Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Keystone NetCP Core driver
   4 *
   5 * Copyright (C) 2014 Texas Instruments Incorporated
   6 * Authors:	Sandeep Nair <sandeep_n@ti.com>
   7 *		Sandeep Paulraj <s-paulraj@ti.com>
   8 *		Cyril Chemparathy <cyril@ti.com>
   9 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
  10 *		Murali Karicheri <m-karicheri2@ti.com>
  11 *		Wingman Kwok <w-kwok2@ti.com>
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#include <linux/io.h>
  15#include <linux/module.h>
  16#include <linux/of_net.h>
  17#include <linux/of_address.h>
  18#include <linux/if_vlan.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/platform_device.h>
  21#include <linux/soc/ti/knav_qmss.h>
  22#include <linux/soc/ti/knav_dma.h>
  23
  24#include "netcp.h"
  25
  26#define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
 
  27#define NETCP_TX_TIMEOUT	(5 * HZ)
  28#define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
  29#define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
  30#define NETCP_MAX_MCAST_ADDR	16
  31
  32#define NETCP_EFUSE_REG_INDEX	0
  33
  34#define NETCP_MOD_PROBE_SKIPPED	1
  35#define NETCP_MOD_PROBE_FAILED	2
  36
  37#define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
  38		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
  39		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
  40		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
  41		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
  42		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
  43		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
  44		    NETIF_MSG_RX_STATUS)
  45
  46#define NETCP_EFUSE_ADDR_SWAP	2
  47
  48#define knav_queue_get_id(q)	knav_queue_device_control(q, \
  49				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  50
  51#define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
  52					KNAV_QUEUE_ENABLE_NOTIFY,	\
  53					(unsigned long)NULL)
  54
  55#define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
  56					KNAV_QUEUE_DISABLE_NOTIFY,	\
  57					(unsigned long)NULL)
  58
  59#define knav_queue_get_count(q)	knav_queue_device_control(q, \
  60				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  61
  62#define for_each_netcp_module(module)			\
  63	list_for_each_entry(module, &netcp_modules, module_list)
  64
  65#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  66	list_for_each_entry(inst_modpriv, \
  67		&((netcp_device)->modpriv_head), inst_list)
  68
  69#define for_each_module(netcp, intf_modpriv)			\
  70	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  71
  72/* Module management structures */
  73struct netcp_device {
  74	struct list_head	device_list;
  75	struct list_head	interface_head;
  76	struct list_head	modpriv_head;
  77	struct device		*device;
  78};
  79
  80struct netcp_inst_modpriv {
  81	struct netcp_device	*netcp_device;
  82	struct netcp_module	*netcp_module;
  83	struct list_head	inst_list;
  84	void			*module_priv;
  85};
  86
  87struct netcp_intf_modpriv {
  88	struct netcp_intf	*netcp_priv;
  89	struct netcp_module	*netcp_module;
  90	struct list_head	intf_list;
  91	void			*module_priv;
  92};
  93
  94struct netcp_tx_cb {
  95	void	*ts_context;
  96	void	(*txtstamp)(void *context, struct sk_buff *skb);
  97};
  98
  99static LIST_HEAD(netcp_devices);
 100static LIST_HEAD(netcp_modules);
 101static DEFINE_MUTEX(netcp_modules_lock);
 102
 103static int netcp_debug_level = -1;
 104module_param(netcp_debug_level, int, 0);
 105MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
 106
 107/* Helper functions - Get/Set */
 108static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
 109			 struct knav_dma_desc *desc)
 110{
 111	*buff_len = le32_to_cpu(desc->buff_len);
 112	*buff = le32_to_cpu(desc->buff);
 113	*ndesc = le32_to_cpu(desc->next_desc);
 114}
 115
 116static void get_desc_info(u32 *desc_info, u32 *pkt_info,
 117			  struct knav_dma_desc *desc)
 118{
 119	*desc_info = le32_to_cpu(desc->desc_info);
 120	*pkt_info = le32_to_cpu(desc->packet_info);
 121}
 122
 123static u32 get_sw_data(int index, struct knav_dma_desc *desc)
 124{
 125	/* No Endian conversion needed as this data is untouched by hw */
 126	return desc->sw_data[index];
 127}
 128
 129/* use these macros to get sw data */
 130#define GET_SW_DATA0(desc) get_sw_data(0, desc)
 131#define GET_SW_DATA1(desc) get_sw_data(1, desc)
 132#define GET_SW_DATA2(desc) get_sw_data(2, desc)
 133#define GET_SW_DATA3(desc) get_sw_data(3, desc)
 134
 135static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
 136			     struct knav_dma_desc *desc)
 137{
 138	*buff = le32_to_cpu(desc->orig_buff);
 139	*buff_len = le32_to_cpu(desc->orig_len);
 140}
 141
 142static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
 143{
 144	int i;
 145
 146	for (i = 0; i < num_words; i++)
 147		words[i] = le32_to_cpu(desc[i]);
 148}
 149
 150static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
 151			 struct knav_dma_desc *desc)
 152{
 153	desc->buff_len = cpu_to_le32(buff_len);
 154	desc->buff = cpu_to_le32(buff);
 155	desc->next_desc = cpu_to_le32(ndesc);
 156}
 157
 158static void set_desc_info(u32 desc_info, u32 pkt_info,
 159			  struct knav_dma_desc *desc)
 160{
 161	desc->desc_info = cpu_to_le32(desc_info);
 162	desc->packet_info = cpu_to_le32(pkt_info);
 163}
 164
 165static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
 166{
 167	/* No Endian conversion needed as this data is untouched by hw */
 168	desc->sw_data[index] = data;
 169}
 170
 171/* use these macros to set sw data */
 172#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
 173#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
 174#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
 175#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
 176
 177static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
 178			     struct knav_dma_desc *desc)
 179{
 180	desc->orig_buff = cpu_to_le32(buff);
 181	desc->orig_len = cpu_to_le32(buff_len);
 182}
 183
 184static void set_words(u32 *words, int num_words, __le32 *desc)
 185{
 186	int i;
 187
 188	for (i = 0; i < num_words; i++)
 189		desc[i] = cpu_to_le32(words[i]);
 190}
 191
 192/* Read the e-fuse value as 32 bit values to be endian independent */
 193static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
 194{
 195	unsigned int addr0, addr1;
 196
 197	addr1 = readl(efuse_mac + 4);
 198	addr0 = readl(efuse_mac);
 199
 200	switch (swap) {
 201	case NETCP_EFUSE_ADDR_SWAP:
 202		addr0 = addr1;
 203		addr1 = readl(efuse_mac);
 204		break;
 205	default:
 206		break;
 207	}
 208
 209	x[0] = (addr1 & 0x0000ff00) >> 8;
 210	x[1] = addr1 & 0x000000ff;
 211	x[2] = (addr0 & 0xff000000) >> 24;
 212	x[3] = (addr0 & 0x00ff0000) >> 16;
 213	x[4] = (addr0 & 0x0000ff00) >> 8;
 214	x[5] = addr0 & 0x000000ff;
 215
 216	return 0;
 217}
 218
 
 
 
 
 
 
 
 
 
 
 
 219/* Module management routines */
 220static int netcp_register_interface(struct netcp_intf *netcp)
 221{
 222	int ret;
 223
 224	ret = register_netdev(netcp->ndev);
 225	if (!ret)
 226		netcp->netdev_registered = true;
 227	return ret;
 228}
 229
 230static int netcp_module_probe(struct netcp_device *netcp_device,
 231			      struct netcp_module *module)
 232{
 233	struct device *dev = netcp_device->device;
 234	struct device_node *devices, *interface, *node = dev->of_node;
 235	struct device_node *child;
 236	struct netcp_inst_modpriv *inst_modpriv;
 237	struct netcp_intf *netcp_intf;
 238	struct netcp_module *tmp;
 239	bool primary_module_registered = false;
 240	int ret;
 241
 242	/* Find this module in the sub-tree for this device */
 243	devices = of_get_child_by_name(node, "netcp-devices");
 244	if (!devices) {
 245		dev_err(dev, "could not find netcp-devices node\n");
 246		return NETCP_MOD_PROBE_SKIPPED;
 247	}
 248
 249	for_each_available_child_of_node(devices, child) {
 250		const char *name;
 251		char node_name[32];
 252
 253		if (of_property_read_string(child, "label", &name) < 0) {
 254			snprintf(node_name, sizeof(node_name), "%pOFn", child);
 255			name = node_name;
 256		}
 257		if (!strcasecmp(module->name, name))
 258			break;
 259	}
 260
 261	of_node_put(devices);
 262	/* If module not used for this device, skip it */
 263	if (!child) {
 264		dev_warn(dev, "module(%s) not used for device\n", module->name);
 265		return NETCP_MOD_PROBE_SKIPPED;
 266	}
 267
 268	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
 269	if (!inst_modpriv) {
 270		of_node_put(child);
 271		return -ENOMEM;
 272	}
 273
 274	inst_modpriv->netcp_device = netcp_device;
 275	inst_modpriv->netcp_module = module;
 276	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
 277
 278	ret = module->probe(netcp_device, dev, child,
 279			    &inst_modpriv->module_priv);
 280	of_node_put(child);
 281	if (ret) {
 282		dev_err(dev, "Probe of module(%s) failed with %d\n",
 283			module->name, ret);
 284		list_del(&inst_modpriv->inst_list);
 285		devm_kfree(dev, inst_modpriv);
 286		return NETCP_MOD_PROBE_FAILED;
 287	}
 288
 289	/* Attach modules only if the primary module is probed */
 290	for_each_netcp_module(tmp) {
 291		if (tmp->primary)
 292			primary_module_registered = true;
 293	}
 294
 295	if (!primary_module_registered)
 296		return 0;
 297
 298	/* Attach module to interfaces */
 299	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
 300			    interface_list) {
 301		struct netcp_intf_modpriv *intf_modpriv;
 302
 303		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
 304					    GFP_KERNEL);
 305		if (!intf_modpriv)
 306			return -ENOMEM;
 307
 308		interface = of_parse_phandle(netcp_intf->node_interface,
 309					     module->name, 0);
 310
 311		if (!interface) {
 312			devm_kfree(dev, intf_modpriv);
 313			continue;
 314		}
 315
 316		intf_modpriv->netcp_priv = netcp_intf;
 317		intf_modpriv->netcp_module = module;
 318		list_add_tail(&intf_modpriv->intf_list,
 319			      &netcp_intf->module_head);
 320
 321		ret = module->attach(inst_modpriv->module_priv,
 322				     netcp_intf->ndev, interface,
 323				     &intf_modpriv->module_priv);
 324		of_node_put(interface);
 325		if (ret) {
 326			dev_dbg(dev, "Attach of module %s declined with %d\n",
 327				module->name, ret);
 328			list_del(&intf_modpriv->intf_list);
 329			devm_kfree(dev, intf_modpriv);
 330			continue;
 331		}
 332	}
 333
 334	/* Now register the interface with netdev */
 335	list_for_each_entry(netcp_intf,
 336			    &netcp_device->interface_head,
 337			    interface_list) {
 338		/* If interface not registered then register now */
 339		if (!netcp_intf->netdev_registered) {
 340			ret = netcp_register_interface(netcp_intf);
 341			if (ret)
 342				return -ENODEV;
 343		}
 344	}
 345	return 0;
 346}
 347
 348int netcp_register_module(struct netcp_module *module)
 349{
 350	struct netcp_device *netcp_device;
 351	struct netcp_module *tmp;
 352	int ret;
 353
 354	if (!module->name) {
 355		WARN(1, "error registering netcp module: no name\n");
 356		return -EINVAL;
 357	}
 358
 359	if (!module->probe) {
 360		WARN(1, "error registering netcp module: no probe\n");
 361		return -EINVAL;
 362	}
 363
 364	mutex_lock(&netcp_modules_lock);
 365
 366	for_each_netcp_module(tmp) {
 367		if (!strcasecmp(tmp->name, module->name)) {
 368			mutex_unlock(&netcp_modules_lock);
 369			return -EEXIST;
 370		}
 371	}
 372	list_add_tail(&module->module_list, &netcp_modules);
 373
 374	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 375		ret = netcp_module_probe(netcp_device, module);
 376		if (ret < 0)
 377			goto fail;
 378	}
 379	mutex_unlock(&netcp_modules_lock);
 380	return 0;
 381
 382fail:
 383	mutex_unlock(&netcp_modules_lock);
 384	netcp_unregister_module(module);
 385	return ret;
 386}
 387EXPORT_SYMBOL_GPL(netcp_register_module);
 388
 389static void netcp_release_module(struct netcp_device *netcp_device,
 390				 struct netcp_module *module)
 391{
 392	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
 393	struct netcp_intf *netcp_intf, *netcp_tmp;
 394	struct device *dev = netcp_device->device;
 395
 396	/* Release the module from each interface */
 397	list_for_each_entry_safe(netcp_intf, netcp_tmp,
 398				 &netcp_device->interface_head,
 399				 interface_list) {
 400		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
 401
 402		list_for_each_entry_safe(intf_modpriv, intf_tmp,
 403					 &netcp_intf->module_head,
 404					 intf_list) {
 405			if (intf_modpriv->netcp_module == module) {
 406				module->release(intf_modpriv->module_priv);
 407				list_del(&intf_modpriv->intf_list);
 408				devm_kfree(dev, intf_modpriv);
 409				break;
 410			}
 411		}
 412	}
 413
 414	/* Remove the module from each instance */
 415	list_for_each_entry_safe(inst_modpriv, inst_tmp,
 416				 &netcp_device->modpriv_head, inst_list) {
 417		if (inst_modpriv->netcp_module == module) {
 418			module->remove(netcp_device,
 419				       inst_modpriv->module_priv);
 420			list_del(&inst_modpriv->inst_list);
 421			devm_kfree(dev, inst_modpriv);
 422			break;
 423		}
 424	}
 425}
 426
 427void netcp_unregister_module(struct netcp_module *module)
 428{
 429	struct netcp_device *netcp_device;
 430	struct netcp_module *module_tmp;
 431
 432	mutex_lock(&netcp_modules_lock);
 433
 434	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 435		netcp_release_module(netcp_device, module);
 436	}
 437
 438	/* Remove the module from the module list */
 439	for_each_netcp_module(module_tmp) {
 440		if (module == module_tmp) {
 441			list_del(&module->module_list);
 442			break;
 443		}
 444	}
 445
 446	mutex_unlock(&netcp_modules_lock);
 447}
 448EXPORT_SYMBOL_GPL(netcp_unregister_module);
 449
 450void *netcp_module_get_intf_data(struct netcp_module *module,
 451				 struct netcp_intf *intf)
 452{
 453	struct netcp_intf_modpriv *intf_modpriv;
 454
 455	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
 456		if (intf_modpriv->netcp_module == module)
 457			return intf_modpriv->module_priv;
 458	return NULL;
 459}
 460EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
 461
 462/* Module TX and RX Hook management */
 463struct netcp_hook_list {
 464	struct list_head	 list;
 465	netcp_hook_rtn		*hook_rtn;
 466	void			*hook_data;
 467	int			 order;
 468};
 469
 470int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
 471			  netcp_hook_rtn *hook_rtn, void *hook_data)
 472{
 473	struct netcp_hook_list *entry;
 474	struct netcp_hook_list *next;
 475	unsigned long flags;
 476
 477	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 478	if (!entry)
 479		return -ENOMEM;
 480
 481	entry->hook_rtn  = hook_rtn;
 482	entry->hook_data = hook_data;
 483	entry->order     = order;
 484
 485	spin_lock_irqsave(&netcp_priv->lock, flags);
 486	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
 487		if (next->order > order)
 488			break;
 489	}
 490	__list_add(&entry->list, next->list.prev, &next->list);
 491	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 492
 493	return 0;
 494}
 495EXPORT_SYMBOL_GPL(netcp_register_txhook);
 496
 497int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
 498			    netcp_hook_rtn *hook_rtn, void *hook_data)
 499{
 500	struct netcp_hook_list *next, *n;
 501	unsigned long flags;
 502
 503	spin_lock_irqsave(&netcp_priv->lock, flags);
 504	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
 505		if ((next->order     == order) &&
 506		    (next->hook_rtn  == hook_rtn) &&
 507		    (next->hook_data == hook_data)) {
 508			list_del(&next->list);
 509			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 510			devm_kfree(netcp_priv->dev, next);
 511			return 0;
 512		}
 513	}
 514	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 515	return -ENOENT;
 516}
 517EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
 518
 519int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
 520			  netcp_hook_rtn *hook_rtn, void *hook_data)
 521{
 522	struct netcp_hook_list *entry;
 523	struct netcp_hook_list *next;
 524	unsigned long flags;
 525
 526	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 527	if (!entry)
 528		return -ENOMEM;
 529
 530	entry->hook_rtn  = hook_rtn;
 531	entry->hook_data = hook_data;
 532	entry->order     = order;
 533
 534	spin_lock_irqsave(&netcp_priv->lock, flags);
 535	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
 536		if (next->order > order)
 537			break;
 538	}
 539	__list_add(&entry->list, next->list.prev, &next->list);
 540	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 541
 542	return 0;
 543}
 544EXPORT_SYMBOL_GPL(netcp_register_rxhook);
 545
 546int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
 547			    netcp_hook_rtn *hook_rtn, void *hook_data)
 548{
 549	struct netcp_hook_list *next, *n;
 550	unsigned long flags;
 551
 552	spin_lock_irqsave(&netcp_priv->lock, flags);
 553	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
 554		if ((next->order     == order) &&
 555		    (next->hook_rtn  == hook_rtn) &&
 556		    (next->hook_data == hook_data)) {
 557			list_del(&next->list);
 558			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 559			devm_kfree(netcp_priv->dev, next);
 560			return 0;
 561		}
 562	}
 563	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 564
 565	return -ENOENT;
 566}
 567EXPORT_SYMBOL_GPL(netcp_unregister_rxhook);
 568
 569static void netcp_frag_free(bool is_frag, void *ptr)
 570{
 571	if (is_frag)
 572		skb_free_frag(ptr);
 573	else
 574		kfree(ptr);
 575}
 576
 577static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
 578				     struct knav_dma_desc *desc)
 579{
 580	struct knav_dma_desc *ndesc;
 581	dma_addr_t dma_desc, dma_buf;
 582	unsigned int buf_len, dma_sz = sizeof(*ndesc);
 583	void *buf_ptr;
 584	u32 tmp;
 585
 586	get_words(&dma_desc, 1, &desc->next_desc);
 587
 588	while (dma_desc) {
 589		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 590		if (unlikely(!ndesc)) {
 591			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 592			break;
 593		}
 594		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
 595		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 596		 * field as a 32bit value. Will not work on 64bit machines
 597		 */
 598		buf_ptr = (void *)GET_SW_DATA0(ndesc);
 599		buf_len = (int)GET_SW_DATA1(desc);
 600		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
 601		__free_page(buf_ptr);
 602		knav_pool_desc_put(netcp->rx_pool, desc);
 603	}
 604	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 605	 * field as a 32bit value. Will not work on 64bit machines
 606	 */
 607	buf_ptr = (void *)GET_SW_DATA0(desc);
 608	buf_len = (int)GET_SW_DATA1(desc);
 609
 610	if (buf_ptr)
 611		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
 612	knav_pool_desc_put(netcp->rx_pool, desc);
 613}
 614
 615static void netcp_empty_rx_queue(struct netcp_intf *netcp)
 616{
 617	struct netcp_stats *rx_stats = &netcp->stats;
 618	struct knav_dma_desc *desc;
 619	unsigned int dma_sz;
 620	dma_addr_t dma;
 621
 622	for (; ;) {
 623		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
 624		if (!dma)
 625			break;
 626
 627		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 628		if (unlikely(!desc)) {
 629			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
 630				__func__);
 631			rx_stats->rx_errors++;
 632			continue;
 633		}
 634		netcp_free_rx_desc_chain(netcp, desc);
 635		rx_stats->rx_dropped++;
 636	}
 637}
 638
 639static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
 640{
 641	struct netcp_stats *rx_stats = &netcp->stats;
 642	unsigned int dma_sz, buf_len, org_buf_len;
 643	struct knav_dma_desc *desc, *ndesc;
 644	unsigned int pkt_sz = 0, accum_sz;
 645	struct netcp_hook_list *rx_hook;
 646	dma_addr_t dma_desc, dma_buff;
 647	struct netcp_packet p_info;
 648	struct sk_buff *skb;
 649	void *org_buf_ptr;
 650	u32 tmp;
 651
 652	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
 653	if (!dma_desc)
 654		return -1;
 655
 656	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 657	if (unlikely(!desc)) {
 658		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 659		return 0;
 660	}
 661
 662	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
 663	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 664	 * field as a 32bit value. Will not work on 64bit machines
 665	 */
 666	org_buf_ptr = (void *)GET_SW_DATA0(desc);
 667	org_buf_len = (int)GET_SW_DATA1(desc);
 668
 669	if (unlikely(!org_buf_ptr)) {
 670		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 671		goto free_desc;
 672	}
 673
 674	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
 675	accum_sz = buf_len;
 676	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
 677
 678	/* Build a new sk_buff for the primary buffer */
 679	skb = build_skb(org_buf_ptr, org_buf_len);
 680	if (unlikely(!skb)) {
 681		dev_err(netcp->ndev_dev, "build_skb() failed\n");
 682		goto free_desc;
 683	}
 684
 685	/* update data, tail and len */
 686	skb_reserve(skb, NETCP_SOP_OFFSET);
 687	__skb_put(skb, buf_len);
 688
 689	/* Fill in the page fragment list */
 690	while (dma_desc) {
 691		struct page *page;
 692
 693		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 694		if (unlikely(!ndesc)) {
 695			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 696			goto free_desc;
 697		}
 698
 699		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
 700		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 701		 * field as a 32bit value. Will not work on 64bit machines
 702		 */
 703		page = (struct page *)GET_SW_DATA0(ndesc);
 704
 705		if (likely(dma_buff && buf_len && page)) {
 706			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
 707				       DMA_FROM_DEVICE);
 708		} else {
 709			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
 710				&dma_buff, buf_len, page);
 711			goto free_desc;
 712		}
 713
 714		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 715				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
 716		accum_sz += buf_len;
 717
 718		/* Free the descriptor */
 719		knav_pool_desc_put(netcp->rx_pool, ndesc);
 720	}
 721
 
