Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
4 *
5 * Copyright (C) 2007-2008 Krzysztof HaĆasa <khc@pm.waw.pl>
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/module.h>
11#include <linux/bitops.h>
12#include <linux/cdev.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmapool.h>
15#include <linux/fs.h>
16#include <linux/hdlc.h>
17#include <linux/io.h>
18#include <linux/kernel.h>
19#include <linux/mfd/syscon.h>
20#include <linux/platform_device.h>
21#include <linux/poll.h>
22#include <linux/regmap.h>
23#include <linux/slab.h>
24#include <linux/gpio/consumer.h>
25#include <linux/of.h>
26#include <linux/soc/ixp4xx/npe.h>
27#include <linux/soc/ixp4xx/qmgr.h>
28#include <linux/soc/ixp4xx/cpu.h>
29
30/* This is what all IXP4xx platforms we know uses, if more frequencies
31 * are needed, we need to migrate to the clock framework.
32 */
33#define IXP4XX_TIMER_FREQ 66666000
34
35#define DEBUG_DESC 0
36#define DEBUG_RX 0
37#define DEBUG_TX 0
38#define DEBUG_PKT_BYTES 0
39#define DEBUG_CLOSE 0
40
41#define DRV_NAME "ixp4xx_hss"
42
43#define PKT_EXTRA_FLAGS 0 /* orig 1 */
44#define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
45#define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
46
47#define RX_DESCS 16 /* also length of all RX queues */
48#define TX_DESCS 16 /* also length of all TX queues */
49
50#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
51#define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
52#define MAX_CLOSE_WAIT 1000 /* microseconds */
53#define HSS_COUNT 2
54#define FRAME_SIZE 256 /* doesn't matter at this point */
55#define FRAME_OFFSET 0
56#define MAX_CHANNELS (FRAME_SIZE / 8)
57
58#define NAPI_WEIGHT 16
59
60/* Queue IDs */
61#define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
62#define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
63#define HSS0_PKT_TX1_QUEUE 15
64#define HSS0_PKT_TX2_QUEUE 16
65#define HSS0_PKT_TX3_QUEUE 17
66#define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
67#define HSS0_PKT_RXFREE1_QUEUE 19
68#define HSS0_PKT_RXFREE2_QUEUE 20
69#define HSS0_PKT_RXFREE3_QUEUE 21
70#define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
71
72#define HSS1_PKT_RX_QUEUE 0
73#define HSS1_PKT_TX0_QUEUE 5
74#define HSS1_PKT_TX1_QUEUE 6
75#define HSS1_PKT_TX2_QUEUE 7
76#define HSS1_PKT_TX3_QUEUE 8
77#define HSS1_PKT_RXFREE0_QUEUE 1
78#define HSS1_PKT_RXFREE1_QUEUE 2
79#define HSS1_PKT_RXFREE2_QUEUE 3
80#define HSS1_PKT_RXFREE3_QUEUE 4
81#define HSS1_PKT_TXDONE_QUEUE 9
82
83#define NPE_PKT_MODE_HDLC 0
84#define NPE_PKT_MODE_RAW 1
85#define NPE_PKT_MODE_56KMODE 2
86#define NPE_PKT_MODE_56KENDIAN_MSB 4
87
88/* PKT_PIPE_HDLC_CFG_WRITE flags */
89#define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
90#define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
91#define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
92
93/* hss_config, PCRs */
94/* Frame sync sampling, default = active low */
95#define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
96#define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
97#define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
98
99/* Frame sync pin: input (default) or output generated off a given clk edge */
100#define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
101#define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
102
103/* Frame and data clock sampling on edge, default = falling */
104#define PCR_FCLK_EDGE_RISING 0x08000000
105#define PCR_DCLK_EDGE_RISING 0x04000000
106
107/* Clock direction, default = input */
108#define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
109
110/* Generate/Receive frame pulses, default = enabled */
111#define PCR_FRM_PULSE_DISABLED 0x01000000
112
113 /* Data rate is full (default) or half the configured clk speed */
114#define PCR_HALF_CLK_RATE 0x00200000
115
116/* Invert data between NPE and HSS FIFOs? (default = no) */
117#define PCR_DATA_POLARITY_INVERT 0x00100000
118
119/* TX/RX endianness, default = LSB */
120#define PCR_MSB_ENDIAN 0x00080000
121
122/* Normal (default) / open drain mode (TX only) */
123#define PCR_TX_PINS_OPEN_DRAIN 0x00040000
124
125/* No framing bit transmitted and expected on RX? (default = framing bit) */
126#define PCR_SOF_NO_FBIT 0x00020000
127
128/* Drive data pins? */
129#define PCR_TX_DATA_ENABLE 0x00010000
130
131/* Voice 56k type: drive the data pins low (default), high, high Z */
132#define PCR_TX_V56K_HIGH 0x00002000
133#define PCR_TX_V56K_HIGH_IMP 0x00004000
134
135/* Unassigned type: drive the data pins low (default), high, high Z */
136#define PCR_TX_UNASS_HIGH 0x00000800
137#define PCR_TX_UNASS_HIGH_IMP 0x00001000
138
139/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
140#define PCR_TX_FB_HIGH_IMP 0x00000400
141
142/* 56k data endiannes - which bit unused: high (default) or low */
143#define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
144
145/* 56k data transmission type: 32/8 bit data (default) or 56K data */
146#define PCR_TX_56KS_56K_DATA 0x00000100
147
148/* hss_config, cCR */
149/* Number of packetized clients, default = 1 */
150#define CCR_NPE_HFIFO_2_HDLC 0x04000000
151#define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
152
153/* default = no loopback */
154#define CCR_LOOPBACK 0x02000000
155
156/* HSS number, default = 0 (first) */
157#define CCR_SECOND_HSS 0x01000000
158
159/* hss_config, clkCR: main:10, num:10, denom:12 */
160#define CLK42X_SPEED_EXP ((0x3FF << 22) | (2 << 12) | 15) /*65 KHz*/
161
162#define CLK42X_SPEED_512KHZ ((130 << 22) | (2 << 12) | 15)
163#define CLK42X_SPEED_1536KHZ ((43 << 22) | (18 << 12) | 47)
164#define CLK42X_SPEED_1544KHZ ((43 << 22) | (33 << 12) | 192)
165#define CLK42X_SPEED_2048KHZ ((32 << 22) | (34 << 12) | 63)
166#define CLK42X_SPEED_4096KHZ ((16 << 22) | (34 << 12) | 127)
167#define CLK42X_SPEED_8192KHZ ((8 << 22) | (34 << 12) | 255)
168
169#define CLK46X_SPEED_512KHZ ((130 << 22) | (24 << 12) | 127)
170#define CLK46X_SPEED_1536KHZ ((43 << 22) | (152 << 12) | 383)
171#define CLK46X_SPEED_1544KHZ ((43 << 22) | (66 << 12) | 385)
172#define CLK46X_SPEED_2048KHZ ((32 << 22) | (280 << 12) | 511)
173#define CLK46X_SPEED_4096KHZ ((16 << 22) | (280 << 12) | 1023)
174#define CLK46X_SPEED_8192KHZ ((8 << 22) | (280 << 12) | 2047)
175
176/* HSS_CONFIG_CLOCK_CR register consists of 3 parts:
177 * A (10 bits), B (10 bits) and C (12 bits).
178 * IXP42x HSS clock generator operation (verified with an oscilloscope):
179 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
180 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
181 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
182 * (A + 1) bits wide.
183 *
184 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
185 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
186 * minimum freq = 66.666 MHz / (A + 1)
187 * maximum freq = 66.666 MHz / A
188 *
189 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
190 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
191 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
192 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
193 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
194 * The sequence consists of 4 complete clock periods, thus the average
195 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
196 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
197 */
198
199/* hss_config, LUT entries */
200#define TDMMAP_UNASSIGNED 0
201#define TDMMAP_HDLC 1 /* HDLC - packetized */
202#define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
203#define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
204
205/* offsets into HSS config */
206#define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
207#define HSS_CONFIG_RX_PCR 0x04
208#define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
209#define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
210#define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
211#define HSS_CONFIG_RX_FCR 0x14
212#define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
213#define HSS_CONFIG_RX_LUT 0x38
214
215/* NPE command codes */
216/* writes the ConfigWord value to the location specified by offset */
217#define PORT_CONFIG_WRITE 0x40
218
219/* triggers the NPE to load the contents of the configuration table */
220#define PORT_CONFIG_LOAD 0x41
221
222/* triggers the NPE to return an HssErrorReadResponse message */
223#define PORT_ERROR_READ 0x42
224
225/* triggers the NPE to reset internal status and enable the HssPacketized
226 * operation for the flow specified by pPipe
227 */
228#define PKT_PIPE_FLOW_ENABLE 0x50
229#define PKT_PIPE_FLOW_DISABLE 0x51
230#define PKT_NUM_PIPES_WRITE 0x52
231#define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
232#define PKT_PIPE_HDLC_CFG_WRITE 0x54
233#define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
234#define PKT_PIPE_RX_SIZE_WRITE 0x56
235#define PKT_PIPE_MODE_WRITE 0x57
236
237/* HDLC packet status values - desc->status */
238#define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
239#define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
240#define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
241#define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
242 * this packet (if buf_len < pkt_len)
243 */
244#define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
245#define ERR_HDLC_ABORT 6 /* abort sequence received */
246#define ERR_DISCONNECTING 7 /* disconnect is in progress */
247
248#ifdef __ARMEB__
249typedef struct sk_buff buffer_t;
250#define free_buffer dev_kfree_skb
251#define free_buffer_irq dev_consume_skb_irq
252#else
253typedef void buffer_t;
254#define free_buffer kfree
255#define free_buffer_irq kfree
256#endif
257
258struct port {
259 struct device *dev;
260 struct npe *npe;
261 unsigned int txreadyq;
262 unsigned int rxtrigq;
263 unsigned int rxfreeq;
264 unsigned int rxq;
265 unsigned int txq;
266 unsigned int txdoneq;
267 struct gpio_desc *cts;
268 struct gpio_desc *rts;
269 struct gpio_desc *dcd;
270 struct gpio_desc *dtr;
271 struct gpio_desc *clk_internal;
272 struct net_device *netdev;
273 struct napi_struct napi;
274 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
275 struct desc *desc_tab; /* coherent */
276 dma_addr_t desc_tab_phys;
277 unsigned int id;
278 unsigned int clock_type, clock_rate, loopback;
279 unsigned int initialized, carrier;
280 u8 hdlc_cfg;
281 u32 clock_reg;
282};
283
284/* NPE message structure */
285struct msg {
286#ifdef __ARMEB__
287 u8 cmd, unused, hss_port, index;
288 union {
289 struct { u8 data8a, data8b, data8c, data8d; };
290 struct { u16 data16a, data16b; };
291 struct { u32 data32; };
292 };
293#else
294 u8 index, hss_port, unused, cmd;
295 union {
296 struct { u8 data8d, data8c, data8b, data8a; };
297 struct { u16 data16b, data16a; };
298 struct { u32 data32; };
299 };
300#endif
301};
302
303/* HDLC packet descriptor */
