register. After handling the interrupt, it should be
1291	 * re-enabled by clearing this bit. This register is defined as
1292	 * write 1 clear (W1C) register, meaning that it's being clear
1293	 * by writing 1 to the bit.
1294	 */
1295	iwl_write_direct32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(entry->entry));
1296}
1297
1298/*
1299 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1300 * This interrupt handler should be used with RSS queue only.
1301 */
1302irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1303{
1304	struct msix_entry *entry = dev_id;
1305	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1306	struct iwl_trans *trans = trans_pcie->trans;
 
 
 
1307
1308	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1309		return IRQ_NONE;
1310
 
 
 
 
 
 
 
 
 
1311	lock_map_acquire(&trans->sync_cmd_lockdep_map);
 
1312
1313	local_bh_disable();
1314	iwl_pcie_rx_handle(trans, entry->entry);
 
1315	local_bh_enable();
1316
1317	iwl_pcie_clear_irq(trans, entry);
1318
1319	lock_map_release(&trans->sync_cmd_lockdep_map);
1320
1321	return IRQ_HANDLED;
1322}
1323
1324/*
1325 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1326 */
1327static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1328{
1329	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1330	int i;
1331
1332	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1333	if (trans->cfg->internal_wimax_coex &&
1334	    !trans->cfg->apmg_not_supported &&
1335	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1336			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1337	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1338			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1339		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1340		iwl_op_mode_wimax_active(trans->op_mode);
1341		wake_up(&trans_pcie->wait_command_queue);
1342		return;
1343	}
1344
1345	iwl_pcie_dump_csr(trans);
1346	iwl_dump_fh(trans, NULL);
 
 
 
1347
1348	local_bh_disable();
1349	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1350	 * before we wake up the command caller, to ensure a proper cleanup. */
1351	iwl_trans_fw_error(trans);
1352	local_bh_enable();
1353
1354	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1355		del_timer(&trans_pcie->txq[i].stuck_timer);
1356
1357	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1358	wake_up(&trans_pcie->wait_command_queue);
1359}
1360
1361static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1362{
1363	u32 inta;
1364
1365	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1366
1367	trace_iwlwifi_dev_irq(trans->dev);
1368
1369	/* Discover which interrupts are active/pending */
1370	inta = iwl_read32(trans, CSR_INT);
1371
1372	/* the thread will service interrupts and re-enable them */
1373	return inta;
1374}
1375
1376/* a device (PCI-E) page is 4096 bytes long */
1377#define ICT_SHIFT	12
1378#define ICT_SIZE	(1 << ICT_SHIFT)
1379#define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1380
1381/* interrupt handler using ict table, with this interrupt driver will
1382 * stop using INTA register to get device's interrupt, reading this register
1383 * is expensive, device will write interrupts in ICT dram table, increment
1384 * index then will fire interrupt to driver, driver will OR all ICT table
1385 * entries from current index up to table entry with 0 value. the result is
1386 * the interrupt we need to service, driver will set the entries back to 0 and
1387 * set index.
1388 */
1389static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1390{
1391	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1392	u32 inta;
1393	u32 val = 0;
1394	u32 read;
1395
1396	trace_iwlwifi_dev_irq(trans->dev);
1397
1398	/* Ignore interrupt if there's nothing in NIC to service.
1399	 * This may be due to IRQ shared with another device,
1400	 * or due to sporadic interrupts thrown from our NIC. */
1401	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1402	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1403	if (!read)
1404		return 0;
1405
1406	/*
1407	 * Collect all entries up to the first 0, starting from ict_index;
1408	 * note we already read at ict_index.
1409	 */
1410	do {
1411		val |= read;
1412		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1413				trans_pcie->ict_index, read);
1414		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1415		trans_pcie->ict_index =
1416			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1417
1418		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1419		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1420					   read);
1421	} while (read);
1422
1423	/* We should not get this value, just ignore it. */
1424	if (val == 0xffffffff)
1425		val = 0;
1426
1427	/*
1428	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1429	 * (bit 15 before shifting it to 31) to clear when using interrupt
1430	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1431	 * so we use them to decide on the real state of the Rx bit.
1432	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1433	 */
1434	if (val & 0xC0000)
1435		val |= 0x8000;
1436
1437	inta = (0xff & val) | ((0xff00 & val) << 16);
1438	return inta;
1439}
1440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1442{
1443	struct iwl_trans *trans = dev_id;
1444	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1445	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1446	u32 inta = 0;
1447	u32 handled = 0;
 