 
 
 722	/* check for packet len and warn */
 723	if (unlikely(pkt_sz != accum_sz))
 724		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
 725			pkt_sz, accum_sz);
 726
 727	/* Newer version of the Ethernet switch can trim the Ethernet FCS
 728	 * from the packet and is indicated in hw_cap. So trim it only for
 729	 * older h/w
 730	 */
 731	if (!(netcp->hw_cap & ETH_SW_CAN_REMOVE_ETH_FCS))
 732		__pskb_trim(skb, skb->len - ETH_FCS_LEN);
 733
 734	/* Call each of the RX hooks */
 735	p_info.skb = skb;
 736	skb->dev = netcp->ndev;
 737	p_info.rxtstamp_complete = false;
 738	get_desc_info(&tmp, &p_info.eflags, desc);
 739	p_info.epib = desc->epib;
 740	p_info.psdata = (u32 __force *)desc->psdata;
 741	p_info.eflags = ((p_info.eflags >> KNAV_DMA_DESC_EFLAGS_SHIFT) &
 742			 KNAV_DMA_DESC_EFLAGS_MASK);
 743	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
 744		int ret;
 745
 746		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
 747					&p_info);
 748		if (unlikely(ret)) {
 749			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
 750				rx_hook->order, ret);
 751			/* Free the primary descriptor */
 752			rx_stats->rx_dropped++;
 753			knav_pool_desc_put(netcp->rx_pool, desc);
 754			dev_kfree_skb(skb);
 755			return 0;
 756		}
 757	}
 758	/* Free the primary descriptor */
 759	knav_pool_desc_put(netcp->rx_pool, desc);
 760
 761	u64_stats_update_begin(&rx_stats->syncp_rx);
 762	rx_stats->rx_packets++;
 763	rx_stats->rx_bytes += skb->len;
 764	u64_stats_update_end(&rx_stats->syncp_rx);
 765
 766	/* push skb up the stack */
 767	skb->protocol = eth_type_trans(skb, netcp->ndev);
 768	netif_receive_skb(skb);
 769	return 0;
 770
 771free_desc:
 772	netcp_free_rx_desc_chain(netcp, desc);
 773	rx_stats->rx_errors++;
 774	return 0;
 775}
 776
 777static int netcp_process_rx_packets(struct netcp_intf *netcp,
 778				    unsigned int budget)
 779{
 780	int i;
 781
 782	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
 783		;
 784	return i;
 785}
 786
 787/* Release descriptors and attached buffers from Rx FDQ */
 788static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
 789{
 790	struct knav_dma_desc *desc;
 791	unsigned int buf_len, dma_sz;
 792	dma_addr_t dma;
 793	void *buf_ptr;
 794
 795	/* Allocate descriptor */
 796	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
 797		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 798		if (unlikely(!desc)) {
 799			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 800			continue;
 801		}
 802
 803		get_org_pkt_info(&dma, &buf_len, desc);
 804		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 805		 * field as a 32bit value. Will not work on 64bit machines
 806		 */
 807		buf_ptr = (void *)GET_SW_DATA0(desc);
 808
 809		if (unlikely(!dma)) {
 810			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
 811			knav_pool_desc_put(netcp->rx_pool, desc);
 812			continue;
 813		}
 814
 815		if (unlikely(!buf_ptr)) {
 816			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 817			knav_pool_desc_put(netcp->rx_pool, desc);
 818			continue;
 819		}
 820
 821		if (fdq == 0) {
 822			dma_unmap_single(netcp->dev, dma, buf_len,
 823					 DMA_FROM_DEVICE);
 824			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
 825		} else {
 826			dma_unmap_page(netcp->dev, dma, buf_len,
 827				       DMA_FROM_DEVICE);
 828			__free_page(buf_ptr);
 829		}
 830
 831		knav_pool_desc_put(netcp->rx_pool, desc);
 832	}
 833}
 834
 835static void netcp_rxpool_free(struct netcp_intf *netcp)
 836{
 837	int i;
 838
 839	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
 840	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
 841		netcp_free_rx_buf(netcp, i);
 842
 843	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
 844		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
 845			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
 846
 847	knav_pool_destroy(netcp->rx_pool);
 848	netcp->rx_pool = NULL;
 849}
 850
 851static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
 852{
 853	struct knav_dma_desc *hwdesc;
 854	unsigned int buf_len, dma_sz;
 855	u32 desc_info, pkt_info;
 856	struct page *page;
 857	dma_addr_t dma;
 858	void *bufptr;
 859	u32 sw_data[2];
 860
 861	/* Allocate descriptor */
 862	hwdesc = knav_pool_desc_get(netcp->rx_pool);
 863	if (IS_ERR_OR_NULL(hwdesc)) {
 864		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
 865		return -ENOMEM;
 866	}
 867
 868	if (likely(fdq == 0)) {
 869		unsigned int primary_buf_len;
 870		/* Allocate a primary receive queue entry */
 871		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
 872		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
 873				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 874
 875		bufptr = netdev_alloc_frag(primary_buf_len);
 876		sw_data[1] = primary_buf_len;
 877
 878		if (unlikely(!bufptr)) {
 879			dev_warn_ratelimited(netcp->ndev_dev,
 880					     "Primary RX buffer alloc failed\n");
 881			goto fail;
 882		}
 883		dma = dma_map_single(netcp->dev, bufptr, buf_len,
 884				     DMA_TO_DEVICE);
 885		if (unlikely(dma_mapping_error(netcp->dev, dma)))
 886			goto fail;
 887
 888		/* warning!!!! We are saving the virtual ptr in the sw_data
 889		 * field as a 32bit value. Will not work on 64bit machines
 890		 */
 891		sw_data[0] = (u32)bufptr;
 892	} else {
 893		/* Allocate a secondary receive queue entry */
 894		page = alloc_page(GFP_ATOMIC | GFP_DMA);
 895		if (unlikely(!page)) {
 896			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
 897			goto fail;
 898		}
 899		buf_len = PAGE_SIZE;
 900		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
 901		/* warning!!!! We are saving the virtual ptr in the sw_data
 902		 * field as a 32bit value. Will not work on 64bit machines
 903		 */
 904		sw_data[0] = (u32)page;
 905		sw_data[1] = 0;
 906	}
 907
 908	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
 909	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
 910	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
 911	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
 912	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
 913		    KNAV_DMA_DESC_RETQ_SHIFT;
 914	set_org_pkt_info(dma, buf_len, hwdesc);
 915	SET_SW_DATA0(sw_data[0], hwdesc);
 916	SET_SW_DATA1(sw_data[1], hwdesc);
 917	set_desc_info(desc_info, pkt_info, hwdesc);
 918
 919	/* Push to FDQs */
 920	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
 921			   &dma_sz);
 922	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
 923	return 0;
 924
 925fail:
 926	knav_pool_desc_put(netcp->rx_pool, hwdesc);
 927	return -ENOMEM;
 928}
 929
 930/* Refill Rx FDQ with descriptors & attached buffers */
 931static void netcp_rxpool_refill(struct netcp_intf *netcp)
 932{
 933	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
 934	int i, ret = 0;
 935
 936	/* Calculate the FDQ deficit and refill */
 937	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
 938		fdq_deficit[i] = netcp->rx_queue_depths[i] -
 939				 knav_queue_get_count(netcp->rx_fdq[i]);
 940
 941		while (fdq_deficit[i]-- && !ret)
 942			ret = netcp_allocate_rx_buf(netcp, i);
 943	} /* end for fdqs */
 944}
 945
 946/* NAPI poll */
 947static int netcp_rx_poll(struct napi_struct *napi, int budget)
 948{
 949	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
 950						rx_napi);
 951	unsigned int packets;
 952
 953	packets = netcp_process_rx_packets(netcp, budget);
 954
 955	netcp_rxpool_refill(netcp);
 956	if (packets < budget) {
 957		napi_complete_done(&netcp->rx_napi, packets);
 958		knav_queue_enable_notify(netcp->rx_queue);
 959	}
 960
 961	return packets;
 962}
 963
 964static void netcp_rx_notify(void *arg)
 965{
 966	struct netcp_intf *netcp = arg;
 967
 968	knav_queue_disable_notify(netcp->rx_queue);
 969	napi_schedule(&netcp->rx_napi);
 970}
 971
 972static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
 973				     struct knav_dma_desc *desc,
 974				     unsigned int desc_sz)
 975{
 976	struct knav_dma_desc *ndesc = desc;
 977	dma_addr_t dma_desc, dma_buf;
 978	unsigned int buf_len;
 979
 980	while (ndesc) {
 981		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
 982
 983		if (dma_buf && buf_len)
 984			dma_unmap_single(netcp->dev, dma_buf, buf_len,
 985					 DMA_TO_DEVICE);
 986		else
 987			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
 988				 &dma_buf, buf_len);
 989
 990		knav_pool_desc_put(netcp->tx_pool, ndesc);
 991		ndesc = NULL;
 992		if (dma_desc) {
 993			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
 994						     desc_sz);
 995			if (!ndesc)
 996				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
 997		}
 998	}
 999}
1000
1001static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
1002					  unsigned int budget)
1003{
1004	struct netcp_stats *tx_stats = &netcp->stats;
1005	struct knav_dma_desc *desc;
1006	struct netcp_tx_cb *tx_cb;
1007	struct sk_buff *skb;
1008	unsigned int dma_sz;
1009	dma_addr_t dma;
1010	int pkts = 0;
1011
1012	while (budget--) {
1013		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
1014		if (!dma)
1015			break;
1016		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1017		if (unlikely(!desc)) {
1018			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1019			tx_stats->tx_errors++;
1020			continue;
1021		}
1022
1023		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1024		 * field as a 32bit value. Will not work on 64bit machines
1025		 */
1026		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1027		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1028		if (!skb) {
1029			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1030			tx_stats->tx_errors++;
1031			continue;
1032		}
1033
1034		tx_cb = (struct netcp_tx_cb *)skb->cb;
1035		if (tx_cb->txtstamp)
1036			tx_cb->txtstamp(tx_cb->ts_context, skb);
1037
1038		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1039		    netif_running(netcp->ndev) &&
1040		    (knav_pool_count(netcp->tx_pool) >
1041		    netcp->tx_resume_threshold)) {
1042			u16 subqueue = skb_get_queue_mapping(skb);
1043
1044			netif_wake_subqueue(netcp->ndev, subqueue);
1045		}
1046
1047		u64_stats_update_begin(&tx_stats->syncp_tx);
1048		tx_stats->tx_packets++;
1049		tx_stats->tx_bytes += skb->len;
1050		u64_stats_update_end(&tx_stats->syncp_tx);
1051		dev_kfree_skb(skb);
1052		pkts++;
1053	}
1054	return pkts;
1055}
1056
1057static int netcp_tx_poll(struct napi_struct *napi, int budget)
1058{
1059	int packets;
1060	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1061						tx_napi);
1062
1063	packets = netcp_process_tx_compl_packets(netcp, budget);
1064	if (packets < budget) {
1065		napi_complete(&netcp->tx_napi);
1066		knav_queue_enable_notify(netcp->tx_compl_q);
1067	}
1068
1069	return packets;
1070}
1071
1072static void netcp_tx_notify(void *arg)
1073{
1074	struct netcp_intf *netcp = arg;
1075
1076	knav_queue_disable_notify(netcp->tx_compl_q);
1077	napi_schedule(&netcp->tx_napi);
1078}
1079
1080static struct knav_dma_desc*
1081netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1082{
1083	struct knav_dma_desc *desc, *ndesc, *pdesc;
1084	unsigned int pkt_len = skb_headlen(skb);
1085	struct device *dev = netcp->dev;
1086	dma_addr_t dma_addr;
1087	unsigned int dma_sz;
1088	int i;
1089
1090	/* Map the linear buffer */
1091	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1092	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1093		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1094		return NULL;
1095	}
1096
1097	desc = knav_pool_desc_get(netcp->tx_pool);
1098	if (IS_ERR_OR_NULL(desc)) {
1099		dev_err(netcp->ndev_dev, "out of TX desc\n");
1100		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1101		return NULL;
1102	}
1103
1104	set_pkt_info(dma_addr, pkt_len, 0, desc);
1105	if (skb_is_nonlinear(skb)) {
1106		prefetchw(skb_shinfo(skb));
1107	} else {
1108		desc->next_desc = 0;
1109		goto upd_pkt_len;
1110	}
1111
1112	pdesc = desc;
1113
1114	/* Handle the case where skb is fragmented in pages */
1115	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1116		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1117		struct page *page = skb_frag_page(frag);
1118		u32 page_offset = skb_frag_off(frag);
1119		u32 buf_len = skb_frag_size(frag);
1120		dma_addr_t desc_dma;
1121		u32 desc_dma_32;
 
1122
1123		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1124					DMA_TO_DEVICE);
1125		if (unlikely(!dma_addr)) {
1126			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1127			goto free_descs;
1128		}
1129
1130		ndesc = knav_pool_desc_get(netcp->tx_pool);
1131		if (IS_ERR_OR_NULL(ndesc)) {
1132			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1133			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1134			goto free_descs;
1135		}
1136
1137		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
 
 
 