304struct desc {
305 u32 next; /* pointer to next buffer, unused */
306
307#ifdef __ARMEB__
308 u16 buf_len; /* buffer length */
309 u16 pkt_len; /* packet length */
310 u32 data; /* pointer to data buffer in RAM */
311 u8 status;
312 u8 error_count;
313 u16 __reserved;
314#else
315 u16 pkt_len; /* packet length */
316 u16 buf_len; /* buffer length */
317 u32 data; /* pointer to data buffer in RAM */
318 u16 __reserved;
319 u8 error_count;
320 u8 status;
321#endif
322 u32 __reserved1[4];
323};
324
325#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
326 (n) * sizeof(struct desc))
327#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
328
329#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
330 ((n) + RX_DESCS) * sizeof(struct desc))
331#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
332
333/*****************************************************************************
334 * global variables
335 ****************************************************************************/
336
337static int ports_open;
338static struct dma_pool *dma_pool;
339static DEFINE_SPINLOCK(npe_lock);
340
341/*****************************************************************************
342 * utility functions
343 ****************************************************************************/
344
345static inline struct port *dev_to_port(struct net_device *dev)
346{
347 return dev_to_hdlc(dev)->priv;
348}
349
350#ifndef __ARMEB__
351static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
352{
353 int i;
354
355 for (i = 0; i < cnt; i++)
356 dest[i] = swab32(src[i]);
357}
358#endif
359
360/*****************************************************************************
361 * HSS access
362 ****************************************************************************/
363
364static void hss_npe_send(struct port *port, struct msg *msg, const char *what)
365{
366 u32 *val = (u32 *)msg;
367
368 if (npe_send_message(port->npe, msg, what)) {
369 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
370 port->id, val[0], val[1], npe_name(port->npe));
371 BUG();
372 }
373}
374
375static void hss_config_set_lut(struct port *port)
376{
377 struct msg msg;
378 int ch;
379
380 memset(&msg, 0, sizeof(msg));
381 msg.cmd = PORT_CONFIG_WRITE;
382 msg.hss_port = port->id;
383
384 for (ch = 0; ch < MAX_CHANNELS; ch++) {
385 msg.data32 >>= 2;
386 msg.data32 |= TDMMAP_HDLC << 30;
387
388 if (ch % 16 == 15) {
389 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
390 hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
391
392 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
393 hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
394 }
395 }
396}
397
398static void hss_config(struct port *port)
399{
400 struct msg msg;
401
402 memset(&msg, 0, sizeof(msg));
403 msg.cmd = PORT_CONFIG_WRITE;
404 msg.hss_port = port->id;
405 msg.index = HSS_CONFIG_TX_PCR;
406 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
407 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
408 if (port->clock_type == CLOCK_INT)
409 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
410 hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
411
412 msg.index = HSS_CONFIG_RX_PCR;
413 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
414 hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
415
416 memset(&msg, 0, sizeof(msg));
417 msg.cmd = PORT_CONFIG_WRITE;
418 msg.hss_port = port->id;
419 msg.index = HSS_CONFIG_CORE_CR;
420 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
421 (port->id ? CCR_SECOND_HSS : 0);
422 hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
423
424 memset(&msg, 0, sizeof(msg));
425 msg.cmd = PORT_CONFIG_WRITE;
426 msg.hss_port = port->id;
427 msg.index = HSS_CONFIG_CLOCK_CR;
428 msg.data32 = port->clock_reg;
429 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
430
431 memset(&msg, 0, sizeof(msg));
432 msg.cmd = PORT_CONFIG_WRITE;
433 msg.hss_port = port->id;
434 msg.index = HSS_CONFIG_TX_FCR;
435 msg.data16a = FRAME_OFFSET;
436 msg.data16b = FRAME_SIZE - 1;
437 hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
438
439 memset(&msg, 0, sizeof(msg));
440 msg.cmd = PORT_CONFIG_WRITE;
441 msg.hss_port = port->id;
442 msg.index = HSS_CONFIG_RX_FCR;
443 msg.data16a = FRAME_OFFSET;
444 msg.data16b = FRAME_SIZE - 1;
445 hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
446
447 hss_config_set_lut(port);
448
449 memset(&msg, 0, sizeof(msg));
450 msg.cmd = PORT_CONFIG_LOAD;
451 msg.hss_port = port->id;
452 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
453
454 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
455 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
456 msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
457 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
458 BUG();
459 }
460
461 /* HDLC may stop working without this - check FIXME */
462 npe_recv_message(port->npe, &msg, "FLUSH_IT");
463}
464
465static void hss_set_hdlc_cfg(struct port *port)
466{
467 struct msg msg;
468
469 memset(&msg, 0, sizeof(msg));
470 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
471 msg.hss_port = port->id;
472 msg.data8a = port->hdlc_cfg; /* rx_cfg */
473 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
474 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
475}
476
477static u32 hss_get_status(struct port *port)
478{
479 struct msg msg;
480
481 memset(&msg, 0, sizeof(msg));
482 msg.cmd = PORT_ERROR_READ;
483 msg.hss_port = port->id;
484 hss_npe_send(port, &msg, "PORT_ERROR_READ");
485 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
486 pr_crit("HSS-%i: unable to read HSS status\n", port->id);
487 BUG();
488 }
489
490 return msg.data32;
491}
492
493static void hss_start_hdlc(struct port *port)
494{
495 struct msg msg;
496
497 memset(&msg, 0, sizeof(msg));
498 msg.cmd = PKT_PIPE_FLOW_ENABLE;
499 msg.hss_port = port->id;
500 msg.data32 = 0;
501 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
502}
503
504static void hss_stop_hdlc(struct port *port)
505{
506 struct msg msg;
507
508 memset(&msg, 0, sizeof(msg));
509 msg.cmd = PKT_PIPE_FLOW_DISABLE;
510 msg.hss_port = port->id;
511 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
512 hss_get_status(port); /* make sure it's halted */
513}
514
515static int hss_load_firmware(struct port *port)
516{
517 struct msg msg;
518 int err;
519
520 if (port->initialized)
521 return 0;
522
523 if (!npe_running(port->npe)) {
524 err = npe_load_firmware(port->npe, npe_name(port->npe),
525 port->dev);
526 if (err)
527 return err;
528 }
529
530 /* HDLC mode configuration */
531 memset(&msg, 0, sizeof(msg));
532 msg.cmd = PKT_NUM_PIPES_WRITE;
533 msg.hss_port = port->id;
534 msg.data8a = PKT_NUM_PIPES;
535 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
536
537 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
538 msg.data8a = PKT_PIPE_FIFO_SIZEW;
539 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
540
541 msg.cmd = PKT_PIPE_MODE_WRITE;
542 msg.data8a = NPE_PKT_MODE_HDLC;
543 /* msg.data8b = inv_mask */
544 /* msg.data8c = or_mask */
545 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
546
547 msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
548 msg.data16a = HDLC_MAX_MRU; /* including CRC */
549 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
550
551 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
552 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
553 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
554
555 port->initialized = 1;
556 return 0;
557}
558
559/*****************************************************************************
560 * packetized (HDLC) operation
561 ****************************************************************************/
562
563static inline void debug_pkt(struct net_device *dev, const char *func,
564 u8 *data, int len)
565{
566#if DEBUG_PKT_BYTES
567 int i;
568
569 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
570 for (i = 0; i < len; i++) {
571 if (i >= DEBUG_PKT_BYTES)
572 break;
573 printk("%s%02X", !(i % 4) ? " " : "", data[i]);
574 }
575 printk("\n");
576#endif
577}
578
579static inline void debug_desc(u32 phys, struct desc *desc)
580{
581#if DEBUG_DESC
582 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
583 phys, desc->next, desc->buf_len, desc->pkt_len,
584 desc->data, desc->status, desc->error_count);
585#endif
586}
587
588static inline int queue_get_desc(unsigned int queue, struct port *port,
589 int is_tx)
590{
591 u32 phys, tab_phys, n_desc;
592 struct desc *tab;
593
594 phys = qmgr_get_entry(queue);
595 if (!phys)
596 return -1;
597
598 BUG_ON(phys & 0x1F);
599 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
600 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
601 n_desc = (phys - tab_phys) / sizeof(struct desc);
602 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
603 debug_desc(phys, &tab[n_desc]);
604 BUG_ON(tab[n_desc].next);
605 return n_desc;
606}
607
608static inline void queue_put_desc(unsigned int queue, u32 phys,
609 struct desc *desc)
610{
611 debug_desc(phys, desc);
612 BUG_ON(phys & 0x1F);
613 qmgr_put_entry(queue, phys);
614 /* Don't check for queue overflow here, we've allocated sufficient
615 * length and queues >= 32 don't support this check anyway.
616 */
617}
618
619static inline void dma_unmap_tx(struct port *port, struct desc *desc)
620{
621#ifdef __ARMEB__
622 dma_unmap_single(&port->netdev->dev, desc->data,
623 desc->buf_len, DMA_TO_DEVICE);
624#else
625 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
626 ALIGN((desc->data & 3) + desc->buf_len, 4),
627 DMA_TO_DEVICE);
628#endif
629}
630
631static void hss_hdlc_set_carrier(void *pdev, int carrier)
632{
633 struct net_device *netdev = pdev;
634 struct port *port = dev_to_port(netdev);
635 unsigned long flags;
636
637 spin_lock_irqsave(&npe_lock, flags);
638 port->carrier = carrier;
639 if (!port->loopback) {
640 if (carrier)
641 netif_carrier_on(netdev);
642 else
643 netif_carrier_off(netdev);
644 }
645 spin_unlock_irqrestore(&npe_lock, flags);
646}
647
648static void hss_hdlc_rx_irq(void *pdev)
649{
650 struct net_device *dev = pdev;
651 struct port *port = dev_to_port(dev);
652
653#if DEBUG_RX
654 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
655#endif
656 qmgr_disable_irq(port->rxq);
657 napi_schedule(&port->napi);
658}
659
660static int hss_hdlc_poll(struct napi_struct *napi, int budget)
661{
662 struct port *port = container_of(napi, struct port, napi);
663 struct net_device *dev = port->netdev;
664 unsigned int rxq = port->rxq;
665 unsigned int rxfreeq = port->rxfreeq;
666 int received = 0;
667
668#if DEBUG_RX
669 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
670#endif
671
672 while (received < budget) {
673 struct sk_buff *skb;
674 struct desc *desc;
675 int n;
676#ifdef __ARMEB__
677 struct sk_buff *temp;
678 u32 phys;
679#endif
680
