Loading...
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/clk.h>
15#include <linux/cpu.h>
16#include <linux/etherdevice.h>
17#include <linux/if_vlan.h>
18#include <linux/inetdevice.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mbus.h>
23#include <linux/module.h>
24#include <linux/netdevice.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/of_irq.h>
28#include <linux/of_mdio.h>
29#include <linux/of_net.h>
30#include <linux/phy/phy.h>
31#include <linux/phy.h>
32#include <linux/phylink.h>
33#include <linux/platform_device.h>
34#include <linux/skbuff.h>
35#include <net/hwbm.h>
36#include "mvneta_bm.h"
37#include <net/ip.h>
38#include <net/ipv6.h>
39#include <net/tso.h>
40#include <net/page_pool/helpers.h>
41#include <net/pkt_sched.h>
42#include <linux/bpf_trace.h>
43
44/* Registers */
45#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
46#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
47#define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
48#define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
49#define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
50#define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
51#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
52#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
53#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
54#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
55#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
56#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
57#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
58#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
59#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
60#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
61#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
62#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
63#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
64#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
65#define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
66#define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
67#define MVNETA_PORT_RX_RESET 0x1cc0
68#define MVNETA_PORT_RX_DMA_RESET BIT(0)
69#define MVNETA_PHY_ADDR 0x2000
70#define MVNETA_PHY_ADDR_MASK 0x1f
71#define MVNETA_MBUS_RETRY 0x2010
72#define MVNETA_UNIT_INTR_CAUSE 0x2080
73#define MVNETA_UNIT_CONTROL 0x20B0
74#define MVNETA_PHY_POLLING_ENABLE BIT(1)
75#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
76#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
77#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
78#define MVNETA_BASE_ADDR_ENABLE 0x2290
79#define MVNETA_AC5_CNM_DDR_TARGET 0x2
80#define MVNETA_AC5_CNM_DDR_ATTR 0xb
81#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
82#define MVNETA_PORT_CONFIG 0x2400
83#define MVNETA_UNI_PROMISC_MODE BIT(0)
84#define MVNETA_DEF_RXQ(q) ((q) << 1)
85#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
86#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
87#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
88#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
89#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
90#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
91#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
92 MVNETA_DEF_RXQ_ARP(q) | \
93 MVNETA_DEF_RXQ_TCP(q) | \
94 MVNETA_DEF_RXQ_UDP(q) | \
95 MVNETA_DEF_RXQ_BPDU(q) | \
96 MVNETA_TX_UNSET_ERR_SUM | \
97 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
98#define MVNETA_PORT_CONFIG_EXTEND 0x2404
99#define MVNETA_MAC_ADDR_LOW 0x2414
100#define MVNETA_MAC_ADDR_HIGH 0x2418
101#define MVNETA_SDMA_CONFIG 0x241c
102#define MVNETA_SDMA_BRST_SIZE_16 4
103#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
104#define MVNETA_RX_NO_DATA_SWAP BIT(4)
105#define MVNETA_TX_NO_DATA_SWAP BIT(5)
106#define MVNETA_DESC_SWAP BIT(6)
107#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
108#define MVNETA_VLAN_PRIO_TO_RXQ 0x2440
109#define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
110#define MVNETA_PORT_STATUS 0x2444
111#define MVNETA_TX_IN_PRGRS BIT(0)
112#define MVNETA_TX_FIFO_EMPTY BIT(8)
113#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
114/* Only exists on Armada XP and Armada 370 */
115#define MVNETA_SERDES_CFG 0x24A0
116#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
117#define MVNETA_QSGMII_SERDES_PROTO 0x0667
118#define MVNETA_HSGMII_SERDES_PROTO 0x1107
119#define MVNETA_TYPE_PRIO 0x24bc
120#define MVNETA_FORCE_UNI BIT(21)
121#define MVNETA_TXQ_CMD_1 0x24e4
122#define MVNETA_TXQ_CMD 0x2448
123#define MVNETA_TXQ_DISABLE_SHIFT 8
124#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
125#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
126#define MVNETA_OVERRUN_FRAME_COUNT 0x2488
127#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
128#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
129#define MVNETA_ACC_MODE 0x2500
130#define MVNETA_BM_ADDRESS 0x2504
131#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
132#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
133#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
134#define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
135#define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
136#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
137
138/* Exception Interrupt Port/Queue Cause register
139 *
140 * Their behavior depend of the mapping done using the PCPX2Q
141 * registers. For a given CPU if the bit associated to a queue is not
142 * set, then for the register a read from this CPU will always return
143 * 0 and a write won't do anything
144 */
145
146#define MVNETA_INTR_NEW_CAUSE 0x25a0
147#define MVNETA_INTR_NEW_MASK 0x25a4
148
149/* bits 0..7 = TXQ SENT, one bit per queue.
150 * bits 8..15 = RXQ OCCUP, one bit per queue.
151 * bits 16..23 = RXQ FREE, one bit per queue.
152 * bit 29 = OLD_REG_SUM, see old reg ?
153 * bit 30 = TX_ERR_SUM, one bit for 4 ports
154 * bit 31 = MISC_SUM, one bit for 4 ports
155 */
156#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
157#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
158#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
159#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
160#define MVNETA_MISCINTR_INTR_MASK BIT(31)
161
162#define MVNETA_INTR_OLD_CAUSE 0x25a8
163#define MVNETA_INTR_OLD_MASK 0x25ac
164
165/* Data Path Port/Queue Cause Register */
166#define MVNETA_INTR_MISC_CAUSE 0x25b0
167#define MVNETA_INTR_MISC_MASK 0x25b4
168
169#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
170#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
171#define MVNETA_CAUSE_PTP BIT(4)
172
173#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
174#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
175#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
176#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
177#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
178#define MVNETA_CAUSE_PRBS_ERR BIT(12)
179#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
180#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
181
182#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
183#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
184#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
185
186#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
187#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
188#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
189
190#define MVNETA_INTR_ENABLE 0x25b8
191#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
192#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
193
194#define MVNETA_RXQ_CMD 0x2680
195#define MVNETA_RXQ_DISABLE_SHIFT 8
196#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
197#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
198#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
199#define MVNETA_GMAC_CTRL_0 0x2c00
200#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
201#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
202#define MVNETA_GMAC0_PORT_1000BASE_X BIT(1)
203#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
204#define MVNETA_GMAC_CTRL_2 0x2c08
205#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
206#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
207#define MVNETA_GMAC2_PORT_RGMII BIT(4)
208#define MVNETA_GMAC2_PORT_RESET BIT(6)
209#define MVNETA_GMAC_STATUS 0x2c10
210#define MVNETA_GMAC_LINK_UP BIT(0)
211#define MVNETA_GMAC_SPEED_1000 BIT(1)
212#define MVNETA_GMAC_SPEED_100 BIT(2)
213#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
214#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
215#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
216#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
217#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
218#define MVNETA_GMAC_AN_COMPLETE BIT(11)
219#define MVNETA_GMAC_SYNC_OK BIT(14)
220#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
221#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
222#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
223#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
224#define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3)
225#define MVNETA_GMAC_INBAND_RESTART_AN BIT(4)
226#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
227#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
228#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
229#define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8)
230#define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9)
231#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
232#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
233#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
234#define MVNETA_GMAC_CTRL_4 0x2c90
235#define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1)
236#define MVNETA_MIB_COUNTERS_BASE 0x3000
237#define MVNETA_MIB_LATE_COLLISION 0x7c
238#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
239#define MVNETA_DA_FILT_OTH_MCAST 0x3500
240#define MVNETA_DA_FILT_UCAST_BASE 0x3600
241#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
242#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
243#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
244#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
245#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
246#define MVNETA_TXQ_DEC_SENT_SHIFT 16
247#define MVNETA_TXQ_DEC_SENT_MASK 0xff
248#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
249#define MVNETA_TXQ_SENT_DESC_SHIFT 16
250#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
251#define MVNETA_PORT_TX_RESET 0x3cf0
252#define MVNETA_PORT_TX_DMA_RESET BIT(0)
253#define MVNETA_TXQ_CMD1_REG 0x3e00
254#define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3)
255#define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0)
256#define MVNETA_REFILL_NUM_CLK_REG 0x3e08
257#define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff
258#define MVNETA_TX_MTU 0x3e0c
259#define MVNETA_TX_TOKEN_SIZE 0x3e14
260#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
261#define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2))
262#define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000
263#define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20
264#define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff
265#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
266#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
267
268/* The values of the bucket refill base period and refill period are taken from
269 * the reference manual, and adds up to a base resolution of 10Kbps. This allows
270 * to cover all rate-limit values from 10Kbps up to 5Gbps
271 */
272
273/* Base period for the rate limit algorithm */
274#define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100
275
276/* Number of Base Period to wait between each bucket refill */
277#define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000
278
279/* The base resolution for rate limiting, in bps. Any max_rate value should be
280 * a multiple of that value.
281 */
282#define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
283 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
284 MVNETA_TXQ_BUCKET_REFILL_PERIOD))
285
286#define MVNETA_LPI_CTRL_0 0x2cc0
287#define MVNETA_LPI_CTRL_1 0x2cc4
288#define MVNETA_LPI_REQUEST_ENABLE BIT(0)
289#define MVNETA_LPI_CTRL_2 0x2cc8
290#define MVNETA_LPI_STATUS 0x2ccc
291
292#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
293
294/* Descriptor ring Macros */
295#define MVNETA_QUEUE_NEXT_DESC(q, index) \
296 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
297
298/* Various constants */
299
300/* Coalescing */
301#define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */
302#define MVNETA_RX_COAL_PKTS 32
303#define MVNETA_RX_COAL_USEC 100
304
305/* The two bytes Marvell header. Either contains a special value used
306 * by Marvell switches when a specific hardware mode is enabled (not
307 * supported by this driver) or is filled automatically by zeroes on
308 * the RX side. Those two bytes being at the front of the Ethernet
309 * header, they allow to have the IP header aligned on a 4 bytes
310 * boundary automatically: the hardware skips those two bytes on its
311 * own.
312 */
313#define MVNETA_MH_SIZE 2
314
315#define MVNETA_VLAN_TAG_LEN 4
316
317#define MVNETA_TX_CSUM_DEF_SIZE 1600
318#define MVNETA_TX_CSUM_MAX_SIZE 9800
319#define MVNETA_ACC_MODE_EXT1 1
320#define MVNETA_ACC_MODE_EXT2 2
321
322#define MVNETA_MAX_DECODE_WIN 6
323
324/* Timeout constants */
325#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
326#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
327#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
328
329#define MVNETA_TX_MTU_MAX 0x3ffff
330
331/* The RSS lookup table actually has 256 entries but we do not use
332 * them yet
333 */
334#define MVNETA_RSS_LU_TABLE_SIZE 1
335
336/* Max number of Rx descriptors */
337#define MVNETA_MAX_RXD 512
338
339/* Max number of Tx descriptors */
340#define MVNETA_MAX_TXD 1024
341
342/* Max number of allowed TCP segments for software TSO */
343#define MVNETA_MAX_TSO_SEGS 100
344
345#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
346
347/* The size of a TSO header page */
348#define MVNETA_TSO_PAGE_SIZE (2 * PAGE_SIZE)
349
350/* Number of TSO headers per page. This should be a power of 2 */
351#define MVNETA_TSO_PER_PAGE (MVNETA_TSO_PAGE_SIZE / TSO_HEADER_SIZE)
352
353/* Maximum number of TSO header pages */
354#define MVNETA_MAX_TSO_PAGES (MVNETA_MAX_TXD / MVNETA_TSO_PER_PAGE)
355
356/* descriptor aligned size */
357#define MVNETA_DESC_ALIGNED_SIZE 32
358
359/* Number of bytes to be taken into account by HW when putting incoming data
360 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
361 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
362 */
363#define MVNETA_RX_PKT_OFFSET_CORRECTION 64
364
365#define MVNETA_RX_PKT_SIZE(mtu) \
366 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
367 ETH_HLEN + ETH_FCS_LEN, \
368 cache_line_size())
369
370/* Driver assumes that the last 3 bits are 0 */
371#define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
372#define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
373 MVNETA_SKB_HEADROOM))
374#define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD)
375
376#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
377 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
378
379enum {
380 ETHTOOL_STAT_EEE_WAKEUP,
381 ETHTOOL_STAT_SKB_ALLOC_ERR,
382 ETHTOOL_STAT_REFILL_ERR,
383 ETHTOOL_XDP_REDIRECT,
384 ETHTOOL_XDP_PASS,
385 ETHTOOL_XDP_DROP,
386 ETHTOOL_XDP_TX,
387 ETHTOOL_XDP_TX_ERR,
388 ETHTOOL_XDP_XMIT,
389 ETHTOOL_XDP_XMIT_ERR,
390 ETHTOOL_MAX_STATS,
391};
392
393struct mvneta_statistic {
394 unsigned short offset;
395 unsigned short type;
396 const char name[ETH_GSTRING_LEN];
397};
398
399#define T_REG_32 32
400#define T_REG_64 64
401#define T_SW 1
402
403#define MVNETA_XDP_PASS 0
404#define MVNETA_XDP_DROPPED BIT(0)
405#define MVNETA_XDP_TX BIT(1)
406#define MVNETA_XDP_REDIR BIT(2)
407
408static const struct mvneta_statistic mvneta_statistics[] = {
409 { 0x3000, T_REG_64, "good_octets_received", },
410 { 0x3010, T_REG_32, "good_frames_received", },
411 { 0x3008, T_REG_32, "bad_octets_received", },
412 { 0x3014, T_REG_32, "bad_frames_received", },
413 { 0x3018, T_REG_32, "broadcast_frames_received", },
414 { 0x301c, T_REG_32, "multicast_frames_received", },
415 { 0x3050, T_REG_32, "unrec_mac_control_received", },
416 { 0x3058, T_REG_32, "good_fc_received", },
417 { 0x305c, T_REG_32, "bad_fc_received", },
418 { 0x3060, T_REG_32, "undersize_received", },
419 { 0x3064, T_REG_32, "fragments_received", },
420 { 0x3068, T_REG_32, "oversize_received", },
421 { 0x306c, T_REG_32, "jabber_received", },
422 { 0x3070, T_REG_32, "mac_receive_error", },
423 { 0x3074, T_REG_32, "bad_crc_event", },
424 { 0x3078, T_REG_32, "collision", },
425 { 0x307c, T_REG_32, "late_collision", },
426 { 0x2484, T_REG_32, "rx_discard", },
427 { 0x2488, T_REG_32, "rx_overrun", },
428 { 0x3020, T_REG_32, "frames_64_octets", },
429 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
430 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
431 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
432 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
433 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
434 { 0x3038, T_REG_64, "good_octets_sent", },
435 { 0x3040, T_REG_32, "good_frames_sent", },
436 { 0x3044, T_REG_32, "excessive_collision", },
437 { 0x3048, T_REG_32, "multicast_frames_sent", },
438 { 0x304c, T_REG_32, "broadcast_frames_sent", },
439 { 0x3054, T_REG_32, "fc_sent", },
440 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
441 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
442 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
443 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
444 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
445 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
446 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
447 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
448 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
449 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
450 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
451};
452
453struct mvneta_stats {
454 u64 rx_packets;
455 u64 rx_bytes;
456 u64 tx_packets;
457 u64 tx_bytes;
458 /* xdp */
459 u64 xdp_redirect;
460 u64 xdp_pass;
461 u64 xdp_drop;
462 u64 xdp_xmit;
463 u64 xdp_xmit_err;
464 u64 xdp_tx;
465 u64 xdp_tx_err;
466};
467
468struct mvneta_ethtool_stats {
469 struct mvneta_stats ps;
470 u64 skb_alloc_error;
471 u64 refill_error;
472};
473
474struct mvneta_pcpu_stats {
475 struct u64_stats_sync syncp;
476
477 struct mvneta_ethtool_stats es;
478 u64 rx_dropped;
479 u64 rx_errors;
480};
481
482struct mvneta_pcpu_port {
483 /* Pointer to the shared port */
484 struct mvneta_port *pp;
485
486 /* Pointer to the CPU-local NAPI struct */
487 struct napi_struct napi;
488
489 /* Cause of the previous interrupt */
490 u32 cause_rx_tx;
491};
492
493enum {
494 __MVNETA_DOWN,
495};
496
497struct mvneta_port {
498 u8 id;
499 struct mvneta_pcpu_port __percpu *ports;
500 struct mvneta_pcpu_stats __percpu *stats;
501
502 unsigned long state;
503
504 int pkt_size;
505 void __iomem *base;
506 struct mvneta_rx_queue *rxqs;
507 struct mvneta_tx_queue *txqs;
508 struct net_device *dev;
509 struct hlist_node node_online;
510 struct hlist_node node_dead;
511 int rxq_def;
512 /* Protect the access to the percpu interrupt registers,
513 * ensuring that the configuration remains coherent.
514 */
515 spinlock_t lock;
516 bool is_stopped;
517
518 u32 cause_rx_tx;
519 struct napi_struct napi;
520
521 struct bpf_prog *xdp_prog;
522
523 /* Core clock */
524 struct clk *clk;
525 /* AXI clock */
526 struct clk *clk_bus;
527 u8 mcast_count[256];
528 u16 tx_ring_size;
529 u16 rx_ring_size;
530
531 phy_interface_t phy_interface;
532 struct device_node *dn;
533 unsigned int tx_csum_limit;
534 struct phylink *phylink;
535 struct phylink_config phylink_config;
536 struct phylink_pcs phylink_pcs;
537 struct phy *comphy;
538
539 struct mvneta_bm *bm_priv;
540 struct mvneta_bm_pool *pool_long;
541 struct mvneta_bm_pool *pool_short;
542 int bm_win_id;
543
544 bool eee_enabled;
545 bool eee_active;
546 bool tx_lpi_enabled;
547
548 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
549
550 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
551
552 /* Flags for special SoC configurations */
553 bool neta_armada3700;
554 bool neta_ac5;
555 u16 rx_offset_correction;
556 const struct mbus_dram_target_info *dram_target_info;
557};
558
559/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
560 * layout of the transmit and reception DMA descriptors, and their
561 * layout is therefore defined by the hardware design
562 */
563
564#define MVNETA_TX_L3_OFF_SHIFT 0
565#define MVNETA_TX_IP_HLEN_SHIFT 8
566#define MVNETA_TX_L4_UDP BIT(16)
567#define MVNETA_TX_L3_IP6 BIT(17)
568#define MVNETA_TXD_IP_CSUM BIT(18)
569#define MVNETA_TXD_Z_PAD BIT(19)
570#define MVNETA_TXD_L_DESC BIT(20)
571#define MVNETA_TXD_F_DESC BIT(21)
572#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
573 MVNETA_TXD_L_DESC | \
574 MVNETA_TXD_F_DESC)
575#define MVNETA_TX_L4_CSUM_FULL BIT(30)
576#define MVNETA_TX_L4_CSUM_NOT BIT(31)
577
578#define MVNETA_RXD_ERR_CRC 0x0
579#define MVNETA_RXD_BM_POOL_SHIFT 13
580#define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
581#define MVNETA_RXD_ERR_SUMMARY BIT(16)
582#define MVNETA_RXD_ERR_OVERRUN BIT(17)
583#define MVNETA_RXD_ERR_LEN BIT(18)
584#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
585#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
586#define MVNETA_RXD_L3_IP4 BIT(25)
587#define MVNETA_RXD_LAST_DESC BIT(26)
588#define MVNETA_RXD_FIRST_DESC BIT(27)
589#define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \
590 MVNETA_RXD_LAST_DESC)
591#define MVNETA_RXD_L4_CSUM_OK BIT(30)
592
593#if defined(__LITTLE_ENDIAN)
594struct mvneta_tx_desc {
595 u32 command; /* Options used by HW for packet transmitting.*/
596 u16 reserved1; /* csum_l4 (for future use) */
597 u16 data_size; /* Data size of transmitted packet in bytes */
598 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
599 u32 reserved2; /* hw_cmd - (for future use, PMT) */
600 u32 reserved3[4]; /* Reserved - (for future use) */
601};
602
603struct mvneta_rx_desc {
604 u32 status; /* Info about received packet */
605 u16 reserved1; /* pnc_info - (for future use, PnC) */
606 u16 data_size; /* Size of received packet in bytes */
607
608 u32 buf_phys_addr; /* Physical address of the buffer */
609 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
610
611 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
612 u16 reserved3; /* prefetch_cmd, for future use */
613 u16 reserved4; /* csum_l4 - (for future use, PnC) */
614
615 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
616 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
617};
618#else
619struct mvneta_tx_desc {
620 u16 data_size; /* Data size of transmitted packet in bytes */
621 u16 reserved1; /* csum_l4 (for future use) */
622 u32 command; /* Options used by HW for packet transmitting.*/
623 u32 reserved2; /* hw_cmd - (for future use, PMT) */
624 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
625 u32 reserved3[4]; /* Reserved - (for future use) */
626};
627
628struct mvneta_rx_desc {
629 u16 data_size; /* Size of received packet in bytes */
630 u16 reserved1; /* pnc_info - (for future use, PnC) */
631 u32 status; /* Info about received packet */
632
633 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
634 u32 buf_phys_addr; /* Physical address of the buffer */
635
636 u16 reserved4; /* csum_l4 - (for future use, PnC) */
637 u16 reserved3; /* prefetch_cmd, for future use */
638 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
639
640 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
641 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
642};
643#endif
644
645enum mvneta_tx_buf_type {
646 MVNETA_TYPE_TSO,
647 MVNETA_TYPE_SKB,
648 MVNETA_TYPE_XDP_TX,
649 MVNETA_TYPE_XDP_NDO,
650};
651
652struct mvneta_tx_buf {
653 enum mvneta_tx_buf_type type;
654 union {
655 struct xdp_frame *xdpf;
656 struct sk_buff *skb;
657 };
658};
659
660struct mvneta_tx_queue {
661 /* Number of this TX queue, in the range 0-7 */
662 u8 id;
663
664 /* Number of TX DMA descriptors in the descriptor ring */
665 int size;
666
667 /* Number of currently used TX DMA descriptor in the
668 * descriptor ring
669 */
670 int count;
671 int pending;
672 int tx_stop_threshold;
673 int tx_wake_threshold;
674
675 /* Array of transmitted buffers */
676 struct mvneta_tx_buf *buf;
677
678 /* Index of last TX DMA descriptor that was inserted */
679 int txq_put_index;
680
681 /* Index of the TX DMA descriptor to be cleaned up */
682 int txq_get_index;
683
684 u32 done_pkts_coal;
685
686 /* Virtual address of the TX DMA descriptors array */
687 struct mvneta_tx_desc *descs;
688
689 /* DMA address of the TX DMA descriptors array */
690 dma_addr_t descs_phys;
691
692 /* Index of the last TX DMA descriptor */
693 int last_desc;
694
695 /* Index of the next TX DMA descriptor to process */
696 int next_desc_to_proc;
697
698 /* DMA buffers for TSO headers */
699 char *tso_hdrs[MVNETA_MAX_TSO_PAGES];
700
701 /* DMA address of TSO headers */
702 dma_addr_t tso_hdrs_phys[MVNETA_MAX_TSO_PAGES];
703
704 /* Affinity mask for CPUs*/
705 cpumask_t affinity_mask;
706};
707
708struct mvneta_rx_queue {
709 /* rx queue number, in the range 0-7 */
710 u8 id;
711
712 /* num of rx descriptors in the rx descriptor ring */
713 int size;
714
715 u32 pkts_coal;
716 u32 time_coal;
717
718 /* page_pool */
719 struct page_pool *page_pool;
720 struct xdp_rxq_info xdp_rxq;
721
722 /* Virtual address of the RX buffer */
723 void **buf_virt_addr;
724
725 /* Virtual address of the RX DMA descriptors array */
726 struct mvneta_rx_desc *descs;
727
728 /* DMA address of the RX DMA descriptors array */
729 dma_addr_t descs_phys;
730
731 /* Index of the last RX DMA descriptor */
732 int last_desc;
733
734 /* Index of the next RX DMA descriptor to process */
735 int next_desc_to_proc;
736
737 /* Index of first RX DMA descriptor to refill */
738 int first_to_refill;
739 u32 refill_num;
740};
741
742static enum cpuhp_state online_hpstate;
743/* The hardware supports eight (8) rx queues, but we are only allowing
744 * the first one to be used. Therefore, let's just allocate one queue.