1448
1449	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1450
1451	spin_lock(&trans_pcie->irq_lock);
1452
1453	/* dram interrupt table not set yet,
1454	 * use legacy interrupt.
1455	 */
1456	if (likely(trans_pcie->use_ict))
1457		inta = iwl_pcie_int_cause_ict(trans);
1458	else
1459		inta = iwl_pcie_int_cause_non_ict(trans);
1460
1461	if (iwl_have_debug_level(IWL_DL_ISR)) {
1462		IWL_DEBUG_ISR(trans,
1463			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1464			      inta, trans_pcie->inta_mask,
1465			      iwl_read32(trans, CSR_INT_MASK),
1466			      iwl_read32(trans, CSR_FH_INT_STATUS));
1467		if (inta & (~trans_pcie->inta_mask))
1468			IWL_DEBUG_ISR(trans,
1469				      "We got a masked interrupt (0x%08x)\n",
1470				      inta & (~trans_pcie->inta_mask));
1471	}
1472
1473	inta &= trans_pcie->inta_mask;
1474
1475	/*
1476	 * Ignore interrupt if there's nothing in NIC to service.
1477	 * This may be due to IRQ shared with another device,
1478	 * or due to sporadic interrupts thrown from our NIC.
1479	 */
1480	if (unlikely(!inta)) {
1481		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1482		/*
1483		 * Re-enable interrupts here since we don't
1484		 * have anything to service
1485		 */
1486		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1487			iwl_enable_interrupts(trans);
1488		spin_unlock(&trans_pcie->irq_lock);
1489		lock_map_release(&trans->sync_cmd_lockdep_map);
1490		return IRQ_NONE;
1491	}
1492
1493	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1494		/*
1495		 * Hardware disappeared. It might have
1496		 * already raised an interrupt.
1497		 */
1498		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1499		spin_unlock(&trans_pcie->irq_lock);
1500		goto out;
1501	}
1502
1503	/* Ack/clear/reset pending uCode interrupts.
1504	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1505	 */
1506	/* There is a hardware bug in the interrupt mask function that some
1507	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1508	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1509	 * ICT interrupt handling mechanism has another bug that might cause
1510	 * these unmasked interrupts fail to be detected. We workaround the
1511	 * hardware bugs here by ACKing all the possible interrupts so that
1512	 * interrupt coalescing can still be achieved.
1513	 */
1514	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1515
1516	if (iwl_have_debug_level(IWL_DL_ISR))
1517		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1518			      inta, iwl_read32(trans, CSR_INT_MASK));
1519
1520	spin_unlock(&trans_pcie->irq_lock);
1521
1522	/* Now service all interrupt bits discovered above. */
1523	if (inta & CSR_INT_BIT_HW_ERR) {
1524		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1525
1526		/* Tell the device to stop sending interrupts */
1527		iwl_disable_interrupts(trans);
1528
1529		isr_stats->hw++;
1530		iwl_pcie_irq_handle_error(trans);
1531
1532		handled |= CSR_INT_BIT_HW_ERR;
1533
1534		goto out;
1535	}
1536
1537	if (iwl_have_debug_level(IWL_DL_ISR)) {
1538		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1539		if (inta & CSR_INT_BIT_SCD) {
1540			IWL_DEBUG_ISR(trans,
1541				      "Scheduler finished to transmit the frame/frames.\n");
1542			isr_stats->sch++;
 
 
 
 
 
 
 
 
 
 
 