1138		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1139		desc_dma_32 = (u32)desc_dma;
1140		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1141		pkt_len += buf_len;
1142		if (pdesc != desc)
1143			knav_pool_desc_map(netcp->tx_pool, pdesc,
1144					   sizeof(*pdesc), &desc_dma, &dma_sz);
1145		pdesc = ndesc;
1146	}
1147	if (pdesc != desc)
1148		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1149				   &dma_addr, &dma_sz);
1150
1151	/* frag list based linkage is not supported for now. */
1152	if (skb_shinfo(skb)->frag_list) {
1153		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1154		goto free_descs;
1155	}
1156
1157upd_pkt_len:
1158	WARN_ON(pkt_len != skb->len);
1159
1160	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1161	set_words(&pkt_len, 1, &desc->desc_info);
1162	return desc;
1163
1164free_descs:
1165	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1166	return NULL;
1167}
1168
1169static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1170			       struct sk_buff *skb,
1171			       struct knav_dma_desc *desc)
1172{
1173	struct netcp_tx_pipe *tx_pipe = NULL;
1174	struct netcp_hook_list *tx_hook;
1175	struct netcp_packet p_info;
1176	struct netcp_tx_cb *tx_cb;
1177	unsigned int dma_sz;
1178	dma_addr_t dma;
1179	u32 tmp = 0;
1180	int ret = 0;
1181
1182	p_info.netcp = netcp;
1183	p_info.skb = skb;
1184	p_info.tx_pipe = NULL;
1185	p_info.psdata_len = 0;
1186	p_info.ts_context = NULL;
1187	p_info.txtstamp = NULL;
1188	p_info.epib = desc->epib;
1189	p_info.psdata = (u32 __force *)desc->psdata;
1190	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1191
1192	/* Find out where to inject the packet for transmission */
1193	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1194		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1195					&p_info);
1196		if (unlikely(ret != 0)) {
1197			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1198				tx_hook->order, ret);
1199			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1200			goto out;
1201		}
1202	}
1203
1204	/* Make sure some TX hook claimed the packet */
1205	tx_pipe = p_info.tx_pipe;
1206	if (!tx_pipe) {
1207		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1208		ret = -ENXIO;
1209		goto out;
1210	}
1211
1212	tx_cb = (struct netcp_tx_cb *)skb->cb;
1213	tx_cb->ts_context = p_info.ts_context;
1214	tx_cb->txtstamp = p_info.txtstamp;
1215
1216	/* update descriptor */
1217	if (p_info.psdata_len) {
1218		/* psdata points to both native-endian and device-endian data */
1219		__le32 *psdata = (void __force *)p_info.psdata;
1220
1221		set_words((u32 *)psdata +
1222			  (KNAV_DMA_NUM_PS_WORDS - p_info.psdata_len),
1223			  p_info.psdata_len, psdata);
1224		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1225			KNAV_DMA_DESC_PSLEN_SHIFT;
1226	}
1227
1228	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1229		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1230		KNAV_DMA_DESC_RETQ_SHIFT);
1231
1232	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1233		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1234			KNAV_DMA_DESC_PSFLAG_SHIFT);
1235	}
1236
1237	set_words(&tmp, 1, &desc->packet_info);
1238	/* warning!!!! We are saving the virtual ptr in the sw_data
1239	 * field as a 32bit value. Will not work on 64bit machines
1240	 */
1241	SET_SW_DATA0((u32)skb, desc);
1242
1243	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1244		tmp = tx_pipe->switch_to_port;
1245		set_words(&tmp, 1, &desc->tag_info);
1246	}
1247
1248	/* submit packet descriptor */
1249	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1250				 &dma_sz);
1251	if (unlikely(ret)) {
1252		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1253		ret = -ENOMEM;
1254		goto out;
1255	}
1256	skb_tx_timestamp(skb);
1257	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1258
1259out:
1260	return ret;
1261}
1262
1263/* Submit the packet */
1264static netdev_tx_t netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1265{
1266	struct netcp_intf *netcp = netdev_priv(ndev);
1267	struct netcp_stats *tx_stats = &netcp->stats;
1268	int subqueue = skb_get_queue_mapping(skb);
1269	struct knav_dma_desc *desc;
1270	int desc_count, ret = 0;
1271
1272	if (unlikely(skb->len <= 0)) {
1273		dev_kfree_skb(skb);
1274		return NETDEV_TX_OK;
1275	}
1276
1277	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1278		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1279		if (ret < 0) {
1280			/* If we get here, the skb has already been dropped */
1281			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1282				 ret);
1283			tx_stats->tx_dropped++;
1284			return ret;
1285		}
1286		skb->len = NETCP_MIN_PACKET_SIZE;
1287	}
1288
1289	desc = netcp_tx_map_skb(skb, netcp);
1290	if (unlikely(!desc)) {
1291		netif_stop_subqueue(ndev, subqueue);
1292		ret = -ENOBUFS;
1293		goto drop;
1294	}
1295
1296	ret = netcp_tx_submit_skb(netcp, skb, desc);
1297	if (ret)
1298		goto drop;
1299
 
 
1300	/* Check Tx pool count & stop subqueue if needed */
1301	desc_count = knav_pool_count(netcp->tx_pool);
1302	if (desc_count < netcp->tx_pause_threshold) {
1303		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1304		netif_stop_subqueue(ndev, subqueue);
1305	}
1306	return NETDEV_TX_OK;
1307
1308drop:
1309	tx_stats->tx_dropped++;
1310	if (desc)
1311		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1312	dev_kfree_skb(skb);
1313	return ret;
1314}
1315
1316int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1317{
1318	if (tx_pipe->dma_channel) {
1319		knav_dma_close_channel(tx_pipe->dma_channel);
1320		tx_pipe->dma_channel = NULL;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1325
1326int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1327{
1328	struct device *dev = tx_pipe->netcp_device->device;
1329	struct knav_dma_cfg config;
1330	int ret = 0;
1331	u8 name[16];
1332
1333	memset(&config, 0, sizeof(config));
1334	config.direction = DMA_MEM_TO_DEV;
1335	config.u.tx.filt_einfo = false;
1336	config.u.tx.filt_pswords = false;
1337	config.u.tx.priority = DMA_PRIO_MED_L;
1338
1339	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1340				tx_pipe->dma_chan_name, &config);
1341	if (IS_ERR(tx_pipe->dma_channel)) {
1342		dev_err(dev, "failed opening tx chan(%s)\n",
1343			tx_pipe->dma_chan_name);
1344		ret = PTR_ERR(tx_pipe->dma_channel);
1345		goto err;
1346	}
1347
1348	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1349	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1350					     KNAV_QUEUE_SHARED);
1351	if (IS_ERR(tx_pipe->dma_queue)) {
1352		dev_err(dev, "Could not open DMA queue for channel \"%s\": %pe\n",
1353			name, tx_pipe->dma_queue);
1354		ret = PTR_ERR(tx_pipe->dma_queue);
1355		goto err;
1356	}
1357
1358	dev_dbg(dev, "opened tx pipe %s\n", name);
1359	return 0;
1360
1361err:
1362	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1363		knav_dma_close_channel(tx_pipe->dma_channel);
1364	tx_pipe->dma_channel = NULL;
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1368
1369int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1370		      struct netcp_device *netcp_device,
1371		      const char *dma_chan_name, unsigned int dma_queue_id)
1372{
1373	memset(tx_pipe, 0, sizeof(*tx_pipe));
1374	tx_pipe->netcp_device = netcp_device;
1375	tx_pipe->dma_chan_name = dma_chan_name;
1376	tx_pipe->dma_queue_id = dma_queue_id;
1377	return 0;
1378}
1379EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1380
1381static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1382					  const u8 *addr,
1383					  enum netcp_addr_type type)
1384{
1385	struct netcp_addr *naddr;
1386
1387	list_for_each_entry(naddr, &netcp->addr_list, node) {
1388		if (naddr->type != type)
1389			continue;
1390		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1391			continue;
1392		return naddr;
1393	}
1394
1395	return NULL;
1396}
1397
1398static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1399					 const u8 *addr,
1400					 enum netcp_addr_type type)
1401{
1402	struct netcp_addr *naddr;
1403
1404	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1405	if (!naddr)
1406		return NULL;
1407
1408	naddr->type = type;
1409	naddr->flags = 0;
1410	naddr->netcp = netcp;
1411	if (addr)
1412		ether_addr_copy(naddr->addr, addr);
1413	else
1414		eth_zero_addr(naddr->addr);
1415	list_add_tail(&naddr->node, &netcp->addr_list);
1416
1417	return naddr;
1418}
1419
1420static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1421{
1422	list_del(&naddr->node);
1423	devm_kfree(netcp->dev, naddr);
1424}
1425
1426static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1427{
1428	struct netcp_addr *naddr;
1429
1430	list_for_each_entry(naddr, &netcp->addr_list, node)
1431		naddr->flags = 0;
1432}
1433
1434static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1435				enum netcp_addr_type type)
1436{
1437	struct netcp_addr *naddr;
1438
1439	naddr = netcp_addr_find(netcp, addr, type);
1440	if (naddr) {
1441		naddr->flags |= ADDR_VALID;
1442		return;
1443	}
1444
1445	naddr = netcp_addr_add(netcp, addr, type);
1446	if (!WARN_ON(!naddr))
1447		naddr->flags |= ADDR_NEW;
1448}
1449
1450static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1451{
1452	struct netcp_addr *naddr, *tmp;
1453	struct netcp_intf_modpriv *priv;
1454	struct netcp_module *module;
1455	int error;
1456
1457	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1459			continue;
1460		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1461			naddr->addr, naddr->type);
1462		for_each_module(netcp, priv) {
1463			module = priv->netcp_module;
1464			if (!module->del_addr)
1465				continue;
1466			error = module->del_addr(priv->module_priv,
1467						 naddr);
1468			WARN_ON(error);
1469		}
1470		netcp_addr_del(netcp, naddr);
1471	}
1472}
1473
1474static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1475{
1476	struct netcp_addr *naddr, *tmp;
1477	struct netcp_intf_modpriv *priv;
1478	struct netcp_module *module;
1479	int error;
1480
1481	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1482		if (!(naddr->flags & ADDR_NEW))
1483			continue;
1484		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1485			naddr->addr, naddr->type);
1486
1487		for_each_module(netcp, priv) {
1488			module = priv->netcp_module;
1489			if (!module->add_addr)
1490				continue;
1491			error = module->add_addr(priv->module_priv, naddr);
1492			WARN_ON(error);
1493		}
1494	}
1495}
1496
1497static int netcp_set_promiscuous(struct netcp_intf *netcp, bool promisc)
1498{
1499	struct netcp_intf_modpriv *priv;
1500	struct netcp_module *module;
1501	int error;
1502
1503	for_each_module(netcp, priv) {
1504		module = priv->netcp_module;
1505		if (!module->set_rx_mode)
1506			continue;
1507
1508		error = module->set_rx_mode(priv->module_priv, promisc);
1509		if (error)
1510			return error;
1511	}
1512	return 0;
1513}
1514
1515static void netcp_set_rx_mode(struct net_device *ndev)
1516{
1517	struct netcp_intf *netcp = netdev_priv(ndev);
1518	struct netdev_hw_addr *ndev_addr;
1519	bool promisc;
1520
1521	promisc = (ndev->flags & IFF_PROMISC ||
1522		   ndev->flags & IFF_ALLMULTI ||
1523		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1524
1525	spin_lock(&netcp->lock);
1526	/* first clear all marks */
1527	netcp_addr_clear_mark(netcp);
1528
1529	/* next add new entries, mark existing ones */
1530	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1531	for_each_dev_addr(ndev, ndev_addr)
1532		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1533	netdev_for_each_uc_addr(ndev_addr, ndev)
1534		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1535	netdev_for_each_mc_addr(ndev_addr, ndev)
1536		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1537
1538	if (promisc)
1539		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1540
1541	/* finally sweep and callout into modules */
1542	netcp_addr_sweep_del(netcp);
1543	netcp_addr_sweep_add(netcp);
1544	netcp_set_promiscuous(netcp, promisc);
1545	spin_unlock(&netcp->lock);
1546}
1547
1548static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1549{
1550	int i;
1551
1552	if (netcp->rx_channel) {
1553		knav_dma_close_channel(netcp->rx_channel);
1554		netcp->rx_channel = NULL;
1555	}
1556
1557	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1558		netcp_rxpool_free(netcp);
1559
1560	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1561		knav_queue_close(netcp->rx_queue);
1562		netcp->rx_queue = NULL;
1563	}
1564
1565	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1566	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1567		knav_queue_close(netcp->rx_fdq[i]);
1568		netcp->rx_fdq[i] = NULL;
1569	}
1570
1571	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572		knav_queue_close(netcp->tx_compl_q);
1573		netcp->tx_compl_q = NULL;
1574	}
1575
1576	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1577		knav_pool_destroy(netcp->tx_pool);
1578		netcp->tx_pool = NULL;
1579	}
1580}
1581
1582static int netcp_setup_navigator_resources(struct net_device *ndev)
1583{
1584	struct netcp_intf *netcp = netdev_priv(ndev);
1585	struct knav_queue_notify_config notify_cfg;
1586	struct knav_dma_cfg config;
1587	u32 last_fdq = 0;
1588	u8 name[16];
1589	int ret;
1590	int i;
1591
1592	/* Create Rx/Tx descriptor pools */
1593	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1594	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1595						netcp->rx_pool_region_id);
1596	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1597		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1598		ret = PTR_ERR(netcp->rx_pool);
1599		goto fail;
1600	}
1601
1602	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1603	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1604						netcp->tx_pool_region_id);
1605	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1606		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1607		ret = PTR_ERR(netcp->tx_pool);
1608		goto fail;
1609	}
1610
1611	/* open Tx completion queue */
1612	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1613	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1614	if (IS_ERR(netcp->tx_compl_q)) {
1615		ret = PTR_ERR(netcp->tx_compl_q);
1616		goto fail;
1617	}
1618	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1619
1620	/* Set notification for Tx completion */
1621	notify_cfg.fn = netcp_tx_notify;
1622	notify_cfg.fn_arg = netcp;
1623	ret = knav_queue_device_control(netcp->tx_compl_q,
1624					KNAV_QUEUE_SET_NOTIFIER,
1625					(unsigned long)&notify_cfg);
1626	if (ret)
1627		goto fail;
1628
1629	knav_queue_disable_notify(netcp->tx_compl_q);
1630
1631	/* open Rx completion queue */
1632	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1633	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1634	if (IS_ERR(netcp->rx_queue)) {
1635		ret = PTR_ERR(netcp->rx_queue);
1636		goto fail;
1637	}
1638	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1639
1640	/* Set notification for Rx completion */
1641	notify_cfg.fn = netcp_rx_notify;
1642	notify_cfg.fn_arg = netcp;
1643	ret = knav_queue_device_control(netcp->rx_queue,
1644					KNAV_QUEUE_SET_NOTIFIER,
1645					(unsigned long)&notify_cfg);
1646	if (ret)
1647		goto fail;
1648
1649	knav_queue_disable_notify(netcp->rx_queue);
1650
1651	/* open Rx FDQs */
1652	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1653	     ++i) {
1654		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1655		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1656		if (IS_ERR(netcp->rx_fdq[i])) {
1657			ret = PTR_ERR(netcp->rx_fdq[i]);
1658			goto fail;
1659		}
1660	}
1661
1662	memset(&config, 0, sizeof(config));
1663	config.direction		= DMA_DEV_TO_MEM;
1664	config.u.rx.einfo_present	= true;
1665	config.u.rx.psinfo_present	= true;
1666	config.u.rx.err_mode		= DMA_DROP;
1667	config.u.rx.desc_type		= DMA_DESC_HOST;
1668	config.u.rx.psinfo_at_sop	= false;
1669	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1670	config.u.rx.dst_q		= netcp->rx_queue_id;
1671	config.u.rx.thresh		= DMA_THRESH_NONE;
1672
1673	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1674		if (netcp->rx_fdq[i])
1675			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1676		config.u.rx.fdq[i] = last_fdq;
1677	}
1678
1679	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1680					netcp->dma_chan_name, &config);
1681	if (IS_ERR(netcp->rx_channel)) {
1682		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1683			netcp->dma_chan_name);
1684		ret = PTR_ERR(netcp->rx_channel);
1685		goto fail;
1686	}
1687
1688	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1689	return 0;
1690
1691fail:
1692	netcp_free_navigator_resources(netcp);
1693	return ret;
1694}
1695
1696/* Open the device */
1697static int netcp_ndo_open(struct net_device *ndev)
1698{
1699	struct netcp_intf *netcp = netdev_priv(ndev);
1700	struct netcp_intf_modpriv *intf_modpriv;
1701	struct netcp_module *module;
1702	int ret;
1703
1704	netif_carrier_off(ndev);
1705	ret = netcp_setup_navigator_resources(ndev);
1706	if (ret) {
1707		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1708		goto fail;
1709	}
1710
1711	for_each_module(netcp, intf_modpriv) {
1712		module = intf_modpriv->netcp_module;
1713		if (module->open) {
1714			ret = module->open(intf_modpriv->module_priv, ndev);
1715			if (ret != 0) {
1716				dev_err(netcp->ndev_dev, "module open failed\n");
1717				goto fail_open;
1718			}
1719		}
1720	}
1721
1722	napi_enable(&netcp->rx_napi);
1723	napi_enable(&netcp->tx_napi);
1724	knav_queue_enable_notify(netcp->tx_compl_q);
1725	knav_queue_enable_notify(netcp->rx_queue);
1726	netcp_rxpool_refill(netcp);
1727	netif_tx_wake_all_queues(ndev);
1728	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1729	return 0;
1730
1731fail_open:
1732	for_each_module(netcp, intf_modpriv) {
1733		module = intf_modpriv->netcp_module;
1734		if (module->close)
1735			module->close(intf_modpriv->module_priv, ndev);
1736	}
1737
1738fail:
1739	netcp_free_navigator_resources(netcp);
1740	return ret;
1741}
1742
1743/* Close the device */
1744static int netcp_ndo_stop(struct net_device *ndev)
1745{
1746	struct netcp_intf *netcp = netdev_priv(ndev);
1747	struct netcp_intf_modpriv *intf_modpriv;
1748	struct netcp_module *module;
1749	int err = 0;
1750
1751	netif_tx_stop_all_queues(ndev);
1752	netif_carrier_off(ndev);
1753	netcp_addr_clear_mark(netcp);
1754	netcp_addr_sweep_del(netcp);
1755	knav_queue_disable_notify(netcp->rx_queue);
1756	knav_queue_disable_notify(netcp->tx_compl_q);
1757	napi_disable(&netcp->rx_napi);
1758	napi_disable(&netcp->tx_napi);
1759
1760	for_each_module(netcp, intf_modpriv) {
1761		module = intf_modpriv->netcp_module;
1762		if (module->close) {
1763			err = module->close(intf_modpriv->module_priv, ndev);
1764			if (err != 0)
1765				dev_err(netcp->ndev_dev, "Close failed\n");
1766		}
1767	}
1768
1769	/* Recycle Rx descriptors from completion queue */
1770	netcp_empty_rx_queue(netcp);
1771
1772	/* Recycle Tx descriptors from completion queue */
1773	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1774
1775	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1776		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1777			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1778
1779	netcp_free_navigator_resources(netcp);
1780	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1781	return 0;
1782}
1783
1784static int netcp_ndo_ioctl(struct net_device *ndev,
1785			   struct ifreq *req, int cmd)
1786{
1787	struct netcp_intf *netcp = netdev_priv(ndev);
1788	struct netcp_intf_modpriv *intf_modpriv;
1789	struct netcp_module *module;
1790	int ret = -1, err = -EOPNOTSUPP;
1791
1792	if (!netif_running(ndev))
1793		return -EINVAL;
1794
1795	for_each_module(netcp, intf_modpriv) {
1796		module = intf_modpriv->netcp_module;
1797		if (!module->ioctl)
1798			continue;
1799
1800		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1801		if ((err < 0) && (err != -EOPNOTSUPP)) {
1802			ret = err;
1803			goto out;
1804		}
1805		if (err == 0)
1806			ret = err;
1807	}
1808
1809out:
1810	return (ret == 0) ? 0 : err;
1811}
1812
1813static void netcp_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814{
1815	struct netcp_intf *netcp = netdev_priv(ndev);
1816	unsigned int descs = knav_pool_count(netcp->tx_pool);
1817
1818	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1819	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1820	netif_trans_update(ndev);
1821	netif_tx_wake_all_queues(ndev);
1822}
1823
1824static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1825{
1826	struct netcp_intf *netcp = netdev_priv(ndev);
1827	struct netcp_intf_modpriv *intf_modpriv;
1828	struct netcp_module *module;
1829	unsigned long flags;
1830	int err = 0;
1831
1832	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1833
1834	spin_lock_irqsave(&netcp->lock, flags);
1835	for_each_module(netcp, intf_modpriv) {
1836		module = intf_modpriv->netcp_module;
1837		if ((module->add_vid) && (vid != 0)) {
1838			err = module->add_vid(intf_modpriv->module_priv, vid);
1839			if (err != 0) {
1840				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1841					vid);
1842				break;
1843			}
1844		}
1845	}
1846	spin_unlock_irqrestore(&netcp->lock, flags);
1847
1848	return err;
1849}
1850
1851static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1852{
1853	struct netcp_intf *netcp = netdev_priv(ndev);
1854	struct netcp_intf_modpriv *intf_modpriv;
1855	struct netcp_module *module;
1856	unsigned long flags;
1857	int err = 0;
1858
1859	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1860
1861	spin_lock_irqsave(&netcp->lock, flags);
1862	for_each_module(netcp, intf_modpriv) {
1863		module = intf_modpriv->netcp_module;
1864		if (module->del_vid) {
1865			err = module->del_vid(intf_modpriv->module_priv, vid);
1866			if (err != 0) {
1867				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1868					vid);
1869				break;
1870			}
1871		}
1872	}
1873	spin_unlock_irqrestore(&netcp->lock, flags);
1874	return err;
1875}
1876
1877static int netcp_setup_tc(struct net_device *dev, enum tc_setup_type type,
1878			  void *type_data)
 