681 n = queue_get_desc(rxq, port, 0);
682 if (n < 0) {
683#if DEBUG_RX
684 printk(KERN_DEBUG "%s: hss_hdlc_poll"
685 " napi_complete\n", dev->name);
686#endif
687 napi_complete(napi);
688 qmgr_enable_irq(rxq);
689 if (!qmgr_stat_empty(rxq) &&
690 napi_schedule(napi)) {
691#if DEBUG_RX
692 printk(KERN_DEBUG "%s: hss_hdlc_poll"
693 " napi_schedule succeeded\n",
694 dev->name);
695#endif
696 qmgr_disable_irq(rxq);
697 continue;
698 }
699#if DEBUG_RX
700 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
701 dev->name);
702#endif
703 return received; /* all work done */
704 }
705
706 desc = rx_desc_ptr(port, n);
707#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
708 if (desc->error_count)
709 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
710 " errors %u\n", dev->name, desc->status,
711 desc->error_count);
712#endif
713 skb = NULL;
714 switch (desc->status) {
715 case 0:
716#ifdef __ARMEB__
717 skb = netdev_alloc_skb(dev, RX_SIZE);
718 if (skb) {
719 phys = dma_map_single(&dev->dev, skb->data,
720 RX_SIZE,
721 DMA_FROM_DEVICE);
722 if (dma_mapping_error(&dev->dev, phys)) {
723 dev_kfree_skb(skb);
724 skb = NULL;
725 }
726 }
727#else
728 skb = netdev_alloc_skb(dev, desc->pkt_len);
729#endif
730 if (!skb)
731 dev->stats.rx_dropped++;
732 break;
733 case ERR_HDLC_ALIGN:
734 case ERR_HDLC_ABORT:
735 dev->stats.rx_frame_errors++;
736 dev->stats.rx_errors++;
737 break;
738 case ERR_HDLC_FCS:
739 dev->stats.rx_crc_errors++;
740 dev->stats.rx_errors++;
741 break;
742 case ERR_HDLC_TOO_LONG:
743 dev->stats.rx_length_errors++;
744 dev->stats.rx_errors++;
745 break;
746 default: /* FIXME - remove printk */
747 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
748 desc->status, desc->error_count);
749 dev->stats.rx_errors++;
750 }
751
752 if (!skb) {
753 /* put the desc back on RX-ready queue */
754 desc->buf_len = RX_SIZE;
755 desc->pkt_len = desc->status = 0;
756 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
757 continue;
758 }
759
760 /* process received frame */
761#ifdef __ARMEB__
762 temp = skb;
763 skb = port->rx_buff_tab[n];
764 dma_unmap_single(&dev->dev, desc->data,
765 RX_SIZE, DMA_FROM_DEVICE);
766#else
767 dma_sync_single_for_cpu(&dev->dev, desc->data,
768 RX_SIZE, DMA_FROM_DEVICE);
769 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
770 ALIGN(desc->pkt_len, 4) / 4);
771#endif
772 skb_put(skb, desc->pkt_len);
773
774 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
775
776 skb->protocol = hdlc_type_trans(skb, dev);
777 dev->stats.rx_packets++;
778 dev->stats.rx_bytes += skb->len;
779 netif_receive_skb(skb);
780
781 /* put the new buffer on RX-free queue */
782#ifdef __ARMEB__
783 port->rx_buff_tab[n] = temp;
784 desc->data = phys;
785#endif
786 desc->buf_len = RX_SIZE;
787 desc->pkt_len = 0;
788 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
789 received++;
790 }
791#if DEBUG_RX
792 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
793#endif
794 return received; /* not all work done */
795}
796
797static void hss_hdlc_txdone_irq(void *pdev)
798{
799 struct net_device *dev = pdev;
800 struct port *port = dev_to_port(dev);
801 int n_desc;
802
803#if DEBUG_TX
804 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
805#endif
806 while ((n_desc = queue_get_desc(port->txdoneq,
807 port, 1)) >= 0) {
808 struct desc *desc;
809 int start;
810
811 desc = tx_desc_ptr(port, n_desc);
812
813 dev->stats.tx_packets++;
814 dev->stats.tx_bytes += desc->pkt_len;
815
816 dma_unmap_tx(port, desc);
817#if DEBUG_TX
818 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
819 dev->name, port->tx_buff_tab[n_desc]);
820#endif
821 free_buffer_irq(port->tx_buff_tab[n_desc]);
822 port->tx_buff_tab[n_desc] = NULL;
823
824 start = qmgr_stat_below_low_watermark(port->txreadyq);
825 queue_put_desc(port->txreadyq,
826 tx_desc_phys(port, n_desc), desc);
827 if (start) { /* TX-ready queue was empty */
828#if DEBUG_TX
829 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
830 " ready\n", dev->name);
831#endif
832 netif_wake_queue(dev);
833 }
834 }
835}
836
837static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
838{
839 struct port *port = dev_to_port(dev);
840 unsigned int txreadyq = port->txreadyq;
841 int len, offset, bytes, n;
842 void *mem;
843 u32 phys;
844 struct desc *desc;
845
846#if DEBUG_TX
847 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
848#endif
849
850 if (unlikely(skb->len > HDLC_MAX_MRU)) {
851 dev_kfree_skb(skb);
852 dev->stats.tx_errors++;
853 return NETDEV_TX_OK;
854 }
855
856 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
857
858 len = skb->len;
859#ifdef __ARMEB__
860 offset = 0; /* no need to keep alignment */
861 bytes = len;
862 mem = skb->data;
863#else
864 offset = (int)skb->data & 3; /* keep 32-bit alignment */
865 bytes = ALIGN(offset + len, 4);
866 mem = kmalloc(bytes, GFP_ATOMIC);
867 if (!mem) {
868 dev_kfree_skb(skb);
869 dev->stats.tx_dropped++;
870 return NETDEV_TX_OK;
871 }
872 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
873 dev_kfree_skb(skb);
874#endif
875
876 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
877 if (dma_mapping_error(&dev->dev, phys)) {
878#ifdef __ARMEB__
879 dev_kfree_skb(skb);
880#else
881 kfree(mem);
882#endif
883 dev->stats.tx_dropped++;
884 return NETDEV_TX_OK;
885 }
886
887 n = queue_get_desc(txreadyq, port, 1);
888 BUG_ON(n < 0);
889 desc = tx_desc_ptr(port, n);
890
891#ifdef __ARMEB__
892 port->tx_buff_tab[n] = skb;
893#else
894 port->tx_buff_tab[n] = mem;
895#endif
896 desc->data = phys + offset;
897 desc->buf_len = desc->pkt_len = len;
898
899 wmb();
900 queue_put_desc(port->txq, tx_desc_phys(port, n), desc);
901
902 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
903#if DEBUG_TX
904 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
905#endif
906 netif_stop_queue(dev);
907 /* we could miss TX ready interrupt */
908 if (!qmgr_stat_below_low_watermark(txreadyq)) {
909#if DEBUG_TX
910 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
911 dev->name);
912#endif
913 netif_wake_queue(dev);
914 }
915 }
916
917#if DEBUG_TX
918 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
919#endif
920 return NETDEV_TX_OK;
921}
922
923static int request_hdlc_queues(struct port *port)
924{
925 int err;
926
927 err = qmgr_request_queue(port->rxfreeq, RX_DESCS, 0, 0,
928 "%s:RX-free", port->netdev->name);
929 if (err)
930 return err;
931
932 err = qmgr_request_queue(port->rxq, RX_DESCS, 0, 0,
933 "%s:RX", port->netdev->name);
934 if (err)
935 goto rel_rxfree;
936
937 err = qmgr_request_queue(port->txq, TX_DESCS, 0, 0,
938 "%s:TX", port->netdev->name);
939 if (err)
940 goto rel_rx;
941
942 err = qmgr_request_queue(port->txreadyq, TX_DESCS, 0, 0,
943 "%s:TX-ready", port->netdev->name);
944 if (err)
945 goto rel_tx;
946
947 err = qmgr_request_queue(port->txdoneq, TX_DESCS, 0, 0,
948 "%s:TX-done", port->netdev->name);
949 if (err)
950 goto rel_txready;
951 return 0;
952
953rel_txready:
954 qmgr_release_queue(port->txreadyq);
955rel_tx:
956 qmgr_release_queue(port->txq);
957rel_rx:
958 qmgr_release_queue(port->rxq);
959rel_rxfree:
960 qmgr_release_queue(port->rxfreeq);
961 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
962 port->netdev->name);
963 return err;
964}
965
966static void release_hdlc_queues(struct port *port)
967{
968 qmgr_release_queue(port->rxfreeq);
969 qmgr_release_queue(port->rxq);
970 qmgr_release_queue(port->txdoneq);
971 qmgr_release_queue(port->txq);
972 qmgr_release_queue(port->txreadyq);
973}
974
975static int init_hdlc_queues(struct port *port)
976{
977 int i;
978
979 if (!ports_open) {
980 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
981 POOL_ALLOC_SIZE, 32, 0);
982 if (!dma_pool)
983 return -ENOMEM;
984 }
985
986 port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL,
987 &port->desc_tab_phys);
988 if (!port->desc_tab)
989 return -ENOMEM;
990 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
991 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
992
993 /* Setup RX buffers */
994 for (i = 0; i < RX_DESCS; i++) {
995 struct desc *desc = rx_desc_ptr(port, i);
996 buffer_t *buff;
997 void *data;
998#ifdef __ARMEB__
999 buff = netdev_alloc_skb(port->netdev, RX_SIZE);
1000 if (!buff)
1001 return -ENOMEM;
1002 data = buff->data;
1003#else
1004 buff = kmalloc(RX_SIZE, GFP_KERNEL);
1005 if (!buff)
1006 return -ENOMEM;
1007 data = buff;
1008#endif
1009 desc->buf_len = RX_SIZE;
1010 desc->data = dma_map_single(&port->netdev->dev, data,
1011 RX_SIZE, DMA_FROM_DEVICE);
1012 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1013 free_buffer(buff);
1014 return -EIO;
1015 }
1016 port->rx_buff_tab[i] = buff;
1017 }
1018
1019 return 0;
1020}
1021
1022static void destroy_hdlc_queues(struct port *port)
1023{
1024 int i;
1025
1026 if (port->desc_tab) {
1027 for (i = 0; i < RX_DESCS; i++) {
1028 struct desc *desc = rx_desc_ptr(port, i);
1029 buffer_t *buff = port->rx_buff_tab[i];
1030
1031 if (buff) {
1032 dma_unmap_single(&port->netdev->dev,
1033 desc->data, RX_SIZE,
1034 DMA_FROM_DEVICE);
1035 free_buffer(buff);
1036 }
1037 }
1038 for (i = 0; i < TX_DESCS; i++) {
1039 struct desc *desc = tx_desc_ptr(port, i);
1040 buffer_t *buff = port->tx_buff_tab[i];
1041
1042 if (buff) {
1043 dma_unmap_tx(port, desc);
1044 free_buffer(buff);
1045 }
1046 }
1047 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1048 port->desc_tab = NULL;
1049 }
1050
1051 if (!ports_open && dma_pool) {
1052 dma_pool_destroy(dma_pool);
1053 dma_pool = NULL;
1054 }
1055}
1056
1057static irqreturn_t hss_hdlc_dcd_irq(int irq, void *data)
1058{
1059 struct net_device *dev = data;
1060 struct port *port = dev_to_port(dev);
1061 int val;
1062
1063 val = gpiod_get_value(port->dcd);
1064 hss_hdlc_set_carrier(dev, val);
1065
1066 return IRQ_HANDLED;
1067}
1068
1069static int hss_hdlc_open(struct net_device *dev)
1070{
1071 struct port *port = dev_to_port(dev);
1072 unsigned long flags;
1073 int i, err = 0;
1074 int val;
1075
1076 err = hdlc_open(dev);
1077 if (err)
1078 return err;
1079
1080 err = hss_load_firmware(port);
1081 if (err)
1082 goto err_hdlc_close;
1083
1084 err = request_hdlc_queues(port);
1085 if (err)
1086 goto err_hdlc_close;
1087
1088 err = init_hdlc_queues(port);
1089 if (err)
1090 goto err_destroy_queues;
1091
1092 spin_lock_irqsave(&npe_lock, flags);
1093
1094 /* Set the carrier, the GPIO is flagged active low so this will return
1095 * 1 if DCD is asserted.
1096 */
1097 val = gpiod_get_value(port->dcd);
1098 hss_hdlc_set_carrier(dev, val);
1099
1100 /* Set up an IRQ for DCD */
1101 err = request_irq(gpiod_to_irq(port->dcd), hss_hdlc_dcd_irq, 0, "IXP4xx HSS", dev);
1102 if (err) {
1103 dev_err(&dev->dev, "ixp4xx_hss: failed to request DCD IRQ (%i)\n", err);
1104 goto err_unlock;
1105 }
1106
1107 /* GPIOs are flagged active low so this asserts DTR and RTS */
1108 gpiod_set_value(port->dtr, 1);