745 */
746static int rxq_number = 8;
747static int txq_number = 8;
748
749static int rxq_def;
750
751static int rx_copybreak __read_mostly = 256;
752
753/* HW BM need that each port be identify by a unique ID */
754static int global_port_id;
755
756#define MVNETA_DRIVER_NAME "mvneta"
757#define MVNETA_DRIVER_VERSION "1.0"
758
759/* Utility/helper methods */
760
761/* Write helper method */
762static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
763{
764 writel(data, pp->base + offset);
765}
766
767/* Read helper method */
768static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
769{
770 return readl(pp->base + offset);
771}
772
773/* Increment txq get counter */
774static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
775{
776 txq->txq_get_index++;
777 if (txq->txq_get_index == txq->size)
778 txq->txq_get_index = 0;
779}
780
781/* Increment txq put counter */
782static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
783{
784 txq->txq_put_index++;
785 if (txq->txq_put_index == txq->size)
786 txq->txq_put_index = 0;
787}
788
789
790/* Clear all MIB counters */
791static void mvneta_mib_counters_clear(struct mvneta_port *pp)
792{
793 int i;
794
795 /* Perform dummy reads from MIB counters */
796 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
797 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
798 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
799 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
800}
801
802/* Get System Network Statistics */
803static void
804mvneta_get_stats64(struct net_device *dev,
805 struct rtnl_link_stats64 *stats)
806{
807 struct mvneta_port *pp = netdev_priv(dev);
808 unsigned int start;
809 int cpu;
810
811 for_each_possible_cpu(cpu) {
812 struct mvneta_pcpu_stats *cpu_stats;
813 u64 rx_packets;
814 u64 rx_bytes;
815 u64 rx_dropped;
816 u64 rx_errors;
817 u64 tx_packets;
818 u64 tx_bytes;
819
820 cpu_stats = per_cpu_ptr(pp->stats, cpu);
821 do {
822 start = u64_stats_fetch_begin(&cpu_stats->syncp);
823 rx_packets = cpu_stats->es.ps.rx_packets;
824 rx_bytes = cpu_stats->es.ps.rx_bytes;
825 rx_dropped = cpu_stats->rx_dropped;
826 rx_errors = cpu_stats->rx_errors;
827 tx_packets = cpu_stats->es.ps.tx_packets;
828 tx_bytes = cpu_stats->es.ps.tx_bytes;
829 } while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
830
831 stats->rx_packets += rx_packets;
832 stats->rx_bytes += rx_bytes;
833 stats->rx_dropped += rx_dropped;
834 stats->rx_errors += rx_errors;
835 stats->tx_packets += tx_packets;
836 stats->tx_bytes += tx_bytes;
837 }
838
839 stats->tx_dropped = dev->stats.tx_dropped;
840}
841
842/* Rx descriptors helper methods */
843
844/* Checks whether the RX descriptor having this status is both the first
845 * and the last descriptor for the RX packet. Each RX packet is currently
846 * received through a single RX descriptor, so not having each RX
847 * descriptor with its first and last bits set is an error
848 */
849static int mvneta_rxq_desc_is_first_last(u32 status)
850{
851 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
852 MVNETA_RXD_FIRST_LAST_DESC;
853}
854
855/* Add number of descriptors ready to receive new packets */
856static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
857 struct mvneta_rx_queue *rxq,
858 int ndescs)
859{
860 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
861 * be added at once
862 */
863 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
864 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
865 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
866 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
867 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
868 }
869
870 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
871 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
872}
873
874/* Get number of RX descriptors occupied by received packets */
875static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
876 struct mvneta_rx_queue *rxq)
877{
878 u32 val;
879
880 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
881 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
882}
883
884/* Update num of rx desc called upon return from rx path or
885 * from mvneta_rxq_drop_pkts().
886 */
887static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
888 struct mvneta_rx_queue *rxq,
889 int rx_done, int rx_filled)
890{
891 u32 val;
892
893 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
894 val = rx_done |
895 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
896 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
897 return;
898 }
899
900 /* Only 255 descriptors can be added at once */
901 while ((rx_done > 0) || (rx_filled > 0)) {
902 if (rx_done <= 0xff) {
903 val = rx_done;
904 rx_done = 0;
905 } else {
906 val = 0xff;
907 rx_done -= 0xff;
908 }
909 if (rx_filled <= 0xff) {
910 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
911 rx_filled = 0;
912 } else {
913 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
914 rx_filled -= 0xff;
915 }
916 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
917 }
918}
919
920/* Get pointer to next RX descriptor to be processed by SW */
921static struct mvneta_rx_desc *
922mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
923{
924 int rx_desc = rxq->next_desc_to_proc;
925
926 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
927 prefetch(rxq->descs + rxq->next_desc_to_proc);
928 return rxq->descs + rx_desc;
929}
930
931/* Change maximum receive size of the port. */
932static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
933{
934 u32 val;
935
936 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
937 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
938 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
939 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
940 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
941}
942
943
944/* Set rx queue offset */
945static void mvneta_rxq_offset_set(struct mvneta_port *pp,
946 struct mvneta_rx_queue *rxq,
947 int offset)
948{
949 u32 val;
950
951 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
952 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
953
954 /* Offset is in */
955 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
956 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
957}
958
959
960/* Tx descriptors helper methods */
961
962/* Update HW with number of TX descriptors to be sent */
963static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
964 struct mvneta_tx_queue *txq,
965 int pend_desc)
966{
967 u32 val;
968
969 pend_desc += txq->pending;
970
971 /* Only 255 Tx descriptors can be added at once */
972 do {
973 val = min(pend_desc, 255);
974 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
975 pend_desc -= val;
976 } while (pend_desc > 0);
977 txq->pending = 0;
978}
979
980/* Get pointer to next TX descriptor to be processed (send) by HW */
981static struct mvneta_tx_desc *
982mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
983{
984 int tx_desc = txq->next_desc_to_proc;
985
986 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
987 return txq->descs + tx_desc;
988}
989
990/* Release the last allocated TX descriptor. Useful to handle DMA
991 * mapping failures in the TX path.
992 */
993static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
994{
995 if (txq->next_desc_to_proc == 0)
996 txq->next_desc_to_proc = txq->last_desc - 1;
997 else
998 txq->next_desc_to_proc--;
999}
1000
1001/* Set rxq buf size */
1002static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
1003 struct mvneta_rx_queue *rxq,
1004 int buf_size)
1005{
1006 u32 val;
1007
1008 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
1009
1010 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
1011 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
1012
1013 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
1014}
1015
1016/* Disable buffer management (BM) */
1017static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
1018 struct mvneta_rx_queue *rxq)
1019{
1020 u32 val;
1021
1022 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1023 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
1024 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1025}
1026
1027/* Enable buffer management (BM) */
1028static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
1029 struct mvneta_rx_queue *rxq)
1030{
1031 u32 val;
1032
1033 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1034 val |= MVNETA_RXQ_HW_BUF_ALLOC;
1035 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1036}
1037
1038/* Notify HW about port's assignment of pool for bigger packets */
1039static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1040 struct mvneta_rx_queue *rxq)
1041{
1042 u32 val;
1043
1044 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1045 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1046 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1047
1048 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1049}
1050
1051/* Notify HW about port's assignment of pool for smaller packets */
1052static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1053 struct mvneta_rx_queue *rxq)
1054{
1055 u32 val;
1056
1057 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1058 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1059 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1060
1061 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1062}
1063
1064/* Set port's receive buffer size for assigned BM pool */
1065static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1066 int buf_size,
1067 u8 pool_id)
1068{
1069 u32 val;
1070
1071 if (!IS_ALIGNED(buf_size, 8)) {
1072 dev_warn(pp->dev->dev.parent,
1073 "illegal buf_size value %d, round to %d\n",
1074 buf_size, ALIGN(buf_size, 8));
1075 buf_size = ALIGN(buf_size, 8);
1076 }
1077
1078 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1079 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1080 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1081}
1082
1083/* Configure MBUS window in order to enable access BM internal SRAM */
1084static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1085 u8 target, u8 attr)
1086{
1087 u32 win_enable, win_protect;
1088 int i;
1089
1090 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1091
1092 if (pp->bm_win_id < 0) {
1093 /* Find first not occupied window */
1094 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1095 if (win_enable & (1 << i)) {
1096 pp->bm_win_id = i;
1097 break;
1098 }
1099 }
1100 if (i == MVNETA_MAX_DECODE_WIN)
1101 return -ENOMEM;
1102 } else {
1103 i = pp->bm_win_id;
1104 }
1105
1106 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1107 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1108
1109 if (i < 4)
1110 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1111
1112 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1113 (attr << 8) | target);
1114
1115 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1116
1117 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1118 win_protect |= 3 << (2 * i);
1119 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1120
1121 win_enable &= ~(1 << i);
1122 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1123
1124 return 0;
1125}
1126
1127static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1128{
1129 u32 wsize;
1130 u8 target, attr;
1131 int err;
1132
1133 /* Get BM window information */
1134 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1135 &target, &attr);
1136 if (err < 0)
1137 return err;
1138
1139 pp->bm_win_id = -1;
1140
1141 /* Open NETA -> BM window */
1142 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1143 target, attr);
1144 if (err < 0) {
1145 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1146 return err;
1147 }
1148 return 0;
1149}
1150
1151/* Assign and initialize pools for port. In case of fail
1152 * buffer manager will remain disabled for current port.
1153 */
1154static int mvneta_bm_port_init(struct platform_device *pdev,
1155 struct mvneta_port *pp)
1156{
1157 struct device_node *dn = pdev->dev.of_node;
1158 u32 long_pool_id, short_pool_id;
1159
1160 if (!pp->neta_armada3700) {
1161 int ret;
1162
1163 ret = mvneta_bm_port_mbus_init(pp);
1164 if (ret)
1165 return ret;
1166 }
1167
1168 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1169 netdev_info(pp->dev, "missing long pool id\n");
1170 return -EINVAL;
1171 }
1172
1173 /* Create port's long pool depending on mtu */
1174 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1175 MVNETA_BM_LONG, pp->id,
1176 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1177 if (!pp->pool_long) {
1178 netdev_info(pp->dev, "fail to obtain long pool for port\n");
1179 return -ENOMEM;
1180 }
1181
1182 pp->pool_long->port_map |= 1 << pp->id;
1183
1184 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1185 pp->pool_long->id);
1186
1187 /* If short pool id is not defined, assume using single pool */
1188 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1189 short_pool_id = long_pool_id;
1190
1191 /* Create port's short pool */
1192 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1193 MVNETA_BM_SHORT, pp->id,
1194 MVNETA_BM_SHORT_PKT_SIZE);
1195 if (!pp->pool_short) {
1196 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1197 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1198 return -ENOMEM;
1199 }
1200
1201 if (short_pool_id != long_pool_id) {
1202 pp->pool_short->port_map |= 1 << pp->id;
1203 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1204 pp->pool_short->id);
1205 }
1206
1207 return 0;
1208}
1209
1210/* Update settings of a pool for bigger packets */
1211static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1212{
1213 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1214 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1215 int num;
1216
1217 /* Release all buffers from long pool */
1218 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1219 if (hwbm_pool->buf_num) {
1220 WARN(1, "cannot free all buffers in pool %d\n",
1221 bm_pool->id);
1222 goto bm_mtu_err;
1223 }
1224
1225 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1226 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1227 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1228 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1229
1230 /* Fill entire long pool */
1231 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1232 if (num != hwbm_pool->size) {
1233 WARN(1, "pool %d: %d of %d allocated\n",
1234 bm_pool->id, num, hwbm_pool->size);
1235 goto bm_mtu_err;
1236 }
1237 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1238
1239 return;
1240
1241bm_mtu_err:
1242 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1243 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1244
1245 pp->bm_priv = NULL;
1246 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1247 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1248 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1249}
1250
1251/* Start the Ethernet port RX and TX activity */
1252static void mvneta_port_up(struct mvneta_port *pp)
1253{
1254 int queue;
1255 u32 q_map;
1256
1257 /* Enable all initialized TXs. */
1258 q_map = 0;
1259 for (queue = 0; queue < txq_number; queue++) {
1260 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1261 if (txq->descs)
1262 q_map |= (1 << queue);
1263 }
1264 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1265
1266 q_map = 0;
1267 /* Enable all initialized RXQs. */
1268 for (queue = 0; queue < rxq_number; queue++) {
1269 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1270
1271 if (rxq->descs)
1272 q_map |= (1 << queue);
1273 }
1274 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1275}
1276
1277/* Stop the Ethernet port activity */
1278static void mvneta_port_down(struct mvneta_port *pp)
1279{
1280 u32 val;
1281 int count;
1282
1283 /* Stop Rx port activity. Check port Rx activity. */
1284 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1285
1286 /* Issue stop command for active channels only */
1287 if (val != 0)
1288 mvreg_write(pp, MVNETA_RXQ_CMD,
1289 val << MVNETA_RXQ_DISABLE_SHIFT);
1290
1291 /* Wait for all Rx activity to terminate. */
1292 count = 0;
1293 do {
1294 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1295 netdev_warn(pp->dev,
1296 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1297 val);
1298 break;
1299 }
1300 mdelay(1);
1301
1302 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1303 } while (val & MVNETA_RXQ_ENABLE_MASK);
1304
1305 /* Stop Tx port activity. Check port Tx activity. Issue stop
1306 * command for active channels only
1307 */
1308 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1309
1310 if (val != 0)
1311 mvreg_write(pp, MVNETA_TXQ_CMD,
1312 (val << MVNETA_TXQ_DISABLE_SHIFT));
1313
1314 /* Wait for all Tx activity to terminate. */
1315 count = 0;
1316 do {
1317 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1318 netdev_warn(pp->dev,
1319 "TIMEOUT for TX stopped status=0x%08x\n",
1320 val);
1321 break;
1322 }
1323 mdelay(1);
1324
1325 /* Check TX Command reg that all Txqs are stopped */
1326 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1327
1328 } while (val & MVNETA_TXQ_ENABLE_MASK);
1329
1330 /* Double check to verify that TX FIFO is empty */
1331 count = 0;
1332 do {
1333 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1334 netdev_warn(pp->dev,
1335 "TX FIFO empty timeout status=0x%08x\n",
1336 val);
1337 break;
1338 }
1339 mdelay(1);
1340
1341 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1342 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1343 (val & MVNETA_TX_IN_PRGRS));
1344
1345 udelay(200);
1346}
1347
1348/* Enable the port by setting the port enable bit of the MAC control register */
1349static void mvneta_port_enable(struct mvneta_port *pp)
1350{
1351 u32 val;
1352
1353 /* Enable port */
1354 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1355 val |= MVNETA_GMAC0_PORT_ENABLE;
1356 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1357}
1358
1359/* Disable the port and wait for about 200 usec before retuning */
1360static void mvneta_port_disable(struct mvneta_port *pp)
1361{
1362 u32 val;
1363
1364 /* Reset the Enable bit in the Serial Control Register */
1365 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1366 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1367 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1368
1369 udelay(200);
1370}
1371
1372/* Multicast tables methods */
1373
1374/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1375static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1376{
1377 int offset;
1378 u32 val;
1379
1380 if (queue == -1) {
1381 val = 0;
1382 } else {
1383 val = 0x1 | (queue << 1);
1384 val |= (val << 24) | (val << 16) | (val << 8);
1385 }
1386
1387 for (offset = 0; offset <= 0xc; offset += 4)
1388 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1389}
1390
1391/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1392static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1393{
1394 int offset;
1395 u32 val;
1396
1397 if (queue == -1) {
1398 val = 0;
1399 } else {
1400 val = 0x1 | (queue << 1);
1401 val |= (val << 24) | (val << 16) | (val << 8);
1402 }
1403
1404 for (offset = 0; offset <= 0xfc; offset += 4)
1405 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1406
1407}
1408
1409/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1410static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1411{
1412 int offset;
1413 u32 val;
1414
1415 if (queue == -1) {
1416 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1417 val = 0;
1418 } else {
1419 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1420 val = 0x1 | (queue << 1);
1421 val |= (val << 24) | (val << 16) | (val << 8);
1422 }
1423
1424 for (offset = 0; offset <= 0xfc; offset += 4)
1425 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1426}
1427
1428static void mvneta_percpu_unmask_interrupt(void *arg)
1429{
1430 struct mvneta_port *pp = arg;
1431
1432 /* All the queue are unmasked, but actually only the ones
1433 * mapped to this CPU will be unmasked
1434 */
1435 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1436 MVNETA_RX_INTR_MASK_ALL |
1437 MVNETA_TX_INTR_MASK_ALL |
1438 MVNETA_MISCINTR_INTR_MASK);
1439}
1440
1441static void mvneta_percpu_mask_interrupt(void *arg)
1442{
1443 struct mvneta_port *pp = arg;
1444
1445 /* All the queue are masked, but actually only the ones
1446 * mapped to this CPU will be masked
1447 */
1448 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1449 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1450 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1451}
1452
1453static void mvneta_percpu_clear_intr_cause(void *arg)
1454{
1455 struct mvneta_port *pp = arg;
1456
1457 /* All the queue are cleared, but actually only the ones
1458 * mapped to this CPU will be cleared
1459 */
1460 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1461 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1462 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1463}
1464
1465/* This method sets defaults to the NETA port:
1466 * Clears interrupt Cause and Mask registers.
1467 * Clears all MAC tables.
1468 * Sets defaults to all registers.
1469 * Resets RX and TX descriptor rings.
1470 * Resets PHY.
1471 * This method can be called after mvneta_port_down() to return the port
1472 * settings to defaults.
1473 */
1474static void mvneta_defaults_set(struct mvneta_port *pp)
1475{
1476 int cpu;
1477 int queue;
1478 u32 val;
1479 int max_cpu = num_present_cpus();
1480
1481 /* Clear all Cause registers */
1482 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1483
1484 /* Mask all interrupts */
1485 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1486 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1487
1488 /* Enable MBUS Retry bit16 */
1489 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1490
1491 /* Set CPU queue access map. CPUs are assigned to the RX and
1492 * TX queues modulo their number. If there is only one TX
1493 * queue then it is assigned to the CPU associated to the
1494 * default RX queue.
1495 */
1496 for_each_present_cpu(cpu) {
1497 int rxq_map = 0, txq_map = 0;
1498 int rxq, txq;
1499 if (!pp->neta_armada3700) {
1500 for (rxq = 0; rxq < rxq_number; rxq++)
1501 if ((rxq % max_cpu) == cpu)
1502 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1503
1504 for (txq = 0; txq < txq_number; txq++)
1505 if ((txq % max_cpu) == cpu)
1506 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1507
1508 /* With only one TX queue we configure a special case
1509 * which will allow to get all the irq on a single
1510 * CPU
1511 */
1512 if (txq_number == 1)
1513 txq_map = (cpu == pp->rxq_def) ?
1514 MVNETA_CPU_TXQ_ACCESS(0) : 0;
1515
1516 } else {
1517 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1518 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1519 }
1520
1521 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1522 }
1523
1524 /* Reset RX and TX DMAs */
1525 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1526 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1527
1528 /* Disable Legacy WRR, Disable EJP, Release from reset */
1529 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1530 for (queue = 0; queue < txq_number; queue++) {
1531 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1532 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1533 }
1534
1535 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1536 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1537
1538 /* Set Port Acceleration Mode */
1539 if (pp->bm_priv)
1540 /* HW buffer management + legacy parser */
1541 val = MVNETA_ACC_MODE_EXT2;
1542 else
1543 /* SW buffer management + legacy parser */
1544 val = MVNETA_ACC_MODE_EXT1;
1545 mvreg_write(pp, MVNETA_ACC_MODE, val);
1546
1547 if (pp->bm_priv)
1548 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1549
1550 /* Update val of portCfg register accordingly with all RxQueue types */
1551 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1552 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1553
1554 val = 0;
1555 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1556 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1557
1558 /* Build PORT_SDMA_CONFIG_REG */
1559 val = 0;
1560
1561 /* Default burst size */
1562 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1563 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1564 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1565
1566#if defined(__BIG_ENDIAN)
1567 val |= MVNETA_DESC_SWAP;
1568#endif
1569
1570 /* Assign port SDMA configuration */
1571 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1572
1573 /* Disable PHY polling in hardware, since we're using the
1574 * kernel phylib to do this.
