Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
   3 *
   4 * Copyright (C) 2014 Marvell
   5 *
   6 * Marcin Wojtas <mw@semihalf.com>
   7 *
   8 * This file is licensed under the terms of the GNU General Public
   9 * License version 2. This program is licensed "as is" without any
  10 * warranty of any kind, whether express or implied.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/netdevice.h>
  15#include <linux/etherdevice.h>
  16#include <linux/platform_device.h>
  17#include <linux/skbuff.h>
  18#include <linux/inetdevice.h>
  19#include <linux/mbus.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/cpumask.h>
  23#include <linux/of.h>
  24#include <linux/of_irq.h>
  25#include <linux/of_mdio.h>
  26#include <linux/of_net.h>
  27#include <linux/of_address.h>
  28#include <linux/phy.h>
  29#include <linux/clk.h>
  30#include <linux/hrtimer.h>
  31#include <linux/ktime.h>
  32#include <uapi/linux/ppp_defs.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35
  36/* RX Fifo Registers */
  37#define MVPP2_RX_DATA_FIFO_SIZE_REG(port)	(0x00 + 4 * (port))
  38#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port)	(0x20 + 4 * (port))
  39#define MVPP2_RX_MIN_PKT_SIZE_REG		0x60
  40#define MVPP2_RX_FIFO_INIT_REG			0x64
  41
  42/* RX DMA Top Registers */
  43#define MVPP2_RX_CTRL_REG(port)			(0x140 + 4 * (port))
  44#define     MVPP2_RX_LOW_LATENCY_PKT_SIZE(s)	(((s) & 0xfff) << 16)
  45#define     MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK	BIT(31)
  46#define MVPP2_POOL_BUF_SIZE_REG(pool)		(0x180 + 4 * (pool))
  47#define     MVPP2_POOL_BUF_SIZE_OFFSET		5
  48#define MVPP2_RXQ_CONFIG_REG(rxq)		(0x800 + 4 * (rxq))
  49#define     MVPP2_SNOOP_PKT_SIZE_MASK		0x1ff
  50#define     MVPP2_SNOOP_BUF_HDR_MASK		BIT(9)
  51#define     MVPP2_RXQ_POOL_SHORT_OFFS		20
  52#define     MVPP2_RXQ_POOL_SHORT_MASK		0x700000
  53#define     MVPP2_RXQ_POOL_LONG_OFFS		24
  54#define     MVPP2_RXQ_POOL_LONG_MASK		0x7000000
  55#define     MVPP2_RXQ_PACKET_OFFSET_OFFS	28
  56#define     MVPP2_RXQ_PACKET_OFFSET_MASK	0x70000000
  57#define     MVPP2_RXQ_DISABLE_MASK		BIT(31)
  58
  59/* Parser Registers */
  60#define MVPP2_PRS_INIT_LOOKUP_REG		0x1000
  61#define     MVPP2_PRS_PORT_LU_MAX		0xf
  62#define     MVPP2_PRS_PORT_LU_MASK(port)	(0xff << ((port) * 4))
  63#define     MVPP2_PRS_PORT_LU_VAL(port, val)	((val) << ((port) * 4))
  64#define MVPP2_PRS_INIT_OFFS_REG(port)		(0x1004 + ((port) & 4))
  65#define     MVPP2_PRS_INIT_OFF_MASK(port)	(0x3f << (((port) % 4) * 8))
  66#define     MVPP2_PRS_INIT_OFF_VAL(port, val)	((val) << (((port) % 4) * 8))
  67#define MVPP2_PRS_MAX_LOOP_REG(port)		(0x100c + ((port) & 4))
  68#define     MVPP2_PRS_MAX_LOOP_MASK(port)	(0xff << (((port) % 4) * 8))
  69#define     MVPP2_PRS_MAX_LOOP_VAL(port, val)	((val) << (((port) % 4) * 8))
  70#define MVPP2_PRS_TCAM_IDX_REG			0x1100
  71#define MVPP2_PRS_TCAM_DATA_REG(idx)		(0x1104 + (idx) * 4)
  72#define     MVPP2_PRS_TCAM_INV_MASK		BIT(31)
  73#define MVPP2_PRS_SRAM_IDX_REG			0x1200
  74#define MVPP2_PRS_SRAM_DATA_REG(idx)		(0x1204 + (idx) * 4)
  75#define MVPP2_PRS_TCAM_CTRL_REG			0x1230
  76#define     MVPP2_PRS_TCAM_EN_MASK		BIT(0)
  77
  78/* Classifier Registers */
  79#define MVPP2_CLS_MODE_REG			0x1800
  80#define     MVPP2_CLS_MODE_ACTIVE_MASK		BIT(0)
  81#define MVPP2_CLS_PORT_WAY_REG			0x1810
  82#define     MVPP2_CLS_PORT_WAY_MASK(port)	(1 << (port))
  83#define MVPP2_CLS_LKP_INDEX_REG			0x1814
  84#define     MVPP2_CLS_LKP_INDEX_WAY_OFFS	6
  85#define MVPP2_CLS_LKP_TBL_REG			0x1818
  86#define     MVPP2_CLS_LKP_TBL_RXQ_MASK		0xff
  87#define     MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK	BIT(25)
  88#define MVPP2_CLS_FLOW_INDEX_REG		0x1820
  89#define MVPP2_CLS_FLOW_TBL0_REG			0x1824
  90#define MVPP2_CLS_FLOW_TBL1_REG			0x1828
  91#define MVPP2_CLS_FLOW_TBL2_REG			0x182c
  92#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port)	(0x1980 + ((port) * 4))
  93#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS	3
  94#define     MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK	0x7
  95#define MVPP2_CLS_SWFWD_P2HQ_REG(port)		(0x19b0 + ((port) * 4))
  96#define MVPP2_CLS_SWFWD_PCTRL_REG		0x19d0
  97#define     MVPP2_CLS_SWFWD_PCTRL_MASK(port)	(1 << (port))
  98
  99/* Descriptor Manager Top Registers */
 100#define MVPP2_RXQ_NUM_REG			0x2040
 101#define MVPP2_RXQ_DESC_ADDR_REG			0x2044
 102#define MVPP2_RXQ_DESC_SIZE_REG			0x2048
 103#define     MVPP2_RXQ_DESC_SIZE_MASK		0x3ff0
 104#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq)	(0x3000 + 4 * (rxq))
 105#define     MVPP2_RXQ_NUM_PROCESSED_OFFSET	0
 106#define     MVPP2_RXQ_NUM_NEW_OFFSET		16
 107#define MVPP2_RXQ_STATUS_REG(rxq)		(0x3400 + 4 * (rxq))
 108#define     MVPP2_RXQ_OCCUPIED_MASK		0x3fff
 109#define     MVPP2_RXQ_NON_OCCUPIED_OFFSET	16
 110#define     MVPP2_RXQ_NON_OCCUPIED_MASK		0x3fff0000
 111#define MVPP2_RXQ_THRESH_REG			0x204c
 112#define     MVPP2_OCCUPIED_THRESH_OFFSET	0
 113#define     MVPP2_OCCUPIED_THRESH_MASK		0x3fff
 114#define MVPP2_RXQ_INDEX_REG			0x2050
 115#define MVPP2_TXQ_NUM_REG			0x2080
 116#define MVPP2_TXQ_DESC_ADDR_REG			0x2084
 117#define MVPP2_TXQ_DESC_SIZE_REG			0x2088
 118#define     MVPP2_TXQ_DESC_SIZE_MASK		0x3ff0
 119#define MVPP2_AGGR_TXQ_UPDATE_REG		0x2090
 120#define MVPP2_TXQ_THRESH_REG			0x2094
 121#define     MVPP2_TRANSMITTED_THRESH_OFFSET	16
 122#define     MVPP2_TRANSMITTED_THRESH_MASK	0x3fff0000
 123#define MVPP2_TXQ_INDEX_REG			0x2098
 124#define MVPP2_TXQ_PREF_BUF_REG			0x209c
 125#define     MVPP2_PREF_BUF_PTR(desc)		((desc) & 0xfff)
 126#define     MVPP2_PREF_BUF_SIZE_4		(BIT(12) | BIT(13))
 127#define     MVPP2_PREF_BUF_SIZE_16		(BIT(12) | BIT(14))
 128#define     MVPP2_PREF_BUF_THRESH(val)		((val) << 17)
 129#define     MVPP2_TXQ_DRAIN_EN_MASK		BIT(31)
 130#define MVPP2_TXQ_PENDING_REG			0x20a0
 131#define     MVPP2_TXQ_PENDING_MASK		0x3fff
 132#define MVPP2_TXQ_INT_STATUS_REG		0x20a4
 133#define MVPP2_TXQ_SENT_REG(txq)			(0x3c00 + 4 * (txq))
 134#define     MVPP2_TRANSMITTED_COUNT_OFFSET	16
 135#define     MVPP2_TRANSMITTED_COUNT_MASK	0x3fff0000
 136#define MVPP2_TXQ_RSVD_REQ_REG			0x20b0
 137#define     MVPP2_TXQ_RSVD_REQ_Q_OFFSET		16
 138#define MVPP2_TXQ_RSVD_RSLT_REG			0x20b4
 139#define     MVPP2_TXQ_RSVD_RSLT_MASK		0x3fff
 140#define MVPP2_TXQ_RSVD_CLR_REG			0x20b8
 141#define     MVPP2_TXQ_RSVD_CLR_OFFSET		16
 142#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu)	(0x2100 + 4 * (cpu))
 143#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu)	(0x2140 + 4 * (cpu))
 144#define     MVPP2_AGGR_TXQ_DESC_SIZE_MASK	0x3ff0
 145#define MVPP2_AGGR_TXQ_STATUS_REG(cpu)		(0x2180 + 4 * (cpu))
 146#define     MVPP2_AGGR_TXQ_PENDING_MASK		0x3fff
 147#define MVPP2_AGGR_TXQ_INDEX_REG(cpu)		(0x21c0 + 4 * (cpu))
 148
 149/* MBUS bridge registers */
 150#define MVPP2_WIN_BASE(w)			(0x4000 + ((w) << 2))
 151#define MVPP2_WIN_SIZE(w)			(0x4020 + ((w) << 2))
 152#define MVPP2_WIN_REMAP(w)			(0x4040 + ((w) << 2))
 153#define MVPP2_BASE_ADDR_ENABLE			0x4060
 154
 155/* Interrupt Cause and Mask registers */
 156#define MVPP2_ISR_RX_THRESHOLD_REG(rxq)		(0x5200 + 4 * (rxq))
 157#define MVPP2_ISR_RXQ_GROUP_REG(rxq)		(0x5400 + 4 * (rxq))
 158#define MVPP2_ISR_ENABLE_REG(port)		(0x5420 + 4 * (port))
 159#define     MVPP2_ISR_ENABLE_INTERRUPT(mask)	((mask) & 0xffff)
 160#define     MVPP2_ISR_DISABLE_INTERRUPT(mask)	(((mask) << 16) & 0xffff0000)
 161#define MVPP2_ISR_RX_TX_CAUSE_REG(port)		(0x5480 + 4 * (port))
 162#define     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
 163#define     MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK	0xff0000
 164#define     MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK	BIT(24)
 165#define     MVPP2_CAUSE_FCS_ERR_MASK		BIT(25)
 166#define     MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK	BIT(26)
 167#define     MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK	BIT(29)
 168#define     MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK	BIT(30)
 169#define     MVPP2_CAUSE_MISC_SUM_MASK		BIT(31)
 170#define MVPP2_ISR_RX_TX_MASK_REG(port)		(0x54a0 + 4 * (port))
 171#define MVPP2_ISR_PON_RX_TX_MASK_REG		0x54bc
 172#define     MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK	0xffff
 173#define     MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK	0x3fc00000
 174#define     MVPP2_PON_CAUSE_MISC_SUM_MASK		BIT(31)
 175#define MVPP2_ISR_MISC_CAUSE_REG		0x55b0
 176
 177/* Buffer Manager registers */
 178#define MVPP2_BM_POOL_BASE_REG(pool)		(0x6000 + ((pool) * 4))
 179#define     MVPP2_BM_POOL_BASE_ADDR_MASK	0xfffff80
 180#define MVPP2_BM_POOL_SIZE_REG(pool)		(0x6040 + ((pool) * 4))
 181#define     MVPP2_BM_POOL_SIZE_MASK		0xfff0
 182#define MVPP2_BM_POOL_READ_PTR_REG(pool)	(0x6080 + ((pool) * 4))
 183#define     MVPP2_BM_POOL_GET_READ_PTR_MASK	0xfff0
 184#define MVPP2_BM_POOL_PTRS_NUM_REG(pool)	(0x60c0 + ((pool) * 4))
 185#define     MVPP2_BM_POOL_PTRS_NUM_MASK		0xfff0
 186#define MVPP2_BM_BPPI_READ_PTR_REG(pool)	(0x6100 + ((pool) * 4))
 187#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool)	(0x6140 + ((pool) * 4))
 188#define     MVPP2_BM_BPPI_PTR_NUM_MASK		0x7ff
 189#define     MVPP2_BM_BPPI_PREFETCH_FULL_MASK	BIT(16)
 190#define MVPP2_BM_POOL_CTRL_REG(pool)		(0x6200 + ((pool) * 4))
 191#define     MVPP2_BM_START_MASK			BIT(0)
 192#define     MVPP2_BM_STOP_MASK			BIT(1)
 193#define     MVPP2_BM_STATE_MASK			BIT(4)
 194#define     MVPP2_BM_LOW_THRESH_OFFS		8
 195#define     MVPP2_BM_LOW_THRESH_MASK		0x7f00
 196#define     MVPP2_BM_LOW_THRESH_VALUE(val)	((val) << \
 197						MVPP2_BM_LOW_THRESH_OFFS)
 198#define     MVPP2_BM_HIGH_THRESH_OFFS		16
 199#define     MVPP2_BM_HIGH_THRESH_MASK		0x7f0000
 200#define     MVPP2_BM_HIGH_THRESH_VALUE(val)	((val) << \
 201						MVPP2_BM_HIGH_THRESH_OFFS)
 202#define MVPP2_BM_INTR_CAUSE_REG(pool)		(0x6240 + ((pool) * 4))
 203#define     MVPP2_BM_RELEASED_DELAY_MASK	BIT(0)
 204#define     MVPP2_BM_ALLOC_FAILED_MASK		BIT(1)
 205#define     MVPP2_BM_BPPE_EMPTY_MASK		BIT(2)
 206#define     MVPP2_BM_BPPE_FULL_MASK		BIT(3)
 207#define     MVPP2_BM_AVAILABLE_BP_LOW_MASK	BIT(4)
 208#define MVPP2_BM_INTR_MASK_REG(pool)		(0x6280 + ((pool) * 4))
 209#define MVPP2_BM_PHY_ALLOC_REG(pool)		(0x6400 + ((pool) * 4))
 210#define     MVPP2_BM_PHY_ALLOC_GRNTD_MASK	BIT(0)
 211#define MVPP2_BM_VIRT_ALLOC_REG			0x6440
 212#define MVPP2_BM_PHY_RLS_REG(pool)		(0x6480 + ((pool) * 4))
 213#define     MVPP2_BM_PHY_RLS_MC_BUFF_MASK	BIT(0)
 214#define     MVPP2_BM_PHY_RLS_PRIO_EN_MASK	BIT(1)
 215#define     MVPP2_BM_PHY_RLS_GRNTD_MASK		BIT(2)
 216#define MVPP2_BM_VIRT_RLS_REG			0x64c0
 217#define MVPP2_BM_MC_RLS_REG			0x64c4
 218#define     MVPP2_BM_MC_ID_MASK			0xfff
 219#define     MVPP2_BM_FORCE_RELEASE_MASK		BIT(12)
 220
 221/* TX Scheduler registers */
 222#define MVPP2_TXP_SCHED_PORT_INDEX_REG		0x8000
 223#define MVPP2_TXP_SCHED_Q_CMD_REG		0x8004
 224#define     MVPP2_TXP_SCHED_ENQ_MASK		0xff
 225#define     MVPP2_TXP_SCHED_DISQ_OFFSET		8
 226#define MVPP2_TXP_SCHED_CMD_1_REG		0x8010
 227#define MVPP2_TXP_SCHED_PERIOD_REG		0x8018
 228#define MVPP2_TXP_SCHED_MTU_REG			0x801c
 229#define     MVPP2_TXP_MTU_MAX			0x7FFFF
 230#define MVPP2_TXP_SCHED_REFILL_REG		0x8020
 231#define     MVPP2_TXP_REFILL_TOKENS_ALL_MASK	0x7ffff
 232#define     MVPP2_TXP_REFILL_PERIOD_ALL_MASK	0x3ff00000
 233#define     MVPP2_TXP_REFILL_PERIOD_MASK(v)	((v) << 20)
 234#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG		0x8024
 235#define     MVPP2_TXP_TOKEN_SIZE_MAX		0xffffffff
 236#define MVPP2_TXQ_SCHED_REFILL_REG(q)		(0x8040 + ((q) << 2))
 237#define     MVPP2_TXQ_REFILL_TOKENS_ALL_MASK	0x7ffff
 238#define     MVPP2_TXQ_REFILL_PERIOD_ALL_MASK	0x3ff00000
 239#define     MVPP2_TXQ_REFILL_PERIOD_MASK(v)	((v) << 20)
 240#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q)	(0x8060 + ((q) << 2))
 241#define     MVPP2_TXQ_TOKEN_SIZE_MAX		0x7fffffff
 242#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q)	(0x8080 + ((q) << 2))
 243#define     MVPP2_TXQ_TOKEN_CNTR_MAX		0xffffffff
 244
 245/* TX general registers */
 246#define MVPP2_TX_SNOOP_REG			0x8800
 247#define MVPP2_TX_PORT_FLUSH_REG			0x8810
 248#define     MVPP2_TX_PORT_FLUSH_MASK(port)	(1 << (port))
 249
 250/* LMS registers */
 251#define MVPP2_SRC_ADDR_MIDDLE			0x24
 252#define MVPP2_SRC_ADDR_HIGH			0x28
 253#define MVPP2_PHY_AN_CFG0_REG			0x34
 254#define     MVPP2_PHY_AN_STOP_SMI0_MASK		BIT(7)
 255#define MVPP2_MIB_COUNTERS_BASE(port)		(0x1000 + ((port) >> 1) * \
 256						0x400 + (port) * 0x400)
 257#define     MVPP2_MIB_LATE_COLLISION		0x7c
 258#define MVPP2_ISR_SUM_MASK_REG			0x220c
 259#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG	0x305c
 260#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT		0x27
 261
 262/* Per-port registers */
 263#define MVPP2_GMAC_CTRL_0_REG			0x0
 264#define      MVPP2_GMAC_PORT_EN_MASK		BIT(0)
 265#define      MVPP2_GMAC_MAX_RX_SIZE_OFFS	2
 266#define      MVPP2_GMAC_MAX_RX_SIZE_MASK	0x7ffc
 267#define      MVPP2_GMAC_MIB_CNTR_EN_MASK	BIT(15)
 268#define MVPP2_GMAC_CTRL_1_REG			0x4
 269#define      MVPP2_GMAC_PERIODIC_XON_EN_MASK	BIT(1)
 270#define      MVPP2_GMAC_GMII_LB_EN_MASK		BIT(5)
 271#define      MVPP2_GMAC_PCS_LB_EN_BIT		6
 272#define      MVPP2_GMAC_PCS_LB_EN_MASK		BIT(6)
 273#define      MVPP2_GMAC_SA_LOW_OFFS		7
 274#define MVPP2_GMAC_CTRL_2_REG			0x8
 275#define      MVPP2_GMAC_INBAND_AN_MASK		BIT(0)
 276#define      MVPP2_GMAC_PCS_ENABLE_MASK		BIT(3)
 277#define      MVPP2_GMAC_PORT_RGMII_MASK		BIT(4)
 278#define      MVPP2_GMAC_PORT_RESET_MASK		BIT(6)
 279#define MVPP2_GMAC_AUTONEG_CONFIG		0xc
 280#define      MVPP2_GMAC_FORCE_LINK_DOWN		BIT(0)
 281#define      MVPP2_GMAC_FORCE_LINK_PASS		BIT(1)
 282#define      MVPP2_GMAC_CONFIG_MII_SPEED	BIT(5)
 283#define      MVPP2_GMAC_CONFIG_GMII_SPEED	BIT(6)
 284#define      MVPP2_GMAC_AN_SPEED_EN		BIT(7)
 285#define      MVPP2_GMAC_FC_ADV_EN		BIT(9)
 286#define      MVPP2_GMAC_CONFIG_FULL_DUPLEX	BIT(12)
 287#define      MVPP2_GMAC_AN_DUPLEX_EN		BIT(13)
 288#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG		0x1c
 289#define      MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS	6
 290#define      MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK	0x1fc0
 291#define      MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v)	(((v) << 6) & \
 292					MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
 293
 294#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK	0xff
 295
 296/* Descriptor ring Macros */
 297#define MVPP2_QUEUE_NEXT_DESC(q, index) \
 298	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
 299
 300/* Various constants */
 301
 302/* Coalescing */
 303#define MVPP2_TXDONE_COAL_PKTS_THRESH	15
 304#define MVPP2_TXDONE_HRTIMER_PERIOD_NS	1000000UL
 305#define MVPP2_RX_COAL_PKTS		32
 306#define MVPP2_RX_COAL_USEC		100
 307
 308/* The two bytes Marvell header. Either contains a special value used
 309 * by Marvell switches when a specific hardware mode is enabled (not
 310 * supported by this driver) or is filled automatically by zeroes on
 311 * the RX side. Those two bytes being at the front of the Ethernet
 312 * header, they allow to have the IP header aligned on a 4 bytes
 313 * boundary automatically: the hardware skips those two bytes on its
 314 * own.