1109 gpiod_set_value(port->rts, 1);
1110
1111 spin_unlock_irqrestore(&npe_lock, flags);
1112
1113 /* Populate queues with buffers, no failure after this point */
1114 for (i = 0; i < TX_DESCS; i++)
1115 queue_put_desc(port->txreadyq,
1116 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1117
1118 for (i = 0; i < RX_DESCS; i++)
1119 queue_put_desc(port->rxfreeq,
1120 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1121
1122 napi_enable(&port->napi);
1123 netif_start_queue(dev);
1124
1125 qmgr_set_irq(port->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1126 hss_hdlc_rx_irq, dev);
1127
1128 qmgr_set_irq(port->txdoneq, QUEUE_IRQ_SRC_NOT_EMPTY,
1129 hss_hdlc_txdone_irq, dev);
1130 qmgr_enable_irq(port->txdoneq);
1131
1132 ports_open++;
1133
1134 hss_set_hdlc_cfg(port);
1135 hss_config(port);
1136
1137 hss_start_hdlc(port);
1138
1139 /* we may already have RX data, enables IRQ */
1140 napi_schedule(&port->napi);
1141 return 0;
1142
1143err_unlock:
1144 spin_unlock_irqrestore(&npe_lock, flags);
1145err_destroy_queues:
1146 destroy_hdlc_queues(port);
1147 release_hdlc_queues(port);
1148err_hdlc_close:
1149 hdlc_close(dev);
1150 return err;
1151}
1152
1153static int hss_hdlc_close(struct net_device *dev)
1154{
1155 struct port *port = dev_to_port(dev);
1156 unsigned long flags;
1157 int i, buffs = RX_DESCS; /* allocated RX buffers */
1158
1159 spin_lock_irqsave(&npe_lock, flags);
1160 ports_open--;
1161 qmgr_disable_irq(port->rxq);
1162 netif_stop_queue(dev);
1163 napi_disable(&port->napi);
1164
1165 hss_stop_hdlc(port);
1166
1167 while (queue_get_desc(port->rxfreeq, port, 0) >= 0)
1168 buffs--;
1169 while (queue_get_desc(port->rxq, port, 0) >= 0)
1170 buffs--;
1171
1172 if (buffs)
1173 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1174 buffs);
1175
1176 buffs = TX_DESCS;
1177 while (queue_get_desc(port->txq, port, 1) >= 0)
1178 buffs--; /* cancel TX */
1179
1180 i = 0;
1181 do {
1182 while (queue_get_desc(port->txreadyq, port, 1) >= 0)
1183 buffs--;
1184 if (!buffs)
1185 break;
1186 } while (++i < MAX_CLOSE_WAIT);
1187
1188 if (buffs)
1189 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1190 buffs);
1191#if DEBUG_CLOSE
1192 if (!buffs)
1193 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1194#endif
1195 qmgr_disable_irq(port->txdoneq);
1196
1197 free_irq(gpiod_to_irq(port->dcd), dev);
1198 /* GPIOs are flagged active low so this de-asserts DTR and RTS */
1199 gpiod_set_value(port->dtr, 0);
1200 gpiod_set_value(port->rts, 0);
1201 spin_unlock_irqrestore(&npe_lock, flags);
1202
1203 destroy_hdlc_queues(port);
1204 release_hdlc_queues(port);
1205 hdlc_close(dev);
1206 return 0;
1207}
1208
1209static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1210 unsigned short parity)
1211{
1212 struct port *port = dev_to_port(dev);
1213
1214 if (encoding != ENCODING_NRZ)
1215 return -EINVAL;
1216
1217 switch (parity) {
1218 case PARITY_CRC16_PR1_CCITT:
1219 port->hdlc_cfg = 0;
1220 return 0;
1221
1222 case PARITY_CRC32_PR1_CCITT:
1223 port->hdlc_cfg = PKT_HDLC_CRC_32;
1224 return 0;
1225
1226 default:
1227 return -EINVAL;
1228 }
1229}
1230
1231static u32 check_clock(u32 timer_freq, u32 rate, u32 a, u32 b, u32 c,
1232 u32 *best, u32 *best_diff, u32 *reg)
1233{
1234 /* a is 10-bit, b is 10-bit, c is 12-bit */
1235 u64 new_rate;
1236 u32 new_diff;
1237
1238 new_rate = timer_freq * (u64)(c + 1);
1239 do_div(new_rate, a * (c + 1) + b + 1);
1240 new_diff = abs((u32)new_rate - rate);
1241
1242 if (new_diff < *best_diff) {
1243 *best = new_rate;
1244 *best_diff = new_diff;
1245 *reg = (a << 22) | (b << 12) | c;
1246 }
1247 return new_diff;
1248}
1249
1250static void find_best_clock(u32 timer_freq, u32 rate, u32 *best, u32 *reg)
1251{
1252 u32 a, b, diff = 0xFFFFFFFF;
1253
1254 a = timer_freq / rate;
1255
1256 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1257 check_clock(timer_freq, rate, 0x3FF, 1, 1, best, &diff, reg);
1258 return;
1259 }
1260 if (a == 0) { /* > 66.666 MHz */
1261 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1262 rate = timer_freq;
1263 }
1264
1265 if (rate * a == timer_freq) { /* don't divide by 0 later */
1266 check_clock(timer_freq, rate, a - 1, 1, 1, best, &diff, reg);
1267 return;
1268 }
1269
1270 for (b = 0; b < 0x400; b++) {
1271 u64 c = (b + 1) * (u64)rate;
1272
1273 do_div(c, timer_freq - rate * a);
1274 c--;
1275 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1276 if (b == 0 && /* also try a bit higher rate */
1277 !check_clock(timer_freq, rate, a - 1, 1, 1, best,
1278 &diff, reg))
1279 return;
1280 check_clock(timer_freq, rate, a, b, 0xFFF, best,
1281 &diff, reg);
1282 return;
1283 }
1284 if (!check_clock(timer_freq, rate, a, b, c, best, &diff, reg))
1285 return;
1286 if (!check_clock(timer_freq, rate, a, b, c + 1, best, &diff,
1287 reg))
1288 return;
1289 }
1290}
1291
1292static int hss_hdlc_set_clock(struct port *port, unsigned int clock_type)
1293{
1294 switch (clock_type) {
1295 case CLOCK_DEFAULT:
1296 case CLOCK_EXT:
1297 gpiod_set_value(port->clk_internal, 0);
1298 return CLOCK_EXT;
1299 case CLOCK_INT:
1300 gpiod_set_value(port->clk_internal, 1);
1301 return CLOCK_INT;
1302 default:
1303 return -EINVAL;
1304 }
1305}
1306
1307static int hss_hdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
1308{
1309 const size_t size = sizeof(sync_serial_settings);
1310 sync_serial_settings new_line;
1311 sync_serial_settings __user *line = ifs->ifs_ifsu.sync;
1312 struct port *port = dev_to_port(dev);
1313 unsigned long flags;
1314 int clk;
1315
1316 switch (ifs->type) {
1317 case IF_GET_IFACE:
1318 ifs->type = IF_IFACE_V35;
1319 if (ifs->size < size) {
1320 ifs->size = size; /* data size wanted */
1321 return -ENOBUFS;
1322 }
1323 memset(&new_line, 0, sizeof(new_line));
1324 new_line.clock_type = port->clock_type;
1325 new_line.clock_rate = port->clock_rate;
1326 new_line.loopback = port->loopback;
1327 if (copy_to_user(line, &new_line, size))
1328 return -EFAULT;
1329 return 0;
1330
1331 case IF_IFACE_SYNC_SERIAL:
1332 case IF_IFACE_V35:
1333 if (!capable(CAP_NET_ADMIN))
1334 return -EPERM;
1335 if (copy_from_user(&new_line, line, size))
1336 return -EFAULT;
1337
1338 clk = new_line.clock_type;
1339 hss_hdlc_set_clock(port, clk);
1340
1341 if (clk != CLOCK_EXT && clk != CLOCK_INT)
1342 return -EINVAL; /* No such clock setting */
1343
1344 if (new_line.loopback != 0 && new_line.loopback != 1)
1345 return -EINVAL;
1346
1347 port->clock_type = clk; /* Update settings */
1348 if (clk == CLOCK_INT) {
1349 find_best_clock(IXP4XX_TIMER_FREQ,
1350 new_line.clock_rate,
1351 &port->clock_rate, &port->clock_reg);
1352 } else {
1353 port->clock_rate = 0;
1354 port->clock_reg = CLK42X_SPEED_2048KHZ;
1355 }
1356 port->loopback = new_line.loopback;
1357
1358 spin_lock_irqsave(&npe_lock, flags);
1359
1360 if (dev->flags & IFF_UP)
1361 hss_config(port);
1362
1363 if (port->loopback || port->carrier)
1364 netif_carrier_on(port->netdev);
1365 else
1366 netif_carrier_off(port->netdev);
1367 spin_unlock_irqrestore(&npe_lock, flags);
1368
1369 return 0;
1370
1371 default:
1372 return hdlc_ioctl(dev, ifs);
1373 }
1374}
1375
1376/*****************************************************************************
1377 * initialization
1378 ****************************************************************************/
1379
1380static const struct net_device_ops hss_hdlc_ops = {
1381 .ndo_open = hss_hdlc_open,
1382 .ndo_stop = hss_hdlc_close,
1383 .ndo_start_xmit = hdlc_start_xmit,
1384 .ndo_siocwandev = hss_hdlc_ioctl,
1385};
1386
1387static int ixp4xx_hss_probe(struct platform_device *pdev)
1388{
1389 struct of_phandle_args queue_spec;
1390 struct of_phandle_args npe_spec;
1391 struct device *dev = &pdev->dev;
1392 struct net_device *ndev;
1393 struct device_node *np;
1394 struct regmap *rmap;
1395 struct port *port;
1396 hdlc_device *hdlc;
1397 int err;
1398 u32 val;
1399
1400 /*
1401 * Go into the syscon and check if we have the HSS and HDLC
1402 * features available, else this will not work.
1403 */
1404 rmap = syscon_regmap_lookup_by_compatible("syscon");
1405 if (IS_ERR(rmap))
1406 return dev_err_probe(dev, PTR_ERR(rmap),
1407 "failed to look up syscon\n");
1408
1409 val = cpu_ixp4xx_features(rmap);
1410
1411 if ((val & (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1412 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) {
1413 dev_err(dev, "HDLC and HSS feature unavailable in platform\n");
1414 return -ENODEV;
1415 }
1416
1417 np = dev->of_node;
1418
1419 port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
1420 if (!port)
1421 return -ENOMEM;
1422
1423 err = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
1424 &npe_spec);
1425 if (err)
1426 return dev_err_probe(dev, err, "no NPE engine specified\n");
1427 /* NPE ID 0x00, 0x10, 0x20... */
1428 port->npe = npe_request(npe_spec.args[0] << 4);
1429 if (!port->npe) {
1430 dev_err(dev, "unable to obtain NPE instance\n");
1431 return -ENODEV;
1432 }
1433
1434 /* Get the TX ready queue as resource from queue manager */
1435 err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-txready", 1, 0,
1436 &queue_spec);
1437 if (err)
1438 return dev_err_probe(dev, err, "no txready queue phandle\n");
1439 port->txreadyq = queue_spec.args[0];
1440 /* Get the RX trig queue as resource from queue manager */
1441 err = of_parse_phandle_with_fixed_args(np, "intek,queue-chl-rxtrig", 1, 0,
1442 &queue_spec);
1443 if (err)
1444 return dev_err_probe(dev, err, "no rxtrig queue phandle\n");
1445 port->rxtrigq = queue_spec.args[0];
1446 /* Get the RX queue as resource from queue manager */
1447 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rx", 1, 0,
1448 &queue_spec);
1449 if (err)
1450 return dev_err_probe(dev, err, "no RX queue phandle\n");
1451 port->rxq = queue_spec.args[0];
1452 /* Get the TX queue as resource from queue manager */
1453 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-tx", 1, 0,
1454 &queue_spec);
1455 if (err)
1456 return dev_err_probe(dev, err, "no RX queue phandle\n");
1457 port->txq = queue_spec.args[0];
1458 /* Get the RX free queue as resource from queue manager */
1459 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-rxfree", 1, 0,
1460 &queue_spec);
1461 if (err)
1462 return dev_err_probe(dev, err, "no RX free queue phandle\n");
1463 port->rxfreeq = queue_spec.args[0];
1464 /* Get the TX done queue as resource from queue manager */
1465 err = of_parse_phandle_with_fixed_args(np, "intek,queue-pkt-txdone", 1, 0,
1466 &queue_spec);
1467 if (err)
1468 return dev_err_probe(dev, err, "no TX done queue phandle\n");
1469 port->txdoneq = queue_spec.args[0];
1470
1471 /* Obtain all the line control GPIOs */
1472 port->cts = devm_gpiod_get(dev, "cts", GPIOD_OUT_LOW);
1473 if (IS_ERR(port->cts))
1474 return dev_err_probe(dev, PTR_ERR(port->cts), "unable to get CTS GPIO\n");
1475 port->rts = devm_gpiod_get(dev, "rts", GPIOD_OUT_LOW);