1575 */
1576 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1577 val &= ~MVNETA_PHY_POLLING_ENABLE;
1578 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1579
1580 mvneta_set_ucast_table(pp, -1);
1581 mvneta_set_special_mcast_table(pp, -1);
1582 mvneta_set_other_mcast_table(pp, -1);
1583
1584 /* Set port interrupt enable register - default enable all */
1585 mvreg_write(pp, MVNETA_INTR_ENABLE,
1586 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1587 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1588
1589 mvneta_mib_counters_clear(pp);
1590}
1591
1592/* Set max sizes for tx queues */
1593static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1594
1595{
1596 u32 val, size, mtu;
1597 int queue;
1598
1599 mtu = max_tx_size * 8;
1600 if (mtu > MVNETA_TX_MTU_MAX)
1601 mtu = MVNETA_TX_MTU_MAX;
1602
1603 /* Set MTU */
1604 val = mvreg_read(pp, MVNETA_TX_MTU);
1605 val &= ~MVNETA_TX_MTU_MAX;
1606 val |= mtu;
1607 mvreg_write(pp, MVNETA_TX_MTU, val);
1608
1609 /* TX token size and all TXQs token size must be larger that MTU */
1610 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1611
1612 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1613 if (size < mtu) {
1614 size = mtu;
1615 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1616 val |= size;
1617 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1618 }
1619 for (queue = 0; queue < txq_number; queue++) {
1620 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1621
1622 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1623 if (size < mtu) {
1624 size = mtu;
1625 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1626 val |= size;
1627 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1628 }
1629 }
1630}
1631
1632/* Set unicast address */
1633static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1634 int queue)
1635{
1636 unsigned int unicast_reg;
1637 unsigned int tbl_offset;
1638 unsigned int reg_offset;
1639
1640 /* Locate the Unicast table entry */
1641 last_nibble = (0xf & last_nibble);
1642
1643 /* offset from unicast tbl base */
1644 tbl_offset = (last_nibble / 4) * 4;
1645
1646 /* offset within the above reg */
1647 reg_offset = last_nibble % 4;
1648
1649 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1650
1651 if (queue == -1) {
1652 /* Clear accepts frame bit at specified unicast DA tbl entry */
1653 unicast_reg &= ~(0xff << (8 * reg_offset));
1654 } else {
1655 unicast_reg &= ~(0xff << (8 * reg_offset));
1656 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1657 }
1658
1659 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1660}
1661
1662/* Set mac address */
1663static void mvneta_mac_addr_set(struct mvneta_port *pp,
1664 const unsigned char *addr, int queue)
1665{
1666 unsigned int mac_h;
1667 unsigned int mac_l;
1668
1669 if (queue != -1) {
1670 mac_l = (addr[4] << 8) | (addr[5]);
1671 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1672 (addr[2] << 8) | (addr[3] << 0);
1673
1674 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1675 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1676 }
1677
1678 /* Accept frames of this address */
1679 mvneta_set_ucast_addr(pp, addr[5], queue);
1680}
1681
1682/* Set the number of packets that will be received before RX interrupt
1683 * will be generated by HW.
1684 */
1685static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1686 struct mvneta_rx_queue *rxq, u32 value)
1687{
1688 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1689 value | MVNETA_RXQ_NON_OCCUPIED(0));
1690}
1691
1692/* Set the time delay in usec before RX interrupt will be generated by
1693 * HW.
1694 */
1695static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1696 struct mvneta_rx_queue *rxq, u32 value)
1697{
1698 u32 val;
1699 unsigned long clk_rate;
1700
1701 clk_rate = clk_get_rate(pp->clk);
1702 val = (clk_rate / 1000000) * value;
1703
1704 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1705}
1706
1707/* Set threshold for TX_DONE pkts coalescing */
1708static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1709 struct mvneta_tx_queue *txq, u32 value)
1710{
1711 u32 val;
1712
1713 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1714
1715 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1716 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1717
1718 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1719}
1720
1721/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1722static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1723 u32 phys_addr, void *virt_addr,
1724 struct mvneta_rx_queue *rxq)
1725{
1726 int i;
1727
1728 rx_desc->buf_phys_addr = phys_addr;
1729 i = rx_desc - rxq->descs;
1730 rxq->buf_virt_addr[i] = virt_addr;
1731}
1732
1733/* Decrement sent descriptors counter */
1734static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1735 struct mvneta_tx_queue *txq,
1736 int sent_desc)
1737{
1738 u32 val;
1739
1740 /* Only 255 TX descriptors can be updated at once */
1741 while (sent_desc > 0xff) {
1742 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1743 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1744 sent_desc = sent_desc - 0xff;
1745 }
1746
1747 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1748 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1749}
1750
1751/* Get number of TX descriptors already sent by HW */
1752static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1753 struct mvneta_tx_queue *txq)
1754{
1755 u32 val;
1756 int sent_desc;
1757
1758 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1759 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1760 MVNETA_TXQ_SENT_DESC_SHIFT;
1761
1762 return sent_desc;
1763}
1764
1765/* Get number of sent descriptors and decrement counter.
1766 * The number of sent descriptors is returned.
1767 */
1768static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1769 struct mvneta_tx_queue *txq)
1770{
1771 int sent_desc;
1772
1773 /* Get number of sent descriptors */
1774 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1775
1776 /* Decrement sent descriptors counter */
1777 if (sent_desc)
1778 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1779
1780 return sent_desc;
1781}
1782
1783/* Set TXQ descriptors fields relevant for CSUM calculation */
1784static u32 mvneta_txq_desc_csum(int l3_offs, __be16 l3_proto,
1785 int ip_hdr_len, int l4_proto)
1786{
1787 u32 command;
1788
1789 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1790 * G_L4_chk, L4_type; required only for checksum
1791 * calculation
1792 */
1793 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1794 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1795
1796 if (l3_proto == htons(ETH_P_IP))
1797 command |= MVNETA_TXD_IP_CSUM;
1798 else
1799 command |= MVNETA_TX_L3_IP6;
1800
1801 if (l4_proto == IPPROTO_TCP)
1802 command |= MVNETA_TX_L4_CSUM_FULL;
1803 else if (l4_proto == IPPROTO_UDP)
1804 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1805 else
1806 command |= MVNETA_TX_L4_CSUM_NOT;
1807
1808 return command;
1809}
1810
1811
1812/* Display more error info */
1813static void mvneta_rx_error(struct mvneta_port *pp,
1814 struct mvneta_rx_desc *rx_desc)
1815{
1816 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1817 u32 status = rx_desc->status;
1818
1819 /* update per-cpu counter */
1820 u64_stats_update_begin(&stats->syncp);
1821 stats->rx_errors++;
1822 u64_stats_update_end(&stats->syncp);
1823
1824 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1825 case MVNETA_RXD_ERR_CRC:
1826 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1827 status, rx_desc->data_size);
1828 break;
1829 case MVNETA_RXD_ERR_OVERRUN:
1830 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1831 status, rx_desc->data_size);
1832 break;
1833 case MVNETA_RXD_ERR_LEN:
1834 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1835 status, rx_desc->data_size);
1836 break;
1837 case MVNETA_RXD_ERR_RESOURCE:
1838 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1839 status, rx_desc->data_size);
1840 break;
1841 }
1842}
1843
1844/* Handle RX checksum offload based on the descriptor's status */
1845static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
1846{
1847 if ((pp->dev->features & NETIF_F_RXCSUM) &&
1848 (status & MVNETA_RXD_L3_IP4) &&
1849 (status & MVNETA_RXD_L4_CSUM_OK))
1850 return CHECKSUM_UNNECESSARY;
1851
1852 return CHECKSUM_NONE;
1853}
1854
1855/* Return tx queue pointer (find last set bit) according to <cause> returned
1856 * form tx_done reg. <cause> must not be null. The return value is always a
1857 * valid queue for matching the first one found in <cause>.
1858 */
1859static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1860 u32 cause)
1861{
1862 int queue = fls(cause) - 1;
1863
1864 return &pp->txqs[queue];
1865}
1866
1867/* Free tx queue skbuffs */
1868static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1869 struct mvneta_tx_queue *txq, int num,
1870 struct netdev_queue *nq, bool napi)
1871{
1872 unsigned int bytes_compl = 0, pkts_compl = 0;
1873 struct xdp_frame_bulk bq;
1874 int i;
1875
1876 xdp_frame_bulk_init(&bq);
1877
1878 rcu_read_lock(); /* need for xdp_return_frame_bulk */
1879
1880 for (i = 0; i < num; i++) {
1881 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1882 struct mvneta_tx_desc *tx_desc = txq->descs +
1883 txq->txq_get_index;
1884
1885 mvneta_txq_inc_get(txq);
1886
1887 if (buf->type == MVNETA_TYPE_XDP_NDO ||
1888 buf->type == MVNETA_TYPE_SKB)
1889 dma_unmap_single(pp->dev->dev.parent,
1890 tx_desc->buf_phys_addr,
1891 tx_desc->data_size, DMA_TO_DEVICE);
1892 if ((buf->type == MVNETA_TYPE_TSO ||
1893 buf->type == MVNETA_TYPE_SKB) && buf->skb) {
1894 bytes_compl += buf->skb->len;
1895 pkts_compl++;
1896 dev_kfree_skb_any(buf->skb);
1897 } else if ((buf->type == MVNETA_TYPE_XDP_TX ||
1898 buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
1899 if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1900 xdp_return_frame_rx_napi(buf->xdpf);
1901 else
1902 xdp_return_frame_bulk(buf->xdpf, &bq);
1903 }
1904 }
1905 xdp_flush_frame_bulk(&bq);
1906
1907 rcu_read_unlock();
1908
1909 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1910}
1911
1912/* Handle end of transmission */
1913static void mvneta_txq_done(struct mvneta_port *pp,
1914 struct mvneta_tx_queue *txq)
1915{
1916 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1917 int tx_done;
1918
1919 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1920 if (!tx_done)
1921 return;
1922
1923 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1924
1925 txq->count -= tx_done;
1926
1927 if (netif_tx_queue_stopped(nq)) {
1928 if (txq->count <= txq->tx_wake_threshold)
1929 netif_tx_wake_queue(nq);
1930 }
1931}
1932
1933/* Refill processing for SW buffer management */
1934/* Allocate page per descriptor */
1935static int mvneta_rx_refill(struct mvneta_port *pp,
1936 struct mvneta_rx_desc *rx_desc,
1937 struct mvneta_rx_queue *rxq,
1938 gfp_t gfp_mask)
1939{
1940 dma_addr_t phys_addr;
1941 struct page *page;
1942
1943 page = page_pool_alloc_pages(rxq->page_pool,
1944 gfp_mask | __GFP_NOWARN);
1945 if (!page)
1946 return -ENOMEM;
1947
1948 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1949 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1950
1951 return 0;
1952}
1953
1954/* Handle tx checksum */
1955static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
1956{
1957 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1958 int ip_hdr_len = 0;
1959 __be16 l3_proto = vlan_get_protocol(skb);
1960 u8 l4_proto;
1961
1962 if (l3_proto == htons(ETH_P_IP)) {
1963 struct iphdr *ip4h = ip_hdr(skb);
1964
1965 /* Calculate IPv4 checksum and L4 checksum */
1966 ip_hdr_len = ip4h->ihl;
1967 l4_proto = ip4h->protocol;
1968 } else if (l3_proto == htons(ETH_P_IPV6)) {
1969 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1970
1971 /* Read l4_protocol from one of IPv6 extra headers */
1972 if (skb_network_header_len(skb) > 0)
1973 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1974 l4_proto = ip6h->nexthdr;
1975 } else
1976 return MVNETA_TX_L4_CSUM_NOT;
1977
1978 return mvneta_txq_desc_csum(skb_network_offset(skb),
1979 l3_proto, ip_hdr_len, l4_proto);
1980 }
1981
1982 return MVNETA_TX_L4_CSUM_NOT;
1983}
1984
1985/* Drop packets received by the RXQ and free buffers */
1986static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1987 struct mvneta_rx_queue *rxq)
1988{
1989 int rx_done, i;
1990
1991 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1992 if (rx_done)
1993 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1994
1995 if (pp->bm_priv) {
1996 for (i = 0; i < rx_done; i++) {
1997 struct mvneta_rx_desc *rx_desc =
1998 mvneta_rxq_next_desc_get(rxq);
1999 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2000 struct mvneta_bm_pool *bm_pool;
2001
2002 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2003 /* Return dropped buffer to the pool */
2004 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2005 rx_desc->buf_phys_addr);
2006 }
2007 return;
2008 }
2009
2010 for (i = 0; i < rxq->size; i++) {
2011 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
2012 void *data = rxq->buf_virt_addr[i];
2013 if (!data || !(rx_desc->buf_phys_addr))
2014 continue;
2015
2016 page_pool_put_full_page(rxq->page_pool, data, false);
2017 }
2018 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
2019 xdp_rxq_info_unreg(&rxq->xdp_rxq);
2020 page_pool_destroy(rxq->page_pool);
2021 rxq->page_pool = NULL;
2022}
2023
2024static void
2025mvneta_update_stats(struct mvneta_port *pp,
2026 struct mvneta_stats *ps)
2027{
2028 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2029
2030 u64_stats_update_begin(&stats->syncp);
2031 stats->es.ps.rx_packets += ps->rx_packets;
2032 stats->es.ps.rx_bytes += ps->rx_bytes;
2033 /* xdp */
2034 stats->es.ps.xdp_redirect += ps->xdp_redirect;
2035 stats->es.ps.xdp_pass += ps->xdp_pass;
2036 stats->es.ps.xdp_drop += ps->xdp_drop;
2037 u64_stats_update_end(&stats->syncp);
2038}
2039
2040static inline
2041int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2042{
2043 struct mvneta_rx_desc *rx_desc;
2044 int curr_desc = rxq->first_to_refill;
2045 int i;
2046
2047 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2048 rx_desc = rxq->descs + curr_desc;
2049 if (!(rx_desc->buf_phys_addr)) {
2050 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2051 struct mvneta_pcpu_stats *stats;
2052
2053 pr_err("Can't refill queue %d. Done %d from %d\n",
2054 rxq->id, i, rxq->refill_num);
2055
2056 stats = this_cpu_ptr(pp->stats);
2057 u64_stats_update_begin(&stats->syncp);
2058 stats->es.refill_error++;
2059 u64_stats_update_end(&stats->syncp);
2060 break;
2061 }
2062 }
2063 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2064 }
2065 rxq->refill_num -= i;
2066 rxq->first_to_refill = curr_desc;
2067
2068 return i;
2069}
2070
2071static void
2072mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2073 struct xdp_buff *xdp, int sync_len)
2074{
2075 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2076 int i;
2077
2078 if (likely(!xdp_buff_has_frags(xdp)))
2079 goto out;
2080
2081 for (i = 0; i < sinfo->nr_frags; i++)
2082 page_pool_put_full_page(rxq->page_pool,
2083 skb_frag_page(&sinfo->frags[i]), true);
2084
2085out:
2086 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2087 sync_len, true);
2088}
2089
2090static int
2091mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2092 struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
2093{
2094 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2095 struct device *dev = pp->dev->dev.parent;
2096 struct mvneta_tx_desc *tx_desc;
2097 int i, num_frames = 1;
2098 struct page *page;
2099
2100 if (unlikely(xdp_frame_has_frags(xdpf)))
2101 num_frames += sinfo->nr_frags;
2102
2103 if (txq->count + num_frames >= txq->size)
2104 return MVNETA_XDP_DROPPED;
2105
2106 for (i = 0; i < num_frames; i++) {
2107 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2108 skb_frag_t *frag = NULL;
2109 int len = xdpf->len;
2110 dma_addr_t dma_addr;
2111
2112 if (unlikely(i)) { /* paged area */
2113 frag = &sinfo->frags[i - 1];
2114 len = skb_frag_size(frag);
2115 }
2116
2117 tx_desc = mvneta_txq_next_desc_get(txq);
2118 if (dma_map) {
2119 /* ndo_xdp_xmit */
2120 void *data;
2121
2122 data = unlikely(frag) ? skb_frag_address(frag)
2123 : xdpf->data;
2124 dma_addr = dma_map_single(dev, data, len,
2125 DMA_TO_DEVICE);
2126 if (dma_mapping_error(dev, dma_addr)) {
2127 mvneta_txq_desc_put(txq);
2128 goto unmap;
2129 }
2130
2131 buf->type = MVNETA_TYPE_XDP_NDO;
2132 } else {
2133 page = unlikely(frag) ? skb_frag_page(frag)
2134 : virt_to_page(xdpf->data);
2135 dma_addr = page_pool_get_dma_addr(page);
2136 if (unlikely(frag))
2137 dma_addr += skb_frag_off(frag);
2138 else
2139 dma_addr += sizeof(*xdpf) + xdpf->headroom;
2140 dma_sync_single_for_device(dev, dma_addr, len,
2141 DMA_BIDIRECTIONAL);
2142 buf->type = MVNETA_TYPE_XDP_TX;
2143 }
2144 buf->xdpf = unlikely(i) ? NULL : xdpf;
2145
2146 tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
2147 tx_desc->buf_phys_addr = dma_addr;
2148 tx_desc->data_size = len;
2149 *nxmit_byte += len;
2150
2151 mvneta_txq_inc_put(txq);
2152 }
2153 /*last descriptor */
2154 tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2155
2156 txq->pending += num_frames;
2157 txq->count += num_frames;
2158
2159 return MVNETA_XDP_TX;
2160
2161unmap:
2162 for (i--; i >= 0; i--) {
2163 mvneta_txq_desc_put(txq);
2164 tx_desc = txq->descs + txq->next_desc_to_proc;
2165 dma_unmap_single(dev, tx_desc->buf_phys_addr,
2166 tx_desc->data_size,
2167 DMA_TO_DEVICE);
2168 }
2169
2170 return MVNETA_XDP_DROPPED;
2171}
2172
2173static int
2174mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2175{
2176 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2177 struct mvneta_tx_queue *txq;
2178 struct netdev_queue *nq;
2179 int cpu, nxmit_byte = 0;
2180 struct xdp_frame *xdpf;
2181 u32 ret;
2182
2183 xdpf = xdp_convert_buff_to_frame(xdp);
2184 if (unlikely(!xdpf))
2185 return MVNETA_XDP_DROPPED;
2186
2187 cpu = smp_processor_id();
2188 txq = &pp->txqs[cpu % txq_number];
2189 nq = netdev_get_tx_queue(pp->dev, txq->id);
2190
2191 __netif_tx_lock(nq, cpu);
2192 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
2193 if (ret == MVNETA_XDP_TX) {
2194 u64_stats_update_begin(&stats->syncp);
2195 stats->es.ps.tx_bytes += nxmit_byte;
2196 stats->es.ps.tx_packets++;
2197 stats->es.ps.xdp_tx++;
2198 u64_stats_update_end(&stats->syncp);
2199
2200 mvneta_txq_pend_desc_add(pp, txq, 0);
2201 } else {
2202 u64_stats_update_begin(&stats->syncp);
2203 stats->es.ps.xdp_tx_err++;
2204 u64_stats_update_end(&stats->syncp);
2205 }
2206 __netif_tx_unlock(nq);
2207
2208 return ret;
2209}
2210
2211static int
2212mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2213 struct xdp_frame **frames, u32 flags)
2214{
2215 struct mvneta_port *pp = netdev_priv(dev);
2216 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2217 int i, nxmit_byte = 0, nxmit = 0;
2218 int cpu = smp_processor_id();
2219 struct mvneta_tx_queue *txq;
2220 struct netdev_queue *nq;
2221 u32 ret;
2222
2223 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2224 return -ENETDOWN;
2225
2226 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2227 return -EINVAL;
2228
2229 txq = &pp->txqs[cpu % txq_number];
2230 nq = netdev_get_tx_queue(pp->dev, txq->id);
2231
2232 __netif_tx_lock(nq, cpu);
2233 for (i = 0; i < num_frame; i++) {
2234 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
2235 true);
2236 if (ret != MVNETA_XDP_TX)
2237 break;
2238
2239 nxmit++;
2240 }
2241
2242 if (unlikely(flags & XDP_XMIT_FLUSH))
2243 mvneta_txq_pend_desc_add(pp, txq, 0);
2244 __netif_tx_unlock(nq);
2245
2246 u64_stats_update_begin(&stats->syncp);
2247 stats->es.ps.tx_bytes += nxmit_byte;
2248 stats->es.ps.tx_packets += nxmit;
2249 stats->es.ps.xdp_xmit += nxmit;
2250 stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2251 u64_stats_update_end(&stats->syncp);
2252
2253 return nxmit;
2254}
2255
2256static int
2257mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2258 struct bpf_prog *prog, struct xdp_buff *xdp,
2259 u32 frame_sz, struct mvneta_stats *stats)
2260{
2261 unsigned int len, data_len, sync;
2262 u32 ret, act;
2263
2264 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2265 data_len = xdp->data_end - xdp->data;
2266 act = bpf_prog_run_xdp(prog, xdp);
2267
2268 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2269 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2270 sync = max(sync, len);
2271
2272 switch (act) {
2273 case XDP_PASS:
2274 stats->xdp_pass++;
2275 return MVNETA_XDP_PASS;
2276 case XDP_REDIRECT: {
2277 int err;
2278
2279 err = xdp_do_redirect(pp->dev, xdp, prog);
2280 if (unlikely(err)) {
2281 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2282 ret = MVNETA_XDP_DROPPED;
2283 } else {
2284 ret = MVNETA_XDP_REDIR;
2285 stats->xdp_redirect++;
2286 }
2287 break;
2288 }
2289 case XDP_TX:
2290 ret = mvneta_xdp_xmit_back(pp, xdp);
2291 if (ret != MVNETA_XDP_TX)
2292 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2293 break;
2294 default:
2295 bpf_warn_invalid_xdp_action(pp->dev, prog, act);
2296 fallthrough;
2297 case XDP_ABORTED:
2298 trace_xdp_exception(pp->dev, prog, act);
2299 fallthrough;
2300 case XDP_DROP:
2301 mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2302 ret = MVNETA_XDP_DROPPED;
2303 stats->xdp_drop++;
2304 break;
2305 }
2306
2307 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2308 stats->rx_packets++;
2309
2310 return ret;
2311}
2312
2313static void
2314mvneta_swbm_rx_frame(struct mvneta_port *pp,
2315 struct mvneta_rx_desc *rx_desc,
2316 struct mvneta_rx_queue *rxq,
2317 struct xdp_buff *xdp, int *size,
2318 struct page *page)
2319{
2320 unsigned char *data = page_address(page);
2321 int data_len = -MVNETA_MH_SIZE, len;
2322 struct net_device *dev = pp->dev;
2323 enum dma_data_direction dma_dir;
2324
2325 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2326 len = MVNETA_MAX_RX_BUF_SIZE;
2327 data_len += len;
