Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Keystone NetCP Core driver
4 *
5 * Copyright (C) 2014 Texas Instruments Incorporated
6 * Authors: Sandeep Nair <sandeep_n@ti.com>
7 * Sandeep Paulraj <s-paulraj@ti.com>
8 * Cyril Chemparathy <cyril@ti.com>
9 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 * Murali Karicheri <m-karicheri2@ti.com>
11 * Wingman Kwok <w-kwok2@ti.com>
12 */
13
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/of_net.h>
17#include <linux/of_address.h>
18#include <linux/if_vlan.h>
19#include <linux/pm_runtime.h>
20#include <linux/platform_device.h>
21#include <linux/soc/ti/knav_qmss.h>
22#include <linux/soc/ti/knav_dma.h>
23
24#include "netcp.h"
25
26#define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
27#define NETCP_TX_TIMEOUT (5 * HZ)
28#define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
29#define NETCP_MIN_PACKET_SIZE ETH_ZLEN
30#define NETCP_MAX_MCAST_ADDR 16
31
32#define NETCP_EFUSE_REG_INDEX 0
33
34#define NETCP_MOD_PROBE_SKIPPED 1
35#define NETCP_MOD_PROBE_FAILED 2
36
37#define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
38 NETIF_MSG_DRV | NETIF_MSG_LINK | \
39 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
40 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
41 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
42 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
43 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
44 NETIF_MSG_RX_STATUS)
45
46#define NETCP_EFUSE_ADDR_SWAP 2
47
48#define knav_queue_get_id(q) knav_queue_device_control(q, \
49 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
50
51#define knav_queue_enable_notify(q) knav_queue_device_control(q, \
52 KNAV_QUEUE_ENABLE_NOTIFY, \
53 (unsigned long)NULL)
54
55#define knav_queue_disable_notify(q) knav_queue_device_control(q, \
56 KNAV_QUEUE_DISABLE_NOTIFY, \
57 (unsigned long)NULL)
58
59#define knav_queue_get_count(q) knav_queue_device_control(q, \
60 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
61
62#define for_each_netcp_module(module) \
63 list_for_each_entry(module, &netcp_modules, module_list)
64
65#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
66 list_for_each_entry(inst_modpriv, \
67 &((netcp_device)->modpriv_head), inst_list)
68
69#define for_each_module(netcp, intf_modpriv) \
70 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
71
72/* Module management structures */
73struct netcp_device {
74 struct list_head device_list;
75 struct list_head interface_head;
76 struct list_head modpriv_head;
77 struct device *device;
78};
79
80struct netcp_inst_modpriv {
81 struct netcp_device *netcp_device;
82 struct netcp_module *netcp_module;
83 struct list_head inst_list;
84 void *module_priv;
85};
86
87struct netcp_intf_modpriv {
88 struct netcp_intf *netcp_priv;
89 struct netcp_module *netcp_module;
90 struct list_head intf_list;
91 void *module_priv;
92};
93
94struct netcp_tx_cb {
95 void *ts_context;
96 void (*txtstamp)(void *context, struct sk_buff *skb);
97};
98
99static LIST_HEAD(netcp_devices);
100static LIST_HEAD(netcp_modules);
101static DEFINE_MUTEX(netcp_modules_lock);
102
103static int netcp_debug_level = -1;
104module_param(netcp_debug_level, int, 0);
105MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
106
107/* Helper functions - Get/Set */
108static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
109 struct knav_dma_desc *desc)
110{
111 *buff_len = le32_to_cpu(desc->buff_len);
112 *buff = le32_to_cpu(desc->buff);
113 *ndesc = le32_to_cpu(desc->next_desc);
114}
115
116static void get_desc_info(u32 *desc_info, u32 *pkt_info,
117 struct knav_dma_desc *desc)
118{
119 *desc_info = le32_to_cpu(desc->desc_info);
120 *pkt_info = le32_to_cpu(desc->packet_info);
121}
122
123static u32 get_sw_data(int index, struct knav_dma_desc *desc)
124{
125 /* No Endian conversion needed as this data is untouched by hw */
126 return desc->sw_data[index];
127}
128
129/* use these macros to get sw data */
130#define GET_SW_DATA0(desc) get_sw_data(0, desc)
131#define GET_SW_DATA1(desc) get_sw_data(1, desc)
132#define GET_SW_DATA2(desc) get_sw_data(2, desc)
133#define GET_SW_DATA3(desc) get_sw_data(3, desc)
134
135static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
136 struct knav_dma_desc *desc)
137{
138 *buff = le32_to_cpu(desc->orig_buff);
139 *buff_len = le32_to_cpu(desc->orig_len);
140}
141
142static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
143{
144 int i;
145
146 for (i = 0; i < num_words; i++)
147 words[i] = le32_to_cpu(desc[i]);
148}
149
150static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
151 struct knav_dma_desc *desc)
152{
153 desc->buff_len = cpu_to_le32(buff_len);
154 desc->buff = cpu_to_le32(buff);
155 desc->next_desc = cpu_to_le32(ndesc);
156}
157
158static void set_desc_info(u32 desc_info, u32 pkt_info,
159 struct knav_dma_desc *desc)
160{
161 desc->desc_info = cpu_to_le32(desc_info);
162 desc->packet_info = cpu_to_le32(pkt_info);
163}
164
165static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
166{
167 /* No Endian conversion needed as this data is untouched by hw */
168 desc->sw_data[index] = data;
169}
170
171/* use these macros to set sw data */
172#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
173#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
174#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
175#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
176
177static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
178 struct knav_dma_desc *desc)
179{
180 desc->orig_buff = cpu_to_le32(buff);
181 desc->orig_len = cpu_to_le32(buff_len);
182}
183
184static void set_words(u32 *words, int num_words, __le32 *desc)
185{
186 int i;
187
188 for (i = 0; i < num_words; i++)
189 desc[i] = cpu_to_le32(words[i]);
190}
191
192/* Read the e-fuse value as 32 bit values to be endian independent */
193static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
194{
195 unsigned int addr0, addr1;
196
197 addr1 = readl(efuse_mac + 4);
198 addr0 = readl(efuse_mac);
199
200 switch (swap) {
201 case NETCP_EFUSE_ADDR_SWAP:
202 addr0 = addr1;
203 addr1 = readl(efuse_mac);
204 break;
205 default:
206 break;
207 }
208
209 x[0] = (addr1 & 0x0000ff00) >> 8;
210 x[1] = addr1 & 0x000000ff;
211 x[2] = (addr0 & 0xff000000) >> 24;
212 x[3] = (addr0 & 0x00ff0000) >> 16;
213 x[4] = (addr0 & 0x0000ff00) >> 8;
214 x[5] = addr0 & 0x000000ff;
215
216 return 0;
217}
218
219/* Module management routines */
220static int netcp_register_interface(struct netcp_intf *netcp)
221{
222 int ret;
223
224 ret = register_netdev(netcp->ndev);
225 if (!ret)
226 netcp->netdev_registered = true;
227 return ret;
228}
229
230static int netcp_module_probe(struct netcp_device *netcp_device,
231 struct netcp_module *module)
232{
233 struct device *dev = netcp_device->device;
234 struct device_node *devices, *interface, *node = dev->of_node;
235 struct device_node *child;
236 struct netcp_inst_modpriv *inst_modpriv;
237 struct netcp_intf *netcp_intf;
238 struct netcp_module *tmp;
239 bool primary_module_registered = false;
240 int ret;
241
242 /* Find this module in the sub-tree for this device */
243 devices = of_get_child_by_name(node, "netcp-devices");
244 if (!devices) {
245 dev_err(dev, "could not find netcp-devices node\n");
246 return NETCP_MOD_PROBE_SKIPPED;
247 }
248
249 for_each_available_child_of_node(devices, child) {
250 const char *name;
251 char node_name[32];
252
253 if (of_property_read_string(child, "label", &name) < 0) {
254 snprintf(node_name, sizeof(node_name), "%pOFn", child);
255 name = node_name;
256 }
257 if (!strcasecmp(module->name, name))
258 break;
259 }
260
261 of_node_put(devices);
262 /* If module not used for this device, skip it */
263 if (!child) {
264 dev_warn(dev, "module(%s) not used for device\n", module->name);
265 return NETCP_MOD_PROBE_SKIPPED;
266 }
267
268 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
269 if (!inst_modpriv) {
270 of_node_put(child);
271 return -ENOMEM;
272 }
273
274 inst_modpriv->netcp_device = netcp_device;
275 inst_modpriv->netcp_module = module;
276 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
277
278 ret = module->probe(netcp_device, dev, child,
279 &inst_modpriv->module_priv);
280 of_node_put(child);
281 if (ret) {
282 dev_err(dev, "Probe of module(%s) failed with %d\n",
283 module->name, ret);
284 list_del(&inst_modpriv->inst_list);
285 devm_kfree(dev, inst_modpriv);
286 return NETCP_MOD_PROBE_FAILED;
287 }
288
289 /* Attach modules only if the primary module is probed */
290 for_each_netcp_module(tmp) {
291 if (tmp->primary)
292 primary_module_registered = true;
293 }
294
295 if (!primary_module_registered)
296 return 0;
297
298 /* Attach module to interfaces */
299 list_for_each_entry(netcp_intf, &netcp_device->interface_head,
300 interface_list) {
301 struct netcp_intf_modpriv *intf_modpriv;
302
303 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
304 GFP_KERNEL);
305 if (!intf_modpriv)
306 return -ENOMEM;
307
308 interface = of_parse_phandle(netcp_intf->node_interface,
309 module->name, 0);
310
311 if (!interface) {
312 devm_kfree(dev, intf_modpriv);
313 continue;
314 }
315
316 intf_modpriv->netcp_priv = netcp_intf;
317 intf_modpriv->netcp_module = module;
318 list_add_tail(&intf_modpriv->intf_list,
319 &netcp_intf->module_head);
320
321 ret = module->attach(inst_modpriv->module_priv,
322 netcp_intf->ndev, interface,
323 &intf_modpriv->module_priv);
324 of_node_put(interface);
325 if (ret) {
326 dev_dbg(dev, "Attach of module %s declined with %d\n",
327 module->name, ret);
328 list_del(&intf_modpriv->intf_list);
329 devm_kfree(dev, intf_modpriv);
330 continue;
331 }
332 }
333
334 /* Now register the interface with netdev */
335 list_for_each_entry(netcp_intf,
336 &netcp_device->interface_head,
337 interface_list) {
338 /* If interface not registered then register now */
339 if (!netcp_intf->netdev_registered) {
340 ret = netcp_register_interface(netcp_intf);
341 if (ret)
342 return -ENODEV;
343 }
344 }
345 return 0;
346}
347
348int netcp_register_module(struct netcp_module *module)
349{
350 struct netcp_device *netcp_device;
351 struct netcp_module *tmp;
352 int ret;
353
354 if (!module->name) {
355 WARN(1, "error registering netcp module: no name\n");
356 return -EINVAL;
357 }
358
359 if (!module->probe) {
360 WARN(1, "error registering netcp module: no probe\n");
361 return -EINVAL;
362 }
363
364 mutex_lock(&netcp_modules_lock);
365
366 for_each_netcp_module(tmp) {
367 if (!strcasecmp(tmp->name, module->name)) {
368 mutex_unlock(&netcp_modules_lock);
369 return -EEXIST;
370 }
371 }
372 list_add_tail(&module->module_list, &netcp_modules);
373
374 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
375 ret = netcp_module_probe(netcp_device, module);
376 if (ret < 0)
377 goto fail;
378 }
379 mutex_unlock(&netcp_modules_lock);
380 return 0;
381
382fail:
383 mutex_unlock(&netcp_modules_lock);
384 netcp_unregister_module(module);
385 return ret;
386}
387EXPORT_SYMBOL_GPL(netcp_register_module);
388
389static void netcp_release_module(struct netcp_device *netcp_device,
390 struct netcp_module *module)
391{
392 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
393 struct netcp_intf *netcp_intf, *netcp_tmp;
394 struct device *dev = netcp_device->device;
395
396 /* Release the module from each interface */
397 list_for_each_entry_safe(netcp_intf, netcp_tmp,
398 &netcp_device->interface_head,
399 interface_list) {
400 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
401
402 list_for_each_entry_safe(intf_modpriv, intf_tmp,
403 &netcp_intf->module_head,
404 intf_list) {
405 if (intf_modpriv->netcp_module == module) {
406 module->release(intf_modpriv->module_priv);
407 list_del(&intf_modpriv->intf_list);
408 devm_kfree(dev, intf_modpriv);
409 break;
410 }
411 }
412 }
413
414 /* Remove the module from each instance */
415 list_for_each_entry_safe(inst_modpriv, inst_tmp,
416 &netcp_device->modpriv_head, inst_list) {
417 if (inst_modpriv->netcp_module == module) {
418 module->remove(netcp_device,
419 inst_modpriv->module_priv);
420 list_del(&inst_modpriv->inst_list);
421 devm_kfree(dev, inst_modpriv);
422 break;
423 }
424 }
425}
426
427void netcp_unregister_module(struct netcp_module *module)
428{
429 struct netcp_device *netcp_device;
430 struct netcp_module *module_tmp;
431
432 mutex_lock(&netcp_modules_lock);
433
434 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
435 netcp_release_module(netcp_device, module);
436 }
437
438 /* Remove the module from the module list */
439 for_each_netcp_module(module_tmp) {
440 if (module == module_tmp) {
441 list_del(&module->module_list);
442 break;
443 }
444 }
445
446 mutex_unlock(&netcp_modules_lock);
447}
448EXPORT_SYMBOL_GPL(netcp_unregister_module);
449
450void *netcp_module_get_intf_data(struct netcp_module *module,
451 struct netcp_intf *intf)
452{
453 struct netcp_intf_modpriv *intf_modpriv;
454
455 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
456 if (intf_modpriv->netcp_module == module)
457 return intf_modpriv->module_priv;
458 return NULL;
459}
460EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
461
462/* Module TX and RX Hook management */
463struct netcp_hook_list {
464 struct list_head list;
465 netcp_hook_rtn *hook_rtn;
466 void *hook_data;
467 int order;
468};
469
470int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
471 netcp_hook_rtn *hook_rtn, void *hook_data)
472{
473 struct netcp_hook_list *entry;
474 struct netcp_hook_list *next;
475 unsigned long flags;
476
477 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
478 if (!entry)
479 return -ENOMEM;
480
481 entry->hook_rtn = hook_rtn;
482 entry->hook_data = hook_data;
483 entry->order = order;
484
485 spin_lock_irqsave(&netcp_priv->lock, flags);
486 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
487 if (next->order > order)
488 break;
489 }
490 __list_add(&entry->list, next->list.prev, &next->list);
491 spin_unlock_irqrestore(&netcp_priv->lock, flags);
492
493 return 0;
494}
495EXPORT_SYMBOL_GPL(netcp_register_txhook);
496
497int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
498 netcp_hook_rtn *hook_rtn, void *hook_data)
499{
500 struct netcp_hook_list *next, *n;
501 unsigned long flags;
502
503 spin_lock_irqsave(&netcp_priv->lock, flags);
504 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
505 if ((next->order == order) &&
506 (next->hook_rtn == hook_rtn) &&
507 (next->hook_data == hook_data)) {
508 list_del(&next->list);
509 spin_unlock_irqrestore(&netcp_priv->lock, flags);
510 devm_kfree(netcp_priv->dev, next);
511 return 0;
512 }
513 }
514 spin_unlock_irqrestore(&netcp_priv->lock, flags);
515 return -ENOENT;
516}
517EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
518
519int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
520 netcp_hook_rtn *hook_rtn, void *hook_data)
521{
522 struct netcp_hook_list *entry;
523 struct netcp_hook_list *next;
524 unsigned long flags;
525
526 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
527 if (!entry)
528 return -ENOMEM;
529
530 entry->hook_rtn = hook_rtn;
531 entry->hook_data = hook_data;
532 entry->order = order;
533
534 spin_lock_irqsave(&netcp_priv->lock, flags);
535 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
536 if (next->order > order)
537 break;
538 }
539 __list_add(&entry->list, next->list.prev, &next->list);
540 spin_unlock_irqrestore(&netcp_priv->lock, flags);
541
542 return 0;
543}
544EXPORT_SYMBOL_GPL(netcp_register_rxhook);
545
546int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
547 netcp_hook_rtn *hook_rtn, void *hook_data)
548{
549 struct netcp_hook_list *next, *n;
550 unsigned long flags;
551
552 spin_lock_irqsave(&netcp_priv->lock, flags);
553 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
554 if ((next->order == order) &&
555 (next->hook_rtn == hook_rtn) &&
556 (next->hook_data == hook_data)) {
557 list_del(&next->list);
558 spin_unlock_irqrestore(&netcp_priv->lock, flags);
559 devm_kfree(netcp_priv->dev, next);
560 return 0;
561 }
562 }
563 spin_unlock_irqrestore(&netcp_priv->lock, flags);
564
565 return -ENOENT;
566}
567EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
568
569static void netcp_frag_free(bool is_frag, void *ptr)
570{
571 if (is_frag)
572 skb_free_frag(ptr);
573 else
574 kfree(ptr);
575}
576
577static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
578 struct knav_dma_desc *desc)
579{
580 struct knav_dma_desc *ndesc;
581 dma_addr_t dma_desc, dma_buf;
582 unsigned int buf_len, dma_sz = sizeof(*ndesc);
583 void *buf_ptr;
584 u32 tmp;
585
586 get_words(&dma_desc, 1, &desc->next_desc);
587
588 while (dma_desc) {
589 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
590 if (unlikely(!ndesc)) {
591 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
592 break;