1476 if (IS_ERR(port->rts))
1477 return dev_err_probe(dev, PTR_ERR(port->rts), "unable to get RTS GPIO\n");
1478 port->dcd = devm_gpiod_get(dev, "dcd", GPIOD_IN);
1479 if (IS_ERR(port->dcd))
1480 return dev_err_probe(dev, PTR_ERR(port->dcd), "unable to get DCD GPIO\n");
1481 port->dtr = devm_gpiod_get(dev, "dtr", GPIOD_OUT_LOW);
1482 if (IS_ERR(port->dtr))
1483 return dev_err_probe(dev, PTR_ERR(port->dtr), "unable to get DTR GPIO\n");
1484 port->clk_internal = devm_gpiod_get(dev, "clk-internal", GPIOD_OUT_LOW);
1485 if (IS_ERR(port->clk_internal))
1486 return dev_err_probe(dev, PTR_ERR(port->clk_internal),
1487 "unable to get CLK internal GPIO\n");
1488
1489 ndev = alloc_hdlcdev(port);
1490 port->netdev = alloc_hdlcdev(port);
1491 if (!port->netdev) {
1492 err = -ENOMEM;
1493 goto err_plat;
1494 }
1495
1496 SET_NETDEV_DEV(ndev, &pdev->dev);
1497 hdlc = dev_to_hdlc(ndev);
1498 hdlc->attach = hss_hdlc_attach;
1499 hdlc->xmit = hss_hdlc_xmit;
1500 ndev->netdev_ops = &hss_hdlc_ops;
1501 ndev->tx_queue_len = 100;
1502 port->clock_type = CLOCK_EXT;
1503 port->clock_rate = 0;
1504 port->clock_reg = CLK42X_SPEED_2048KHZ;
1505 port->id = pdev->id;
1506 port->dev = &pdev->dev;
1507 netif_napi_add_weight(ndev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1508
1509 err = register_hdlc_device(ndev);
1510 if (err)
1511 goto err_free_netdev;
1512
1513 platform_set_drvdata(pdev, port);
1514
1515 netdev_info(ndev, "initialized\n");
1516 return 0;
1517
1518err_free_netdev:
1519 free_netdev(ndev);
1520err_plat:
1521 npe_release(port->npe);
1522 return err;
1523}
1524
1525static void ixp4xx_hss_remove(struct platform_device *pdev)
1526{
1527 struct port *port = platform_get_drvdata(pdev);
1528
1529 unregister_hdlc_device(port->netdev);
1530 free_netdev(port->netdev);
1531 npe_release(port->npe);
1532}
1533
1534static struct platform_driver ixp4xx_hss_driver = {
1535 .driver.name = DRV_NAME,
1536 .probe = ixp4xx_hss_probe,
1537 .remove = ixp4xx_hss_remove,
1538};
1539module_platform_driver(ixp4xx_hss_driver);
1540
1541MODULE_AUTHOR("Krzysztof Halasa");
1542MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1543MODULE_LICENSE("GPL v2");
1544MODULE_ALIAS("platform:ixp4xx_hss");
1/*
2 * Intel IXP4xx HSS (synchronous serial port) driver for Linux
3 *
4 * Copyright (C) 2007-2008 Krzysztof HaĆasa <khc@pm.waw.pl>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/module.h>
14#include <linux/bitops.h>
15#include <linux/cdev.h>
16#include <linux/dma-mapping.h>
17#include <linux/dmapool.h>
18#include <linux/fs.h>
19#include <linux/hdlc.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/platform_device.h>
23#include <linux/poll.h>
24#include <linux/slab.h>
25#include <mach/npe.h>
26#include <mach/qmgr.h>
27
28#define DEBUG_DESC 0
29#define DEBUG_RX 0
30#define DEBUG_TX 0
31#define DEBUG_PKT_BYTES 0
32#define DEBUG_CLOSE 0
33
34#define DRV_NAME "ixp4xx_hss"
35
36#define PKT_EXTRA_FLAGS 0 /* orig 1 */
37#define PKT_NUM_PIPES 1 /* 1, 2 or 4 */
38#define PKT_PIPE_FIFO_SIZEW 4 /* total 4 dwords per HSS */
39
40#define RX_DESCS 16 /* also length of all RX queues */
41#define TX_DESCS 16 /* also length of all TX queues */
42
43#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
44#define RX_SIZE (HDLC_MAX_MRU + 4) /* NPE needs more space */
45#define MAX_CLOSE_WAIT 1000 /* microseconds */
46#define HSS_COUNT 2
47#define FRAME_SIZE 256 /* doesn't matter at this point */
48#define FRAME_OFFSET 0
49#define MAX_CHANNELS (FRAME_SIZE / 8)
50
51#define NAPI_WEIGHT 16
52
53/* Queue IDs */
54#define HSS0_CHL_RXTRIG_QUEUE 12 /* orig size = 32 dwords */
55#define HSS0_PKT_RX_QUEUE 13 /* orig size = 32 dwords */
56#define HSS0_PKT_TX0_QUEUE 14 /* orig size = 16 dwords */
57#define HSS0_PKT_TX1_QUEUE 15
58#define HSS0_PKT_TX2_QUEUE 16
59#define HSS0_PKT_TX3_QUEUE 17
60#define HSS0_PKT_RXFREE0_QUEUE 18 /* orig size = 16 dwords */
61#define HSS0_PKT_RXFREE1_QUEUE 19
62#define HSS0_PKT_RXFREE2_QUEUE 20
63#define HSS0_PKT_RXFREE3_QUEUE 21
64#define HSS0_PKT_TXDONE_QUEUE 22 /* orig size = 64 dwords */
65
66#define HSS1_CHL_RXTRIG_QUEUE 10
67#define HSS1_PKT_RX_QUEUE 0
68#define HSS1_PKT_TX0_QUEUE 5
69#define HSS1_PKT_TX1_QUEUE 6
70#define HSS1_PKT_TX2_QUEUE 7
71#define HSS1_PKT_TX3_QUEUE 8
72#define HSS1_PKT_RXFREE0_QUEUE 1
73#define HSS1_PKT_RXFREE1_QUEUE 2
74#define HSS1_PKT_RXFREE2_QUEUE 3
75#define HSS1_PKT_RXFREE3_QUEUE 4
76#define HSS1_PKT_TXDONE_QUEUE 9
77
78#define NPE_PKT_MODE_HDLC 0
79#define NPE_PKT_MODE_RAW 1
80#define NPE_PKT_MODE_56KMODE 2
81#define NPE_PKT_MODE_56KENDIAN_MSB 4
82
83/* PKT_PIPE_HDLC_CFG_WRITE flags */
84#define PKT_HDLC_IDLE_ONES 0x1 /* default = flags */
85#define PKT_HDLC_CRC_32 0x2 /* default = CRC-16 */
86#define PKT_HDLC_MSB_ENDIAN 0x4 /* default = LE */
87
88
89/* hss_config, PCRs */
90/* Frame sync sampling, default = active low */
91#define PCR_FRM_SYNC_ACTIVE_HIGH 0x40000000
92#define PCR_FRM_SYNC_FALLINGEDGE 0x80000000
93#define PCR_FRM_SYNC_RISINGEDGE 0xC0000000
94
95/* Frame sync pin: input (default) or output generated off a given clk edge */
96#define PCR_FRM_SYNC_OUTPUT_FALLING 0x20000000
97#define PCR_FRM_SYNC_OUTPUT_RISING 0x30000000
98
99/* Frame and data clock sampling on edge, default = falling */
100#define PCR_FCLK_EDGE_RISING 0x08000000
101#define PCR_DCLK_EDGE_RISING 0x04000000
102
103/* Clock direction, default = input */
104#define PCR_SYNC_CLK_DIR_OUTPUT 0x02000000
105
106/* Generate/Receive frame pulses, default = enabled */
107#define PCR_FRM_PULSE_DISABLED 0x01000000
108
109 /* Data rate is full (default) or half the configured clk speed */
110#define PCR_HALF_CLK_RATE 0x00200000
111
112/* Invert data between NPE and HSS FIFOs? (default = no) */
113#define PCR_DATA_POLARITY_INVERT 0x00100000
114
115/* TX/RX endianness, default = LSB */
116#define PCR_MSB_ENDIAN 0x00080000
117
118/* Normal (default) / open drain mode (TX only) */
119#define PCR_TX_PINS_OPEN_DRAIN 0x00040000
120
121/* No framing bit transmitted and expected on RX? (default = framing bit) */
122#define PCR_SOF_NO_FBIT 0x00020000
123
124/* Drive data pins? */
125#define PCR_TX_DATA_ENABLE 0x00010000
126
127/* Voice 56k type: drive the data pins low (default), high, high Z */
128#define PCR_TX_V56K_HIGH 0x00002000
129#define PCR_TX_V56K_HIGH_IMP 0x00004000
130
131/* Unassigned type: drive the data pins low (default), high, high Z */
132#define PCR_TX_UNASS_HIGH 0x00000800
133#define PCR_TX_UNASS_HIGH_IMP 0x00001000
134
135/* T1 @ 1.544MHz only: Fbit dictated in FIFO (default) or high Z */
136#define PCR_TX_FB_HIGH_IMP 0x00000400
137
138/* 56k data endiannes - which bit unused: high (default) or low */
139#define PCR_TX_56KE_BIT_0_UNUSED 0x00000200
140
141/* 56k data transmission type: 32/8 bit data (default) or 56K data */
142#define PCR_TX_56KS_56K_DATA 0x00000100
143
144/* hss_config, cCR */
145/* Number of packetized clients, default = 1 */
146#define CCR_NPE_HFIFO_2_HDLC 0x04000000
147#define CCR_NPE_HFIFO_3_OR_4HDLC 0x08000000
148
149/* default = no loopback */
150#define CCR_LOOPBACK 0x02000000
151
152/* HSS number, default = 0 (first) */
153#define CCR_SECOND_HSS 0x01000000
154
155
156/* hss_config, clkCR: main:10, num:10, denom:12 */
157#define CLK42X_SPEED_EXP ((0x3FF << 22) | ( 2 << 12) | 15) /*65 KHz*/
158
159#define CLK42X_SPEED_512KHZ (( 130 << 22) | ( 2 << 12) | 15)
160#define CLK42X_SPEED_1536KHZ (( 43 << 22) | ( 18 << 12) | 47)
161#define CLK42X_SPEED_1544KHZ (( 43 << 22) | ( 33 << 12) | 192)
162#define CLK42X_SPEED_2048KHZ (( 32 << 22) | ( 34 << 12) | 63)
163#define CLK42X_SPEED_4096KHZ (( 16 << 22) | ( 34 << 12) | 127)
164#define CLK42X_SPEED_8192KHZ (( 8 << 22) | ( 34 << 12) | 255)
165
166#define CLK46X_SPEED_512KHZ (( 130 << 22) | ( 24 << 12) | 127)
167#define CLK46X_SPEED_1536KHZ (( 43 << 22) | (152 << 12) | 383)
168#define CLK46X_SPEED_1544KHZ (( 43 << 22) | ( 66 << 12) | 385)
169#define CLK46X_SPEED_2048KHZ (( 32 << 22) | (280 << 12) | 511)
170#define CLK46X_SPEED_4096KHZ (( 16 << 22) | (280 << 12) | 1023)
171#define CLK46X_SPEED_8192KHZ (( 8 << 22) | (280 << 12) | 2047)
172
173/*
174 * HSS_CONFIG_CLOCK_CR register consists of 3 parts:
175 * A (10 bits), B (10 bits) and C (12 bits).
176 * IXP42x HSS clock generator operation (verified with an oscilloscope):
177 * Each clock bit takes 7.5 ns (1 / 133.xx MHz).
178 * The clock sequence consists of (C - B) states of 0s and 1s, each state is
179 * A bits wide. It's followed by (B + 1) states of 0s and 1s, each state is
180 * (A + 1) bits wide.
181 *
182 * The resulting average clock frequency (assuming 33.333 MHz oscillator) is:
183 * freq = 66.666 MHz / (A + (B + 1) / (C + 1))
184 * minimum freq = 66.666 MHz / (A + 1)
185 * maximum freq = 66.666 MHz / A
186 *
187 * Example: A = 2, B = 2, C = 7, CLOCK_CR register = 2 << 22 | 2 << 12 | 7
188 * freq = 66.666 MHz / (2 + (2 + 1) / (7 + 1)) = 28.07 MHz (Mb/s).
189 * The clock sequence is: 1100110011 (5 doubles) 000111000 (3 triples).
190 * The sequence takes (C - B) * A + (B + 1) * (A + 1) = 5 * 2 + 3 * 3 bits
191 * = 19 bits (each 7.5 ns long) = 142.5 ns (then the sequence repeats).
192 * The sequence consists of 4 complete clock periods, thus the average
193 * frequency (= clock rate) is 4 / 142.5 ns = 28.07 MHz (Mb/s).
194 * (max specified clock rate for IXP42x HSS is 8.192 Mb/s).
195 */
196
197/* hss_config, LUT entries */
198#define TDMMAP_UNASSIGNED 0
199#define TDMMAP_HDLC 1 /* HDLC - packetized */
200#define TDMMAP_VOICE56K 2 /* Voice56K - 7-bit channelized */
201#define TDMMAP_VOICE64K 3 /* Voice64K - 8-bit channelized */
202
203/* offsets into HSS config */
204#define HSS_CONFIG_TX_PCR 0x00 /* port configuration registers */
205#define HSS_CONFIG_RX_PCR 0x04
206#define HSS_CONFIG_CORE_CR 0x08 /* loopback control, HSS# */
207#define HSS_CONFIG_CLOCK_CR 0x0C /* clock generator control */
208#define HSS_CONFIG_TX_FCR 0x10 /* frame configuration registers */
209#define HSS_CONFIG_RX_FCR 0x14
210#define HSS_CONFIG_TX_LUT 0x18 /* channel look-up tables */
211#define HSS_CONFIG_RX_LUT 0x38
212
213
214/* NPE command codes */
215/* writes the ConfigWord value to the location specified by offset */
216#define PORT_CONFIG_WRITE 0x40
217
218/* triggers the NPE to load the contents of the configuration table */
219#define PORT_CONFIG_LOAD 0x41
220
221/* triggers the NPE to return an HssErrorReadResponse message */
222#define PORT_ERROR_READ 0x42
223
224/* triggers the NPE to reset internal status and enable the HssPacketized
225 operation for the flow specified by pPipe */
226#define PKT_PIPE_FLOW_ENABLE 0x50
227#define PKT_PIPE_FLOW_DISABLE 0x51
228#define PKT_NUM_PIPES_WRITE 0x52
229#define PKT_PIPE_FIFO_SIZEW_WRITE 0x53
230#define PKT_PIPE_HDLC_CFG_WRITE 0x54
231#define PKT_PIPE_IDLE_PATTERN_WRITE 0x55
232#define PKT_PIPE_RX_SIZE_WRITE 0x56
233#define PKT_PIPE_MODE_WRITE 0x57
234
235/* HDLC packet status values - desc->status */