2328 } else {
2329 len = *size;
2330 data_len += len - ETH_FCS_LEN;
2331 }
2332 *size = *size - len;
2333
2334 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2335 dma_sync_single_for_cpu(dev->dev.parent,
2336 rx_desc->buf_phys_addr,
2337 len, dma_dir);
2338
2339 rx_desc->buf_phys_addr = 0;
2340
2341 /* Prefetch header */
2342 prefetch(data);
2343 xdp_buff_clear_frags_flag(xdp);
2344 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2345 data_len, false);
2346}
2347
2348static void
2349mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2350 struct mvneta_rx_desc *rx_desc,
2351 struct mvneta_rx_queue *rxq,
2352 struct xdp_buff *xdp, int *size,
2353 struct page *page)
2354{
2355 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2356 struct net_device *dev = pp->dev;
2357 enum dma_data_direction dma_dir;
2358 int data_len, len;
2359
2360 if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2361 len = MVNETA_MAX_RX_BUF_SIZE;
2362 data_len = len;
2363 } else {
2364 len = *size;
2365 data_len = len - ETH_FCS_LEN;
2366 }
2367 dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2368 dma_sync_single_for_cpu(dev->dev.parent,
2369 rx_desc->buf_phys_addr,
2370 len, dma_dir);
2371 rx_desc->buf_phys_addr = 0;
2372
2373 if (!xdp_buff_has_frags(xdp))
2374 sinfo->nr_frags = 0;
2375
2376 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2377 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];
2378
2379 skb_frag_fill_page_desc(frag, page,
2380 pp->rx_offset_correction, data_len);
2381
2382 if (!xdp_buff_has_frags(xdp)) {
2383 sinfo->xdp_frags_size = *size;
2384 xdp_buff_set_frags_flag(xdp);
2385 }
2386 if (page_is_pfmemalloc(page))
2387 xdp_buff_set_frag_pfmemalloc(xdp);
2388 } else {
2389 page_pool_put_full_page(rxq->page_pool, page, true);
2390 }
2391 *size -= len;
2392}
2393
2394static struct sk_buff *
2395mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2396 struct xdp_buff *xdp, u32 desc_status)
2397{
2398 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2399 struct sk_buff *skb;
2400 u8 num_frags;
2401
2402 if (unlikely(xdp_buff_has_frags(xdp)))
2403 num_frags = sinfo->nr_frags;
2404
2405 skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2406 if (!skb)
2407 return ERR_PTR(-ENOMEM);
2408
2409 skb_mark_for_recycle(skb);
2410
2411 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2412 skb_put(skb, xdp->data_end - xdp->data);
2413 skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2414
2415 if (unlikely(xdp_buff_has_frags(xdp)))
2416 xdp_update_skb_shared_info(skb, num_frags,
2417 sinfo->xdp_frags_size,
2418 num_frags * xdp->frame_sz,
2419 xdp_buff_is_frag_pfmemalloc(xdp));
2420
2421 return skb;
2422}
2423
2424/* Main rx processing when using software buffer management */
2425static int mvneta_rx_swbm(struct napi_struct *napi,
2426 struct mvneta_port *pp, int budget,
2427 struct mvneta_rx_queue *rxq)
2428{
2429 int rx_proc = 0, rx_todo, refill, size = 0;
2430 struct net_device *dev = pp->dev;
2431 struct mvneta_stats ps = {};
2432 struct bpf_prog *xdp_prog;
2433 u32 desc_status, frame_sz;
2434 struct xdp_buff xdp_buf;
2435
2436 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2437 xdp_buf.data_hard_start = NULL;
2438
2439 /* Get number of received packets */
2440 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2441
2442 xdp_prog = READ_ONCE(pp->xdp_prog);
2443
2444 /* Fairness NAPI loop */
2445 while (rx_proc < budget && rx_proc < rx_todo) {
2446 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2447 u32 rx_status, index;
2448 struct sk_buff *skb;
2449 struct page *page;
2450
2451 index = rx_desc - rxq->descs;
2452 page = (struct page *)rxq->buf_virt_addr[index];
2453
2454 rx_status = rx_desc->status;
2455 rx_proc++;
2456 rxq->refill_num++;
2457
2458 if (rx_status & MVNETA_RXD_FIRST_DESC) {
2459 /* Check errors only for FIRST descriptor */
2460 if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2461 mvneta_rx_error(pp, rx_desc);
2462 goto next;
2463 }
2464
2465 size = rx_desc->data_size;
2466 frame_sz = size - ETH_FCS_LEN;
2467 desc_status = rx_status;
2468
2469 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2470 &size, page);
2471 } else {
2472 if (unlikely(!xdp_buf.data_hard_start)) {
2473 rx_desc->buf_phys_addr = 0;
2474 page_pool_put_full_page(rxq->page_pool, page,
2475 true);
2476 goto next;
2477 }
2478
2479 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2480 &size, page);
2481 } /* Middle or Last descriptor */
2482
2483 if (!(rx_status & MVNETA_RXD_LAST_DESC))
2484 /* no last descriptor this time */
2485 continue;
2486
2487 if (size) {
2488 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2489 goto next;
2490 }
2491
2492 if (xdp_prog &&
2493 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2494 goto next;
2495
2496 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2497 if (IS_ERR(skb)) {
2498 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2499
2500 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2501
2502 u64_stats_update_begin(&stats->syncp);
2503 stats->es.skb_alloc_error++;
2504 stats->rx_dropped++;
2505 u64_stats_update_end(&stats->syncp);
2506
2507 goto next;
2508 }
2509
2510 ps.rx_bytes += skb->len;
2511 ps.rx_packets++;
2512
2513 skb->protocol = eth_type_trans(skb, dev);
2514 napi_gro_receive(napi, skb);
2515next:
2516 xdp_buf.data_hard_start = NULL;
2517 }
2518
2519 if (xdp_buf.data_hard_start)
2520 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2521
2522 if (ps.xdp_redirect)
2523 xdp_do_flush();
2524
2525 if (ps.rx_packets)
2526 mvneta_update_stats(pp, &ps);
2527
2528 /* return some buffers to hardware queue, one at a time is too slow */
2529 refill = mvneta_rx_refill_queue(pp, rxq);
2530
2531 /* Update rxq management counters */
2532 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2533
2534 return ps.rx_packets;
2535}
2536
2537/* Main rx processing when using hardware buffer management */
2538static int mvneta_rx_hwbm(struct napi_struct *napi,
2539 struct mvneta_port *pp, int rx_todo,
2540 struct mvneta_rx_queue *rxq)
2541{
2542 struct net_device *dev = pp->dev;
2543 int rx_done;
2544 u32 rcvd_pkts = 0;
2545 u32 rcvd_bytes = 0;
2546
2547 /* Get number of received packets */
2548 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2549
2550 if (rx_todo > rx_done)
2551 rx_todo = rx_done;
2552
2553 rx_done = 0;
2554
2555 /* Fairness NAPI loop */
2556 while (rx_done < rx_todo) {
2557 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2558 struct mvneta_bm_pool *bm_pool = NULL;
2559 struct sk_buff *skb;
2560 unsigned char *data;
2561 dma_addr_t phys_addr;
2562 u32 rx_status, frag_size;
2563 int rx_bytes, err;
2564 u8 pool_id;
2565
2566 rx_done++;
2567 rx_status = rx_desc->status;
2568 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2569 data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2570 phys_addr = rx_desc->buf_phys_addr;
2571 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2572 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2573
2574 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2575 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2576err_drop_frame_ret_pool:
2577 /* Return the buffer to the pool */
2578 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2579 rx_desc->buf_phys_addr);
2580err_drop_frame:
2581 mvneta_rx_error(pp, rx_desc);
2582 /* leave the descriptor untouched */
2583 continue;
2584 }
2585
2586 if (rx_bytes <= rx_copybreak) {
2587 /* better copy a small frame and not unmap the DMA region */
2588 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2589 if (unlikely(!skb))
2590 goto err_drop_frame_ret_pool;
2591
2592 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2593 rx_desc->buf_phys_addr,
2594 MVNETA_MH_SIZE + NET_SKB_PAD,
2595 rx_bytes,
2596 DMA_FROM_DEVICE);
2597 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2598 rx_bytes);
2599
2600 skb->protocol = eth_type_trans(skb, dev);
2601 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2602 napi_gro_receive(napi, skb);
2603
2604 rcvd_pkts++;
2605 rcvd_bytes += rx_bytes;
2606
2607 /* Return the buffer to the pool */
2608 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2609 rx_desc->buf_phys_addr);
2610
2611 /* leave the descriptor and buffer untouched */
2612 continue;
2613 }
2614
2615 /* Refill processing */
2616 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2617 if (err) {
2618 struct mvneta_pcpu_stats *stats;
2619
2620 netdev_err(dev, "Linux processing - Can't refill\n");
2621
2622 stats = this_cpu_ptr(pp->stats);
2623 u64_stats_update_begin(&stats->syncp);
2624 stats->es.refill_error++;
2625 u64_stats_update_end(&stats->syncp);
2626
2627 goto err_drop_frame_ret_pool;
2628 }
2629
2630 frag_size = bm_pool->hwbm_pool.frag_size;
2631
2632 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2633
2634 /* After refill old buffer has to be unmapped regardless
2635 * the skb is successfully built or not.
2636 */
2637 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2638 bm_pool->buf_size, DMA_FROM_DEVICE);
2639 if (!skb)
2640 goto err_drop_frame;
2641
2642 rcvd_pkts++;
2643 rcvd_bytes += rx_bytes;
2644
2645 /* Linux processing */
2646 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2647 skb_put(skb, rx_bytes);
2648
2649 skb->protocol = eth_type_trans(skb, dev);
2650 skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2651
2652 napi_gro_receive(napi, skb);
2653 }
2654
2655 if (rcvd_pkts) {
2656 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2657
2658 u64_stats_update_begin(&stats->syncp);
2659 stats->es.ps.rx_packets += rcvd_pkts;
2660 stats->es.ps.rx_bytes += rcvd_bytes;
2661 u64_stats_update_end(&stats->syncp);
2662 }
2663
2664 /* Update rxq management counters */
2665 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2666
2667 return rx_done;
2668}
2669
2670static void mvneta_free_tso_hdrs(struct mvneta_port *pp,
2671 struct mvneta_tx_queue *txq)
2672{
2673 struct device *dev = pp->dev->dev.parent;
2674 int i;
2675
2676 for (i = 0; i < MVNETA_MAX_TSO_PAGES; i++) {
2677 if (txq->tso_hdrs[i]) {
2678 dma_free_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2679 txq->tso_hdrs[i],
2680 txq->tso_hdrs_phys[i]);
2681 txq->tso_hdrs[i] = NULL;
2682 }
2683 }
2684}
2685
2686static int mvneta_alloc_tso_hdrs(struct mvneta_port *pp,
2687 struct mvneta_tx_queue *txq)
2688{
2689 struct device *dev = pp->dev->dev.parent;
2690 int i, num;
2691
2692 num = DIV_ROUND_UP(txq->size, MVNETA_TSO_PER_PAGE);
2693 for (i = 0; i < num; i++) {
2694 txq->tso_hdrs[i] = dma_alloc_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2695 &txq->tso_hdrs_phys[i],
2696 GFP_KERNEL);
2697 if (!txq->tso_hdrs[i]) {
2698 mvneta_free_tso_hdrs(pp, txq);
2699 return -ENOMEM;
2700 }
2701 }
2702
2703 return 0;
2704}
2705
2706static char *mvneta_get_tso_hdr(struct mvneta_tx_queue *txq, dma_addr_t *dma)
2707{
2708 int index, offset;
2709
2710 index = txq->txq_put_index / MVNETA_TSO_PER_PAGE;
2711 offset = (txq->txq_put_index % MVNETA_TSO_PER_PAGE) * TSO_HEADER_SIZE;
2712
2713 *dma = txq->tso_hdrs_phys[index] + offset;
2714
2715 return txq->tso_hdrs[index] + offset;
2716}
2717
2718static void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq,
2719 struct tso_t *tso, int size, bool is_last)
2720{
2721 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2722 int hdr_len = skb_tcp_all_headers(skb);
2723 struct mvneta_tx_desc *tx_desc;
2724 dma_addr_t hdr_phys;
2725 char *hdr;
2726
2727 hdr = mvneta_get_tso_hdr(txq, &hdr_phys);
2728 tso_build_hdr(skb, hdr, tso, size, is_last);
2729
2730 tx_desc = mvneta_txq_next_desc_get(txq);
2731 tx_desc->data_size = hdr_len;
2732 tx_desc->command = mvneta_skb_tx_csum(skb);
2733 tx_desc->command |= MVNETA_TXD_F_DESC;
2734 tx_desc->buf_phys_addr = hdr_phys;
2735 buf->type = MVNETA_TYPE_TSO;
2736 buf->skb = NULL;
2737
2738 mvneta_txq_inc_put(txq);
2739}
2740
2741static inline int
2742mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2743 struct sk_buff *skb, char *data, int size,
2744 bool last_tcp, bool is_last)
2745{
2746 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2747 struct mvneta_tx_desc *tx_desc;
2748
2749 tx_desc = mvneta_txq_next_desc_get(txq);
2750 tx_desc->data_size = size;
2751 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2752 size, DMA_TO_DEVICE);
2753 if (unlikely(dma_mapping_error(dev->dev.parent,
2754 tx_desc->buf_phys_addr))) {
2755 mvneta_txq_desc_put(txq);
2756 return -ENOMEM;
2757 }
2758
2759 tx_desc->command = 0;
2760 buf->type = MVNETA_TYPE_SKB;
2761 buf->skb = NULL;
2762
2763 if (last_tcp) {
2764 /* last descriptor in the TCP packet */
2765 tx_desc->command = MVNETA_TXD_L_DESC;
2766
2767 /* last descriptor in SKB */
2768 if (is_last)
2769 buf->skb = skb;
2770 }
2771 mvneta_txq_inc_put(txq);
2772 return 0;
2773}
2774
2775static void mvneta_release_descs(struct mvneta_port *pp,
2776 struct mvneta_tx_queue *txq,
2777 int first, int num)
2778{
2779 int desc_idx, i;
2780
2781 desc_idx = first + num;
2782 if (desc_idx >= txq->size)
2783 desc_idx -= txq->size;
2784
2785 for (i = num; i >= 0; i--) {
2786 struct mvneta_tx_desc *tx_desc = txq->descs + desc_idx;
2787 struct mvneta_tx_buf *buf = &txq->buf[desc_idx];
2788
2789 if (buf->type == MVNETA_TYPE_SKB)
2790 dma_unmap_single(pp->dev->dev.parent,
2791 tx_desc->buf_phys_addr,
2792 tx_desc->data_size,
2793 DMA_TO_DEVICE);
2794
2795 mvneta_txq_desc_put(txq);
2796
2797 if (desc_idx == 0)
2798 desc_idx = txq->size;
2799 desc_idx -= 1;
2800 }
2801}
2802
2803static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2804 struct mvneta_tx_queue *txq)
2805{
2806 int hdr_len, total_len, data_left;
2807 int first_desc, desc_count = 0;
2808 struct mvneta_port *pp = netdev_priv(dev);
2809 struct tso_t tso;
2810
2811 /* Count needed descriptors */
2812 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2813 return 0;
2814
2815 if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
2816 pr_info("*** Is this even possible?\n");
2817 return 0;
2818 }
2819
2820 first_desc = txq->txq_put_index;
2821
2822 /* Initialize the TSO handler, and prepare the first payload */
2823 hdr_len = tso_start(skb, &tso);
2824
2825 total_len = skb->len - hdr_len;
2826 while (total_len > 0) {
2827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2828 total_len -= data_left;
2829 desc_count++;
2830
2831 /* prepare packet headers: MAC + IP + TCP */
2832 mvneta_tso_put_hdr(skb, txq, &tso, data_left, total_len == 0);
2833
2834 while (data_left > 0) {
2835 int size;
2836 desc_count++;
2837
2838 size = min_t(int, tso.size, data_left);
2839
2840 if (mvneta_tso_put_data(dev, txq, skb,
2841 tso.data, size,
2842 size == data_left,
2843 total_len == 0))
2844 goto err_release;
2845 data_left -= size;
2846
2847 tso_build_data(skb, &tso, size);
2848 }
2849 }
2850
2851 return desc_count;
2852
2853err_release:
2854 /* Release all used data descriptors; header descriptors must not
2855 * be DMA-unmapped.
2856 */
2857 mvneta_release_descs(pp, txq, first_desc, desc_count - 1);
2858 return 0;
2859}
2860
2861/* Handle tx fragmentation processing */
2862static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2863 struct mvneta_tx_queue *txq)
2864{
2865 struct mvneta_tx_desc *tx_desc;
2866 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2867 int first_desc = txq->txq_put_index;
2868
2869 for (i = 0; i < nr_frags; i++) {
2870 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2871 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2872 void *addr = skb_frag_address(frag);
2873
2874 tx_desc = mvneta_txq_next_desc_get(txq);
2875 tx_desc->data_size = skb_frag_size(frag);
2876
2877 tx_desc->buf_phys_addr =
2878 dma_map_single(pp->dev->dev.parent, addr,
2879 tx_desc->data_size, DMA_TO_DEVICE);
2880
2881 if (dma_mapping_error(pp->dev->dev.parent,
2882 tx_desc->buf_phys_addr)) {
2883 mvneta_txq_desc_put(txq);
2884 goto error;
2885 }
2886
2887 if (i == nr_frags - 1) {
2888 /* Last descriptor */
2889 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2890 buf->skb = skb;
2891 } else {
2892 /* Descriptor in the middle: Not First, Not Last */
2893 tx_desc->command = 0;
2894 buf->skb = NULL;
2895 }
2896 buf->type = MVNETA_TYPE_SKB;
2897 mvneta_txq_inc_put(txq);
2898 }
2899
2900 return 0;
2901
2902error:
2903 /* Release all descriptors that were used to map fragments of
2904 * this packet, as well as the corresponding DMA mappings
2905 */
2906 mvneta_release_descs(pp, txq, first_desc, i - 1);
2907 return -ENOMEM;
2908}
2909
2910/* Main tx processing */
2911static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2912{
2913 struct mvneta_port *pp = netdev_priv(dev);
2914 u16 txq_id = skb_get_queue_mapping(skb);
2915 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2916 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2917 struct mvneta_tx_desc *tx_desc;
2918 int len = skb->len;
2919 int frags = 0;
2920 u32 tx_cmd;
2921
2922 if (!netif_running(dev))
2923 goto out;
2924
2925 if (skb_is_gso(skb)) {
2926 frags = mvneta_tx_tso(skb, dev, txq);
2927 goto out;
2928 }
2929
2930 frags = skb_shinfo(skb)->nr_frags + 1;
2931
2932 /* Get a descriptor for the first part of the packet */
2933 tx_desc = mvneta_txq_next_desc_get(txq);
2934
2935 tx_cmd = mvneta_skb_tx_csum(skb);
2936
2937 tx_desc->data_size = skb_headlen(skb);
2938
2939 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2940 tx_desc->data_size,
2941 DMA_TO_DEVICE);
2942 if (unlikely(dma_mapping_error(dev->dev.parent,
2943 tx_desc->buf_phys_addr))) {
2944 mvneta_txq_desc_put(txq);
2945 frags = 0;
2946 goto out;
2947 }
2948
2949 buf->type = MVNETA_TYPE_SKB;
2950 if (frags == 1) {
2951 /* First and Last descriptor */
2952 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2953 tx_desc->command = tx_cmd;
2954 buf->skb = skb;
2955 mvneta_txq_inc_put(txq);
2956 } else {
2957 /* First but not Last */
2958 tx_cmd |= MVNETA_TXD_F_DESC;
2959 buf->skb = NULL;
2960 mvneta_txq_inc_put(txq);
2961 tx_desc->command = tx_cmd;
2962 /* Continue with other skb fragments */
2963 if (mvneta_tx_frag_process(pp, skb, txq)) {
2964 dma_unmap_single(dev->dev.parent,
2965 tx_desc->buf_phys_addr,
2966 tx_desc->data_size,
2967 DMA_TO_DEVICE);
2968 mvneta_txq_desc_put(txq);
2969 frags = 0;
2970 goto out;
2971 }
2972 }
2973
2974out:
2975 if (frags > 0) {
2976 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2978
2979 netdev_tx_sent_queue(nq, len);
2980
2981 txq->count += frags;
2982 if (txq->count >= txq->tx_stop_threshold)
2983 netif_tx_stop_queue(nq);
2984
2985 if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2986 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2987 mvneta_txq_pend_desc_add(pp, txq, frags);
2988 else
2989 txq->pending += frags;
2990
2991 u64_stats_update_begin(&stats->syncp);
2992 stats->es.ps.tx_bytes += len;
2993 stats->es.ps.tx_packets++;
2994 u64_stats_update_end(&stats->syncp);
2995 } else {
2996 dev->stats.tx_dropped++;
2997 dev_kfree_skb_any(skb);
2998 }
2999
3000 return NETDEV_TX_OK;
3001}
3002
3003
3004/* Free tx resources, when resetting a port */
3005static void mvneta_txq_done_force(struct mvneta_port *pp,
3006 struct mvneta_tx_queue *txq)
3007
3008{
3009 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3010 int tx_done = txq->count;
3011
3012 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
3013
3014 /* reset txq */
3015 txq->count = 0;
3016 txq->txq_put_index = 0;
3017 txq->txq_get_index = 0;
3018}
3019
3020/* Handle tx done - called in softirq context. The <cause_tx_done> argument
3021 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
3022 */
3023static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
3024{
3025 struct mvneta_tx_queue *txq;
3026 struct netdev_queue *nq;
3027 int cpu = smp_processor_id();
3028
3029 while (cause_tx_done) {
3030 txq = mvneta_tx_done_policy(pp, cause_tx_done);
3031
3032 nq = netdev_get_tx_queue(pp->dev, txq->id);
3033 __netif_tx_lock(nq, cpu);
3034
3035 if (txq->count)
3036 mvneta_txq_done(pp, txq);
3037
3038 __netif_tx_unlock(nq);
3039 cause_tx_done &= ~((1 << txq->id));
3040 }
3041}
3042
3043/* Compute crc8 of the specified address, using a unique algorithm ,
3044 * according to hw spec, different than generic crc8 algorithm
3045 */
3046static int mvneta_addr_crc(unsigned char *addr)
3047{
3048 int crc = 0;
3049 int i;
3050
3051 for (i = 0; i < ETH_ALEN; i++) {
3052 int j;
3053
3054 crc = (crc ^ addr[i]) << 8;
3055 for (j = 7; j >= 0; j--) {
3056 if (crc & (0x100 << j))
3057 crc ^= 0x107 << j;
3058 }
3059 }
3060
3061 return crc;
3062}
3063
3064/* This method controls the net device special MAC multicast support.
3065 * The Special Multicast Table for MAC addresses supports MAC of the form
3066 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3067 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3068 * Table entries in the DA-Filter table. This method set the Special
3069 * Multicast Table appropriate entry.
3070 */
3071static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
3072 unsigned char last_byte,
3073 int queue)
3074{
3075 unsigned int smc_table_reg;
3076 unsigned int tbl_offset;
3077 unsigned int reg_offset;
3078
3079 /* Register offset from SMC table base */
3080 tbl_offset = (last_byte / 4);
3081 /* Entry offset within the above reg */
3082 reg_offset = last_byte % 4;
3083
3084 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
3085 + tbl_offset * 4));
3086
3087 if (queue == -1)
3088 smc_table_reg &= ~(0xff << (8 * reg_offset));
3089 else {
3090 smc_table_reg &= ~(0xff << (8 * reg_offset));
3091 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3092 }
3093
3094 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
3095 smc_table_reg);
3096}
3097
3098/* This method controls the network device Other MAC multicast support.
3099 * The Other Multicast Table is used for multicast of another type.
3100 * A CRC-8 is used as an index to the Other Multicast Table entries
3101 * in the DA-Filter table.
3102 * The method gets the CRC-8 value from the calling routine and
3103 * sets the Other Multicast Table appropriate entry according to the
3104 * specified CRC-8 .