 315 */
 316#define MVPP2_MH_SIZE			2
 317#define MVPP2_ETH_TYPE_LEN		2
 318#define MVPP2_PPPOE_HDR_SIZE		8
 319#define MVPP2_VLAN_TAG_LEN		4
 320
 321/* Lbtd 802.3 type */
 322#define MVPP2_IP_LBDT_TYPE		0xfffa
 323
 324#define MVPP2_TX_CSUM_MAX_SIZE		9800
 325
 326/* Timeout constants */
 327#define MVPP2_TX_DISABLE_TIMEOUT_MSEC	1000
 328#define MVPP2_TX_PENDING_TIMEOUT_MSEC	1000
 329
 330#define MVPP2_TX_MTU_MAX		0x7ffff
 331
 332/* Maximum number of T-CONTs of PON port */
 333#define MVPP2_MAX_TCONT			16
 334
 335/* Maximum number of supported ports */
 336#define MVPP2_MAX_PORTS			4
 337
 338/* Maximum number of TXQs used by single port */
 339#define MVPP2_MAX_TXQ			8
 340
 341/* Maximum number of RXQs used by single port */
 342#define MVPP2_MAX_RXQ			8
 343
 344/* Dfault number of RXQs in use */
 345#define MVPP2_DEFAULT_RXQ		4
 346
 347/* Total number of RXQs available to all ports */
 348#define MVPP2_RXQ_TOTAL_NUM		(MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
 349
 350/* Max number of Rx descriptors */
 351#define MVPP2_MAX_RXD			128
 352
 353/* Max number of Tx descriptors */
 354#define MVPP2_MAX_TXD			1024
 355
 356/* Amount of Tx descriptors that can be reserved at once by CPU */
 357#define MVPP2_CPU_DESC_CHUNK		64
 358
 359/* Max number of Tx descriptors in each aggregated queue */
 360#define MVPP2_AGGR_TXQ_SIZE		256
 361
 362/* Descriptor aligned size */
 363#define MVPP2_DESC_ALIGNED_SIZE		32
 364
 365/* Descriptor alignment mask */
 366#define MVPP2_TX_DESC_ALIGN		(MVPP2_DESC_ALIGNED_SIZE - 1)
 367
 368/* RX FIFO constants */
 369#define MVPP2_RX_FIFO_PORT_DATA_SIZE	0x2000
 370#define MVPP2_RX_FIFO_PORT_ATTR_SIZE	0x80
 371#define MVPP2_RX_FIFO_PORT_MIN_PKT	0x80
 372
 373/* RX buffer constants */
 374#define MVPP2_SKB_SHINFO_SIZE \
 375	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 376
 377#define MVPP2_RX_PKT_SIZE(mtu) \
 378	ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
 379	      ETH_HLEN + ETH_FCS_LEN, cache_line_size())
 380
 381#define MVPP2_RX_BUF_SIZE(pkt_size)	((pkt_size) + NET_SKB_PAD)
 382#define MVPP2_RX_TOTAL_SIZE(buf_size)	((buf_size) + MVPP2_SKB_SHINFO_SIZE)
 383#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
 384	((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
 385
 386#define MVPP2_BIT_TO_BYTE(bit)		((bit) / 8)
 387
 388/* IPv6 max L3 address size */
 389#define MVPP2_MAX_L3_ADDR_SIZE		16
 390
 391/* Port flags */
 392#define MVPP2_F_LOOPBACK		BIT(0)
 393
 394/* Marvell tag types */
 395enum mvpp2_tag_type {
 396	MVPP2_TAG_TYPE_NONE = 0,
 397	MVPP2_TAG_TYPE_MH   = 1,
 398	MVPP2_TAG_TYPE_DSA  = 2,
 399	MVPP2_TAG_TYPE_EDSA = 3,
 400	MVPP2_TAG_TYPE_VLAN = 4,
 401	MVPP2_TAG_TYPE_LAST = 5
 402};
 403
 404/* Parser constants */
 405#define MVPP2_PRS_TCAM_SRAM_SIZE	256
 406#define MVPP2_PRS_TCAM_WORDS		6
 407#define MVPP2_PRS_SRAM_WORDS		4
 408#define MVPP2_PRS_FLOW_ID_SIZE		64
 409#define MVPP2_PRS_FLOW_ID_MASK		0x3f
 410#define MVPP2_PRS_TCAM_ENTRY_INVALID	1
 411#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT	BIT(5)
 412#define MVPP2_PRS_IPV4_HEAD		0x40
 413#define MVPP2_PRS_IPV4_HEAD_MASK	0xf0
 414#define MVPP2_PRS_IPV4_MC		0xe0
 415#define MVPP2_PRS_IPV4_MC_MASK		0xf0
 416#define MVPP2_PRS_IPV4_BC_MASK		0xff
 417#define MVPP2_PRS_IPV4_IHL		0x5
 418#define MVPP2_PRS_IPV4_IHL_MASK		0xf
 419#define MVPP2_PRS_IPV6_MC		0xff
 420#define MVPP2_PRS_IPV6_MC_MASK		0xff
 421#define MVPP2_PRS_IPV6_HOP_MASK		0xff
 422#define MVPP2_PRS_TCAM_PROTO_MASK	0xff
 423#define MVPP2_PRS_TCAM_PROTO_MASK_L	0x3f
 424#define MVPP2_PRS_DBL_VLANS_MAX		100
 425
 426/* Tcam structure:
 427 * - lookup ID - 4 bits
 428 * - port ID - 1 byte
 429 * - additional information - 1 byte
 430 * - header data - 8 bytes
 431 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
 432 */
 433#define MVPP2_PRS_AI_BITS			8
 434#define MVPP2_PRS_PORT_MASK			0xff
 435#define MVPP2_PRS_LU_MASK			0xf
 436#define MVPP2_PRS_TCAM_DATA_BYTE(offs)		\
 437				    (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
 438#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)	\
 439					      (((offs) * 2) - ((offs) % 2)  + 2)
 440#define MVPP2_PRS_TCAM_AI_BYTE			16
 441#define MVPP2_PRS_TCAM_PORT_BYTE		17
 442#define MVPP2_PRS_TCAM_LU_BYTE			20
 443#define MVPP2_PRS_TCAM_EN_OFFS(offs)		((offs) + 2)
 444#define MVPP2_PRS_TCAM_INV_WORD			5
 445/* Tcam entries ID */
 446#define MVPP2_PE_DROP_ALL		0
 447#define MVPP2_PE_FIRST_FREE_TID		1
 448#define MVPP2_PE_LAST_FREE_TID		(MVPP2_PRS_TCAM_SRAM_SIZE - 31)
 449#define MVPP2_PE_IP6_EXT_PROTO_UN	(MVPP2_PRS_TCAM_SRAM_SIZE - 30)
 450#define MVPP2_PE_MAC_MC_IP6		(MVPP2_PRS_TCAM_SRAM_SIZE - 29)
 451#define MVPP2_PE_IP6_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 28)
 452#define MVPP2_PE_IP4_ADDR_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 27)
 453#define MVPP2_PE_LAST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 26)
 454#define MVPP2_PE_FIRST_DEFAULT_FLOW	(MVPP2_PRS_TCAM_SRAM_SIZE - 19)
 455#define MVPP2_PE_EDSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 18)
 456#define MVPP2_PE_EDSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 17)
 457#define MVPP2_PE_DSA_TAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 16)
 458#define MVPP2_PE_DSA_UNTAGGED		(MVPP2_PRS_TCAM_SRAM_SIZE - 15)
 459#define MVPP2_PE_ETYPE_EDSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 14)
 460#define MVPP2_PE_ETYPE_EDSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 13)
 461#define MVPP2_PE_ETYPE_DSA_TAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 12)
 462#define MVPP2_PE_ETYPE_DSA_UNTAGGED	(MVPP2_PRS_TCAM_SRAM_SIZE - 11)
 463#define MVPP2_PE_MH_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 10)
 464#define MVPP2_PE_DSA_DEFAULT		(MVPP2_PRS_TCAM_SRAM_SIZE - 9)
 465#define MVPP2_PE_IP6_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 8)
 466#define MVPP2_PE_IP4_PROTO_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 7)
 467#define MVPP2_PE_ETH_TYPE_UN		(MVPP2_PRS_TCAM_SRAM_SIZE - 6)
 468#define MVPP2_PE_VLAN_DBL		(MVPP2_PRS_TCAM_SRAM_SIZE - 5)
 469#define MVPP2_PE_VLAN_NONE		(MVPP2_PRS_TCAM_SRAM_SIZE - 4)
 470#define MVPP2_PE_MAC_MC_ALL		(MVPP2_PRS_TCAM_SRAM_SIZE - 3)
 471#define MVPP2_PE_MAC_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 2)
 472#define MVPP2_PE_MAC_NON_PROMISCUOUS	(MVPP2_PRS_TCAM_SRAM_SIZE - 1)
 473
 474/* Sram structure
 475 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
 476 */
 477#define MVPP2_PRS_SRAM_RI_OFFS			0
 478#define MVPP2_PRS_SRAM_RI_WORD			0
 479#define MVPP2_PRS_SRAM_RI_CTRL_OFFS		32
 480#define MVPP2_PRS_SRAM_RI_CTRL_WORD		1
 481#define MVPP2_PRS_SRAM_RI_CTRL_BITS		32
 482#define MVPP2_PRS_SRAM_SHIFT_OFFS		64
 483#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT		72
 484#define MVPP2_PRS_SRAM_UDF_OFFS			73
 485#define MVPP2_PRS_SRAM_UDF_BITS			8
 486#define MVPP2_PRS_SRAM_UDF_MASK			0xff
 487#define MVPP2_PRS_SRAM_UDF_SIGN_BIT		81
 488#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS		82
 489#define MVPP2_PRS_SRAM_UDF_TYPE_MASK		0x7
 490#define MVPP2_PRS_SRAM_UDF_TYPE_L3		1
 491#define MVPP2_PRS_SRAM_UDF_TYPE_L4		4
 492#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS	85
 493#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK	0x3
 494#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD		1
 495#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD	2
 496#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD	3
 497#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS		87
 498#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS		2
 499#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK		0x3
 500#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD		0
 501#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD	2
 502#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD	3
 503#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS		89
 504#define MVPP2_PRS_SRAM_AI_OFFS			90
 505#define MVPP2_PRS_SRAM_AI_CTRL_OFFS		98
 506#define MVPP2_PRS_SRAM_AI_CTRL_BITS		8
 507#define MVPP2_PRS_SRAM_AI_MASK			0xff
 508#define MVPP2_PRS_SRAM_NEXT_LU_OFFS		106
 509#define MVPP2_PRS_SRAM_NEXT_LU_MASK		0xf
 510#define MVPP2_PRS_SRAM_LU_DONE_BIT		110
 511#define MVPP2_PRS_SRAM_LU_GEN_BIT		111
 512
 513/* Sram result info bits assignment */
 514#define MVPP2_PRS_RI_MAC_ME_MASK		0x1
 515#define MVPP2_PRS_RI_DSA_MASK			0x2
 516#define MVPP2_PRS_RI_VLAN_MASK			0xc
 517#define MVPP2_PRS_RI_VLAN_NONE			~(BIT(2) | BIT(3))
 518#define MVPP2_PRS_RI_VLAN_SINGLE		BIT(2)
 519#define MVPP2_PRS_RI_VLAN_DOUBLE		BIT(3)
 520#define MVPP2_PRS_RI_VLAN_TRIPLE		(BIT(2) | BIT(3))
 521#define MVPP2_PRS_RI_CPU_CODE_MASK		0x70
 522#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC		BIT(4)
 523#define MVPP2_PRS_RI_L2_CAST_MASK		0x600
 524#define MVPP2_PRS_RI_L2_UCAST			~(BIT(9) | BIT(10))
 525#define MVPP2_PRS_RI_L2_MCAST			BIT(9)
 526#define MVPP2_PRS_RI_L2_BCAST			BIT(10)
 527#define MVPP2_PRS_RI_PPPOE_MASK			0x800
 528#define MVPP2_PRS_RI_L3_PROTO_MASK		0x7000
 529#define MVPP2_PRS_RI_L3_UN			~(BIT(12) | BIT(13) | BIT(14))
 530#define MVPP2_PRS_RI_L3_IP4			BIT(12)
 531#define MVPP2_PRS_RI_L3_IP4_OPT			BIT(13)
 532#define MVPP2_PRS_RI_L3_IP4_OTHER		(BIT(12) | BIT(13))
 533#define MVPP2_PRS_RI_L3_IP6			BIT(14)
 534#define MVPP2_PRS_RI_L3_IP6_EXT			(BIT(12) | BIT(14))
 535#define MVPP2_PRS_RI_L3_ARP			(BIT(13) | BIT(14))
 536#define MVPP2_PRS_RI_L3_ADDR_MASK		0x18000
 537#define MVPP2_PRS_RI_L3_UCAST			~(BIT(15) | BIT(16))
 538#define MVPP2_PRS_RI_L3_MCAST			BIT(15)
 539#define MVPP2_PRS_RI_L3_BCAST			(BIT(15) | BIT(16))
 540#define MVPP2_PRS_RI_IP_FRAG_MASK		0x20000
 541#define MVPP2_PRS_RI_UDF3_MASK			0x300000
 542#define MVPP2_PRS_RI_UDF3_RX_SPECIAL		BIT(21)
 543#define MVPP2_PRS_RI_L4_PROTO_MASK		0x1c00000
 544#define MVPP2_PRS_RI_L4_TCP			BIT(22)
 545#define MVPP2_PRS_RI_L4_UDP			BIT(23)
 546#define MVPP2_PRS_RI_L4_OTHER			(BIT(22) | BIT(23))
 547#define MVPP2_PRS_RI_UDF7_MASK			0x60000000
 548#define MVPP2_PRS_RI_UDF7_IP6_LITE		BIT(29)
 549#define MVPP2_PRS_RI_DROP_MASK			0x80000000
 550
 551/* Sram additional info bits assignment */
 552#define MVPP2_PRS_IPV4_DIP_AI_BIT		BIT(0)
 553#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT		BIT(0)
 554#define MVPP2_PRS_IPV6_EXT_AI_BIT		BIT(1)
 555#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT		BIT(2)
 556#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT	BIT(3)
 557#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT		BIT(4)
 558#define MVPP2_PRS_SINGLE_VLAN_AI		0
 559#define MVPP2_PRS_DBL_VLAN_AI_BIT		BIT(7)
 560
 561/* DSA/EDSA type */
 562#define MVPP2_PRS_TAGGED		true
 563#define MVPP2_PRS_UNTAGGED		false
 564#define MVPP2_PRS_EDSA			true
 565#define MVPP2_PRS_DSA			false
 566
 567/* MAC entries, shadow udf */
 568enum mvpp2_prs_udf {
 569	MVPP2_PRS_UDF_MAC_DEF,
 570	MVPP2_PRS_UDF_MAC_RANGE,
 571	MVPP2_PRS_UDF_L2_DEF,
 572	MVPP2_PRS_UDF_L2_DEF_COPY,
 573	MVPP2_PRS_UDF_L2_USER,
 574};
 575
 576/* Lookup ID */
 577enum mvpp2_prs_lookup {
 578	MVPP2_PRS_LU_MH,
 579	MVPP2_PRS_LU_MAC,
 580	MVPP2_PRS_LU_DSA,
 581	MVPP2_PRS_LU_VLAN,
 582	MVPP2_PRS_LU_L2,
 583	MVPP2_PRS_LU_PPPOE,
 584	MVPP2_PRS_LU_IP4,
 585	MVPP2_PRS_LU_IP6,
 586	MVPP2_PRS_LU_FLOWS,
 587	MVPP2_PRS_LU_LAST,
 588};
 589
 590/* L3 cast enum */
 591enum mvpp2_prs_l3_cast {
 592	MVPP2_PRS_L3_UNI_CAST,
 593	MVPP2_PRS_L3_MULTI_CAST,
 594	MVPP2_PRS_L3_BROAD_CAST
 595};
 596
 597/* Classifier constants */
 598#define MVPP2_CLS_FLOWS_TBL_SIZE	512
 599#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS	3
 600#define MVPP2_CLS_LKP_TBL_SIZE		64
 601
 602/* BM constants */
 603#define MVPP2_BM_POOLS_NUM		8
 604#define MVPP2_BM_LONG_BUF_NUM		1024
 605#define MVPP2_BM_SHORT_BUF_NUM		2048
 606#define MVPP2_BM_POOL_SIZE_MAX		(16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
 607#define MVPP2_BM_POOL_PTR_ALIGN		128
 608#define MVPP2_BM_SWF_LONG_POOL(port)	((port > 2) ? 2 : port)
 609#define MVPP2_BM_SWF_SHORT_POOL		3
 610
 611/* BM cookie (32 bits) definition */
 612#define MVPP2_BM_COOKIE_POOL_OFFS	8
 613#define MVPP2_BM_COOKIE_CPU_OFFS	24
 614
 615/* BM short pool packet size
 616 * These value assure that for SWF the total number
 617 * of bytes allocated for each buffer will be 512
 618 */
 619#define MVPP2_BM_SHORT_PKT_SIZE		MVPP2_RX_MAX_PKT_SIZE(512)
 620
 621enum mvpp2_bm_type {
 622	MVPP2_BM_FREE,
 623	MVPP2_BM_SWF_LONG,
 624	MVPP2_BM_SWF_SHORT
 625};
 626
 627/* Definitions */
 628
 629/* Shared Packet Processor resources */
 630struct mvpp2 {
 631	/* Shared registers' base addresses */
 632	void __iomem *base;
 633	void __iomem *lms_base;
 634
 635	/* Common clocks */
 636	struct clk *pp_clk;
 637	struct clk *gop_clk;
 638
 639	/* List of pointers to port structures */
 640	struct mvpp2_port **port_list;
 641
 642	/* Aggregated TXQs */
 643	struct mvpp2_tx_queue *aggr_txqs;
 644
 645	/* BM pools */
 646	struct mvpp2_bm_pool *bm_pools;
 647
 648	/* PRS shadow table */
 649	struct mvpp2_prs_shadow *prs_shadow;
 650	/* PRS auxiliary table for double vlan entries control */
 651	bool *prs_double_vlans;
 652
 653	/* Tclk value */
 654	u32 tclk;
 655};
 656
 657struct mvpp2_pcpu_stats {
 658	struct	u64_stats_sync syncp;
 659	u64	rx_packets;
 660	u64	rx_bytes;
 661	u64	tx_packets;
 662	u64	tx_bytes;
 663};
 664
 665/* Per-CPU port control */
 666struct mvpp2_port_pcpu {
 667	struct hrtimer tx_done_timer;
 668	bool timer_scheduled;
 669	/* Tasklet for egress finalization */
 670	struct tasklet_struct tx_done_tasklet;
 671};
 672
 673struct mvpp2_port {
 674	u8 id;
 675
 676	int irq;
 677
 678	struct mvpp2 *priv;
 679
 680	/* Per-port registers' base address */
 681	void __iomem *base;
 682
 683	struct mvpp2_rx_queue **rxqs;
 684	struct mvpp2_tx_queue **txqs;
 685	struct net_device *dev;
 686
 687	int pkt_size;
 688
 689	u32 pending_cause_rx;
 690	struct napi_struct napi;
 691
 692	/* Per-CPU port control */
 693	struct mvpp2_port_pcpu __percpu *pcpu;
 694
 695	/* Flags */
 696	unsigned long flags;
 697
 698	u16 tx_ring_size;
 699	u16 rx_ring_size;
 700	struct mvpp2_pcpu_stats __percpu *stats;
 701
 702	struct phy_device *phy_dev;
 703	phy_interface_t phy_interface;
 704	struct device_node *phy_node;
 705	unsigned int link;
 706	unsigned int duplex;
 707	unsigned int speed;
 708
 709	struct mvpp2_bm_pool *pool_long;
 710	struct mvpp2_bm_pool *pool_short;
 711
 712	/* Index of first port's physical RXQ */
 713	u8 first_rxq;
 714};
 715
 716/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
 717 * layout of the transmit and reception DMA descriptors, and their
 718 * layout is therefore defined by the hardware design
 719 */
 720
 721#define MVPP2_TXD_L3_OFF_SHIFT		0
 722#define MVPP2_TXD_IP_HLEN_SHIFT		8
 723#define MVPP2_TXD_L4_CSUM_FRAG		BIT(13)
 724#define MVPP2_TXD_L4_CSUM_NOT		BIT(14)
 725#define MVPP2_TXD_IP_CSUM_DISABLE	BIT(15)
 726#define MVPP2_TXD_PADDING_DISABLE	BIT(23)
 727#define MVPP2_TXD_L4_UDP		BIT(24)
 728#define MVPP2_TXD_L3_IP6		BIT(26)
 729#define MVPP2_TXD_L_DESC		BIT(28)
 730#define MVPP2_TXD_F_DESC		BIT(29)
 731
 732#define MVPP2_RXD_ERR_SUMMARY		BIT(15)
 733#define MVPP2_RXD_ERR_CODE_MASK		(BIT(13) | BIT(14))
 734#define MVPP2_RXD_ERR_CRC		0x0
 735#define MVPP2_RXD_ERR_OVERRUN		BIT(13)
 736#define MVPP2_RXD_ERR_RESOURCE		(BIT(13) | BIT(14))
 737#define MVPP2_RXD_BM_POOL_ID_OFFS	16
 738#define MVPP2_RXD_BM_POOL_ID_MASK	(BIT(16) | BIT(17) | BIT(18))
 739#define MVPP2_RXD_HWF_SYNC		BIT(21)
 740#define MVPP2_RXD_L4_CSUM_OK		BIT(22)
 741#define MVPP2_RXD_IP4_HEADER_ERR	BIT(24)
 742#define MVPP2_RXD_L4_TCP		BIT(25)
 743#define MVPP2_RXD_L4_UDP		BIT(26)
 744#define MVPP2_RXD_L3_IP4		BIT(28)
 745#define MVPP2_RXD_L3_IP6		BIT(30)
 746#define MVPP2_RXD_BUF_HDR		BIT(31)
 747
 748struct mvpp2_tx_desc {
 749	u32 command;		/* Options used by HW for packet transmitting.*/
 750	u8  packet_offset;	/* the offset from the buffer beginning	*/
 751	u8  phys_txq;		/* destination queue ID			*/
 752	u16 data_size;		/* data size of transmitted packet in bytes */
 753	u32 buf_phys_addr;	/* physical addr of transmitted buffer	*/
 754	u32 buf_cookie;		/* cookie for access to TX buffer in tx path */
 755	u32 reserved1[3];	/* hw_cmd (for future use, BM, PON, PNC) */
 756	u32 reserved2;		/* reserved (for future use)		*/
 757};
 758
 759struct mvpp2_rx_desc {
 760	u32 status;		/* info about received packet		*/
 761	u16 reserved1;		/* parser_info (for future use, PnC)	*/
 762	u16 data_size;		/* size of received packet in bytes	*/
 763	u32 buf_phys_addr;	/* physical address of the buffer	*/
 764	u32 buf_cookie;		/* cookie for access to RX buffer in rx path */
 765	u16 reserved2;		/* gem_port_id (for future use, PON)	*/
 766	u16 reserved3;		/* csum_l4 (for future use, PnC)	*/
 767	u8  reserved4;		/* bm_qset (for future use, BM)		*/
 768	u8  reserved5;
 769	u16 reserved6;		/* classify_info (for future use, PnC)	*/
 770	u32 reserved7;		/* flow_id (for future use, PnC) */
 771	u32 reserved8;
 772};
 773
 774/* Per-CPU Tx queue control */
 775struct mvpp2_txq_pcpu {
 776	int cpu;
 777
 778	/* Number of Tx DMA descriptors in the descriptor ring */
 779	int size;
 780
 781	/* Number of currently used Tx DMA descriptor in the
 782	 * descriptor ring
 783	 */
 784	int count;
 785
 786	/* Number of Tx DMA descriptors reserved for each CPU */
 787	int reserved_num;
 788
 789	/* Array of transmitted skb */
 790	struct sk_buff **tx_skb;
 791
 792	/* Array of transmitted buffers' physical addresses */
 793	dma_addr_t *tx_buffs;
 794
 795	/* Index of last TX DMA descriptor that was inserted */
 796	int txq_put_index;
 797
 798	/* Index of the TX DMA descriptor to be cleaned up */
 799	int txq_get_index;
 800};
 801
 802struct mvpp2_tx_queue {
 803	/* Physical number of this Tx queue */
 804	u8 id;
 805
 806	/* Logical number of this Tx queue */
 807	u8 log_id;
 808
 809	/* Number of Tx DMA descriptors in the descriptor ring */
 810	int size;
 811
 812	/* Number of currently used Tx DMA descriptor in the descriptor ring */
 813	int count;
 814
 815	/* Per-CPU control of physical Tx queues */
 816	struct mvpp2_txq_pcpu __percpu *pcpu;
 817
 818	/* Array of transmitted skb */
 819	struct sk_buff **tx_skb;
 820
 821	u32 done_pkts_coal;
 822
 823	/* Virtual address of thex Tx DMA descriptors array */
 824	struct mvpp2_tx_desc *descs;
 825
 826	/* DMA address of the Tx DMA descriptors array */
 827	dma_addr_t descs_phys;
 828
 829	/* Index of the last Tx DMA descriptor */
 830	int last_desc;
 831
 832	/* Index of the next Tx DMA descriptor to process */
 833	int next_desc_to_proc;
 834};
 835
 836struct mvpp2_rx_queue {
 837	/* RX queue number, in the range 0-31 for physical RXQs */
 838	u8 id;
 839
 840	/* Num of rx descriptors in the rx descriptor ring */
 841	int size;
 842
 843	u32 pkts_coal;
 844	u32 time_coal;
 845
 846	/* Virtual address of the RX DMA descriptors array */
 847	struct mvpp2_rx_desc *descs;
 848
 849	/* DMA address of the RX DMA descriptors array */
 850	dma_addr_t descs_phys;
 851
 852	/* Index of the last RX DMA descriptor */
 853	int last_desc;
 854
 855	/* Index of the next RX DMA descriptor to process */
 856	int next_desc_to_proc;
 857
 858	/* ID of port to which physical RXQ is mapped */
 859	int port;
 860
 861	/* Port's logic RXQ number to which physical RXQ is mapped */
 862	int logic_rxq;
 863};
 864
 865union mvpp2_prs_tcam_entry {
 866	u32 word[MVPP2_PRS_TCAM_WORDS];
 867	u8  byte[MVPP2_PRS_TCAM_WORDS * 4];
 868};
 869
 870union mvpp2_prs_sram_entry {
 871	u32 word[MVPP2_PRS_SRAM_WORDS];
 872	u8  byte[MVPP2_PRS_SRAM_WORDS * 4];
 873};
 874
 875struct mvpp2_prs_entry {
 876	u32 index;
 877	union mvpp2_prs_tcam_entry tcam;
 878	union mvpp2_prs_sram_entry sram;
 879};
 880
 881struct mvpp2_prs_shadow {
 882	bool valid;
 883	bool finish;
 884
 885	/* Lookup ID */
 886	int lu;
 887
 888	/* User defined offset */
 889	int udf;
 890
 891	/* Result info */
 892	u32 ri;
 893	u32 ri_mask;
 894};
 895
 896struct mvpp2_cls_flow_entry {
 897	u32 index;
 898	u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
 899};
 900
 901struct mvpp2_cls_lookup_entry {
 902	u32 lkpid;
 903	u32 way;
 904	u32 data;
 905};
 906
 907struct mvpp2_bm_pool {
 908	/* Pool number in the range 0-7 */
 909	int id;
 910	enum mvpp2_bm_type type;
 911
 912	/* Buffer Pointers Pool External (BPPE) size */
 913	int size;
 914	/* Number of buffers for this pool */
 915	int buf_num;
 916	/* Pool buffer size */
 917	int buf_size;
 918	/* Packet size */
 919	int pkt_size;
 920
 921	/* BPPE virtual base address */
 922	u32 *virt_addr;
 923	/* BPPE physical base address */
 924	dma_addr_t phys_addr;
 925
 926	/* Ports using BM pool */
 927	u32 port_map;
 928
 929	/* Occupied buffers indicator */
 930	atomic_t in_use;
 931	int in_use_thresh;
 932};
 933
 934struct mvpp2_buff_hdr {
 935	u32 next_buff_phys_addr;
 936	u32 next_buff_virt_addr;
 937	u16 byte_count;
 938	u16 info;
 939	u8  reserved1;		/* bm_qset (for future use, BM)		*/
 940};
 941
 942/* Buffer header info bits */
 943#define MVPP2_B_HDR_INFO_MC_ID_MASK	0xfff
 944#define MVPP2_B_HDR_INFO_MC_ID(info)	((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
 945#define MVPP2_B_HDR_INFO_LAST_OFFS	12
 946#define MVPP2_B_HDR_INFO_LAST_MASK	BIT(12)
 947#define MVPP2_B_HDR_INFO_IS_LAST(info) \
 948	   ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
 949
 950/* Static declaractions */
 951
 952/* Number of RXQs used by single port */
 953static int rxq_number = MVPP2_DEFAULT_RXQ;
 954/* Number of TXQs used by single port */
 955static int txq_number = MVPP2_MAX_TXQ;
 956
 957#define MVPP2_DRIVER_NAME "mvpp2"
 958#define MVPP2_DRIVER_VERSION "1.0"
 959
 960/* Utility/helper methods */
 961
 962static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
 963{
 964	writel(data, priv->base + offset);
 965}
 966
 967static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
 968{
 969	return readl(priv->base + offset);
 970}
 971
 972static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
 973{
 974	txq_pcpu->txq_get_index++;
 975	if (txq_pcpu->txq_get_index == txq_pcpu->size)
 976		txq_pcpu->txq_get_index = 0;
 977}
 978
 979static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
 980			      struct sk_buff *skb,
 981			      struct mvpp2_tx_desc *tx_desc)
 982{
 983	txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
 984	if (skb)
 985		txq_pcpu->tx_buffs[txq_pcpu->txq_put_index] =
 986							 tx_desc->buf_phys_addr;
 987	txq_pcpu->txq_put_index++;
 988	if (txq_pcpu->txq_put_index == txq_pcpu->size)
 989		txq_pcpu->txq_put_index = 0;
 990}
 991
 992/* Get number of physical egress port */
 993static inline int mvpp2_egress_port(struct mvpp2_port *port)
 994{
 995	return MVPP2_MAX_TCONT + port->id;
 996}
 997
 998/* Get number of physical TXQ */
 999static inline int mvpp2_txq_phys(int port, int txq)
1000{
1001	return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
1002}
1003
1004/* Parser configuration routines */
1005
1006/* Update parser tcam and sram hw entries */
1007static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1008{
1009	int i;
1010
1011	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1012		return -EINVAL;
1013
1014	/* Clear entry invalidation bit */
1015	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
1016
1017	/* Write tcam index - indirect access */
1018	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1019	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1020		mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1021
1022	/* Write sram index - indirect access */
1023	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1024	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1025		mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1026
1027	return 0;
1028}
1029
1030/* Read tcam entry from hw */
1031static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1032{
1033	int i;
1034
1035	if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1036		return -EINVAL;
1037
1038	/* Write tcam index - indirect access */
1039	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1040
1041	pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1042			      MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1043	if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1044		return MVPP2_PRS_TCAM_ENTRY_INVALID;
1045
1046	for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1047		pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1048
1049	/* Write sram index - indirect access */
1050	mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1051	for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1052		pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1053
1054	return 0;
1055}
1056
1057/* Invalidate tcam hw entry */
1058static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1059{
1060	/* Write index - indirect access */
1061	mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1062	mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1063		    MVPP2_PRS_TCAM_INV_MASK);
1064}
1065
1066/* Enable shadow table entry and set its lookup ID */
1067static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1068{
1069	priv->prs_shadow[index].valid = true;
1070	priv->prs_shadow[index].lu = lu;
1071}
1072
1073/* Update ri fields in shadow table entry */
1074static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1075				    unsigned int ri, unsigned int ri_mask)
1076{
1077	priv->prs_shadow[index].ri_mask = ri_mask;
1078	priv->prs_shadow[index].ri = ri;
1079}
1080
1081/* Update lookup field in tcam sw entry */
1082static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1083{
1084	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1085
1086	pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1087	pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1088}
1089
1090/* Update mask for single port in tcam sw entry */
1091static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1092				    unsigned int port, bool add)
1093{
1094	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1095
1096	if (add)
1097		pe->tcam.byte[enable_off] &= ~(1 << port);
1098	else
1099		pe->tcam.byte[enable_off] |= 1 << port;
1100}
1101
1102/* Update port map in tcam sw entry */
1103static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1104					unsigned int ports)
1105{
1106	unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1107	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1108
1109	pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1110	pe->tcam.byte[enable_off] &= ~port_mask;
1111	pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1112}
1113
1114/* Obtain port map from tcam sw entry */
1115static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1116{
1117	int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1118
1119	return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1120}
1121
1122/* Set byte of data and its enable bits in tcam sw entry */
1123static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1124					 unsigned int offs, unsigned char byte,
1125					 unsigned char enable)
1126{
1127	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1128	pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1129}
1130
1131/* Get byte of data and its enable bits from tcam sw entry */
1132static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1133					 unsigned int offs, unsigned char *byte,
1134					 unsigned char *enable)
1135{
1136	*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1137	*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1138}
1139
1140/* Compare tcam data bytes with a pattern */
1141static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1142				    u16 data)
1143{
1144	int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1145	u16 tcam_data;
1146
1147	tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1148	if (tcam_data != data)
1149		return false;
1150	return true;
1151}
1152
1153/* Update ai bits in tcam sw entry */
1154static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1155				     unsigned int bits, unsigned int enable)
1156{
1157	int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1158
1159	for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1160
1161		if (!(enable & BIT(i)))
1162			continue;
1163
1164		if (bits & BIT(i))
1165			pe->tcam.byte[ai_idx] |= 1 << i;
1166		else
1167			pe->tcam.byte[ai_idx] &= ~(1 << i);
1168	}
1169
1170	pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1171}
1172
1173/* Get ai bits from tcam sw entry */
1174static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1175{
1176	return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1177}
1178
1179/* Set ethertype in tcam sw entry */
1180static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1181				  unsigned short ethertype)
1182{
1183	mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1184	mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1185}
1186
1187/* Set bits in sram sw entry */
1188static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1189				    int val)
1190{
1191	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1192}
1193
1194/* Clear bits in sram sw entry */
1195static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1196				      int val)
1197{
1198	pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1199}
1200
1201/* Update ri bits in sram sw entry */
1202static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1203				     unsigned int bits, unsigned int mask)
1204{
1205	unsigned int i;
1206
1207	for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1208		int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1209
1210		if (!(mask & BIT(i)))
1211			continue;
1212
1213		if (bits & BIT(i))
1214			mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1215		else
1216			mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1217
1218		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1219	}
1220}
1221
1222/* Obtain ri bits from sram sw entry */
1223static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1224{
1225	return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1226}
1227
1228/* Update ai bits in sram sw entry */
1229static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1230				     unsigned int bits, unsigned int mask)
1231{
1232	unsigned int i;
1233	int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1234
1235	for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1236
1237		if (!(mask & BIT(i)))
1238			continue;
1239
1240		if (bits & BIT(i))
1241			mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1242		else
1243			mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1244
1245		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1246	}
1247}
1248
1249/* Read ai bits from sram sw entry */
1250static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1251{
1252	u8 bits;
1253	int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1254	int ai_en_off = ai_off + 1;
1255	int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1256
1257	bits = (pe->sram.byte[ai_off] >> ai_shift) |
1258	       (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1259