236#define ERR_SHUTDOWN 1 /* stop or shutdown occurrence */
237#define ERR_HDLC_ALIGN 2 /* HDLC alignment error */
238#define ERR_HDLC_FCS 3 /* HDLC Frame Check Sum error */
239#define ERR_RXFREE_Q_EMPTY 4 /* RX-free queue became empty while receiving
240 this packet (if buf_len < pkt_len) */
241#define ERR_HDLC_TOO_LONG 5 /* HDLC frame size too long */
242#define ERR_HDLC_ABORT 6 /* abort sequence received */
243#define ERR_DISCONNECTING 7 /* disconnect is in progress */
244
245
246#ifdef __ARMEB__
247typedef struct sk_buff buffer_t;
248#define free_buffer dev_kfree_skb
249#define free_buffer_irq dev_kfree_skb_irq
250#else
251typedef void buffer_t;
252#define free_buffer kfree
253#define free_buffer_irq kfree
254#endif
255
256struct port {
257 struct device *dev;
258 struct npe *npe;
259 struct net_device *netdev;
260 struct napi_struct napi;
261 struct hss_plat_info *plat;
262 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
263 struct desc *desc_tab; /* coherent */
264 u32 desc_tab_phys;
265 unsigned int id;
266 unsigned int clock_type, clock_rate, loopback;
267 unsigned int initialized, carrier;
268 u8 hdlc_cfg;
269 u32 clock_reg;
270};
271
272/* NPE message structure */
273struct msg {
274#ifdef __ARMEB__
275 u8 cmd, unused, hss_port, index;
276 union {
277 struct { u8 data8a, data8b, data8c, data8d; };
278 struct { u16 data16a, data16b; };
279 struct { u32 data32; };
280 };
281#else
282 u8 index, hss_port, unused, cmd;
283 union {
284 struct { u8 data8d, data8c, data8b, data8a; };
285 struct { u16 data16b, data16a; };
286 struct { u32 data32; };
287 };
288#endif
289};
290
291/* HDLC packet descriptor */
292struct desc {
293 u32 next; /* pointer to next buffer, unused */
294
295#ifdef __ARMEB__
296 u16 buf_len; /* buffer length */
297 u16 pkt_len; /* packet length */
298 u32 data; /* pointer to data buffer in RAM */
299 u8 status;
300 u8 error_count;
301 u16 __reserved;
302#else
303 u16 pkt_len; /* packet length */
304 u16 buf_len; /* buffer length */
305 u32 data; /* pointer to data buffer in RAM */
306 u16 __reserved;
307 u8 error_count;
308 u8 status;
309#endif
310 u32 __reserved1[4];
311};
312
313
314#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
315 (n) * sizeof(struct desc))
316#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
317
318#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
319 ((n) + RX_DESCS) * sizeof(struct desc))
320#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
321
322/*****************************************************************************
323 * global variables
324 ****************************************************************************/
325
326static int ports_open;
327static struct dma_pool *dma_pool;
328static spinlock_t npe_lock;
329
330static const struct {
331 int tx, txdone, rx, rxfree;
332}queue_ids[2] = {{HSS0_PKT_TX0_QUEUE, HSS0_PKT_TXDONE_QUEUE, HSS0_PKT_RX_QUEUE,
333 HSS0_PKT_RXFREE0_QUEUE},
334 {HSS1_PKT_TX0_QUEUE, HSS1_PKT_TXDONE_QUEUE, HSS1_PKT_RX_QUEUE,
335 HSS1_PKT_RXFREE0_QUEUE},
336};
337
338/*****************************************************************************
339 * utility functions
340 ****************************************************************************/
341
342static inline struct port* dev_to_port(struct net_device *dev)
343{
344 return dev_to_hdlc(dev)->priv;
345}
346
347#ifndef __ARMEB__
348static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
349{
350 int i;
351 for (i = 0; i < cnt; i++)
352 dest[i] = swab32(src[i]);
353}
354#endif
355
356/*****************************************************************************
357 * HSS access
358 ****************************************************************************/
359
360static void hss_npe_send(struct port *port, struct msg *msg, const char* what)
361{
362 u32 *val = (u32*)msg;
363 if (npe_send_message(port->npe, msg, what)) {
364 pr_crit("HSS-%i: unable to send command [%08X:%08X] to %s\n",
365 port->id, val[0], val[1], npe_name(port->npe));
366 BUG();
367 }
368}
369
370static void hss_config_set_lut(struct port *port)
371{
372 struct msg msg;
373 int ch;
374
375 memset(&msg, 0, sizeof(msg));
376 msg.cmd = PORT_CONFIG_WRITE;
377 msg.hss_port = port->id;
378
379 for (ch = 0; ch < MAX_CHANNELS; ch++) {
380 msg.data32 >>= 2;
381 msg.data32 |= TDMMAP_HDLC << 30;
382
383 if (ch % 16 == 15) {
384 msg.index = HSS_CONFIG_TX_LUT + ((ch / 4) & ~3);
385 hss_npe_send(port, &msg, "HSS_SET_TX_LUT");
386
387 msg.index += HSS_CONFIG_RX_LUT - HSS_CONFIG_TX_LUT;
388 hss_npe_send(port, &msg, "HSS_SET_RX_LUT");
389 }
390 }
391}
392
393static void hss_config(struct port *port)
394{
395 struct msg msg;
396
397 memset(&msg, 0, sizeof(msg));
398 msg.cmd = PORT_CONFIG_WRITE;
399 msg.hss_port = port->id;
400 msg.index = HSS_CONFIG_TX_PCR;
401 msg.data32 = PCR_FRM_PULSE_DISABLED | PCR_MSB_ENDIAN |
402 PCR_TX_DATA_ENABLE | PCR_SOF_NO_FBIT;
403 if (port->clock_type == CLOCK_INT)
404 msg.data32 |= PCR_SYNC_CLK_DIR_OUTPUT;
405 hss_npe_send(port, &msg, "HSS_SET_TX_PCR");
406
407 msg.index = HSS_CONFIG_RX_PCR;
408 msg.data32 ^= PCR_TX_DATA_ENABLE | PCR_DCLK_EDGE_RISING;
409 hss_npe_send(port, &msg, "HSS_SET_RX_PCR");
410
411 memset(&msg, 0, sizeof(msg));
412 msg.cmd = PORT_CONFIG_WRITE;
413 msg.hss_port = port->id;
414 msg.index = HSS_CONFIG_CORE_CR;
415 msg.data32 = (port->loopback ? CCR_LOOPBACK : 0) |
416 (port->id ? CCR_SECOND_HSS : 0);
417 hss_npe_send(port, &msg, "HSS_SET_CORE_CR");
418
419 memset(&msg, 0, sizeof(msg));
420 msg.cmd = PORT_CONFIG_WRITE;
421 msg.hss_port = port->id;
422 msg.index = HSS_CONFIG_CLOCK_CR;
423 msg.data32 = port->clock_reg;
424 hss_npe_send(port, &msg, "HSS_SET_CLOCK_CR");
425
426 memset(&msg, 0, sizeof(msg));
427 msg.cmd = PORT_CONFIG_WRITE;
428 msg.hss_port = port->id;
429 msg.index = HSS_CONFIG_TX_FCR;
430 msg.data16a = FRAME_OFFSET;
431 msg.data16b = FRAME_SIZE - 1;
432 hss_npe_send(port, &msg, "HSS_SET_TX_FCR");
433
434 memset(&msg, 0, sizeof(msg));
435 msg.cmd = PORT_CONFIG_WRITE;
436 msg.hss_port = port->id;
437 msg.index = HSS_CONFIG_RX_FCR;
438 msg.data16a = FRAME_OFFSET;
439 msg.data16b = FRAME_SIZE - 1;
440 hss_npe_send(port, &msg, "HSS_SET_RX_FCR");
441
442 hss_config_set_lut(port);
443
444 memset(&msg, 0, sizeof(msg));
445 msg.cmd = PORT_CONFIG_LOAD;
446 msg.hss_port = port->id;
447 hss_npe_send(port, &msg, "HSS_LOAD_CONFIG");
448
449 if (npe_recv_message(port->npe, &msg, "HSS_LOAD_CONFIG") ||
450 /* HSS_LOAD_CONFIG for port #1 returns port_id = #4 */
451 msg.cmd != PORT_CONFIG_LOAD || msg.data32) {
452 pr_crit("HSS-%i: HSS_LOAD_CONFIG failed\n", port->id);
453 BUG();
454 }
455
456 /* HDLC may stop working without this - check FIXME */
457 npe_recv_message(port->npe, &msg, "FLUSH_IT");
458}
459
460static void hss_set_hdlc_cfg(struct port *port)
461{
462 struct msg msg;
463
464 memset(&msg, 0, sizeof(msg));
465 msg.cmd = PKT_PIPE_HDLC_CFG_WRITE;
466 msg.hss_port = port->id;
467 msg.data8a = port->hdlc_cfg; /* rx_cfg */
468 msg.data8b = port->hdlc_cfg | (PKT_EXTRA_FLAGS << 3); /* tx_cfg */
469 hss_npe_send(port, &msg, "HSS_SET_HDLC_CFG");
470}
471
472static u32 hss_get_status(struct port *port)
473{
474 struct msg msg;
475
476 memset(&msg, 0, sizeof(msg));
477 msg.cmd = PORT_ERROR_READ;
478 msg.hss_port = port->id;
479 hss_npe_send(port, &msg, "PORT_ERROR_READ");
480 if (npe_recv_message(port->npe, &msg, "PORT_ERROR_READ")) {
481 pr_crit("HSS-%i: unable to read HSS status\n", port->id);
482 BUG();
483 }
484
485 return msg.data32;
486}
487
488static void hss_start_hdlc(struct port *port)
489{
490 struct msg msg;
491
492 memset(&msg, 0, sizeof(msg));
493 msg.cmd = PKT_PIPE_FLOW_ENABLE;
494 msg.hss_port = port->id;
495 msg.data32 = 0;
496 hss_npe_send(port, &msg, "HSS_ENABLE_PKT_PIPE");
497}
498
499static void hss_stop_hdlc(struct port *port)
500{
501 struct msg msg;
502
503 memset(&msg, 0, sizeof(msg));
504 msg.cmd = PKT_PIPE_FLOW_DISABLE;
505 msg.hss_port = port->id;
506 hss_npe_send(port, &msg, "HSS_DISABLE_PKT_PIPE");
507 hss_get_status(port); /* make sure it's halted */
508}
509
510static int hss_load_firmware(struct port *port)
511{
512 struct msg msg;
513 int err;
514
515 if (port->initialized)
516 return 0;
517
518 if (!npe_running(port->npe) &&
519 (err = npe_load_firmware(port->npe, npe_name(port->npe),
520 port->dev)))
521 return err;
522
523 /* HDLC mode configuration */
524 memset(&msg, 0, sizeof(msg));
525 msg.cmd = PKT_NUM_PIPES_WRITE;
526 msg.hss_port = port->id;
527 msg.data8a = PKT_NUM_PIPES;
528 hss_npe_send(port, &msg, "HSS_SET_PKT_PIPES");
529
530 msg.cmd = PKT_PIPE_FIFO_SIZEW_WRITE;
531 msg.data8a = PKT_PIPE_FIFO_SIZEW;
532 hss_npe_send(port, &msg, "HSS_SET_PKT_FIFO");
533
534 msg.cmd = PKT_PIPE_MODE_WRITE;
535 msg.data8a = NPE_PKT_MODE_HDLC;
536 /* msg.data8b = inv_mask */
537 /* msg.data8c = or_mask */
538 hss_npe_send(port, &msg, "HSS_SET_PKT_MODE");
539
540 msg.cmd = PKT_PIPE_RX_SIZE_WRITE;
541 msg.data16a = HDLC_MAX_MRU; /* including CRC */
542 hss_npe_send(port, &msg, "HSS_SET_PKT_RX_SIZE");
543
544 msg.cmd = PKT_PIPE_IDLE_PATTERN_WRITE;
545 msg.data32 = 0x7F7F7F7F; /* ??? FIXME */
546 hss_npe_send(port, &msg, "HSS_SET_PKT_IDLE");
547
548 port->initialized = 1;
549 return 0;
550}
551
552/*****************************************************************************
553 * packetized (HDLC) operation
554 ****************************************************************************/
555
556static inline void debug_pkt(struct net_device *dev, const char *func,
557 u8 *data, int len)
558{
559#if DEBUG_PKT_BYTES
560 int i;
561
562 printk(KERN_DEBUG "%s: %s(%i)", dev->name, func, len);
563 for (i = 0; i < len; i++) {
564 if (i >= DEBUG_PKT_BYTES)
565 break;
566 printk("%s%02X", !(i % 4) ? " " : "", data[i]);
567 }
568 printk("\n");
569#endif
570}
571
572
573static inline void debug_desc(u32 phys, struct desc *desc)
574{
575#if DEBUG_DESC
576 printk(KERN_DEBUG "%X: %X %3X %3X %08X %X %X\n",
577 phys, desc->next, desc->buf_len, desc->pkt_len,
578 desc->data, desc->status, desc->error_count);
579#endif
580}
581
582static inline int queue_get_desc(unsigned int queue, struct port *port,
583 int is_tx)
584{
585 u32 phys, tab_phys, n_desc;
586 struct desc *tab;
587
588 if (!(phys = qmgr_get_entry(queue)))
589 return -1;
590
591 BUG_ON(phys & 0x1F);
592 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
593 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
594 n_desc = (phys - tab_phys) / sizeof(struct desc);
595 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
596 debug_desc(phys, &tab[n_desc]);
597 BUG_ON(tab[n_desc].next);
598 return n_desc;
599}
600
601static inline void queue_put_desc(unsigned int queue, u32 phys,
602 struct desc *desc)
603{
604 debug_desc(phys, desc);
605 BUG_ON(phys & 0x1F);
606 qmgr_put_entry(queue, phys);
607 /* Don't check for queue overflow here, we've allocated sufficient