3105 */
3106static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
3107 unsigned char crc8,
3108 int queue)
3109{
3110 unsigned int omc_table_reg;
3111 unsigned int tbl_offset;
3112 unsigned int reg_offset;
3113
3114 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
3115 reg_offset = crc8 % 4; /* Entry offset within the above reg */
3116
3117 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
3118
3119 if (queue == -1) {
3120 /* Clear accepts frame bit at specified Other DA table entry */
3121 omc_table_reg &= ~(0xff << (8 * reg_offset));
3122 } else {
3123 omc_table_reg &= ~(0xff << (8 * reg_offset));
3124 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3125 }
3126
3127 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3128}
3129
3130/* The network device supports multicast using two tables:
3131 * 1) Special Multicast Table for MAC addresses of the form
3132 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3133 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3134 * Table entries in the DA-Filter table.
3135 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
3136 * is used as an index to the Other Multicast Table entries in the
3137 * DA-Filter table.
3138 */
3139static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3140 int queue)
3141{
3142 unsigned char crc_result = 0;
3143
3144 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3145 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3146 return 0;
3147 }
3148
3149 crc_result = mvneta_addr_crc(p_addr);
3150 if (queue == -1) {
3151 if (pp->mcast_count[crc_result] == 0) {
3152 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3153 crc_result);
3154 return -EINVAL;
3155 }
3156
3157 pp->mcast_count[crc_result]--;
3158 if (pp->mcast_count[crc_result] != 0) {
3159 netdev_info(pp->dev,
3160 "After delete there are %d valid Mcast for crc8=0x%02x\n",
3161 pp->mcast_count[crc_result], crc_result);
3162 return -EINVAL;
3163 }
3164 } else
3165 pp->mcast_count[crc_result]++;
3166
3167 mvneta_set_other_mcast_addr(pp, crc_result, queue);
3168
3169 return 0;
3170}
3171
3172/* Configure Fitering mode of Ethernet port */
3173static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3174 int is_promisc)
3175{
3176 u32 port_cfg_reg, val;
3177
3178 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3179
3180 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3181
3182 /* Set / Clear UPM bit in port configuration register */
3183 if (is_promisc) {
3184 /* Accept all Unicast addresses */
3185 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3186 val |= MVNETA_FORCE_UNI;
3187 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3188 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3189 } else {
3190 /* Reject all Unicast addresses */
3191 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3192 val &= ~MVNETA_FORCE_UNI;
3193 }
3194
3195 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3196 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3197}
3198
3199/* register unicast and multicast addresses */
3200static void mvneta_set_rx_mode(struct net_device *dev)
3201{
3202 struct mvneta_port *pp = netdev_priv(dev);
3203 struct netdev_hw_addr *ha;
3204
3205 if (dev->flags & IFF_PROMISC) {
3206 /* Accept all: Multicast + Unicast */
3207 mvneta_rx_unicast_promisc_set(pp, 1);
3208 mvneta_set_ucast_table(pp, pp->rxq_def);
3209 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3210 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3211 } else {
3212 /* Accept single Unicast */
3213 mvneta_rx_unicast_promisc_set(pp, 0);
3214 mvneta_set_ucast_table(pp, -1);
3215 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3216
3217 if (dev->flags & IFF_ALLMULTI) {
3218 /* Accept all multicast */
3219 mvneta_set_special_mcast_table(pp, pp->rxq_def);
3220 mvneta_set_other_mcast_table(pp, pp->rxq_def);
3221 } else {
3222 /* Accept only initialized multicast */
3223 mvneta_set_special_mcast_table(pp, -1);
3224 mvneta_set_other_mcast_table(pp, -1);
3225
3226 if (!netdev_mc_empty(dev)) {
3227 netdev_for_each_mc_addr(ha, dev) {
3228 mvneta_mcast_addr_set(pp, ha->addr,
3229 pp->rxq_def);
3230 }
3231 }
3232 }
3233 }
3234}
3235
3236/* Interrupt handling - the callback for request_irq() */
3237static irqreturn_t mvneta_isr(int irq, void *dev_id)
3238{
3239 struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3240
3241 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3242 napi_schedule(&pp->napi);
3243
3244 return IRQ_HANDLED;
3245}
3246
3247/* Interrupt handling - the callback for request_percpu_irq() */
3248static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3249{
3250 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3251
3252 disable_percpu_irq(port->pp->dev->irq);
3253 napi_schedule(&port->napi);
3254
3255 return IRQ_HANDLED;
3256}
3257
3258static void mvneta_link_change(struct mvneta_port *pp)
3259{
3260 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3261
3262 phylink_pcs_change(&pp->phylink_pcs,
3263 !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3264}
3265
3266/* NAPI handler
3267 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3268 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3269 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3270 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3271 * Each CPU has its own causeRxTx register
3272 */
3273static int mvneta_poll(struct napi_struct *napi, int budget)
3274{
3275 int rx_done = 0;
3276 u32 cause_rx_tx;
3277 int rx_queue;
3278 struct mvneta_port *pp = netdev_priv(napi->dev);
3279 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3280
3281 if (!netif_running(pp->dev)) {
3282 napi_complete(napi);
3283 return rx_done;
3284 }
3285
3286 /* Read cause register */
3287 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3288 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3289 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3290
3291 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3292
3293 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3294 MVNETA_CAUSE_LINK_CHANGE))
3295 mvneta_link_change(pp);
3296 }
3297
3298 /* Release Tx descriptors */
3299 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3300 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3301 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3302 }
3303
3304 /* For the case where the last mvneta_poll did not process all
3305 * RX packets
3306 */
3307 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3308 port->cause_rx_tx;
3309
3310 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3311 if (rx_queue) {
3312 rx_queue = rx_queue - 1;
3313 if (pp->bm_priv)
3314 rx_done = mvneta_rx_hwbm(napi, pp, budget,
3315 &pp->rxqs[rx_queue]);
3316 else
3317 rx_done = mvneta_rx_swbm(napi, pp, budget,
3318 &pp->rxqs[rx_queue]);
3319 }
3320
3321 if (rx_done < budget) {
3322 cause_rx_tx = 0;
3323 napi_complete_done(napi, rx_done);
3324
3325 if (pp->neta_armada3700) {
3326 unsigned long flags;
3327
3328 local_irq_save(flags);
3329 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3330 MVNETA_RX_INTR_MASK(rxq_number) |
3331 MVNETA_TX_INTR_MASK(txq_number) |
3332 MVNETA_MISCINTR_INTR_MASK);
3333 local_irq_restore(flags);
3334 } else {
3335 enable_percpu_irq(pp->dev->irq, 0);
3336 }
3337 }
3338
3339 if (pp->neta_armada3700)
3340 pp->cause_rx_tx = cause_rx_tx;
3341 else
3342 port->cause_rx_tx = cause_rx_tx;
3343
3344 return rx_done;
3345}
3346
3347static int mvneta_create_page_pool(struct mvneta_port *pp,
3348 struct mvneta_rx_queue *rxq, int size)
3349{
3350 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3351 struct page_pool_params pp_params = {
3352 .order = 0,
3353 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3354 .pool_size = size,
3355 .nid = NUMA_NO_NODE,
3356 .dev = pp->dev->dev.parent,
3357 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3358 .offset = pp->rx_offset_correction,
3359 .max_len = MVNETA_MAX_RX_BUF_SIZE,
3360 };
3361 int err;
3362
3363 rxq->page_pool = page_pool_create(&pp_params);
3364 if (IS_ERR(rxq->page_pool)) {
3365 err = PTR_ERR(rxq->page_pool);
3366 rxq->page_pool = NULL;
3367 return err;
3368 }
3369
3370 err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
3371 PAGE_SIZE);
3372 if (err < 0)
3373 goto err_free_pp;
3374
3375 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3376 rxq->page_pool);
3377 if (err)
3378 goto err_unregister_rxq;
3379
3380 return 0;
3381
3382err_unregister_rxq:
3383 xdp_rxq_info_unreg(&rxq->xdp_rxq);
3384err_free_pp:
3385 page_pool_destroy(rxq->page_pool);
3386 rxq->page_pool = NULL;
3387 return err;
3388}
3389
3390/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3391static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3392 int num)
3393{
3394 int i, err;
3395
3396 err = mvneta_create_page_pool(pp, rxq, num);
3397 if (err < 0)
3398 return err;
3399
3400 for (i = 0; i < num; i++) {
3401 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3402 if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3403 GFP_KERNEL) != 0) {
3404 netdev_err(pp->dev,
3405 "%s:rxq %d, %d of %d buffs filled\n",
3406 __func__, rxq->id, i, num);
3407 break;
3408 }
3409 }
3410
3411 /* Add this number of RX descriptors as non occupied (ready to
3412 * get packets)
3413 */
3414 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3415
3416 return i;
3417}
3418
3419/* Free all packets pending transmit from all TXQs and reset TX port */
3420static void mvneta_tx_reset(struct mvneta_port *pp)
3421{
3422 int queue;
3423
3424 /* free the skb's in the tx ring */
3425 for (queue = 0; queue < txq_number; queue++)
3426 mvneta_txq_done_force(pp, &pp->txqs[queue]);
3427
3428 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3429 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3430}
3431
3432static void mvneta_rx_reset(struct mvneta_port *pp)
3433{
3434 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3435 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3436}
3437
3438/* Rx/Tx queue initialization/cleanup methods */
3439
3440static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3441 struct mvneta_rx_queue *rxq)
3442{
3443 rxq->size = pp->rx_ring_size;
3444
3445 /* Allocate memory for RX descriptors */
3446 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3447 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3448 &rxq->descs_phys, GFP_KERNEL);
3449 if (!rxq->descs)
3450 return -ENOMEM;
3451
3452 rxq->last_desc = rxq->size - 1;
3453
3454 return 0;
3455}
3456
3457static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3458 struct mvneta_rx_queue *rxq)
3459{
3460 /* Set Rx descriptors queue starting address */
3461 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3462 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3463
3464 /* Set coalescing pkts and time */
3465 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3466 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3467
3468 if (!pp->bm_priv) {
3469 /* Set Offset */
3470 mvneta_rxq_offset_set(pp, rxq, 0);
3471 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3472 MVNETA_MAX_RX_BUF_SIZE :
3473 MVNETA_RX_BUF_SIZE(pp->pkt_size));
3474 mvneta_rxq_bm_disable(pp, rxq);
3475 mvneta_rxq_fill(pp, rxq, rxq->size);
3476 } else {
3477 /* Set Offset */
3478 mvneta_rxq_offset_set(pp, rxq,
3479 NET_SKB_PAD - pp->rx_offset_correction);
3480
3481 mvneta_rxq_bm_enable(pp, rxq);
3482 /* Fill RXQ with buffers from RX pool */
3483 mvneta_rxq_long_pool_set(pp, rxq);
3484 mvneta_rxq_short_pool_set(pp, rxq);
3485 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3486 }
3487}
3488
3489/* Create a specified RX queue */
3490static int mvneta_rxq_init(struct mvneta_port *pp,
3491 struct mvneta_rx_queue *rxq)
3492
3493{
3494 int ret;
3495
3496 ret = mvneta_rxq_sw_init(pp, rxq);
3497 if (ret < 0)
3498 return ret;
3499
3500 mvneta_rxq_hw_init(pp, rxq);
3501
3502 return 0;
3503}
3504
3505/* Cleanup Rx queue */
3506static void mvneta_rxq_deinit(struct mvneta_port *pp,
3507 struct mvneta_rx_queue *rxq)
3508{
3509 mvneta_rxq_drop_pkts(pp, rxq);
3510
3511 if (rxq->descs)
3512 dma_free_coherent(pp->dev->dev.parent,
3513 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3514 rxq->descs,
3515 rxq->descs_phys);
3516
3517 rxq->descs = NULL;
3518 rxq->last_desc = 0;
3519 rxq->next_desc_to_proc = 0;
3520 rxq->descs_phys = 0;
3521 rxq->first_to_refill = 0;
3522 rxq->refill_num = 0;
3523}
3524
3525static int mvneta_txq_sw_init(struct mvneta_port *pp,
3526 struct mvneta_tx_queue *txq)
3527{
3528 int cpu, err;
3529
3530 txq->size = pp->tx_ring_size;
3531
3532 /* A queue must always have room for at least one skb.
3533 * Therefore, stop the queue when the free entries reaches
3534 * the maximum number of descriptors per skb.
3535 */
3536 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3537 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3538
3539 /* Allocate memory for TX descriptors */
3540 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3541 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3542 &txq->descs_phys, GFP_KERNEL);
3543 if (!txq->descs)
3544 return -ENOMEM;
3545
3546 txq->last_desc = txq->size - 1;
3547
3548 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3549 if (!txq->buf)
3550 return -ENOMEM;
3551
3552 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3553 err = mvneta_alloc_tso_hdrs(pp, txq);
3554 if (err)
3555 return err;
3556
3557 /* Setup XPS mapping */
3558 if (pp->neta_armada3700)
3559 cpu = 0;
3560 else if (txq_number > 1)
3561 cpu = txq->id % num_present_cpus();
3562 else
3563 cpu = pp->rxq_def % num_present_cpus();
3564 cpumask_set_cpu(cpu, &txq->affinity_mask);
3565 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3566
3567 return 0;
3568}
3569
3570static void mvneta_txq_hw_init(struct mvneta_port *pp,
3571 struct mvneta_tx_queue *txq)
3572{
3573 /* Set maximum bandwidth for enabled TXQs */
3574 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3575 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3576
3577 /* Set Tx descriptors queue starting address */
3578 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3579 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3580
3581 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3582}
3583
3584/* Create and initialize a tx queue */
3585static int mvneta_txq_init(struct mvneta_port *pp,
3586 struct mvneta_tx_queue *txq)
3587{
3588 int ret;
3589
3590 ret = mvneta_txq_sw_init(pp, txq);
3591 if (ret < 0)
3592 return ret;
3593
3594 mvneta_txq_hw_init(pp, txq);
3595
3596 return 0;
3597}
3598
3599/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3600static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3601 struct mvneta_tx_queue *txq)
3602{
3603 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3604
3605 kfree(txq->buf);
3606
3607 mvneta_free_tso_hdrs(pp, txq);
3608 if (txq->descs)
3609 dma_free_coherent(pp->dev->dev.parent,
3610 txq->size * MVNETA_DESC_ALIGNED_SIZE,
3611 txq->descs, txq->descs_phys);
3612
3613 netdev_tx_reset_queue(nq);
3614
3615 txq->buf = NULL;
3616 txq->descs = NULL;
3617 txq->last_desc = 0;
3618 txq->next_desc_to_proc = 0;
3619 txq->descs_phys = 0;
3620}
3621
3622static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3623 struct mvneta_tx_queue *txq)
3624{
3625 /* Set minimum bandwidth for disabled TXQs */
3626 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3627 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3628
3629 /* Set Tx descriptors queue starting address and size */
3630 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3631 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3632}
3633
3634static void mvneta_txq_deinit(struct mvneta_port *pp,
3635 struct mvneta_tx_queue *txq)
3636{
3637 mvneta_txq_sw_deinit(pp, txq);
3638 mvneta_txq_hw_deinit(pp, txq);
3639}
3640
3641/* Cleanup all Tx queues */
3642static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3643{
3644 int queue;
3645
3646 for (queue = 0; queue < txq_number; queue++)
3647 mvneta_txq_deinit(pp, &pp->txqs[queue]);
3648}
3649
3650/* Cleanup all Rx queues */
3651static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3652{
3653 int queue;
3654
3655 for (queue = 0; queue < rxq_number; queue++)
3656 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3657}
3658
3659
3660/* Init all Rx queues */
3661static int mvneta_setup_rxqs(struct mvneta_port *pp)
3662{
3663 int queue;
3664
3665 for (queue = 0; queue < rxq_number; queue++) {
3666 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3667
3668 if (err) {
3669 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3670 __func__, queue);
3671 mvneta_cleanup_rxqs(pp);
3672 return err;
3673 }
3674 }
3675
3676 return 0;
3677}
3678
3679/* Init all tx queues */
3680static int mvneta_setup_txqs(struct mvneta_port *pp)
3681{
3682 int queue;
3683
3684 for (queue = 0; queue < txq_number; queue++) {
3685 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3686 if (err) {
3687 netdev_err(pp->dev, "%s: can't create txq=%d\n",
3688 __func__, queue);
3689 mvneta_cleanup_txqs(pp);
3690 return err;
3691 }
3692 }
3693
3694 return 0;
3695}
3696
3697static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3698{
3699 int ret;
3700
3701 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3702 if (ret)
3703 return ret;
3704
3705 return phy_power_on(pp->comphy);
3706}
3707
3708static int mvneta_config_interface(struct mvneta_port *pp,
3709 phy_interface_t interface)
3710{
3711 int ret = 0;
3712
3713 if (pp->comphy) {
3714 if (interface == PHY_INTERFACE_MODE_SGMII ||
3715 interface == PHY_INTERFACE_MODE_1000BASEX ||
3716 interface == PHY_INTERFACE_MODE_2500BASEX) {
3717 ret = mvneta_comphy_init(pp, interface);
3718 }
3719 } else {
3720 switch (interface) {
3721 case PHY_INTERFACE_MODE_QSGMII:
3722 mvreg_write(pp, MVNETA_SERDES_CFG,
3723 MVNETA_QSGMII_SERDES_PROTO);
3724 break;
3725
3726 case PHY_INTERFACE_MODE_SGMII:
3727 case PHY_INTERFACE_MODE_1000BASEX:
3728 mvreg_write(pp, MVNETA_SERDES_CFG,
3729 MVNETA_SGMII_SERDES_PROTO);
3730 break;
3731
3732 case PHY_INTERFACE_MODE_2500BASEX:
3733 mvreg_write(pp, MVNETA_SERDES_CFG,
3734 MVNETA_HSGMII_SERDES_PROTO);
3735 break;
3736 default:
3737 break;
3738 }
3739 }
3740
3741 pp->phy_interface = interface;
3742
3743 return ret;
3744}
3745
3746static void mvneta_start_dev(struct mvneta_port *pp)
3747{
3748 int cpu;
3749
3750 WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3751
3752 mvneta_max_rx_size_set(pp, pp->pkt_size);
3753 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3754
3755 /* start the Rx/Tx activity */
3756 mvneta_port_enable(pp);
3757
3758 if (!pp->neta_armada3700) {
3759 /* Enable polling on the port */
3760 for_each_online_cpu(cpu) {
3761 struct mvneta_pcpu_port *port =
3762 per_cpu_ptr(pp->ports, cpu);
3763
3764 napi_enable(&port->napi);
3765 }
3766 } else {
3767 napi_enable(&pp->napi);
3768 }
3769
3770 /* Unmask interrupts. It has to be done from each CPU */
3771 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3772
3773 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3774 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3775 MVNETA_CAUSE_LINK_CHANGE);
3776
3777 phylink_start(pp->phylink);
3778
3779 /* We may have called phylink_speed_down before */
3780 phylink_speed_up(pp->phylink);
3781
3782 netif_tx_start_all_queues(pp->dev);
3783
3784 clear_bit(__MVNETA_DOWN, &pp->state);
3785}
3786
3787static void mvneta_stop_dev(struct mvneta_port *pp)
3788{
3789 unsigned int cpu;
3790
3791 set_bit(__MVNETA_DOWN, &pp->state);
3792
3793 if (device_may_wakeup(&pp->dev->dev))
3794 phylink_speed_down(pp->phylink, false);
3795
3796 phylink_stop(pp->phylink);
3797
3798 if (!pp->neta_armada3700) {
3799 for_each_online_cpu(cpu) {
3800 struct mvneta_pcpu_port *port =
3801 per_cpu_ptr(pp->ports, cpu);
3802
3803 napi_disable(&port->napi);
3804 }
3805 } else {
3806 napi_disable(&pp->napi);
3807 }
3808
3809 netif_carrier_off(pp->dev);
3810
3811 mvneta_port_down(pp);
3812 netif_tx_stop_all_queues(pp->dev);
3813
3814 /* Stop the port activity */
3815 mvneta_port_disable(pp);
3816
3817 /* Clear all ethernet port interrupts */
3818 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3819
3820 /* Mask all ethernet port interrupts */
3821 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3822
3823 mvneta_tx_reset(pp);
3824 mvneta_rx_reset(pp);
3825
3826 WARN_ON(phy_power_off(pp->comphy));
3827}
3828
3829static void mvneta_percpu_enable(void *arg)
3830{
3831 struct mvneta_port *pp = arg;
3832
3833 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3834}
3835
3836static void mvneta_percpu_disable(void *arg)
3837{
3838 struct mvneta_port *pp = arg;
3839
3840 disable_percpu_irq(pp->dev->irq);
3841}
3842
3843/* Change the device mtu */
3844static int mvneta_change_mtu(struct net_device *dev, int mtu)
3845{
3846 struct mvneta_port *pp = netdev_priv(dev);
3847 struct bpf_prog *prog = pp->xdp_prog;
3848 int ret;
3849
3850 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3851 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3852 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3853 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3854 }
3855
3856 if (prog && !prog->aux->xdp_has_frags &&
3857 mtu > MVNETA_MAX_RX_BUF_SIZE) {
3858 netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
3859 mtu);
3860
3861 return -EINVAL;
3862 }
3863
3864 WRITE_ONCE(dev->mtu, mtu);
3865
3866 if (!netif_running(dev)) {
3867 if (pp->bm_priv)
3868 mvneta_bm_update_mtu(pp, mtu);
3869
3870 netdev_update_features(dev);
3871 return 0;
3872 }
3873
3874 /* The interface is running, so we have to force a
3875 * reallocation of the queues
3876 */
3877 mvneta_stop_dev(pp);
3878 on_each_cpu(mvneta_percpu_disable, pp, true);
3879
3880 mvneta_cleanup_txqs(pp);
3881 mvneta_cleanup_rxqs(pp);
3882
3883 if (pp->bm_priv)
3884 mvneta_bm_update_mtu(pp, mtu);
3885
3886 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3887
3888 ret = mvneta_setup_rxqs(pp);
3889 if (ret) {
3890 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3891 return ret;
3892 }
3893
3894 ret = mvneta_setup_txqs(pp);
3895 if (ret) {
3896 netdev_err(dev, "unable to setup txqs after MTU change\n");
3897 return ret;
3898 }
3899
3900 on_each_cpu(mvneta_percpu_enable, pp, true);
3901 mvneta_start_dev(pp);
3902
3903 netdev_update_features(dev);
3904
3905 return 0;
3906}
3907
3908static netdev_features_t mvneta_fix_features(struct net_device *dev,
3909 netdev_features_t features)
3910{
3911 struct mvneta_port *pp = netdev_priv(dev);
3912
3913 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3914 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3915 netdev_info(dev,
3916 "Disable IP checksum for MTU greater than %dB\n",
3917 pp->tx_csum_limit);
3918 }
3919
3920 return features;
3921}
3922
3923/* Get mac address */
3924static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3925{
3926 u32 mac_addr_l, mac_addr_h;
3927
3928 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3929 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3930 addr[0] = (mac_addr_h >> 24) & 0xFF;
3931 addr[1] = (mac_addr_h >> 16) & 0xFF;
3932 addr[2] = (mac_addr_h >> 8) & 0xFF;
3933 addr[3] = mac_addr_h & 0xFF;
3934 addr[4] = (mac_addr_l >> 8) & 0xFF;
3935 addr[5] = mac_addr_l & 0xFF;
3936}
3937
3938/* Handle setting mac address */
3939static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3940{
3941 struct mvneta_port *pp = netdev_priv(dev);
3942 struct sockaddr *sockaddr = addr;
3943 int ret;
3944
3945 ret = eth_prepare_mac_addr_change(dev, addr);
3946 if (ret < 0)
3947 return ret;
3948 /* Remove previous address table entry */
3949 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3950
3951 /* Set new addr in hw */
3952 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3953
3954 eth_commit_mac_addr_change(dev, addr);
3955 return 0;
3956}
3957
3958static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
3959{
3960 return container_of(pcs, struct mvneta_port, phylink_pcs);
3961}
3962
3963static int mvneta_pcs_validate(struct phylink_pcs *pcs,
3964 unsigned long *supported,
3965 const struct phylink_link_state *state)
3966{
3967 /* We only support QSGMII, SGMII, 802.3z and RGMII modes.