1260	return bits;
1261}
1262
1263/* In sram sw entry set lookup ID field of the tcam key to be used in the next
1264 * lookup interation
1265 */
1266static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1267				       unsigned int lu)
1268{
1269	int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1270
1271	mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1272				  MVPP2_PRS_SRAM_NEXT_LU_MASK);
1273	mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1274}
1275
1276/* In the sram sw entry set sign and value of the next lookup offset
1277 * and the offset value generated to the classifier
1278 */
1279static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1280				     unsigned int op)
1281{
1282	/* Set sign */
1283	if (shift < 0) {
1284		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1285		shift = 0 - shift;
1286	} else {
1287		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1288	}
1289
1290	/* Set value */
1291	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1292							   (unsigned char)shift;
1293
1294	/* Reset and set operation */
1295	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1296				  MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1297	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1298
1299	/* Set base offset as current */
1300	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1301}
1302
1303/* In the sram sw entry set sign and value of the user defined offset
1304 * generated to the classifier
1305 */
1306static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1307				      unsigned int type, int offset,
1308				      unsigned int op)
1309{
1310	/* Set sign */
1311	if (offset < 0) {
1312		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1313		offset = 0 - offset;
1314	} else {
1315		mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1316	}
1317
1318	/* Set value */
1319	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1320				  MVPP2_PRS_SRAM_UDF_MASK);
1321	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1322	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1323					MVPP2_PRS_SRAM_UDF_BITS)] &=
1324	      ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1325	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1326					MVPP2_PRS_SRAM_UDF_BITS)] |=
1327				(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1328
1329	/* Set offset type */
1330	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1331				  MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1332	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1333
1334	/* Set offset operation */
1335	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1336				  MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1337	mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1338
1339	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1340					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1341					     ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1342				    (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1343
1344	pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1345					MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1346			     (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1347
1348	/* Set base offset as current */
1349	mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1350}
1351
1352/* Find parser flow entry */
1353static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1354{
1355	struct mvpp2_prs_entry *pe;
1356	int tid;
1357
1358	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1359	if (!pe)
1360		return NULL;
1361	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1362
1363	/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1364	for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1365		u8 bits;
1366
1367		if (!priv->prs_shadow[tid].valid ||
1368		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1369			continue;
1370
1371		pe->index = tid;
1372		mvpp2_prs_hw_read(priv, pe);
1373		bits = mvpp2_prs_sram_ai_get(pe);
1374
1375		/* Sram store classification lookup ID in AI bits [5:0] */
1376		if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1377			return pe;
1378	}
1379	kfree(pe);
1380
1381	return NULL;
1382}
1383
1384/* Return first free tcam index, seeking from start to end */
1385static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1386				     unsigned char end)
1387{
1388	int tid;
1389
1390	if (start > end)
1391		swap(start, end);
1392
1393	if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1394		end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1395
1396	for (tid = start; tid <= end; tid++) {
1397		if (!priv->prs_shadow[tid].valid)
1398			return tid;
1399	}
1400
1401	return -EINVAL;
1402}
1403
1404/* Enable/disable dropping all mac da's */
1405static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1406{
1407	struct mvpp2_prs_entry pe;
1408
1409	if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1410		/* Entry exist - update port only */
1411		pe.index = MVPP2_PE_DROP_ALL;
1412		mvpp2_prs_hw_read(priv, &pe);
1413	} else {
1414		/* Entry doesn't exist - create new */
1415		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1416		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1417		pe.index = MVPP2_PE_DROP_ALL;
1418
1419		/* Non-promiscuous mode for all ports - DROP unknown packets */
1420		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1421					 MVPP2_PRS_RI_DROP_MASK);
1422
1423		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1424		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1425
1426		/* Update shadow table */
1427		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1428
1429		/* Mask all ports */
1430		mvpp2_prs_tcam_port_map_set(&pe, 0);
1431	}
1432
1433	/* Update port mask */
1434	mvpp2_prs_tcam_port_set(&pe, port, add);
1435
1436	mvpp2_prs_hw_write(priv, &pe);
1437}
1438
1439/* Set port to promiscuous mode */
1440static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1441{
1442	struct mvpp2_prs_entry pe;
1443
1444	/* Promiscuous mode - Accept unknown packets */
1445
1446	if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1447		/* Entry exist - update port only */
1448		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1449		mvpp2_prs_hw_read(priv, &pe);
1450	} else {
1451		/* Entry doesn't exist - create new */
1452		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1453		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1454		pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1455
1456		/* Continue - set next lookup */
1457		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1458
1459		/* Set result info bits */
1460		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1461					 MVPP2_PRS_RI_L2_CAST_MASK);
1462
1463		/* Shift to ethertype */
1464		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1465					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1466
1467		/* Mask all ports */
1468		mvpp2_prs_tcam_port_map_set(&pe, 0);
1469
1470		/* Update shadow table */
1471		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1472	}
1473
1474	/* Update port mask */
1475	mvpp2_prs_tcam_port_set(&pe, port, add);
1476
1477	mvpp2_prs_hw_write(priv, &pe);
1478}
1479
1480/* Accept multicast */
1481static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1482				    bool add)
1483{
1484	struct mvpp2_prs_entry pe;
1485	unsigned char da_mc;
1486
1487	/* Ethernet multicast address first byte is
1488	 * 0x01 for IPv4 and 0x33 for IPv6
1489	 */
1490	da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1491
1492	if (priv->prs_shadow[index].valid) {
1493		/* Entry exist - update port only */
1494		pe.index = index;
1495		mvpp2_prs_hw_read(priv, &pe);
1496	} else {
1497		/* Entry doesn't exist - create new */
1498		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1499		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1500		pe.index = index;
1501
1502		/* Continue - set next lookup */
1503		mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1504
1505		/* Set result info bits */
1506		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1507					 MVPP2_PRS_RI_L2_CAST_MASK);
1508
1509		/* Update tcam entry data first byte */
1510		mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1511
1512		/* Shift to ethertype */
1513		mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1514					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1515
1516		/* Mask all ports */
1517		mvpp2_prs_tcam_port_map_set(&pe, 0);
1518
1519		/* Update shadow table */
1520		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1521	}
1522
1523	/* Update port mask */
1524	mvpp2_prs_tcam_port_set(&pe, port, add);
1525
1526	mvpp2_prs_hw_write(priv, &pe);
1527}
1528
1529/* Set entry for dsa packets */
1530static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1531				  bool tagged, bool extend)
1532{
1533	struct mvpp2_prs_entry pe;
1534	int tid, shift;
1535
1536	if (extend) {
1537		tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1538		shift = 8;
1539	} else {
1540		tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1541		shift = 4;
1542	}
1543
1544	if (priv->prs_shadow[tid].valid) {
1545		/* Entry exist - update port only */
1546		pe.index = tid;
1547		mvpp2_prs_hw_read(priv, &pe);
1548	} else {
1549		/* Entry doesn't exist - create new */
1550		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1551		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1552		pe.index = tid;
1553
1554		/* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1555		mvpp2_prs_sram_shift_set(&pe, shift,
1556					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1557
1558		/* Update shadow table */
1559		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1560
1561		if (tagged) {
1562			/* Set tagged bit in DSA tag */
1563			mvpp2_prs_tcam_data_byte_set(&pe, 0,
1564						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1565						     MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1566			/* Clear all ai bits for next iteration */
1567			mvpp2_prs_sram_ai_update(&pe, 0,
1568						 MVPP2_PRS_SRAM_AI_MASK);
1569			/* If packet is tagged continue check vlans */
1570			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1571		} else {
1572			/* Set result info bits to 'no vlans' */
1573			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1574						 MVPP2_PRS_RI_VLAN_MASK);
1575			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1576		}
1577
1578		/* Mask all ports */
1579		mvpp2_prs_tcam_port_map_set(&pe, 0);
1580	}
1581
1582	/* Update port mask */
1583	mvpp2_prs_tcam_port_set(&pe, port, add);
1584
1585	mvpp2_prs_hw_write(priv, &pe);
1586}
1587
1588/* Set entry for dsa ethertype */
1589static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1590					    bool add, bool tagged, bool extend)
1591{
1592	struct mvpp2_prs_entry pe;
1593	int tid, shift, port_mask;
1594
1595	if (extend) {
1596		tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1597		      MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1598		port_mask = 0;
1599		shift = 8;
1600	} else {
1601		tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1602		      MVPP2_PE_ETYPE_DSA_UNTAGGED;
1603		port_mask = MVPP2_PRS_PORT_MASK;
1604		shift = 4;
1605	}
1606
1607	if (priv->prs_shadow[tid].valid) {
1608		/* Entry exist - update port only */
1609		pe.index = tid;
1610		mvpp2_prs_hw_read(priv, &pe);
1611	} else {
1612		/* Entry doesn't exist - create new */
1613		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1614		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1615		pe.index = tid;
1616
1617		/* Set ethertype */
1618		mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1619		mvpp2_prs_match_etype(&pe, 2, 0);
1620
1621		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1622					 MVPP2_PRS_RI_DSA_MASK);
1623		/* Shift ethertype + 2 byte reserved + tag*/
1624		mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1625					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1626
1627		/* Update shadow table */
1628		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1629
1630		if (tagged) {
1631			/* Set tagged bit in DSA tag */
1632			mvpp2_prs_tcam_data_byte_set(&pe,
1633						     MVPP2_ETH_TYPE_LEN + 2 + 3,
1634						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1635						 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1636			/* Clear all ai bits for next iteration */
1637			mvpp2_prs_sram_ai_update(&pe, 0,
1638						 MVPP2_PRS_SRAM_AI_MASK);
1639			/* If packet is tagged continue check vlans */
1640			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1641		} else {
1642			/* Set result info bits to 'no vlans' */
1643			mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1644						 MVPP2_PRS_RI_VLAN_MASK);
1645			mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1646		}
1647		/* Mask/unmask all ports, depending on dsa type */
1648		mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1649	}
1650
1651	/* Update port mask */
1652	mvpp2_prs_tcam_port_set(&pe, port, add);
1653
1654	mvpp2_prs_hw_write(priv, &pe);
1655}
1656
1657/* Search for existing single/triple vlan entry */
1658static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1659						   unsigned short tpid, int ai)
1660{
1661	struct mvpp2_prs_entry *pe;
1662	int tid;
1663
1664	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1665	if (!pe)
1666		return NULL;
1667	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1668
1669	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1670	for (tid = MVPP2_PE_FIRST_FREE_TID;
1671	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1672		unsigned int ri_bits, ai_bits;
1673		bool match;
1674
1675		if (!priv->prs_shadow[tid].valid ||
1676		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1677			continue;
1678
1679		pe->index = tid;
1680
1681		mvpp2_prs_hw_read(priv, pe);
1682		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1683		if (!match)
1684			continue;
1685
1686		/* Get vlan type */
1687		ri_bits = mvpp2_prs_sram_ri_get(pe);
1688		ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1689
1690		/* Get current ai value from tcam */
1691		ai_bits = mvpp2_prs_tcam_ai_get(pe);
1692		/* Clear double vlan bit */
1693		ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1694
1695		if (ai != ai_bits)
1696			continue;
1697
1698		if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1699		    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1700			return pe;
1701	}
1702	kfree(pe);
1703
1704	return NULL;
1705}
1706
1707/* Add/update single/triple vlan entry */
1708static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1709			      unsigned int port_map)
1710{
1711	struct mvpp2_prs_entry *pe;
1712	int tid_aux, tid;
1713	int ret = 0;
1714
1715	pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1716
1717	if (!pe) {
1718		/* Create new tcam entry */
1719		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1720						MVPP2_PE_FIRST_FREE_TID);
1721		if (tid < 0)
1722			return tid;
1723
1724		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1725		if (!pe)
1726			return -ENOMEM;
1727
1728		/* Get last double vlan tid */
1729		for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1730		     tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1731			unsigned int ri_bits;
1732
1733			if (!priv->prs_shadow[tid_aux].valid ||
1734			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1735				continue;
1736
1737			pe->index = tid_aux;
1738			mvpp2_prs_hw_read(priv, pe);
1739			ri_bits = mvpp2_prs_sram_ri_get(pe);
1740			if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1741			    MVPP2_PRS_RI_VLAN_DOUBLE)
1742				break;
1743		}
1744
1745		if (tid <= tid_aux) {
1746			ret = -EINVAL;
1747			goto error;
1748		}
1749
1750		memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1751		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1752		pe->index = tid;
1753
1754		mvpp2_prs_match_etype(pe, 0, tpid);
1755
1756		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1757		/* Shift 4 bytes - skip 1 vlan tag */
1758		mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1759					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1760		/* Clear all ai bits for next iteration */
1761		mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1762
1763		if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1764			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1765						 MVPP2_PRS_RI_VLAN_MASK);
1766		} else {
1767			ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1768			mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1769						 MVPP2_PRS_RI_VLAN_MASK);
1770		}
1771		mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1772
1773		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1774	}
1775	/* Update ports' mask */
1776	mvpp2_prs_tcam_port_map_set(pe, port_map);
1777
1778	mvpp2_prs_hw_write(priv, pe);
1779
1780error:
1781	kfree(pe);
1782
1783	return ret;
1784}
1785
1786/* Get first free double vlan ai number */
1787static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1788{
1789	int i;
1790
1791	for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1792		if (!priv->prs_double_vlans[i])
1793			return i;
1794	}
1795
1796	return -EINVAL;
1797}
1798
1799/* Search for existing double vlan entry */
1800static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1801							  unsigned short tpid1,
1802							  unsigned short tpid2)
1803{
1804	struct mvpp2_prs_entry *pe;
1805	int tid;
1806
1807	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1808	if (!pe)
1809		return NULL;
1810	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1811
1812	/* Go through the all entries with MVPP2_PRS_LU_VLAN */
1813	for (tid = MVPP2_PE_FIRST_FREE_TID;
1814	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1815		unsigned int ri_mask;
1816		bool match;
1817
1818		if (!priv->prs_shadow[tid].valid ||
1819		    priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1820			continue;
1821
1822		pe->index = tid;
1823		mvpp2_prs_hw_read(priv, pe);
1824
1825		match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1826			&& mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1827
1828		if (!match)
1829			continue;
1830
1831		ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1832		if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1833			return pe;
1834	}
1835	kfree(pe);
1836
1837	return NULL;
1838}
1839
1840/* Add or update double vlan entry */
1841static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1842				     unsigned short tpid2,
1843				     unsigned int port_map)
1844{
1845	struct mvpp2_prs_entry *pe;
1846	int tid_aux, tid, ai, ret = 0;
1847
1848	pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1849
1850	if (!pe) {
1851		/* Create new tcam entry */
1852		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1853				MVPP2_PE_LAST_FREE_TID);
1854		if (tid < 0)
1855			return tid;
1856
1857		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1858		if (!pe)
1859			return -ENOMEM;
1860
1861		/* Set ai value for new double vlan entry */
1862		ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1863		if (ai < 0) {
1864			ret = ai;
1865			goto error;
1866		}
1867
1868		/* Get first single/triple vlan tid */
1869		for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1870		     tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1871			unsigned int ri_bits;
1872
1873			if (!priv->prs_shadow[tid_aux].valid ||
1874			    priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1875				continue;
1876
1877			pe->index = tid_aux;
1878			mvpp2_prs_hw_read(priv, pe);
1879			ri_bits = mvpp2_prs_sram_ri_get(pe);
1880			ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1881			if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1882			    ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1883				break;
1884		}
1885
1886		if (tid >= tid_aux) {
1887			ret = -ERANGE;
1888			goto error;
1889		}
1890
1891		memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1892		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1893		pe->index = tid;
1894
1895		priv->prs_double_vlans[ai] = true;
1896
1897		mvpp2_prs_match_etype(pe, 0, tpid1);
1898		mvpp2_prs_match_etype(pe, 4, tpid2);
1899
1900		mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1901		/* Shift 8 bytes - skip 2 vlan tags */
1902		mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1903					 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1904		mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1905					 MVPP2_PRS_RI_VLAN_MASK);
1906		mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1907					 MVPP2_PRS_SRAM_AI_MASK);
1908
1909		mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1910	}
1911
1912	/* Update ports' mask */
1913	mvpp2_prs_tcam_port_map_set(pe, port_map);
1914	mvpp2_prs_hw_write(priv, pe);
1915
1916error:
1917	kfree(pe);
1918	return ret;
1919}
1920
1921/* IPv4 header parsing for fragmentation and L4 offset */
1922static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1923			       unsigned int ri, unsigned int ri_mask)
1924{
1925	struct mvpp2_prs_entry pe;
1926	int tid;
1927
1928	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1929	    (proto != IPPROTO_IGMP))
1930		return -EINVAL;
1931
1932	/* Fragmented packet */
1933	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1934					MVPP2_PE_LAST_FREE_TID);
1935	if (tid < 0)
1936		return tid;
1937
1938	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1939	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1940	pe.index = tid;
1941
1942	/* Set next lu to IPv4 */
1943	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1944	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1945	/* Set L4 offset */
1946	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1947				  sizeof(struct iphdr) - 4,
1948				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1949	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1950				 MVPP2_PRS_IPV4_DIP_AI_BIT);
1951	mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1952				 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1953
1954	mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1955	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1956	/* Unmask all ports */
1957	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1958
1959	/* Update shadow table and hw entry */
1960	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1961	mvpp2_prs_hw_write(priv, &pe);
1962
1963	/* Not fragmented packet */
1964	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1965					MVPP2_PE_LAST_FREE_TID);
1966	if (tid < 0)
1967		return tid;
1968
1969	pe.index = tid;
1970	/* Clear ri before updating */
1971	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1972	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1973	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1974
1975	mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1976	mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1977
1978	/* Update shadow table and hw entry */
1979	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1980	mvpp2_prs_hw_write(priv, &pe);
1981
1982	return 0;
1983}
1984
1985/* IPv4 L3 multicast or broadcast */
1986static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1987{
1988	struct mvpp2_prs_entry pe;
1989	int mask, tid;
1990
1991	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1992					MVPP2_PE_LAST_FREE_TID);
1993	if (tid < 0)
1994		return tid;
1995
1996	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1997	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1998	pe.index = tid;
1999
2000	switch (l3_cast) {
2001	case MVPP2_PRS_L3_MULTI_CAST:
2002		mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
2003					     MVPP2_PRS_IPV4_MC_MASK);
2004		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2005					 MVPP2_PRS_RI_L3_ADDR_MASK);
2006		break;
2007	case  MVPP2_PRS_L3_BROAD_CAST:
2008		mask = MVPP2_PRS_IPV4_BC_MASK;
2009		mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
2010		mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
2011		mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
2012		mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
2013		mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
2014					 MVPP2_PRS_RI_L3_ADDR_MASK);
2015		break;
2016	default:
2017		return -EINVAL;
2018	}
2019
2020	/* Finished: go to flowid generation */
2021	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2022	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2023
2024	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2025				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2026	/* Unmask all ports */
2027	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2028
2029	/* Update shadow table and hw entry */
2030	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2031	mvpp2_prs_hw_write(priv, &pe);
2032
2033	return 0;
2034}
2035
2036/* Set entries for protocols over IPv6  */
2037static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2038			       unsigned int ri, unsigned int ri_mask)
2039{
2040	struct mvpp2_prs_entry pe;
2041	int tid;
2042
2043	if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2044	    (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2045		return -EINVAL;
2046
2047	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2048					MVPP2_PE_LAST_FREE_TID);
2049	if (tid < 0)
2050		return tid;
2051
2052	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2053	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2054	pe.index = tid;
2055
2056	/* Finished: go to flowid generation */
2057	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2058	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2059	mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2060	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2061				  sizeof(struct ipv6hdr) - 6,
2062				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2063
2064	mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2065	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2066				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2067	/* Unmask all ports */
2068	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2069
2070	/* Write HW */
2071	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2072	mvpp2_prs_hw_write(priv, &pe);
2073
2074	return 0;
2075}
2076
2077/* IPv6 L3 multicast entry */
2078static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2079{
2080	struct mvpp2_prs_entry pe;
2081	int tid;
2082
2083	if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2084		return -EINVAL;
2085
2086	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2087					MVPP2_PE_LAST_FREE_TID);
2088	if (tid < 0)
2089		return tid;
2090
2091	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2092	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2093	pe.index = tid;
2094
2095	/* Finished: go to flowid generation */
2096	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2097	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2098				 MVPP2_PRS_RI_L3_ADDR_MASK);
2099	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2100				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2101	/* Shift back to IPv6 NH */
2102	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2103
2104	mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2105				     MVPP2_PRS_IPV6_MC_MASK);
2106	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2107	/* Unmask all ports */
2108	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2109
2110	/* Update shadow table and hw entry */
2111	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2112	mvpp2_prs_hw_write(priv, &pe);
2113
2114	return 0;
2115}
2116
2117/* Parser per-port initialization */
2118static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2119				   int lu_max, int offset)
2120{
2121	u32 val;
2122
2123	/* Set lookup ID */
2124	val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2125	val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2126	val |=  MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2127	mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2128
2129	/* Set maximum number of loops for packet received from port */
2130	val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2131	val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2132	val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2133	mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2134
2135	/* Set initial offset for packet header extraction for the first
2136	 * searching loop
2137	 */
2138	val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2139	val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2140	val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2141	mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2142}
2143
2144/* Default flow entries initialization for all ports */
2145static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2146{
2147	struct mvpp2_prs_entry pe;
2148	int port;
2149
2150	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2151		memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2152		mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2153		pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2154
2155		/* Mask all ports */
2156		mvpp2_prs_tcam_port_map_set(&pe, 0);
2157
2158		/* Set flow ID*/
2159		mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2160		mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2161
2162		/* Update shadow table and hw entry */
2163		mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2164		mvpp2_prs_hw_write(priv, &pe);
2165	}
2166}
2167
2168/* Set default entry for Marvell Header field */
2169static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2170{
2171	struct mvpp2_prs_entry pe;
2172
2173	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2174
2175	pe.index = MVPP2_PE_MH_DEFAULT;
2176	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2177	mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2178				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2179	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2180
2181	/* Unmask all ports */
2182	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2183
2184	/* Update shadow table and hw entry */
2185	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2186	mvpp2_prs_hw_write(priv, &pe);
2187}
2188
2189/* Set default entires (place holder) for promiscuous, non-promiscuous and
2190 * multicast MAC addresses
2191 */
2192static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2193{
2194	struct mvpp2_prs_entry pe;
2195
2196	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2197
2198	/* Non-promiscuous mode for all ports - DROP unknown packets */
2199	pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2200	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2201
2202	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2203				 MVPP2_PRS_RI_DROP_MASK);
2204	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2205	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2206