 
 
 
 
 
 
1879{
1880	struct tc_mqprio_qopt *mqprio = type_data;
1881	u8 num_tc;
1882	int i;
1883
1884	/* setup tc must be called under rtnl lock */
1885	ASSERT_RTNL();
1886
1887	if (type != TC_SETUP_QDISC_MQPRIO)
1888		return -EOPNOTSUPP;
1889
1890	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1891	num_tc = mqprio->num_tc;
1892
1893	/* Sanity-check the number of traffic classes requested */
1894	if ((dev->real_num_tx_queues <= 1) ||
1895	    (dev->real_num_tx_queues < num_tc))
1896		return -EINVAL;
1897
1898	/* Configure traffic class to queue mappings */
1899	if (num_tc) {
1900		netdev_set_num_tc(dev, num_tc);
1901		for (i = 0; i < num_tc; i++)
1902			netdev_set_tc_queue(dev, i, 1, i);
1903	} else {
1904		netdev_reset_tc(dev);
1905	}
1906
1907	return 0;
1908}
1909
1910static void
1911netcp_get_stats(struct net_device *ndev, struct rtnl_link_stats64 *stats)
1912{
1913	struct netcp_intf *netcp = netdev_priv(ndev);
1914	struct netcp_stats *p = &netcp->stats;
1915	u64 rxpackets, rxbytes, txpackets, txbytes;
1916	unsigned int start;
1917
1918	do {
1919		start = u64_stats_fetch_begin(&p->syncp_rx);
1920		rxpackets       = p->rx_packets;
1921		rxbytes         = p->rx_bytes;
1922	} while (u64_stats_fetch_retry(&p->syncp_rx, start));
1923
1924	do {
1925		start = u64_stats_fetch_begin(&p->syncp_tx);
1926		txpackets       = p->tx_packets;
1927		txbytes         = p->tx_bytes;
1928	} while (u64_stats_fetch_retry(&p->syncp_tx, start));
1929
1930	stats->rx_packets = rxpackets;
1931	stats->rx_bytes = rxbytes;
1932	stats->tx_packets = txpackets;
1933	stats->tx_bytes = txbytes;
1934
1935	/* The following are stored as 32 bit */
1936	stats->rx_errors = p->rx_errors;
1937	stats->rx_dropped = p->rx_dropped;
1938	stats->tx_dropped = p->tx_dropped;
1939}
1940
1941static const struct net_device_ops netcp_netdev_ops = {
1942	.ndo_open		= netcp_ndo_open,
1943	.ndo_stop		= netcp_ndo_stop,
1944	.ndo_start_xmit		= netcp_ndo_start_xmit,
1945	.ndo_set_rx_mode	= netcp_set_rx_mode,
1946	.ndo_eth_ioctl           = netcp_ndo_ioctl,
1947	.ndo_get_stats64        = netcp_get_stats,
1948	.ndo_set_mac_address	= eth_mac_addr,
1949	.ndo_validate_addr	= eth_validate_addr,
1950	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1951	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1952	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1953	.ndo_select_queue	= dev_pick_tx_zero,
1954	.ndo_setup_tc		= netcp_setup_tc,
1955};
1956
1957static int netcp_create_interface(struct netcp_device *netcp_device,
1958				  struct device_node *node_interface)
1959{
1960	struct device *dev = netcp_device->device;
1961	struct device_node *node = dev->of_node;
1962	struct netcp_intf *netcp;
1963	struct net_device *ndev;
1964	resource_size_t size;
1965	struct resource res;
1966	void __iomem *efuse = NULL;
1967	u32 efuse_mac = 0;
 
1968	u8 efuse_mac_addr[6];
1969	u32 temp[2];
1970	int ret = 0;
1971
1972	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1973	if (!ndev) {
1974		dev_err(dev, "Error allocating netdev\n");
1975		return -ENOMEM;
1976	}
1977
1978	ndev->features |= NETIF_F_SG;
1979	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1980	ndev->hw_features = ndev->features;
1981	ndev->vlan_features |=  NETIF_F_SG;
1982
1983	/* MTU range: 68 - 9486 */
1984	ndev->min_mtu = ETH_MIN_MTU;
1985	ndev->max_mtu = NETCP_MAX_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1986
1987	netcp = netdev_priv(ndev);
1988	spin_lock_init(&netcp->lock);
1989	INIT_LIST_HEAD(&netcp->module_head);
1990	INIT_LIST_HEAD(&netcp->txhook_list_head);
1991	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1992	INIT_LIST_HEAD(&netcp->addr_list);
1993	u64_stats_init(&netcp->stats.syncp_rx);
1994	u64_stats_init(&netcp->stats.syncp_tx);
1995	netcp->netcp_device = netcp_device;
1996	netcp->dev = netcp_device->device;
1997	netcp->ndev = ndev;
1998	netcp->ndev_dev  = &ndev->dev;
1999	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
2000	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
2001	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
2002	netcp->node_interface = node_interface;
2003
2004	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
2005	if (efuse_mac) {
2006		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
2007			dev_err(dev, "could not find efuse-mac reg resource\n");
2008			ret = -ENODEV;
2009			goto quit;
2010		}
2011		size = resource_size(&res);
2012
2013		if (!devm_request_mem_region(dev, res.start, size,
2014					     dev_name(dev))) {
2015			dev_err(dev, "could not reserve resource\n");
2016			ret = -ENOMEM;
2017			goto quit;
2018		}
2019
2020		efuse = devm_ioremap(dev, res.start, size);
2021		if (!efuse) {
2022			dev_err(dev, "could not map resource\n");
2023			devm_release_mem_region(dev, res.start, size);
2024			ret = -ENOMEM;
2025			goto quit;
2026		}
2027
2028		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
2029		if (is_valid_ether_addr(efuse_mac_addr))
2030			eth_hw_addr_set(ndev, efuse_mac_addr);
2031		else
2032			eth_hw_addr_random(ndev);
2033
2034		devm_iounmap(dev, efuse);
2035		devm_release_mem_region(dev, res.start, size);
2036	} else {
2037		ret = of_get_ethdev_address(node_interface, ndev);
2038		if (ret)
2039			eth_hw_addr_random(ndev);
 
 
2040	}
2041
2042	ret = of_property_read_string(node_interface, "rx-channel",
2043				      &netcp->dma_chan_name);
2044	if (ret < 0) {
2045		dev_err(dev, "missing \"rx-channel\" parameter\n");
2046		ret = -ENODEV;
2047		goto quit;
2048	}
2049
2050	ret = of_property_read_u32(node_interface, "rx-queue",
2051				   &netcp->rx_queue_id);
2052	if (ret < 0) {
2053		dev_warn(dev, "missing \"rx-queue\" parameter\n");
2054		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
2055	}
2056
2057	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
2058					 netcp->rx_queue_depths,
2059					 KNAV_DMA_FDQ_PER_CHAN);
2060	if (ret < 0) {
2061		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2062		netcp->rx_queue_depths[0] = 128;
2063	}
2064
2065	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2066	if (ret < 0) {
2067		dev_err(dev, "missing \"rx-pool\" parameter\n");
2068		ret = -ENODEV;
2069		goto quit;
2070	}
2071	netcp->rx_pool_size = temp[0];
2072	netcp->rx_pool_region_id = temp[1];
2073
2074	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2075	if (ret < 0) {
2076		dev_err(dev, "missing \"tx-pool\" parameter\n");
2077		ret = -ENODEV;
2078		goto quit;
2079	}
2080	netcp->tx_pool_size = temp[0];
2081	netcp->tx_pool_region_id = temp[1];
2082
2083	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2084		dev_err(dev, "tx-pool size too small, must be at least %u\n",
2085			(unsigned int)MAX_SKB_FRAGS);
2086		ret = -ENODEV;
2087		goto quit;
2088	}
2089
2090	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2091				   &netcp->tx_compl_qid);
2092	if (ret < 0) {
2093		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2094		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2095	}
2096
2097	/* NAPI register */
2098	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll);
2099	netif_napi_add_tx(ndev, &netcp->tx_napi, netcp_tx_poll);
2100
2101	/* Register the network device */
2102	ndev->dev_id		= 0;
2103	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2104	ndev->netdev_ops	= &netcp_netdev_ops;
2105	SET_NETDEV_DEV(ndev, dev);
2106
2107	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2108	return 0;
2109
2110quit:
2111	free_netdev(ndev);
2112	return ret;
2113}
2114
2115static void netcp_delete_interface(struct netcp_device *netcp_device,
2116				   struct net_device *ndev)
2117{
2118	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2119	struct netcp_intf *netcp = netdev_priv(ndev);
2120	struct netcp_module *module;
2121
2122	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2123		ndev->name);
2124
2125	/* Notify each of the modules that the interface is going away */
2126	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2127				 intf_list) {
2128		module = intf_modpriv->netcp_module;
2129		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2130			module->name);
2131		if (module->release)
2132			module->release(intf_modpriv->module_priv);
2133		list_del(&intf_modpriv->intf_list);
 
2134	}
2135	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2136	     ndev->name);
2137
2138	list_del(&netcp->interface_list);
2139
2140	of_node_put(netcp->node_interface);
2141	unregister_netdev(ndev);
 
2142	free_netdev(ndev);
2143}
2144
2145static int netcp_probe(struct platform_device *pdev)
2146{
2147	struct device_node *node = pdev->dev.of_node;
2148	struct netcp_intf *netcp_intf, *netcp_tmp;
2149	struct device_node *child, *interfaces;
2150	struct netcp_device *netcp_device;
2151	struct device *dev = &pdev->dev;
2152	struct netcp_module *module;
2153	int ret;
2154
2155	if (!knav_dma_device_ready() ||
2156	    !knav_qmss_device_ready())
2157		return -EPROBE_DEFER;
2158
2159	if (!node) {
2160		dev_err(dev, "could not find device info\n");
2161		return -ENODEV;
2162	}
2163
2164	/* Allocate a new NETCP device instance */
2165	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2166	if (!netcp_device)
2167		return -ENOMEM;
2168
2169	pm_runtime_enable(&pdev->dev);
2170	ret = pm_runtime_get_sync(&pdev->dev);
2171	if (ret < 0) {
2172		dev_err(dev, "Failed to enable NETCP power-domain\n");
2173		pm_runtime_disable(&pdev->dev);
2174		return ret;
2175	}
2176
2177	/* Initialize the NETCP device instance */
2178	INIT_LIST_HEAD(&netcp_device->interface_head);
2179	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2180	netcp_device->device = dev;
2181	platform_set_drvdata(pdev, netcp_device);
2182
2183	/* create interfaces */
2184	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2185	if (!interfaces) {
2186		dev_err(dev, "could not find netcp-interfaces node\n");
2187		ret = -ENODEV;
2188		goto probe_quit;
2189	}
2190
2191	for_each_available_child_of_node(interfaces, child) {
2192		ret = netcp_create_interface(netcp_device, child);
2193		if (ret) {
2194			dev_err(dev, "could not create interface(%pOFn)\n",
2195				child);
2196			goto probe_quit_interface;
2197		}
2198	}
2199
2200	of_node_put(interfaces);
2201
2202	/* Add the device instance to the list */
2203	list_add_tail(&netcp_device->device_list, &netcp_devices);
2204
2205	/* Probe & attach any modules already registered */
2206	mutex_lock(&netcp_modules_lock);
2207	for_each_netcp_module(module) {
2208		ret = netcp_module_probe(netcp_device, module);
2209		if (ret < 0)
2210			dev_err(dev, "module(%s) probe failed\n", module->name);
2211	}
2212	mutex_unlock(&netcp_modules_lock);
2213	return 0;
2214
2215probe_quit_interface:
2216	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2217				 &netcp_device->interface_head,
2218				 interface_list) {
2219		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2220	}
2221
2222	of_node_put(interfaces);
2223
2224probe_quit:
2225	pm_runtime_put_sync(&pdev->dev);
2226	pm_runtime_disable(&pdev->dev);
2227	platform_set_drvdata(pdev, NULL);
2228	return ret;
2229}
2230
2231static void netcp_remove(struct platform_device *pdev)
2232{
2233	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2234	struct netcp_intf *netcp_intf, *netcp_tmp;
2235	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2236	struct netcp_module *module;
2237
2238	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2239				 inst_list) {
2240		module = inst_modpriv->netcp_module;
2241		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2242		module->remove(netcp_device, inst_modpriv->module_priv);
2243		list_del(&inst_modpriv->inst_list);
 
2244	}
2245
2246	/* now that all modules are removed, clean up the interfaces */
2247	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2248				 &netcp_device->interface_head,
2249				 interface_list) {
2250		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2251	}
2252
2253	WARN(!list_empty(&netcp_device->interface_head),
2254	     "%s interface list not empty!\n", pdev->name);
2255
2256	pm_runtime_put_sync(&pdev->dev);
2257	pm_runtime_disable(&pdev->dev);
2258	platform_set_drvdata(pdev, NULL);
 
2259}
2260
2261static const struct of_device_id of_match[] = {
2262	{ .compatible = "ti,netcp-1.0", },
2263	{},
2264};
2265MODULE_DEVICE_TABLE(of, of_match);
2266
2267static struct platform_driver netcp_driver = {
2268	.driver = {
2269		.name		= "netcp-1.0",
2270		.of_match_table	= of_match,
2271	},
2272	.probe = netcp_probe,
2273	.remove = netcp_remove,
2274};
2275module_platform_driver(netcp_driver);
2276
2277MODULE_LICENSE("GPL v2");
2278MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2279MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");
v4.6
 