593 }
594 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
595 /* warning!!!! We are retrieving the virtual ptr in the sw_data
596 * field as a 32bit value. Will not work on 64bit machines
597 */
598 buf_ptr = (void *)GET_SW_DATA0(ndesc);
599 buf_len = (int)GET_SW_DATA1(desc);
600 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
601 __free_page(buf_ptr);
602 knav_pool_desc_put(netcp->rx_pool, desc);
603 }
604 /* warning!!!! We are retrieving the virtual ptr in the sw_data
605 * field as a 32bit value. Will not work on 64bit machines
606 */
607 buf_ptr = (void *)GET_SW_DATA0(desc);
608 buf_len = (int)GET_SW_DATA1(desc);
609
610 if (buf_ptr)
611 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
612 knav_pool_desc_put(netcp->rx_pool, desc);
613}
614
615static void netcp_empty_rx_queue(struct netcp_intf *netcp)
616{
617 struct netcp_stats *rx_stats = &netcp->stats;
618 struct knav_dma_desc *desc;
619 unsigned int dma_sz;
620 dma_addr_t dma;
621
622 for (; ;) {
623 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624 if (!dma)
625 break;
626
627 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628 if (unlikely(!desc)) {
629 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630 __func__);
631 rx_stats->rx_errors++;
632 continue;
633 }
634 netcp_free_rx_desc_chain(netcp, desc);
635 rx_stats->rx_dropped++;
636 }
637}
638
639static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640{
641 struct netcp_stats *rx_stats = &netcp->stats;
642 unsigned int dma_sz, buf_len, org_buf_len;
643 struct knav_dma_desc *desc, *ndesc;
644 unsigned int pkt_sz = 0, accum_sz;
645 struct netcp_hook_list *rx_hook;
646 dma_addr_t dma_desc, dma_buff;
647 struct netcp_packet p_info;
648 struct sk_buff *skb;
649 void *org_buf_ptr;
650 u32 tmp;
651
652 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
653 if (!dma_desc)
654 return -1;
655
656 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
657 if (unlikely(!desc)) {
658 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
659 return 0;
660 }
661
662 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
663 /* warning!!!! We are retrieving the virtual ptr in the sw_data
664 * field as a 32bit value. Will not work on 64bit machines
665 */
666 org_buf_ptr = (void *)GET_SW_DATA0(desc);
667 org_buf_len = (int)GET_SW_DATA1(desc);
668
669 if (unlikely(!org_buf_ptr)) {
670 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
671 goto free_desc;
672 }
673
674 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
675 accum_sz = buf_len;
676 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
677
678 /* Build a new sk_buff for the primary buffer */
679 skb = build_skb(org_buf_ptr, org_buf_len);
680 if (unlikely(!skb)) {
681 dev_err(netcp->ndev_dev, "build_skb() failed\n");
682 goto free_desc;
683 }
684
685 /* update data, tail and len */
686 skb_reserve(skb, NETCP_SOP_OFFSET);
687 __skb_put(skb, buf_len);
688
689 /* Fill in the page fragment list */
690 while (dma_desc) {
691 struct page *page;
692
693 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
694 if (unlikely(!ndesc)) {
695 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
696 goto free_desc;
697 }
698
699 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
700 /* warning!!!! We are retrieving the virtual ptr in the sw_data
701 * field as a 32bit value. Will not work on 64bit machines
702 */
703 page = (struct page *)GET_SW_DATA0(ndesc);
704
705 if (likely(dma_buff && buf_len && page)) {
706 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
707 DMA_FROM_DEVICE);
708 } else {
709 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
710 &dma_buff, buf_len, page);
711 goto free_desc;
712 }
713
714 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
715 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
716 accum_sz += buf_len;
717
718 /* Free the descriptor */
719 knav_pool_desc_put(netcp->rx_pool, ndesc);
720 }
721
722 /* check for packet len and warn */
723 if (unlikely(pkt_sz != accum_sz))
724 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
725 pkt_sz, accum_sz);
726
727 /* Newer version of the Ethernet switch can trim the Ethernet FCS
728 * from the packet and is indicated in hw_cap. So trim it only for
729 * older h/w
730 */
731 if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
732 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
733
734 /* Call each of the RX hooks */
735 p_info.skb = skb;
736 skb->dev = netcp->ndev;
737 p_info.rxtstamp_complete = false;
738 get_desc_info(&tmp, &p_info.eflags, desc);
739 p_info.epib = desc->epib;
740 p_info.psdata = (u32 __force *)desc->psdata;
741 p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
742 KNAV_DMA_DESC_EFLAGS_MASK);
743 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
744 int ret;
745
746 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
747 &p_info);
748 if (unlikely(ret)) {
749 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
750 rx_hook->order, ret);
751 /* Free the primary descriptor */
752 rx_stats->rx_dropped++;
753 knav_pool_desc_put(netcp->rx_pool, desc);
754 dev_kfree_skb(skb);
755 return 0;
756 }
757 }
758 /* Free the primary descriptor */
759 knav_pool_desc_put(netcp->rx_pool, desc);
760
761 u64_stats_update_begin(&rx_stats->syncp_rx);
762 rx_stats->rx_packets++;
763 rx_stats->rx_bytes += skb->len;
764 u64_stats_update_end(&rx_stats->syncp_rx);
765
766 /* push skb up the stack */
767 skb->protocol = eth_type_trans(skb, netcp->ndev);
768 netif_receive_skb(skb);
769 return 0;
770
771free_desc:
772 netcp_free_rx_desc_chain(netcp, desc);
773 rx_stats->rx_errors++;
774 return 0;
775}
776
777static int netcp_process_rx_packets(struct netcp_intf *netcp,
778 unsigned int budget)
779{
780 int i;
781
782 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
783 ;
784 return i;
785}
786
787/* Release descriptors and attached buffers from Rx FDQ */
788static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
789{
790 struct knav_dma_desc *desc;
791 unsigned int buf_len, dma_sz;
792 dma_addr_t dma;
793 void *buf_ptr;
794
795 /* Allocate descriptor */
796 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
797 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
798 if (unlikely(!desc)) {
799 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
800 continue;
801 }
802
803 get_org_pkt_info(&dma, &buf_len, desc);
804 /* warning!!!! We are retrieving the virtual ptr in the sw_data
805 * field as a 32bit value. Will not work on 64bit machines
806 */
807 buf_ptr = (void *)GET_SW_DATA0(desc);
808
809 if (unlikely(!dma)) {
810 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
811 knav_pool_desc_put(netcp->rx_pool, desc);
812 continue;
813 }
814
815 if (unlikely(!buf_ptr)) {
816 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
817 knav_pool_desc_put(netcp->rx_pool, desc);
818 continue;
819 }
820
821 if (fdq == 0) {
822 dma_unmap_single(netcp->dev, dma, buf_len,
823 DMA_FROM_DEVICE);
824 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
825 } else {
826 dma_unmap_page(netcp->dev, dma, buf_len,
827 DMA_FROM_DEVICE);
828 __free_page(buf_ptr);
829 }
830
831 knav_pool_desc_put(netcp->rx_pool, desc);
832 }
833}
834
835static void netcp_rxpool_free(struct netcp_intf *netcp)
836{
837 int i;
838
839 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
840 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
841 netcp_free_rx_buf(netcp, i);
842
843 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
844 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
845 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
846
847 knav_pool_destroy(netcp->rx_pool);
848 netcp->rx_pool = NULL;
849}
850
851static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
852{
853 struct knav_dma_desc *hwdesc;
854 unsigned int buf_len, dma_sz;
855 u32 desc_info, pkt_info;
856 struct page *page;
857 dma_addr_t dma;
858 void *bufptr;
859 u32 sw_data[2];
860
861 /* Allocate descriptor */
862 hwdesc = knav_pool_desc_get(netcp->rx_pool);
863 if (IS_ERR_OR_NULL(hwdesc)) {
864 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
865 return -ENOMEM;
866 }
867
868 if (likely(fdq == 0)) {
869 unsigned int primary_buf_len;
870 /* Allocate a primary receive queue entry */
871 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
872 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
873 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
874
875 bufptr = netdev_alloc_frag(primary_buf_len);
876 sw_data[1] = primary_buf_len;
877
878 if (unlikely(!bufptr)) {
879 dev_warn_ratelimited(netcp->ndev_dev,
880 "Primary RX buffer alloc failed\n");
881 goto fail;
882 }
883 dma = dma_map_single(netcp->dev, bufptr, buf_len,
884 DMA_TO_DEVICE);
885 if (unlikely(dma_mapping_error(netcp->dev, dma)))
886 goto fail;
887
888 /* warning!!!! We are saving the virtual ptr in the sw_data
889 * field as a 32bit value. Will not work on 64bit machines
890 */
891 sw_data[0] = (u32)bufptr;
892 } else {
893 /* Allocate a secondary receive queue entry */
894 page = alloc_page(GFP_ATOMIC | GFP_DMA);
895 if (unlikely(!page)) {
896 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
897 goto fail;
898 }
899 buf_len = PAGE_SIZE;
900 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
901 /* warning!!!! We are saving the virtual ptr in the sw_data
902 * field as a 32bit value. Will not work on 64bit machines
903 */
904 sw_data[0] = (u32)page;
905 sw_data[1] = 0;
906 }
907
908 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
909 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
910 pkt_info = KNAV_DMA_DESC_HAS_EPIB;
911 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
912 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
913 KNAV_DMA_DESC_RETQ_SHIFT;
914 set_org_pkt_info(dma, buf_len, hwdesc);
915 SET_SW_DATA0(sw_data[0], hwdesc);
916 SET_SW_DATA1(sw_data[1], hwdesc);
917 set_desc_info(desc_info, pkt_info, hwdesc);
918
919 /* Push to FDQs */
920 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
921 &dma_sz);
922 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
923 return 0;
924
925fail:
926 knav_pool_desc_put(netcp->rx_pool, hwdesc);
927 return -ENOMEM;
928}
929
930/* Refill Rx FDQ with descriptors & attached buffers */
931static void netcp_rxpool_refill(struct netcp_intf *netcp)
932{
933 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
934 int i, ret = 0;
935
936 /* Calculate the FDQ deficit and refill */
937 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
938 fdq_deficit[i] = netcp->rx_queue_depths[i] -
939 knav_queue_get_count(netcp->rx_fdq[i]);
940
941 while (fdq_deficit[i]-- && !ret)
942 ret = netcp_allocate_rx_buf(netcp, i);
943 } /* end for fdqs */
944}
945
946/* NAPI poll */
947static int netcp_rx_poll(struct napi_struct *napi, int budget)
948{
949 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
950 rx_napi);
951 unsigned int packets;
952
953 packets = netcp_process_rx_packets(netcp, budget);
954
955 netcp_rxpool_refill(netcp);
956 if (packets < budget) {
957 napi_complete_done(&netcp->rx_napi, packets);
958 knav_queue_enable_notify(netcp->rx_queue);
959 }
960
961 return packets;
962}
963
964static void netcp_rx_notify(void *arg)
965{
966 struct netcp_intf *netcp = arg;
967
968 knav_queue_disable_notify(netcp->rx_queue);
969 napi_schedule(&netcp->rx_napi);
970}
971
972static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
973 struct knav_dma_desc *desc,
974 unsigned int desc_sz)
975{
976 struct knav_dma_desc *ndesc = desc;
977 dma_addr_t dma_desc, dma_buf;
978 unsigned int buf_len;
979
980 while (ndesc) {
981 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
982
983 if (dma_buf && buf_len)
984 dma_unmap_single(netcp->dev, dma_buf, buf_len,
985 DMA_TO_DEVICE);
986 else
987 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
988 &dma_buf, buf_len);
989
990 knav_pool_desc_put(netcp->tx_pool, ndesc);
991 ndesc = NULL;
992 if (dma_desc) {
993 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
994 desc_sz);
995 if (!ndesc)
996 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
997 }
998 }
999}
1000
1001static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1002 unsigned int budget)
1003{
1004 struct netcp_stats *tx_stats = &netcp->stats;
1005 struct knav_dma_desc *desc;
1006 struct netcp_tx_cb *tx_cb;
1007 struct sk_buff *skb;
1008 unsigned int dma_sz;
1009 dma_addr_t dma;
1010 int pkts = 0;
1011
1012 while (budget--) {
1013 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1014 if (!dma)
1015 break;
1016 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1017 if (unlikely(!desc)) {
1018 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1019 tx_stats->tx_errors++;
1020 continue;
1021 }
1022
1023 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1024 * field as a 32bit value. Will not work on 64bit machines
1025 */
1026 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1027 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1028 if (!skb) {
1029 dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1030 tx_stats->tx_errors++;
1031 continue;
1032 }
1033
1034 tx_cb = (struct netcp_tx_cb *)skb->cb;
1035 if (tx_cb->txtstamp)
1036 tx_cb->txtstamp(tx_cb->ts_context, skb);
1037
1038 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1039 netif_running(netcp->ndev) &&
1040 (knav_pool_count(netcp->tx_pool) >
1041 netcp->tx_resume_threshold)) {
1042 u16 subqueue = skb_get_queue_mapping(skb);
1043
1044 netif_wake_subqueue(netcp->ndev, subqueue);
1045 }
1046
1047 u64_stats_update_begin(&tx_stats->syncp_tx);
1048 tx_stats->tx_packets++;
1049 tx_stats->tx_bytes += skb->len;
1050 u64_stats_update_end(&tx_stats->syncp_tx);
1051 dev_kfree_skb(skb);
1052 pkts++;
1053 }
1054 return pkts;
1055}
1056
1057static int netcp_tx_poll(struct napi_struct *napi, int budget)
1058{
1059 int packets;
1060 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1061 tx_napi);
1062
1063 packets = netcp_process_tx_compl_packets(netcp, budget);
1064 if (packets < budget) {
1065 napi_complete(&netcp->tx_napi);
1066 knav_queue_enable_notify(netcp->tx_compl_q);
1067 }
1068
1069 return packets;
1070}
1071
1072static void netcp_tx_notify(void *arg)
1073{
1074 struct netcp_intf *netcp = arg;
1075
1076 knav_queue_disable_notify(netcp->tx_compl_q);
1077 napi_schedule(&netcp->tx_napi);
1078}
1079
1080static struct knav_dma_desc*
1081netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1082{
1083 struct knav_dma_desc *desc, *ndesc, *pdesc;
1084 unsigned int pkt_len = skb_headlen(skb);
1085 struct device *dev = netcp->dev;
1086 dma_addr_t dma_addr;
1087 unsigned int dma_sz;
1088 int i;
1089
1090 /* Map the linear buffer */
1091 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1092 if (unlikely(dma_mapping_error(dev, dma_addr))) {
1093 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1094 return NULL;
1095 }
1096
1097 desc = knav_pool_desc_get(netcp->tx_pool);
1098 if (IS_ERR_OR_NULL(desc)) {
1099 dev_err(netcp->ndev_dev, "out of TX desc\n");
1100 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1101 return NULL;
1102 }
1103
1104 set_pkt_info(dma_addr, pkt_len, 0, desc);
1105 if (skb_is_nonlinear(skb)) {
1106 prefetchw(skb_shinfo(skb));
1107 } else {
1108 desc->next_desc = 0;
1109 goto upd_pkt_len;
1110 }
1111
1112 pdesc = desc;
1113
1114 /* Handle the case where skb is fragmented in pages */
1115 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117 struct page *page = skb_frag_page(frag);
1118 u32 page_offset = skb_frag_off(frag);
1119 u32 buf_len = skb_frag_size(frag);
1120 dma_addr_t desc_dma;
1121 u32 desc_dma_32;
1122
1123 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1124 DMA_TO_DEVICE);
1125 if (unlikely(!dma_addr)) {
1126 dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1127 goto free_descs;
1128 }
1129
1130 ndesc = knav_pool_desc_get(netcp->tx_pool);
1131 if (IS_ERR_OR_NULL(ndesc)) {
1132 dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1133 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1134 goto free_descs;
1135 }
1136
1137 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1138 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1139 desc_dma_32 = (u32)desc_dma;
1140 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1141 pkt_len += buf_len;
1142 if (pdesc != desc)
1143 knav_pool_desc_map(netcp->tx_pool, pdesc,
1144 sizeof(*pdesc), &desc_dma, &dma_sz);
1145 pdesc = ndesc;
1146 }
1147 if (pdesc != desc)
1148 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1149 &dma_addr, &dma_sz);
1150
1151 /* frag list based linkage is not supported for now. */
1152 if (skb_shinfo(skb)->frag_list) {
1153 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1154 goto free_descs;
1155 }
1156
1157upd_pkt_len:
1158 WARN_ON(pkt_len != skb->len);
1159