2207	/* Unmask all ports */
2208	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2209
2210	/* Update shadow table and hw entry */
2211	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2212	mvpp2_prs_hw_write(priv, &pe);
2213
2214	/* place holders only - no ports */
2215	mvpp2_prs_mac_drop_all_set(priv, 0, false);
2216	mvpp2_prs_mac_promisc_set(priv, 0, false);
2217	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2218	mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2219}
2220
2221/* Set default entries for various types of dsa packets */
2222static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2223{
2224	struct mvpp2_prs_entry pe;
2225
2226	/* None tagged EDSA entry - place holder */
2227	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2228			      MVPP2_PRS_EDSA);
2229
2230	/* Tagged EDSA entry - place holder */
2231	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2232
2233	/* None tagged DSA entry - place holder */
2234	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2235			      MVPP2_PRS_DSA);
2236
2237	/* Tagged DSA entry - place holder */
2238	mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2239
2240	/* None tagged EDSA ethertype entry - place holder*/
2241	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2242					MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2243
2244	/* Tagged EDSA ethertype entry - place holder*/
2245	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2246					MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2247
2248	/* None tagged DSA ethertype entry */
2249	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2250					MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2251
2252	/* Tagged DSA ethertype entry */
2253	mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2254					MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2255
2256	/* Set default entry, in case DSA or EDSA tag not found */
2257	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2258	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2259	pe.index = MVPP2_PE_DSA_DEFAULT;
2260	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2261
2262	/* Shift 0 bytes */
2263	mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2264	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2265
2266	/* Clear all sram ai bits for next iteration */
2267	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2268
2269	/* Unmask all ports */
2270	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2271
2272	mvpp2_prs_hw_write(priv, &pe);
2273}
2274
2275/* Match basic ethertypes */
2276static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2277{
2278	struct mvpp2_prs_entry pe;
2279	int tid;
2280
2281	/* Ethertype: PPPoE */
2282	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2283					MVPP2_PE_LAST_FREE_TID);
2284	if (tid < 0)
2285		return tid;
2286
2287	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2288	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2289	pe.index = tid;
2290
2291	mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2292
2293	mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2294				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2295	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2296	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2297				 MVPP2_PRS_RI_PPPOE_MASK);
2298
2299	/* Update shadow table and hw entry */
2300	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2301	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2302	priv->prs_shadow[pe.index].finish = false;
2303	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2304				MVPP2_PRS_RI_PPPOE_MASK);
2305	mvpp2_prs_hw_write(priv, &pe);
2306
2307	/* Ethertype: ARP */
2308	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2309					MVPP2_PE_LAST_FREE_TID);
2310	if (tid < 0)
2311		return tid;
2312
2313	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2314	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2315	pe.index = tid;
2316
2317	mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2318
2319	/* Generate flow in the next iteration*/
2320	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2321	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2322	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2323				 MVPP2_PRS_RI_L3_PROTO_MASK);
2324	/* Set L3 offset */
2325	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2326				  MVPP2_ETH_TYPE_LEN,
2327				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2328
2329	/* Update shadow table and hw entry */
2330	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2331	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2332	priv->prs_shadow[pe.index].finish = true;
2333	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2334				MVPP2_PRS_RI_L3_PROTO_MASK);
2335	mvpp2_prs_hw_write(priv, &pe);
2336
2337	/* Ethertype: LBTD */
2338	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2339					MVPP2_PE_LAST_FREE_TID);
2340	if (tid < 0)
2341		return tid;
2342
2343	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2344	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2345	pe.index = tid;
2346
2347	mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2348
2349	/* Generate flow in the next iteration*/
2350	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2351	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2352	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2353				 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2354				 MVPP2_PRS_RI_CPU_CODE_MASK |
2355				 MVPP2_PRS_RI_UDF3_MASK);
2356	/* Set L3 offset */
2357	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2358				  MVPP2_ETH_TYPE_LEN,
2359				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2360
2361	/* Update shadow table and hw entry */
2362	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2363	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2364	priv->prs_shadow[pe.index].finish = true;
2365	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2366				MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2367				MVPP2_PRS_RI_CPU_CODE_MASK |
2368				MVPP2_PRS_RI_UDF3_MASK);
2369	mvpp2_prs_hw_write(priv, &pe);
2370
2371	/* Ethertype: IPv4 without options */
2372	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2373					MVPP2_PE_LAST_FREE_TID);
2374	if (tid < 0)
2375		return tid;
2376
2377	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2378	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2379	pe.index = tid;
2380
2381	mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2382	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2383				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2384				     MVPP2_PRS_IPV4_HEAD_MASK |
2385				     MVPP2_PRS_IPV4_IHL_MASK);
2386
2387	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2388	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2389				 MVPP2_PRS_RI_L3_PROTO_MASK);
2390	/* Skip eth_type + 4 bytes of IP header */
2391	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2392				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2393	/* Set L3 offset */
2394	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2395				  MVPP2_ETH_TYPE_LEN,
2396				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2397
2398	/* Update shadow table and hw entry */
2399	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2400	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2401	priv->prs_shadow[pe.index].finish = false;
2402	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2403				MVPP2_PRS_RI_L3_PROTO_MASK);
2404	mvpp2_prs_hw_write(priv, &pe);
2405
2406	/* Ethertype: IPv4 with options */
2407	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2408					MVPP2_PE_LAST_FREE_TID);
2409	if (tid < 0)
2410		return tid;
2411
2412	pe.index = tid;
2413
2414	/* Clear tcam data before updating */
2415	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2416	pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2417
2418	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2419				     MVPP2_PRS_IPV4_HEAD,
2420				     MVPP2_PRS_IPV4_HEAD_MASK);
2421
2422	/* Clear ri before updating */
2423	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2424	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2425	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2426				 MVPP2_PRS_RI_L3_PROTO_MASK);
2427
2428	/* Update shadow table and hw entry */
2429	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2430	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2431	priv->prs_shadow[pe.index].finish = false;
2432	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2433				MVPP2_PRS_RI_L3_PROTO_MASK);
2434	mvpp2_prs_hw_write(priv, &pe);
2435
2436	/* Ethertype: IPv6 without options */
2437	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2438					MVPP2_PE_LAST_FREE_TID);
2439	if (tid < 0)
2440		return tid;
2441
2442	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2443	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2444	pe.index = tid;
2445
2446	mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2447
2448	/* Skip DIP of IPV6 header */
2449	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2450				 MVPP2_MAX_L3_ADDR_SIZE,
2451				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2452	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2453	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2454				 MVPP2_PRS_RI_L3_PROTO_MASK);
2455	/* Set L3 offset */
2456	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2457				  MVPP2_ETH_TYPE_LEN,
2458				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2459
2460	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2461	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2462	priv->prs_shadow[pe.index].finish = false;
2463	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2464				MVPP2_PRS_RI_L3_PROTO_MASK);
2465	mvpp2_prs_hw_write(priv, &pe);
2466
2467	/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2468	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2469	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2470	pe.index = MVPP2_PE_ETH_TYPE_UN;
2471
2472	/* Unmask all ports */
2473	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2474
2475	/* Generate flow in the next iteration*/
2476	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2477	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2478	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2479				 MVPP2_PRS_RI_L3_PROTO_MASK);
2480	/* Set L3 offset even it's unknown L3 */
2481	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2482				  MVPP2_ETH_TYPE_LEN,
2483				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2484
2485	/* Update shadow table and hw entry */
2486	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2487	priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2488	priv->prs_shadow[pe.index].finish = true;
2489	mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2490				MVPP2_PRS_RI_L3_PROTO_MASK);
2491	mvpp2_prs_hw_write(priv, &pe);
2492
2493	return 0;
2494}
2495
2496/* Configure vlan entries and detect up to 2 successive VLAN tags.
2497 * Possible options:
2498 * 0x8100, 0x88A8
2499 * 0x8100, 0x8100
2500 * 0x8100
2501 * 0x88A8
2502 */
2503static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2504{
2505	struct mvpp2_prs_entry pe;
2506	int err;
2507
2508	priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2509					      MVPP2_PRS_DBL_VLANS_MAX,
2510					      GFP_KERNEL);
2511	if (!priv->prs_double_vlans)
2512		return -ENOMEM;
2513
2514	/* Double VLAN: 0x8100, 0x88A8 */
2515	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2516					MVPP2_PRS_PORT_MASK);
2517	if (err)
2518		return err;
2519
2520	/* Double VLAN: 0x8100, 0x8100 */
2521	err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2522					MVPP2_PRS_PORT_MASK);
2523	if (err)
2524		return err;
2525
2526	/* Single VLAN: 0x88a8 */
2527	err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2528				 MVPP2_PRS_PORT_MASK);
2529	if (err)
2530		return err;
2531
2532	/* Single VLAN: 0x8100 */
2533	err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2534				 MVPP2_PRS_PORT_MASK);
2535	if (err)
2536		return err;
2537
2538	/* Set default double vlan entry */
2539	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2540	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2541	pe.index = MVPP2_PE_VLAN_DBL;
2542
2543	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2544	/* Clear ai for next iterations */
2545	mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2546	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2547				 MVPP2_PRS_RI_VLAN_MASK);
2548
2549	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2550				 MVPP2_PRS_DBL_VLAN_AI_BIT);
2551	/* Unmask all ports */
2552	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2553
2554	/* Update shadow table and hw entry */
2555	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2556	mvpp2_prs_hw_write(priv, &pe);
2557
2558	/* Set default vlan none entry */
2559	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2560	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2561	pe.index = MVPP2_PE_VLAN_NONE;
2562
2563	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2564	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2565				 MVPP2_PRS_RI_VLAN_MASK);
2566
2567	/* Unmask all ports */
2568	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2569
2570	/* Update shadow table and hw entry */
2571	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2572	mvpp2_prs_hw_write(priv, &pe);
2573
2574	return 0;
2575}
2576
2577/* Set entries for PPPoE ethertype */
2578static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2579{
2580	struct mvpp2_prs_entry pe;
2581	int tid;
2582
2583	/* IPv4 over PPPoE with options */
2584	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2585					MVPP2_PE_LAST_FREE_TID);
2586	if (tid < 0)
2587		return tid;
2588
2589	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2590	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2591	pe.index = tid;
2592
2593	mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2594
2595	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2596	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2597				 MVPP2_PRS_RI_L3_PROTO_MASK);
2598	/* Skip eth_type + 4 bytes of IP header */
2599	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2600				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2601	/* Set L3 offset */
2602	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2603				  MVPP2_ETH_TYPE_LEN,
2604				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2605
2606	/* Update shadow table and hw entry */
2607	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2608	mvpp2_prs_hw_write(priv, &pe);
2609
2610	/* IPv4 over PPPoE without options */
2611	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2612					MVPP2_PE_LAST_FREE_TID);
2613	if (tid < 0)
2614		return tid;
2615
2616	pe.index = tid;
2617
2618	mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2619				     MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2620				     MVPP2_PRS_IPV4_HEAD_MASK |
2621				     MVPP2_PRS_IPV4_IHL_MASK);
2622
2623	/* Clear ri before updating */
2624	pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2625	pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2626	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2627				 MVPP2_PRS_RI_L3_PROTO_MASK);
2628
2629	/* Update shadow table and hw entry */
2630	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2631	mvpp2_prs_hw_write(priv, &pe);
2632
2633	/* IPv6 over PPPoE */
2634	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2635					MVPP2_PE_LAST_FREE_TID);
2636	if (tid < 0)
2637		return tid;
2638
2639	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2640	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2641	pe.index = tid;
2642
2643	mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2644
2645	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2646	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2647				 MVPP2_PRS_RI_L3_PROTO_MASK);
2648	/* Skip eth_type + 4 bytes of IPv6 header */
2649	mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2650				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2651	/* Set L3 offset */
2652	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2653				  MVPP2_ETH_TYPE_LEN,
2654				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2655
2656	/* Update shadow table and hw entry */
2657	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2658	mvpp2_prs_hw_write(priv, &pe);
2659
2660	/* Non-IP over PPPoE */
2661	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2662					MVPP2_PE_LAST_FREE_TID);
2663	if (tid < 0)
2664		return tid;
2665
2666	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2667	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2668	pe.index = tid;
2669
2670	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2671				 MVPP2_PRS_RI_L3_PROTO_MASK);
2672
2673	/* Finished: go to flowid generation */
2674	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2675	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2676	/* Set L3 offset even if it's unknown L3 */
2677	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2678				  MVPP2_ETH_TYPE_LEN,
2679				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2680
2681	/* Update shadow table and hw entry */
2682	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2683	mvpp2_prs_hw_write(priv, &pe);
2684
2685	return 0;
2686}
2687
2688/* Initialize entries for IPv4 */
2689static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2690{
2691	struct mvpp2_prs_entry pe;
2692	int err;
2693
2694	/* Set entries for TCP, UDP and IGMP over IPv4 */
2695	err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2696				  MVPP2_PRS_RI_L4_PROTO_MASK);
2697	if (err)
2698		return err;
2699
2700	err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2701				  MVPP2_PRS_RI_L4_PROTO_MASK);
2702	if (err)
2703		return err;
2704
2705	err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2706				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2707				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2708				  MVPP2_PRS_RI_CPU_CODE_MASK |
2709				  MVPP2_PRS_RI_UDF3_MASK);
2710	if (err)
2711		return err;
2712
2713	/* IPv4 Broadcast */
2714	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2715	if (err)
2716		return err;
2717
2718	/* IPv4 Multicast */
2719	err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2720	if (err)
2721		return err;
2722
2723	/* Default IPv4 entry for unknown protocols */
2724	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2725	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2726	pe.index = MVPP2_PE_IP4_PROTO_UN;
2727
2728	/* Set next lu to IPv4 */
2729	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2730	mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2731	/* Set L4 offset */
2732	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2733				  sizeof(struct iphdr) - 4,
2734				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2735	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2736				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2737	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2738				 MVPP2_PRS_RI_L4_PROTO_MASK);
2739
2740	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2741	/* Unmask all ports */
2742	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2743
2744	/* Update shadow table and hw entry */
2745	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2746	mvpp2_prs_hw_write(priv, &pe);
2747
2748	/* Default IPv4 entry for unicast address */
2749	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2750	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2751	pe.index = MVPP2_PE_IP4_ADDR_UN;
2752
2753	/* Finished: go to flowid generation */
2754	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2755	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2756	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2757				 MVPP2_PRS_RI_L3_ADDR_MASK);
2758
2759	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2760				 MVPP2_PRS_IPV4_DIP_AI_BIT);
2761	/* Unmask all ports */
2762	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2763
2764	/* Update shadow table and hw entry */
2765	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2766	mvpp2_prs_hw_write(priv, &pe);
2767
2768	return 0;
2769}
2770
2771/* Initialize entries for IPv6 */
2772static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2773{
2774	struct mvpp2_prs_entry pe;
2775	int tid, err;
2776
2777	/* Set entries for TCP, UDP and ICMP over IPv6 */
2778	err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2779				  MVPP2_PRS_RI_L4_TCP,
2780				  MVPP2_PRS_RI_L4_PROTO_MASK);
2781	if (err)
2782		return err;
2783
2784	err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2785				  MVPP2_PRS_RI_L4_UDP,
2786				  MVPP2_PRS_RI_L4_PROTO_MASK);
2787	if (err)
2788		return err;
2789
2790	err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2791				  MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2792				  MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2793				  MVPP2_PRS_RI_CPU_CODE_MASK |
2794				  MVPP2_PRS_RI_UDF3_MASK);
2795	if (err)
2796		return err;
2797
2798	/* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2799	/* Result Info: UDF7=1, DS lite */
2800	err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2801				  MVPP2_PRS_RI_UDF7_IP6_LITE,
2802				  MVPP2_PRS_RI_UDF7_MASK);
2803	if (err)
2804		return err;
2805
2806	/* IPv6 multicast */
2807	err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2808	if (err)
2809		return err;
2810
2811	/* Entry for checking hop limit */
2812	tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2813					MVPP2_PE_LAST_FREE_TID);
2814	if (tid < 0)
2815		return tid;
2816
2817	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2818	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2819	pe.index = tid;
2820
2821	/* Finished: go to flowid generation */
2822	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2823	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2824	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2825				 MVPP2_PRS_RI_DROP_MASK,
2826				 MVPP2_PRS_RI_L3_PROTO_MASK |
2827				 MVPP2_PRS_RI_DROP_MASK);
2828
2829	mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2830	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2831				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2832
2833	/* Update shadow table and hw entry */
2834	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2835	mvpp2_prs_hw_write(priv, &pe);
2836
2837	/* Default IPv6 entry for unknown protocols */
2838	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2839	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2840	pe.index = MVPP2_PE_IP6_PROTO_UN;
2841
2842	/* Finished: go to flowid generation */
2843	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2844	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2845	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2846				 MVPP2_PRS_RI_L4_PROTO_MASK);
2847	/* Set L4 offset relatively to our current place */
2848	mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2849				  sizeof(struct ipv6hdr) - 4,
2850				  MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2851
2852	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2853				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2854	/* Unmask all ports */
2855	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2856
2857	/* Update shadow table and hw entry */
2858	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2859	mvpp2_prs_hw_write(priv, &pe);
2860
2861	/* Default IPv6 entry for unknown ext protocols */
2862	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2863	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2864	pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2865
2866	/* Finished: go to flowid generation */
2867	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2868	mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2869	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2870				 MVPP2_PRS_RI_L4_PROTO_MASK);
2871
2872	mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2873				 MVPP2_PRS_IPV6_EXT_AI_BIT);
2874	/* Unmask all ports */
2875	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2876
2877	/* Update shadow table and hw entry */
2878	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2879	mvpp2_prs_hw_write(priv, &pe);
2880
2881	/* Default IPv6 entry for unicast address */
2882	memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2883	mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2884	pe.index = MVPP2_PE_IP6_ADDR_UN;
2885
2886	/* Finished: go to IPv6 again */
2887	mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2888	mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2889				 MVPP2_PRS_RI_L3_ADDR_MASK);
2890	mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2891				 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2892	/* Shift back to IPV6 NH */
2893	mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2894
2895	mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2896	/* Unmask all ports */
2897	mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2898
2899	/* Update shadow table and hw entry */
2900	mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2901	mvpp2_prs_hw_write(priv, &pe);
2902
2903	return 0;
2904}
2905
2906/* Parser default initialization */
2907static int mvpp2_prs_default_init(struct platform_device *pdev,
2908				  struct mvpp2 *priv)
2909{
2910	int err, index, i;
2911
2912	/* Enable tcam table */
2913	mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2914
2915	/* Clear all tcam and sram entries */
2916	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2917		mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2918		for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2919			mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2920
2921		mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2922		for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2923			mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2924	}
2925
2926	/* Invalidate all tcam entries */
2927	for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2928		mvpp2_prs_hw_inv(priv, index);
2929
2930	priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2931					sizeof(struct mvpp2_prs_shadow),
2932					GFP_KERNEL);
2933	if (!priv->prs_shadow)
2934		return -ENOMEM;
2935
2936	/* Always start from lookup = 0 */
2937	for (index = 0; index < MVPP2_MAX_PORTS; index++)
2938		mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2939				       MVPP2_PRS_PORT_LU_MAX, 0);
2940
2941	mvpp2_prs_def_flow_init(priv);
2942
2943	mvpp2_prs_mh_init(priv);
2944
2945	mvpp2_prs_mac_init(priv);
2946
2947	mvpp2_prs_dsa_init(priv);
2948
2949	err = mvpp2_prs_etype_init(priv);
2950	if (err)
2951		return err;
2952
2953	err = mvpp2_prs_vlan_init(pdev, priv);
2954	if (err)
2955		return err;
2956
2957	err = mvpp2_prs_pppoe_init(priv);
2958	if (err)
2959		return err;
2960
2961	err = mvpp2_prs_ip6_init(priv);
2962	if (err)
2963		return err;
2964
2965	err = mvpp2_prs_ip4_init(priv);
2966	if (err)
2967		return err;
2968
2969	return 0;
2970}
2971
2972/* Compare MAC DA with tcam entry data */
2973static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2974				       const u8 *da, unsigned char *mask)
2975{
2976	unsigned char tcam_byte, tcam_mask;
2977	int index;
2978
2979	for (index = 0; index < ETH_ALEN; index++) {
2980		mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2981		if (tcam_mask != mask[index])
2982			return false;
2983
2984		if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2985			return false;
2986	}
2987
2988	return true;
2989}
2990
2991/* Find tcam entry with matched pair <MAC DA, port> */
2992static struct mvpp2_prs_entry *
2993mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2994			    unsigned char *mask, int udf_type)
2995{
2996	struct mvpp2_prs_entry *pe;
2997	int tid;
2998
2999	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3000	if (!pe)
3001		return NULL;
3002	mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3003
3004	/* Go through the all entires with MVPP2_PRS_LU_MAC */
3005	for (tid = MVPP2_PE_FIRST_FREE_TID;
3006	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3007		unsigned int entry_pmap;
3008
3009		if (!priv->prs_shadow[tid].valid ||
3010		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3011		    (priv->prs_shadow[tid].udf != udf_type))
3012			continue;
3013
3014		pe->index = tid;
3015		mvpp2_prs_hw_read(priv, pe);
3016		entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
3017
3018		if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
3019		    entry_pmap == pmap)
3020			return pe;
3021	}
3022	kfree(pe);
3023
3024	return NULL;
3025}
3026
3027/* Update parser's mac da entry */
3028static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
3029				   const u8 *da, bool add)
3030{
3031	struct mvpp2_prs_entry *pe;
3032	unsigned int pmap, len, ri;
3033	unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3034	int tid;
3035
3036	/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3037	pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3038					 MVPP2_PRS_UDF_MAC_DEF);
3039
3040	/* No such entry */
3041	if (!pe) {
3042		if (!add)
3043			return 0;
3044
3045		/* Create new TCAM entry */
3046		/* Find first range mac entry*/
3047		for (tid = MVPP2_PE_FIRST_FREE_TID;
3048		     tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3049			if (priv->prs_shadow[tid].valid &&
3050			    (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3051			    (priv->prs_shadow[tid].udf ==
3052						       MVPP2_PRS_UDF_MAC_RANGE))
3053				break;
3054
3055		/* Go through the all entries from first to last */
3056		tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3057						tid - 1);
3058		if (tid < 0)
3059			return tid;
3060
3061		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3062		if (!pe)
3063			return -ENOMEM;
3064		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3065		pe->index = tid;
3066
3067		/* Mask all ports */
3068		mvpp2_prs_tcam_port_map_set(pe, 0);
3069	}
3070
3071	/* Update port mask */
3072	mvpp2_prs_tcam_port_set(pe, port, add);
3073
3074	/* Invalidate the entry if no ports are left enabled */
3075	pmap = mvpp2_prs_tcam_port_map_get(pe);
3076	if (pmap == 0) {
3077		if (add) {
3078			kfree(pe);
3079			return -EINVAL;
3080		}
3081		mvpp2_prs_hw_inv(priv, pe->index);
3082		priv->prs_shadow[pe->index].valid = false;
3083		kfree(pe);
3084		return 0;
3085	}
3086
3087	/* Continue - set next lookup */
3088	mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3089
3090	/* Set match on DA */
3091	len = ETH_ALEN;
3092	while (len--)
3093		mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3094
3095	/* Set result info bits */
3096	if (is_broadcast_ether_addr(da))
3097		ri = MVPP2_PRS_RI_L2_BCAST;
3098	else if (is_multicast_ether_addr(da))