   1/*
   2 * Keystone NetCP Core driver
   3 *
   4 * Copyright (C) 2014 Texas Instruments Incorporated
   5 * Authors:	Sandeep Nair <sandeep_n@ti.com>
   6 *		Sandeep Paulraj <s-paulraj@ti.com>
   7 *		Cyril Chemparathy <cyril@ti.com>
   8 *		Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 *		Murali Karicheri <m-karicheri2@ti.com>
  10 *		Wingman Kwok <w-kwok2@ti.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License as
  14 * published by the Free Software Foundation version 2.
  15 *
  16 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  17 * kind, whether express or implied; without even the implied warranty
  18 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 */
  21
  22#include <linux/io.h>
  23#include <linux/module.h>
  24#include <linux/of_net.h>
  25#include <linux/of_address.h>
  26#include <linux/if_vlan.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/platform_device.h>
  29#include <linux/soc/ti/knav_qmss.h>
  30#include <linux/soc/ti/knav_dma.h>
  31
  32#include "netcp.h"
  33
  34#define NETCP_SOP_OFFSET	(NET_IP_ALIGN + NET_SKB_PAD)
  35#define NETCP_NAPI_WEIGHT	64
  36#define NETCP_TX_TIMEOUT	(5 * HZ)
  37#define NETCP_PACKET_SIZE	(ETH_FRAME_LEN + ETH_FCS_LEN)
  38#define NETCP_MIN_PACKET_SIZE	ETH_ZLEN
  39#define NETCP_MAX_MCAST_ADDR	16
  40
  41#define NETCP_EFUSE_REG_INDEX	0
  42
  43#define NETCP_MOD_PROBE_SKIPPED	1
  44#define NETCP_MOD_PROBE_FAILED	2
  45
  46#define NETCP_DEBUG (NETIF_MSG_HW	| NETIF_MSG_WOL		|	\
  47		    NETIF_MSG_DRV	| NETIF_MSG_LINK	|	\
  48		    NETIF_MSG_IFUP	| NETIF_MSG_INTR	|	\
  49		    NETIF_MSG_PROBE	| NETIF_MSG_TIMER	|	\
  50		    NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	|	\
  51		    NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	|	\
  52		    NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	|	\
  53		    NETIF_MSG_RX_STATUS)
  54
  55#define NETCP_EFUSE_ADDR_SWAP	2
  56
  57#define knav_queue_get_id(q)	knav_queue_device_control(q, \
  58				KNAV_QUEUE_GET_ID, (unsigned long)NULL)
  59
  60#define knav_queue_enable_notify(q) knav_queue_device_control(q,	\
  61					KNAV_QUEUE_ENABLE_NOTIFY,	\
  62					(unsigned long)NULL)
  63
  64#define knav_queue_disable_notify(q) knav_queue_device_control(q,	\
  65					KNAV_QUEUE_DISABLE_NOTIFY,	\
  66					(unsigned long)NULL)
  67
  68#define knav_queue_get_count(q)	knav_queue_device_control(q, \
  69				KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
  70
  71#define for_each_netcp_module(module)			\
  72	list_for_each_entry(module, &netcp_modules, module_list)
  73
  74#define for_each_netcp_device_module(netcp_device, inst_modpriv) \
  75	list_for_each_entry(inst_modpriv, \
  76		&((netcp_device)->modpriv_head), inst_list)
  77
  78#define for_each_module(netcp, intf_modpriv)			\
  79	list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
  80
  81/* Module management structures */
  82struct netcp_device {
  83	struct list_head	device_list;
  84	struct list_head	interface_head;
  85	struct list_head	modpriv_head;
  86	struct device		*device;
  87};
  88
  89struct netcp_inst_modpriv {
  90	struct netcp_device	*netcp_device;
  91	struct netcp_module	*netcp_module;
  92	struct list_head	inst_list;
  93	void			*module_priv;
  94};
  95
  96struct netcp_intf_modpriv {
  97	struct netcp_intf	*netcp_priv;
  98	struct netcp_module	*netcp_module;
  99	struct list_head	intf_list;
 100	void			*module_priv;
 101};
 102
 
 
 
 
 
 103static LIST_HEAD(netcp_devices);
 104static LIST_HEAD(netcp_modules);
 105static DEFINE_MUTEX(netcp_modules_lock);
 106
 107static int netcp_debug_level = -1;
 108module_param(netcp_debug_level, int, 0);
 109MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
 110
 111/* Helper functions - Get/Set */
 112static void get_pkt_info(dma_addr_t *buff, u32 *buff_len, dma_addr_t *ndesc,
 113			 struct knav_dma_desc *desc)
 114{
 115	*buff_len = le32_to_cpu(desc->buff_len);
 116	*buff = le32_to_cpu(desc->buff);
 117	*ndesc = le32_to_cpu(desc->next_desc);
 118}
 119
 
 
 
 
 
 
 
 120static u32 get_sw_data(int index, struct knav_dma_desc *desc)
 121{
 122	/* No Endian conversion needed as this data is untouched by hw */
 123	return desc->sw_data[index];
 124}
 125
 126/* use these macros to get sw data */
 127#define GET_SW_DATA0(desc) get_sw_data(0, desc)
 128#define GET_SW_DATA1(desc) get_sw_data(1, desc)
 129#define GET_SW_DATA2(desc) get_sw_data(2, desc)
 130#define GET_SW_DATA3(desc) get_sw_data(3, desc)
 131
 132static void get_org_pkt_info(dma_addr_t *buff, u32 *buff_len,
 133			     struct knav_dma_desc *desc)
 134{
 135	*buff = le32_to_cpu(desc->orig_buff);
 136	*buff_len = le32_to_cpu(desc->orig_len);
 137}
 138
 139static void get_words(dma_addr_t *words, int num_words, __le32 *desc)
 140{
 141	int i;
 142
 143	for (i = 0; i < num_words; i++)
 144		words[i] = le32_to_cpu(desc[i]);
 145}
 146
 147static void set_pkt_info(dma_addr_t buff, u32 buff_len, u32 ndesc,
 148			 struct knav_dma_desc *desc)
 149{
 150	desc->buff_len = cpu_to_le32(buff_len);
 151	desc->buff = cpu_to_le32(buff);
 152	desc->next_desc = cpu_to_le32(ndesc);
 153}
 154
 155static void set_desc_info(u32 desc_info, u32 pkt_info,
 156			  struct knav_dma_desc *desc)
 157{
 158	desc->desc_info = cpu_to_le32(desc_info);
 159	desc->packet_info = cpu_to_le32(pkt_info);
 160}
 161
 162static void set_sw_data(int index, u32 data, struct knav_dma_desc *desc)
 163{
 164	/* No Endian conversion needed as this data is untouched by hw */
 165	desc->sw_data[index] = data;
 166}
 167
 168/* use these macros to set sw data */
 169#define SET_SW_DATA0(data, desc) set_sw_data(0, data, desc)
 170#define SET_SW_DATA1(data, desc) set_sw_data(1, data, desc)
 171#define SET_SW_DATA2(data, desc) set_sw_data(2, data, desc)
 172#define SET_SW_DATA3(data, desc) set_sw_data(3, data, desc)
 173
 174static void set_org_pkt_info(dma_addr_t buff, u32 buff_len,
 175			     struct knav_dma_desc *desc)
 176{
 177	desc->orig_buff = cpu_to_le32(buff);
 178	desc->orig_len = cpu_to_le32(buff_len);
 179}
 180
 181static void set_words(u32 *words, int num_words, __le32 *desc)
 182{
 183	int i;
 184
 185	for (i = 0; i < num_words; i++)
 186		desc[i] = cpu_to_le32(words[i]);
 187}
 188
 189/* Read the e-fuse value as 32 bit values to be endian independent */
 190static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
 191{
 192	unsigned int addr0, addr1;
 193
 194	addr1 = readl(efuse_mac + 4);
 195	addr0 = readl(efuse_mac);
 196
 197	switch (swap) {
 198	case NETCP_EFUSE_ADDR_SWAP:
 199		addr0 = addr1;
 200		addr1 = readl(efuse_mac);
 201		break;
 202	default:
 203		break;
 204	}
 205
 206	x[0] = (addr1 & 0x0000ff00) >> 8;
 207	x[1] = addr1 & 0x000000ff;
 208	x[2] = (addr0 & 0xff000000) >> 24;
 209	x[3] = (addr0 & 0x00ff0000) >> 16;
 210	x[4] = (addr0 & 0x0000ff00) >> 8;
 211	x[5] = addr0 & 0x000000ff;
 212
 213	return 0;
 214}
 215
 216static const char *netcp_node_name(struct device_node *node)
 217{
 218	const char *name;
 219
 220	if (of_property_read_string(node, "label", &name) < 0)
 221		name = node->name;
 222	if (!name)
 223		name = "unknown";
 224	return name;
 225}
 226
 227/* Module management routines */
 228static int netcp_register_interface(struct netcp_intf *netcp)
 229{
 230	int ret;
 231
 232	ret = register_netdev(netcp->ndev);
 233	if (!ret)
 234		netcp->netdev_registered = true;
 235	return ret;
 236}
 237
 238static int netcp_module_probe(struct netcp_device *netcp_device,
 239			      struct netcp_module *module)
 240{
 241	struct device *dev = netcp_device->device;
 242	struct device_node *devices, *interface, *node = dev->of_node;
 243	struct device_node *child;
 244	struct netcp_inst_modpriv *inst_modpriv;
 245	struct netcp_intf *netcp_intf;
 246	struct netcp_module *tmp;
 247	bool primary_module_registered = false;
 248	int ret;
 249
 250	/* Find this module in the sub-tree for this device */
 251	devices = of_get_child_by_name(node, "netcp-devices");
 252	if (!devices) {
 253		dev_err(dev, "could not find netcp-devices node\n");
 254		return NETCP_MOD_PROBE_SKIPPED;
 255	}
 256
 257	for_each_available_child_of_node(devices, child) {
 258		const char *name = netcp_node_name(child);
 
 259
 
 
 
 
 260		if (!strcasecmp(module->name, name))
 261			break;
 262	}
 263
 264	of_node_put(devices);
 265	/* If module not used for this device, skip it */
 266	if (!child) {
 267		dev_warn(dev, "module(%s) not used for device\n", module->name);
 268		return NETCP_MOD_PROBE_SKIPPED;
 269	}
 270
 271	inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
 272	if (!inst_modpriv) {
 273		of_node_put(child);
 274		return -ENOMEM;
 275	}
 276
 277	inst_modpriv->netcp_device = netcp_device;
 278	inst_modpriv->netcp_module = module;
 279	list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
 280
 281	ret = module->probe(netcp_device, dev, child,
 282			    &inst_modpriv->module_priv);
 283	of_node_put(child);
 284	if (ret) {
 285		dev_err(dev, "Probe of module(%s) failed with %d\n",
 286			module->name, ret);
 287		list_del(&inst_modpriv->inst_list);
 288		devm_kfree(dev, inst_modpriv);
 289		return NETCP_MOD_PROBE_FAILED;
 290	}
 291
 292	/* Attach modules only if the primary module is probed */
 293	for_each_netcp_module(tmp) {
 294		if (tmp->primary)
 295			primary_module_registered = true;
 296	}
 297
 298	if (!primary_module_registered)
 299		return 0;
 300
 301	/* Attach module to interfaces */
 302	list_for_each_entry(netcp_intf, &netcp_device->interface_head,
 303			    interface_list) {
 304		struct netcp_intf_modpriv *intf_modpriv;
 305
 306		intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
 307					    GFP_KERNEL);
 308		if (!intf_modpriv)
 309			return -ENOMEM;
 310
 311		interface = of_parse_phandle(netcp_intf->node_interface,
 312					     module->name, 0);
 313
 314		if (!interface) {
 315			devm_kfree(dev, intf_modpriv);
 316			continue;
 317		}
 318
 319		intf_modpriv->netcp_priv = netcp_intf;
 320		intf_modpriv->netcp_module = module;
 321		list_add_tail(&intf_modpriv->intf_list,
 322			      &netcp_intf->module_head);
 323
 324		ret = module->attach(inst_modpriv->module_priv,
 325				     netcp_intf->ndev, interface,
 326				     &intf_modpriv->module_priv);
 327		of_node_put(interface);
 328		if (ret) {
 329			dev_dbg(dev, "Attach of module %s declined with %d\n",
 330				module->name, ret);
 331			list_del(&intf_modpriv->intf_list);
 332			devm_kfree(dev, intf_modpriv);
 333			continue;
 334		}
 335	}
 336
 337	/* Now register the interface with netdev */
 338	list_for_each_entry(netcp_intf,
 339			    &netcp_device->interface_head,
 340			    interface_list) {
 341		/* If interface not registered then register now */
 342		if (!netcp_intf->netdev_registered) {
 343			ret = netcp_register_interface(netcp_intf);
 344			if (ret)
 345				return -ENODEV;
 346		}
 347	}
 348	return 0;
 349}
 350
 351int netcp_register_module(struct netcp_module *module)
 352{
 353	struct netcp_device *netcp_device;
 354	struct netcp_module *tmp;
 355	int ret;
 356
 357	if (!module->name) {
 358		WARN(1, "error registering netcp module: no name\n");
 359		return -EINVAL;
 360	}
 361
 362	if (!module->probe) {
 363		WARN(1, "error registering netcp module: no probe\n");
 364		return -EINVAL;
 365	}
 366
 367	mutex_lock(&netcp_modules_lock);
 368
 369	for_each_netcp_module(tmp) {
 370		if (!strcasecmp(tmp->name, module->name)) {
 371			mutex_unlock(&netcp_modules_lock);
 372			return -EEXIST;
 373		}
 374	}
 375	list_add_tail(&module->module_list, &netcp_modules);
 376
 377	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 378		ret = netcp_module_probe(netcp_device, module);
 379		if (ret < 0)
 380			goto fail;
 381	}
 382	mutex_unlock(&netcp_modules_lock);
 383	return 0;
 384
 385fail:
 386	mutex_unlock(&netcp_modules_lock);
 387	netcp_unregister_module(module);
 388	return ret;
 389}
 390EXPORT_SYMBOL_GPL(netcp_register_module);
 391
 392static void netcp_release_module(struct netcp_device *netcp_device,
 393				 struct netcp_module *module)
 394{
 395	struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
 396	struct netcp_intf *netcp_intf, *netcp_tmp;
 397	struct device *dev = netcp_device->device;
 398
 399	/* Release the module from each interface */
 400	list_for_each_entry_safe(netcp_intf, netcp_tmp,
 401				 &netcp_device->interface_head,
 402				 interface_list) {
 403		struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
 404
 405		list_for_each_entry_safe(intf_modpriv, intf_tmp,
 406					 &netcp_intf->module_head,
 407					 intf_list) {
 408			if (intf_modpriv->netcp_module == module) {
 409				module->release(intf_modpriv->module_priv);
 410				list_del(&intf_modpriv->intf_list);
 411				devm_kfree(dev, intf_modpriv);
 412				break;
 413			}
 414		}
 415	}
 416
 417	/* Remove the module from each instance */
 418	list_for_each_entry_safe(inst_modpriv, inst_tmp,
 419				 &netcp_device->modpriv_head, inst_list) {
 420		if (inst_modpriv->netcp_module == module) {
 421			module->remove(netcp_device,
 422				       inst_modpriv->module_priv);
 423			list_del(&inst_modpriv->inst_list);
 424			devm_kfree(dev, inst_modpriv);
 425			break;
 426		}
 427	}
 428}
 429
 430void netcp_unregister_module(struct netcp_module *module)
 431{
 432	struct netcp_device *netcp_device;
 433	struct netcp_module *module_tmp;
 434
 435	mutex_lock(&netcp_modules_lock);
 436
 437	list_for_each_entry(netcp_device, &netcp_devices, device_list) {
 438		netcp_release_module(netcp_device, module);
 439	}
 440
 441	/* Remove the module from the module list */
 442	for_each_netcp_module(module_tmp) {
 443		if (module == module_tmp) {
 444			list_del(&module->module_list);
 445			break;
 446		}
 447	}
 448
 449	mutex_unlock(&netcp_modules_lock);
 450}
 451EXPORT_SYMBOL_GPL(netcp_unregister_module);
 452
 453void *netcp_module_get_intf_data(struct netcp_module *module,
 454				 struct netcp_intf *intf)
 455{
 456	struct netcp_intf_modpriv *intf_modpriv;
 457
 458	list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
 459		if (intf_modpriv->netcp_module == module)
 460			return intf_modpriv->module_priv;
 461	return NULL;
 462}
 463EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
 464
 465/* Module TX and RX Hook management */
 466struct netcp_hook_list {
 467	struct list_head	 list;
 468	netcp_hook_rtn		*hook_rtn;
 469	void			*hook_data;
 470	int			 order;
 471};
 472
 473int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
 474			  netcp_hook_rtn *hook_rtn, void *hook_data)
 475{
 476	struct netcp_hook_list *entry;
 477	struct netcp_hook_list *next;
 478	unsigned long flags;
 479
 480	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 481	if (!entry)
 482		return -ENOMEM;
 483
 484	entry->hook_rtn  = hook_rtn;
 485	entry->hook_data = hook_data;
 486	entry->order     = order;
 487
 488	spin_lock_irqsave(&netcp_priv->lock, flags);
 489	list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
 490		if (next->order > order)
 491			break;
 492	}
 493	__list_add(&entry->list, next->list.prev, &next->list);
 494	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 495
 496	return 0;
 497}
 498EXPORT_SYMBOL_GPL(netcp_register_txhook);
 499
 500int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
 501			    netcp_hook_rtn *hook_rtn, void *hook_data)
 502{
 503	struct netcp_hook_list *next, *n;
 504	unsigned long flags;
 505
 506	spin_lock_irqsave(&netcp_priv->lock, flags);
 507	list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
 508		if ((next->order     == order) &&
 509		    (next->hook_rtn  == hook_rtn) &&
 510		    (next->hook_data == hook_data)) {
 511			list_del(&next->list);
 512			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 513			devm_kfree(netcp_priv->dev, next);
 514			return 0;
 515		}
 516	}
 517	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 518	return -ENOENT;
 519}
 520EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
 521
 522int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
 523			  netcp_hook_rtn *hook_rtn, void *hook_data)
 524{
 525	struct netcp_hook_list *entry;
 526	struct netcp_hook_list *next;
 527	unsigned long flags;
 528
 529	entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
 530	if (!entry)
 531		return -ENOMEM;
 532
 533	entry->hook_rtn  = hook_rtn;
 534	entry->hook_data = hook_data;
 535	entry->order     = order;
 536
 537	spin_lock_irqsave(&netcp_priv->lock, flags);
 538	list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
 539		if (next->order > order)
 540			break;
 541	}
 542	__list_add(&entry->list, next->list.prev, &next->list);
 543	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 544
 545	return 0;
 546}
 