1160 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1161 set_words(&pkt_len, 1, &desc->desc_info);
1162 return desc;
1163
1164free_descs:
1165 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1166 return NULL;
1167}
1168
1169static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1170 struct sk_buff *skb,
1171 struct knav_dma_desc *desc)
1172{
1173 struct netcp_tx_pipe *tx_pipe = NULL;
1174 struct netcp_hook_list *tx_hook;
1175 struct netcp_packet p_info;
1176 struct netcp_tx_cb *tx_cb;
1177 unsigned int dma_sz;
1178 dma_addr_t dma;
1179 u32 tmp = 0;
1180 int ret = 0;
1181
1182 p_info.netcp = netcp;
1183 p_info.skb = skb;
1184 p_info.tx_pipe = NULL;
1185 p_info.psdata_len = 0;
1186 p_info.ts_context = NULL;
1187 p_info.txtstamp = NULL;
1188 p_info.epib = desc->epib;
1189 p_info.psdata = (u32 __force *)desc->psdata;
1190 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1191
1192 /* Find out where to inject the packet for transmission */
1193 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1194 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1195 &p_info);
1196 if (unlikely(ret != 0)) {
1197 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1198 tx_hook->order, ret);
1199 ret = (ret < 0) ? ret : NETDEV_TX_OK;
1200 goto out;
1201 }
1202 }
1203
1204 /* Make sure some TX hook claimed the packet */
1205 tx_pipe = p_info.tx_pipe;
1206 if (!tx_pipe) {
1207 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1208 ret = -ENXIO;
1209 goto out;
1210 }
1211
1212 tx_cb = (struct netcp_tx_cb *)skb->cb;
1213 tx_cb->ts_context = p_info.ts_context;
1214 tx_cb->txtstamp = p_info.txtstamp;
1215
1216 /* update descriptor */
1217 if (p_info.psdata_len) {
1218 /* psdata points to both native-endian and device-endian data */
1219 __le32 *psdata = (void __force *)p_info.psdata;
1220
1221 set_words((u32 *)psdata +
1222 (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1223 p_info.psdata_len, psdata);
1224 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1225 KNAV_DMA_DESC_PSLEN_SHIFT;
1226 }
1227
1228 tmp |= KNAV_DMA_DESC_HAS_EPIB |
1229 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1230 KNAV_DMA_DESC_RETQ_SHIFT);
1231
1232 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1233 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1234 KNAV_DMA_DESC_PSFLAG_SHIFT);
1235 }
1236
1237 set_words(&tmp, 1, &desc->packet_info);
1238 /* warning!!!! We are saving the virtual ptr in the sw_data
1239 * field as a 32bit value. Will not work on 64bit machines
1240 */
1241 SET_SW_DATA0((u32)skb, desc);
1242
1243 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1244 tmp = tx_pipe->switch_to_port;
1245 set_words(&tmp, 1, &desc->tag_info);
1246 }
1247
1248 /* submit packet descriptor */
1249 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1250 &dma_sz);
1251 if (unlikely(ret)) {
1252 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1253 ret = -ENOMEM;
1254 goto out;
1255 }
1256 skb_tx_timestamp(skb);
1257 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1258
1259out:
1260 return ret;
1261}
1262
1263/* Submit the packet */
1264static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1265{
1266 struct netcp_intf *netcp = netdev_priv(ndev);
1267 struct netcp_stats *tx_stats = &netcp->stats;
1268 int subqueue = skb_get_queue_mapping(skb);
1269 struct knav_dma_desc *desc;
1270 int desc_count, ret = 0;
1271
1272 if (unlikely(skb->len <= 0)) {
1273 dev_kfree_skb(skb);
1274 return NETDEV_TX_OK;
1275 }
1276
1277 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1278 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1279 if (ret < 0) {
1280 /* If we get here, the skb has already been dropped */
1281 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1282 ret);
1283 tx_stats->tx_dropped++;
1284 return ret;
1285 }
1286 skb->len = NETCP_MIN_PACKET_SIZE;
1287 }
1288
1289 desc = netcp_tx_map_skb(skb, netcp);
1290 if (unlikely(!desc)) {
1291 netif_stop_subqueue(ndev, subqueue);
1292 ret = -ENOBUFS;
1293 goto drop;
1294 }
1295
1296 ret = netcp_tx_submit_skb(netcp, skb, desc);
1297 if (ret)
1298 goto drop;
1299
1300 /* Check Tx pool count & stop subqueue if needed */
1301 desc_count = knav_pool_count(netcp->tx_pool);
1302 if (desc_count < netcp->tx_pause_threshold) {
1303 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1304 netif_stop_subqueue(ndev, subqueue);
1305 }
1306 return NETDEV_TX_OK;
1307
1308drop:
1309 tx_stats->tx_dropped++;
1310 if (desc)
1311 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1312 dev_kfree_skb(skb);
1313 return ret;
1314}
1315
1316int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1317{
1318 if (tx_pipe->dma_channel) {
1319 knav_dma_close_channel(tx_pipe->dma_channel);
1320 tx_pipe->dma_channel = NULL;
1321 }
1322 return 0;
1323}
1324EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1325
1326int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1327{
1328 struct device *dev = tx_pipe->netcp_device->device;
1329 struct knav_dma_cfg config;
1330 int ret = 0;
1331 u8 name[16];
1332
1333 memset(&config, 0, sizeof(config));
1334 config.direction = DMA_MEM_TO_DEV;
1335 config.u.tx.filt_einfo = false;
1336 config.u.tx.filt_pswords = false;
1337 config.u.tx.priority = DMA_PRIO_MED_L;
1338
1339 tx_pipe->dma_channel = knav_dma_open_channel(dev,
1340 tx_pipe->dma_chan_name, &config);
1341 if (IS_ERR(tx_pipe->dma_channel)) {
1342 dev_err(dev, "failed opening tx chan(%s)\n",
1343 tx_pipe->dma_chan_name);
1344 ret = PTR_ERR(tx_pipe->dma_channel);
1345 goto err;
1346 }
1347
1348 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1349 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1350 KNAV_QUEUE_SHARED);
1351 if (IS_ERR(tx_pipe->dma_queue)) {
1352 dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n",
1353 name, tx_pipe->dma_queue);
1354 ret = PTR_ERR(tx_pipe->dma_queue);
1355 goto err;
1356 }
1357
1358 dev_dbg(dev, "opened tx pipe %s\n", name);
1359 return 0;
1360
1361err:
1362 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1363 knav_dma_close_channel(tx_pipe->dma_channel);
1364 tx_pipe->dma_channel = NULL;
1365 return ret;
1366}
1367EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1368
1369int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1370 struct netcp_device *netcp_device,
1371 const char *dma_chan_name, unsigned int dma_queue_id)
1372{
1373 memset(tx_pipe, 0, sizeof(*tx_pipe));
1374 tx_pipe->netcp_device = netcp_device;
1375 tx_pipe->dma_chan_name = dma_chan_name;
1376 tx_pipe->dma_queue_id = dma_queue_id;
1377 return 0;
1378}
1379EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1380
1381static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1382 const u8 *addr,
1383 enum netcp_addr_type type)
1384{
1385 struct netcp_addr *naddr;
1386
1387 list_for_each_entry(naddr, &netcp->addr_list, node) {
1388 if (naddr->type != type)
1389 continue;
1390 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1391 continue;
1392 return naddr;
1393 }
1394
1395 return NULL;
1396}
1397
1398static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1399 const u8 *addr,
1400 enum netcp_addr_type type)
1401{
1402 struct netcp_addr *naddr;
1403
1404 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1405 if (!naddr)
1406 return NULL;
1407
1408 naddr->type = type;
1409 naddr->flags = 0;
1410 naddr->netcp = netcp;
1411 if (addr)
1412 ether_addr_copy(naddr->addr, addr);
1413 else
1414 eth_zero_addr(naddr->addr);
1415 list_add_tail(&naddr->node, &netcp->addr_list);
1416
1417 return naddr;
1418}
1419
1420static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1421{
1422 list_del(&naddr->node);
1423 devm_kfree(netcp->dev, naddr);
1424}
1425
1426static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1427{
1428 struct netcp_addr *naddr;
1429
1430 list_for_each_entry(naddr, &netcp->addr_list, node)
1431 naddr->flags = 0;
1432}
1433
1434static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1435 enum netcp_addr_type type)
1436{
1437 struct netcp_addr *naddr;
1438
1439 naddr = netcp_addr_find(netcp, addr, type);
1440 if (naddr) {
1441 naddr->flags |= ADDR_VALID;
1442 return;
1443 }
1444
1445 naddr = netcp_addr_add(netcp, addr, type);
1446 if (!WARN_ON(!naddr))
1447 naddr->flags |= ADDR_NEW;
1448}
1449
1450static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1451{
1452 struct netcp_addr *naddr, *tmp;
1453 struct netcp_intf_modpriv *priv;
1454 struct netcp_module *module;
1455 int error;
1456
1457 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1459 continue;
1460 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1461 naddr->addr, naddr->type);
1462 for_each_module(netcp, priv) {
1463 module = priv->netcp_module;
1464 if (!module->del_addr)
1465 continue;
1466 error = module->del_addr(priv->module_priv,
1467 naddr);
1468 WARN_ON(error);
1469 }
1470 netcp_addr_del(netcp, naddr);
1471 }
1472}
1473
1474static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1475{
1476 struct netcp_addr *naddr, *tmp;
1477 struct netcp_intf_modpriv *priv;
1478 struct netcp_module *module;
1479 int error;
1480
1481 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1482 if (!(naddr->flags & ADDR_NEW))
1483 continue;
1484 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1485 naddr->addr, naddr->type);
1486
1487 for_each_module(netcp, priv) {
1488 module = priv->netcp_module;
1489 if (!module->add_addr)
1490 continue;
1491 error = module->add_addr(priv->module_priv, naddr);
1492 WARN_ON(error);
1493 }
1494 }
1495}
1496
1497static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1498{
1499 struct netcp_intf_modpriv *priv;
1500 struct netcp_module *module;
1501 int error;
1502
1503 for_each_module(netcp, priv) {
1504 module = priv->netcp_module;
1505 if (!module->set_rx_mode)
1506 continue;
1507
1508 error = module->set_rx_mode(priv->module_priv, promisc);
1509 if (error)
1510 return error;
1511 }
1512 return 0;
1513}
1514
1515static void netcp_set_rx_mode(struct net_device *ndev)
1516{
1517 struct netcp_intf *netcp = netdev_priv(ndev);
1518 struct netdev_hw_addr *ndev_addr;
1519 bool promisc;
1520
1521 promisc = (ndev->flags & IFF_PROMISC ||
1522 ndev->flags & IFF_ALLMULTI ||
1523 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1524
1525 spin_lock(&netcp->lock);
1526 /* first clear all marks */
1527 netcp_addr_clear_mark(netcp);
1528
1529 /* next add new entries, mark existing ones */
1530 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1531 for_each_dev_addr(ndev, ndev_addr)
1532 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1533 netdev_for_each_uc_addr(ndev_addr, ndev)
1534 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1535 netdev_for_each_mc_addr(ndev_addr, ndev)
1536 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1537
1538 if (promisc)
1539 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1540
1541 /* finally sweep and callout into modules */
1542 netcp_addr_sweep_del(netcp);
1543 netcp_addr_sweep_add(netcp);
1544 netcp_set_promiscuous(netcp, promisc);
1545 spin_unlock(&netcp->lock);
1546}
1547
1548static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1549{
1550 int i;
1551
1552 if (netcp->rx_channel) {
1553 knav_dma_close_channel(netcp->rx_channel);
1554 netcp->rx_channel = NULL;
1555 }
1556
1557 if (!IS_ERR_OR_NULL(netcp->rx_pool))
1558 netcp_rxpool_free(netcp);
1559
1560 if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1561 knav_queue_close(netcp->rx_queue);
1562 netcp->rx_queue = NULL;
1563 }
1564
1565 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1566 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1567 knav_queue_close(netcp->rx_fdq[i]);
1568 netcp->rx_fdq[i] = NULL;
1569 }
1570
1571 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572 knav_queue_close(netcp->tx_compl_q);
1573 netcp->tx_compl_q = NULL;
1574 }
1575
1576 if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1577 knav_pool_destroy(netcp->tx_pool);
1578 netcp->tx_pool = NULL;
1579 }
1580}
1581
1582static int netcp_setup_navigator_resources(struct net_device *ndev)
1583{
1584 struct netcp_intf *netcp = netdev_priv(ndev);
1585 struct knav_queue_notify_config notify_cfg;
1586 struct knav_dma_cfg config;
1587 u32 last_fdq = 0;
1588 u8 name[16];
1589 int ret;
1590 int i;
1591
1592 /* Create Rx/Tx descriptor pools */
1593 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1594 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1595 netcp->rx_pool_region_id);
1596 if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1597 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1598 ret = PTR_ERR(netcp->rx_pool);
1599 goto fail;
1600 }
1601
1602 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1603 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1604 netcp->tx_pool_region_id);
1605 if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1606 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1607 ret = PTR_ERR(netcp->tx_pool);
1608 goto fail;
1609 }
1610
1611 /* open Tx completion queue */
1612 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1613 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1614 if (IS_ERR(netcp->tx_compl_q)) {
1615 ret = PTR_ERR(netcp->tx_compl_q);
1616 goto fail;
1617 }
1618 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1619
1620 /* Set notification for Tx completion */
1621 notify_cfg.fn = netcp_tx_notify;
1622 notify_cfg.fn_arg = netcp;
1623 ret = knav_queue_device_control(netcp->tx_compl_q,
1624 KNAV_QUEUE_SET_NOTIFIER,
1625 (unsigned long)¬ify_cfg);
1626 if (ret)
1627 goto fail;
1628
1629 knav_queue_disable_notify(netcp->tx_compl_q);
1630
1631 /* open Rx completion queue */
1632 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1633 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1634 if (IS_ERR(netcp->rx_queue)) {
1635 ret = PTR_ERR(netcp->rx_queue);
1636 goto fail;
1637 }
1638 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1639
1640 /* Set notification for Rx completion */
1641 notify_cfg.fn = netcp_rx_notify;
1642 notify_cfg.fn_arg = netcp;
1643 ret = knav_queue_device_control(netcp->rx_queue,
1644 KNAV_QUEUE_SET_NOTIFIER,
1645 (unsigned long)¬ify_cfg);
1646 if (ret)
1647 goto fail;
1648
1649 knav_queue_disable_notify(netcp->rx_queue);
1650
1651 /* open Rx FDQs */
1652 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1653 ++i) {
1654 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1655 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1656 if (IS_ERR(netcp->rx_fdq[i])) {
1657 ret = PTR_ERR(netcp->rx_fdq[i]);
1658 goto fail;
1659 }
1660 }
1661
1662 memset(&config, 0, sizeof(config));
1663 config.direction = DMA_DEV_TO_MEM;
1664 config.u.rx.einfo_present = true;
1665 config.u.rx.psinfo_present = true;
1666 config.u.rx.err_mode = DMA_DROP;
1667 config.u.rx.desc_type = DMA_DESC_HOST;
1668 config.u.rx.psinfo_at_sop = false;
1669 config.u.rx.sop_offset = NETCP_SOP_OFFSET;
1670 config.u.rx.dst_q = netcp->rx_queue_id;
1671 config.u.rx.thresh = DMA_THRESH_NONE;
1672
1673 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1674 if (netcp->rx_fdq[i])
1675 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1676 config.u.rx.fdq[i] = last_fdq;
1677 }
1678
1679 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1680 netcp->dma_chan_name, &config);
1681 if (IS_ERR(netcp->rx_channel)) {
1682 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1683 netcp->dma_chan_name);
1684 ret = PTR_ERR(netcp->rx_channel);
1685 goto fail;
1686 }
1687
1688 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1689 return 0;
1690
1691fail:
1692 netcp_free_navigator_resources(netcp);
1693 return ret;
1694}
1695
1696/* Open the device */
1697static int netcp_ndo_open(struct net_device *ndev)
1698{
1699 struct netcp_intf *netcp = netdev_priv(ndev);
1700 struct netcp_intf_modpriv *intf_modpriv;
1701 struct netcp_module *module;
1702 int ret;
1703
1704 netif_carrier_off(ndev);
1705 ret = netcp_setup_navigator_resources(ndev);
1706 if (ret) {
1707 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1708 goto fail;
1709 }
1710
1711 for_each_module(netcp, intf_modpriv) {
1712 module = intf_modpriv->netcp_module;
1713 if (module->open) {
1714 ret = module->open(intf_modpriv->module_priv, ndev);
1715 if (ret != 0) {
1716 dev_err(netcp->ndev_dev, "module open failed\n");
1717 goto fail_open;
1718 }
1719 }
1720 }
1721
1722 napi_enable(&netcp->rx_napi);
1723 napi_enable(&netcp->tx_napi);
1724 knav_queue_enable_notify(netcp->tx_compl_q);
1725 knav_queue_enable_notify(netcp->rx_queue);
1726 netcp_rxpool_refill(netcp);
1727 netif_tx_wake_all_queues(ndev);
1728 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1729 return 0;
1730
1731fail_open:
1732 for_each_module(netcp, intf_modpriv) {
1733 module = intf_modpriv->netcp_module;
1734 if (module->close)
1735 module->close(intf_modpriv->module_priv, ndev);
1736 }
1737
1738fail:
1739 netcp_free_navigator_resources(netcp);
1740 return ret;
1741}
1742
1743/* Close the device */
1744static int netcp_ndo_stop(struct net_device *ndev)
1745{
1746 struct netcp_intf *netcp = netdev_priv(ndev);
1747 struct netcp_intf_modpriv *intf_modpriv;
1748 struct netcp_module *module;
1749 int err = 0;
1750
1751 netif_tx_stop_all_queues(ndev);
1752 netif_carrier_off(ndev);
1753 netcp_addr_clear_mark(netcp);
1754 netcp_addr_sweep_del(netcp);
1755 knav_queue_disable_notify(netcp->rx_queue);
1756 knav_queue_disable_notify(netcp->tx_compl_q);
1757 napi_disable(&netcp->rx_napi);
1758 napi_disable(&netcp->tx_napi);
1759
1760 for_each_module(netcp, intf_modpriv) {
1761 module = intf_modpriv->netcp_module;
1762 if (module->close) {
1763 err = module->close(intf_modpriv->module_priv, ndev);
1764 if (err != 0)
1765 dev_err(netcp->ndev_dev, "Close failed\n");
1766 }
1767 }
1768
1769 /* Recycle Rx descriptors from completion queue */
1770 netcp_empty_rx_queue(netcp);
1771
1772 /* Recycle Tx descriptors from completion queue */
1773 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1774
1775 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1776 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1777 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1778
1779 netcp_free_navigator_resources(netcp);
1780 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1781 return 0;
1782}
1783
1784static int netcp_ndo_ioctl(struct net_device *ndev,
1785 struct ifreq *req, int cmd)
1786{
1787 struct netcp_intf *netcp = netdev_priv(ndev);
1788 struct netcp_intf_modpriv *intf_modpriv;
1789 struct netcp_module *module;
1790 int ret = -1, err = -EOPNOTSUPP;
1791
1792 if (!netif_running(ndev))
1793 return -EINVAL;
1794
1795 for_each_module(netcp, intf_modpriv) {
1796 module = intf_modpriv->netcp_module;
1797 if (!module->ioctl)
1798 continue;
1799
1800 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1801 if ((err < 0) && (err != -EOPNOTSUPP)) {
1802 ret = err;
1803 goto out;
1804 }
1805 if (err == 0)
1806 ret = err;
1807 }
1808
1809out:
1810 return (ret == 0) ? 0 : err;
1811}
1812
1813static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1814{
1815 struct netcp_intf *netcp = netdev_priv(ndev);
1816 unsigned int descs = knav_pool_count(netcp->tx_pool);
1817
1818 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1819 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1820 netif_trans_update(ndev);
1821 netif_tx_wake_all_queues(ndev);
1822}
1823
1824static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1825{
1826 struct netcp_intf *netcp = netdev_priv(ndev);
1827 struct netcp_intf_modpriv *intf_modpriv;
1828 struct netcp_module *module;
1829 unsigned long flags;
1830 int err = 0;
1831
1832 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1833
1834 spin_lock_irqsave(&netcp->lock, flags);
1835 for_each_module(netcp, intf_modpriv) {
1836 module = intf_modpriv->netcp_module;
1837 if ((module->add_vid) && (vid != 0)) {
1838 err = module->add_vid(intf_modpriv->module_priv, vid);
1839 if (err != 0) {
1840 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1841 vid);
1842 break;
1843 }
1844 }
1845 }
1846 spin_unlock_irqrestore(&netcp->lock, flags);
1847
1848 return err;
1849}
1850
1851static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1852{
1853 struct netcp_intf *netcp = netdev_priv(ndev);
1854 struct netcp_intf_modpriv *intf_modpriv;
1855 struct netcp_module *module;
1856 unsigned long flags;
1857 int err = 0;
1858
1859 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1860
1861 spin_lock_irqsave(&netcp->lock, flags);
1862 for_each_module(netcp, intf_modpriv) {
1863 module = intf_modpriv->netcp_module;
1864 if (module->del_vid) {
1865 err = module->del_vid(intf_modpriv->module_priv, vid);
1866 if (err != 0) {
1867 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1868 vid);
1869 break;
1870 }
1871 }
1872 }
1873 spin_unlock_irqrestore(&netcp->lock, flags);
1874 return err;
1875}
1876
1877static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1878 void *type_data)
1879{
1880 struct tc_mqprio_qopt *mqprio = type_data;
1881 u8 num_tc;
1882 int i;
1883
1884 /* setup tc must be called under rtnl lock */
1885 ASSERT_RTNL();
1886
1887 if (type != TC_SETUP_QDISC_MQPRIO)
1888 return -EOPNOTSUPP;
1889
1890 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891 num_tc = mqprio->num_tc;
1892
1893 /* Sanity-check the number of traffic classes requested */
1894 if ((dev->real_num_tx_queues <= 1) ||
1895 (dev->real_num_tx_queues < num_tc))
1896 return -EINVAL;
1897
1898 /* Configure traffic class to queue mappings */
1899 if (num_tc) {
1900 netdev_set_num_tc(dev, num_tc);
1901 for (i = 0; i < num_tc; i++)
1902 netdev_set_tc_queue(dev, i, 1, i);
1903 } else {
1904 netdev_reset_tc(dev);
1905 }
1906
1907 return 0;
1908}
1909
1910static void
1911netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912{
1913 struct netcp_intf *netcp = netdev_priv(ndev);
1914 struct netcp_stats *p = &netcp->stats;
1915 u64 rxpackets, rxbytes, txpackets, txbytes;
1916 unsigned int start;
1917
1918 do {
1919 start = u64_stats_fetch_begin(&p->syncp_rx);
1920 rxpackets = p->rx_packets;
1921 rxbytes = p->rx_bytes;
1922 } while (u64_stats_fetch_retry(&p->syncp_rx, start));
1923
1924 do {
1925 start = u64_stats_fetch_begin(&p->syncp_tx);
1926 txpackets = p->tx_packets;
1927 txbytes = p->tx_bytes;
1928 } while (u64_stats_fetch_retry(&p->syncp_tx, start));
1929
1930 stats->rx_packets = rxpackets;
1931 stats->rx_bytes = rxbytes;
1932 stats->tx_packets = txpackets;
1933 stats->tx_bytes = txbytes;
1934
1935 /* The following are stored as 32 bit */
1936 stats->rx_errors = p->rx_errors;
1937 stats->rx_dropped = p->rx_dropped;
1938 stats->tx_dropped = p->tx_dropped;
1939}
1940
1941static const struct net_device_ops netcp_netdev_ops = {
1942 .ndo_open = netcp_ndo_open,
1943 .ndo_stop = netcp_ndo_stop,
1944 .ndo_start_xmit = netcp_ndo_start_xmit,
1945 .ndo_set_rx_mode = netcp_set_rx_mode,
1946 .ndo_eth_ioctl = netcp_ndo_ioctl,
1947 .ndo_get_stats64 = netcp_get_stats,
1948 .ndo_set_mac_address = eth_mac_addr,
1949 .ndo_validate_addr = eth_validate_addr,
1950 .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
1951 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
1952 .ndo_tx_timeout = netcp_ndo_tx_timeout,
1953 .ndo_select_queue = dev_pick_tx_zero,
1954 .ndo_setup_tc = netcp_setup_tc,
1955};
1956
1957static int netcp_create_interface(struct netcp_device *netcp_device,
1958 struct device_node *node_interface)
1959{
1960 struct device *dev = netcp_device->device;
1961 struct device_node *node = dev->of_node;
1962 struct netcp_intf *netcp;
1963 struct net_device *ndev;
1964 resource_size_t size;
1965 struct resource res;
1966 void __iomem *efuse = NULL;
1967 u32 efuse_mac = 0;
1968 u8 efuse_mac_addr[6];
1969 u32 temp[2];
1970 int ret = 0;
1971
1972 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1973 if (!ndev) {
1974 dev_err(dev, "Error allocating netdev\n");
1975 return -ENOMEM;
1976 }
1977
1978 ndev->features |= NETIF_F_SG;
1979 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1980 ndev->hw_features = ndev->features;
1981 ndev->vlan_features |= NETIF_F_SG;
1982
1983 /* MTU range: 68 - 9486 */
1984 ndev->min_mtu = ETH_MIN_MTU;
1985 ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1986
1987 netcp = netdev_priv(ndev);
1988 spin_lock_init(&netcp->lock);
1989 INIT_LIST_HEAD(&netcp->module_head);
1990 INIT_LIST_HEAD(&netcp->txhook_list_head);
1991 INIT_LIST_HEAD(&netcp->rxhook_list_head);
1992 INIT_LIST_HEAD(&netcp->addr_list);
1993 u64_stats_init(&netcp->stats.syncp_rx);
1994 u64_stats_init(&netcp->stats.syncp_tx);
1995 netcp->netcp_device = netcp_device;
1996 netcp->dev = netcp_device->device;
1997 netcp->ndev = ndev;
1998 netcp->ndev_dev = &ndev->dev;
1999 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2000 netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2001 netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2002 netcp->node_interface = node_interface;
2003
2004 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2005 if (efuse_mac) {
2006 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2007 dev_err(dev, "could not find efuse-mac reg resource\n");
2008 ret = -ENODEV;
2009 goto quit;
2010 }
2011 size = resource_size(&res);
2012
2013 if (!devm_request_mem_region(dev, res.start, size,
2014 dev_name(dev))) {
2015 dev_err(dev, "could not reserve resource\n");
2016 ret = -ENOMEM;
2017 goto quit;
2018 }
2019
2020 efuse = devm_ioremap(dev, res.start, size);
2021 if (!efuse) {
2022 dev_err(dev, "could not map resource\n");
2023 devm_release_mem_region(dev, res.start, size);
2024 ret = -ENOMEM;
2025 goto quit;
2026 }
2027
2028 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2029 if (is_valid_ether_addr(efuse_mac_addr))
2030 eth_hw_addr_set(ndev, efuse_mac_addr);
2031 else
2032 eth_hw_addr_random(ndev);
2033
2034 devm_iounmap(dev, efuse);
2035 devm_release_mem_region(dev, res.start, size);
2036 } else {
2037 ret = of_get_ethdev_address(node_interface, ndev);
2038 if (ret)
2039 eth_hw_addr_random(ndev);
2040 }
2041
2042 ret = of_property_read_string(node_interface, "rx-channel",
2043 &netcp->dma_chan_name);
2044 if (ret < 0) {
2045 dev_err(dev, "missing \"rx-channel\" parameter\n");
2046 ret = -ENODEV;
2047 goto quit;
2048 }
2049
2050 ret = of_property_read_u32(node_interface, "rx-queue",
2051 &netcp->rx_queue_id);
2052 if (ret < 0) {
2053 dev_warn(dev, "missing \"rx-queue\" parameter\n");
2054 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2055 }
2056
2057 ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2058 netcp->rx_queue_depths,
2059 KNAV_DMA_FDQ_PER_CHAN);
2060 if (ret < 0) {
2061 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2062 netcp->rx_queue_depths[0] = 128;
2063 }
2064
2065 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2066 if (ret < 0) {
2067 dev_err(dev, "missing \"rx-pool\" parameter\n");
2068 ret = -ENODEV;
2069 goto quit;
2070 }
2071 netcp->rx_pool_size = temp[0];
2072 netcp->rx_pool_region_id = temp[1];
2073
2074 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2075 if (ret < 0) {
2076 dev_err(dev, "missing \"tx-pool\" parameter\n");
2077 ret = -ENODEV;
2078 goto quit;
2079 }
2080 netcp->tx_pool_size = temp[0];
2081 netcp->tx_pool_region_id = temp[1];
2082
2083 if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2084 dev_err(dev, "tx-pool size too small, must be at least %u\n",
2085 (unsigned int)MAX_SKB_FRAGS);
2086 ret = -ENODEV;
2087 goto quit;
2088 }
2089
2090 ret = of_property_read_u32(node_interface, "tx-completion-queue",
2091 &netcp->tx_compl_qid);
2092 if (ret < 0) {
2093 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2094 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2095 }
2096
2097 /* NAPI register */
2098 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll);
2099 netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll);
2100
2101 /* Register the network device */
2102 ndev->dev_id = 0;
2103 ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
2104 ndev->netdev_ops = &netcp_netdev_ops;
2105 SET_NETDEV_DEV(ndev, dev);
2106
2107 list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2108 return 0;
2109
2110quit:
2111 free_netdev(ndev);
2112 return ret;
2113}
2114
2115static void netcp_delete_interface(struct netcp_device *netcp_device,
2116 struct net_device *ndev)
2117{
2118 struct netcp_intf_modpriv *intf_modpriv, *tmp;
2119 struct netcp_intf *netcp = netdev_priv(ndev);
2120 struct netcp_module *module;
2121
2122 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2123 ndev->name);
2124
2125 /* Notify each of the modules that the interface is going away */
2126 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2127 intf_list) {
2128 module = intf_modpriv->netcp_module;
2129 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2130 module->name);
2131 if (module->release)
2132 module->release(intf_modpriv->module_priv);
2133 list_del(&intf_modpriv->intf_list);
2134 }
2135 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2136 ndev->name);
2137
2138 list_del(&netcp->interface_list);
2139
2140 of_node_put(netcp->node_interface);
2141 unregister_netdev(ndev);
2142 free_netdev(ndev);
2143}
2144
2145static int netcp_probe(struct platform_device *pdev)
2146{
2147 struct device_node *node = pdev->dev.of_node;
2148 struct netcp_intf *netcp_intf, *netcp_tmp;
2149 struct device_node *child, *interfaces;
2150 struct netcp_device *netcp_device;
2151 struct device *dev = &pdev->dev;
2152 struct netcp_module *module;
2153 int ret;
2154
2155 if (!knav_dma_device_ready() ||
2156 !knav_qmss_device_ready())
2157 return -EPROBE_DEFER;
2158
2159 if (!node) {
2160 dev_err(dev, "could not find device info\n");
2161 return -ENODEV;
2162 }
2163
2164 /* Allocate a new NETCP device instance */
2165 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2166 if (!netcp_device)
2167 return -ENOMEM;
2168
2169 pm_runtime_enable(&pdev->dev);
2170 ret = pm_runtime_get_sync(&pdev->dev);
2171 if (ret < 0) {
2172 dev_err(dev, "Failed to enable NETCP power-domain\n");
2173 pm_runtime_disable(&pdev->dev);
2174 return ret;
2175 }
2176
2177 /* Initialize the NETCP device instance */
2178 INIT_LIST_HEAD(&netcp_device->interface_head);
2179 INIT_LIST_HEAD(&netcp_device->modpriv_head);
2180 netcp_device->device = dev;
2181 platform_set_drvdata(pdev, netcp_device);
2182
2183 /* create interfaces */
2184 interfaces = of_get_child_by_name(node, "netcp-interfaces");
2185 if (!interfaces) {
2186 dev_err(dev, "could not find netcp-interfaces node\n");
2187 ret = -ENODEV;
2188 goto probe_quit;
2189 }
2190
2191 for_each_available_child_of_node(interfaces, child) {
2192 ret = netcp_create_interface(netcp_device, child);
2193 if (ret) {
2194 dev_err(dev, "could not create interface(%pOFn)\n",
2195 child);
2196 goto probe_quit_interface;
2197 }
2198 }
2199
2200 of_node_put(interfaces);
2201
2202 /* Add the device instance to the list */
2203 list_add_tail(&netcp_device->device_list, &netcp_devices);
2204
2205 /* Probe & attach any modules already registered */
2206 mutex_lock(&netcp_modules_lock);
2207 for_each_netcp_module(module) {
2208 ret = netcp_module_probe(netcp_device, module);
2209 if (ret < 0)
2210 dev_err(dev, "module(%s) probe failed\n", module->name);
2211 }
2212 mutex_unlock(&netcp_modules_lock);
2213 return 0;
2214
2215probe_quit_interface:
2216 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2217 &netcp_device->interface_head,
2218 interface_list) {
2219 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2220 }
2221
2222 of_node_put(interfaces);
2223
2224probe_quit:
2225 pm_runtime_put_sync(&pdev->dev);
2226 pm_runtime_disable(&pdev->dev);
2227 platform_set_drvdata(pdev, NULL);
2228 return ret;
2229}
2230
2231static void netcp_remove(struct platform_device *pdev)
2232{
2233 struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2234 struct netcp_intf *netcp_intf, *netcp_tmp;
2235 struct netcp_inst_modpriv *inst_modpriv, *tmp;
2236 struct netcp_module *module;
2237
2238 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2239 inst_list) {
2240 module = inst_modpriv->netcp_module;
2241 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2242 module->remove(netcp_device, inst_modpriv->module_priv);
2243 list_del(&inst_modpriv->inst_list);
2244 }
2245
2246 /* now that all modules are removed, clean up the interfaces */
2247 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2248 &netcp_device->interface_head,
2249 interface_list) {
2250 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2251 }
2252
2253 WARN(!list_empty(&netcp_device->interface_head),
2254 "%s interface list not empty!\n", pdev->name);
2255
2256 pm_runtime_put_sync(&pdev->dev);
2257 pm_runtime_disable(&pdev->dev);
2258 platform_set_drvdata(pdev, NULL);
2259}
2260
2261static const struct of_device_id of_match[] = {
2262 { .compatible = "ti,netcp-1.0", },
2263 {},
2264};
2265MODULE_DEVICE_TABLE(of, of_match);
2266
2267static struct platform_driver netcp_driver = {
2268 .driver = {
2269 .name = "netcp-1.0",
2270 .of_match_table = of_match,
2271 },
2272 .probe = netcp_probe,
2273 .remove = netcp_remove,
2274};
2275module_platform_driver(netcp_driver);
2276
2277MODULE_LICENSE("GPL v2");
2278MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2279MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
1/*
2 * Keystone NetCP Core driver
3 *
4 * Copyright (C) 2014 Texas Instruments Incorporated
5 * Authors: Sandeep Nair <sandeep_n@ti.com>
6 * Sandeep Paulraj <s-paulraj@ti.com>
7 * Cyril Chemparathy <cyril@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * Murali Karicheri <m-karicheri2@ti.com>
10 * Wingman Kwok <w-kwok2@ti.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation version 2.