3099		ri = MVPP2_PRS_RI_L2_MCAST;
3100	else
3101		ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3102
3103	mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3104				 MVPP2_PRS_RI_MAC_ME_MASK);
3105	mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3106				MVPP2_PRS_RI_MAC_ME_MASK);
3107
3108	/* Shift to ethertype */
3109	mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3110				 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3111
3112	/* Update shadow table and hw entry */
3113	priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3114	mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3115	mvpp2_prs_hw_write(priv, pe);
3116
3117	kfree(pe);
3118
3119	return 0;
3120}
3121
3122static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3123{
3124	struct mvpp2_port *port = netdev_priv(dev);
3125	int err;
3126
3127	/* Remove old parser entry */
3128	err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3129				      false);
3130	if (err)
3131		return err;
3132
3133	/* Add new parser entry */
3134	err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3135	if (err)
3136		return err;
3137
3138	/* Set addr in the device */
3139	ether_addr_copy(dev->dev_addr, da);
3140
3141	return 0;
3142}
3143
3144/* Delete all port's multicast simple (not range) entries */
3145static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3146{
3147	struct mvpp2_prs_entry pe;
3148	int index, tid;
3149
3150	for (tid = MVPP2_PE_FIRST_FREE_TID;
3151	     tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3152		unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3153
3154		if (!priv->prs_shadow[tid].valid ||
3155		    (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3156		    (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3157			continue;
3158
3159		/* Only simple mac entries */
3160		pe.index = tid;
3161		mvpp2_prs_hw_read(priv, &pe);
3162
3163		/* Read mac addr from entry */
3164		for (index = 0; index < ETH_ALEN; index++)
3165			mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3166						     &da_mask[index]);
3167
3168		if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3169			/* Delete this entry */
3170			mvpp2_prs_mac_da_accept(priv, port, da, false);
3171	}
3172}
3173
3174static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3175{
3176	switch (type) {
3177	case MVPP2_TAG_TYPE_EDSA:
3178		/* Add port to EDSA entries */
3179		mvpp2_prs_dsa_tag_set(priv, port, true,
3180				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3181		mvpp2_prs_dsa_tag_set(priv, port, true,
3182				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3183		/* Remove port from DSA entries */
3184		mvpp2_prs_dsa_tag_set(priv, port, false,
3185				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3186		mvpp2_prs_dsa_tag_set(priv, port, false,
3187				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3188		break;
3189
3190	case MVPP2_TAG_TYPE_DSA:
3191		/* Add port to DSA entries */
3192		mvpp2_prs_dsa_tag_set(priv, port, true,
3193				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3194		mvpp2_prs_dsa_tag_set(priv, port, true,
3195				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3196		/* Remove port from EDSA entries */
3197		mvpp2_prs_dsa_tag_set(priv, port, false,
3198				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3199		mvpp2_prs_dsa_tag_set(priv, port, false,
3200				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3201		break;
3202
3203	case MVPP2_TAG_TYPE_MH:
3204	case MVPP2_TAG_TYPE_NONE:
3205		/* Remove port form EDSA and DSA entries */
3206		mvpp2_prs_dsa_tag_set(priv, port, false,
3207				      MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3208		mvpp2_prs_dsa_tag_set(priv, port, false,
3209				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3210		mvpp2_prs_dsa_tag_set(priv, port, false,
3211				      MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3212		mvpp2_prs_dsa_tag_set(priv, port, false,
3213				      MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3214		break;
3215
3216	default:
3217		if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3218			return -EINVAL;
3219	}
3220
3221	return 0;
3222}
3223
3224/* Set prs flow for the port */
3225static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3226{
3227	struct mvpp2_prs_entry *pe;
3228	int tid;
3229
3230	pe = mvpp2_prs_flow_find(port->priv, port->id);
3231
3232	/* Such entry not exist */
3233	if (!pe) {
3234		/* Go through the all entires from last to first */
3235		tid = mvpp2_prs_tcam_first_free(port->priv,
3236						MVPP2_PE_LAST_FREE_TID,
3237					       MVPP2_PE_FIRST_FREE_TID);
3238		if (tid < 0)
3239			return tid;
3240
3241		pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3242		if (!pe)
3243			return -ENOMEM;
3244
3245		mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3246		pe->index = tid;
3247
3248		/* Set flow ID*/
3249		mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3250		mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3251
3252		/* Update shadow table */
3253		mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3254	}
3255
3256	mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3257	mvpp2_prs_hw_write(port->priv, pe);
3258	kfree(pe);
3259
3260	return 0;
3261}
3262
3263/* Classifier configuration routines */
3264
3265/* Update classification flow table registers */
3266static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3267				 struct mvpp2_cls_flow_entry *fe)
3268{
3269	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3270	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG,  fe->data[0]);
3271	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG,  fe->data[1]);
3272	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG,  fe->data[2]);
3273}
3274
3275/* Update classification lookup table register */
3276static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3277				   struct mvpp2_cls_lookup_entry *le)
3278{
3279	u32 val;
3280
3281	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3282	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3283	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3284}
3285
3286/* Classifier default initialization */
3287static void mvpp2_cls_init(struct mvpp2 *priv)
3288{
3289	struct mvpp2_cls_lookup_entry le;
3290	struct mvpp2_cls_flow_entry fe;
3291	int index;
3292
3293	/* Enable classifier */
3294	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3295
3296	/* Clear classifier flow table */
3297	memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3298	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3299		fe.index = index;
3300		mvpp2_cls_flow_write(priv, &fe);
3301	}
3302
3303	/* Clear classifier lookup table */
3304	le.data = 0;
3305	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3306		le.lkpid = index;
3307		le.way = 0;
3308		mvpp2_cls_lookup_write(priv, &le);
3309
3310		le.way = 1;
3311		mvpp2_cls_lookup_write(priv, &le);
3312	}
3313}
3314
3315static void mvpp2_cls_port_config(struct mvpp2_port *port)
3316{
3317	struct mvpp2_cls_lookup_entry le;
3318	u32 val;
3319
3320	/* Set way for the port */
3321	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3322	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3323	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3324
3325	/* Pick the entry to be accessed in lookup ID decoding table
3326	 * according to the way and lkpid.
3327	 */
3328	le.lkpid = port->id;
3329	le.way = 0;
3330	le.data = 0;
3331
3332	/* Set initial CPU queue for receiving packets */
3333	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3334	le.data |= port->first_rxq;
3335
3336	/* Disable classification engines */
3337	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3338
3339	/* Update lookup ID table entry */
3340	mvpp2_cls_lookup_write(port->priv, &le);
3341}
3342
3343/* Set CPU queue number for oversize packets */
3344static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3345{
3346	u32 val;
3347
3348	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3349		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3350
3351	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3352		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3353
3354	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3355	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3356	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3357}
3358
3359/* Buffer Manager configuration routines */
3360
3361/* Create pool */
3362static int mvpp2_bm_pool_create(struct platform_device *pdev,
3363				struct mvpp2 *priv,
3364				struct mvpp2_bm_pool *bm_pool, int size)
3365{
3366	int size_bytes;
3367	u32 val;
3368
3369	size_bytes = sizeof(u32) * size;
3370	bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3371						&bm_pool->phys_addr,
3372						GFP_KERNEL);
3373	if (!bm_pool->virt_addr)
3374		return -ENOMEM;
3375
3376	if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3377		dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3378				  bm_pool->phys_addr);
3379		dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3380			bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3381		return -ENOMEM;
3382	}
3383
3384	mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3385		    bm_pool->phys_addr);
3386	mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3387
3388	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3389	val |= MVPP2_BM_START_MASK;
3390	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3391
3392	bm_pool->type = MVPP2_BM_FREE;
3393	bm_pool->size = size;
3394	bm_pool->pkt_size = 0;
3395	bm_pool->buf_num = 0;
3396	atomic_set(&bm_pool->in_use, 0);
3397
3398	return 0;
3399}
3400
3401/* Set pool buffer size */
3402static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3403				      struct mvpp2_bm_pool *bm_pool,
3404				      int buf_size)
3405{
3406	u32 val;
3407
3408	bm_pool->buf_size = buf_size;
3409
3410	val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3411	mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3412}
3413
3414/* Free all buffers from the pool */
3415static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv,
3416			       struct mvpp2_bm_pool *bm_pool)
3417{
3418	int i;
3419
3420	for (i = 0; i < bm_pool->buf_num; i++) {
3421		dma_addr_t buf_phys_addr;
3422		u32 vaddr;
3423
3424		/* Get buffer virtual address (indirect access) */
3425		buf_phys_addr = mvpp2_read(priv,
3426					   MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3427		vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3428
3429		dma_unmap_single(dev, buf_phys_addr,
3430				 bm_pool->buf_size, DMA_FROM_DEVICE);
3431
3432		if (!vaddr)
3433			break;
3434		dev_kfree_skb_any((struct sk_buff *)vaddr);
3435	}
3436
3437	/* Update BM driver with number of buffers removed from pool */
3438	bm_pool->buf_num -= i;
3439}
3440
3441/* Cleanup pool */
3442static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3443				 struct mvpp2 *priv,
3444				 struct mvpp2_bm_pool *bm_pool)
3445{
3446	u32 val;
3447
3448	mvpp2_bm_bufs_free(&pdev->dev, priv, bm_pool);
3449	if (bm_pool->buf_num) {
3450		WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3451		return 0;
3452	}
3453
3454	val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3455	val |= MVPP2_BM_STOP_MASK;
3456	mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3457
3458	dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3459			  bm_pool->virt_addr,
3460			  bm_pool->phys_addr);
3461	return 0;
3462}
3463
3464static int mvpp2_bm_pools_init(struct platform_device *pdev,
3465			       struct mvpp2 *priv)
3466{
3467	int i, err, size;
3468	struct mvpp2_bm_pool *bm_pool;
3469
3470	/* Create all pools with maximum size */
3471	size = MVPP2_BM_POOL_SIZE_MAX;
3472	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3473		bm_pool = &priv->bm_pools[i];
3474		bm_pool->id = i;
3475		err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3476		if (err)
3477			goto err_unroll_pools;
3478		mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3479	}
3480	return 0;
3481
3482err_unroll_pools:
3483	dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3484	for (i = i - 1; i >= 0; i--)
3485		mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3486	return err;
3487}
3488
3489static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3490{
3491	int i, err;
3492
3493	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3494		/* Mask BM all interrupts */
3495		mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3496		/* Clear BM cause register */
3497		mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3498	}
3499
3500	/* Allocate and initialize BM pools */
3501	priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3502				     sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3503	if (!priv->bm_pools)
3504		return -ENOMEM;
3505
3506	err = mvpp2_bm_pools_init(pdev, priv);
3507	if (err < 0)
3508		return err;
3509	return 0;
3510}
3511
3512/* Attach long pool to rxq */
3513static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3514				    int lrxq, int long_pool)
3515{
3516	u32 val;
3517	int prxq;
3518
3519	/* Get queue physical ID */
3520	prxq = port->rxqs[lrxq]->id;
3521
3522	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3523	val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3524	val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3525		    MVPP2_RXQ_POOL_LONG_MASK);
3526
3527	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3528}
3529
3530/* Attach short pool to rxq */
3531static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3532				     int lrxq, int short_pool)
3533{
3534	u32 val;
3535	int prxq;
3536
3537	/* Get queue physical ID */
3538	prxq = port->rxqs[lrxq]->id;
3539
3540	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3541	val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3542	val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3543		    MVPP2_RXQ_POOL_SHORT_MASK);
3544
3545	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3546}
3547
3548/* Allocate skb for BM pool */
3549static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3550				       struct mvpp2_bm_pool *bm_pool,
3551				       dma_addr_t *buf_phys_addr,
3552				       gfp_t gfp_mask)
3553{
3554	struct sk_buff *skb;
3555	dma_addr_t phys_addr;
3556
3557	skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3558	if (!skb)
3559		return NULL;
3560
3561	phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3562				   MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3563				    DMA_FROM_DEVICE);
3564	if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3565		dev_kfree_skb_any(skb);
3566		return NULL;
3567	}
3568	*buf_phys_addr = phys_addr;
3569
3570	return skb;
3571}
3572
3573/* Set pool number in a BM cookie */
3574static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3575{
3576	u32 bm;
3577
3578	bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3579	bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3580
3581	return bm;
3582}
3583
3584/* Get pool number from a BM cookie */
3585static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3586{
3587	return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3588}
3589
3590/* Release buffer to BM */
3591static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3592				     u32 buf_phys_addr, u32 buf_virt_addr)
3593{
3594	mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3595	mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3596}
3597
3598/* Release multicast buffer */
3599static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3600				 u32 buf_phys_addr, u32 buf_virt_addr,
3601				 int mc_id)
3602{
3603	u32 val = 0;
3604
3605	val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3606	mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3607
3608	mvpp2_bm_pool_put(port, pool,
3609			  buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3610			  buf_virt_addr);
3611}
3612
3613/* Refill BM pool */
3614static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3615			      u32 phys_addr, u32 cookie)
3616{
3617	int pool = mvpp2_bm_cookie_pool_get(bm);
3618
3619	mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3620}
3621
3622/* Allocate buffers for the pool */
3623static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3624			     struct mvpp2_bm_pool *bm_pool, int buf_num)
3625{
3626	struct sk_buff *skb;
3627	int i, buf_size, total_size;
3628	u32 bm;
3629	dma_addr_t phys_addr;
3630
3631	buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3632	total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3633
3634	if (buf_num < 0 ||
3635	    (buf_num + bm_pool->buf_num > bm_pool->size)) {
3636		netdev_err(port->dev,
3637			   "cannot allocate %d buffers for pool %d\n",
3638			   buf_num, bm_pool->id);
3639		return 0;
3640	}
3641
3642	bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3643	for (i = 0; i < buf_num; i++) {
3644		skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3645		if (!skb)
3646			break;
3647
3648		mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3649	}
3650
3651	/* Update BM driver with number of buffers added to pool */
3652	bm_pool->buf_num += i;
3653	bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3654
3655	netdev_dbg(port->dev,
3656		   "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3657		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3658		   bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3659
3660	netdev_dbg(port->dev,
3661		   "%s pool %d: %d of %d buffers added\n",
3662		   bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3663		   bm_pool->id, i, buf_num);
3664	return i;
3665}
3666
3667/* Notify the driver that BM pool is being used as specific type and return the
3668 * pool pointer on success
3669 */
3670static struct mvpp2_bm_pool *
3671mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3672		  int pkt_size)
3673{
3674	struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3675	int num;
3676
3677	if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3678		netdev_err(port->dev, "mixing pool types is forbidden\n");
3679		return NULL;
3680	}
3681
3682	if (new_pool->type == MVPP2_BM_FREE)
3683		new_pool->type = type;
3684
3685	/* Allocate buffers in case BM pool is used as long pool, but packet
3686	 * size doesn't match MTU or BM pool hasn't being used yet
3687	 */
3688	if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3689	    (new_pool->pkt_size == 0)) {
3690		int pkts_num;
3691
3692		/* Set default buffer number or free all the buffers in case
3693		 * the pool is not empty
3694		 */
3695		pkts_num = new_pool->buf_num;
3696		if (pkts_num == 0)
3697			pkts_num = type == MVPP2_BM_SWF_LONG ?
3698				   MVPP2_BM_LONG_BUF_NUM :
3699				   MVPP2_BM_SHORT_BUF_NUM;
3700		else
3701			mvpp2_bm_bufs_free(port->dev->dev.parent,
3702					   port->priv, new_pool);
3703
3704		new_pool->pkt_size = pkt_size;
3705
3706		/* Allocate buffers for this pool */
3707		num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3708		if (num != pkts_num) {
3709			WARN(1, "pool %d: %d of %d allocated\n",
3710			     new_pool->id, num, pkts_num);
3711			return NULL;
3712		}
3713	}
3714
3715	mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3716				  MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3717
3718	return new_pool;
3719}
3720
3721/* Initialize pools for swf */
3722static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3723{
3724	int rxq;
3725
3726	if (!port->pool_long) {
3727		port->pool_long =
3728		       mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3729					 MVPP2_BM_SWF_LONG,
3730					 port->pkt_size);
3731		if (!port->pool_long)
3732			return -ENOMEM;
3733
3734		port->pool_long->port_map |= (1 << port->id);
3735
3736		for (rxq = 0; rxq < rxq_number; rxq++)
3737			mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3738	}
3739
3740	if (!port->pool_short) {
3741		port->pool_short =
3742			mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3743					  MVPP2_BM_SWF_SHORT,
3744					  MVPP2_BM_SHORT_PKT_SIZE);
3745		if (!port->pool_short)
3746			return -ENOMEM;
3747
3748		port->pool_short->port_map |= (1 << port->id);
3749
3750		for (rxq = 0; rxq < rxq_number; rxq++)
3751			mvpp2_rxq_short_pool_set(port, rxq,
3752						 port->pool_short->id);
3753	}
3754
3755	return 0;
3756}
3757
3758static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3759{
3760	struct mvpp2_port *port = netdev_priv(dev);
3761	struct mvpp2_bm_pool *port_pool = port->pool_long;
3762	int num, pkts_num = port_pool->buf_num;
3763	int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3764
3765	/* Update BM pool with new buffer size */
3766	mvpp2_bm_bufs_free(dev->dev.parent, port->priv, port_pool);
3767	if (port_pool->buf_num) {
3768		WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3769		return -EIO;
3770	}
3771
3772	port_pool->pkt_size = pkt_size;
3773	num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3774	if (num != pkts_num) {
3775		WARN(1, "pool %d: %d of %d allocated\n",
3776		     port_pool->id, num, pkts_num);
3777		return -EIO;
3778	}
3779
3780	mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3781				  MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3782	dev->mtu = mtu;
3783	netdev_update_features(dev);
3784	return 0;
3785}
3786
3787static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3788{
3789	int cpu, cpu_mask = 0;
3790
3791	for_each_present_cpu(cpu)
3792		cpu_mask |= 1 << cpu;
3793	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3794		    MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3795}
3796
3797static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3798{
3799	int cpu, cpu_mask = 0;
3800
3801	for_each_present_cpu(cpu)
3802		cpu_mask |= 1 << cpu;
3803	mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3804		    MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3805}
3806
3807/* Mask the current CPU's Rx/Tx interrupts */
3808static void mvpp2_interrupts_mask(void *arg)
3809{
3810	struct mvpp2_port *port = arg;
3811
3812	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3813}
3814
3815/* Unmask the current CPU's Rx/Tx interrupts */
3816static void mvpp2_interrupts_unmask(void *arg)
3817{
3818	struct mvpp2_port *port = arg;
3819
3820	mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3821		    (MVPP2_CAUSE_MISC_SUM_MASK |
3822		     MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3823}
3824
3825/* Port configuration routines */
3826
3827static void mvpp2_port_mii_set(struct mvpp2_port *port)
3828{
3829	u32 val;
3830
3831	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3832
3833	switch (port->phy_interface) {
3834	case PHY_INTERFACE_MODE_SGMII:
3835		val |= MVPP2_GMAC_INBAND_AN_MASK;
3836		break;
3837	case PHY_INTERFACE_MODE_RGMII:
3838		val |= MVPP2_GMAC_PORT_RGMII_MASK;
3839	default:
3840		val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
3841	}
3842
3843	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3844}
3845
3846static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
3847{
3848	u32 val;
3849
3850	val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3851	val |= MVPP2_GMAC_FC_ADV_EN;
3852	writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
3853}
3854
3855static void mvpp2_port_enable(struct mvpp2_port *port)
3856{
3857	u32 val;
3858
3859	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3860	val |= MVPP2_GMAC_PORT_EN_MASK;
3861	val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3862	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3863}
3864
3865static void mvpp2_port_disable(struct mvpp2_port *port)
3866{
3867	u32 val;
3868
3869	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3870	val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3871	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3872}
3873
3874/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3875static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3876{
3877	u32 val;
3878
3879	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3880		    ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3881	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3882}
3883
3884/* Configure loopback port */
3885static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3886{
3887	u32 val;
3888
3889	val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3890
3891	if (port->speed == 1000)
3892		val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3893	else
3894		val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3895
3896	if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3897		val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3898	else
3899		val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3900
3901	writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3902}
3903
3904static void mvpp2_port_reset(struct mvpp2_port *port)
3905{
3906	u32 val;
3907
3908	val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3909		    ~MVPP2_GMAC_PORT_RESET_MASK;
3910	writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3911
3912	while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3913	       MVPP2_GMAC_PORT_RESET_MASK)
3914		continue;
3915}
3916
3917/* Change maximum receive size of the port */
3918static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3919{
3920	u32 val;
3921
3922	val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3923	val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3924	val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3925		    MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3926	writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3927}
3928
3929/* Set defaults to the MVPP2 port */
3930static void mvpp2_defaults_set(struct mvpp2_port *port)
3931{
3932	int tx_port_num, val, queue, ptxq, lrxq;
3933
3934	/* Configure port to loopback if needed */
3935	if (port->flags & MVPP2_F_LOOPBACK)
3936		mvpp2_port_loopback_set(port);
3937
3938	/* Update TX FIFO MIN Threshold */
3939	val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3940	val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3941	/* Min. TX threshold must be less than minimal packet length */
3942	val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3943	writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3944
3945	/* Disable Legacy WRR, Disable EJP, Release from reset */
3946	tx_port_num = mvpp2_egress_port(port);
3947	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3948		    tx_port_num);
3949	mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3950
3951	/* Close bandwidth for all queues */
3952	for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3953		ptxq = mvpp2_txq_phys(port->id, queue);
3954		mvpp2_write(port->priv,
3955			    MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3956	}
3957
3958	/* Set refill period to 1 usec, refill tokens
3959	 * and bucket size to maximum
3960	 */
3961	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3962		    port->priv->tclk / USEC_PER_SEC);
3963	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3964	val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3965	val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3966	val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3967	mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3968	val = MVPP2_TXP_TOKEN_SIZE_MAX;
3969	mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3970
3971	/* Set MaximumLowLatencyPacketSize value to 256 */
3972	mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3973		    MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3974		    MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3975
3976	/* Enable Rx cache snoop */
3977	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3978		queue = port->rxqs[lrxq]->id;
3979		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3980		val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3981			   MVPP2_SNOOP_BUF_HDR_MASK;
3982		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3983	}
3984
3985	/* At default, mask all interrupts to all present cpus */
3986	mvpp2_interrupts_disable(port);
3987}
3988
3989/* Enable/disable receiving packets */
3990static void mvpp2_ingress_enable(struct mvpp2_port *port)
3991{
3992	u32 val;
3993	int lrxq, queue;
3994
3995	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3996		queue = port->rxqs[lrxq]->id;
3997		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3998		val &= ~MVPP2_RXQ_DISABLE_MASK;
3999		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4000	}
4001}
4002
4003static void mvpp2_ingress_disable(struct mvpp2_port *port)
4004{
4005	u32 val;
4006	int lrxq, queue;
4007
4008	for (lrxq = 0; lrxq < rxq_number; lrxq++) {
4009		queue = port->rxqs[lrxq]->id;
4010		val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
4011		val |= MVPP2_RXQ_DISABLE_MASK;
4012		mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
4013	}
4014}
4015
4016/* Enable transmit via physical egress queue
4017 * - HW starts take descriptors from DRAM
4018 */
4019static void mvpp2_egress_enable(struct mvpp2_port *port)
4020{
4021	u32 qmap;
4022	int queue;
4023	int tx_port_num = mvpp2_egress_port(port);
4024
4025	/* Enable all initialized TXs. */
4026	qmap = 0;
4027	for (queue = 0; queue < txq_number; queue++) {
4028		struct mvpp2_tx_queue *txq = port->txqs[queue];
4029
4030		if (txq->descs != NULL)
4031			qmap |= (1 << queue);
4032	}
4033
4034	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4035	mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4036}
4037
4038/* Disable transmit via physical egress queue
4039 * - HW doesn't take descriptors from DRAM
4040 */
4041static void mvpp2_egress_disable(struct mvpp2_port *port)
4042{
4043	u32 reg_data;
4044	int delay;
4045	int tx_port_num = mvpp2_egress_port(port);
4046
4047	/* Issue stop command for active channels only */
4048	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4049	reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4050		    MVPP2_TXP_SCHED_ENQ_MASK;
4051	if (reg_data != 0)
4052		mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4053			    (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4054
4055	/* Wait for all Tx activity to terminate. */
4056	delay = 0;
4057	do {
4058		if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4059			netdev_warn(port->dev,
4060				    "Tx stop timed out, status=0x%08x\n",
4061				    reg_data);
4062			break;
4063		}
4064		mdelay(1);
4065		delay++;
4066
4067		/* Check port TX Command register that all
4068		 * Tx queues are stopped
4069		 */
4070		reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4071	} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4072}
4073
4074/* Rx descriptors helper methods */
4075
4076/* Get number of Rx descriptors occupied by received packets */
4077static inline int
4078mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4079{
4080	u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4081
4082	return val & MVPP2_RXQ_OCCUPIED_MASK;
4083}
4084
4085/* Update Rx queue status with the number of occupied and available
4086 * Rx descriptor slots.