3968 * When in 802.3z mode, we must have AN enabled:
3969 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3970 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3971 */
3972 if (phy_interface_mode_is_8023z(state->interface) &&
3973 !phylink_test(state->advertising, Autoneg))
3974 return -EINVAL;
3975
3976 return 0;
3977}
3978
3979static void mvneta_pcs_get_state(struct phylink_pcs *pcs,
3980 struct phylink_link_state *state)
3981{
3982 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3983 u32 gmac_stat;
3984
3985 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3986
3987 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3988 state->speed =
3989 state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3990 SPEED_2500 : SPEED_1000;
3991 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3992 state->speed = SPEED_100;
3993 else
3994 state->speed = SPEED_10;
3995
3996 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3997 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3998 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3999
4000 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
4001 state->pause |= MLO_PAUSE_RX;
4002 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
4003 state->pause |= MLO_PAUSE_TX;
4004}
4005
4006static int mvneta_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
4007 phy_interface_t interface,
4008 const unsigned long *advertising,
4009 bool permit_pause_to_mac)
4010{
4011 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4012 u32 mask, val, an, old_an, changed;
4013
4014 mask = MVNETA_GMAC_INBAND_AN_ENABLE |
4015 MVNETA_GMAC_INBAND_RESTART_AN |
4016 MVNETA_GMAC_AN_SPEED_EN |
4017 MVNETA_GMAC_AN_FLOW_CTRL_EN |
4018 MVNETA_GMAC_AN_DUPLEX_EN;
4019
4020 if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) {
4021 mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
4022 MVNETA_GMAC_CONFIG_GMII_SPEED |
4023 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4024 val = MVNETA_GMAC_INBAND_AN_ENABLE;
4025
4026 if (interface == PHY_INTERFACE_MODE_SGMII) {
4027 /* SGMII mode receives the speed and duplex from PHY */
4028 val |= MVNETA_GMAC_AN_SPEED_EN |
4029 MVNETA_GMAC_AN_DUPLEX_EN;
4030 } else {
4031 /* 802.3z mode has fixed speed and duplex */
4032 val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
4033 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4034
4035 /* The FLOW_CTRL_EN bit selects either the hardware
4036 * automatically or the CONFIG_FLOW_CTRL manually
4037 * controls the GMAC pause mode.
4038 */
4039 if (permit_pause_to_mac)
4040 val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
4041
4042 /* Update the advertisement bits */
4043 mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4044 if (phylink_test(advertising, Pause))
4045 val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4046 }
4047 } else {
4048 /* Phy or fixed speed - disable in-band AN modes */
4049 val = 0;
4050 }
4051
4052 old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4053 an = (an & ~mask) | val;
4054 changed = old_an ^ an;
4055 if (changed)
4056 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);
4057
4058 /* We are only interested in the advertisement bits changing */
4059 return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
4060}
4061
4062static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
4063{
4064 struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4065 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4066
4067 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4068 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
4069 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4070 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
4071}
4072
4073static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
4074 .pcs_validate = mvneta_pcs_validate,
4075 .pcs_get_state = mvneta_pcs_get_state,
4076 .pcs_config = mvneta_pcs_config,
4077 .pcs_an_restart = mvneta_pcs_an_restart,
4078};
4079
4080static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
4081 phy_interface_t interface)
4082{
4083 struct net_device *ndev = to_net_dev(config->dev);
4084 struct mvneta_port *pp = netdev_priv(ndev);
4085
4086 return &pp->phylink_pcs;
4087}
4088
4089static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
4090 phy_interface_t interface)
4091{
4092 struct net_device *ndev = to_net_dev(config->dev);
4093 struct mvneta_port *pp = netdev_priv(ndev);
4094 u32 val;
4095
4096 if (pp->phy_interface != interface ||
4097 phylink_autoneg_inband(mode)) {
4098 /* Force the link down when changing the interface or if in
4099 * in-band mode. According to Armada 370 documentation, we
4100 * can only change the port mode and in-band enable when the
4101 * link is down.
4102 */
4103 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4104 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4105 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4106 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4107 }
4108
4109 if (pp->phy_interface != interface)
4110 WARN_ON(phy_power_off(pp->comphy));
4111
4112 /* Enable the 1ms clock */
4113 if (phylink_autoneg_inband(mode)) {
4114 unsigned long rate = clk_get_rate(pp->clk);
4115
4116 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
4117 MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
4118 }
4119
4120 return 0;
4121}
4122
4123static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
4124 const struct phylink_link_state *state)
4125{
4126 struct net_device *ndev = to_net_dev(config->dev);
4127 struct mvneta_port *pp = netdev_priv(ndev);
4128 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
4129 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4130 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
4131
4132 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
4133 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
4134 MVNETA_GMAC2_PORT_RESET);
4135 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
4136
4137 /* Even though it might look weird, when we're configured in
4138 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4139 */
4140 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
4141
4142 if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
4143 state->interface == PHY_INTERFACE_MODE_SGMII ||
4144 phy_interface_mode_is_8023z(state->interface))
4145 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
4146
4147 if (!phylink_autoneg_inband(mode)) {
4148 /* Phy or fixed speed - nothing to do, leave the
4149 * configured speed, duplex and flow control as-is.
4150 */
4151 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
4152 /* SGMII mode receives the state from the PHY */
4153 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
4154 } else {
4155 /* 802.3z negotiation - only 1000base-X */
4156 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
4157 }
4158
4159 /* When at 2.5G, the link partner can send frames with shortened
4160 * preambles.
4161 */
4162 if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4163 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4164
4165 if (new_ctrl0 != gmac_ctrl0)
4166 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4167 if (new_ctrl2 != gmac_ctrl2)
4168 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4169 if (new_ctrl4 != gmac_ctrl4)
4170 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4171
4172 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4173 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4174 MVNETA_GMAC2_PORT_RESET) != 0)
4175 continue;
4176 }
4177}
4178
4179static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
4180 phy_interface_t interface)
4181{
4182 struct net_device *ndev = to_net_dev(config->dev);
4183 struct mvneta_port *pp = netdev_priv(ndev);
4184 u32 val, clk;
4185
4186 /* Disable 1ms clock if not in in-band mode */
4187 if (!phylink_autoneg_inband(mode)) {
4188 clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
4189 clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
4190 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
4191 }
4192
4193 if (pp->phy_interface != interface)
4194 /* Enable the Serdes PHY */
4195 WARN_ON(mvneta_config_interface(pp, interface));
4196
4197 /* Allow the link to come up if in in-band mode, otherwise the
4198 * link is forced via mac_link_down()/mac_link_up()
4199 */
4200 if (phylink_autoneg_inband(mode)) {
4201 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4202 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
4203 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4204 }
4205
4206 return 0;
4207}
4208
4209static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4210{
4211 u32 lpi_ctl1;
4212
4213 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4214 if (enable)
4215 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4216 else
4217 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4218 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4219}
4220
4221static void mvneta_mac_link_down(struct phylink_config *config,
4222 unsigned int mode, phy_interface_t interface)
4223{
4224 struct net_device *ndev = to_net_dev(config->dev);
4225 struct mvneta_port *pp = netdev_priv(ndev);
4226 u32 val;
4227
4228 mvneta_port_down(pp);
4229
4230 if (!phylink_autoneg_inband(mode)) {
4231 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4232 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4233 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4234 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4235 }
4236
4237 pp->eee_active = false;
4238 mvneta_set_eee(pp, false);
4239}
4240
4241static void mvneta_mac_link_up(struct phylink_config *config,
4242 struct phy_device *phy,
4243 unsigned int mode, phy_interface_t interface,
4244 int speed, int duplex,
4245 bool tx_pause, bool rx_pause)
4246{
4247 struct net_device *ndev = to_net_dev(config->dev);
4248 struct mvneta_port *pp = netdev_priv(ndev);
4249 u32 val;
4250
4251 if (!phylink_autoneg_inband(mode)) {
4252 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4253 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4254 MVNETA_GMAC_CONFIG_MII_SPEED |
4255 MVNETA_GMAC_CONFIG_GMII_SPEED |
4256 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4257 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4258 val |= MVNETA_GMAC_FORCE_LINK_PASS;
4259
4260 if (speed == SPEED_1000 || speed == SPEED_2500)
4261 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4262 else if (speed == SPEED_100)
4263 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4264
4265 if (duplex == DUPLEX_FULL)
4266 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4267
4268 if (tx_pause || rx_pause)
4269 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4270
4271 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4272 } else {
4273 /* When inband doesn't cover flow control or flow control is
4274 * disabled, we need to manually configure it. This bit will
4275 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4276 */
4277 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4278 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4279
4280 if (tx_pause || rx_pause)
4281 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4282
4283 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4284 }
4285
4286 mvneta_port_up(pp);
4287
4288 if (phy && pp->eee_enabled) {
4289 pp->eee_active = phy_init_eee(phy, false) >= 0;
4290 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4291 }
4292}
4293
4294static const struct phylink_mac_ops mvneta_phylink_ops = {
4295 .mac_select_pcs = mvneta_mac_select_pcs,
4296 .mac_prepare = mvneta_mac_prepare,
4297 .mac_config = mvneta_mac_config,
4298 .mac_finish = mvneta_mac_finish,
4299 .mac_link_down = mvneta_mac_link_down,
4300 .mac_link_up = mvneta_mac_link_up,
4301};
4302
4303static int mvneta_mdio_probe(struct mvneta_port *pp)
4304{
4305 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4306 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4307
4308 if (err)
4309 netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4310
4311 phylink_ethtool_get_wol(pp->phylink, &wol);
4312 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4313
4314 /* PHY WoL may be enabled but device wakeup disabled */
4315 if (wol.supported)
4316 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4317
4318 return err;
4319}
4320
4321static void mvneta_mdio_remove(struct mvneta_port *pp)
4322{
4323 phylink_disconnect_phy(pp->phylink);
4324}
4325
4326/* Electing a CPU must be done in an atomic way: it should be done
4327 * after or before the removal/insertion of a CPU and this function is
4328 * not reentrant.
4329 */
4330static void mvneta_percpu_elect(struct mvneta_port *pp)
4331{
4332 int elected_cpu = 0, max_cpu, cpu;
4333
4334 /* Use the cpu associated to the rxq when it is online, in all
4335 * the other cases, use the cpu 0 which can't be offline.
4336 */
4337 if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4338 elected_cpu = pp->rxq_def;
4339
4340 max_cpu = num_present_cpus();
4341
4342 for_each_online_cpu(cpu) {
4343 int rxq_map = 0, txq_map = 0;
4344 int rxq;
4345
4346 for (rxq = 0; rxq < rxq_number; rxq++)
4347 if ((rxq % max_cpu) == cpu)
4348 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4349
4350 if (cpu == elected_cpu)
4351 /* Map the default receive queue to the elected CPU */
4352 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4353
4354 /* We update the TX queue map only if we have one
4355 * queue. In this case we associate the TX queue to
4356 * the CPU bound to the default RX queue
4357 */
4358 if (txq_number == 1)
4359 txq_map = (cpu == elected_cpu) ?
4360 MVNETA_CPU_TXQ_ACCESS(0) : 0;
4361 else
4362 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4363 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4364
4365 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4366
4367 /* Update the interrupt mask on each CPU according the
4368 * new mapping
4369 */
4370 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4371 pp, true);
4372 }
4373};
4374
4375static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4376{
4377 int other_cpu;
4378 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4379 node_online);
4380 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4381
4382 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4383 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4384 */
4385 if (pp->neta_armada3700)
4386 return 0;
4387
4388 spin_lock(&pp->lock);
4389 /*
4390 * Configuring the driver for a new CPU while the driver is
4391 * stopping is racy, so just avoid it.
4392 */
4393 if (pp->is_stopped) {
4394 spin_unlock(&pp->lock);
4395 return 0;
4396 }
4397 netif_tx_stop_all_queues(pp->dev);
4398
4399 /*
4400 * We have to synchronise on tha napi of each CPU except the one
4401 * just being woken up
4402 */
4403 for_each_online_cpu(other_cpu) {
4404 if (other_cpu != cpu) {
4405 struct mvneta_pcpu_port *other_port =
4406 per_cpu_ptr(pp->ports, other_cpu);
4407
4408 napi_synchronize(&other_port->napi);
4409 }
4410 }
4411
4412 /* Mask all ethernet port interrupts */
4413 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4414 napi_enable(&port->napi);
4415
4416 /*
4417 * Enable per-CPU interrupts on the CPU that is
4418 * brought up.
4419 */
4420 mvneta_percpu_enable(pp);
4421
4422 /*
4423 * Enable per-CPU interrupt on the one CPU we care
4424 * about.
4425 */
4426 mvneta_percpu_elect(pp);
4427
4428 /* Unmask all ethernet port interrupts */
4429 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4430 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4431 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4432 MVNETA_CAUSE_LINK_CHANGE);
4433 netif_tx_start_all_queues(pp->dev);
4434 spin_unlock(&pp->lock);
4435 return 0;
4436}
4437
4438static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4439{
4440 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4441 node_online);
4442 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4443
4444 /*
4445 * Thanks to this lock we are sure that any pending cpu election is
4446 * done.
4447 */
4448 spin_lock(&pp->lock);
4449 /* Mask all ethernet port interrupts */
4450 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4451 spin_unlock(&pp->lock);
4452
4453 napi_synchronize(&port->napi);
4454 napi_disable(&port->napi);
4455 /* Disable per-CPU interrupts on the CPU that is brought down. */
4456 mvneta_percpu_disable(pp);
4457 return 0;
4458}
4459
4460static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4461{
4462 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4463 node_dead);
4464
4465 /* Check if a new CPU must be elected now this on is down */
4466 spin_lock(&pp->lock);
4467 mvneta_percpu_elect(pp);
4468 spin_unlock(&pp->lock);
4469 /* Unmask all ethernet port interrupts */
4470 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4471 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4472 MVNETA_CAUSE_PHY_STATUS_CHANGE |
4473 MVNETA_CAUSE_LINK_CHANGE);
4474 netif_tx_start_all_queues(pp->dev);
4475 return 0;
4476}
4477
4478static int mvneta_open(struct net_device *dev)
4479{
4480 struct mvneta_port *pp = netdev_priv(dev);
4481 int ret;
4482
4483 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4484
4485 ret = mvneta_setup_rxqs(pp);
4486 if (ret)
4487 return ret;
4488
4489 ret = mvneta_setup_txqs(pp);
4490 if (ret)
4491 goto err_cleanup_rxqs;
4492
4493 /* Connect to port interrupt line */
4494 if (pp->neta_armada3700)
4495 ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4496 dev->name, pp);
4497 else
4498 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4499 dev->name, pp->ports);
4500 if (ret) {
4501 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4502 goto err_cleanup_txqs;
4503 }
4504
4505 if (!pp->neta_armada3700) {
4506 /* Enable per-CPU interrupt on all the CPU to handle our RX
4507 * queue interrupts
4508 */
4509 on_each_cpu(mvneta_percpu_enable, pp, true);
4510
4511 pp->is_stopped = false;
4512 /* Register a CPU notifier to handle the case where our CPU
4513 * might be taken offline.
4514 */
4515 ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4516 &pp->node_online);
4517 if (ret)
4518 goto err_free_irq;
4519
4520 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4521 &pp->node_dead);
4522 if (ret)
4523 goto err_free_online_hp;
4524 }
4525
4526 ret = mvneta_mdio_probe(pp);
4527 if (ret < 0) {
4528 netdev_err(dev, "cannot probe MDIO bus\n");
4529 goto err_free_dead_hp;
4530 }
4531
4532 mvneta_start_dev(pp);
4533
4534 return 0;
4535
4536err_free_dead_hp:
4537 if (!pp->neta_armada3700)
4538 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4539 &pp->node_dead);
4540err_free_online_hp:
4541 if (!pp->neta_armada3700)
4542 cpuhp_state_remove_instance_nocalls(online_hpstate,
4543 &pp->node_online);
4544err_free_irq:
4545 if (pp->neta_armada3700) {
4546 free_irq(pp->dev->irq, pp);
4547 } else {
4548 on_each_cpu(mvneta_percpu_disable, pp, true);
4549 free_percpu_irq(pp->dev->irq, pp->ports);
4550 }
4551err_cleanup_txqs:
4552 mvneta_cleanup_txqs(pp);
4553err_cleanup_rxqs:
4554 mvneta_cleanup_rxqs(pp);
4555 return ret;
4556}
4557
4558/* Stop the port, free port interrupt line */
4559static int mvneta_stop(struct net_device *dev)
4560{
4561 struct mvneta_port *pp = netdev_priv(dev);
4562
4563 if (!pp->neta_armada3700) {
4564 /* Inform that we are stopping so we don't want to setup the
4565 * driver for new CPUs in the notifiers. The code of the
4566 * notifier for CPU online is protected by the same spinlock,
4567 * so when we get the lock, the notifer work is done.