 547
 548int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
 549			    netcp_hook_rtn *hook_rtn, void *hook_data)
 550{
 551	struct netcp_hook_list *next, *n;
 552	unsigned long flags;
 553
 554	spin_lock_irqsave(&netcp_priv->lock, flags);
 555	list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
 556		if ((next->order     == order) &&
 557		    (next->hook_rtn  == hook_rtn) &&
 558		    (next->hook_data == hook_data)) {
 559			list_del(&next->list);
 560			spin_unlock_irqrestore(&netcp_priv->lock, flags);
 561			devm_kfree(netcp_priv->dev, next);
 562			return 0;
 563		}
 564	}
 565	spin_unlock_irqrestore(&netcp_priv->lock, flags);
 566
 567	return -ENOENT;
 568}
 
 569
 570static void netcp_frag_free(bool is_frag, void *ptr)
 571{
 572	if (is_frag)
 573		skb_free_frag(ptr);
 574	else
 575		kfree(ptr);
 576}
 577
 578static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
 579				     struct knav_dma_desc *desc)
 580{
 581	struct knav_dma_desc *ndesc;
 582	dma_addr_t dma_desc, dma_buf;
 583	unsigned int buf_len, dma_sz = sizeof(*ndesc);
 584	void *buf_ptr;
 585	u32 tmp;
 586
 587	get_words(&dma_desc, 1, &desc->next_desc);
 588
 589	while (dma_desc) {
 590		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 591		if (unlikely(!ndesc)) {
 592			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 593			break;
 594		}
 595		get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
 596		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 597		 * field as a 32bit value. Will not work on 64bit machines
 598		 */
 599		buf_ptr = (void *)GET_SW_DATA0(ndesc);
 600		buf_len = (int)GET_SW_DATA1(desc);
 601		dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
 602		__free_page(buf_ptr);
 603		knav_pool_desc_put(netcp->rx_pool, desc);
 604	}
 605	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 606	 * field as a 32bit value. Will not work on 64bit machines
 607	 */
 608	buf_ptr = (void *)GET_SW_DATA0(desc);
 609	buf_len = (int)GET_SW_DATA1(desc);
 610
 611	if (buf_ptr)
 612		netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
 613	knav_pool_desc_put(netcp->rx_pool, desc);
 614}
 615
 616static void netcp_empty_rx_queue(struct netcp_intf *netcp)
 617{
 
 618	struct knav_dma_desc *desc;
 619	unsigned int dma_sz;
 620	dma_addr_t dma;
 621
 622	for (; ;) {
 623		dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
 624		if (!dma)
 625			break;
 626
 627		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 628		if (unlikely(!desc)) {
 629			dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
 630				__func__);
 631			netcp->ndev->stats.rx_errors++;
 632			continue;
 633		}
 634		netcp_free_rx_desc_chain(netcp, desc);
 635		netcp->ndev->stats.rx_dropped++;
 636	}
 637}
 638
 639static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
 640{
 
 641	unsigned int dma_sz, buf_len, org_buf_len;
 642	struct knav_dma_desc *desc, *ndesc;
 643	unsigned int pkt_sz = 0, accum_sz;
 644	struct netcp_hook_list *rx_hook;
 645	dma_addr_t dma_desc, dma_buff;
 646	struct netcp_packet p_info;
 647	struct sk_buff *skb;
 648	void *org_buf_ptr;
 
 649
 650	dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
 651	if (!dma_desc)
 652		return -1;
 653
 654	desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 655	if (unlikely(!desc)) {
 656		dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 657		return 0;
 658	}
 659
 660	get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
 661	/* warning!!!! We are retrieving the virtual ptr in the sw_data
 662	 * field as a 32bit value. Will not work on 64bit machines
 663	 */
 664	org_buf_ptr = (void *)GET_SW_DATA0(desc);
 665	org_buf_len = (int)GET_SW_DATA1(desc);
 666
 667	if (unlikely(!org_buf_ptr)) {
 668		dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 669		goto free_desc;
 670	}
 671
 672	pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
 673	accum_sz = buf_len;
 674	dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
 675
 676	/* Build a new sk_buff for the primary buffer */
 677	skb = build_skb(org_buf_ptr, org_buf_len);
 678	if (unlikely(!skb)) {
 679		dev_err(netcp->ndev_dev, "build_skb() failed\n");
 680		goto free_desc;
 681	}
 682
 683	/* update data, tail and len */
 684	skb_reserve(skb, NETCP_SOP_OFFSET);
 685	__skb_put(skb, buf_len);
 686
 687	/* Fill in the page fragment list */
 688	while (dma_desc) {
 689		struct page *page;
 690
 691		ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
 692		if (unlikely(!ndesc)) {
 693			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 694			goto free_desc;
 695		}
 696
 697		get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
 698		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 699		 * field as a 32bit value. Will not work on 64bit machines
 700		 */
 701		page = (struct page *)GET_SW_DATA0(desc);
 702
 703		if (likely(dma_buff && buf_len && page)) {
 704			dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
 705				       DMA_FROM_DEVICE);
 706		} else {
 707			dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%pad), len(%d), page(%p)\n",
 708				&dma_buff, buf_len, page);
 709			goto free_desc;
 710		}
 711
 712		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 713				offset_in_page(dma_buff), buf_len, PAGE_SIZE);
 714		accum_sz += buf_len;
 715
 716		/* Free the descriptor */
 717		knav_pool_desc_put(netcp->rx_pool, ndesc);
 718	}
 719
 720	/* Free the primary descriptor */
 721	knav_pool_desc_put(netcp->rx_pool, desc);
 722
 723	/* check for packet len and warn */
 724	if (unlikely(pkt_sz != accum_sz))
 725		dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
 726			pkt_sz, accum_sz);
 727
 728	/* Remove ethernet FCS from the packet */
 729	__pskb_trim(skb, skb->len - ETH_FCS_LEN);
 
 
 
 
 730
 731	/* Call each of the RX hooks */
 732	p_info.skb = skb;
 
 733	p_info.rxtstamp_complete = false;
 
 
 
 
 
 734	list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
 735		int ret;
 736
 737		ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
 738					&p_info);
 739		if (unlikely(ret)) {
 740			dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
 741				rx_hook->order, ret);
 742			netcp->ndev->stats.rx_errors++;
 
 
 743			dev_kfree_skb(skb);
 744			return 0;
 745		}
 746	}
 
 
 747
 748	netcp->ndev->stats.rx_packets++;
 749	netcp->ndev->stats.rx_bytes += skb->len;
 
 
 750
 751	/* push skb up the stack */
 752	skb->protocol = eth_type_trans(skb, netcp->ndev);
 753	netif_receive_skb(skb);
 754	return 0;
 755
 756free_desc:
 757	netcp_free_rx_desc_chain(netcp, desc);
 758	netcp->ndev->stats.rx_errors++;
 759	return 0;
 760}
 761
 762static int netcp_process_rx_packets(struct netcp_intf *netcp,
 763				    unsigned int budget)
 764{
 765	int i;
 766
 767	for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
 768		;
 769	return i;
 770}
 771
 772/* Release descriptors and attached buffers from Rx FDQ */
 773static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
 774{
 775	struct knav_dma_desc *desc;
 776	unsigned int buf_len, dma_sz;
 777	dma_addr_t dma;
 778	void *buf_ptr;
 779
 780	/* Allocate descriptor */
 781	while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
 782		desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
 783		if (unlikely(!desc)) {
 784			dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
 785			continue;
 786		}
 787
 788		get_org_pkt_info(&dma, &buf_len, desc);
 789		/* warning!!!! We are retrieving the virtual ptr in the sw_data
 790		 * field as a 32bit value. Will not work on 64bit machines
 791		 */
 792		buf_ptr = (void *)GET_SW_DATA0(desc);
 793
 794		if (unlikely(!dma)) {
 795			dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
 796			knav_pool_desc_put(netcp->rx_pool, desc);
 797			continue;
 798		}
 799
 800		if (unlikely(!buf_ptr)) {
 801			dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
 802			knav_pool_desc_put(netcp->rx_pool, desc);
 803			continue;
 804		}
 805
 806		if (fdq == 0) {
 807			dma_unmap_single(netcp->dev, dma, buf_len,
 808					 DMA_FROM_DEVICE);
 809			netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
 810		} else {
 811			dma_unmap_page(netcp->dev, dma, buf_len,
 812				       DMA_FROM_DEVICE);
 813			__free_page(buf_ptr);
 814		}
 815
 816		knav_pool_desc_put(netcp->rx_pool, desc);
 817	}
 818}
 819
 820static void netcp_rxpool_free(struct netcp_intf *netcp)
 821{
 822	int i;
 823
 824	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
 825	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
 826		netcp_free_rx_buf(netcp, i);
 827
 828	if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
 829		dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
 830			netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
 831
 832	knav_pool_destroy(netcp->rx_pool);
 833	netcp->rx_pool = NULL;
 834}
 835
 836static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
 837{
 838	struct knav_dma_desc *hwdesc;
 839	unsigned int buf_len, dma_sz;
 840	u32 desc_info, pkt_info;
 841	struct page *page;
 842	dma_addr_t dma;
 843	void *bufptr;
 844	u32 sw_data[2];
 845
 846	/* Allocate descriptor */
 847	hwdesc = knav_pool_desc_get(netcp->rx_pool);
 848	if (IS_ERR_OR_NULL(hwdesc)) {
 849		dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
 850		return -ENOMEM;
 851	}
 852
 853	if (likely(fdq == 0)) {
 854		unsigned int primary_buf_len;
 855		/* Allocate a primary receive queue entry */
 856		buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
 857		primary_buf_len = SKB_DATA_ALIGN(buf_len) +
 858				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 859
 860		bufptr = netdev_alloc_frag(primary_buf_len);
 861		sw_data[1] = primary_buf_len;
 862
 863		if (unlikely(!bufptr)) {
 864			dev_warn_ratelimited(netcp->ndev_dev,
 865					     "Primary RX buffer alloc failed\n");
 866			goto fail;
 867		}
 868		dma = dma_map_single(netcp->dev, bufptr, buf_len,
 869				     DMA_TO_DEVICE);
 870		if (unlikely(dma_mapping_error(netcp->dev, dma)))
 871			goto fail;
 872
 873		/* warning!!!! We are saving the virtual ptr in the sw_data
 874		 * field as a 32bit value. Will not work on 64bit machines
 875		 */
 876		sw_data[0] = (u32)bufptr;
 877	} else {
 878		/* Allocate a secondary receive queue entry */
 879		page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
 880		if (unlikely(!page)) {
 881			dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
 882			goto fail;
 883		}
 884		buf_len = PAGE_SIZE;
 885		dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
 886		/* warning!!!! We are saving the virtual ptr in the sw_data
 887		 * field as a 32bit value. Will not work on 64bit machines
 888		 */
 889		sw_data[0] = (u32)page;
 890		sw_data[1] = 0;
 891	}
 892
 893	desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
 894	desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
 895	pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
 896	pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
 897	pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
 898		    KNAV_DMA_DESC_RETQ_SHIFT;
 899	set_org_pkt_info(dma, buf_len, hwdesc);
 900	SET_SW_DATA0(sw_data[0], hwdesc);
 901	SET_SW_DATA1(sw_data[1], hwdesc);
 902	set_desc_info(desc_info, pkt_info, hwdesc);
 903
 904	/* Push to FDQs */
 905	knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
 906			   &dma_sz);
 907	knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
 908	return 0;
 909
 910fail:
 911	knav_pool_desc_put(netcp->rx_pool, hwdesc);
 912	return -ENOMEM;
 913}
 914
 915/* Refill Rx FDQ with descriptors & attached buffers */
 916static void netcp_rxpool_refill(struct netcp_intf *netcp)
 917{
 918	u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
 919	int i, ret = 0;
 920
 921	/* Calculate the FDQ deficit and refill */
 922	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
 923		fdq_deficit[i] = netcp->rx_queue_depths[i] -
 924				 knav_queue_get_count(netcp->rx_fdq[i]);
 925
 926		while (fdq_deficit[i]-- && !ret)
 927			ret = netcp_allocate_rx_buf(netcp, i);
 928	} /* end for fdqs */
 929}
 930
 931/* NAPI poll */
 932static int netcp_rx_poll(struct napi_struct *napi, int budget)
 933{
 934	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
 935						rx_napi);
 936	unsigned int packets;
 937
 938	packets = netcp_process_rx_packets(netcp, budget);
 939
 940	netcp_rxpool_refill(netcp);
 941	if (packets < budget) {
 942		napi_complete(&netcp->rx_napi);
 943		knav_queue_enable_notify(netcp->rx_queue);
 944	}
 945
 946	return packets;
 947}
 948
 949static void netcp_rx_notify(void *arg)
 950{
 951	struct netcp_intf *netcp = arg;
 952
 953	knav_queue_disable_notify(netcp->rx_queue);
 954	napi_schedule(&netcp->rx_napi);
 955}
 956
 957static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
 958				     struct knav_dma_desc *desc,
 959				     unsigned int desc_sz)
 960{
 961	struct knav_dma_desc *ndesc = desc;
 962	dma_addr_t dma_desc, dma_buf;
 963	unsigned int buf_len;
 964
 965	while (ndesc) {
 966		get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
 967
 968		if (dma_buf && buf_len)
 969			dma_unmap_single(netcp->dev, dma_buf, buf_len,
 970					 DMA_TO_DEVICE);
 971		else
 972			dev_warn(netcp->ndev_dev, "bad Tx desc buf(%pad), len(%d)\n",
 973				 &dma_buf, buf_len);
 974
 975		knav_pool_desc_put(netcp->tx_pool, ndesc);
 976		ndesc = NULL;
 977		if (dma_desc) {
 978			ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
 979						     desc_sz);
 980			if (!ndesc)
 981				dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
 982		}
 983	}
 984}
 985
 986static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
 987					  unsigned int budget)
 988{
 
 989	struct knav_dma_desc *desc;
 
 990	struct sk_buff *skb;
 991	unsigned int dma_sz;
 992	dma_addr_t dma;
 993	int pkts = 0;
 994
 995	while (budget--) {
 996		dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
 997		if (!dma)
 998			break;
 999		desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
1000		if (unlikely(!desc)) {
1001			dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
1002			netcp->ndev->stats.tx_errors++;
1003			continue;
1004		}
1005
1006		/* warning!!!! We are retrieving the virtual ptr in the sw_data
1007		 * field as a 32bit value. Will not work on 64bit machines
1008		 */
1009		skb = (struct sk_buff *)GET_SW_DATA0(desc);
1010		netcp_free_tx_desc_chain(netcp, desc, dma_sz);
1011		if (!skb) {
1012			dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
1013			netcp->ndev->stats.tx_errors++;
1014			continue;
1015		}
1016
 
 
 
 
1017		if (netif_subqueue_stopped(netcp->ndev, skb) &&
1018		    netif_running(netcp->ndev) &&
1019		    (knav_pool_count(netcp->tx_pool) >
1020		    netcp->tx_resume_threshold)) {
1021			u16 subqueue = skb_get_queue_mapping(skb);
1022
1023			netif_wake_subqueue(netcp->ndev, subqueue);
1024		}
1025
1026		netcp->ndev->stats.tx_packets++;
1027		netcp->ndev->stats.tx_bytes += skb->len;
 