15 *
16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17 * kind, whether express or implied; without even the implied warranty
18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22#include <linux/io.h>
23#include <linux/module.h>
24#include <linux/of_net.h>
25#include <linux/of_address.h>
26#include <linux/if_vlan.h>
27#include <linux/pm_runtime.h>
28#include <linux/platform_device.h>
29#include <linux/soc/ti/knav_qmss.h>
30#include <linux/soc/ti/knav_dma.h>
31
32#include "netcp.h"
33
34#define NETCP_SOP_OFFSET (NET_IP_ALIGN + NET_SKB_PAD)
35#define NETCP_NAPI_WEIGHT 64
36#define NETCP_TX_TIMEOUT (5 * HZ)
37#define NETCP_PACKET_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN)
38#define NETCP_MIN_PACKET_SIZE ETH_ZLEN
39#define NETCP_MAX_MCAST_ADDR 16
40
41#define NETCP_EFUSE_REG_INDEX 0
42
43#define NETCP_MOD_PROBE_SKIPPED 1
44#define NETCP_MOD_PROBE_FAILED 2
45
46#define NETCP_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55#define NETCP_EFUSE_ADDR_SWAP 2
56
57#define knav_queue_get_id(q) knav_queue_device_control(q, \
58 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60#define knav_queue_enable_notify(q) knav_queue_device_control(q, \
61 KNAV_QUEUE_ENABLE_NOTIFY, \
62 (unsigned long)NULL)
63
64#define knav_queue_disable_notify(q) knav_queue_device_control(q, \
65 KNAV_QUEUE_DISABLE_NOTIFY, \
66 (unsigned long)NULL)
67
68#define knav_queue_get_count(q) knav_queue_device_control(q, \
69 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71#define for_each_netcp_module(module) \
72 list_for_each_entry(module, &netcp_modules, module_list)
73
74#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75 list_for_each_entry(inst_modpriv, \
76 &((netcp_device)->modpriv_head), inst_list)
77
78#define for_each_module(netcp, intf_modpriv) \
79 list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81/* Module management structures */
82struct netcp_device {
83 struct list_head device_list;
84 struct list_head interface_head;
85 struct list_head modpriv_head;
86 struct device *device;
87};
88
89struct netcp_inst_modpriv {
90 struct netcp_device *netcp_device;
91 struct netcp_module *netcp_module;
92 struct list_head inst_list;
93 void *module_priv;
94};
95
96struct netcp_intf_modpriv {
97 struct netcp_intf *netcp_priv;
98 struct netcp_module *netcp_module;
99 struct list_head intf_list;
100 void *module_priv;
101};
102
103static LIST_HEAD(netcp_devices);
104static LIST_HEAD(netcp_modules);
105static DEFINE_MUTEX(netcp_modules_lock);
106
107static int netcp_debug_level = -1;
108module_param(netcp_debug_level, int, 0);
109MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110
111/* Helper functions - Get/Set */
112static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
113 struct knav_dma_desc *desc)
114{
115 *buff_len = le32_to_cpu(desc->buff_len);
116 *buff = le32_to_cpu(desc->buff);
117 *ndesc = le32_to_cpu(desc->next_desc);
118}
119
120static u32 get_sw_data(int index, struct knav_dma_desc *desc)
121{
122 /* No Endian conversion needed as this data is untouched by hw */
123 return desc->sw_data[index];
124}
125
126/* use these macros to get sw data */
127#define GET_SW_DATA0(desc) get_sw_data(0, desc)
128#define GET_SW_DATA1(desc) get_sw_data(1, desc)
129#define GET_SW_DATA2(desc) get_sw_data(2, desc)
130#define GET_SW_DATA3(desc) get_sw_data(3, desc)
131
132static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
133 struct knav_dma_desc *desc)
134{
135 *buff = le32_to_cpu(desc->orig_buff);
136 *buff_len = le32_to_cpu(desc->orig_len);
137}
138
139static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
140{
141 int i;
142
143 for (i = 0; i < num_words; i++)
144 words[i] = le32_to_cpu(desc[i]);
145}
146
147static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
148 struct knav_dma_desc *desc)
149{
150 desc->buff_len = cpu_to_le32(buff_len);
151 desc->buff = cpu_to_le32(buff);
152 desc->next_desc = cpu_to_le32(ndesc);
153}
154
155static void set_desc_info(u32 desc_info, u32 pkt_info,
156 struct knav_dma_desc *desc)
157{
158 desc->desc_info = cpu_to_le32(desc_info);
159 desc->packet_info = cpu_to_le32(pkt_info);
160}
161
162static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
163{
164 /* No Endian conversion needed as this data is untouched by hw */
165 desc->sw_data[index] = data;
166}
167
168/* use these macros to set sw data */
169#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
170#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
171#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
172#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
173
174static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
175 struct knav_dma_desc *desc)
176{
177 desc->orig_buff = cpu_to_le32(buff);
178 desc->orig_len = cpu_to_le32(buff_len);
179}
180
181static void set_words(u32 *words, int num_words, __le32 *desc)
182{
183 int i;
184
185 for (i = 0; i < num_words; i++)
186 desc[i] = cpu_to_le32(words[i]);
187}
188
189/* Read the e-fuse value as 32 bit values to be endian independent */
190static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
191{
192 unsigned int addr0, addr1;
193
194 addr1 = readl(efuse_mac + 4);
195 addr0 = readl(efuse_mac);
196
197 switch (swap) {
198 case NETCP_EFUSE_ADDR_SWAP:
199 addr0 = addr1;
200 addr1 = readl(efuse_mac);
201 break;
202 default:
203 break;
204 }
205
206 x[0] = (addr1 & 0x0000ff00) >> 8;
207 x[1] = addr1 & 0x000000ff;
208 x[2] = (addr0 & 0xff000000) >> 24;
209 x[3] = (addr0 & 0x00ff0000) >> 16;
210 x[4] = (addr0 & 0x0000ff00) >> 8;
211 x[5] = addr0 & 0x000000ff;
212
213 return 0;
214}
215
216static const char *netcp_node_name(struct device_node *node)
217{
218 const char *name;
219
220 if (of_property_read_string(node, "label", &name) < 0)
221 name = node->name;
222 if (!name)
223 name = "unknown";
224 return name;
225}
226
227/* Module management routines */
228static int netcp_register_interface(struct netcp_intf *netcp)
229{
230 int ret;
231
232 ret = register_netdev(netcp->ndev);
233 if (!ret)
234 netcp->netdev_registered = true;
235 return ret;
236}
237
238static int netcp_module_probe(struct netcp_device *netcp_device,
239 struct netcp_module *module)
240{
241 struct device *dev = netcp_device->device;
242 struct device_node *devices, *interface, *node = dev->of_node;
243 struct device_node *child;
244 struct netcp_inst_modpriv *inst_modpriv;
245 struct netcp_intf *netcp_intf;
246 struct netcp_module *tmp;
247 bool primary_module_registered = false;
248 int ret;
249
250 /* Find this module in the sub-tree for this device */
251 devices = of_get_child_by_name(node, "netcp-devices");
252 if (!devices) {
253 dev_err(dev, "could not find netcp-devices node\n");
254 return NETCP_MOD_PROBE_SKIPPED;
255 }
256
257 for_each_available_child_of_node(devices, child) {
258 const char *name = netcp_node_name(child);
259
260 if (!strcasecmp(module->name, name))
261 break;
262 }
263
264 of_node_put(devices);
265 /* If module not used for this device, skip it */
266 if (!child) {
267 dev_warn(dev, "module(%s) not used for device\n", module->name);
268 return NETCP_MOD_PROBE_SKIPPED;
269 }
270
271 inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
272 if (!inst_modpriv) {
273 of_node_put(child);
274 return -ENOMEM;
275 }
276
277 inst_modpriv->netcp_device = netcp_device;
278 inst_modpriv->netcp_module = module;
279 list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
280
281 ret = module->probe(netcp_device, dev, child,
282 &inst_modpriv->module_priv);
283 of_node_put(child);
284 if (ret) {
285 dev_err(dev, "Probe of module(%s) failed with %d\n",
286 module->name, ret);
287 list_del(&inst_modpriv->inst_list);
288 devm_kfree(dev, inst_modpriv);
289 return NETCP_MOD_PROBE_FAILED;
290 }
291
292 /* Attach modules only if the primary module is probed */
293 for_each_netcp_module(tmp) {
294 if (tmp->primary)
295 primary_module_registered = true;
296 }
297
298 if (!primary_module_registered)
299 return 0;
300
301 /* Attach module to interfaces */
302 list_for_each_entry(netcp_intf, &netcp_device->interface_head,
303 interface_list) {
304 struct netcp_intf_modpriv *intf_modpriv;
305
306 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
307 GFP_KERNEL);
308 if (!intf_modpriv)
309 return -ENOMEM;
310
311 interface = of_parse_phandle(netcp_intf->node_interface,
312 module->name, 0);
313
314 if (!interface) {
315 devm_kfree(dev, intf_modpriv);
316 continue;
317 }
318
319 intf_modpriv->netcp_priv = netcp_intf;
320 intf_modpriv->netcp_module = module;
321 list_add_tail(&intf_modpriv->intf_list,
322 &netcp_intf->module_head);
323
324 ret = module->attach(inst_modpriv->module_priv,
325 netcp_intf->ndev, interface,
326 &intf_modpriv->module_priv);
327 of_node_put(interface);
328 if (ret) {
329 dev_dbg(dev, "Attach of module %s declined with %d\n",
330 module->name, ret);
331 list_del(&intf_modpriv->intf_list);
332 devm_kfree(dev, intf_modpriv);
333 continue;
334 }
335 }
336
337 /* Now register the interface with netdev */
338 list_for_each_entry(netcp_intf,
339 &netcp_device->interface_head,
340 interface_list) {
341 /* If interface not registered then register now */
342 if (!netcp_intf->netdev_registered) {
343 ret = netcp_register_interface(netcp_intf);
344 if (ret)
345 return -ENODEV;
346 }
347 }
348 return 0;
349}
350
351int netcp_register_module(struct netcp_module *module)
352{
353 struct netcp_device *netcp_device;
354 struct netcp_module *tmp;
355 int ret;
356
357 if (!module->name) {
358 WARN(1, "error registering netcp module: no name\n");
359 return -EINVAL;
360 }
361
362 if (!module->probe) {
363 WARN(1, "error registering netcp module: no probe\n");
364 return -EINVAL;
365 }
366
367 mutex_lock(&netcp_modules_lock);
368
369 for_each_netcp_module(tmp) {
370 if (!strcasecmp(tmp->name, module->name)) {
371 mutex_unlock(&netcp_modules_lock);
372 return -EEXIST;
373 }
374 }
375 list_add_tail(&module->module_list, &netcp_modules);
376
377 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
378 ret = netcp_module_probe(netcp_device, module);
379 if (ret < 0)
380 goto fail;
381 }
382 mutex_unlock(&netcp_modules_lock);
383 return 0;
384
385fail:
386 mutex_unlock(&netcp_modules_lock);
387 netcp_unregister_module(module);
388 return ret;
389}
390EXPORT_SYMBOL_GPL(netcp_register_module);
391
392static void netcp_release_module(struct netcp_device *netcp_device,
393 struct netcp_module *module)
394{
395 struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
396 struct netcp_intf *netcp_intf, *netcp_tmp;
397 struct device *dev = netcp_device->device;
398
399 /* Release the module from each interface */
400 list_for_each_entry_safe(netcp_intf, netcp_tmp,
401 &netcp_device->interface_head,
402 interface_list) {
403 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
404
405 list_for_each_entry_safe(intf_modpriv, intf_tmp,
406 &netcp_intf->module_head,
407 intf_list) {
408 if (intf_modpriv->netcp_module == module) {
409 module->release(intf_modpriv->module_priv);
410 list_del(&intf_modpriv->intf_list);
411 devm_kfree(dev, intf_modpriv);
412 break;
413 }
414 }
415 }
416
417 /* Remove the module from each instance */
418 list_for_each_entry_safe(inst_modpriv, inst_tmp,
419 &netcp_device->modpriv_head, inst_list) {
420 if (inst_modpriv->netcp_module == module) {
421 module->remove(netcp_device,
422 inst_modpriv->module_priv);
423 list_del(&inst_modpriv->inst_list);
424 devm_kfree(dev, inst_modpriv);
425 break;
426 }
427 }
428}
429
430void netcp_unregister_module(struct netcp_module *module)
431{
432 struct netcp_device *netcp_device;
433 struct netcp_module *module_tmp;
434
435 mutex_lock(&netcp_modules_lock);
436
437 list_for_each_entry(netcp_device, &netcp_devices, device_list) {
438 netcp_release_module(netcp_device, module);
439 }
440
441 /* Remove the module from the module list */
442 for_each_netcp_module(module_tmp) {
443 if (module == module_tmp) {
444 list_del(&module->module_list);
445 break;
446 }
447 }
448
449 mutex_unlock(&netcp_modules_lock);
450}
451EXPORT_SYMBOL_GPL(netcp_unregister_module);
452
453void *netcp_module_get_intf_data(struct netcp_module *module,
454 struct netcp_intf *intf)
455{
456 struct netcp_intf_modpriv *intf_modpriv;
457
458 list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
459 if (intf_modpriv->netcp_module == module)
460 return intf_modpriv->module_priv;
461 return NULL;
462}
463EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
464
465/* Module TX and RX Hook management */
466struct netcp_hook_list {
467 struct list_head list;
468 netcp_hook_rtn *hook_rtn;
469 void *hook_data;
470 int order;
471};
472
473int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
474 netcp_hook_rtn *hook_rtn, void *hook_data)
475{
476 struct netcp_hook_list *entry;
477 struct netcp_hook_list *next;
478 unsigned long flags;
479
480 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
481 if (!entry)
482 return -ENOMEM;
483
484 entry->hook_rtn = hook_rtn;
485 entry->hook_data = hook_data;
486 entry->order = order;
487
488 spin_lock_irqsave(&netcp_priv->lock, flags);
489 list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
490 if (next->order > order)
491 break;
492 }
493 __list_add(&entry->list, next->list.prev, &next->list);
494 spin_unlock_irqrestore(&netcp_priv->lock, flags);
495
496 return 0;
497}
498EXPORT_SYMBOL_GPL(netcp_register_txhook);
499
500int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
501 netcp_hook_rtn *hook_rtn, void *hook_data)
502{
503 struct netcp_hook_list *next, *n;
504 unsigned long flags;
505
506 spin_lock_irqsave(&netcp_priv->lock, flags);
507 list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
508 if ((next->order == order) &&
509 (next->hook_rtn == hook_rtn) &&
510 (next->hook_data == hook_data)) {
511 list_del(&next->list);
512 spin_unlock_irqrestore(&netcp_priv->lock, flags);
513 devm_kfree(netcp_priv->dev, next);
514 return 0;
515 }
516 }
517 spin_unlock_irqrestore(&netcp_priv->lock, flags);
518 return -ENOENT;
519}
520EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
521
522int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
523 netcp_hook_rtn *hook_rtn, void *hook_data)
524{
525 struct netcp_hook_list *entry;
526 struct netcp_hook_list *next;
527 unsigned long flags;
528
529 entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
530 if (!entry)
531 return -ENOMEM;
532
533 entry->hook_rtn = hook_rtn;
534 entry->hook_data = hook_data;
535 entry->order = order;
536
537 spin_lock_irqsave(&netcp_priv->lock, flags);
538 list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
539 if (next->order > order)
540 break;
541 }
542 __list_add(&entry->list, next->list.prev, &next->list);
543 spin_unlock_irqrestore(&netcp_priv->lock, flags);
544
545 return 0;
546}
547
548int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
549 netcp_hook_rtn *hook_rtn, void *hook_data)
550{
551 struct netcp_hook_list *next, *n;
552 unsigned long flags;
553
554 spin_lock_irqsave(&netcp_priv->lock, flags);
555 list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
556 if ((next->order == order) &&
557 (next->hook_rtn == hook_rtn) &&
558 (next->hook_data == hook_data)) {
559 list_del(&next->list);
560 spin_unlock_irqrestore(&netcp_priv->lock, flags);
561 devm_kfree(netcp_priv->dev, next);
562 return 0;
563 }
564 }
565 spin_unlock_irqrestore(&netcp_priv->lock, flags);
566
567 return -ENOENT;
568}
569
570static void netcp_frag_free(bool is_frag, void *ptr)
571{
572 if (is_frag)
573 skb_free_frag(ptr);
574 else
575 kfree(ptr);
576}
577
578static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
579 struct knav_dma_desc *desc)
580{
581 struct knav_dma_desc *ndesc;
582 dma_addr_t dma_desc, dma_buf;
583 unsigned int buf_len, dma_sz = sizeof(*ndesc);
584 void *buf_ptr;
585 u32 tmp;
586
587 get_words(&dma_desc, 1, &desc->next_desc);
588
589 while (dma_desc) {
590 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