1543		}
1544
1545		/* Alive notification via Rx interrupt will do the real work */
1546		if (inta & CSR_INT_BIT_ALIVE) {
1547			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1548			isr_stats->alive++;
1549		}
1550	}
1551
1552	/* Safely ignore these bits for debug checks below */
1553	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1554
1555	/* HW RF KILL switch toggled */
1556	if (inta & CSR_INT_BIT_RF_KILL) {
1557		bool hw_rfkill;
1558
1559		hw_rfkill = iwl_is_rfkill_set(trans);
1560		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1561			 hw_rfkill ? "disable radio" : "enable radio");
1562
1563		isr_stats->rfkill++;
1564
1565		mutex_lock(&trans_pcie->mutex);
1566		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1567		mutex_unlock(&trans_pcie->mutex);
1568		if (hw_rfkill) {
1569			set_bit(STATUS_RFKILL, &trans->status);
1570			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1571					       &trans->status))
1572				IWL_DEBUG_RF_KILL(trans,
1573						  "Rfkill while SYNC HCMD in flight\n");
1574			wake_up(&trans_pcie->wait_command_queue);
1575		} else {
1576			clear_bit(STATUS_RFKILL, &trans->status);
1577		}
1578
1579		handled |= CSR_INT_BIT_RF_KILL;
1580	}
1581
1582	/* Chip got too hot and stopped itself */
1583	if (inta & CSR_INT_BIT_CT_KILL) {
1584		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1585		isr_stats->ctkill++;
1586		handled |= CSR_INT_BIT_CT_KILL;
1587	}
1588
1589	/* Error detected by uCode */
1590	if (inta & CSR_INT_BIT_SW_ERR) {
1591		IWL_ERR(trans, "Microcode SW error detected. "
1592			" Restarting 0x%X.\n", inta);
1593		isr_stats->sw++;
1594		iwl_pcie_irq_handle_error(trans);
1595		handled |= CSR_INT_BIT_SW_ERR;
1596	}
1597
1598	/* uCode wakes up after power-down sleep */
1599	if (inta & CSR_INT_BIT_WAKEUP) {
1600		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1601		iwl_pcie_rxq_check_wrptr(trans);
1602		iwl_pcie_txq_check_wrptrs(trans);
1603
1604		isr_stats->wakeup++;
1605
1606		handled |= CSR_INT_BIT_WAKEUP;
1607	}
1608
1609	/* All uCode command responses, including Tx command responses,
1610	 * Rx "responses" (frame-received notification), and other
1611	 * notifications from uCode come through here*/
1612	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1613		    CSR_INT_BIT_RX_PERIODIC)) {
1614		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1615		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1616			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1617			iwl_write32(trans, CSR_FH_INT_STATUS,
1618					CSR_FH_INT_RX_MASK);
1619		}
1620		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1621			handled |= CSR_INT_BIT_RX_PERIODIC;
1622			iwl_write32(trans,
1623				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1624		}
1625		/* Sending RX interrupt require many steps to be done in the
1626		 * the device:
1627		 * 1- write interrupt to current index in ICT table.
1628		 * 2- dma RX frame.
1629		 * 3- update RX shared data to indicate last write index.
1630		 * 4- send interrupt.
1631		 * This could lead to RX race, driver could receive RX interrupt
1632		 * but the shared data changes does not reflect this;
1633		 * periodic interrupt will detect any dangling Rx activity.
1634		 */
1635
1636		/* Disable periodic interrupt; we use it as just a one-shot. */
1637		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1638			    CSR_INT_PERIODIC_DIS);
1639
1640		/*
1641		 * Enable periodic interrupt in 8 msec only if we received
1642		 * real RX interrupt (instead of just periodic int), to catch
1643		 * any dangling Rx interrupt.  If it was just the periodic
1644		 * interrupt, there was no dangling Rx activity, and no need
1645		 * to extend the periodic interrupt; one-shot is enough.
1646		 */
1647		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1648			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1649				   CSR_INT_PERIODIC_ENA);
1650
1651		isr_stats->rx++;
1652
1653		local_bh_disable();
1654		iwl_pcie_rx_handle(trans, 0);
 
 
 