 
1028		dev_kfree_skb(skb);
1029		pkts++;
1030	}
1031	return pkts;
1032}
1033
1034static int netcp_tx_poll(struct napi_struct *napi, int budget)
1035{
1036	int packets;
1037	struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1038						tx_napi);
1039
1040	packets = netcp_process_tx_compl_packets(netcp, budget);
1041	if (packets < budget) {
1042		napi_complete(&netcp->tx_napi);
1043		knav_queue_enable_notify(netcp->tx_compl_q);
1044	}
1045
1046	return packets;
1047}
1048
1049static void netcp_tx_notify(void *arg)
1050{
1051	struct netcp_intf *netcp = arg;
1052
1053	knav_queue_disable_notify(netcp->tx_compl_q);
1054	napi_schedule(&netcp->tx_napi);
1055}
1056
1057static struct knav_dma_desc*
1058netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1059{
1060	struct knav_dma_desc *desc, *ndesc, *pdesc;
1061	unsigned int pkt_len = skb_headlen(skb);
1062	struct device *dev = netcp->dev;
1063	dma_addr_t dma_addr;
1064	unsigned int dma_sz;
1065	int i;
1066
1067	/* Map the linear buffer */
1068	dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1069	if (unlikely(dma_mapping_error(dev, dma_addr))) {
1070		dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1071		return NULL;
1072	}
1073
1074	desc = knav_pool_desc_get(netcp->tx_pool);
1075	if (IS_ERR_OR_NULL(desc)) {
1076		dev_err(netcp->ndev_dev, "out of TX desc\n");
1077		dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1078		return NULL;
1079	}
1080
1081	set_pkt_info(dma_addr, pkt_len, 0, desc);
1082	if (skb_is_nonlinear(skb)) {
1083		prefetchw(skb_shinfo(skb));
1084	} else {
1085		desc->next_desc = 0;
1086		goto upd_pkt_len;
1087	}
1088
1089	pdesc = desc;
1090
1091	/* Handle the case where skb is fragmented in pages */
1092	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1093		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1094		struct page *page = skb_frag_page(frag);
1095		u32 page_offset = frag->page_offset;
1096		u32 buf_len = skb_frag_size(frag);
1097		dma_addr_t desc_dma;
1098		u32 desc_dma_32;
1099		u32 pkt_info;
1100
1101		dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1102					DMA_TO_DEVICE);
1103		if (unlikely(!dma_addr)) {
1104			dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1105			goto free_descs;
1106		}
1107
1108		ndesc = knav_pool_desc_get(netcp->tx_pool);
1109		if (IS_ERR_OR_NULL(ndesc)) {
1110			dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1111			dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1112			goto free_descs;
1113		}
1114
1115		desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool, ndesc);
1116		pkt_info =
1117			(netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1118				KNAV_DMA_DESC_RETQ_SHIFT;
1119		set_pkt_info(dma_addr, buf_len, 0, ndesc);
1120		desc_dma_32 = (u32)desc_dma;
1121		set_words(&desc_dma_32, 1, &pdesc->next_desc);
1122		pkt_len += buf_len;
1123		if (pdesc != desc)
1124			knav_pool_desc_map(netcp->tx_pool, pdesc,
1125					   sizeof(*pdesc), &desc_dma, &dma_sz);
1126		pdesc = ndesc;
1127	}
1128	if (pdesc != desc)
1129		knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1130				   &dma_addr, &dma_sz);
1131
1132	/* frag list based linkage is not supported for now. */
1133	if (skb_shinfo(skb)->frag_list) {
1134		dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1135		goto free_descs;
1136	}
1137
1138upd_pkt_len:
1139	WARN_ON(pkt_len != skb->len);
1140
1141	pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1142	set_words(&pkt_len, 1, &desc->desc_info);
1143	return desc;
1144
1145free_descs:
1146	netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1147	return NULL;
1148}
1149
1150static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1151			       struct sk_buff *skb,
1152			       struct knav_dma_desc *desc)
1153{
1154	struct netcp_tx_pipe *tx_pipe = NULL;
1155	struct netcp_hook_list *tx_hook;
1156	struct netcp_packet p_info;
 
1157	unsigned int dma_sz;
1158	dma_addr_t dma;
1159	u32 tmp = 0;
1160	int ret = 0;
1161
1162	p_info.netcp = netcp;
1163	p_info.skb = skb;
1164	p_info.tx_pipe = NULL;
1165	p_info.psdata_len = 0;
1166	p_info.ts_context = NULL;
1167	p_info.txtstamp_complete = NULL;
1168	p_info.epib = desc->epib;
1169	p_info.psdata = (u32 __force *)desc->psdata;
1170	memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(__le32));
1171
1172	/* Find out where to inject the packet for transmission */
1173	list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1174		ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1175					&p_info);
1176		if (unlikely(ret != 0)) {
1177			dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1178				tx_hook->order, ret);
1179			ret = (ret < 0) ? ret : NETDEV_TX_OK;
1180			goto out;
1181		}
1182	}
1183
1184	/* Make sure some TX hook claimed the packet */
1185	tx_pipe = p_info.tx_pipe;
1186	if (!tx_pipe) {
1187		dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1188		ret = -ENXIO;
1189		goto out;
1190	}
1191
 
 
 
 
1192	/* update descriptor */
1193	if (p_info.psdata_len) {
1194		/* psdata points to both native-endian and device-endian data */
1195		__le32 *psdata = (void __force *)p_info.psdata;
1196
1197		memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1198			p_info.psdata_len);
1199		set_words(p_info.psdata, p_info.psdata_len, psdata);
1200		tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1201			KNAV_DMA_DESC_PSLEN_SHIFT;
1202	}
1203
1204	tmp |= KNAV_DMA_DESC_HAS_EPIB |
1205		((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1206		KNAV_DMA_DESC_RETQ_SHIFT);
1207
1208	if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1209		tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1210			KNAV_DMA_DESC_PSFLAG_SHIFT);
1211	}
1212
1213	set_words(&tmp, 1, &desc->packet_info);
1214	/* warning!!!! We are saving the virtual ptr in the sw_data
1215	 * field as a 32bit value. Will not work on 64bit machines
1216	 */
1217	SET_SW_DATA0((u32)skb, desc);
1218
1219	if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1220		tmp = tx_pipe->switch_to_port;
1221		set_words(&tmp, 1, &desc->tag_info);
1222	}
1223
1224	/* submit packet descriptor */
1225	ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1226				 &dma_sz);
1227	if (unlikely(ret)) {
1228		dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1229		ret = -ENOMEM;
1230		goto out;
1231	}
1232	skb_tx_timestamp(skb);
1233	knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1234
1235out:
1236	return ret;
1237}
1238
1239/* Submit the packet */
1240static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1241{
1242	struct netcp_intf *netcp = netdev_priv(ndev);
 
1243	int subqueue = skb_get_queue_mapping(skb);
1244	struct knav_dma_desc *desc;
1245	int desc_count, ret = 0;
1246
1247	if (unlikely(skb->len <= 0)) {
1248		dev_kfree_skb(skb);
1249		return NETDEV_TX_OK;
1250	}
1251
1252	if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1253		ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1254		if (ret < 0) {
1255			/* If we get here, the skb has already been dropped */
1256			dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1257				 ret);
1258			ndev->stats.tx_dropped++;
1259			return ret;
1260		}
1261		skb->len = NETCP_MIN_PACKET_SIZE;
1262	}
1263
1264	desc = netcp_tx_map_skb(skb, netcp);
1265	if (unlikely(!desc)) {
1266		netif_stop_subqueue(ndev, subqueue);
1267		ret = -ENOBUFS;
1268		goto drop;
1269	}
1270
1271	ret = netcp_tx_submit_skb(netcp, skb, desc);
1272	if (ret)
1273		goto drop;
1274
1275	ndev->trans_start = jiffies;
1276
1277	/* Check Tx pool count & stop subqueue if needed */
1278	desc_count = knav_pool_count(netcp->tx_pool);
1279	if (desc_count < netcp->tx_pause_threshold) {
1280		dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1281		netif_stop_subqueue(ndev, subqueue);
1282	}
1283	return NETDEV_TX_OK;
1284
1285drop:
1286	ndev->stats.tx_dropped++;
1287	if (desc)
1288		netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1289	dev_kfree_skb(skb);
1290	return ret;
1291}
1292
1293int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1294{
1295	if (tx_pipe->dma_channel) {
1296		knav_dma_close_channel(tx_pipe->dma_channel);
1297		tx_pipe->dma_channel = NULL;
1298	}
1299	return 0;
1300}
1301EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1302
1303int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1304{
1305	struct device *dev = tx_pipe->netcp_device->device;
1306	struct knav_dma_cfg config;
1307	int ret = 0;
1308	u8 name[16];
1309
1310	memset(&config, 0, sizeof(config));
1311	config.direction = DMA_MEM_TO_DEV;
1312	config.u.tx.filt_einfo = false;
1313	config.u.tx.filt_pswords = false;
1314	config.u.tx.priority = DMA_PRIO_MED_L;
1315
1316	tx_pipe->dma_channel = knav_dma_open_channel(dev,
1317				tx_pipe->dma_chan_name, &config);
1318	if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1319		dev_err(dev, "failed opening tx chan(%s)\n",
1320			tx_pipe->dma_chan_name);
 
1321		goto err;
1322	}
1323
1324	snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1325	tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1326					     KNAV_QUEUE_SHARED);
1327	if (IS_ERR(tx_pipe->dma_queue)) {
1328		dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1329			name, ret);
1330		ret = PTR_ERR(tx_pipe->dma_queue);
1331		goto err;
1332	}
1333
1334	dev_dbg(dev, "opened tx pipe %s\n", name);
1335	return 0;
1336
1337err:
1338	if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1339		knav_dma_close_channel(tx_pipe->dma_channel);
1340	tx_pipe->dma_channel = NULL;
1341	return ret;
1342}
1343EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1344
1345int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1346		      struct netcp_device *netcp_device,
1347		      const char *dma_chan_name, unsigned int dma_queue_id)
1348{
1349	memset(tx_pipe, 0, sizeof(*tx_pipe));
1350	tx_pipe->netcp_device = netcp_device;
1351	tx_pipe->dma_chan_name = dma_chan_name;
1352	tx_pipe->dma_queue_id = dma_queue_id;
1353	return 0;
1354}
1355EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1356
1357static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1358					  const u8 *addr,
1359					  enum netcp_addr_type type)
1360{
1361	struct netcp_addr *naddr;
1362
1363	list_for_each_entry(naddr, &netcp->addr_list, node) {
1364		if (naddr->type != type)
1365			continue;
1366		if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1367			continue;
1368		return naddr;
1369	}
1370
1371	return NULL;
1372}
1373
1374static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1375					 const u8 *addr,
1376					 enum netcp_addr_type type)
1377{
1378	struct netcp_addr *naddr;
1379
1380	naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1381	if (!naddr)
1382		return NULL;
1383
1384	naddr->type = type;
1385	naddr->flags = 0;
1386	naddr->netcp = netcp;
1387	if (addr)
1388		ether_addr_copy(naddr->addr, addr);
1389	else
1390		eth_zero_addr(naddr->addr);
1391	list_add_tail(&naddr->node, &netcp->addr_list);
1392
1393	return naddr;
1394}
1395
1396static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1397{
1398	list_del(&naddr->node);
1399	devm_kfree(netcp->dev, naddr);
1400}
1401
1402static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1403{
1404	struct netcp_addr *naddr;
1405
1406	list_for_each_entry(naddr, &netcp->addr_list, node)
1407		naddr->flags = 0;
1408}
1409
1410static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1411				enum netcp_addr_type type)
1412{
1413	struct netcp_addr *naddr;
1414
1415	naddr = netcp_addr_find(netcp, addr, type);
1416	if (naddr) {
1417		naddr->flags |= ADDR_VALID;
1418		return;
1419	}
1420
1421	naddr = netcp_addr_add(netcp, addr, type);
1422	if (!WARN_ON(!naddr))
1423		naddr->flags |= ADDR_NEW;
1424}
1425
1426static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1427{
1428	struct netcp_addr *naddr, *tmp;
1429	struct netcp_intf_modpriv *priv;
1430	struct netcp_module *module;
1431	int error;
1432
1433	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1434		if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1435			continue;
1436		dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1437			naddr->addr, naddr->type);
1438		for_each_module(netcp, priv) {
1439			module = priv->netcp_module;
1440			if (!module->del_addr)
1441				continue;
1442			error = module->del_addr(priv->module_priv,
1443						 naddr);
1444			WARN_ON(error);
1445		}
1446		netcp_addr_del(netcp, naddr);
1447	}
1448}
1449
1450static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1451{
1452	struct netcp_addr *naddr, *tmp;
1453	struct netcp_intf_modpriv *priv;
1454	struct netcp_module *module;
1455	int error;
1456
1457	list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1458		if (!(naddr->flags & ADDR_NEW))
1459			continue;
1460		dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1461			naddr->addr, naddr->type);
1462
1463		for_each_module(netcp, priv) {
1464			module = priv->netcp_module;
1465			if (!module->add_addr)
1466				continue;
1467			error = module->add_addr(priv->module_priv, naddr);
1468			WARN_ON(error);
1469		}
1470	}
1471}
1472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473static void netcp_set_rx_mode(struct net_device *ndev)
1474{
1475	struct netcp_intf *netcp = netdev_priv(ndev);
1476	struct netdev_hw_addr *ndev_addr;
1477	bool promisc;
1478
1479	promisc = (ndev->flags & IFF_PROMISC ||
1480		   ndev->flags & IFF_ALLMULTI ||
1481		   netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1482
1483	spin_lock(&netcp->lock);
1484	/* first clear all marks */
1485	netcp_addr_clear_mark(netcp);
1486
1487	/* next add new entries, mark existing ones */
1488	netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1489	for_each_dev_addr(ndev, ndev_addr)
1490		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1491	netdev_for_each_uc_addr(ndev_addr, ndev)
1492		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1493	netdev_for_each_mc_addr(ndev_addr, ndev)
1494		netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1495
1496	if (promisc)
1497		netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1498
1499	/* finally sweep and callout into modules */
1500	netcp_addr_sweep_del(netcp);
1501	netcp_addr_sweep_add(netcp);
 
1502	spin_unlock(&netcp->lock);
1503}
1504
1505static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1506{
1507	int i;
1508
1509	if (netcp->rx_channel) {
1510		knav_dma_close_channel(netcp->rx_channel);
1511		netcp->rx_channel = NULL;
1512	}
1513
1514	if (!IS_ERR_OR_NULL(netcp->rx_pool))
1515		netcp_rxpool_free(netcp);
1516
1517	if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1518		knav_queue_close(netcp->rx_queue);
1519		netcp->rx_queue = NULL;
1520	}
1521
1522	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1523	     !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1524		knav_queue_close(netcp->rx_fdq[i]);
1525		netcp->rx_fdq[i] = NULL;
1526	}
1527
1528	if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1529		knav_queue_close(netcp->tx_compl_q);
1530		netcp->tx_compl_q = NULL;
1531	}
1532
1533	if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1534		knav_pool_destroy(netcp->tx_pool);
1535		netcp->tx_pool = NULL;
1536	}
1537}
1538
1539static int netcp_setup_navigator_resources(struct net_device *ndev)
1540{
1541	struct netcp_intf *netcp = netdev_priv(ndev);
1542	struct knav_queue_notify_config notify_cfg;
1543	struct knav_dma_cfg config;
1544	u32 last_fdq = 0;
1545	u8 name[16];
1546	int ret;
1547	int i;
1548
1549	/* Create Rx/Tx descriptor pools */
1550	snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1551	netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1552						netcp->rx_pool_region_id);
1553	if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1554		dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1555		ret = PTR_ERR(netcp->rx_pool);
1556		goto fail;
1557	}
1558
1559	snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1560	netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1561						netcp->tx_pool_region_id);
1562	if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1563		dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1564		ret = PTR_ERR(netcp->tx_pool);
1565		goto fail;
1566	}
1567
1568	/* open Tx completion queue */
1569	snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1570	netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1571	if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1572		ret = PTR_ERR(netcp->tx_compl_q);
1573		goto fail;
1574	}
1575	netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1576
1577	/* Set notification for Tx completion */
1578	notify_cfg.fn = netcp_tx_notify;
1579	notify_cfg.fn_arg = netcp;
1580	ret = knav_queue_device_control(netcp->tx_compl_q,
1581					KNAV_QUEUE_SET_NOTIFIER,
1582					(unsigned long)&notify_cfg);
1583	if (ret)
1584		goto fail;
1585
1586	knav_queue_disable_notify(netcp->tx_compl_q);
1587
1588	/* open Rx completion queue */
1589	snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1590	netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1591	if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1592		ret = PTR_ERR(netcp->rx_queue);
1593		goto fail;
1594	}
1595	netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1596
1597	/* Set notification for Rx completion */
1598	notify_cfg.fn = netcp_rx_notify;
1599	notify_cfg.fn_arg = netcp;
1600	ret = knav_queue_device_control(netcp->rx_queue,
1601					KNAV_QUEUE_SET_NOTIFIER,
1602					(unsigned long)&notify_cfg);
1603	if (ret)
1604		goto fail;
1605
1606	knav_queue_disable_notify(netcp->rx_queue);
1607
1608	/* open Rx FDQs */
1609	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1610	     ++i) {
1611		snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1612		netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1613		if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1614			ret = PTR_ERR(netcp->rx_fdq[i]);
1615			goto fail;
1616		}
1617	}
1618
1619	memset(&config, 0, sizeof(config));
1620	config.direction		= DMA_DEV_TO_MEM;
1621	config.u.rx.einfo_present	= true;
1622	config.u.rx.psinfo_present	= true;
1623	config.u.rx.err_mode		= DMA_DROP;
1624	config.u.rx.desc_type		= DMA_DESC_HOST;
1625	config.u.rx.psinfo_at_sop	= false;
1626	config.u.rx.sop_offset		= NETCP_SOP_OFFSET;
1627	config.u.rx.dst_q		= netcp->rx_queue_id;
1628	config.u.rx.thresh		= DMA_THRESH_NONE;
1629
1630	for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1631		if (netcp->rx_fdq[i])
1632			last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1633		config.u.rx.fdq[i] = last_fdq;
1634	}
1635
1636	netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1637					netcp->dma_chan_name, &config);
1638	if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1639		dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1640			netcp->dma_chan_name);
 