591 if (unlikely(!ndesc)) {
592 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
593 break;
594 }
595 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
596 /* warning!!!! We are retrieving the virtual ptr in the sw_data
597 * field as a 32bit value. Will not work on 64bit machines
598 */
599 buf_ptr = (void *)GET_SW_DATA0(ndesc);
600 buf_len = (int)GET_SW_DATA1(desc);
601 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
602 __free_page(buf_ptr);
603 knav_pool_desc_put(netcp->rx_pool, desc);
604 }
605 /* warning!!!! We are retrieving the virtual ptr in the sw_data
606 * field as a 32bit value. Will not work on 64bit machines
607 */
608 buf_ptr = (void *)GET_SW_DATA0(desc);
609 buf_len = (int)GET_SW_DATA1(desc);
610
611 if (buf_ptr)
612 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
613 knav_pool_desc_put(netcp->rx_pool, desc);
614}
615
616static void netcp_empty_rx_queue(struct netcp_intf *netcp)
617{
618 struct knav_dma_desc *desc;
619 unsigned int dma_sz;
620 dma_addr_t dma;
621
622 for (; ;) {
623 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
624 if (!dma)
625 break;
626
627 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
628 if (unlikely(!desc)) {
629 dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
630 __func__);
631 netcp->ndev->stats.rx_errors++;
632 continue;
633 }
634 netcp_free_rx_desc_chain(netcp, desc);
635 netcp->ndev->stats.rx_dropped++;
636 }
637}
638
639static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
640{
641 unsigned int dma_sz, buf_len, org_buf_len;
642 struct knav_dma_desc *desc, *ndesc;
643 unsigned int pkt_sz = 0, accum_sz;
644 struct netcp_hook_list *rx_hook;
645 dma_addr_t dma_desc, dma_buff;
646 struct netcp_packet p_info;
647 struct sk_buff *skb;
648 void *org_buf_ptr;
649
650 dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
651 if (!dma_desc)
652 return -1;
653
654 desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
655 if (unlikely(!desc)) {
656 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
657 return 0;
658 }
659
660 get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
661 /* warning!!!! We are retrieving the virtual ptr in the sw_data
662 * field as a 32bit value. Will not work on 64bit machines
663 */
664 org_buf_ptr = (void *)GET_SW_DATA0(desc);
665 org_buf_len = (int)GET_SW_DATA1(desc);
666
667 if (unlikely(!org_buf_ptr)) {
668 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
669 goto free_desc;
670 }
671
672 pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
673 accum_sz = buf_len;
674 dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
675
676 /* Build a new sk_buff for the primary buffer */
677 skb = build_skb(org_buf_ptr, org_buf_len);
678 if (unlikely(!skb)) {
679 dev_err(netcp->ndev_dev, "build_skb() failed\n");
680 goto free_desc;
681 }
682
683 /* update data, tail and len */
684 skb_reserve(skb, NETCP_SOP_OFFSET);
685 __skb_put(skb, buf_len);
686
687 /* Fill in the page fragment list */
688 while (dma_desc) {
689 struct page *page;
690
691 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
692 if (unlikely(!ndesc)) {
693 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
694 goto free_desc;
695 }
696
697 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
698 /* warning!!!! We are retrieving the virtual ptr in the sw_data
699 * field as a 32bit value. Will not work on 64bit machines
700 */
701 page = (struct page *)GET_SW_DATA0(desc);
702
703 if (likely(dma_buff && buf_len && page)) {
704 dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
705 DMA_FROM_DEVICE);
706 } else {
707 dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
708 &dma_buff, buf_len, page);
709 goto free_desc;
710 }
711
712 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
713 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
714 accum_sz += buf_len;
715
716 /* Free the descriptor */
717 knav_pool_desc_put(netcp->rx_pool, ndesc);
718 }
719
720 /* Free the primary descriptor */
721 knav_pool_desc_put(netcp->rx_pool, desc);
722
723 /* check for packet len and warn */
724 if (unlikely(pkt_sz != accum_sz))
725 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
726 pkt_sz, accum_sz);
727
728 /* Remove ethernet FCS from the packet */
729 __pskb_trim(skb, skb->len - ETH_FCS_LEN);
730
731 /* Call each of the RX hooks */
732 p_info.skb = skb;
733 p_info.rxtstamp_complete = false;
734 list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
735 int ret;
736
737 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
738 &p_info);
739 if (unlikely(ret)) {
740 dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
741 rx_hook->order, ret);
742 netcp->ndev->stats.rx_errors++;
743 dev_kfree_skb(skb);
744 return 0;
745 }
746 }
747
748 netcp->ndev->stats.rx_packets++;
749 netcp->ndev->stats.rx_bytes += skb->len;
750
751 /* push skb up the stack */
752 skb->protocol = eth_type_trans(skb, netcp->ndev);
753 netif_receive_skb(skb);
754 return 0;
755
756free_desc:
757 netcp_free_rx_desc_chain(netcp, desc);
758 netcp->ndev->stats.rx_errors++;
759 return 0;
760}
761
762static int netcp_process_rx_packets(struct netcp_intf *netcp,
763 unsigned int budget)
764{
765 int i;
766
767 for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
768 ;
769 return i;
770}
771
772/* Release descriptors and attached buffers from Rx FDQ */
773static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
774{
775 struct knav_dma_desc *desc;
776 unsigned int buf_len, dma_sz;
777 dma_addr_t dma;
778 void *buf_ptr;
779
780 /* Allocate descriptor */
781 while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
782 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
783 if (unlikely(!desc)) {
784 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
785 continue;
786 }
787
788 get_org_pkt_info(&dma, &buf_len, desc);
789 /* warning!!!! We are retrieving the virtual ptr in the sw_data
790 * field as a 32bit value. Will not work on 64bit machines
791 */
792 buf_ptr = (void *)GET_SW_DATA0(desc);
793
794 if (unlikely(!dma)) {
795 dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
796 knav_pool_desc_put(netcp->rx_pool, desc);
797 continue;
798 }
799
800 if (unlikely(!buf_ptr)) {
801 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
802 knav_pool_desc_put(netcp->rx_pool, desc);
803 continue;
804 }
805
806 if (fdq == 0) {
807 dma_unmap_single(netcp->dev, dma, buf_len,
808 DMA_FROM_DEVICE);
809 netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
810 } else {
811 dma_unmap_page(netcp->dev, dma, buf_len,
812 DMA_FROM_DEVICE);
813 __free_page(buf_ptr);
814 }
815
816 knav_pool_desc_put(netcp->rx_pool, desc);
817 }
818}
819
820static void netcp_rxpool_free(struct netcp_intf *netcp)
821{
822 int i;
823
824 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
825 !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
826 netcp_free_rx_buf(netcp, i);
827
828 if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
829 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
830 netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
831
832 knav_pool_destroy(netcp->rx_pool);
833 netcp->rx_pool = NULL;
834}
835
836static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
837{
838 struct knav_dma_desc *hwdesc;
839 unsigned int buf_len, dma_sz;
840 u32 desc_info, pkt_info;
841 struct page *page;
842 dma_addr_t dma;
843 void *bufptr;
844 u32 sw_data[2];
845
846 /* Allocate descriptor */
847 hwdesc = knav_pool_desc_get(netcp->rx_pool);
848 if (IS_ERR_OR_NULL(hwdesc)) {
849 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
850 return -ENOMEM;
851 }
852
853 if (likely(fdq == 0)) {
854 unsigned int primary_buf_len;
855 /* Allocate a primary receive queue entry */
856 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
857 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
858 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
859
860 bufptr = netdev_alloc_frag(primary_buf_len);
861 sw_data[1] = primary_buf_len;
862
863 if (unlikely(!bufptr)) {
864 dev_warn_ratelimited(netcp->ndev_dev,
865 "Primary RX buffer alloc failed\n");
866 goto fail;
867 }
868 dma = dma_map_single(netcp->dev, bufptr, buf_len,
869 DMA_TO_DEVICE);
870 if (unlikely(dma_mapping_error(netcp->dev, dma)))
871 goto fail;
872
873 /* warning!!!! We are saving the virtual ptr in the sw_data
874 * field as a 32bit value. Will not work on 64bit machines
875 */
876 sw_data[0] = (u32)bufptr;
877 } else {
878 /* Allocate a secondary receive queue entry */
879 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
880 if (unlikely(!page)) {
881 dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
882 goto fail;
883 }
884 buf_len = PAGE_SIZE;
885 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
886 /* warning!!!! We are saving the virtual ptr in the sw_data
887 * field as a 32bit value. Will not work on 64bit machines
888 */
889 sw_data[0] = (u32)page;
890 sw_data[1] = 0;
891 }
892
893 desc_info = KNAV_DMA_DESC_PS_INFO_IN_DESC;
894 desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
895 pkt_info = KNAV_DMA_DESC_HAS_EPIB;
896 pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
897 pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
898 KNAV_DMA_DESC_RETQ_SHIFT;
899 set_org_pkt_info(dma, buf_len, hwdesc);
900 SET_SW_DATA0(sw_data[0], hwdesc);
901 SET_SW_DATA1(sw_data[1], hwdesc);
902 set_desc_info(desc_info, pkt_info, hwdesc);
903
904 /* Push to FDQs */
905 knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
906 &dma_sz);
907 knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
908 return 0;
909
910fail:
911 knav_pool_desc_put(netcp->rx_pool, hwdesc);
912 return -ENOMEM;
913}
914
915/* Refill Rx FDQ with descriptors & attached buffers */
916static void netcp_rxpool_refill(struct netcp_intf *netcp)
917{
918 u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
919 int i, ret = 0;
920
921 /* Calculate the FDQ deficit and refill */
922 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
923 fdq_deficit[i] = netcp->rx_queue_depths[i] -
924 knav_queue_get_count(netcp->rx_fdq[i]);
925
926 while (fdq_deficit[i]-- && !ret)
927 ret = netcp_allocate_rx_buf(netcp, i);
928 } /* end for fdqs */
929}
930
931/* NAPI poll */
932static int netcp_rx_poll(struct napi_struct *napi, int budget)
933{
934 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
935 rx_napi);
936 unsigned int packets;
937
938 packets = netcp_process_rx_packets(netcp, budget);
939
940 netcp_rxpool_refill(netcp);
941 if (packets < budget) {
942 napi_complete(&netcp->rx_napi);
943 knav_queue_enable_notify(netcp->rx_queue);
944 }
945
946 return packets;
947}
948
949static void netcp_rx_notify(void *arg)
950{
951 struct netcp_intf *netcp = arg;
952
953 knav_queue_disable_notify(netcp->rx_queue);
954 napi_schedule(&netcp->rx_napi);
955}
956
957static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
958 struct knav_dma_desc *desc,
959 unsigned int desc_sz)
960{
961 struct knav_dma_desc *ndesc = desc;
962 dma_addr_t dma_desc, dma_buf;
963 unsigned int buf_len;
964
965 while (ndesc) {
966 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
967
968 if (dma_buf && buf_len)
969 dma_unmap_single(netcp->dev, dma_buf, buf_len,
970 DMA_TO_DEVICE);
971 else
972 dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
973 &dma_buf, buf_len);
974
975 knav_pool_desc_put(netcp->tx_pool, ndesc);
976 ndesc = NULL;
977 if (dma_desc) {
978 ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
979 desc_sz);
980 if (!ndesc)
981 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
982 }
983 }
984}
985
986static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
987 unsigned int budget)
988{
989 struct knav_dma_desc *desc;
990 struct sk_buff *skb;
991 unsigned int dma_sz;
992 dma_addr_t dma;
993 int pkts = 0;
994
995 while (budget--) {
996 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
997 if (!dma)
998 break;
999 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1000 if (unlikely(!desc)) {
1001 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1002 netcp->ndev->stats.tx_errors++;
1003 continue;
1004 }
1005
1006 /* warning!!!! We are retrieving the virtual ptr in the sw_data
1007 * field as a 32bit value. Will not work on 64bit machines
1008 */
1009 skb = (struct sk_buff *)GET_SW_DATA0(desc);
1010 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1011 if (!skb) {
1012 dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1013 netcp->ndev->stats.tx_errors++;
1014 continue;
1015 }
1016
1017 if (netif_subqueue_stopped(netcp->ndev, skb) &&
1018 netif_running(netcp->ndev) &&
1019 (knav_pool_count(netcp->tx_pool) >
1020 netcp->tx_resume_threshold)) {
1021 u16 subqueue = skb_get_queue_mapping(skb);
1022
1023 netif_wake_subqueue(netcp->ndev, subqueue);
1024 }
1025
1026 netcp->ndev->stats.tx_packets++;
1027 netcp->ndev->stats.tx_bytes += skb->len;
1028 dev_kfree_skb(skb);
1029 pkts++;
1030 }
1031 return pkts;
1032}
1033
1034static int netcp_tx_poll(struct napi_struct *napi, int budget)
1035{
1036 int packets;
1037 struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1038 tx_napi);
1039
1040 packets = netcp_process_tx_compl_packets(netcp, budget);
1041 if (packets < budget) {
1042 napi_complete(&netcp->tx_napi);
1043 knav_queue_enable_notify(netcp->tx_compl_q);
1044 }
1045
1046 return packets;
1047}
1048
1049static void netcp_tx_notify(void *arg)
1050{
1051 struct netcp_intf *netcp = arg;
1052
1053 knav_queue_disable_notify(netcp->tx_compl_q);
1054 napi_schedule(&netcp->tx_napi);
1055}
1056
1057static struct knav_dma_desc*
1058netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1059{
1060 struct knav_dma_desc *desc, *ndesc, *pdesc;
1061 unsigned int pkt_len = skb_headlen(skb);
1062 struct device *dev = netcp->dev;
1063 dma_addr_t dma_addr;
1064 unsigned int dma_sz;
1065 int i;
1066
1067 /* Map the linear buffer */
1068 dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1069 if (unlikely(dma_mapping_error(dev, dma_addr))) {
1070 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1071 return NULL;
1072 }
1073
1074 desc = knav_pool_desc_get(netcp->tx_pool);
1075 if (IS_ERR_OR_NULL(desc)) {
1076 dev_err(netcp->ndev_dev, "out of TX desc\n");
1077 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1078 return NULL;
1079 }
1080
1081 set_pkt_info(dma_addr, pkt_len, 0, desc);
1082 if (skb_is_nonlinear(skb)) {
1083 prefetchw(skb_shinfo(skb));
1084 } else {
1085 desc->next_desc = 0;
1086 goto upd_pkt_len;
1087 }
1088
1089 pdesc = desc;
1090
1091 /* Handle the case where skb is fragmented in pages */
1092 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1094 struct page *page = skb_frag_page(frag);
1095 u32 page_offset = frag->page_offset;
1096 u32 buf_len = skb_frag_size(frag);
1097 dma_addr_t desc_dma;
1098 u32 desc_dma_32;
1099 u32 pkt_info;
1100
1101 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1102 DMA_TO_DEVICE);
1103 if (unlikely(!dma_addr)) {
1104 dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1105 goto free_descs;
1106 }
1107
1108 ndesc = knav_pool_desc_get(netcp->tx_pool);
1109 if (IS_ERR_OR_NULL(ndesc)) {
1110 dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1111 dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1112 goto free_descs;
1113 }
1114
1115 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1116 pkt_info =
1117 (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1118 KNAV_DMA_DESC_RETQ_SHIFT;
1119 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1120 desc_dma_32 = (u32)desc_dma;
1121 set_words(&desc_dma_32, 1, &pdesc->next_desc);
1122 pkt_len += buf_len;
1123 if (pdesc != desc)
1124 knav_pool_desc_map(netcp->tx_pool, pdesc,
1125 sizeof(*pdesc), &desc_dma, &dma_sz);
1126 pdesc = ndesc;
1127 }
1128 if (pdesc != desc)
1129 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1130 &dma_addr, &dma_sz);
1131
1132 /* frag list based linkage is not supported for now. */
1133 if (skb_shinfo(skb)->frag_list) {