4568 */
4569 spin_lock(&pp->lock);
4570 pp->is_stopped = true;
4571 spin_unlock(&pp->lock);
4572
4573 mvneta_stop_dev(pp);
4574 mvneta_mdio_remove(pp);
4575
4576 cpuhp_state_remove_instance_nocalls(online_hpstate,
4577 &pp->node_online);
4578 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4579 &pp->node_dead);
4580 on_each_cpu(mvneta_percpu_disable, pp, true);
4581 free_percpu_irq(dev->irq, pp->ports);
4582 } else {
4583 mvneta_stop_dev(pp);
4584 mvneta_mdio_remove(pp);
4585 free_irq(dev->irq, pp);
4586 }
4587
4588 mvneta_cleanup_rxqs(pp);
4589 mvneta_cleanup_txqs(pp);
4590
4591 return 0;
4592}
4593
4594static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4595{
4596 struct mvneta_port *pp = netdev_priv(dev);
4597
4598 return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4599}
4600
4601static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4602 struct netlink_ext_ack *extack)
4603{
4604 bool need_update, running = netif_running(dev);
4605 struct mvneta_port *pp = netdev_priv(dev);
4606 struct bpf_prog *old_prog;
4607
4608 if (prog && !prog->aux->xdp_has_frags &&
4609 dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4610 NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
4611 return -EOPNOTSUPP;
4612 }
4613
4614 if (pp->bm_priv) {
4615 NL_SET_ERR_MSG_MOD(extack,
4616 "Hardware Buffer Management not supported on XDP");
4617 return -EOPNOTSUPP;
4618 }
4619
4620 need_update = !!pp->xdp_prog != !!prog;
4621 if (running && need_update)
4622 mvneta_stop(dev);
4623
4624 old_prog = xchg(&pp->xdp_prog, prog);
4625 if (old_prog)
4626 bpf_prog_put(old_prog);
4627
4628 if (running && need_update)
4629 return mvneta_open(dev);
4630
4631 return 0;
4632}
4633
4634static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4635{
4636 switch (xdp->command) {
4637 case XDP_SETUP_PROG:
4638 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4639 default:
4640 return -EINVAL;
4641 }
4642}
4643
4644/* Ethtool methods */
4645
4646/* Set link ksettings (phy address, speed) for ethtools */
4647static int
4648mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4649 const struct ethtool_link_ksettings *cmd)
4650{
4651 struct mvneta_port *pp = netdev_priv(ndev);
4652
4653 return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4654}
4655
4656/* Get link ksettings for ethtools */
4657static int
4658mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4659 struct ethtool_link_ksettings *cmd)
4660{
4661 struct mvneta_port *pp = netdev_priv(ndev);
4662
4663 return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4664}
4665
4666static int mvneta_ethtool_nway_reset(struct net_device *dev)
4667{
4668 struct mvneta_port *pp = netdev_priv(dev);
4669
4670 return phylink_ethtool_nway_reset(pp->phylink);
4671}
4672
4673/* Set interrupt coalescing for ethtools */
4674static int
4675mvneta_ethtool_set_coalesce(struct net_device *dev,
4676 struct ethtool_coalesce *c,
4677 struct kernel_ethtool_coalesce *kernel_coal,
4678 struct netlink_ext_ack *extack)
4679{
4680 struct mvneta_port *pp = netdev_priv(dev);
4681 int queue;
4682
4683 for (queue = 0; queue < rxq_number; queue++) {
4684 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4685 rxq->time_coal = c->rx_coalesce_usecs;
4686 rxq->pkts_coal = c->rx_max_coalesced_frames;
4687 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4688 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4689 }
4690
4691 for (queue = 0; queue < txq_number; queue++) {
4692 struct mvneta_tx_queue *txq = &pp->txqs[queue];
4693 txq->done_pkts_coal = c->tx_max_coalesced_frames;
4694 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4695 }
4696
4697 return 0;
4698}
4699
4700/* get coalescing for ethtools */
4701static int
4702mvneta_ethtool_get_coalesce(struct net_device *dev,
4703 struct ethtool_coalesce *c,
4704 struct kernel_ethtool_coalesce *kernel_coal,
4705 struct netlink_ext_ack *extack)
4706{
4707 struct mvneta_port *pp = netdev_priv(dev);
4708
4709 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
4710 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
4711
4712 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
4713 return 0;
4714}
4715
4716
4717static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4718 struct ethtool_drvinfo *drvinfo)
4719{
4720 strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4721 sizeof(drvinfo->driver));
4722 strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4723 sizeof(drvinfo->version));
4724 strscpy(drvinfo->bus_info, dev_name(&dev->dev),
4725 sizeof(drvinfo->bus_info));
4726}
4727
4728
4729static void
4730mvneta_ethtool_get_ringparam(struct net_device *netdev,
4731 struct ethtool_ringparam *ring,
4732 struct kernel_ethtool_ringparam *kernel_ring,
4733 struct netlink_ext_ack *extack)
4734{
4735 struct mvneta_port *pp = netdev_priv(netdev);
4736
4737 ring->rx_max_pending = MVNETA_MAX_RXD;
4738 ring->tx_max_pending = MVNETA_MAX_TXD;
4739 ring->rx_pending = pp->rx_ring_size;
4740 ring->tx_pending = pp->tx_ring_size;
4741}
4742
4743static int
4744mvneta_ethtool_set_ringparam(struct net_device *dev,
4745 struct ethtool_ringparam *ring,
4746 struct kernel_ethtool_ringparam *kernel_ring,
4747 struct netlink_ext_ack *extack)
4748{
4749 struct mvneta_port *pp = netdev_priv(dev);
4750
4751 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4752 return -EINVAL;
4753 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4754 ring->rx_pending : MVNETA_MAX_RXD;
4755
4756 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4757 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4758 if (pp->tx_ring_size != ring->tx_pending)
4759 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4760 pp->tx_ring_size, ring->tx_pending);
4761
4762 if (netif_running(dev)) {
4763 mvneta_stop(dev);
4764 if (mvneta_open(dev)) {
4765 netdev_err(dev,
4766 "error on opening device after ring param change\n");
4767 return -ENOMEM;
4768 }
4769 }
4770
4771 return 0;
4772}
4773
4774static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4775 struct ethtool_pauseparam *pause)
4776{
4777 struct mvneta_port *pp = netdev_priv(dev);
4778
4779 phylink_ethtool_get_pauseparam(pp->phylink, pause);
4780}
4781
4782static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4783 struct ethtool_pauseparam *pause)
4784{
4785 struct mvneta_port *pp = netdev_priv(dev);
4786
4787 return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4788}
4789
4790static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4791 u8 *data)
4792{
4793 if (sset == ETH_SS_STATS) {
4794 struct mvneta_port *pp = netdev_priv(netdev);
4795 int i;
4796
4797 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4798 ethtool_puts(&data, mvneta_statistics[i].name);
4799
4800 if (!pp->bm_priv) {
4801 page_pool_ethtool_stats_get_strings(data);
4802 }
4803 }
4804}
4805
4806static void
4807mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4808 struct mvneta_ethtool_stats *es)
4809{
4810 unsigned int start;
4811 int cpu;
4812
4813 for_each_possible_cpu(cpu) {
4814 struct mvneta_pcpu_stats *stats;
4815 u64 skb_alloc_error;
4816 u64 refill_error;
4817 u64 xdp_redirect;
4818 u64 xdp_xmit_err;
4819 u64 xdp_tx_err;
4820 u64 xdp_pass;
4821 u64 xdp_drop;
4822 u64 xdp_xmit;
4823 u64 xdp_tx;
4824
4825 stats = per_cpu_ptr(pp->stats, cpu);
4826 do {
4827 start = u64_stats_fetch_begin(&stats->syncp);
4828 skb_alloc_error = stats->es.skb_alloc_error;
4829 refill_error = stats->es.refill_error;
4830 xdp_redirect = stats->es.ps.xdp_redirect;
4831 xdp_pass = stats->es.ps.xdp_pass;
4832 xdp_drop = stats->es.ps.xdp_drop;
4833 xdp_xmit = stats->es.ps.xdp_xmit;
4834 xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4835 xdp_tx = stats->es.ps.xdp_tx;
4836 xdp_tx_err = stats->es.ps.xdp_tx_err;
4837 } while (u64_stats_fetch_retry(&stats->syncp, start));
4838
4839 es->skb_alloc_error += skb_alloc_error;
4840 es->refill_error += refill_error;
4841 es->ps.xdp_redirect += xdp_redirect;
4842 es->ps.xdp_pass += xdp_pass;
4843 es->ps.xdp_drop += xdp_drop;
4844 es->ps.xdp_xmit += xdp_xmit;
4845 es->ps.xdp_xmit_err += xdp_xmit_err;
4846 es->ps.xdp_tx += xdp_tx;
4847 es->ps.xdp_tx_err += xdp_tx_err;
4848 }
4849}
4850
4851static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4852{
4853 struct mvneta_ethtool_stats stats = {};
4854 const struct mvneta_statistic *s;
4855 void __iomem *base = pp->base;
4856 u32 high, low;
4857 u64 val;
4858 int i;
4859
4860 mvneta_ethtool_update_pcpu_stats(pp, &stats);
4861 for (i = 0, s = mvneta_statistics;
4862 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4863 s++, i++) {
4864 switch (s->type) {
4865 case T_REG_32:
4866 val = readl_relaxed(base + s->offset);
4867 pp->ethtool_stats[i] += val;
4868 break;
4869 case T_REG_64:
4870 /* Docs say to read low 32-bit then high */
4871 low = readl_relaxed(base + s->offset);
4872 high = readl_relaxed(base + s->offset + 4);
4873 val = (u64)high << 32 | low;
4874 pp->ethtool_stats[i] += val;
4875 break;
4876 case T_SW:
4877 switch (s->offset) {
4878 case ETHTOOL_STAT_EEE_WAKEUP:
4879 val = phylink_get_eee_err(pp->phylink);
4880 pp->ethtool_stats[i] += val;
4881 break;
4882 case ETHTOOL_STAT_SKB_ALLOC_ERR:
4883 pp->ethtool_stats[i] = stats.skb_alloc_error;
4884 break;
4885 case ETHTOOL_STAT_REFILL_ERR:
4886 pp->ethtool_stats[i] = stats.refill_error;
4887 break;
4888 case ETHTOOL_XDP_REDIRECT:
4889 pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4890 break;
4891 case ETHTOOL_XDP_PASS:
4892 pp->ethtool_stats[i] = stats.ps.xdp_pass;
4893 break;
4894 case ETHTOOL_XDP_DROP:
4895 pp->ethtool_stats[i] = stats.ps.xdp_drop;
4896 break;
4897 case ETHTOOL_XDP_TX:
4898 pp->ethtool_stats[i] = stats.ps.xdp_tx;
4899 break;
4900 case ETHTOOL_XDP_TX_ERR:
4901 pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4902 break;
4903 case ETHTOOL_XDP_XMIT:
4904 pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4905 break;
4906 case ETHTOOL_XDP_XMIT_ERR:
4907 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4908 break;
4909 }
4910 break;
4911 }
4912 }
4913}
4914
4915static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
4916{
4917 struct page_pool_stats stats = {};
4918 int i;
4919
4920 for (i = 0; i < rxq_number; i++) {
4921 if (pp->rxqs[i].page_pool)
4922 page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
4923 }
4924
4925 page_pool_ethtool_stats_get(data, &stats);
4926}
4927
4928static void mvneta_ethtool_get_stats(struct net_device *dev,
4929 struct ethtool_stats *stats, u64 *data)
4930{
4931 struct mvneta_port *pp = netdev_priv(dev);
4932 int i;
4933
4934 mvneta_ethtool_update_stats(pp);
4935
4936 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4937 *data++ = pp->ethtool_stats[i];
4938
4939 if (!pp->bm_priv)
4940 mvneta_ethtool_pp_stats(pp, data);
4941}
4942
4943static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4944{
4945 if (sset == ETH_SS_STATS) {
4946 int count = ARRAY_SIZE(mvneta_statistics);
4947 struct mvneta_port *pp = netdev_priv(dev);
4948
4949 if (!pp->bm_priv)
4950 count += page_pool_ethtool_stats_get_count();
4951
4952 return count;
4953 }
4954
4955 return -EOPNOTSUPP;
4956}
4957
4958static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4959{
4960 return MVNETA_RSS_LU_TABLE_SIZE;
4961}
4962
4963static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4964 struct ethtool_rxnfc *info,
4965 u32 *rules __always_unused)
4966{
4967 switch (info->cmd) {
4968 case ETHTOOL_GRXRINGS:
4969 info->data = rxq_number;
4970 return 0;
4971 case ETHTOOL_GRXFH:
4972 return -EOPNOTSUPP;
4973 default:
4974 return -EOPNOTSUPP;
4975 }
4976}
4977
4978static int mvneta_config_rss(struct mvneta_port *pp)
4979{
4980 int cpu;
4981 u32 val;
4982
4983 netif_tx_stop_all_queues(pp->dev);
4984
4985 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4986
4987 if (!pp->neta_armada3700) {
4988 /* We have to synchronise on the napi of each CPU */
4989 for_each_online_cpu(cpu) {
4990 struct mvneta_pcpu_port *pcpu_port =
4991 per_cpu_ptr(pp->ports, cpu);
4992
4993 napi_synchronize(&pcpu_port->napi);
4994 napi_disable(&pcpu_port->napi);
4995 }
4996 } else {
4997 napi_synchronize(&pp->napi);
4998 napi_disable(&pp->napi);
4999 }
5000
5001 pp->rxq_def = pp->indir[0];
5002
5003 /* Update unicast mapping */
5004 mvneta_set_rx_mode(pp->dev);
5005
5006 /* Update val of portCfg register accordingly with all RxQueue types */
5007 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
5008 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
5009
5010 /* Update the elected CPU matching the new rxq_def */
5011 spin_lock(&pp->lock);
5012 mvneta_percpu_elect(pp);
5013 spin_unlock(&pp->lock);
5014
5015 if (!pp->neta_armada3700) {
5016 /* We have to synchronise on the napi of each CPU */
5017 for_each_online_cpu(cpu) {
5018 struct mvneta_pcpu_port *pcpu_port =
5019 per_cpu_ptr(pp->ports, cpu);
5020
5021 napi_enable(&pcpu_port->napi);
5022 }
5023 } else {
5024 napi_enable(&pp->napi);
5025 }
5026
5027 netif_tx_start_all_queues(pp->dev);
5028
5029 return 0;
5030}
5031
5032static int mvneta_ethtool_set_rxfh(struct net_device *dev,
5033 struct ethtool_rxfh_param *rxfh,
5034 struct netlink_ext_ack *extack)
5035{
5036 struct mvneta_port *pp = netdev_priv(dev);
5037
5038 /* Current code for Armada 3700 doesn't support RSS features yet */
5039 if (pp->neta_armada3700)
5040 return -EOPNOTSUPP;
5041
5042 /* We require at least one supported parameter to be changed
5043 * and no change in any of the unsupported parameters
5044 */
5045 if (rxfh->key ||
5046 (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
5047 rxfh->hfunc != ETH_RSS_HASH_TOP))
5048 return -EOPNOTSUPP;
5049
5050 if (!rxfh->indir)
5051 return 0;
5052
5053 memcpy(pp->indir, rxfh->indir, MVNETA_RSS_LU_TABLE_SIZE);
5054
5055 return mvneta_config_rss(pp);
5056}
5057
5058static int mvneta_ethtool_get_rxfh(struct net_device *dev,
5059 struct ethtool_rxfh_param *rxfh)
5060{
5061 struct mvneta_port *pp = netdev_priv(dev);
5062
5063 /* Current code for Armada 3700 doesn't support RSS features yet */
5064 if (pp->neta_armada3700)
5065 return -EOPNOTSUPP;
5066
5067 rxfh->hfunc = ETH_RSS_HASH_TOP;
5068
5069 if (!rxfh->indir)
5070 return 0;
5071
5072 memcpy(rxfh->indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
5073
5074 return 0;
5075}
5076
5077static void mvneta_ethtool_get_wol(struct net_device *dev,
5078 struct ethtool_wolinfo *wol)
5079{
5080 struct mvneta_port *pp = netdev_priv(dev);
5081
5082 phylink_ethtool_get_wol(pp->phylink, wol);
5083}
5084
5085static int mvneta_ethtool_set_wol(struct net_device *dev,
5086 struct ethtool_wolinfo *wol)
5087{
5088 struct mvneta_port *pp = netdev_priv(dev);
5089 int ret;
5090
5091 ret = phylink_ethtool_set_wol(pp->phylink, wol);
5092 if (!ret)
5093 device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
5094
5095 return ret;
5096}
5097
5098static int mvneta_ethtool_get_eee(struct net_device *dev,
5099 struct ethtool_keee *eee)
5100{
5101 struct mvneta_port *pp = netdev_priv(dev);
5102 u32 lpi_ctl0;
5103
5104 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5105
5106 eee->eee_enabled = pp->eee_enabled;
5107 eee->eee_active = pp->eee_active;
5108 eee->tx_lpi_enabled = pp->tx_lpi_enabled;
5109 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
5110
5111 return phylink_ethtool_get_eee(pp->phylink, eee);
5112}
5113
5114static int mvneta_ethtool_set_eee(struct net_device *dev,
5115 struct ethtool_keee *eee)
5116{
5117 struct mvneta_port *pp = netdev_priv(dev);
5118 u32 lpi_ctl0;
5119
5120 /* The Armada 37x documents do not give limits for this other than
5121 * it being an 8-bit register.
5122 */
5123 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
5124 return -EINVAL;
5125
5126 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5127 lpi_ctl0 &= ~(0xff << 8);
5128 lpi_ctl0 |= eee->tx_lpi_timer << 8;
5129 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
5130
5131 pp->eee_enabled = eee->eee_enabled;
5132 pp->tx_lpi_enabled = eee->tx_lpi_enabled;
5133
5134 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
5135
5136 return phylink_ethtool_set_eee(pp->phylink, eee);
5137}
5138
5139static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
5140{
5141 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
5142}
5143
5144static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
5145{
5146 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);
5147
5148 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
5149 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);
5150
5151 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
5152}
5153
5154static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
5155{
5156 unsigned long core_clk_rate;
5157 u32 refill_cycles;
5158 u32 val;
5159
5160 core_clk_rate = clk_get_rate(pp->clk);
5161 if (!core_clk_rate)
5162 return -EINVAL;
5163
5164 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
5165 (NSEC_PER_SEC / core_clk_rate);
5166
5167 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
5168 return -EINVAL;
5169
5170 /* Enable bw limit algorithm version 3 */
5171 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5172 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5173 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5174
5175 /* Set the base refill rate */
5176 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);
5177
5178 return 0;
5179}
5180
5181static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
5182{
5183 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5184
5185 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5186 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5187}
5188
5189static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
5190 u64 min_rate, u64 max_rate)
5191{
5192 u32 refill_val, rem;
5193 u32 val = 0;
5194
5195 /* Convert to from Bps to bps */
5196 max_rate *= 8;
5197
5198 if (min_rate)
5199 return -EINVAL;
5200
5201 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
5202 &rem);
5203
5204 if (rem || !refill_val ||
5205 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
5206 return -EINVAL;
5207
5208 val = refill_val;
5209 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
5210 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);
5211
5212 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);
5213
5214 return 0;
5215}
5216
5217static int mvneta_setup_mqprio(struct net_device *dev,
5218 struct tc_mqprio_qopt_offload *mqprio)
5219{
5220 struct mvneta_port *pp = netdev_priv(dev);
5221 int rxq, txq, tc, ret;
5222 u8 num_tc;
5223
5224 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
5225 return 0;
5226
5227 num_tc = mqprio->qopt.num_tc;
5228
5229 if (num_tc > rxq_number)
5230 return -EINVAL;
5231
5232 mvneta_clear_rx_prio_map(pp);
5233
5234 if (!num_tc) {
5235 mvneta_disable_per_queue_rate_limit(pp);
5236 netdev_reset_tc(dev);
5237 return 0;
5238 }
5239
5240 netdev_set_num_tc(dev, mqprio->qopt.num_tc);
5241
5242 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5243 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
5244 mqprio->qopt.offset[tc]);
5245
5246 for (rxq = mqprio->qopt.offset[tc];
5247 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5248 rxq++) {
5249 if (rxq >= rxq_number)
5250 return -EINVAL;
5251
5252 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
5253 }
5254 }
5255
5256 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
5257 mvneta_disable_per_queue_rate_limit(pp);
5258 return 0;
5259 }
5260
5261 if (mqprio->qopt.num_tc > txq_number)
5262 return -EINVAL;
5263
5264 ret = mvneta_enable_per_queue_rate_limit(pp);
5265 if (ret)
5266 return ret;
5267
5268 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5269 for (txq = mqprio->qopt.offset[tc];
5270 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5271 txq++) {
5272 if (txq >= txq_number)
5273 return -EINVAL;
5274
5275 ret = mvneta_setup_queue_rates(pp, txq,
5276 mqprio->min_rate[tc],
5277 mqprio->max_rate[tc]);
5278 if (ret)
5279 return ret;
5280 }
5281 }
5282
5283 return 0;
5284}
5285
5286static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
5287 void *type_data)
5288{
5289 switch (type) {
5290 case TC_SETUP_QDISC_MQPRIO:
5291 return mvneta_setup_mqprio(dev, type_data);
5292 default:
5293 return -EOPNOTSUPP;
5294 }
5295}
5296
5297static const struct net_device_ops mvneta_netdev_ops = {
5298 .ndo_open = mvneta_open,
5299 .ndo_stop = mvneta_stop,
5300 .ndo_start_xmit = mvneta_tx,
5301 .ndo_set_rx_mode = mvneta_set_rx_mode,
5302 .ndo_set_mac_address = mvneta_set_mac_addr,
5303 .ndo_change_mtu = mvneta_change_mtu,
5304 .ndo_fix_features = mvneta_fix_features,
5305 .ndo_get_stats64 = mvneta_get_stats64,
5306 .ndo_eth_ioctl = mvneta_ioctl,
5307 .ndo_bpf = mvneta_xdp,
5308 .ndo_xdp_xmit = mvneta_xdp_xmit,
5309 .ndo_setup_tc = mvneta_setup_tc,
5310};
5311
5312static const struct ethtool_ops mvneta_eth_tool_ops = {
5313 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5314 ETHTOOL_COALESCE_MAX_FRAMES,
5315 .nway_reset = mvneta_ethtool_nway_reset,
5316 .get_link = ethtool_op_get_link,
5317 .set_coalesce = mvneta_ethtool_set_coalesce,
5318 .get_coalesce = mvneta_ethtool_get_coalesce,
5319 .get_drvinfo = mvneta_ethtool_get_drvinfo,
5320 .get_ringparam = mvneta_ethtool_get_ringparam,
5321 .set_ringparam = mvneta_ethtool_set_ringparam,
5322 .get_pauseparam = mvneta_ethtool_get_pauseparam,
5323 .set_pauseparam = mvneta_ethtool_set_pauseparam,
5324 .get_strings = mvneta_ethtool_get_strings,
5325 .get_ethtool_stats = mvneta_ethtool_get_stats,
5326 .get_sset_count = mvneta_ethtool_get_sset_count,
5327 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5328 .get_rxnfc = mvneta_ethtool_get_rxnfc,
5329 .get_rxfh = mvneta_ethtool_get_rxfh,
5330 .set_rxfh = mvneta_ethtool_set_rxfh,
5331 .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5332 .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5333 .get_wol = mvneta_ethtool_get_wol,
5334 .set_wol = mvneta_ethtool_set_wol,
5335 .get_eee = mvneta_ethtool_get_eee,
5336 .set_eee = mvneta_ethtool_set_eee,
5337};
5338
5339/* Initialize hw */
5340static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5341{
5342 int queue;
5343
5344 /* Disable port */
5345 mvneta_port_disable(pp);
5346
5347 /* Set port default values */
5348 mvneta_defaults_set(pp);
5349
5350 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5351 if (!pp->txqs)
5352 return -ENOMEM;
5353
5354 /* Initialize TX descriptor rings */
5355 for (queue = 0; queue < txq_number; queue++) {
5356 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5357 txq->id = queue;
5358 txq->size = pp->tx_ring_size;
5359 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5360 }
5361
5362 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5363 if (!pp->rxqs)
5364 return -ENOMEM;
5365
5366 /* Create Rx descriptor rings */
5367 for (queue = 0; queue < rxq_number; queue++) {
5368 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5369 rxq->id = queue;
5370 rxq->size = pp->rx_ring_size;
5371 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5372 rxq->time_coal = MVNETA_RX_COAL_USEC;
5373 rxq->buf_virt_addr
5374 = devm_kmalloc_array(pp->dev->dev.parent,
5375 rxq->size,
5376 sizeof(*rxq->buf_virt_addr),
5377 GFP_KERNEL);
5378 if (!rxq->buf_virt_addr)
5379 return -ENOMEM;
5380 }
5381
5382 return 0;
5383}
5384
5385/* platform glue : initialize decoding windows */
5386static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5387 const struct mbus_dram_target_info *dram)
5388{
5389 u32 win_enable;
5390 u32 win_protect;
5391 int i;
5392
5393 for (i = 0; i < 6; i++) {
5394 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5395 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5396
5397 if (i < 4)
5398 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5399 }
5400
5401 win_enable = 0x3f;
5402 win_protect = 0;
5403
5404 if (dram) {
5405 for (i = 0; i < dram->num_cs; i++) {
5406 const struct mbus_dram_window *cs = dram->cs + i;
5407
5408 mvreg_write(pp, MVNETA_WIN_BASE(i),
5409 (cs->base & 0xffff0000) |
5410 (cs->mbus_attr << 8) |
5411 dram->mbus_dram_target_id);
5412
5413 mvreg_write(pp, MVNETA_WIN_SIZE(i),
5414 (cs->size - 1) & 0xffff0000);
5415
5416 win_enable &= ~(1 << i);
5417 win_protect |= 3 << (2 * i);
5418 }
5419 } else {
5420 if (pp->neta_ac5)
5421 mvreg_write(pp, MVNETA_WIN_BASE(0),
5422 (MVNETA_AC5_CNM_DDR_ATTR << 8) |
5423 MVNETA_AC5_CNM_DDR_TARGET);
5424 /* For Armada3700 open default 4GB Mbus window, leaving
5425 * arbitration of target/attribute to a different layer
5426 * of configuration.