1641		goto fail;
1642	}
1643
1644	dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1645	return 0;
1646
1647fail:
1648	netcp_free_navigator_resources(netcp);
1649	return ret;
1650}
1651
1652/* Open the device */
1653static int netcp_ndo_open(struct net_device *ndev)
1654{
1655	struct netcp_intf *netcp = netdev_priv(ndev);
1656	struct netcp_intf_modpriv *intf_modpriv;
1657	struct netcp_module *module;
1658	int ret;
1659
1660	netif_carrier_off(ndev);
1661	ret = netcp_setup_navigator_resources(ndev);
1662	if (ret) {
1663		dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1664		goto fail;
1665	}
1666
1667	for_each_module(netcp, intf_modpriv) {
1668		module = intf_modpriv->netcp_module;
1669		if (module->open) {
1670			ret = module->open(intf_modpriv->module_priv, ndev);
1671			if (ret != 0) {
1672				dev_err(netcp->ndev_dev, "module open failed\n");
1673				goto fail_open;
1674			}
1675		}
1676	}
1677
1678	napi_enable(&netcp->rx_napi);
1679	napi_enable(&netcp->tx_napi);
1680	knav_queue_enable_notify(netcp->tx_compl_q);
1681	knav_queue_enable_notify(netcp->rx_queue);
1682	netcp_rxpool_refill(netcp);
1683	netif_tx_wake_all_queues(ndev);
1684	dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1685	return 0;
1686
1687fail_open:
1688	for_each_module(netcp, intf_modpriv) {
1689		module = intf_modpriv->netcp_module;
1690		if (module->close)
1691			module->close(intf_modpriv->module_priv, ndev);
1692	}
1693
1694fail:
1695	netcp_free_navigator_resources(netcp);
1696	return ret;
1697}
1698
1699/* Close the device */
1700static int netcp_ndo_stop(struct net_device *ndev)
1701{
1702	struct netcp_intf *netcp = netdev_priv(ndev);
1703	struct netcp_intf_modpriv *intf_modpriv;
1704	struct netcp_module *module;
1705	int err = 0;
1706
1707	netif_tx_stop_all_queues(ndev);
1708	netif_carrier_off(ndev);
1709	netcp_addr_clear_mark(netcp);
1710	netcp_addr_sweep_del(netcp);
1711	knav_queue_disable_notify(netcp->rx_queue);
1712	knav_queue_disable_notify(netcp->tx_compl_q);
1713	napi_disable(&netcp->rx_napi);
1714	napi_disable(&netcp->tx_napi);
1715
1716	for_each_module(netcp, intf_modpriv) {
1717		module = intf_modpriv->netcp_module;
1718		if (module->close) {
1719			err = module->close(intf_modpriv->module_priv, ndev);
1720			if (err != 0)
1721				dev_err(netcp->ndev_dev, "Close failed\n");
1722		}
1723	}
1724
1725	/* Recycle Rx descriptors from completion queue */
1726	netcp_empty_rx_queue(netcp);
1727
1728	/* Recycle Tx descriptors from completion queue */
1729	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1730
1731	if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1732		dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1733			netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1734
1735	netcp_free_navigator_resources(netcp);
1736	dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1737	return 0;
1738}
1739
1740static int netcp_ndo_ioctl(struct net_device *ndev,
1741			   struct ifreq *req, int cmd)
1742{
1743	struct netcp_intf *netcp = netdev_priv(ndev);
1744	struct netcp_intf_modpriv *intf_modpriv;
1745	struct netcp_module *module;
1746	int ret = -1, err = -EOPNOTSUPP;
1747
1748	if (!netif_running(ndev))
1749		return -EINVAL;
1750
1751	for_each_module(netcp, intf_modpriv) {
1752		module = intf_modpriv->netcp_module;
1753		if (!module->ioctl)
1754			continue;
1755
1756		err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1757		if ((err < 0) && (err != -EOPNOTSUPP)) {
1758			ret = err;
1759			goto out;
1760		}
1761		if (err == 0)
1762			ret = err;
1763	}
1764
1765out:
1766	return (ret == 0) ? 0 : err;
1767}
1768
1769static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1770{
1771	struct netcp_intf *netcp = netdev_priv(ndev);
1772
1773	/* MTU < 68 is an error for IPv4 traffic */
1774	if ((new_mtu < 68) ||
1775	    (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1776		dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1777		return -EINVAL;
1778	}
1779
1780	ndev->mtu = new_mtu;
1781	return 0;
1782}
1783
1784static void netcp_ndo_tx_timeout(struct net_device *ndev)
1785{
1786	struct netcp_intf *netcp = netdev_priv(ndev);
1787	unsigned int descs = knav_pool_count(netcp->tx_pool);
1788
1789	dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1790	netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1791	ndev->trans_start = jiffies;
1792	netif_tx_wake_all_queues(ndev);
1793}
1794
1795static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1796{
1797	struct netcp_intf *netcp = netdev_priv(ndev);
1798	struct netcp_intf_modpriv *intf_modpriv;
1799	struct netcp_module *module;
1800	unsigned long flags;
1801	int err = 0;
1802
1803	dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1804
1805	spin_lock_irqsave(&netcp->lock, flags);
1806	for_each_module(netcp, intf_modpriv) {
1807		module = intf_modpriv->netcp_module;
1808		if ((module->add_vid) && (vid != 0)) {
1809			err = module->add_vid(intf_modpriv->module_priv, vid);
1810			if (err != 0) {
1811				dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1812					vid);
1813				break;
1814			}
1815		}
1816	}
1817	spin_unlock_irqrestore(&netcp->lock, flags);
1818
1819	return err;
1820}
1821
1822static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1823{
1824	struct netcp_intf *netcp = netdev_priv(ndev);
1825	struct netcp_intf_modpriv *intf_modpriv;
1826	struct netcp_module *module;
1827	unsigned long flags;
1828	int err = 0;
1829
1830	dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1831
1832	spin_lock_irqsave(&netcp->lock, flags);
1833	for_each_module(netcp, intf_modpriv) {
1834		module = intf_modpriv->netcp_module;
1835		if (module->del_vid) {
1836			err = module->del_vid(intf_modpriv->module_priv, vid);
1837			if (err != 0) {
1838				dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1839					vid);
1840				break;
1841			}
1842		}
1843	}
1844	spin_unlock_irqrestore(&netcp->lock, flags);
1845	return err;
1846}
1847
1848static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1849			      void *accel_priv,
1850			      select_queue_fallback_t fallback)
1851{
1852	return 0;
1853}
1854
1855static int netcp_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
1856			  struct tc_to_netdev *tc)
1857{
 
 
1858	int i;
1859
1860	/* setup tc must be called under rtnl lock */
1861	ASSERT_RTNL();
1862
1863	if (tc->type != TC_SETUP_MQPRIO)
1864		return -EINVAL;
 
 
 
1865
1866	/* Sanity-check the number of traffic classes requested */
1867	if ((dev->real_num_tx_queues <= 1) ||
1868	    (dev->real_num_tx_queues < tc->tc))
1869		return -EINVAL;
1870
1871	/* Configure traffic class to queue mappings */
1872	if (tc->tc) {
1873		netdev_set_num_tc(dev, tc->tc);
1874		for (i = 0; i < tc->tc; i++)
1875			netdev_set_tc_queue(dev, i, 1, i);
1876	} else {
1877		netdev_reset_tc(dev);
1878	}
1879
1880	return 0;
1881}
1882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883static const struct net_device_ops netcp_netdev_ops = {
1884	.ndo_open		= netcp_ndo_open,
1885	.ndo_stop		= netcp_ndo_stop,
1886	.ndo_start_xmit		= netcp_ndo_start_xmit,
1887	.ndo_set_rx_mode	= netcp_set_rx_mode,
1888	.ndo_do_ioctl           = netcp_ndo_ioctl,
1889	.ndo_change_mtu		= netcp_ndo_change_mtu,
1890	.ndo_set_mac_address	= eth_mac_addr,
1891	.ndo_validate_addr	= eth_validate_addr,
1892	.ndo_vlan_rx_add_vid	= netcp_rx_add_vid,
1893	.ndo_vlan_rx_kill_vid	= netcp_rx_kill_vid,
1894	.ndo_tx_timeout		= netcp_ndo_tx_timeout,
1895	.ndo_select_queue	= netcp_select_queue,
1896	.ndo_setup_tc		= netcp_setup_tc,
1897};
1898
1899static int netcp_create_interface(struct netcp_device *netcp_device,
1900				  struct device_node *node_interface)
1901{
1902	struct device *dev = netcp_device->device;
1903	struct device_node *node = dev->of_node;
1904	struct netcp_intf *netcp;
1905	struct net_device *ndev;
1906	resource_size_t size;
1907	struct resource res;
1908	void __iomem *efuse = NULL;
1909	u32 efuse_mac = 0;
1910	const void *mac_addr;
1911	u8 efuse_mac_addr[6];
1912	u32 temp[2];
1913	int ret = 0;
1914
1915	ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1916	if (!ndev) {
1917		dev_err(dev, "Error allocating netdev\n");
1918		return -ENOMEM;
1919	}
1920
1921	ndev->features |= NETIF_F_SG;
1922	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1923	ndev->hw_features = ndev->features;
1924	ndev->vlan_features |=  NETIF_F_SG;
1925
 
 
 
 
1926	netcp = netdev_priv(ndev);
1927	spin_lock_init(&netcp->lock);
1928	INIT_LIST_HEAD(&netcp->module_head);
1929	INIT_LIST_HEAD(&netcp->txhook_list_head);
1930	INIT_LIST_HEAD(&netcp->rxhook_list_head);
1931	INIT_LIST_HEAD(&netcp->addr_list);
 
 
1932	netcp->netcp_device = netcp_device;
1933	netcp->dev = netcp_device->device;
1934	netcp->ndev = ndev;
1935	netcp->ndev_dev  = &ndev->dev;
1936	netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1937	netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1938	netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1939	netcp->node_interface = node_interface;
1940
1941	ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1942	if (efuse_mac) {
1943		if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1944			dev_err(dev, "could not find efuse-mac reg resource\n");
1945			ret = -ENODEV;
1946			goto quit;
1947		}
1948		size = resource_size(&res);
1949
1950		if (!devm_request_mem_region(dev, res.start, size,
1951					     dev_name(dev))) {
1952			dev_err(dev, "could not reserve resource\n");
1953			ret = -ENOMEM;
1954			goto quit;
1955		}
1956
1957		efuse = devm_ioremap_nocache(dev, res.start, size);
1958		if (!efuse) {
1959			dev_err(dev, "could not map resource\n");
1960			devm_release_mem_region(dev, res.start, size);
1961			ret = -ENOMEM;
1962			goto quit;
1963		}
1964
1965		emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1966		if (is_valid_ether_addr(efuse_mac_addr))
1967			ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1968		else
1969			random_ether_addr(ndev->dev_addr);
1970
1971		devm_iounmap(dev, efuse);
1972		devm_release_mem_region(dev, res.start, size);
1973	} else {
1974		mac_addr = of_get_mac_address(node_interface);
1975		if (mac_addr)
1976			ether_addr_copy(ndev->dev_addr, mac_addr);
1977		else
1978			random_ether_addr(ndev->dev_addr);
1979	}
1980
1981	ret = of_property_read_string(node_interface, "rx-channel",
1982				      &netcp->dma_chan_name);
1983	if (ret < 0) {
1984		dev_err(dev, "missing \"rx-channel\" parameter\n");
1985		ret = -ENODEV;
1986		goto quit;
1987	}
1988
1989	ret = of_property_read_u32(node_interface, "rx-queue",
1990				   &netcp->rx_queue_id);
1991	if (ret < 0) {
1992		dev_warn(dev, "missing \"rx-queue\" parameter\n");
1993		netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1994	}
1995
1996	ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1997					 netcp->rx_queue_depths,
1998					 KNAV_DMA_FDQ_PER_CHAN);
1999	if (ret < 0) {
2000		dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
2001		netcp->rx_queue_depths[0] = 128;
2002	}
2003
2004	ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
2005	if (ret < 0) {
2006		dev_err(dev, "missing \"rx-pool\" parameter\n");
2007		ret = -ENODEV;
2008		goto quit;
2009	}
2010	netcp->rx_pool_size = temp[0];
2011	netcp->rx_pool_region_id = temp[1];
2012
2013	ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
2014	if (ret < 0) {
2015		dev_err(dev, "missing \"tx-pool\" parameter\n");
2016		ret = -ENODEV;
2017		goto quit;
2018	}
2019	netcp->tx_pool_size = temp[0];
2020	netcp->tx_pool_region_id = temp[1];
2021
2022	if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
2023		dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
2024			MAX_SKB_FRAGS);
2025		ret = -ENODEV;
2026		goto quit;
2027	}
2028
2029	ret = of_property_read_u32(node_interface, "tx-completion-queue",
2030				   &netcp->tx_compl_qid);
2031	if (ret < 0) {
2032		dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
2033		netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
2034	}
2035
2036	/* NAPI register */
2037	netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
2038	netif_tx_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
2039
2040	/* Register the network device */
2041	ndev->dev_id		= 0;
2042	ndev->watchdog_timeo	= NETCP_TX_TIMEOUT;
2043	ndev->netdev_ops	= &netcp_netdev_ops;
2044	SET_NETDEV_DEV(ndev, dev);
2045
2046	list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2047	return 0;
2048
2049quit:
2050	free_netdev(ndev);
2051	return ret;
2052}
2053
2054static void netcp_delete_interface(struct netcp_device *netcp_device,
2055				   struct net_device *ndev)
2056{
2057	struct netcp_intf_modpriv *intf_modpriv, *tmp;
2058	struct netcp_intf *netcp = netdev_priv(ndev);
2059	struct netcp_module *module;
2060
2061	dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2062		ndev->name);
2063
2064	/* Notify each of the modules that the interface is going away */
2065	list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2066				 intf_list) {
2067		module = intf_modpriv->netcp_module;
2068		dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2069			module->name);
2070		if (module->release)
2071			module->release(intf_modpriv->module_priv);
2072		list_del(&intf_modpriv->intf_list);
2073		kfree(intf_modpriv);
2074	}
2075	WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2076	     ndev->name);
2077
2078	list_del(&netcp->interface_list);
2079
2080	of_node_put(netcp->node_interface);
2081	unregister_netdev(ndev);
2082	netif_napi_del(&netcp->rx_napi);
2083	free_netdev(ndev);
2084}
2085
2086static int netcp_probe(struct platform_device *pdev)
2087{
2088	struct device_node *node = pdev->dev.of_node;
2089	struct netcp_intf *netcp_intf, *netcp_tmp;
2090	struct device_node *child, *interfaces;
2091	struct netcp_device *netcp_device;
2092	struct device *dev = &pdev->dev;
 
2093	int ret;
2094
 
 
 
 
2095	if (!node) {
2096		dev_err(dev, "could not find device info\n");
2097		return -ENODEV;
2098	}
2099
2100	/* Allocate a new NETCP device instance */
2101	netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2102	if (!netcp_device)
2103		return -ENOMEM;
2104
2105	pm_runtime_enable(&pdev->dev);
2106	ret = pm_runtime_get_sync(&pdev->dev);
2107	if (ret < 0) {
2108		dev_err(dev, "Failed to enable NETCP power-domain\n");
2109		pm_runtime_disable(&pdev->dev);
2110		return ret;
2111	}
2112
2113	/* Initialize the NETCP device instance */
2114	INIT_LIST_HEAD(&netcp_device->interface_head);
2115	INIT_LIST_HEAD(&netcp_device->modpriv_head);
2116	netcp_device->device = dev;
2117	platform_set_drvdata(pdev, netcp_device);
2118
2119	/* create interfaces */
2120	interfaces = of_get_child_by_name(node, "netcp-interfaces");
2121	if (!interfaces) {
2122		dev_err(dev, "could not find netcp-interfaces node\n");
2123		ret = -ENODEV;
2124		goto probe_quit;
2125	}
2126
2127	for_each_available_child_of_node(interfaces, child) {
2128		ret = netcp_create_interface(netcp_device, child);
2129		if (ret) {
2130			dev_err(dev, "could not create interface(%s)\n",
2131				child->name);
2132			goto probe_quit_interface;
2133		}
2134	}
2135
 
 
2136	/* Add the device instance to the list */
2137	list_add_tail(&netcp_device->device_list, &netcp_devices);
2138
 
 
 
 
 
 
 
 
2139	return 0;
2140
2141probe_quit_interface:
2142	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2143				 &netcp_device->interface_head,
2144				 interface_list) {
2145		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2146	}
2147
 
 
2148probe_quit:
2149	pm_runtime_put_sync(&pdev->dev);
2150	pm_runtime_disable(&pdev->dev);
2151	platform_set_drvdata(pdev, NULL);
2152	return ret;
2153}
2154
2155static int netcp_remove(struct platform_device *pdev)
2156{
2157	struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2158	struct netcp_intf *netcp_intf, *netcp_tmp;
2159	struct netcp_inst_modpriv *inst_modpriv, *tmp;
2160	struct netcp_module *module;
2161
2162	list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2163				 inst_list) {
2164		module = inst_modpriv->netcp_module;
2165		dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2166		module->remove(netcp_device, inst_modpriv->module_priv);
2167		list_del(&inst_modpriv->inst_list);
2168		kfree(inst_modpriv);
2169	}
2170
2171	/* now that all modules are removed, clean up the interfaces */
2172	list_for_each_entry_safe(netcp_intf, netcp_tmp,
2173				 &netcp_device->interface_head,
2174				 interface_list) {
2175		netcp_delete_interface(netcp_device, netcp_intf->ndev);
2176	}
2177
2178	WARN(!list_empty(&netcp_device->interface_head),
2179	     "%s interface list not empty!\n", pdev->name);
2180
2181	pm_runtime_put_sync(&pdev->dev);
2182	pm_runtime_disable(&pdev->dev);
2183	platform_set_drvdata(pdev, NULL);
2184	return 0;
2185}
2186
2187static const struct of_device_id of_match[] = {
2188	{ .compatible = "ti,netcp-1.0", },
2189	{},
2190};
2191MODULE_DEVICE_TABLE(of, of_match);
2192
2193static struct platform_driver netcp_driver = {
2194	.driver = {
2195		.name		= "netcp-1.0",
2196		.of_match_table	= of_match,
2197	},
2198	.probe = netcp_probe,
2199	.remove = netcp_remove,
2200};
2201module_platform_driver(netcp_driver);
2202
2203MODULE_LICENSE("GPL v2");
2204MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2205MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");