1134 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1135 goto free_descs;
1136 }
1137
1138upd_pkt_len:
1139 WARN_ON(pkt_len != skb->len);
1140
1141 pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1142 set_words(&pkt_len, 1, &desc->desc_info);
1143 return desc;
1144
1145free_descs:
1146 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1147 return NULL;
1148}
1149
1150static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1151 struct sk_buff *skb,
1152 struct knav_dma_desc *desc)
1153{
1154 struct netcp_tx_pipe *tx_pipe = NULL;
1155 struct netcp_hook_list *tx_hook;
1156 struct netcp_packet p_info;
1157 unsigned int dma_sz;
1158 dma_addr_t dma;
1159 u32 tmp = 0;
1160 int ret = 0;
1161
1162 p_info.netcp = netcp;
1163 p_info.skb = skb;
1164 p_info.tx_pipe = NULL;
1165 p_info.psdata_len = 0;
1166 p_info.ts_context = NULL;
1167 p_info.txtstamp_complete = NULL;
1168 p_info.epib = desc->epib;
1169 p_info.psdata = (u32 __force *)desc->psdata;
1170 memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1171
1172 /* Find out where to inject the packet for transmission */
1173 list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1174 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1175 &p_info);
1176 if (unlikely(ret != 0)) {
1177 dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1178 tx_hook->order, ret);
1179 ret = (ret < 0) ? ret : NETDEV_TX_OK;
1180 goto out;
1181 }
1182 }
1183
1184 /* Make sure some TX hook claimed the packet */
1185 tx_pipe = p_info.tx_pipe;
1186 if (!tx_pipe) {
1187 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1188 ret = -ENXIO;
1189 goto out;
1190 }
1191
1192 /* update descriptor */
1193 if (p_info.psdata_len) {
1194 /* psdata points to both native-endian and device-endian data */
1195 __le32 *psdata = (void __force *)p_info.psdata;
1196
1197 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1198 p_info.psdata_len);
1199 set_words(p_info.psdata, p_info.psdata_len, psdata);
1200 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1201 KNAV_DMA_DESC_PSLEN_SHIFT;
1202 }
1203
1204 tmp |= KNAV_DMA_DESC_HAS_EPIB |
1205 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1206 KNAV_DMA_DESC_RETQ_SHIFT);
1207
1208 if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1209 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1210 KNAV_DMA_DESC_PSFLAG_SHIFT);
1211 }
1212
1213 set_words(&tmp, 1, &desc->packet_info);
1214 /* warning!!!! We are saving the virtual ptr in the sw_data
1215 * field as a 32bit value. Will not work on 64bit machines
1216 */
1217 SET_SW_DATA0((u32)skb, desc);
1218
1219 if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1220 tmp = tx_pipe->switch_to_port;
1221 set_words(&tmp, 1, &desc->tag_info);
1222 }
1223
1224 /* submit packet descriptor */
1225 ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1226 &dma_sz);
1227 if (unlikely(ret)) {
1228 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1229 ret = -ENOMEM;
1230 goto out;
1231 }
1232 skb_tx_timestamp(skb);
1233 knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1234
1235out:
1236 return ret;
1237}
1238
1239/* Submit the packet */
1240static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1241{
1242 struct netcp_intf *netcp = netdev_priv(ndev);
1243 int subqueue = skb_get_queue_mapping(skb);
1244 struct knav_dma_desc *desc;
1245 int desc_count, ret = 0;
1246
1247 if (unlikely(skb->len <= 0)) {
1248 dev_kfree_skb(skb);
1249 return NETDEV_TX_OK;
1250 }
1251
1252 if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1253 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1254 if (ret < 0) {
1255 /* If we get here, the skb has already been dropped */
1256 dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1257 ret);
1258 ndev->stats.tx_dropped++;
1259 return ret;
1260 }
1261 skb->len = NETCP_MIN_PACKET_SIZE;
1262 }
1263
1264 desc = netcp_tx_map_skb(skb, netcp);
1265 if (unlikely(!desc)) {
1266 netif_stop_subqueue(ndev, subqueue);
1267 ret = -ENOBUFS;
1268 goto drop;
1269 }
1270
1271 ret = netcp_tx_submit_skb(netcp, skb, desc);
1272 if (ret)
1273 goto drop;
1274
1275 ndev->trans_start = jiffies;
1276
1277 /* Check Tx pool count & stop subqueue if needed */
1278 desc_count = knav_pool_count(netcp->tx_pool);
1279 if (desc_count < netcp->tx_pause_threshold) {
1280 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1281 netif_stop_subqueue(ndev, subqueue);
1282 }
1283 return NETDEV_TX_OK;
1284
1285drop:
1286 ndev->stats.tx_dropped++;
1287 if (desc)
1288 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1289 dev_kfree_skb(skb);
1290 return ret;
1291}
1292
1293int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1294{
1295 if (tx_pipe->dma_channel) {
1296 knav_dma_close_channel(tx_pipe->dma_channel);
1297 tx_pipe->dma_channel = NULL;
1298 }
1299 return 0;
1300}
1301EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1302
1303int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1304{
1305 struct device *dev = tx_pipe->netcp_device->device;
1306 struct knav_dma_cfg config;
1307 int ret = 0;
1308 u8 name[16];
1309
1310 memset(&config, 0, sizeof(config));
1311 config.direction = DMA_MEM_TO_DEV;
1312 config.u.tx.filt_einfo = false;
1313 config.u.tx.filt_pswords = false;
1314 config.u.tx.priority = DMA_PRIO_MED_L;
1315
1316 tx_pipe->dma_channel = knav_dma_open_channel(dev,
1317 tx_pipe->dma_chan_name, &config);
1318 if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1319 dev_err(dev, "failed opening tx chan(%s)\n",
1320 tx_pipe->dma_chan_name);
1321 goto err;
1322 }
1323
1324 snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1325 tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1326 KNAV_QUEUE_SHARED);
1327 if (IS_ERR(tx_pipe->dma_queue)) {
1328 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1329 name, ret);
1330 ret = PTR_ERR(tx_pipe->dma_queue);
1331 goto err;
1332 }
1333
1334 dev_dbg(dev, "opened tx pipe %s\n", name);
1335 return 0;
1336
1337err:
1338 if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1339 knav_dma_close_channel(tx_pipe->dma_channel);
1340 tx_pipe->dma_channel = NULL;
1341 return ret;
1342}
1343EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1344
1345int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1346 struct netcp_device *netcp_device,
1347 const char *dma_chan_name, unsigned int dma_queue_id)
1348{
1349 memset(tx_pipe, 0, sizeof(*tx_pipe));
1350 tx_pipe->netcp_device = netcp_device;
1351 tx_pipe->dma_chan_name = dma_chan_name;
1352 tx_pipe->dma_queue_id = dma_queue_id;
1353 return 0;
1354}
1355EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1356
1357static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1358 const u8 *addr,
1359 enum netcp_addr_type type)
1360{
1361 struct netcp_addr *naddr;
1362
1363 list_for_each_entry(naddr, &netcp->addr_list, node) {
1364 if (naddr->type != type)
1365 continue;
1366 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1367 continue;
1368 return naddr;
1369 }
1370
1371 return NULL;
1372}
1373
1374static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1375 const u8 *addr,
1376 enum netcp_addr_type type)
1377{
1378 struct netcp_addr *naddr;
1379
1380 naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1381 if (!naddr)
1382 return NULL;
1383
1384 naddr->type = type;
1385 naddr->flags = 0;
1386 naddr->netcp = netcp;
1387 if (addr)
1388 ether_addr_copy(naddr->addr, addr);
1389 else
1390 eth_zero_addr(naddr->addr);
1391 list_add_tail(&naddr->node, &netcp->addr_list);
1392
1393 return naddr;
1394}
1395
1396static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1397{
1398 list_del(&naddr->node);
1399 devm_kfree(netcp->dev, naddr);
1400}
1401
1402static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1403{
1404 struct netcp_addr *naddr;
1405
1406 list_for_each_entry(naddr, &netcp->addr_list, node)
1407 naddr->flags = 0;
1408}
1409
1410static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1411 enum netcp_addr_type type)
1412{
1413 struct netcp_addr *naddr;
1414
1415 naddr = netcp_addr_find(netcp, addr, type);
1416 if (naddr) {
1417 naddr->flags |= ADDR_VALID;
1418 return;
1419 }
1420
1421 naddr = netcp_addr_add(netcp, addr, type);
1422 if (!WARN_ON(!naddr))
1423 naddr->flags |= ADDR_NEW;
1424}
1425
1426static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1427{
1428 struct netcp_addr *naddr, *tmp;
1429 struct netcp_intf_modpriv *priv;
1430 struct netcp_module *module;
1431 int error;
1432
1433 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1434 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1435 continue;
1436 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1437 naddr->addr, naddr->type);
1438 for_each_module(netcp, priv) {
1439 module = priv->netcp_module;
1440 if (!module->del_addr)
1441 continue;
1442 error = module->del_addr(priv->module_priv,
1443 naddr);
1444 WARN_ON(error);
1445 }
1446 netcp_addr_del(netcp, naddr);
1447 }
1448}
1449
1450static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1451{
1452 struct netcp_addr *naddr, *tmp;
1453 struct netcp_intf_modpriv *priv;
1454 struct netcp_module *module;
1455 int error;
1456
1457 list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458 if (!(naddr->flags & ADDR_NEW))
1459 continue;
1460 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1461 naddr->addr, naddr->type);
1462
1463 for_each_module(netcp, priv) {
1464 module = priv->netcp_module;
1465 if (!module->add_addr)
1466 continue;
1467 error = module->add_addr(priv->module_priv, naddr);
1468 WARN_ON(error);
1469 }
1470 }
1471}
1472
1473static void netcp_set_rx_mode(struct net_device *ndev)
1474{
1475 struct netcp_intf *netcp = netdev_priv(ndev);
1476 struct netdev_hw_addr *ndev_addr;
1477 bool promisc;
1478
1479 promisc = (ndev->flags & IFF_PROMISC ||
1480 ndev->flags & IFF_ALLMULTI ||
1481 netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1482
1483 spin_lock(&netcp->lock);
1484 /* first clear all marks */
1485 netcp_addr_clear_mark(netcp);
1486
1487 /* next add new entries, mark existing ones */
1488 netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1489 for_each_dev_addr(ndev, ndev_addr)
1490 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1491 netdev_for_each_uc_addr(ndev_addr, ndev)
1492 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1493 netdev_for_each_mc_addr(ndev_addr, ndev)
1494 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1495
1496 if (promisc)
1497 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1498
1499 /* finally sweep and callout into modules */
1500 netcp_addr_sweep_del(netcp);
1501 netcp_addr_sweep_add(netcp);
1502 spin_unlock(&netcp->lock);
1503}
1504
1505static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1506{
1507 int i;
1508
1509 if (netcp->rx_channel) {
1510 knav_dma_close_channel(netcp->rx_channel);
1511 netcp->rx_channel = NULL;
1512 }
1513
1514 if (!IS_ERR_OR_NULL(netcp->rx_pool))
1515 netcp_rxpool_free(netcp);
1516
1517 if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1518 knav_queue_close(netcp->rx_queue);
1519 netcp->rx_queue = NULL;
1520 }
1521
1522 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1523 !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1524 knav_queue_close(netcp->rx_fdq[i]);
1525 netcp->rx_fdq[i] = NULL;
1526 }
1527
1528 if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1529 knav_queue_close(netcp->tx_compl_q);
1530 netcp->tx_compl_q = NULL;
1531 }
1532
1533 if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1534 knav_pool_destroy(netcp->tx_pool);
1535 netcp->tx_pool = NULL;
1536 }
1537}
1538
1539static int netcp_setup_navigator_resources(struct net_device *ndev)
1540{
1541 struct netcp_intf *netcp = netdev_priv(ndev);
1542 struct knav_queue_notify_config notify_cfg;
1543 struct knav_dma_cfg config;
1544 u32 last_fdq = 0;
1545 u8 name[16];
1546 int ret;
1547 int i;
1548
1549 /* Create Rx/Tx descriptor pools */
1550 snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1551 netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1552 netcp->rx_pool_region_id);
1553 if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1554 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1555 ret = PTR_ERR(netcp->rx_pool);
1556 goto fail;
1557 }
1558
1559 snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1560 netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1561 netcp->tx_pool_region_id);
1562 if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1563 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1564 ret = PTR_ERR(netcp->tx_pool);
1565 goto fail;
1566 }
1567
1568 /* open Tx completion queue */
1569 snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1570 netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1571 if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572 ret = PTR_ERR(netcp->tx_compl_q);
1573 goto fail;
1574 }
1575 netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1576
1577 /* Set notification for Tx completion */
1578 notify_cfg.fn = netcp_tx_notify;
1579 notify_cfg.fn_arg = netcp;
1580 ret = knav_queue_device_control(netcp->tx_compl_q,
1581 KNAV_QUEUE_SET_NOTIFIER,
1582 (unsigned long)¬ify_cfg);
1583 if (ret)
1584 goto fail;
1585
1586 knav_queue_disable_notify(netcp->tx_compl_q);
1587
1588 /* open Rx completion queue */
1589 snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1590 netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1591 if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1592 ret = PTR_ERR(netcp->rx_queue);
1593 goto fail;
1594 }
1595 netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1596
1597 /* Set notification for Rx completion */
1598 notify_cfg.fn = netcp_rx_notify;
1599 notify_cfg.fn_arg = netcp;
1600 ret = knav_queue_device_control(netcp->rx_queue,
1601 KNAV_QUEUE_SET_NOTIFIER,
1602 (unsigned long)¬ify_cfg);
1603 if (ret)
1604 goto fail;
1605
1606 knav_queue_disable_notify(netcp->rx_queue);
1607
1608 /* open Rx FDQs */
1609 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1610 ++i) {
1611 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1612 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1613 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1614 ret = PTR_ERR(netcp->rx_fdq[i]);
1615 goto fail;
1616 }
1617 }
1618
1619 memset(&config, 0, sizeof(config));
1620 config.direction = DMA_DEV_TO_MEM;
1621 config.u.rx.einfo_present = true;
1622 config.u.rx.psinfo_present = true;
1623 config.u.rx.err_mode = DMA_DROP;
1624 config.u.rx.desc_type = DMA_DESC_HOST;
1625 config.u.rx.psinfo_at_sop = false;
1626 config.u.rx.sop_offset = NETCP_SOP_OFFSET;
1627 config.u.rx.dst_q = netcp->rx_queue_id;
1628 config.u.rx.thresh = DMA_THRESH_NONE;
1629
1630 for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1631 if (netcp->rx_fdq[i])
1632 last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1633 config.u.rx.fdq[i] = last_fdq;
1634 }
1635
1636 netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1637 netcp->dma_chan_name, &config);
1638 if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1639 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1640 netcp->dma_chan_name);
1641 goto fail;
1642 }
1643
1644 dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1645 return 0;
1646
1647fail:
1648 netcp_free_navigator_resources(netcp);
1649 return ret;
1650}
1651
1652/* Open the device */
1653static int netcp_ndo_open(struct net_device *ndev)
1654{
1655 struct netcp_intf *netcp = netdev_priv(ndev);
1656 struct netcp_intf_modpriv *intf_modpriv;
1657 struct netcp_module *module;
1658 int ret;
1659
1660 netif_carrier_off(ndev);
1661 ret = netcp_setup_navigator_resources(ndev);
1662 if (ret) {
1663 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1664 goto fail;
1665 }
1666
1667 for_each_module(netcp, intf_modpriv) {
1668 module = intf_modpriv->netcp_module;
1669 if (module->open) {
1670 ret = module->open(intf_modpriv->module_priv, ndev);
1671 if (ret != 0) {