1655		local_bh_enable();
1656	}
1657
1658	/* This "Tx" DMA channel is used only for loading uCode */
1659	if (inta & CSR_INT_BIT_FH_TX) {
1660		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1661		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1662		isr_stats->tx++;
1663		handled |= CSR_INT_BIT_FH_TX;
1664		/* Wake up uCode load routine, now that load is complete */
1665		trans_pcie->ucode_write_complete = true;
1666		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
1667	}
1668
1669	if (inta & ~handled) {
1670		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1671		isr_stats->unhandled++;
1672	}
1673
1674	if (inta & ~(trans_pcie->inta_mask)) {
1675		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1676			 inta & ~trans_pcie->inta_mask);
1677	}
1678
1679	/* we are loading the firmware, enable FH_TX interrupt only */
1680	if (handled & CSR_INT_BIT_FH_TX)
1681		iwl_enable_fw_load_int(trans);
1682	/* only Re-enable all interrupt if disabled by irq */
1683	else if (test_bit(STATUS_INT_ENABLED, &trans->status))
1684		iwl_enable_interrupts(trans);
1685	/* Re-enable RF_KILL if it occurred */
1686	else if (handled & CSR_INT_BIT_RF_KILL)
1687		iwl_enable_rfkill_int(trans);
 
 
 
 
 
 
 
1688
1689out:
1690	lock_map_release(&trans->sync_cmd_lockdep_map);
1691	return IRQ_HANDLED;
1692}
1693
1694/******************************************************************************
1695 *
1696 * ICT functions
1697 *
1698 ******************************************************************************/
1699
1700/* Free dram table */
1701void iwl_pcie_free_ict(struct iwl_trans *trans)
1702{
1703	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1704
1705	if (trans_pcie->ict_tbl) {
1706		dma_free_coherent(trans->dev, ICT_SIZE,
1707				  trans_pcie->ict_tbl,
1708				  trans_pcie->ict_tbl_dma);
1709		trans_pcie->ict_tbl = NULL;
1710		trans_pcie->ict_tbl_dma = 0;
1711	}
1712}
1713
1714/*
1715 * allocate dram shared table, it is an aligned memory
1716 * block of ICT_SIZE.
1717 * also reset all data related to ICT table interrupt.
1718 */
1719int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1720{
1721	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1722
1723	trans_pcie->ict_tbl =
1724		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1725				   &trans_pcie->ict_tbl_dma,
1726				   GFP_KERNEL);
1727	if (!trans_pcie->ict_tbl)
1728		return -ENOMEM;
1729
1730	/* just an API sanity check ... it is guaranteed to be aligned */
1731	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1732		iwl_pcie_free_ict(trans);
1733		return -EINVAL;
1734	}
1735
1736	return 0;
1737}
1738
1739/* Device is going up inform it about using ICT interrupt table,
1740 * also we need to tell the driver to start using ICT interrupt.
1741 */
1742void iwl_pcie_reset_ict(struct iwl_trans *trans)
1743{
1744	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1745	u32 val;
1746
1747	if (!trans_pcie->ict_tbl)
1748		return;
1749
1750	spin_lock(&trans_pcie->irq_lock);
1751	iwl_disable_interrupts(trans);
1752
1753	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1754
1755	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1756
1757	val |= CSR_DRAM_INT_TBL_ENABLE |
1758	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
1759	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
1760
1761	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1762
1763	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1764	trans_pcie->use_ict = true;
1765	trans_pcie->ict_index = 0;
1766	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1767	iwl_enable_interrupts(trans);
1768	spin_unlock(&trans_pcie->irq_lock);
1769}
1770
1771/* Device is going down disable ict interrupt usage */
1772void iwl_pcie_disable_ict(struct iwl_trans *trans)
1773{
1774	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1775
1776	spin_lock(&trans_pcie->irq_lock);
1777	trans_pcie->use_ict = false;
1778	spin_unlock(&trans_pcie->irq_lock);
1779}
1780
1781irqreturn_t iwl_pcie_isr(int irq, void *data)
1782{
1783	struct iwl_trans *trans = data;
1784
1785	if (!trans)
1786		return IRQ_NONE;
1787
1788	/* Disable (but don't clear!) interrupts here to avoid
1789	 * back-to-back ISRs and sporadic interrupts from our NIC.
1790	 * If we have something to service, the tasklet will re-enable ints.
1791	 * If we *don't* have something, we'll re-enable before leaving here.
1792	 */
1793	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1794
1795	return IRQ_WAKE_THREAD;
1796}
1797
1798irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
1799{
1800	return IRQ_WAKE_THREAD;
1801}
1802
1803irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
1804{
1805	struct msix_entry *entry = dev_id;
1806	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1807	struct iwl_trans *trans = trans_pcie->trans;
1808	struct isr_statistics *isr_stats = isr_stats = &trans_pcie->isr_stats;
 