608 length and queues >= 32 don't support this check anyway. */
609}
610
611
612static inline void dma_unmap_tx(struct port *port, struct desc *desc)
613{
614#ifdef __ARMEB__
615 dma_unmap_single(&port->netdev->dev, desc->data,
616 desc->buf_len, DMA_TO_DEVICE);
617#else
618 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
619 ALIGN((desc->data & 3) + desc->buf_len, 4),
620 DMA_TO_DEVICE);
621#endif
622}
623
624
625static void hss_hdlc_set_carrier(void *pdev, int carrier)
626{
627 struct net_device *netdev = pdev;
628 struct port *port = dev_to_port(netdev);
629 unsigned long flags;
630
631 spin_lock_irqsave(&npe_lock, flags);
632 port->carrier = carrier;
633 if (!port->loopback) {
634 if (carrier)
635 netif_carrier_on(netdev);
636 else
637 netif_carrier_off(netdev);
638 }
639 spin_unlock_irqrestore(&npe_lock, flags);
640}
641
642static void hss_hdlc_rx_irq(void *pdev)
643{
644 struct net_device *dev = pdev;
645 struct port *port = dev_to_port(dev);
646
647#if DEBUG_RX
648 printk(KERN_DEBUG "%s: hss_hdlc_rx_irq\n", dev->name);
649#endif
650 qmgr_disable_irq(queue_ids[port->id].rx);
651 napi_schedule(&port->napi);
652}
653
654static int hss_hdlc_poll(struct napi_struct *napi, int budget)
655{
656 struct port *port = container_of(napi, struct port, napi);
657 struct net_device *dev = port->netdev;
658 unsigned int rxq = queue_ids[port->id].rx;
659 unsigned int rxfreeq = queue_ids[port->id].rxfree;
660 int received = 0;
661
662#if DEBUG_RX
663 printk(KERN_DEBUG "%s: hss_hdlc_poll\n", dev->name);
664#endif
665
666 while (received < budget) {
667 struct sk_buff *skb;
668 struct desc *desc;
669 int n;
670#ifdef __ARMEB__
671 struct sk_buff *temp;
672 u32 phys;
673#endif
674
675 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
676#if DEBUG_RX
677 printk(KERN_DEBUG "%s: hss_hdlc_poll"
678 " napi_complete\n", dev->name);
679#endif
680 napi_complete(napi);
681 qmgr_enable_irq(rxq);
682 if (!qmgr_stat_empty(rxq) &&
683 napi_reschedule(napi)) {
684#if DEBUG_RX
685 printk(KERN_DEBUG "%s: hss_hdlc_poll"
686 " napi_reschedule succeeded\n",
687 dev->name);
688#endif
689 qmgr_disable_irq(rxq);
690 continue;
691 }
692#if DEBUG_RX
693 printk(KERN_DEBUG "%s: hss_hdlc_poll all done\n",
694 dev->name);
695#endif
696 return received; /* all work done */
697 }
698
699 desc = rx_desc_ptr(port, n);
700#if 0 /* FIXME - error_count counts modulo 256, perhaps we should use it */
701 if (desc->error_count)
702 printk(KERN_DEBUG "%s: hss_hdlc_poll status 0x%02X"
703 " errors %u\n", dev->name, desc->status,
704 desc->error_count);
705#endif
706 skb = NULL;
707 switch (desc->status) {
708 case 0:
709#ifdef __ARMEB__
710 if ((skb = netdev_alloc_skb(dev, RX_SIZE)) != NULL) {
711 phys = dma_map_single(&dev->dev, skb->data,
712 RX_SIZE,
713 DMA_FROM_DEVICE);
714 if (dma_mapping_error(&dev->dev, phys)) {
715 dev_kfree_skb(skb);
716 skb = NULL;
717 }
718 }
719#else
720 skb = netdev_alloc_skb(dev, desc->pkt_len);
721#endif
722 if (!skb)
723 dev->stats.rx_dropped++;
724 break;
725 case ERR_HDLC_ALIGN:
726 case ERR_HDLC_ABORT:
727 dev->stats.rx_frame_errors++;
728 dev->stats.rx_errors++;
729 break;
730 case ERR_HDLC_FCS:
731 dev->stats.rx_crc_errors++;
732 dev->stats.rx_errors++;
733 break;
734 case ERR_HDLC_TOO_LONG:
735 dev->stats.rx_length_errors++;
736 dev->stats.rx_errors++;
737 break;
738 default: /* FIXME - remove printk */
739 netdev_err(dev, "hss_hdlc_poll: status 0x%02X errors %u\n",
740 desc->status, desc->error_count);
741 dev->stats.rx_errors++;
742 }
743
744 if (!skb) {
745 /* put the desc back on RX-ready queue */
746 desc->buf_len = RX_SIZE;
747 desc->pkt_len = desc->status = 0;
748 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
749 continue;
750 }
751
752 /* process received frame */
753#ifdef __ARMEB__
754 temp = skb;
755 skb = port->rx_buff_tab[n];
756 dma_unmap_single(&dev->dev, desc->data,
757 RX_SIZE, DMA_FROM_DEVICE);
758#else
759 dma_sync_single_for_cpu(&dev->dev, desc->data,
760 RX_SIZE, DMA_FROM_DEVICE);
761 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
762 ALIGN(desc->pkt_len, 4) / 4);
763#endif
764 skb_put(skb, desc->pkt_len);
765
766 debug_pkt(dev, "hss_hdlc_poll", skb->data, skb->len);
767
768 skb->protocol = hdlc_type_trans(skb, dev);
769 dev->stats.rx_packets++;
770 dev->stats.rx_bytes += skb->len;
771 netif_receive_skb(skb);
772
773 /* put the new buffer on RX-free queue */
774#ifdef __ARMEB__
775 port->rx_buff_tab[n] = temp;
776 desc->data = phys;
777#endif
778 desc->buf_len = RX_SIZE;
779 desc->pkt_len = 0;
780 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
781 received++;
782 }
783#if DEBUG_RX
784 printk(KERN_DEBUG "hss_hdlc_poll: end, not all work done\n");
785#endif
786 return received; /* not all work done */
787}
788
789
790static void hss_hdlc_txdone_irq(void *pdev)
791{
792 struct net_device *dev = pdev;
793 struct port *port = dev_to_port(dev);
794 int n_desc;
795
796#if DEBUG_TX
797 printk(KERN_DEBUG DRV_NAME ": hss_hdlc_txdone_irq\n");
798#endif
799 while ((n_desc = queue_get_desc(queue_ids[port->id].txdone,
800 port, 1)) >= 0) {
801 struct desc *desc;
802 int start;
803
804 desc = tx_desc_ptr(port, n_desc);
805
806 dev->stats.tx_packets++;
807 dev->stats.tx_bytes += desc->pkt_len;
808
809 dma_unmap_tx(port, desc);
810#if DEBUG_TX
811 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq free %p\n",
812 dev->name, port->tx_buff_tab[n_desc]);
813#endif
814 free_buffer_irq(port->tx_buff_tab[n_desc]);
815 port->tx_buff_tab[n_desc] = NULL;
816
817 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
818 queue_put_desc(port->plat->txreadyq,
819 tx_desc_phys(port, n_desc), desc);
820 if (start) { /* TX-ready queue was empty */
821#if DEBUG_TX
822 printk(KERN_DEBUG "%s: hss_hdlc_txdone_irq xmit"
823 " ready\n", dev->name);
824#endif
825 netif_wake_queue(dev);
826 }
827 }
828}
829
830static int hss_hdlc_xmit(struct sk_buff *skb, struct net_device *dev)
831{
832 struct port *port = dev_to_port(dev);
833 unsigned int txreadyq = port->plat->txreadyq;
834 int len, offset, bytes, n;
835 void *mem;
836 u32 phys;
837 struct desc *desc;
838
839#if DEBUG_TX
840 printk(KERN_DEBUG "%s: hss_hdlc_xmit\n", dev->name);
841#endif
842
843 if (unlikely(skb->len > HDLC_MAX_MRU)) {
844 dev_kfree_skb(skb);
845 dev->stats.tx_errors++;
846 return NETDEV_TX_OK;
847 }
848
849 debug_pkt(dev, "hss_hdlc_xmit", skb->data, skb->len);
850
851 len = skb->len;
852#ifdef __ARMEB__
853 offset = 0; /* no need to keep alignment */
854 bytes = len;
855 mem = skb->data;
856#else
857 offset = (int)skb->data & 3; /* keep 32-bit alignment */
858 bytes = ALIGN(offset + len, 4);
859 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
860 dev_kfree_skb(skb);
861 dev->stats.tx_dropped++;
862 return NETDEV_TX_OK;
863 }
864 memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
865 dev_kfree_skb(skb);
866#endif
867
868 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
869 if (dma_mapping_error(&dev->dev, phys)) {
870#ifdef __ARMEB__
871 dev_kfree_skb(skb);
872#else
873 kfree(mem);
874#endif
875 dev->stats.tx_dropped++;
876 return NETDEV_TX_OK;
877 }
878
879 n = queue_get_desc(txreadyq, port, 1);
880 BUG_ON(n < 0);
881 desc = tx_desc_ptr(port, n);
882
883#ifdef __ARMEB__
884 port->tx_buff_tab[n] = skb;
885#else
886 port->tx_buff_tab[n] = mem;
887#endif
888 desc->data = phys + offset;
889 desc->buf_len = desc->pkt_len = len;
890
891 wmb();
892 queue_put_desc(queue_ids[port->id].tx, tx_desc_phys(port, n), desc);
893
894 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
895#if DEBUG_TX
896 printk(KERN_DEBUG "%s: hss_hdlc_xmit queue full\n", dev->name);
897#endif
898 netif_stop_queue(dev);
899 /* we could miss TX ready interrupt */
900 if (!qmgr_stat_below_low_watermark(txreadyq)) {
901#if DEBUG_TX
902 printk(KERN_DEBUG "%s: hss_hdlc_xmit ready again\n",
903 dev->name);
904#endif
905 netif_wake_queue(dev);
906 }
907 }
908
909#if DEBUG_TX
910 printk(KERN_DEBUG "%s: hss_hdlc_xmit end\n", dev->name);
911#endif
912 return NETDEV_TX_OK;
913}
914
915
916static int request_hdlc_queues(struct port *port)
917{
918 int err;
919
920 err = qmgr_request_queue(queue_ids[port->id].rxfree, RX_DESCS, 0, 0,
921 "%s:RX-free", port->netdev->name);
922 if (err)
923 return err;
924
925 err = qmgr_request_queue(queue_ids[port->id].rx, RX_DESCS, 0, 0,
926 "%s:RX", port->netdev->name);
927 if (err)
928 goto rel_rxfree;
929
930 err = qmgr_request_queue(queue_ids[port->id].tx, TX_DESCS, 0, 0,
931 "%s:TX", port->netdev->name);
932 if (err)
933 goto rel_rx;
934
935 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
936 "%s:TX-ready", port->netdev->name);
937 if (err)
938 goto rel_tx;
939
940 err = qmgr_request_queue(queue_ids[port->id].txdone, TX_DESCS, 0, 0,
941 "%s:TX-done", port->netdev->name);
942 if (err)
943 goto rel_txready;
944 return 0;
945
946rel_txready:
947 qmgr_release_queue(port->plat->txreadyq);
948rel_tx:
949 qmgr_release_queue(queue_ids[port->id].tx);
950rel_rx:
951 qmgr_release_queue(queue_ids[port->id].rx);
952rel_rxfree:
953 qmgr_release_queue(queue_ids[port->id].rxfree);
954 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
955 port->netdev->name);
956 return err;
957}
958
959static void release_hdlc_queues(struct port *port)
960{
961 qmgr_release_queue(queue_ids[port->id].rxfree);
962 qmgr_release_queue(queue_ids[port->id].rx);
963 qmgr_release_queue(queue_ids[port->id].txdone);
964 qmgr_release_queue(queue_ids[port->id].tx);
965 qmgr_release_queue(port->plat->txreadyq);
966}
967
968static int init_hdlc_queues(struct port *port)
969{
970 int i;
971
972 if (!ports_open) {
973 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
974 POOL_ALLOC_SIZE, 32, 0);
975 if (!dma_pool)
976 return -ENOMEM;
977 }
978
979 if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
980 &port->desc_tab_phys)))
981 return -ENOMEM;
982 memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
983 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
984 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
985
986 /* Setup RX buffers */
987 for (i = 0; i < RX_DESCS; i++) {
988 struct desc *desc = rx_desc_ptr(port, i);
989 buffer_t *buff;
990 void *data;
991#ifdef __ARMEB__
992 if (!(buff = netdev_alloc_skb(port->netdev, RX_SIZE)))
993 return -ENOMEM;
994 data = buff->data;
995#else
996 if (!(buff = kmalloc(RX_SIZE, GFP_KERNEL)))
997 return -ENOMEM;
998 data = buff;
999#endif
1000 desc->buf_len = RX_SIZE;
1001 desc->data = dma_map_single(&port->netdev->dev, data,
1002 RX_SIZE, DMA_FROM_DEVICE);
1003 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1004 free_buffer(buff);
1005 return -EIO;
1006 }
1007 port->rx_buff_tab[i] = buff;
1008 }
1009
1010 return 0;
1011}
1012
1013static void destroy_hdlc_queues(struct port *port)
1014{
1015 int i;
1016
1017 if (port->desc_tab) {
1018 for (i = 0; i < RX_DESCS; i++) {
1019 struct desc *desc = rx_desc_ptr(port, i);