4087 */
4088static inline void
4089mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4090			int used_count, int free_count)
4091{
4092	/* Decrement the number of used descriptors and increment count
4093	 * increment the number of free descriptors.
4094	 */
4095	u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4096
4097	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4098}
4099
4100/* Get pointer to next RX descriptor to be processed by SW */
4101static inline struct mvpp2_rx_desc *
4102mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4103{
4104	int rx_desc = rxq->next_desc_to_proc;
4105
4106	rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4107	prefetch(rxq->descs + rxq->next_desc_to_proc);
4108	return rxq->descs + rx_desc;
4109}
4110
4111/* Set rx queue offset */
4112static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4113				 int prxq, int offset)
4114{
4115	u32 val;
4116
4117	/* Convert offset from bytes to units of 32 bytes */
4118	offset = offset >> 5;
4119
4120	val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4121	val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4122
4123	/* Offset is in */
4124	val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4125		    MVPP2_RXQ_PACKET_OFFSET_MASK);
4126
4127	mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4128}
4129
4130/* Obtain BM cookie information from descriptor */
4131static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4132{
4133	int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4134		   MVPP2_RXD_BM_POOL_ID_OFFS;
4135	int cpu = smp_processor_id();
4136
4137	return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4138	       ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4139}
4140
4141/* Tx descriptors helper methods */
4142
4143/* Get number of Tx descriptors waiting to be transmitted by HW */
4144static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4145				       struct mvpp2_tx_queue *txq)
4146{
4147	u32 val;
4148
4149	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4150	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4151
4152	return val & MVPP2_TXQ_PENDING_MASK;
4153}
4154
4155/* Get pointer to next Tx descriptor to be processed (send) by HW */
4156static struct mvpp2_tx_desc *
4157mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4158{
4159	int tx_desc = txq->next_desc_to_proc;
4160
4161	txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4162	return txq->descs + tx_desc;
4163}
4164
4165/* Update HW with number of aggregated Tx descriptors to be sent */
4166static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4167{
4168	/* aggregated access - relevant TXQ number is written in TX desc */
4169	mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4170}
4171
4172
4173/* Check if there are enough free descriptors in aggregated txq.
4174 * If not, update the number of occupied descriptors and repeat the check.
4175 */
4176static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4177				     struct mvpp2_tx_queue *aggr_txq, int num)
4178{
4179	if ((aggr_txq->count + num) > aggr_txq->size) {
4180		/* Update number of occupied aggregated Tx descriptors */
4181		int cpu = smp_processor_id();
4182		u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4183
4184		aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4185	}
4186
4187	if ((aggr_txq->count + num) > aggr_txq->size)
4188		return -ENOMEM;
4189
4190	return 0;
4191}
4192
4193/* Reserved Tx descriptors allocation request */
4194static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4195					 struct mvpp2_tx_queue *txq, int num)
4196{
4197	u32 val;
4198
4199	val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4200	mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4201
4202	val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4203
4204	return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4205}
4206
4207/* Check if there are enough reserved descriptors for transmission.
4208 * If not, request chunk of reserved descriptors and check again.
4209 */
4210static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4211					    struct mvpp2_tx_queue *txq,
4212					    struct mvpp2_txq_pcpu *txq_pcpu,
4213					    int num)
4214{
4215	int req, cpu, desc_count;
4216
4217	if (txq_pcpu->reserved_num >= num)
4218		return 0;
4219
4220	/* Not enough descriptors reserved! Update the reserved descriptor
4221	 * count and check again.
4222	 */
4223
4224	desc_count = 0;
4225	/* Compute total of used descriptors */
4226	for_each_present_cpu(cpu) {
4227		struct mvpp2_txq_pcpu *txq_pcpu_aux;
4228
4229		txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4230		desc_count += txq_pcpu_aux->count;
4231		desc_count += txq_pcpu_aux->reserved_num;
4232	}
4233
4234	req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4235	desc_count += req;
4236
4237	if (desc_count >
4238	   (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4239		return -ENOMEM;
4240
4241	txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4242
4243	/* OK, the descriptor cound has been updated: check again. */
4244	if (txq_pcpu->reserved_num < num)
4245		return -ENOMEM;
4246	return 0;
4247}
4248
4249/* Release the last allocated Tx descriptor. Useful to handle DMA
4250 * mapping failures in the Tx path.
4251 */
4252static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4253{
4254	if (txq->next_desc_to_proc == 0)
4255		txq->next_desc_to_proc = txq->last_desc - 1;
4256	else
4257		txq->next_desc_to_proc--;
4258}
4259
4260/* Set Tx descriptors fields relevant for CSUM calculation */
4261static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4262			       int ip_hdr_len, int l4_proto)
4263{
4264	u32 command;
4265
4266	/* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4267	 * G_L4_chk, L4_type required only for checksum calculation
4268	 */
4269	command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4270	command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4271	command |= MVPP2_TXD_IP_CSUM_DISABLE;
4272
4273	if (l3_proto == swab16(ETH_P_IP)) {
4274		command &= ~MVPP2_TXD_IP_CSUM_DISABLE;	/* enable IPv4 csum */
4275		command &= ~MVPP2_TXD_L3_IP6;		/* enable IPv4 */
4276	} else {
4277		command |= MVPP2_TXD_L3_IP6;		/* enable IPv6 */
4278	}
4279
4280	if (l4_proto == IPPROTO_TCP) {
4281		command &= ~MVPP2_TXD_L4_UDP;		/* enable TCP */
4282		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4283	} else if (l4_proto == IPPROTO_UDP) {
4284		command |= MVPP2_TXD_L4_UDP;		/* enable UDP */
4285		command &= ~MVPP2_TXD_L4_CSUM_FRAG;	/* generate L4 csum */
4286	} else {
4287		command |= MVPP2_TXD_L4_CSUM_NOT;
4288	}
4289
4290	return command;
4291}
4292
4293/* Get number of sent descriptors and decrement counter.
4294 * The number of sent descriptors is returned.
4295 * Per-CPU access
4296 */
4297static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4298					   struct mvpp2_tx_queue *txq)
4299{
4300	u32 val;
4301
4302	/* Reading status reg resets transmitted descriptor counter */
4303	val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4304
4305	return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4306		MVPP2_TRANSMITTED_COUNT_OFFSET;
4307}
4308
4309static void mvpp2_txq_sent_counter_clear(void *arg)
4310{
4311	struct mvpp2_port *port = arg;
4312	int queue;
4313
4314	for (queue = 0; queue < txq_number; queue++) {
4315		int id = port->txqs[queue]->id;
4316
4317		mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4318	}
4319}
4320
4321/* Set max sizes for Tx queues */
4322static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4323{
4324	u32	val, size, mtu;
4325	int	txq, tx_port_num;
4326
4327	mtu = port->pkt_size * 8;
4328	if (mtu > MVPP2_TXP_MTU_MAX)
4329		mtu = MVPP2_TXP_MTU_MAX;
4330
4331	/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4332	mtu = 3 * mtu;
4333
4334	/* Indirect access to registers */
4335	tx_port_num = mvpp2_egress_port(port);
4336	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4337
4338	/* Set MTU */
4339	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4340	val &= ~MVPP2_TXP_MTU_MAX;
4341	val |= mtu;
4342	mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4343
4344	/* TXP token size and all TXQs token size must be larger that MTU */
4345	val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4346	size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4347	if (size < mtu) {
4348		size = mtu;
4349		val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4350		val |= size;
4351		mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4352	}
4353
4354	for (txq = 0; txq < txq_number; txq++) {
4355		val = mvpp2_read(port->priv,
4356				 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4357		size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4358
4359		if (size < mtu) {
4360			size = mtu;
4361			val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4362			val |= size;
4363			mvpp2_write(port->priv,
4364				    MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4365				    val);
4366		}
4367	}
4368}
4369
4370/* Set the number of packets that will be received before Rx interrupt
4371 * will be generated by HW.
4372 */
4373static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4374				   struct mvpp2_rx_queue *rxq, u32 pkts)
4375{
4376	u32 val;
4377
4378	val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4379	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4380	mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4381
4382	rxq->pkts_coal = pkts;
4383}
4384
4385/* Set the time delay in usec before Rx interrupt */
4386static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4387				   struct mvpp2_rx_queue *rxq, u32 usec)
4388{
4389	u32 val;
4390
4391	val = (port->priv->tclk / USEC_PER_SEC) * usec;
4392	mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4393
4394	rxq->time_coal = usec;
4395}
4396
4397/* Free Tx queue skbuffs */
4398static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4399				struct mvpp2_tx_queue *txq,
4400				struct mvpp2_txq_pcpu *txq_pcpu, int num)
4401{
4402	int i;
4403
4404	for (i = 0; i < num; i++) {
4405		dma_addr_t buf_phys_addr =
4406				    txq_pcpu->tx_buffs[txq_pcpu->txq_get_index];
4407		struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4408
4409		mvpp2_txq_inc_get(txq_pcpu);
4410
4411		dma_unmap_single(port->dev->dev.parent, buf_phys_addr,
4412				 skb_headlen(skb), DMA_TO_DEVICE);
4413		if (!skb)
4414			continue;
4415		dev_kfree_skb_any(skb);
4416	}
4417}
4418
4419static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4420							u32 cause)
4421{
4422	int queue = fls(cause) - 1;
4423
4424	return port->rxqs[queue];
4425}
4426
4427static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4428							u32 cause)
4429{
4430	int queue = fls(cause) - 1;
4431
4432	return port->txqs[queue];
4433}
4434
4435/* Handle end of transmission */
4436static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4437			   struct mvpp2_txq_pcpu *txq_pcpu)
4438{
4439	struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4440	int tx_done;
4441
4442	if (txq_pcpu->cpu != smp_processor_id())
4443		netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4444
4445	tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4446	if (!tx_done)
4447		return;
4448	mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4449
4450	txq_pcpu->count -= tx_done;
4451
4452	if (netif_tx_queue_stopped(nq))
4453		if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4454			netif_tx_wake_queue(nq);
4455}
4456
4457static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause)
4458{
4459	struct mvpp2_tx_queue *txq;
4460	struct mvpp2_txq_pcpu *txq_pcpu;
4461	unsigned int tx_todo = 0;
4462
4463	while (cause) {
4464		txq = mvpp2_get_tx_queue(port, cause);
4465		if (!txq)
4466			break;
4467
4468		txq_pcpu = this_cpu_ptr(txq->pcpu);
4469
4470		if (txq_pcpu->count) {
4471			mvpp2_txq_done(port, txq, txq_pcpu);
4472			tx_todo += txq_pcpu->count;
4473		}
4474
4475		cause &= ~(1 << txq->log_id);
4476	}
4477	return tx_todo;
4478}
4479
4480/* Rx/Tx queue initialization/cleanup methods */
4481
4482/* Allocate and initialize descriptors for aggr TXQ */
4483static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4484			       struct mvpp2_tx_queue *aggr_txq,
4485			       int desc_num, int cpu,
4486			       struct mvpp2 *priv)
4487{
4488	/* Allocate memory for TX descriptors */
4489	aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4490				desc_num * MVPP2_DESC_ALIGNED_SIZE,
4491				&aggr_txq->descs_phys, GFP_KERNEL);
4492	if (!aggr_txq->descs)
4493		return -ENOMEM;
4494
4495	aggr_txq->last_desc = aggr_txq->size - 1;
4496
4497	/* Aggr TXQ no reset WA */
4498	aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4499						 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4500
4501	/* Set Tx descriptors queue starting address */
4502	/* indirect access */
4503	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4504		    aggr_txq->descs_phys);
4505	mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4506
4507	return 0;
4508}
4509
4510/* Create a specified Rx queue */
4511static int mvpp2_rxq_init(struct mvpp2_port *port,
4512			  struct mvpp2_rx_queue *rxq)
4513
4514{
4515	rxq->size = port->rx_ring_size;
4516
4517	/* Allocate memory for RX descriptors */
4518	rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4519					rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4520					&rxq->descs_phys, GFP_KERNEL);
4521	if (!rxq->descs)
4522		return -ENOMEM;
4523
4524	rxq->last_desc = rxq->size - 1;
4525
4526	/* Zero occupied and non-occupied counters - direct access */
4527	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4528
4529	/* Set Rx descriptors queue starting address - indirect access */
4530	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4531	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4532	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4533	mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4534
4535	/* Set Offset */
4536	mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4537
4538	/* Set coalescing pkts and time */
4539	mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4540	mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4541
4542	/* Add number of descriptors ready for receiving packets */
4543	mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4544
4545	return 0;
4546}
4547
4548/* Push packets received by the RXQ to BM pool */
4549static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4550				struct mvpp2_rx_queue *rxq)
4551{
4552	int rx_received, i;
4553
4554	rx_received = mvpp2_rxq_received(port, rxq->id);
4555	if (!rx_received)
4556		return;
4557
4558	for (i = 0; i < rx_received; i++) {
4559		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4560		u32 bm = mvpp2_bm_cookie_build(rx_desc);
4561
4562		mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4563				  rx_desc->buf_cookie);
4564	}
4565	mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4566}
4567
4568/* Cleanup Rx queue */
4569static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4570			     struct mvpp2_rx_queue *rxq)
4571{
4572	mvpp2_rxq_drop_pkts(port, rxq);
4573
4574	if (rxq->descs)
4575		dma_free_coherent(port->dev->dev.parent,
4576				  rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4577				  rxq->descs,
4578				  rxq->descs_phys);
4579
4580	rxq->descs             = NULL;
4581	rxq->last_desc         = 0;
4582	rxq->next_desc_to_proc = 0;
4583	rxq->descs_phys        = 0;
4584
4585	/* Clear Rx descriptors queue starting address and size;
4586	 * free descriptor number
4587	 */
4588	mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4589	mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4590	mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4591	mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4592}
4593
4594/* Create and initialize a Tx queue */
4595static int mvpp2_txq_init(struct mvpp2_port *port,
4596			  struct mvpp2_tx_queue *txq)
4597{
4598	u32 val;
4599	int cpu, desc, desc_per_txq, tx_port_num;
4600	struct mvpp2_txq_pcpu *txq_pcpu;
4601
4602	txq->size = port->tx_ring_size;
4603
4604	/* Allocate memory for Tx descriptors */
4605	txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4606				txq->size * MVPP2_DESC_ALIGNED_SIZE,
4607				&txq->descs_phys, GFP_KERNEL);
4608	if (!txq->descs)
4609		return -ENOMEM;
4610
4611	txq->last_desc = txq->size - 1;
4612
4613	/* Set Tx descriptors queue starting address - indirect access */
4614	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4615	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4616	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4617					     MVPP2_TXQ_DESC_SIZE_MASK);
4618	mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4619	mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4620		    txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4621	val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4622	val &= ~MVPP2_TXQ_PENDING_MASK;
4623	mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4624
4625	/* Calculate base address in prefetch buffer. We reserve 16 descriptors
4626	 * for each existing TXQ.
4627	 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4628	 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4629	 */
4630	desc_per_txq = 16;
4631	desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4632	       (txq->log_id * desc_per_txq);
4633
4634	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4635		    MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4636		    MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4637
4638	/* WRR / EJP configuration - indirect access */
4639	tx_port_num = mvpp2_egress_port(port);
4640	mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4641
4642	val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4643	val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4644	val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4645	val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4646	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4647
4648	val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4649	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4650		    val);
4651
4652	for_each_present_cpu(cpu) {
4653		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4654		txq_pcpu->size = txq->size;
4655		txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4656					   sizeof(*txq_pcpu->tx_skb),
4657					   GFP_KERNEL);
4658		if (!txq_pcpu->tx_skb)
4659			goto error;
4660
4661		txq_pcpu->tx_buffs = kmalloc(txq_pcpu->size *
4662					     sizeof(dma_addr_t), GFP_KERNEL);
4663		if (!txq_pcpu->tx_buffs)
4664			goto error;
4665
4666		txq_pcpu->count = 0;
4667		txq_pcpu->reserved_num = 0;
4668		txq_pcpu->txq_put_index = 0;
4669		txq_pcpu->txq_get_index = 0;
4670	}
4671
4672	return 0;
4673
4674error:
4675	for_each_present_cpu(cpu) {
4676		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4677		kfree(txq_pcpu->tx_skb);
4678		kfree(txq_pcpu->tx_buffs);
4679	}
4680
4681	dma_free_coherent(port->dev->dev.parent,
4682			  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4683			  txq->descs, txq->descs_phys);
4684
4685	return -ENOMEM;
4686}
4687
4688/* Free allocated TXQ resources */
4689static void mvpp2_txq_deinit(struct mvpp2_port *port,
4690			     struct mvpp2_tx_queue *txq)
4691{
4692	struct mvpp2_txq_pcpu *txq_pcpu;
4693	int cpu;
4694
4695	for_each_present_cpu(cpu) {
4696		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4697		kfree(txq_pcpu->tx_skb);
4698		kfree(txq_pcpu->tx_buffs);
4699	}
4700
4701	if (txq->descs)
4702		dma_free_coherent(port->dev->dev.parent,
4703				  txq->size * MVPP2_DESC_ALIGNED_SIZE,
4704				  txq->descs, txq->descs_phys);
4705
4706	txq->descs             = NULL;
4707	txq->last_desc         = 0;
4708	txq->next_desc_to_proc = 0;
4709	txq->descs_phys        = 0;
4710
4711	/* Set minimum bandwidth for disabled TXQs */
4712	mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4713
4714	/* Set Tx descriptors queue starting address and size */
4715	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4716	mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4717	mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4718}
4719
4720/* Cleanup Tx ports */
4721static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4722{
4723	struct mvpp2_txq_pcpu *txq_pcpu;
4724	int delay, pending, cpu;
4725	u32 val;
4726
4727	mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4728	val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4729	val |= MVPP2_TXQ_DRAIN_EN_MASK;
4730	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4731
4732	/* The napi queue has been stopped so wait for all packets
4733	 * to be transmitted.