1809	u32 inta_fh, inta_hw;
 
 
 
 
 
 
 
 
1810
1811	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1812
1813	spin_lock(&trans_pcie->irq_lock);
1814	inta_fh = iwl_read_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
1815	inta_hw = iwl_read_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
1816	/*
1817	 * Clear causes registers to avoid being handling the same cause.
1818	 */
1819	iwl_write_direct32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
1820	iwl_write_direct32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
1821	spin_unlock(&trans_pcie->irq_lock);
 
 
1822
1823	if (unlikely(!(inta_fh | inta_hw))) {
1824		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1825		lock_map_release(&trans->sync_cmd_lockdep_map);
1826		return IRQ_NONE;
1827	}
1828
1829	if (iwl_have_debug_level(IWL_DL_ISR))
1830		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
1831			      inta_fh,
 
1832			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833
1834	/* This "Tx" DMA channel is used only for loading uCode */
1835	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
 
 
 
 
 
 
 
 
 
 
1836		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1837		isr_stats->tx++;
1838		/*
1839		 * Wake up uCode load routine,
1840		 * now that load is complete
1841		 */
1842		trans_pcie->ucode_write_complete = true;
1843		wake_up(&trans_pcie->ucode_write_waitq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844	}
1845
1846	/* Error detected by uCode */
1847	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
1848	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
1849		IWL_ERR(trans,
1850			"Microcode SW error detected. Restarting 0x%X.\n",
1851			inta_fh);
1852		isr_stats->sw++;
1853		iwl_pcie_irq_handle_error(trans);
 
 
 
 
 
 
 
 
 
1854	}
1855
1856	/* After checking FH register check HW register */
1857	if (iwl_have_debug_level(IWL_DL_ISR))
1858		IWL_DEBUG_ISR(trans,
1859			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
1860			      inta_hw,
1861			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
 
 
 
 
 
 
 
1862
1863	/* Alive notification via Rx interrupt will do the real work */
1864	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
1865		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1866		isr_stats->alive++;
 
 
 
 
1867	}
1868
1869	/* uCode wakes up after power-down sleep */
1870	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
1871		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1872		iwl_pcie_rxq_check_wrptr(trans);
1873		iwl_pcie_txq_check_wrptrs(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875		isr_stats->wakeup++;
 
1876	}
1877
1878	/* Chip got too hot and stopped itself */
1879	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
1880		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1881		isr_stats->ctkill++;
1882	}
1883
1884	/* HW RF KILL switch toggled */
1885	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) {
1886		bool hw_rfkill;
1887
1888		hw_rfkill = iwl_is_rfkill_set(trans);
1889		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1890			 hw_rfkill ? "disable radio" : "enable radio");
1891
1892		isr_stats->rfkill++;
1893
1894		mutex_lock(&trans_pcie->mutex);
1895		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1896		mutex_unlock(&trans_pcie->mutex);
1897		if (hw_rfkill) {
1898			set_bit(STATUS_RFKILL, &trans->status);
1899			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1900					       &trans->status))
1901				IWL_DEBUG_RF_KILL(trans,
1902						  "Rfkill while SYNC HCMD in flight\n");
1903			wake_up(&trans_pcie->wait_command_queue);
1904		} else {
1905			clear_bit(STATUS_RFKILL, &trans->status);
1906		}
1907	}
1908
1909	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
1910		IWL_ERR(trans,
1911			"Hardware error detected. Restarting.\n");
1912
1913		isr_stats->hw++;
 
1914		iwl_pcie_irq_handle_error(trans);
1915	}
1916
1917	iwl_pcie_clear_irq(trans, entry);
 
 
 
 
 
 
 
1918
1919	lock_map_release(&trans->sync_cmd_lockdep_map);
1920
1921	return IRQ_HANDLED;
1922}