1020 buffer_t *buff = port->rx_buff_tab[i];
1021 if (buff) {
1022 dma_unmap_single(&port->netdev->dev,
1023 desc->data, RX_SIZE,
1024 DMA_FROM_DEVICE);
1025 free_buffer(buff);
1026 }
1027 }
1028 for (i = 0; i < TX_DESCS; i++) {
1029 struct desc *desc = tx_desc_ptr(port, i);
1030 buffer_t *buff = port->tx_buff_tab[i];
1031 if (buff) {
1032 dma_unmap_tx(port, desc);
1033 free_buffer(buff);
1034 }
1035 }
1036 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1037 port->desc_tab = NULL;
1038 }
1039
1040 if (!ports_open && dma_pool) {
1041 dma_pool_destroy(dma_pool);
1042 dma_pool = NULL;
1043 }
1044}
1045
1046static int hss_hdlc_open(struct net_device *dev)
1047{
1048 struct port *port = dev_to_port(dev);
1049 unsigned long flags;
1050 int i, err = 0;
1051
1052 if ((err = hdlc_open(dev)))
1053 return err;
1054
1055 if ((err = hss_load_firmware(port)))
1056 goto err_hdlc_close;
1057
1058 if ((err = request_hdlc_queues(port)))
1059 goto err_hdlc_close;
1060
1061 if ((err = init_hdlc_queues(port)))
1062 goto err_destroy_queues;
1063
1064 spin_lock_irqsave(&npe_lock, flags);
1065 if (port->plat->open)
1066 if ((err = port->plat->open(port->id, dev,
1067 hss_hdlc_set_carrier)))
1068 goto err_unlock;
1069 spin_unlock_irqrestore(&npe_lock, flags);
1070
1071 /* Populate queues with buffers, no failure after this point */
1072 for (i = 0; i < TX_DESCS; i++)
1073 queue_put_desc(port->plat->txreadyq,
1074 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1075
1076 for (i = 0; i < RX_DESCS; i++)
1077 queue_put_desc(queue_ids[port->id].rxfree,
1078 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1079
1080 napi_enable(&port->napi);
1081 netif_start_queue(dev);
1082
1083 qmgr_set_irq(queue_ids[port->id].rx, QUEUE_IRQ_SRC_NOT_EMPTY,
1084 hss_hdlc_rx_irq, dev);
1085
1086 qmgr_set_irq(queue_ids[port->id].txdone, QUEUE_IRQ_SRC_NOT_EMPTY,
1087 hss_hdlc_txdone_irq, dev);
1088 qmgr_enable_irq(queue_ids[port->id].txdone);
1089
1090 ports_open++;
1091
1092 hss_set_hdlc_cfg(port);
1093 hss_config(port);
1094
1095 hss_start_hdlc(port);
1096
1097 /* we may already have RX data, enables IRQ */
1098 napi_schedule(&port->napi);
1099 return 0;
1100
1101err_unlock:
1102 spin_unlock_irqrestore(&npe_lock, flags);
1103err_destroy_queues:
1104 destroy_hdlc_queues(port);
1105 release_hdlc_queues(port);
1106err_hdlc_close:
1107 hdlc_close(dev);
1108 return err;
1109}
1110
1111static int hss_hdlc_close(struct net_device *dev)
1112{
1113 struct port *port = dev_to_port(dev);
1114 unsigned long flags;
1115 int i, buffs = RX_DESCS; /* allocated RX buffers */
1116
1117 spin_lock_irqsave(&npe_lock, flags);
1118 ports_open--;
1119 qmgr_disable_irq(queue_ids[port->id].rx);
1120 netif_stop_queue(dev);
1121 napi_disable(&port->napi);
1122
1123 hss_stop_hdlc(port);
1124
1125 while (queue_get_desc(queue_ids[port->id].rxfree, port, 0) >= 0)
1126 buffs--;
1127 while (queue_get_desc(queue_ids[port->id].rx, port, 0) >= 0)
1128 buffs--;
1129
1130 if (buffs)
1131 netdev_crit(dev, "unable to drain RX queue, %i buffer(s) left in NPE\n",
1132 buffs);
1133
1134 buffs = TX_DESCS;
1135 while (queue_get_desc(queue_ids[port->id].tx, port, 1) >= 0)
1136 buffs--; /* cancel TX */
1137
1138 i = 0;
1139 do {
1140 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1141 buffs--;
1142 if (!buffs)
1143 break;
1144 } while (++i < MAX_CLOSE_WAIT);
1145
1146 if (buffs)
1147 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) left in NPE\n",
1148 buffs);
1149#if DEBUG_CLOSE
1150 if (!buffs)
1151 printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
1152#endif
1153 qmgr_disable_irq(queue_ids[port->id].txdone);
1154
1155 if (port->plat->close)
1156 port->plat->close(port->id, dev);
1157 spin_unlock_irqrestore(&npe_lock, flags);
1158
1159 destroy_hdlc_queues(port);
1160 release_hdlc_queues(port);
1161 hdlc_close(dev);
1162 return 0;
1163}
1164
1165
1166static int hss_hdlc_attach(struct net_device *dev, unsigned short encoding,
1167 unsigned short parity)
1168{
1169 struct port *port = dev_to_port(dev);
1170
1171 if (encoding != ENCODING_NRZ)
1172 return -EINVAL;
1173
1174 switch(parity) {
1175 case PARITY_CRC16_PR1_CCITT:
1176 port->hdlc_cfg = 0;
1177 return 0;
1178
1179 case PARITY_CRC32_PR1_CCITT:
1180 port->hdlc_cfg = PKT_HDLC_CRC_32;
1181 return 0;
1182
1183 default:
1184 return -EINVAL;
1185 }
1186}
1187
1188static u32 check_clock(u32 rate, u32 a, u32 b, u32 c,
1189 u32 *best, u32 *best_diff, u32 *reg)
1190{
1191 /* a is 10-bit, b is 10-bit, c is 12-bit */
1192 u64 new_rate;
1193 u32 new_diff;
1194
1195 new_rate = ixp4xx_timer_freq * (u64)(c + 1);
1196 do_div(new_rate, a * (c + 1) + b + 1);
1197 new_diff = abs((u32)new_rate - rate);
1198
1199 if (new_diff < *best_diff) {
1200 *best = new_rate;
1201 *best_diff = new_diff;
1202 *reg = (a << 22) | (b << 12) | c;
1203 }
1204 return new_diff;
1205}
1206
1207static void find_best_clock(u32 rate, u32 *best, u32 *reg)
1208{
1209 u32 a, b, diff = 0xFFFFFFFF;
1210
1211 a = ixp4xx_timer_freq / rate;
1212
1213 if (a > 0x3FF) { /* 10-bit value - we can go as slow as ca. 65 kb/s */
1214 check_clock(rate, 0x3FF, 1, 1, best, &diff, reg);
1215 return;
1216 }
1217 if (a == 0) { /* > 66.666 MHz */
1218 a = 1; /* minimum divider is 1 (a = 0, b = 1, c = 1) */
1219 rate = ixp4xx_timer_freq;
1220 }
1221
1222 if (rate * a == ixp4xx_timer_freq) { /* don't divide by 0 later */
1223 check_clock(rate, a - 1, 1, 1, best, &diff, reg);
1224 return;
1225 }
1226
1227 for (b = 0; b < 0x400; b++) {
1228 u64 c = (b + 1) * (u64)rate;
1229 do_div(c, ixp4xx_timer_freq - rate * a);
1230 c--;
1231 if (c >= 0xFFF) { /* 12-bit - no need to check more 'b's */
1232 if (b == 0 && /* also try a bit higher rate */
1233 !check_clock(rate, a - 1, 1, 1, best, &diff, reg))
1234 return;
1235 check_clock(rate, a, b, 0xFFF, best, &diff, reg);
1236 return;
1237 }
1238 if (!check_clock(rate, a, b, c, best, &diff, reg))
1239 return;
1240 if (!check_clock(rate, a, b, c + 1, best, &diff, reg))
1241 return;
1242 }
1243}
1244
1245static int hss_hdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1246{
1247 const size_t size = sizeof(sync_serial_settings);
1248 sync_serial_settings new_line;
1249 sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1250 struct port *port = dev_to_port(dev);
1251 unsigned long flags;
1252 int clk;
1253
1254 if (cmd != SIOCWANDEV)
1255 return hdlc_ioctl(dev, ifr, cmd);
1256
1257 switch(ifr->ifr_settings.type) {
1258 case IF_GET_IFACE:
1259 ifr->ifr_settings.type = IF_IFACE_V35;
1260 if (ifr->ifr_settings.size < size) {
1261 ifr->ifr_settings.size = size; /* data size wanted */
1262 return -ENOBUFS;
1263 }
1264 memset(&new_line, 0, sizeof(new_line));
1265 new_line.clock_type = port->clock_type;
1266 new_line.clock_rate = port->clock_rate;
1267 new_line.loopback = port->loopback;
1268 if (copy_to_user(line, &new_line, size))
1269 return -EFAULT;
1270 return 0;
1271
1272 case IF_IFACE_SYNC_SERIAL:
1273 case IF_IFACE_V35:
1274 if(!capable(CAP_NET_ADMIN))
1275 return -EPERM;
1276 if (copy_from_user(&new_line, line, size))
1277 return -EFAULT;
1278
1279 clk = new_line.clock_type;
1280 if (port->plat->set_clock)
1281 clk = port->plat->set_clock(port->id, clk);
1282
1283 if (clk != CLOCK_EXT && clk != CLOCK_INT)
1284 return -EINVAL; /* No such clock setting */
1285
1286 if (new_line.loopback != 0 && new_line.loopback != 1)
1287 return -EINVAL;
1288
1289 port->clock_type = clk; /* Update settings */
1290 if (clk == CLOCK_INT)
1291 find_best_clock(new_line.clock_rate, &port->clock_rate,
1292 &port->clock_reg);
1293 else {
1294 port->clock_rate = 0;
1295 port->clock_reg = CLK42X_SPEED_2048KHZ;
1296 }
1297 port->loopback = new_line.loopback;
1298
1299 spin_lock_irqsave(&npe_lock, flags);
1300
1301 if (dev->flags & IFF_UP)
1302 hss_config(port);
1303
1304 if (port->loopback || port->carrier)
1305 netif_carrier_on(port->netdev);
1306 else
1307 netif_carrier_off(port->netdev);
1308 spin_unlock_irqrestore(&npe_lock, flags);
1309
1310 return 0;
1311
1312 default:
1313 return hdlc_ioctl(dev, ifr, cmd);
1314 }
1315}
1316
1317/*****************************************************************************
1318 * initialization
1319 ****************************************************************************/
1320
1321static const struct net_device_ops hss_hdlc_ops = {
1322 .ndo_open = hss_hdlc_open,
1323 .ndo_stop = hss_hdlc_close,
1324 .ndo_change_mtu = hdlc_change_mtu,
1325 .ndo_start_xmit = hdlc_start_xmit,
1326 .ndo_do_ioctl = hss_hdlc_ioctl,
1327};
1328
1329static int hss_init_one(struct platform_device *pdev)
1330{
1331 struct port *port;
1332 struct net_device *dev;
1333 hdlc_device *hdlc;
1334 int err;
1335
1336 if ((port = kzalloc(sizeof(*port), GFP_KERNEL)) == NULL)
1337 return -ENOMEM;
1338
1339 if ((port->npe = npe_request(0)) == NULL) {
1340 err = -ENODEV;
1341 goto err_free;
1342 }
1343
1344 if ((port->netdev = dev = alloc_hdlcdev(port)) == NULL) {
1345 err = -ENOMEM;
1346 goto err_plat;
1347 }
1348
1349 SET_NETDEV_DEV(dev, &pdev->dev);
1350 hdlc = dev_to_hdlc(dev);
1351 hdlc->attach = hss_hdlc_attach;
1352 hdlc->xmit = hss_hdlc_xmit;
1353 dev->netdev_ops = &hss_hdlc_ops;
1354 dev->tx_queue_len = 100;
1355 port->clock_type = CLOCK_EXT;
1356 port->clock_rate = 0;
1357 port->clock_reg = CLK42X_SPEED_2048KHZ;
1358 port->id = pdev->id;
1359 port->dev = &pdev->dev;
1360 port->plat = pdev->dev.platform_data;
1361 netif_napi_add(dev, &port->napi, hss_hdlc_poll, NAPI_WEIGHT);
1362
1363 if ((err = register_hdlc_device(dev)))
1364 goto err_free_netdev;
1365
1366 platform_set_drvdata(pdev, port);
1367
1368 netdev_info(dev, "initialized\n");
1369 return 0;
1370
1371err_free_netdev:
1372 free_netdev(dev);
1373err_plat:
1374 npe_release(port->npe);
1375err_free:
1376 kfree(port);
1377 return err;
1378}
1379
1380static int hss_remove_one(struct platform_device *pdev)
1381{
1382 struct port *port = platform_get_drvdata(pdev);
1383
1384 unregister_hdlc_device(port->netdev);
1385 free_netdev(port->netdev);
1386 npe_release(port->npe);
1387 kfree(port);
1388 return 0;
1389}
1390
1391static struct platform_driver ixp4xx_hss_driver = {
1392 .driver.name = DRV_NAME,
1393 .probe = hss_init_one,
1394 .remove = hss_remove_one,
1395};
1396
1397static int __init hss_init_module(void)
1398{
1399 if ((ixp4xx_read_feature_bits() &
1400 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS)) !=
1401 (IXP4XX_FEATURE_HDLC | IXP4XX_FEATURE_HSS))
1402 return -ENODEV;
1403
1404 spin_lock_init(&npe_lock);
1405
1406 return platform_driver_register(&ixp4xx_hss_driver);
1407}
1408
1409static void __exit hss_cleanup_module(void)
1410{
1411 platform_driver_unregister(&ixp4xx_hss_driver);
1412}
1413
1414MODULE_AUTHOR("Krzysztof Halasa");
1415MODULE_DESCRIPTION("Intel IXP4xx HSS driver");
1416MODULE_LICENSE("GPL v2");
1417MODULE_ALIAS("platform:ixp4xx_hss");
1418module_init(hss_init_module);
1419module_exit(hss_cleanup_module);