1672 dev_err(netcp->ndev_dev, "module open failed\n");
1673 goto fail_open;
1674 }
1675 }
1676 }
1677
1678 napi_enable(&netcp->rx_napi);
1679 napi_enable(&netcp->tx_napi);
1680 knav_queue_enable_notify(netcp->tx_compl_q);
1681 knav_queue_enable_notify(netcp->rx_queue);
1682 netcp_rxpool_refill(netcp);
1683 netif_tx_wake_all_queues(ndev);
1684 dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1685 return 0;
1686
1687fail_open:
1688 for_each_module(netcp, intf_modpriv) {
1689 module = intf_modpriv->netcp_module;
1690 if (module->close)
1691 module->close(intf_modpriv->module_priv, ndev);
1692 }
1693
1694fail:
1695 netcp_free_navigator_resources(netcp);
1696 return ret;
1697}
1698
1699/* Close the device */
1700static int netcp_ndo_stop(struct net_device *ndev)
1701{
1702 struct netcp_intf *netcp = netdev_priv(ndev);
1703 struct netcp_intf_modpriv *intf_modpriv;
1704 struct netcp_module *module;
1705 int err = 0;
1706
1707 netif_tx_stop_all_queues(ndev);
1708 netif_carrier_off(ndev);
1709 netcp_addr_clear_mark(netcp);
1710 netcp_addr_sweep_del(netcp);
1711 knav_queue_disable_notify(netcp->rx_queue);
1712 knav_queue_disable_notify(netcp->tx_compl_q);
1713 napi_disable(&netcp->rx_napi);
1714 napi_disable(&netcp->tx_napi);
1715
1716 for_each_module(netcp, intf_modpriv) {
1717 module = intf_modpriv->netcp_module;
1718 if (module->close) {
1719 err = module->close(intf_modpriv->module_priv, ndev);
1720 if (err != 0)
1721 dev_err(netcp->ndev_dev, "Close failed\n");
1722 }
1723 }
1724
1725 /* Recycle Rx descriptors from completion queue */
1726 netcp_empty_rx_queue(netcp);
1727
1728 /* Recycle Tx descriptors from completion queue */
1729 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1730
1731 if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1732 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1733 netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1734
1735 netcp_free_navigator_resources(netcp);
1736 dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1737 return 0;
1738}
1739
1740static int netcp_ndo_ioctl(struct net_device *ndev,
1741 struct ifreq *req, int cmd)
1742{
1743 struct netcp_intf *netcp = netdev_priv(ndev);
1744 struct netcp_intf_modpriv *intf_modpriv;
1745 struct netcp_module *module;
1746 int ret = -1, err = -EOPNOTSUPP;
1747
1748 if (!netif_running(ndev))
1749 return -EINVAL;
1750
1751 for_each_module(netcp, intf_modpriv) {
1752 module = intf_modpriv->netcp_module;
1753 if (!module->ioctl)
1754 continue;
1755
1756 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1757 if ((err < 0) && (err != -EOPNOTSUPP)) {
1758 ret = err;
1759 goto out;
1760 }
1761 if (err == 0)
1762 ret = err;
1763 }
1764
1765out:
1766 return (ret == 0) ? 0 : err;
1767}
1768
1769static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1770{
1771 struct netcp_intf *netcp = netdev_priv(ndev);
1772
1773 /* MTU < 68 is an error for IPv4 traffic */
1774 if ((new_mtu < 68) ||
1775 (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1776 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1777 return -EINVAL;
1778 }
1779
1780 ndev->mtu = new_mtu;
1781 return 0;
1782}
1783
1784static void netcp_ndo_tx_timeout(struct net_device *ndev)
1785{
1786 struct netcp_intf *netcp = netdev_priv(ndev);
1787 unsigned int descs = knav_pool_count(netcp->tx_pool);
1788
1789 dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1790 netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1791 ndev->trans_start = jiffies;
1792 netif_tx_wake_all_queues(ndev);
1793}
1794
1795static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1796{
1797 struct netcp_intf *netcp = netdev_priv(ndev);
1798 struct netcp_intf_modpriv *intf_modpriv;
1799 struct netcp_module *module;
1800 unsigned long flags;
1801 int err = 0;
1802
1803 dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1804
1805 spin_lock_irqsave(&netcp->lock, flags);
1806 for_each_module(netcp, intf_modpriv) {
1807 module = intf_modpriv->netcp_module;
1808 if ((module->add_vid) && (vid != 0)) {
1809 err = module->add_vid(intf_modpriv->module_priv, vid);
1810 if (err != 0) {
1811 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1812 vid);
1813 break;
1814 }
1815 }
1816 }
1817 spin_unlock_irqrestore(&netcp->lock, flags);
1818
1819 return err;
1820}
1821
1822static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1823{
1824 struct netcp_intf *netcp = netdev_priv(ndev);
1825 struct netcp_intf_modpriv *intf_modpriv;
1826 struct netcp_module *module;
1827 unsigned long flags;
1828 int err = 0;
1829
1830 dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1831
1832 spin_lock_irqsave(&netcp->lock, flags);
1833 for_each_module(netcp, intf_modpriv) {
1834 module = intf_modpriv->netcp_module;
1835 if (module->del_vid) {
1836 err = module->del_vid(intf_modpriv->module_priv, vid);
1837 if (err != 0) {
1838 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1839 vid);
1840 break;
1841 }
1842 }
1843 }
1844 spin_unlock_irqrestore(&netcp->lock, flags);
1845 return err;
1846}
1847
1848static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1849 void *accel_priv,
1850 select_queue_fallback_t fallback)
1851{
1852 return 0;
1853}
1854
1855static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1856 struct tc_to_netdev *tc)
1857{
1858 int i;
1859
1860 /* setup tc must be called under rtnl lock */
1861 ASSERT_RTNL();
1862
1863 if (tc->type != TC_SETUP_MQPRIO)
1864 return -EINVAL;
1865
1866 /* Sanity-check the number of traffic classes requested */
1867 if ((dev->real_num_tx_queues <= 1) ||
1868 (dev->real_num_tx_queues < tc->tc))
1869 return -EINVAL;
1870
1871 /* Configure traffic class to queue mappings */
1872 if (tc->tc) {
1873 netdev_set_num_tc(dev, tc->tc);
1874 for (i = 0; i < tc->tc; i++)
1875 netdev_set_tc_queue(dev, i, 1, i);
1876 } else {
1877 netdev_reset_tc(dev);
1878 }
1879
1880 return 0;
1881}
1882
1883static const struct net_device_ops netcp_netdev_ops = {
1884 .ndo_open = netcp_ndo_open,
1885 .ndo_stop = netcp_ndo_stop,
1886 .ndo_start_xmit = netcp_ndo_start_xmit,
1887 .ndo_set_rx_mode = netcp_set_rx_mode,
1888 .ndo_do_ioctl = netcp_ndo_ioctl,
1889 .ndo_change_mtu = netcp_ndo_change_mtu,
1890 .ndo_set_mac_address = eth_mac_addr,
1891 .ndo_validate_addr = eth_validate_addr,
1892 .ndo_vlan_rx_add_vid = netcp_rx_add_vid,
1893 .ndo_vlan_rx_kill_vid = netcp_rx_kill_vid,
1894 .ndo_tx_timeout = netcp_ndo_tx_timeout,
1895 .ndo_select_queue = netcp_select_queue,
1896 .ndo_setup_tc = netcp_setup_tc,
1897};
1898
1899static int netcp_create_interface(struct netcp_device *netcp_device,
1900 struct device_node *node_interface)
1901{
1902 struct device *dev = netcp_device->device;
1903 struct device_node *node = dev->of_node;
1904 struct netcp_intf *netcp;
1905 struct net_device *ndev;
1906 resource_size_t size;
1907 struct resource res;
1908 void __iomem *efuse = NULL;
1909 u32 efuse_mac = 0;
1910 const void *mac_addr;
1911 u8 efuse_mac_addr[6];
1912 u32 temp[2];
1913 int ret = 0;
1914
1915 ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1916 if (!ndev) {
1917 dev_err(dev, "Error allocating netdev\n");
1918 return -ENOMEM;
1919 }
1920
1921 ndev->features |= NETIF_F_SG;
1922 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1923 ndev->hw_features = ndev->features;
1924 ndev->vlan_features |= NETIF_F_SG;
1925
1926 netcp = netdev_priv(ndev);
1927 spin_lock_init(&netcp->lock);
1928 INIT_LIST_HEAD(&netcp->module_head);
1929 INIT_LIST_HEAD(&netcp->txhook_list_head);
1930 INIT_LIST_HEAD(&netcp->rxhook_list_head);
1931 INIT_LIST_HEAD(&netcp->addr_list);
1932 netcp->netcp_device = netcp_device;
1933 netcp->dev = netcp_device->device;
1934 netcp->ndev = ndev;
1935 netcp->ndev_dev = &ndev->dev;
1936 netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1937 netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1938 netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1939 netcp->node_interface = node_interface;
1940
1941 ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1942 if (efuse_mac) {
1943 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1944 dev_err(dev, "could not find efuse-mac reg resource\n");
1945 ret = -ENODEV;
1946 goto quit;
1947 }
1948 size = resource_size(&res);
1949
1950 if (!devm_request_mem_region(dev, res.start, size,
1951 dev_name(dev))) {
1952 dev_err(dev, "could not reserve resource\n");
1953 ret = -ENOMEM;
1954 goto quit;
1955 }
1956
1957 efuse = devm_ioremap_nocache(dev, res.start, size);
1958 if (!efuse) {
1959 dev_err(dev, "could not map resource\n");
1960 devm_release_mem_region(dev, res.start, size);
1961 ret = -ENOMEM;
1962 goto quit;
1963 }
1964
1965 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1966 if (is_valid_ether_addr(efuse_mac_addr))
1967 ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1968 else
1969 random_ether_addr(ndev->dev_addr);
1970
1971 devm_iounmap(dev, efuse);
1972 devm_release_mem_region(dev, res.start, size);
1973 } else {
1974 mac_addr = of_get_mac_address(node_interface);
1975 if (mac_addr)
1976 ether_addr_copy(ndev->dev_addr, mac_addr);
1977 else
1978 random_ether_addr(ndev->dev_addr);
1979 }
1980
1981 ret = of_property_read_string(node_interface, "rx-channel",
1982 &netcp->dma_chan_name);
1983 if (ret < 0) {
1984 dev_err(dev, "missing \"rx-channel\" parameter\n");
1985 ret = -ENODEV;
1986 goto quit;
1987 }
1988
1989 ret = of_property_read_u32(node_interface, "rx-queue",
1990 &netcp->rx_queue_id);
1991 if (ret < 0) {
1992 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1993 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1994 }
1995
1996 ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1997 netcp->rx_queue_depths,
1998 KNAV_DMA_FDQ_PER_CHAN);
1999 if (ret < 0) {
2000 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2001 netcp->rx_queue_depths[0] = 128;
2002 }
2003
2004 ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2005 if (ret < 0) {
2006 dev_err(dev, "missing \"rx-pool\" parameter\n");
2007 ret = -ENODEV;
2008 goto quit;
2009 }
2010 netcp->rx_pool_size = temp[0];
2011 netcp->rx_pool_region_id = temp[1];
2012
2013 ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2014 if (ret < 0) {
2015 dev_err(dev, "missing \"tx-pool\" parameter\n");
2016 ret = -ENODEV;
2017 goto quit;
2018 }
2019 netcp->tx_pool_size = temp[0];
2020 netcp->tx_pool_region_id = temp[1];
2021
2022 if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2023 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2024 MAX_SKB_FRAGS);
2025 ret = -ENODEV;
2026 goto quit;
2027 }
2028
2029 ret = of_property_read_u32(node_interface, "tx-completion-queue",
2030 &netcp->tx_compl_qid);
2031 if (ret < 0) {
2032 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2033 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2034 }
2035
2036 /* NAPI register */
2037 netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2038 netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2039
2040 /* Register the network device */
2041 ndev->dev_id = 0;
2042 ndev->watchdog_timeo = NETCP_TX_TIMEOUT;
2043 ndev->netdev_ops = &netcp_netdev_ops;
2044 SET_NETDEV_DEV(ndev, dev);
2045
2046 list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2047 return 0;
2048
2049quit:
2050 free_netdev(ndev);
2051 return ret;
2052}
2053
2054static void netcp_delete_interface(struct netcp_device *netcp_device,
2055 struct net_device *ndev)
2056{
2057 struct netcp_intf_modpriv *intf_modpriv, *tmp;
2058 struct netcp_intf *netcp = netdev_priv(ndev);
2059 struct netcp_module *module;
2060
2061 dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2062 ndev->name);
2063
2064 /* Notify each of the modules that the interface is going away */
2065 list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2066 intf_list) {
2067 module = intf_modpriv->netcp_module;
2068 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2069 module->name);
2070 if (module->release)
2071 module->release(intf_modpriv->module_priv);
2072 list_del(&intf_modpriv->intf_list);
2073 kfree(intf_modpriv);
2074 }
2075 WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2076 ndev->name);
2077
2078 list_del(&netcp->interface_list);
2079
2080 of_node_put(netcp->node_interface);
2081 unregister_netdev(ndev);
2082 netif_napi_del(&netcp->rx_napi);
2083 free_netdev(ndev);
2084}
2085
2086static int netcp_probe(struct platform_device *pdev)
2087{
2088 struct device_node *node = pdev->dev.of_node;
2089 struct netcp_intf *netcp_intf, *netcp_tmp;
2090 struct device_node *child, *interfaces;
2091 struct netcp_device *netcp_device;
2092 struct device *dev = &pdev->dev;
2093 int ret;
2094
2095 if (!node) {
2096 dev_err(dev, "could not find device info\n");
2097 return -ENODEV;
2098 }
2099
2100 /* Allocate a new NETCP device instance */
2101 netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2102 if (!netcp_device)
2103 return -ENOMEM;
2104
2105 pm_runtime_enable(&pdev->dev);
2106 ret = pm_runtime_get_sync(&pdev->dev);
2107 if (ret < 0) {
2108 dev_err(dev, "Failed to enable NETCP power-domain\n");
2109 pm_runtime_disable(&pdev->dev);
2110 return ret;
2111 }
2112
2113 /* Initialize the NETCP device instance */
2114 INIT_LIST_HEAD(&netcp_device->interface_head);
2115 INIT_LIST_HEAD(&netcp_device->modpriv_head);
2116 netcp_device->device = dev;
2117 platform_set_drvdata(pdev, netcp_device);
2118
2119 /* create interfaces */
2120 interfaces = of_get_child_by_name(node, "netcp-interfaces");
2121 if (!interfaces) {
2122 dev_err(dev, "could not find netcp-interfaces node\n");
2123 ret = -ENODEV;
2124 goto probe_quit;
2125 }
2126
2127 for_each_available_child_of_node(interfaces, child) {
2128 ret = netcp_create_interface(netcp_device, child);
2129 if (ret) {
2130 dev_err(dev, "could not create interface(%s)\n",
2131 child->name);
2132 goto probe_quit_interface;
2133 }
2134 }
2135
2136 /* Add the device instance to the list */
2137 list_add_tail(&netcp_device->device_list, &netcp_devices);
2138
2139 return 0;
2140
2141probe_quit_interface:
2142 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2143 &netcp_device->interface_head,
2144 interface_list) {
2145 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2146 }
2147
2148probe_quit:
2149 pm_runtime_put_sync(&pdev->dev);
2150 pm_runtime_disable(&pdev->dev);
2151 platform_set_drvdata(pdev, NULL);
2152 return ret;
2153}
2154
2155static int netcp_remove(struct platform_device *pdev)
2156{
2157 struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2158 struct netcp_intf *netcp_intf, *netcp_tmp;
2159 struct netcp_inst_modpriv *inst_modpriv, *tmp;
2160 struct netcp_module *module;
2161
2162 list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2163 inst_list) {
2164 module = inst_modpriv->netcp_module;
2165 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2166 module->remove(netcp_device, inst_modpriv->module_priv);
2167 list_del(&inst_modpriv->inst_list);
2168 kfree(inst_modpriv);
2169 }
2170
2171 /* now that all modules are removed, clean up the interfaces */
2172 list_for_each_entry_safe(netcp_intf, netcp_tmp,
2173 &netcp_device->interface_head,
2174 interface_list) {
2175 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2176 }
2177
2178 WARN(!list_empty(&netcp_device->interface_head),
2179 "%s interface list not empty!\n", pdev->name);
2180
2181 pm_runtime_put_sync(&pdev->dev);
2182 pm_runtime_disable(&pdev->dev);
2183 platform_set_drvdata(pdev, NULL);
2184 return 0;
2185}
2186
2187static const struct of_device_id of_match[] = {
2188 { .compatible = "ti,netcp-1.0", },
2189 {},
2190};
2191MODULE_DEVICE_TABLE(of, of_match);
2192
2193static struct platform_driver netcp_driver = {
2194 .driver = {
2195 .name = "netcp-1.0",
2196 .of_match_table = of_match,
2197 },
2198 .probe = netcp_probe,
2199 .remove = netcp_remove,
2200};
2201module_platform_driver(netcp_driver);
2202
2203MODULE_LICENSE("GPL v2");
2204MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2205MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");