4734	 */
4735	delay = 0;
4736	do {
4737		if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4738			netdev_warn(port->dev,
4739				    "port %d: cleaning queue %d timed out\n",
4740				    port->id, txq->log_id);
4741			break;
4742		}
4743		mdelay(1);
4744		delay++;
4745
4746		pending = mvpp2_txq_pend_desc_num_get(port, txq);
4747	} while (pending);
4748
4749	val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4750	mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4751
4752	for_each_present_cpu(cpu) {
4753		txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4754
4755		/* Release all packets */
4756		mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4757
4758		/* Reset queue */
4759		txq_pcpu->count = 0;
4760		txq_pcpu->txq_put_index = 0;
4761		txq_pcpu->txq_get_index = 0;
4762	}
4763}
4764
4765/* Cleanup all Tx queues */
4766static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4767{
4768	struct mvpp2_tx_queue *txq;
4769	int queue;
4770	u32 val;
4771
4772	val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4773
4774	/* Reset Tx ports and delete Tx queues */
4775	val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4776	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4777
4778	for (queue = 0; queue < txq_number; queue++) {
4779		txq = port->txqs[queue];
4780		mvpp2_txq_clean(port, txq);
4781		mvpp2_txq_deinit(port, txq);
4782	}
4783
4784	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4785
4786	val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4787	mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4788}
4789
4790/* Cleanup all Rx queues */
4791static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4792{
4793	int queue;
4794
4795	for (queue = 0; queue < rxq_number; queue++)
4796		mvpp2_rxq_deinit(port, port->rxqs[queue]);
4797}
4798
4799/* Init all Rx queues for port */
4800static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4801{
4802	int queue, err;
4803
4804	for (queue = 0; queue < rxq_number; queue++) {
4805		err = mvpp2_rxq_init(port, port->rxqs[queue]);
4806		if (err)
4807			goto err_cleanup;
4808	}
4809	return 0;
4810
4811err_cleanup:
4812	mvpp2_cleanup_rxqs(port);
4813	return err;
4814}
4815
4816/* Init all tx queues for port */
4817static int mvpp2_setup_txqs(struct mvpp2_port *port)
4818{
4819	struct mvpp2_tx_queue *txq;
4820	int queue, err;
4821
4822	for (queue = 0; queue < txq_number; queue++) {
4823		txq = port->txqs[queue];
4824		err = mvpp2_txq_init(port, txq);
4825		if (err)
4826			goto err_cleanup;
4827	}
4828
4829	on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4830	return 0;
4831
4832err_cleanup:
4833	mvpp2_cleanup_txqs(port);
4834	return err;
4835}
4836
4837/* The callback for per-port interrupt */
4838static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4839{
4840	struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4841
4842	mvpp2_interrupts_disable(port);
4843
4844	napi_schedule(&port->napi);
4845
4846	return IRQ_HANDLED;
4847}
4848
4849/* Adjust link */
4850static void mvpp2_link_event(struct net_device *dev)
4851{
4852	struct mvpp2_port *port = netdev_priv(dev);
4853	struct phy_device *phydev = port->phy_dev;
4854	int status_change = 0;
4855	u32 val;
4856
4857	if (phydev->link) {
4858		if ((port->speed != phydev->speed) ||
4859		    (port->duplex != phydev->duplex)) {
4860			u32 val;
4861
4862			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4863			val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4864				 MVPP2_GMAC_CONFIG_GMII_SPEED |
4865				 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4866				 MVPP2_GMAC_AN_SPEED_EN |
4867				 MVPP2_GMAC_AN_DUPLEX_EN);
4868
4869			if (phydev->duplex)
4870				val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4871
4872			if (phydev->speed == SPEED_1000)
4873				val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4874			else if (phydev->speed == SPEED_100)
4875				val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4876
4877			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4878
4879			port->duplex = phydev->duplex;
4880			port->speed  = phydev->speed;
4881		}
4882	}
4883
4884	if (phydev->link != port->link) {
4885		if (!phydev->link) {
4886			port->duplex = -1;
4887			port->speed = 0;
4888		}
4889
4890		port->link = phydev->link;
4891		status_change = 1;
4892	}
4893
4894	if (status_change) {
4895		if (phydev->link) {
4896			val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4897			val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4898				MVPP2_GMAC_FORCE_LINK_DOWN);
4899			writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4900			mvpp2_egress_enable(port);
4901			mvpp2_ingress_enable(port);
4902		} else {
4903			mvpp2_ingress_disable(port);
4904			mvpp2_egress_disable(port);
4905		}
4906		phy_print_status(phydev);
4907	}
4908}
4909
4910static void mvpp2_timer_set(struct mvpp2_port_pcpu *port_pcpu)
4911{
4912	ktime_t interval;
4913
4914	if (!port_pcpu->timer_scheduled) {
4915		port_pcpu->timer_scheduled = true;
4916		interval = ktime_set(0, MVPP2_TXDONE_HRTIMER_PERIOD_NS);
4917		hrtimer_start(&port_pcpu->tx_done_timer, interval,
4918			      HRTIMER_MODE_REL_PINNED);
4919	}
4920}
4921
4922static void mvpp2_tx_proc_cb(unsigned long data)
4923{
4924	struct net_device *dev = (struct net_device *)data;
4925	struct mvpp2_port *port = netdev_priv(dev);
4926	struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
4927	unsigned int tx_todo, cause;
4928
4929	if (!netif_running(dev))
4930		return;
4931	port_pcpu->timer_scheduled = false;
4932
4933	/* Process all the Tx queues */
4934	cause = (1 << txq_number) - 1;
4935	tx_todo = mvpp2_tx_done(port, cause);
4936
4937	/* Set the timer in case not all the packets were processed */
4938	if (tx_todo)
4939		mvpp2_timer_set(port_pcpu);
4940}
4941
4942static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer)
4943{
4944	struct mvpp2_port_pcpu *port_pcpu = container_of(timer,
4945							 struct mvpp2_port_pcpu,
4946							 tx_done_timer);
4947
4948	tasklet_schedule(&port_pcpu->tx_done_tasklet);
4949
4950	return HRTIMER_NORESTART;
4951}
4952
4953/* Main RX/TX processing routines */
4954
4955/* Display more error info */
4956static void mvpp2_rx_error(struct mvpp2_port *port,
4957			   struct mvpp2_rx_desc *rx_desc)
4958{
4959	u32 status = rx_desc->status;
4960
4961	switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4962	case MVPP2_RXD_ERR_CRC:
4963		netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4964			   status, rx_desc->data_size);
4965		break;
4966	case MVPP2_RXD_ERR_OVERRUN:
4967		netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4968			   status, rx_desc->data_size);
4969		break;
4970	case MVPP2_RXD_ERR_RESOURCE:
4971		netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4972			   status, rx_desc->data_size);
4973		break;
4974	}
4975}
4976
4977/* Handle RX checksum offload */
4978static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4979			  struct sk_buff *skb)
4980{
4981	if (((status & MVPP2_RXD_L3_IP4) &&
4982	     !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4983	    (status & MVPP2_RXD_L3_IP6))
4984		if (((status & MVPP2_RXD_L4_UDP) ||
4985		     (status & MVPP2_RXD_L4_TCP)) &&
4986		     (status & MVPP2_RXD_L4_CSUM_OK)) {
4987			skb->csum = 0;
4988			skb->ip_summed = CHECKSUM_UNNECESSARY;
4989			return;
4990		}
4991
4992	skb->ip_summed = CHECKSUM_NONE;
4993}
4994
4995/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4996static int mvpp2_rx_refill(struct mvpp2_port *port,
4997			   struct mvpp2_bm_pool *bm_pool,
4998			   u32 bm, int is_recycle)
4999{
5000	struct sk_buff *skb;
5001	dma_addr_t phys_addr;
5002
5003	if (is_recycle &&
5004	    (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
5005		return 0;
5006
5007	/* No recycle or too many buffers are in use, so allocate a new skb */
5008	skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
5009	if (!skb)
5010		return -ENOMEM;
5011
5012	mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
5013	atomic_dec(&bm_pool->in_use);
5014	return 0;
5015}
5016
5017/* Handle tx checksum */
5018static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
5019{
5020	if (skb->ip_summed == CHECKSUM_PARTIAL) {
5021		int ip_hdr_len = 0;
5022		u8 l4_proto;
5023
5024		if (skb->protocol == htons(ETH_P_IP)) {
5025			struct iphdr *ip4h = ip_hdr(skb);
5026
5027			/* Calculate IPv4 checksum and L4 checksum */
5028			ip_hdr_len = ip4h->ihl;
5029			l4_proto = ip4h->protocol;
5030		} else if (skb->protocol == htons(ETH_P_IPV6)) {
5031			struct ipv6hdr *ip6h = ipv6_hdr(skb);
5032
5033			/* Read l4_protocol from one of IPv6 extra headers */
5034			if (skb_network_header_len(skb) > 0)
5035				ip_hdr_len = (skb_network_header_len(skb) >> 2);
5036			l4_proto = ip6h->nexthdr;
5037		} else {
5038			return MVPP2_TXD_L4_CSUM_NOT;
5039		}
5040
5041		return mvpp2_txq_desc_csum(skb_network_offset(skb),
5042				skb->protocol, ip_hdr_len, l4_proto);
5043	}
5044
5045	return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
5046}
5047
5048static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
5049			      struct mvpp2_rx_desc *rx_desc)
5050{
5051	struct mvpp2_buff_hdr *buff_hdr;
5052	struct sk_buff *skb;
5053	u32 rx_status = rx_desc->status;
5054	u32 buff_phys_addr;
5055	u32 buff_virt_addr;
5056	u32 buff_phys_addr_next;
5057	u32 buff_virt_addr_next;
5058	int mc_id;
5059	int pool_id;
5060
5061	pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
5062		   MVPP2_RXD_BM_POOL_ID_OFFS;
5063	buff_phys_addr = rx_desc->buf_phys_addr;
5064	buff_virt_addr = rx_desc->buf_cookie;
5065
5066	do {
5067		skb = (struct sk_buff *)buff_virt_addr;
5068		buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
5069
5070		mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
5071
5072		buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
5073		buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
5074
5075		/* Release buffer */
5076		mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
5077				     buff_virt_addr, mc_id);
5078
5079		buff_phys_addr = buff_phys_addr_next;
5080		buff_virt_addr = buff_virt_addr_next;
5081
5082	} while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5083}
5084
5085/* Main rx processing */
5086static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5087		    struct mvpp2_rx_queue *rxq)
5088{
5089	struct net_device *dev = port->dev;
5090	int rx_received;
5091	int rx_done = 0;
5092	u32 rcvd_pkts = 0;
5093	u32 rcvd_bytes = 0;
5094
5095	/* Get number of received packets and clamp the to-do */
5096	rx_received = mvpp2_rxq_received(port, rxq->id);
5097	if (rx_todo > rx_received)
5098		rx_todo = rx_received;
5099
5100	while (rx_done < rx_todo) {
5101		struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5102		struct mvpp2_bm_pool *bm_pool;
5103		struct sk_buff *skb;
5104		dma_addr_t phys_addr;
5105		u32 bm, rx_status;
5106		int pool, rx_bytes, err;
5107
5108		rx_done++;
5109		rx_status = rx_desc->status;
5110		rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5111		phys_addr = rx_desc->buf_phys_addr;
5112
5113		bm = mvpp2_bm_cookie_build(rx_desc);
5114		pool = mvpp2_bm_cookie_pool_get(bm);
5115		bm_pool = &port->priv->bm_pools[pool];
5116		/* Check if buffer header is used */
5117		if (rx_status & MVPP2_RXD_BUF_HDR) {
5118			mvpp2_buff_hdr_rx(port, rx_desc);
5119			continue;
5120		}
5121
5122		/* In case of an error, release the requested buffer pointer
5123		 * to the Buffer Manager. This request process is controlled
5124		 * by the hardware, and the information about the buffer is
5125		 * comprised by the RX descriptor.
5126		 */
5127		if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5128		err_drop_frame:
5129			dev->stats.rx_errors++;
5130			mvpp2_rx_error(port, rx_desc);
5131			/* Return the buffer to the pool */
5132			mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5133					  rx_desc->buf_cookie);
5134			continue;
5135		}
5136
5137		skb = (struct sk_buff *)rx_desc->buf_cookie;
5138
5139		err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5140		if (err) {
5141			netdev_err(port->dev, "failed to refill BM pools\n");
5142			goto err_drop_frame;
5143		}
5144
5145		dma_unmap_single(dev->dev.parent, phys_addr,
5146				 bm_pool->buf_size, DMA_FROM_DEVICE);
5147
5148		rcvd_pkts++;
5149		rcvd_bytes += rx_bytes;
5150		atomic_inc(&bm_pool->in_use);
5151
5152		skb_reserve(skb, MVPP2_MH_SIZE);
5153		skb_put(skb, rx_bytes);
5154		skb->protocol = eth_type_trans(skb, dev);
5155		mvpp2_rx_csum(port, rx_status, skb);
5156
5157		napi_gro_receive(&port->napi, skb);
5158	}
5159
5160	if (rcvd_pkts) {
5161		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5162
5163		u64_stats_update_begin(&stats->syncp);
5164		stats->rx_packets += rcvd_pkts;
5165		stats->rx_bytes   += rcvd_bytes;
5166		u64_stats_update_end(&stats->syncp);
5167	}
5168
5169	/* Update Rx queue management counters */
5170	wmb();
5171	mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done);
5172
5173	return rx_todo;
5174}
5175
5176static inline void
5177tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5178		  struct mvpp2_tx_desc *desc)
5179{
5180	dma_unmap_single(dev, desc->buf_phys_addr,
5181			 desc->data_size, DMA_TO_DEVICE);
5182	mvpp2_txq_desc_put(txq);
5183}
5184
5185/* Handle tx fragmentation processing */
5186static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5187				 struct mvpp2_tx_queue *aggr_txq,
5188				 struct mvpp2_tx_queue *txq)
5189{
5190	struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5191	struct mvpp2_tx_desc *tx_desc;
5192	int i;
5193	dma_addr_t buf_phys_addr;
5194
5195	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5196		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5197		void *addr = page_address(frag->page.p) + frag->page_offset;
5198
5199		tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5200		tx_desc->phys_txq = txq->id;
5201		tx_desc->data_size = frag->size;
5202
5203		buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5204					       tx_desc->data_size,
5205					       DMA_TO_DEVICE);
5206		if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5207			mvpp2_txq_desc_put(txq);
5208			goto error;
5209		}
5210
5211		tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5212		tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5213
5214		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5215			/* Last descriptor */
5216			tx_desc->command = MVPP2_TXD_L_DESC;
5217			mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5218		} else {
5219			/* Descriptor in the middle: Not First, Not Last */
5220			tx_desc->command = 0;
5221			mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5222		}
5223	}
5224
5225	return 0;
5226
5227error:
5228	/* Release all descriptors that were used to map fragments of
5229	 * this packet, as well as the corresponding DMA mappings
5230	 */
5231	for (i = i - 1; i >= 0; i--) {
5232		tx_desc = txq->descs + i;
5233		tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5234	}
5235
5236	return -ENOMEM;
5237}
5238
5239/* Main tx processing */
5240static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5241{
5242	struct mvpp2_port *port = netdev_priv(dev);
5243	struct mvpp2_tx_queue *txq, *aggr_txq;
5244	struct mvpp2_txq_pcpu *txq_pcpu;
5245	struct mvpp2_tx_desc *tx_desc;
5246	dma_addr_t buf_phys_addr;
5247	int frags = 0;
5248	u16 txq_id;
5249	u32 tx_cmd;
5250
5251	txq_id = skb_get_queue_mapping(skb);
5252	txq = port->txqs[txq_id];
5253	txq_pcpu = this_cpu_ptr(txq->pcpu);
5254	aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5255
5256	frags = skb_shinfo(skb)->nr_frags + 1;
5257
5258	/* Check number of available descriptors */
5259	if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5260	    mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5261					     txq_pcpu, frags)) {
5262		frags = 0;
5263		goto out;
5264	}
5265
5266	/* Get a descriptor for the first part of the packet */
5267	tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5268	tx_desc->phys_txq = txq->id;
5269	tx_desc->data_size = skb_headlen(skb);
5270
5271	buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5272				       tx_desc->data_size, DMA_TO_DEVICE);
5273	if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5274		mvpp2_txq_desc_put(txq);
5275		frags = 0;
5276		goto out;
5277	}
5278	tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5279	tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5280
5281	tx_cmd = mvpp2_skb_tx_csum(port, skb);
5282
5283	if (frags == 1) {
5284		/* First and Last descriptor */
5285		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5286		tx_desc->command = tx_cmd;
5287		mvpp2_txq_inc_put(txq_pcpu, skb, tx_desc);
5288	} else {
5289		/* First but not Last */
5290		tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5291		tx_desc->command = tx_cmd;
5292		mvpp2_txq_inc_put(txq_pcpu, NULL, tx_desc);
5293
5294		/* Continue with other skb fragments */
5295		if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5296			tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5297			frags = 0;
5298			goto out;
5299		}
5300	}
5301
5302	txq_pcpu->reserved_num -= frags;
5303	txq_pcpu->count += frags;
5304	aggr_txq->count += frags;
5305
5306	/* Enable transmit */
5307	wmb();
5308	mvpp2_aggr_txq_pend_desc_add(port, frags);
5309
5310	if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5311		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5312
5313		netif_tx_stop_queue(nq);
5314	}
5315out:
5316	if (frags > 0) {
5317		struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5318
5319		u64_stats_update_begin(&stats->syncp);
5320		stats->tx_packets++;
5321		stats->tx_bytes += skb->len;
5322		u64_stats_update_end(&stats->syncp);
5323	} else {
5324		dev->stats.tx_dropped++;
5325		dev_kfree_skb_any(skb);
5326	}
5327
5328	/* Finalize TX processing */
5329	if (txq_pcpu->count >= txq->done_pkts_coal)
5330		mvpp2_txq_done(port, txq, txq_pcpu);
5331
5332	/* Set the timer in case not all frags were processed */
5333	if (txq_pcpu->count <= frags && txq_pcpu->count > 0) {
5334		struct mvpp2_port_pcpu *port_pcpu = this_cpu_ptr(port->pcpu);
5335
5336		mvpp2_timer_set(port_pcpu);
5337	}
5338
5339	return NETDEV_TX_OK;
5340}
5341
5342static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5343{
5344	if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5345		netdev_err(dev, "FCS error\n");
5346	if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5347		netdev_err(dev, "rx fifo overrun error\n");
5348	if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5349		netdev_err(dev, "tx fifo underrun error\n");
5350}
5351
5352static int mvpp2_poll(struct napi_struct *napi, int budget)
5353{
5354	u32 cause_rx_tx, cause_rx, cause_misc;
5355	int rx_done = 0;
5356	struct mvpp2_port *port = netdev_priv(napi->dev);
5357
5358	/* Rx/Tx cause register
5359	 *
5360	 * Bits 0-15: each bit indicates received packets on the Rx queue
5361	 * (bit 0 is for Rx queue 0).
5362	 *
5363	 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5364	 * (bit 16 is for Tx queue 0).
5365	 *
5366	 * Each CPU has its own Rx/Tx cause register
5367	 */
5368	cause_rx_tx = mvpp2_read(port->priv,
5369				 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5370	cause_rx_tx &= ~MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5371	cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5372
5373	if (cause_misc) {
5374		mvpp2_cause_error(port->dev, cause_misc);
5375
5376		/* Clear the cause register */
5377		mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5378		mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5379			    cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5380	}
5381
5382	cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5383
5384	/* Process RX packets */
5385	cause_rx |= port->pending_cause_rx;
5386	while (cause_rx && budget > 0) {
5387		int count;
5388		struct mvpp2_rx_queue *rxq;
5389
5390		rxq = mvpp2_get_rx_queue(port, cause_rx);
5391		if (!rxq)
5392			break;
5393
5394		count = mvpp2_rx(port, budget, rxq);
5395		rx_done += count;
5396		budget -= count;
5397		if (budget > 0) {
5398			/* Clear the bit associated to this Rx queue
5399			 * so that next iteration will continue from
5400			 * the next Rx queue.
5401			 */
5402			cause_rx &= ~(1 << rxq->logic_rxq);
5403		}
5404	}
5405
5406	if (budget > 0) {
5407		cause_rx = 0;
5408		napi_complete(napi);
5409
5410		mvpp2_interrupts_enable(port);
5411	}
5412	port->pending_cause_rx = cause_rx;
5413	return rx_done;
5414}
5415
5416/* Set hw internals when starting port */
5417static void mvpp2_start_dev(struct mvpp2_port *port)
5418{
5419	mvpp2_gmac_max_rx_size_set(port);
5420	mvpp2_txp_max_tx_size_set(port);
5421
5422	napi_enable(&port->napi);
5423
5424	/* Enable interrupts on all CPUs */
5425	mvpp2_interrupts_enable(port);
5426
5427	mvpp2_port_enable(port);
5428	phy_start(port->phy_dev);
5429	netif_tx_start_all_queues(port->dev);
5430}
5431
5432/* Set hw internals when stopping port */
5433static void mvpp2_stop_dev(struct mvpp2_port *port)
5434{
5435	/* Stop new packets from arriving to RXQs */
5436	mvpp2_ingress_disable(port);
5437
5438	mdelay(10);
5439
5440	/* Disable interrupts on all CPUs */
5441	mvpp2_interrupts_disable(port);
5442
5443	napi_disable(&port->napi);
5444
5445	netif_carrier_off(port->dev);
5446	netif_tx_stop_all_queues(port->dev);
5447
5448	mvpp2_egress_disable(port);
5449	mvpp2_port_disable(port);
5450	phy_stop(port->phy_dev);
5451}
5452
5453/* Return positive if MTU is valid */
5454static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5455{
5456	if (mtu < 68) {
5457		netdev_err(dev, "cannot change mtu to less than 68\n");
5458		return -EINVAL;
5459	}
5460
5461	/* 9676 == 9700 - 20 and rounding to 8 */
5462	if (mtu > 9676) {
5463		netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5464		mtu = 9676;
5465	}
5466
5467	if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5468		netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5469			    ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5470		mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5471	}
5472
5473	return mtu;
5474}
5475
5476static int mvpp2_check_ringparam_valid(struct net_device *dev,
5477				       struct ethtool_ringparam *ring)
5478{
5479	u16 new_rx_pending = ring->rx_pending;
5480	u16 new_tx_pending = ring->tx_pending;
5481
5482	if (ring->rx_pending == 0 || ring->tx_pending == 0)
5483		return -EINVAL;
5484
5485	if (ring->rx_pending > MVPP2_MAX_RXD)
5486		new_rx_pending = MVPP2_MAX_RXD;
5487	else if (!IS_ALIGNED(ring->rx_pending, 16))
5488		new_rx_pending = ALIGN(ring->rx_pending, 16);
5489
5490	if (ring->tx_pending > MVPP2_MAX_TXD)
5491		new_tx_pending = MVPP2_MAX_TXD;
5492	else if (!IS_ALIGNED(ring->tx_pending, 32))
5493		new_tx_pending = ALIGN(ring->tx_pending, 32);
5494
5495	if (ring->rx_pending != new_rx_pending) {
5496		netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5497			    ring->rx_pending, new_rx_pending);
5498		ring->rx_pending = new_rx_pending;
5499	}
5500
5501	if (ring->tx_pending != new_tx_pending) {
5502		netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5503			    ring->tx_pending, new_tx_pending);
5504		ring->tx_pending = new_tx_pending;
5505	}
5506
5507	return 0;
5508}
5509
5510static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5511{
5512	u32 mac_addr_l, mac_addr_m, mac_addr_h;
5513
5514	mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5515	mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5516	mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5517	addr[0] = (mac_addr_h >> 24) & 0xFF;
5518	addr[1] = (mac_addr_h >> 16) & 0xFF;
5519	addr[2] = (mac_addr_h >> 8) & 0xFF;
5520	addr[3] = mac_addr_h & 0xFF;
5521	addr[4] = mac_addr_m & 0xFF;
5522	addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5523}
5524
5525static int mvpp2_phy_connect(struct mvpp2_port *port)
5526{
5527	struct phy_device *phy_dev;
5528
5529	phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5530				 port->phy_interface);
5531	if (!phy_dev) {
5532		netdev_err(port->dev, "cannot connect to phy\n");
5533		return -ENODEV;
5534	}
5535	phy_dev->supported &= PHY_GBIT_FEATURES;
5536	phy_dev->advertising = phy_dev->supported;
5537
5538	port->phy_dev = phy_dev;
5539	port->link    = 0;
5540	port->duplex  = 0;
5541	port->speed   = 0;
5542
5543	return 0;
5544}
5545
5546static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5547{
5548	phy_disconnect(port->phy_dev);
5549	port->phy_dev = NULL;
5550}
5551
5552static int mvpp2_open(struct net_device *dev)
5553{
5554	struct mvpp2_port *port = netdev_priv(dev);
5555	unsigned char mac_bcast[ETH_ALEN] = {
5556			0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5557	int err;
5558
5559	err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5560	if (err) {
5561		netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5562		return err;
5563	}
5564	err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5565				      dev->dev_addr, true);
5566	if (err) {
5567		netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5568		return err;
5569	}
5570	err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5571	if (err) {
5572		netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5573		return err;
5574	}
5575	err = mvpp2_prs_def_flow(port);
5576	if (err) {
5577		netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5578		return err;
5579	}
5580
5581	/* Allocate the Rx/Tx queues */
5582	err = mvpp2_setup_rxqs(port);
5583	if (err) {
5584		netdev_err(port->dev, "cannot allocate Rx queues\n");
5585		return err;
5586	}
5587
5588	err = mvpp2_setup_txqs(port);
5589	if (err) {
5590		netdev_err(port->dev, "cannot allocate Tx queues\n");
5591		goto err_cleanup_rxqs;
5592	}
5593
5594	err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5595	if (err) {
5596		netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5597		goto err_cleanup_txqs;
5598	}
5599
5600	/* In default link is down */
5601	netif_carrier_off(port->dev);
5602
5603	err = mvpp2_phy_connect(port);
5604	if (err < 0)
5605		goto err_free_irq;
5606
5607	/* Unmask interrupts on all CPUs */
5608	on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5609
5610	mvpp2_start_dev(port);
5611
5612	return 0;
5613
5614err_free_irq:
5615	free_irq(port->irq, port);
5616err_cleanup_txqs:
5617	mvpp2_cleanup_txqs(port);
5618err_cleanup_rxqs:
5619	mvpp2_cleanup_rxqs(port);
5620	return err;
5621}
5622
5623static int mvpp2_stop(struct net_device *dev)
5624{
5625	struct mvpp2_port *port = netdev_priv(dev);
5626	struct mvpp2_port_pcpu *port_pcpu;
5627	int cpu;
5628
5629	mvpp2_stop_dev(port);
5630	mvpp2_phy_disconnect(port);
5631
5632	/* Mask interrupts on all CPUs */
5633	on_each_cpu(mvpp2_interrupts_mask, port, 1);
5634
5635	free_irq(port->irq, port);
5636	for_each_present_cpu(cpu) {
5637		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
5638
5639		hrtimer_cancel(&port_pcpu->tx_done_timer);
5640		port_pcpu->timer_scheduled = false;
5641		tasklet_kill(&port_pcpu->tx_done_tasklet);
5642	}
5643	mvpp2_cleanup_rxqs(port);
5644	mvpp2_cleanup_txqs(port);
5645
5646	return 0;
5647}
5648
5649static void mvpp2_set_rx_mode(struct net_device *dev)
5650{
5651	struct mvpp2_port *port = netdev_priv(dev);
5652	struct mvpp2 *priv = port->priv;
5653	struct netdev_hw_addr *ha;
5654	int id = port->id;
5655	bool allmulti = dev->flags & IFF_ALLMULTI;
5656
5657	mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5658	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5659	mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5660
5661	/* Remove all port->id's mcast enries */
5662	mvpp2_prs_mcast_del_all(priv, id);
5663
5664	if (allmulti && !netdev_mc_empty(dev)) {
5665		netdev_for_each_mc_addr(ha, dev)
5666			mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5667	}
5668}
5669
5670static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5671{
5672	struct mvpp2_port *port = netdev_priv(dev);
5673	const struct sockaddr *addr = p;
5674	int err;
5675
5676	if (!is_valid_ether_addr(addr->sa_data)) {
5677		err = -EADDRNOTAVAIL;
5678		goto error;
5679	}
5680
5681	if (!netif_running(dev)) {
5682		err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5683		if (!err)
5684			return 0;
5685		/* Reconfigure parser to accept the original MAC address */
5686		err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5687		if (err)
5688			goto error;
5689	}
5690
5691	mvpp2_stop_dev(port);
5692
5693	err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5694	if (!err)
5695		goto out_start;
5696
5697	/* Reconfigure parser accept the original MAC address */
5698	err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5699	if (err)
5700		goto error;
5701out_start:
5702	mvpp2_start_dev(port);
5703	mvpp2_egress_enable(port);
5704	mvpp2_ingress_enable(port);
5705	return 0;
5706
5707error:
5708	netdev_err(dev, "fail to change MAC address\n");
5709	return err;
5710}
5711
5712static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5713{
5714	struct mvpp2_port *port = netdev_priv(dev);
5715	int err;
5716
5717	mtu = mvpp2_check_mtu_valid(dev, mtu);
5718	if (mtu < 0) {
5719		err = mtu;
5720		goto error;
5721	}
5722
5723	if (!netif_running(dev)) {
5724		err = mvpp2_bm_update_mtu(dev, mtu);
5725		if (!err) {
5726			port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5727			return 0;
5728		}
5729
5730		/* Reconfigure BM to the original MTU */
5731		err = mvpp2_bm_update_mtu(dev, dev->mtu);
5732		if (err)
5733			goto error;
5734	}
5735
5736	mvpp2_stop_dev(port);
5737
5738	err = mvpp2_bm_update_mtu(dev, mtu);
5739	if (!err) {
5740		port->pkt_size =  MVPP2_RX_PKT_SIZE(mtu);
5741		goto out_start;
5742	}
5743
5744	/* Reconfigure BM to the original MTU */
5745	err = mvpp2_bm_update_mtu(dev, dev->mtu);
5746	if (err)
5747		goto error;
5748
5749out_start:
5750	mvpp2_start_dev(port);
5751	mvpp2_egress_enable(port);
5752	mvpp2_ingress_enable(port);
5753
5754	return 0;
5755
5756error:
5757	netdev_err(dev, "fail to change MTU\n");
5758	return err;
5759}
5760
5761static struct rtnl_link_stats64 *
5762mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5763{
5764	struct mvpp2_port *port = netdev_priv(dev);
5765	unsigned int start;
5766	int cpu;
5767
5768	for_each_possible_cpu(cpu) {
5769		struct mvpp2_pcpu_stats *cpu_stats;
5770		u64 rx_packets;
5771		u64 rx_bytes;
5772		u64 tx_packets;
5773		u64 tx_bytes;
5774
5775		cpu_stats = per_cpu_ptr(port->stats, cpu);
5776		do {
5777			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5778			rx_packets = cpu_stats->rx_packets;
5779			rx_bytes   = cpu_stats->rx_bytes;
5780			tx_packets = cpu_stats->tx_packets;
5781			tx_bytes   = cpu_stats->tx_bytes;
5782		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5783
5784		stats->rx_packets += rx_packets;
5785		stats->rx_bytes   += rx_bytes;
5786		stats->tx_packets += tx_packets;
5787		stats->tx_bytes   += tx_bytes;
5788	}
5789
5790	stats->rx_errors	= dev->stats.rx_errors;
5791	stats->rx_dropped	= dev->stats.rx_dropped;
5792	stats->tx_dropped	= dev->stats.tx_dropped;
5793
5794	return stats;
5795}
5796
5797static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5798{
5799	struct mvpp2_port *port = netdev_priv(dev);
5800	int ret;
5801
5802	if (!port->phy_dev)
5803		return -ENOTSUPP;
5804
5805	ret = phy_mii_ioctl(port->phy_dev, ifr, cmd);
5806	if (!ret)
5807		mvpp2_link_event(dev);
5808
5809	return ret;
5810}
5811
5812/* Ethtool methods */
5813
5814/* Get settings (phy address, speed) for ethtools */
5815static int mvpp2_ethtool_get_settings(struct net_device *dev,
5816				      struct ethtool_cmd *cmd)
5817{
5818	struct mvpp2_port *port = netdev_priv(dev);
5819
5820	if (!port->phy_dev)
5821		return -ENODEV;
5822	return phy_ethtool_gset(port->phy_dev, cmd);
5823}
5824
5825/* Set settings (phy address, speed) for ethtools */
5826static int mvpp2_ethtool_set_settings(struct net_device *dev,
5827				      struct ethtool_cmd *cmd)
5828{
5829	struct mvpp2_port *port = netdev_priv(dev);
5830
5831	if (!port->phy_dev)
5832		return -ENODEV;
5833	return phy_ethtool_sset(port->phy_dev, cmd);
5834}
5835
5836/* Set interrupt coalescing for ethtools */
5837static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5838				      struct ethtool_coalesce *c)
5839{
5840	struct mvpp2_port *port = netdev_priv(dev);
5841	int queue;
5842
5843	for (queue = 0; queue < rxq_number; queue++) {
5844		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5845
5846		rxq->time_coal = c->rx_coalesce_usecs;
5847		rxq->pkts_coal = c->rx_max_coalesced_frames;
5848		mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5849		mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5850	}
5851
5852	for (queue = 0; queue < txq_number; queue++) {
5853		struct mvpp2_tx_queue *txq = port->txqs[queue];
5854
5855		txq->done_pkts_coal = c->tx_max_coalesced_frames;
5856	}
5857
5858	return 0;
5859}
5860
5861/* get coalescing for ethtools */
5862static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5863				      struct ethtool_coalesce *c)
5864{
5865	struct mvpp2_port *port = netdev_priv(dev);
5866
5867	c->rx_coalesce_usecs        = port->rxqs[0]->time_coal;
5868	c->rx_max_coalesced_frames  = port->rxqs[0]->pkts_coal;
5869	c->tx_max_coalesced_frames =  port->txqs[0]->done_pkts_coal;
5870	return 0;
5871}
5872
5873static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5874				      struct ethtool_drvinfo *drvinfo)
5875{
5876	strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5877		sizeof(drvinfo->driver));
5878	strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5879		sizeof(drvinfo->version));
5880	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5881		sizeof(drvinfo->bus_info));
5882}
5883
5884static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5885					struct ethtool_ringparam *ring)
5886{
5887	struct mvpp2_port *port = netdev_priv(dev);
5888
5889	ring->rx_max_pending = MVPP2_MAX_RXD;
5890	ring->tx_max_pending = MVPP2_MAX_TXD;
5891	ring->rx_pending = port->rx_ring_size;
5892	ring->tx_pending = port->tx_ring_size;
5893}
5894
5895static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5896				       struct ethtool_ringparam *ring)
5897{
5898	struct mvpp2_port *port = netdev_priv(dev);
5899	u16 prev_rx_ring_size = port->rx_ring_size;
5900	u16 prev_tx_ring_size = port->tx_ring_size;
5901	int err;
5902
5903	err = mvpp2_check_ringparam_valid(dev, ring);
5904	if (err)
5905		return err;
5906
5907	if (!netif_running(dev)) {
5908		port->rx_ring_size = ring->rx_pending;
5909		port->tx_ring_size = ring->tx_pending;
5910		return 0;
5911	}
5912
5913	/* The interface is running, so we have to force a
5914	 * reallocation of the queues
5915	 */
5916	mvpp2_stop_dev(port);
5917	mvpp2_cleanup_rxqs(port);
5918	mvpp2_cleanup_txqs(port);
5919
5920	port->rx_ring_size = ring->rx_pending;
5921	port->tx_ring_size = ring->tx_pending;
5922
5923	err = mvpp2_setup_rxqs(port);
5924	if (err) {
5925		/* Reallocate Rx queues with the original ring size */
5926		port->rx_ring_size = prev_rx_ring_size;
5927		ring->rx_pending = prev_rx_ring_size;
5928		err = mvpp2_setup_rxqs(port);
5929		if (err)
5930			goto err_out;
5931	}
5932	err = mvpp2_setup_txqs(port);
5933	if (err) {
5934		/* Reallocate Tx queues with the original ring size */
5935		port->tx_ring_size = prev_tx_ring_size;
5936		ring->tx_pending = prev_tx_ring_size;
5937		err = mvpp2_setup_txqs(port);
5938		if (err)
5939			goto err_clean_rxqs;
5940	}
5941
5942	mvpp2_start_dev(port);
5943	mvpp2_egress_enable(port);
5944	mvpp2_ingress_enable(port);
5945
5946	return 0;
5947
5948err_clean_rxqs:
5949	mvpp2_cleanup_rxqs(port);
5950err_out:
5951	netdev_err(dev, "fail to change ring parameters");
5952	return err;
5953}
5954
5955/* Device ops */
5956
5957static const struct net_device_ops mvpp2_netdev_ops = {
5958	.ndo_open		= mvpp2_open,
5959	.ndo_stop		= mvpp2_stop,
5960	.ndo_start_xmit		= mvpp2_tx,
5961	.ndo_set_rx_mode	= mvpp2_set_rx_mode,
5962	.ndo_set_mac_address	= mvpp2_set_mac_address,
5963	.ndo_change_mtu		= mvpp2_change_mtu,
5964	.ndo_get_stats64	= mvpp2_get_stats64,
5965	.ndo_do_ioctl		= mvpp2_ioctl,
5966};
5967
5968static const struct ethtool_ops mvpp2_eth_tool_ops = {
5969	.get_link	= ethtool_op_get_link,
5970	.get_settings	= mvpp2_ethtool_get_settings,
5971	.set_settings	= mvpp2_ethtool_set_settings,
5972	.set_coalesce	= mvpp2_ethtool_set_coalesce,
5973	.get_coalesce	= mvpp2_ethtool_get_coalesce,
5974	.get_drvinfo	= mvpp2_ethtool_get_drvinfo,
5975	.get_ringparam	= mvpp2_ethtool_get_ringparam,
5976	.set_ringparam	= mvpp2_ethtool_set_ringparam,
5977};
5978
5979/* Driver initialization */
5980
5981static void mvpp2_port_power_up(struct mvpp2_port *port)
5982{
5983	mvpp2_port_mii_set(port);
5984	mvpp2_port_periodic_xon_disable(port);
5985	mvpp2_port_fc_adv_enable(port);
5986	mvpp2_port_reset(port);
5987}
5988
5989/* Initialize port HW */
5990static int mvpp2_port_init(struct mvpp2_port *port)
5991{
5992	struct device *dev = port->dev->dev.parent;
5993	struct mvpp2 *priv = port->priv;
5994	struct mvpp2_txq_pcpu *txq_pcpu;
5995	int queue, cpu, err;
5996
5997	if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5998		return -EINVAL;
5999
6000	/* Disable port */
6001	mvpp2_egress_disable(port);
6002	mvpp2_port_disable(port);
6003
6004	port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
6005				  GFP_KERNEL);
6006	if (!port->txqs)
6007		return -ENOMEM;
6008
6009	/* Associate physical Tx queues to this port and initialize.
6010	 * The mapping is predefined.
6011	 */
6012	for (queue = 0; queue < txq_number; queue++) {
6013		int queue_phy_id = mvpp2_txq_phys(port->id, queue);
6014		struct mvpp2_tx_queue *txq;
6015
6016		txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
6017		if (!txq)
6018			return -ENOMEM;
6019
6020		txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
6021		if (!txq->pcpu) {
6022			err = -ENOMEM;
6023			goto err_free_percpu;
6024		}
6025
6026		txq->id = queue_phy_id;
6027		txq->log_id = queue;
6028		txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
6029		for_each_present_cpu(cpu) {
6030			txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
6031			txq_pcpu->cpu = cpu;
6032		}
6033
6034		port->txqs[queue] = txq;
6035	}
6036
6037	port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
6038				  GFP_KERNEL);
6039	if (!port->rxqs) {
6040		err = -ENOMEM;
6041		goto err_free_percpu;
6042	}
6043
6044	/* Allocate and initialize Rx queue for this port */
6045	for (queue = 0; queue < rxq_number; queue++) {
6046		struct mvpp2_rx_queue *rxq;
6047
6048		/* Map physical Rx queue to port's logical Rx queue */
6049		rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
6050		if (!rxq) {
6051			err = -ENOMEM;
6052			goto err_free_percpu;
6053		}
6054		/* Map this Rx queue to a physical queue */
6055		rxq->id = port->first_rxq + queue;
6056		rxq->port = port->id;
6057		rxq->logic_rxq = queue;
6058
6059		port->rxqs[queue] = rxq;
6060	}
6061
6062	/* Configure Rx queue group interrupt for this port */
6063	mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
6064
6065	/* Create Rx descriptor rings */
6066	for (queue = 0; queue < rxq_number; queue++) {
6067		struct mvpp2_rx_queue *rxq = port->rxqs[queue];
6068
6069		rxq->size = port->rx_ring_size;
6070		rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
6071		rxq->time_coal = MVPP2_RX_COAL_USEC;
6072	}
6073
6074	mvpp2_ingress_disable(port);
6075
6076	/* Port default configuration */
6077	mvpp2_defaults_set(port);
6078
6079	/* Port's classifier configuration */
6080	mvpp2_cls_oversize_rxq_set(port);
6081	mvpp2_cls_port_config(port);
6082
6083	/* Provide an initial Rx packet size */
6084	port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
6085
6086	/* Initialize pools for swf */
6087	err = mvpp2_swf_bm_pool_init(port);
6088	if (err)
6089		goto err_free_percpu;
6090
6091	return 0;
6092
6093err_free_percpu:
6094	for (queue = 0; queue < txq_number; queue++) {
6095		if (!port->txqs[queue])
6096			continue;
6097		free_percpu(port->txqs[queue]->pcpu);
6098	}
6099	return err;
6100}
6101
6102/* Ports initialization */
6103static int mvpp2_port_probe(struct platform_device *pdev,
6104			    struct device_node *port_node,
6105			    struct mvpp2 *priv,
6106			    int *next_first_rxq)
6107{
6108	struct device_node *phy_node;
6109	struct mvpp2_port *port;
6110	struct mvpp2_port_pcpu *port_pcpu;
6111	struct net_device *dev;
6112	struct resource *res;
6113	const char *dt_mac_addr;
6114	const char *mac_from;
6115	char hw_mac_addr[ETH_ALEN];
6116	u32 id;
6117	int features;
6118	int phy_mode;
6119	int priv_common_regs_num = 2;
6120	int err, i, cpu;
6121
6122	dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6123				 rxq_number);
6124	if (!dev)
6125		return -ENOMEM;
6126
6127	phy_node = of_parse_phandle(port_node, "phy", 0);
6128	if (!phy_node) {
6129		dev_err(&pdev->dev, "missing phy\n");
6130		err = -ENODEV;
6131		goto err_free_netdev;
6132	}
6133
6134	phy_mode = of_get_phy_mode(port_node);
6135	if (phy_mode < 0) {
6136		dev_err(&pdev->dev, "incorrect phy mode\n");
6137		err = phy_mode;
6138		goto err_free_netdev;
6139	}
6140
6141	if (of_property_read_u32(port_node, "port-id", &id)) {
6142		err = -EINVAL;
6143		dev_err(&pdev->dev, "missing port-id value\n");
6144		goto err_free_netdev;
6145	}
6146
6147	dev->tx_queue_len = MVPP2_MAX_TXD;
6148	dev->watchdog_timeo = 5 * HZ;
6149	dev->netdev_ops = &mvpp2_netdev_ops;
6150	dev->ethtool_ops = &mvpp2_eth_tool_ops;
6151
6152	port = netdev_priv(dev);
6153
6154	port->irq = irq_of_parse_and_map(port_node, 0);
6155	if (port->irq <= 0) {
6156		err = -EINVAL;
6157		goto err_free_netdev;
6158	}
6159
6160	if (of_property_read_bool(port_node, "marvell,loopback"))
6161		port->flags |= MVPP2_F_LOOPBACK;
6162
6163	port->priv = priv;
6164	port->id = id;
6165	port->first_rxq = *next_first_rxq;
6166	port->phy_node = phy_node;
6167	port->phy_interface = phy_mode;
6168
6169	res = platform_get_resource(pdev, IORESOURCE_MEM,
6170				    priv_common_regs_num + id);
6171	port->base = devm_ioremap_resource(&pdev->dev, res);
6172	if (IS_ERR(port->base)) {
6173		err = PTR_ERR(port->base);
6174		goto err_free_irq;
6175	}
6176
6177	/* Alloc per-cpu stats */
6178	port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6179	if (!port->stats) {
6180		err = -ENOMEM;
6181		goto err_free_irq;
6182	}
6183
6184	dt_mac_addr = of_get_mac_address(port_node);
6185	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6186		mac_from = "device tree";
6187		ether_addr_copy(dev->dev_addr, dt_mac_addr);
6188	} else {
6189		mvpp2_get_mac_address(port, hw_mac_addr);
6190		if (is_valid_ether_addr(hw_mac_addr)) {
6191			mac_from = "hardware";
6192			ether_addr_copy(dev->dev_addr, hw_mac_addr);
6193		} else {
6194			mac_from = "random";
6195			eth_hw_addr_random(dev);
6196		}
6197	}
6198
6199	port->tx_ring_size = MVPP2_MAX_TXD;
6200	port->rx_ring_size = MVPP2_MAX_RXD;
6201	port->dev = dev;
6202	SET_NETDEV_DEV(dev, &pdev->dev);
6203
6204	err = mvpp2_port_init(port);
6205	if (err < 0) {
6206		dev_err(&pdev->dev, "failed to init port %d\n", id);
6207		goto err_free_stats;
6208	}
6209	mvpp2_port_power_up(port);
6210
6211	port->pcpu = alloc_percpu(struct mvpp2_port_pcpu);
6212	if (!port->pcpu) {
6213		err = -ENOMEM;
6214		goto err_free_txq_pcpu;
6215	}
6216
6217	for_each_present_cpu(cpu) {
6218		port_pcpu = per_cpu_ptr(port->pcpu, cpu);
6219
6220		hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC,
6221			     HRTIMER_MODE_REL_PINNED);
6222		port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb;
6223		port_pcpu->timer_scheduled = false;
6224
6225		tasklet_init(&port_pcpu->tx_done_tasklet, mvpp2_tx_proc_cb,
6226			     (unsigned long)dev);
6227	}
6228
6229	netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6230	features = NETIF_F_SG | NETIF_F_IP_CSUM;
6231	dev->features = features | NETIF_F_RXCSUM;
6232	dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6233	dev->vlan_features |= features;
6234
6235	err = register_netdev(dev);
6236	if (err < 0) {
6237		dev_err(&pdev->dev, "failed to register netdev\n");
6238		goto err_free_port_pcpu;
6239	}
6240	netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6241
6242	/* Increment the first Rx queue number to be used by the next port */
6243	*next_first_rxq += rxq_number;
6244	priv->port_list[id] = port;
6245	return 0;
6246
6247err_free_port_pcpu:
6248	free_percpu(port->pcpu);
6249err_free_txq_pcpu:
6250	for (i = 0; i < txq_number; i++)
6251		free_percpu(port->txqs[i]->pcpu);
6252err_free_stats:
6253	free_percpu(port->stats);
6254err_free_irq:
6255	irq_dispose_mapping(port->irq);
6256err_free_netdev:
6257	free_netdev(dev);
6258	return err;
6259}
6260
6261/* Ports removal routine */
6262static void mvpp2_port_remove(struct mvpp2_port *port)
6263{
6264	int i;
6265
6266	unregister_netdev(port->dev);
6267	free_percpu(port->pcpu);
6268	free_percpu(port->stats);
6269	for (i = 0; i < txq_number; i++)
6270		free_percpu(port->txqs[i]->pcpu);
6271	irq_dispose_mapping(port->irq);
6272	free_netdev(port->dev);
6273}
6274
6275/* Initialize decoding windows */
6276static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6277				    struct mvpp2 *priv)
6278{
6279	u32 win_enable;
6280	int i;
6281
6282	for (i = 0; i < 6; i++) {
6283		mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6284		mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6285
6286		if (i < 4)
6287			mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6288	}
6289
6290	win_enable = 0;
6291
6292	for (i = 0; i < dram->num_cs; i++) {
6293		const struct mbus_dram_window *cs = dram->cs + i;
6294
6295		mvpp2_write(priv, MVPP2_WIN_BASE(i),
6296			    (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6297			    dram->mbus_dram_target_id);
6298
6299		mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6300			    (cs->size - 1) & 0xffff0000);
6301
6302		win_enable |= (1 << i);
6303	}
6304
6305	mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6306}
6307
6308/* Initialize Rx FIFO's */
6309static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6310{
6311	int port;
6312
6313	for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6314		mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6315			    MVPP2_RX_FIFO_PORT_DATA_SIZE);
6316		mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6317			    MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6318	}
6319
6320	mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6321		    MVPP2_RX_FIFO_PORT_MIN_PKT);
6322	mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6323}
6324
6325/* Initialize network controller common part HW */
6326static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6327{
6328	const struct mbus_dram_target_info *dram_target_info;
6329	int err, i;
6330	u32 val;
6331
6332	/* Checks for hardware constraints */
6333	if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6334	    (txq_number > MVPP2_MAX_TXQ)) {
6335		dev_err(&pdev->dev, "invalid queue size parameter\n");
6336		return -EINVAL;
6337	}
6338
6339	/* MBUS windows configuration */
6340	dram_target_info = mv_mbus_dram_info();
6341	if (dram_target_info)
6342		mvpp2_conf_mbus_windows(dram_target_info, priv);
6343
6344	/* Disable HW PHY polling */
6345	val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6346	val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
6347	writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
6348
6349	/* Allocate and initialize aggregated TXQs */
6350	priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6351				       sizeof(struct mvpp2_tx_queue),
6352				       GFP_KERNEL);
6353	if (!priv->aggr_txqs)
6354		return -ENOMEM;
6355
6356	for_each_present_cpu(i) {
6357		priv->aggr_txqs[i].id = i;
6358		priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6359		err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6360					  MVPP2_AGGR_TXQ_SIZE, i, priv);
6361		if (err < 0)
6362			return err;
6363	}
6364
6365	/* Rx Fifo Init */
6366	mvpp2_rx_fifo_init(priv);
6367
6368	/* Reset Rx queue group interrupt configuration */
6369	for (i = 0; i < MVPP2_MAX_PORTS; i++)
6370		mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6371
6372	writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6373	       priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6374
6375	/* Allow cache snoop when transmiting packets */
6376	mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6377
6378	/* Buffer Manager initialization */
6379	err = mvpp2_bm_init(pdev, priv);
6380	if (err < 0)
6381		return err;
6382
6383	/* Parser default initialization */
6384	err = mvpp2_prs_default_init(pdev, priv);
6385	if (err < 0)
6386		return err;
6387
6388	/* Classifier default initialization */
6389	mvpp2_cls_init(priv);
6390
6391	return 0;
6392}
6393
6394static int mvpp2_probe(struct platform_device *pdev)
6395{
6396	struct device_node *dn = pdev->dev.of_node;
6397	struct device_node *port_node;
6398	struct mvpp2 *priv;
6399	struct resource *res;
6400	int port_count, first_rxq;
6401	int err;
6402
6403	priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6404	if (!priv)
6405		return -ENOMEM;
6406
6407	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6408	priv->base = devm_ioremap_resource(&pdev->dev, res);
6409	if (IS_ERR(priv->base))
6410		return PTR_ERR(priv->base);
6411
6412	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6413	priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6414	if (IS_ERR(priv->lms_base))
6415		return PTR_ERR(priv->lms_base);
6416
6417	priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6418	if (IS_ERR(priv->pp_clk))
6419		return PTR_ERR(priv->pp_clk);
6420	err = clk_prepare_enable(priv->pp_clk);
6421	if (err < 0)
6422		return err;
6423
6424	priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6425	if (IS_ERR(priv->gop_clk)) {
6426		err = PTR_ERR(priv->gop_clk);
6427		goto err_pp_clk;
6428	}
6429	err = clk_prepare_enable(priv->gop_clk);
6430	if (err < 0)
6431		goto err_pp_clk;
6432
6433	/* Get system's tclk rate */
6434	priv->tclk = clk_get_rate(priv->pp_clk);
6435
6436	/* Initialize network controller */
6437	err = mvpp2_init(pdev, priv);
6438	if (err < 0) {
6439		dev_err(&pdev->dev, "failed to initialize controller\n");
6440		goto err_gop_clk;
6441	}
6442
6443	port_count = of_get_available_child_count(dn);
6444	if (port_count == 0) {
6445		dev_err(&pdev->dev, "no ports enabled\n");
6446		err = -ENODEV;
6447		goto err_gop_clk;
6448	}
6449
6450	priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6451				      sizeof(struct mvpp2_port *),
6452				      GFP_KERNEL);
6453	if (!priv->port_list) {
6454		err = -ENOMEM;
6455		goto err_gop_clk;
6456	}
6457
6458	/* Initialize ports */
6459	first_rxq = 0;
6460	for_each_available_child_of_node(dn, port_node) {
6461		err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6462		if (err < 0)
6463			goto err_gop_clk;
6464	}
6465
6466	platform_set_drvdata(pdev, priv);
6467	return 0;
6468
6469err_gop_clk:
6470	clk_disable_unprepare(priv->gop_clk);
6471err_pp_clk:
6472	clk_disable_unprepare(priv->pp_clk);
6473	return err;
6474}
6475
6476static int mvpp2_remove(struct platform_device *pdev)
6477{
6478	struct mvpp2 *priv = platform_get_drvdata(pdev);
6479	struct device_node *dn = pdev->dev.of_node;
6480	struct device_node *port_node;
6481	int i = 0;
6482
6483	for_each_available_child_of_node(dn, port_node) {
6484		if (priv->port_list[i])
6485			mvpp2_port_remove(priv->port_list[i]);
6486		i++;
6487	}
6488
6489	for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6490		struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6491
6492		mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6493	}
6494
6495	for_each_present_cpu(i) {
6496		struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6497
6498		dma_free_coherent(&pdev->dev,
6499				  MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6500				  aggr_txq->descs,
6501				  aggr_txq->descs_phys);
6502	}
6503
6504	clk_disable_unprepare(priv->pp_clk);
6505	clk_disable_unprepare(priv->gop_clk);
6506
6507	return 0;
6508}
6509
6510static const struct of_device_id mvpp2_match[] = {
6511	{ .compatible = "marvell,armada-375-pp2" },
6512	{ }
6513};
6514MODULE_DEVICE_TABLE(of, mvpp2_match);
6515
6516static struct platform_driver mvpp2_driver = {
6517	.probe = mvpp2_probe,
6518	.remove = mvpp2_remove,
6519	.driver = {
6520		.name = MVPP2_DRIVER_NAME,
6521		.of_match_table = mvpp2_match,
6522	},
6523};
6524
6525module_platform_driver(mvpp2_driver);
6526
6527MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6528MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6529MODULE_LICENSE("GPL v2");