5427 */
5428 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5429 win_enable &= ~BIT(0);
5430 win_protect = 3;
5431 }
5432
5433 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5434 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5435}
5436
5437/* Power up the port */
5438static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5439{
5440 /* MAC Cause register should be cleared */
5441 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5442
5443 if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5444 phy_mode != PHY_INTERFACE_MODE_SGMII &&
5445 !phy_interface_mode_is_8023z(phy_mode) &&
5446 !phy_interface_mode_is_rgmii(phy_mode))
5447 return -EINVAL;
5448
5449 return 0;
5450}
5451
5452/* Device initialization routine */
5453static int mvneta_probe(struct platform_device *pdev)
5454{
5455 struct device_node *dn = pdev->dev.of_node;
5456 struct device_node *bm_node;
5457 struct mvneta_port *pp;
5458 struct net_device *dev;
5459 struct phylink *phylink;
5460 struct phy *comphy;
5461 char hw_mac_addr[ETH_ALEN];
5462 phy_interface_t phy_mode;
5463 const char *mac_from;
5464 int tx_csum_limit;
5465 int err;
5466 int cpu;
5467
5468 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5469 txq_number, rxq_number);
5470 if (!dev)
5471 return -ENOMEM;
5472
5473 dev->tx_queue_len = MVNETA_MAX_TXD;
5474 dev->watchdog_timeo = 5 * HZ;
5475 dev->netdev_ops = &mvneta_netdev_ops;
5476 dev->ethtool_ops = &mvneta_eth_tool_ops;
5477
5478 pp = netdev_priv(dev);
5479 spin_lock_init(&pp->lock);
5480 pp->dn = dn;
5481
5482 pp->rxq_def = rxq_def;
5483 pp->indir[0] = rxq_def;
5484
5485 err = of_get_phy_mode(dn, &phy_mode);
5486 if (err) {
5487 dev_err(&pdev->dev, "incorrect phy-mode\n");
5488 return err;
5489 }
5490
5491 pp->phy_interface = phy_mode;
5492
5493 comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5494 if (comphy == ERR_PTR(-EPROBE_DEFER))
5495 return -EPROBE_DEFER;
5496
5497 if (IS_ERR(comphy))
5498 comphy = NULL;
5499
5500 pp->comphy = comphy;
5501
5502 pp->base = devm_platform_ioremap_resource(pdev, 0);
5503 if (IS_ERR(pp->base))
5504 return PTR_ERR(pp->base);
5505
5506 /* Get special SoC configurations */
5507 if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5508 pp->neta_armada3700 = true;
5509 if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
5510 pp->neta_armada3700 = true;
5511 pp->neta_ac5 = true;
5512 }
5513
5514 dev->irq = irq_of_parse_and_map(dn, 0);
5515 if (dev->irq == 0)
5516 return -EINVAL;
5517
5518 pp->clk = devm_clk_get(&pdev->dev, "core");
5519 if (IS_ERR(pp->clk))
5520 pp->clk = devm_clk_get(&pdev->dev, NULL);
5521 if (IS_ERR(pp->clk)) {
5522 err = PTR_ERR(pp->clk);
5523 goto err_free_irq;
5524 }
5525
5526 clk_prepare_enable(pp->clk);
5527
5528 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5529 if (!IS_ERR(pp->clk_bus))
5530 clk_prepare_enable(pp->clk_bus);
5531
5532 pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
5533 pp->phylink_pcs.neg_mode = true;
5534
5535 pp->phylink_config.dev = &dev->dev;
5536 pp->phylink_config.type = PHYLINK_NETDEV;
5537 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
5538 MAC_100 | MAC_1000FD | MAC_2500FD;
5539
5540 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
5541 __set_bit(PHY_INTERFACE_MODE_QSGMII,
5542 pp->phylink_config.supported_interfaces);
5543 if (comphy) {
5544 /* If a COMPHY is present, we can support any of the serdes
5545 * modes and switch between them.
5546 */
5547 __set_bit(PHY_INTERFACE_MODE_SGMII,
5548 pp->phylink_config.supported_interfaces);
5549 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
5550 pp->phylink_config.supported_interfaces);
5551 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
5552 pp->phylink_config.supported_interfaces);
5553 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
5554 /* No COMPHY, with only 2500BASE-X mode supported */
5555 __set_bit(PHY_INTERFACE_MODE_2500BASEX,
5556 pp->phylink_config.supported_interfaces);
5557 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
5558 phy_mode == PHY_INTERFACE_MODE_SGMII) {
5559 /* No COMPHY, we can switch between 1000BASE-X and SGMII */
5560 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
5561 pp->phylink_config.supported_interfaces);
5562 __set_bit(PHY_INTERFACE_MODE_SGMII,
5563 pp->phylink_config.supported_interfaces);
5564 }
5565
5566 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5567 phy_mode, &mvneta_phylink_ops);
5568 if (IS_ERR(phylink)) {
5569 err = PTR_ERR(phylink);
5570 goto err_clk;
5571 }
5572
5573 pp->phylink = phylink;
5574
5575 /* Alloc per-cpu port structure */
5576 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5577 if (!pp->ports) {
5578 err = -ENOMEM;
5579 goto err_free_phylink;
5580 }
5581
5582 /* Alloc per-cpu stats */
5583 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5584 if (!pp->stats) {
5585 err = -ENOMEM;
5586 goto err_free_ports;
5587 }
5588
5589 err = of_get_ethdev_address(dn, dev);
5590 if (!err) {
5591 mac_from = "device tree";
5592 } else {
5593 mvneta_get_mac_addr(pp, hw_mac_addr);
5594 if (is_valid_ether_addr(hw_mac_addr)) {
5595 mac_from = "hardware";
5596 eth_hw_addr_set(dev, hw_mac_addr);
5597 } else {
5598 mac_from = "random";
5599 eth_hw_addr_random(dev);
5600 }
5601 }
5602
5603 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5604 if (tx_csum_limit < 0 ||
5605 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5606 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5607 dev_info(&pdev->dev,
5608 "Wrong TX csum limit in DT, set to %dB\n",
5609 MVNETA_TX_CSUM_DEF_SIZE);
5610 }
5611 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5612 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5613 } else {
5614 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5615 }
5616
5617 pp->tx_csum_limit = tx_csum_limit;
5618
5619 pp->dram_target_info = mv_mbus_dram_info();
5620 /* Armada3700 requires setting default configuration of Mbus
5621 * windows, however without using filled mbus_dram_target_info
5622 * structure.
5623 */
5624 if (pp->dram_target_info || pp->neta_armada3700)
5625 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5626
5627 pp->tx_ring_size = MVNETA_MAX_TXD;
5628 pp->rx_ring_size = MVNETA_MAX_RXD;
5629
5630 pp->dev = dev;
5631 SET_NETDEV_DEV(dev, &pdev->dev);
5632
5633 pp->id = global_port_id++;
5634
5635 /* Obtain access to BM resources if enabled and already initialized */
5636 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5637 if (bm_node) {
5638 pp->bm_priv = mvneta_bm_get(bm_node);
5639 if (pp->bm_priv) {
5640 err = mvneta_bm_port_init(pdev, pp);
5641 if (err < 0) {
5642 dev_info(&pdev->dev,
5643 "use SW buffer management\n");
5644 mvneta_bm_put(pp->bm_priv);
5645 pp->bm_priv = NULL;
5646 }
5647 }
5648 /* Set RX packet offset correction for platforms, whose
5649 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5650 * platforms and 0B for 32-bit ones.
5651 */
5652 pp->rx_offset_correction = max(0,
5653 NET_SKB_PAD -
5654 MVNETA_RX_PKT_OFFSET_CORRECTION);
5655 }
5656 of_node_put(bm_node);
5657
5658 /* sw buffer management */
5659 if (!pp->bm_priv)
5660 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5661
5662 err = mvneta_init(&pdev->dev, pp);
5663 if (err < 0)
5664 goto err_netdev;
5665
5666 err = mvneta_port_power_up(pp, pp->phy_interface);
5667 if (err < 0) {
5668 dev_err(&pdev->dev, "can't power up port\n");
5669 goto err_netdev;
5670 }
5671
5672 /* Armada3700 network controller does not support per-cpu
5673 * operation, so only single NAPI should be initialized.
5674 */
5675 if (pp->neta_armada3700) {
5676 netif_napi_add(dev, &pp->napi, mvneta_poll);
5677 } else {
5678 for_each_present_cpu(cpu) {
5679 struct mvneta_pcpu_port *port =
5680 per_cpu_ptr(pp->ports, cpu);
5681
5682 netif_napi_add(dev, &port->napi, mvneta_poll);
5683 port->pp = pp;
5684 }
5685 }
5686
5687 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5688 NETIF_F_TSO | NETIF_F_RXCSUM;
5689 dev->hw_features |= dev->features;
5690 dev->vlan_features |= dev->features;
5691 if (!pp->bm_priv)
5692 dev->xdp_features = NETDEV_XDP_ACT_BASIC |
5693 NETDEV_XDP_ACT_REDIRECT |
5694 NETDEV_XDP_ACT_NDO_XMIT |
5695 NETDEV_XDP_ACT_RX_SG |
5696 NETDEV_XDP_ACT_NDO_XMIT_SG;
5697 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5698 netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);
5699
5700 /* MTU range: 68 - 9676 */
5701 dev->min_mtu = ETH_MIN_MTU;
5702 /* 9676 == 9700 - 20 and rounding to 8 */
5703 dev->max_mtu = 9676;
5704
5705 err = register_netdev(dev);
5706 if (err < 0) {
5707 dev_err(&pdev->dev, "failed to register\n");
5708 goto err_netdev;
5709 }
5710
5711 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5712 dev->dev_addr);
5713
5714 platform_set_drvdata(pdev, pp->dev);
5715
5716 return 0;
5717
5718err_netdev:
5719 if (pp->bm_priv) {
5720 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5721 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5722 1 << pp->id);
5723 mvneta_bm_put(pp->bm_priv);
5724 }
5725 free_percpu(pp->stats);
5726err_free_ports:
5727 free_percpu(pp->ports);
5728err_free_phylink:
5729 if (pp->phylink)
5730 phylink_destroy(pp->phylink);
5731err_clk:
5732 clk_disable_unprepare(pp->clk_bus);
5733 clk_disable_unprepare(pp->clk);
5734err_free_irq:
5735 irq_dispose_mapping(dev->irq);
5736 return err;
5737}
5738
5739/* Device removal routine */
5740static void mvneta_remove(struct platform_device *pdev)
5741{
5742 struct net_device *dev = platform_get_drvdata(pdev);
5743 struct mvneta_port *pp = netdev_priv(dev);
5744
5745 unregister_netdev(dev);
5746 clk_disable_unprepare(pp->clk_bus);
5747 clk_disable_unprepare(pp->clk);
5748 free_percpu(pp->ports);
5749 free_percpu(pp->stats);
5750 irq_dispose_mapping(dev->irq);
5751 phylink_destroy(pp->phylink);
5752
5753 if (pp->bm_priv) {
5754 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5755 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5756 1 << pp->id);
5757 mvneta_bm_put(pp->bm_priv);
5758 }
5759}
5760
5761#ifdef CONFIG_PM_SLEEP
5762static int mvneta_suspend(struct device *device)
5763{
5764 int queue;
5765 struct net_device *dev = dev_get_drvdata(device);
5766 struct mvneta_port *pp = netdev_priv(dev);
5767
5768 if (!netif_running(dev))
5769 goto clean_exit;
5770
5771 if (!pp->neta_armada3700) {
5772 spin_lock(&pp->lock);
5773 pp->is_stopped = true;
5774 spin_unlock(&pp->lock);
5775
5776 cpuhp_state_remove_instance_nocalls(online_hpstate,
5777 &pp->node_online);
5778 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5779 &pp->node_dead);
5780 }
5781
5782 rtnl_lock();
5783 mvneta_stop_dev(pp);
5784 rtnl_unlock();
5785
5786 for (queue = 0; queue < rxq_number; queue++) {
5787 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5788
5789 mvneta_rxq_drop_pkts(pp, rxq);
5790 }
5791
5792 for (queue = 0; queue < txq_number; queue++) {
5793 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5794
5795 mvneta_txq_hw_deinit(pp, txq);
5796 }
5797
5798clean_exit:
5799 netif_device_detach(dev);
5800 clk_disable_unprepare(pp->clk_bus);
5801 clk_disable_unprepare(pp->clk);
5802
5803 return 0;
5804}
5805
5806static int mvneta_resume(struct device *device)
5807{
5808 struct platform_device *pdev = to_platform_device(device);
5809 struct net_device *dev = dev_get_drvdata(device);
5810 struct mvneta_port *pp = netdev_priv(dev);
5811 int err, queue;
5812
5813 clk_prepare_enable(pp->clk);
5814 if (!IS_ERR(pp->clk_bus))
5815 clk_prepare_enable(pp->clk_bus);
5816 if (pp->dram_target_info || pp->neta_armada3700)
5817 mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5818 if (pp->bm_priv) {
5819 err = mvneta_bm_port_init(pdev, pp);
5820 if (err < 0) {
5821 dev_info(&pdev->dev, "use SW buffer management\n");
5822 pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5823 pp->bm_priv = NULL;
5824 }
5825 }
5826 mvneta_defaults_set(pp);
5827 err = mvneta_port_power_up(pp, pp->phy_interface);
5828 if (err < 0) {
5829 dev_err(device, "can't power up port\n");
5830 return err;
5831 }
5832
5833 netif_device_attach(dev);
5834
5835 if (!netif_running(dev))
5836 return 0;
5837
5838 for (queue = 0; queue < rxq_number; queue++) {
5839 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5840
5841 rxq->next_desc_to_proc = 0;
5842 mvneta_rxq_hw_init(pp, rxq);
5843 }
5844
5845 for (queue = 0; queue < txq_number; queue++) {
5846 struct mvneta_tx_queue *txq = &pp->txqs[queue];
5847
5848 txq->next_desc_to_proc = 0;
5849 mvneta_txq_hw_init(pp, txq);
5850 }
5851
5852 if (!pp->neta_armada3700) {
5853 spin_lock(&pp->lock);
5854 pp->is_stopped = false;
5855 spin_unlock(&pp->lock);
5856 cpuhp_state_add_instance_nocalls(online_hpstate,
5857 &pp->node_online);
5858 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5859 &pp->node_dead);
5860 }
5861
5862 rtnl_lock();
5863 mvneta_start_dev(pp);
5864 rtnl_unlock();
5865 mvneta_set_rx_mode(dev);
5866
5867 return 0;
5868}
5869#endif
5870
5871static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5872
5873static const struct of_device_id mvneta_match[] = {
5874 { .compatible = "marvell,armada-370-neta" },
5875 { .compatible = "marvell,armada-xp-neta" },
5876 { .compatible = "marvell,armada-3700-neta" },
5877 { .compatible = "marvell,armada-ac5-neta" },
5878 { }
5879};
5880MODULE_DEVICE_TABLE(of, mvneta_match);
5881
5882static struct platform_driver mvneta_driver = {
5883 .probe = mvneta_probe,
5884 .remove = mvneta_remove,
5885 .driver = {
5886 .name = MVNETA_DRIVER_NAME,
5887 .of_match_table = mvneta_match,
5888 .pm = &mvneta_pm_ops,
5889 },
5890};
5891
5892static int __init mvneta_driver_init(void)
5893{
5894 int ret;
5895
5896 BUILD_BUG_ON_NOT_POWER_OF_2(MVNETA_TSO_PER_PAGE);
5897
5898 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5899 mvneta_cpu_online,
5900 mvneta_cpu_down_prepare);
5901 if (ret < 0)
5902 goto out;
5903 online_hpstate = ret;
5904 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5905 NULL, mvneta_cpu_dead);
5906 if (ret)
5907 goto err_dead;
5908
5909 ret = platform_driver_register(&mvneta_driver);
5910 if (ret)
5911 goto err;
5912 return 0;
5913
5914err:
5915 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5916err_dead:
5917 cpuhp_remove_multi_state(online_hpstate);
5918out:
5919 return ret;
5920}
5921module_init(mvneta_driver_init);
5922
5923static void __exit mvneta_driver_exit(void)
5924{
5925 platform_driver_unregister(&mvneta_driver);
5926 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5927 cpuhp_remove_multi_state(online_hpstate);
5928}
5929module_exit(mvneta_driver_exit);
5930
5931MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5932MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5933MODULE_LICENSE("GPL");
5934
5935module_param(rxq_number, int, 0444);
5936module_param(txq_number, int, 0444);
5937
5938module_param(rxq_def, int, 0444);
5939module_param(rx_copybreak, int, 0644);
1/*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14#include <linux/clk.h>
15#include <linux/cpu.h>
16#include <linux/etherdevice.h>
17#include <linux/if_vlan.h>
18#include <linux/inetdevice.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/mbus.h>
23#include <linux/module.h>
24#include <linux/netdevice.h>
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include <linux/of_irq.h>
28#include <linux/of_mdio.h>
29#include <linux/of_net.h>
30#include <linux/phy.h>
31#include <linux/platform_device.h>
32#include <linux/skbuff.h>
33#include <net/hwbm.h>
34#include "mvneta_bm.h"
35#include <net/ip.h>
36#include <net/ipv6.h>
37#include <net/tso.h>
38
39/* Registers */
40#define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41#define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42#define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43#define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44#define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45#define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46#define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47#define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48#define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49#define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50#define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51#define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52#define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53#define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54#define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55#define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56#define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57#define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58#define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60#define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61#define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62#define MVNETA_PORT_RX_RESET 0x1cc0
63#define MVNETA_PORT_RX_DMA_RESET BIT(0)
64#define MVNETA_PHY_ADDR 0x2000
65#define MVNETA_PHY_ADDR_MASK 0x1f
66#define MVNETA_MBUS_RETRY 0x2010
67#define MVNETA_UNIT_INTR_CAUSE 0x2080
68#define MVNETA_UNIT_CONTROL 0x20B0
69#define MVNETA_PHY_POLLING_ENABLE BIT(1)
70#define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71#define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72#define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73#define MVNETA_BASE_ADDR_ENABLE 0x2290
74#define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75#define MVNETA_PORT_CONFIG 0x2400
76#define MVNETA_UNI_PROMISC_MODE BIT(0)
77#define MVNETA_DEF_RXQ(q) ((q) << 1)
78#define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79#define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80#define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81#define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82#define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83#define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84#define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91#define MVNETA_PORT_CONFIG_EXTEND 0x2404
92#define MVNETA_MAC_ADDR_LOW 0x2414
93#define MVNETA_MAC_ADDR_HIGH 0x2418
94#define MVNETA_SDMA_CONFIG 0x241c
95#define MVNETA_SDMA_BRST_SIZE_16 4
96#define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97#define MVNETA_RX_NO_DATA_SWAP BIT(4)
98#define MVNETA_TX_NO_DATA_SWAP BIT(5)
99#define MVNETA_DESC_SWAP BIT(6)
100#define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101#define MVNETA_PORT_STATUS 0x2444
102#define MVNETA_TX_IN_PRGRS BIT(1)
103#define MVNETA_TX_FIFO_EMPTY BIT(8)
104#define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105#define MVNETA_SERDES_CFG 0x24A0
106#define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107#define MVNETA_QSGMII_SERDES_PROTO 0x0667
108#define MVNETA_TYPE_PRIO 0x24bc
109#define MVNETA_FORCE_UNI BIT(21)
110#define MVNETA_TXQ_CMD_1 0x24e4
111#define MVNETA_TXQ_CMD 0x2448
112#define MVNETA_TXQ_DISABLE_SHIFT 8
113#define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114#define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115#define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116#define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117#define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118#define MVNETA_ACC_MODE 0x2500
119#define MVNETA_BM_ADDRESS 0x2504
120#define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121#define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122#define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123#define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124#define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125#define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
126
127/* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
134
135#define MVNETA_INTR_NEW_CAUSE 0x25a0
136#define MVNETA_INTR_NEW_MASK 0x25a4
137
138/* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145#define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146#define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147#define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148#define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149#define MVNETA_MISCINTR_INTR_MASK BIT(31)
150
151#define MVNETA_INTR_OLD_CAUSE 0x25a8
152#define MVNETA_INTR_OLD_MASK 0x25ac
153
154/* Data Path Port/Queue Cause Register */
155#define MVNETA_INTR_MISC_CAUSE 0x25b0
156#define MVNETA_INTR_MISC_MASK 0x25b4
157
158#define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159#define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160#define MVNETA_CAUSE_PTP BIT(4)
161
162#define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163#define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164#define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165#define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166#define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167#define MVNETA_CAUSE_PRBS_ERR BIT(12)
168#define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169#define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171#define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172#define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173#define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175#define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176#define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177#define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
179#define MVNETA_INTR_ENABLE 0x25b8
180#define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181#define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
182
183#define MVNETA_RXQ_CMD 0x2680
184#define MVNETA_RXQ_DISABLE_SHIFT 8
185#define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186#define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187#define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188#define MVNETA_GMAC_CTRL_0 0x2c00
189#define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190#define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191#define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192#define MVNETA_GMAC_CTRL_2 0x2c08
193#define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194#define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195#define MVNETA_GMAC2_PORT_RGMII BIT(4)
196#define MVNETA_GMAC2_PORT_RESET BIT(6)
197#define MVNETA_GMAC_STATUS 0x2c10
198#define MVNETA_GMAC_LINK_UP BIT(0)
199#define MVNETA_GMAC_SPEED_1000 BIT(1)
200#define MVNETA_GMAC_SPEED_100 BIT(2)
201#define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202#define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203#define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204#define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205#define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206#define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207#define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208#define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209#define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210#define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211#define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212#define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213#define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214#define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215#define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216#define MVNETA_MIB_COUNTERS_BASE 0x3000
217#define MVNETA_MIB_LATE_COLLISION 0x7c
218#define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219#define MVNETA_DA_FILT_OTH_MCAST 0x3500
220#define MVNETA_DA_FILT_UCAST_BASE 0x3600
221#define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222#define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223#define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224#define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225#define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226#define MVNETA_TXQ_DEC_SENT_SHIFT 16
227#define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228#define MVNETA_TXQ_SENT_DESC_SHIFT 16
229#define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230#define MVNETA_PORT_TX_RESET 0x3cf0
231#define MVNETA_PORT_TX_DMA_RESET BIT(0)
232#define MVNETA_TX_MTU 0x3e0c
233#define MVNETA_TX_TOKEN_SIZE 0x3e14
234#define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235#define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236#define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240/* Descriptor ring Macros */
241#define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244/* Various constants */
245
246/* Coalescing */
247#define MVNETA_TXDONE_COAL_PKTS 1
248#define MVNETA_RX_COAL_PKTS 32
249#define MVNETA_RX_COAL_USEC 100
250
251/* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259#define MVNETA_MH_SIZE 2
260
261#define MVNETA_VLAN_TAG_LEN 4
262
263#define MVNETA_TX_CSUM_DEF_SIZE 1600
264#define MVNETA_TX_CSUM_MAX_SIZE 9800
265#define MVNETA_ACC_MODE_EXT1 1
266#define MVNETA_ACC_MODE_EXT2 2
267
268#define MVNETA_MAX_DECODE_WIN 6
269
270/* Timeout constants */
271#define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272#define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273#define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
274
275#define MVNETA_TX_MTU_MAX 0x3ffff
276
277/* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
279 */
280#define MVNETA_RSS_LU_TABLE_SIZE 1
281
282/* TSO header size */
283#define TSO_HEADER_SIZE 128
284
285/* Max number of Rx descriptors */
286#define MVNETA_MAX_RXD 128
287
288/* Max number of Tx descriptors */
289#define MVNETA_MAX_TXD 532
290
291/* Max number of allowed TCP segments for software TSO */
292#define MVNETA_MAX_TSO_SEGS 100
293
294#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295
296/* descriptor aligned size */
297#define MVNETA_DESC_ALIGNED_SIZE 32
298
299#define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
302 cache_line_size())
303
304#define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307
308#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310
311struct mvneta_statistic {
312 unsigned short offset;
313 unsigned short type;
314 const char name[ETH_GSTRING_LEN];
315};
316
317#define T_REG_32 32
318#define T_REG_64 64
319
320static const struct mvneta_statistic mvneta_statistics[] = {
321 { 0x3000, T_REG_64, "good_octets_received", },
322 { 0x3010, T_REG_32, "good_frames_received", },
323 { 0x3008, T_REG_32, "bad_octets_received", },
324 { 0x3014, T_REG_32, "bad_frames_received", },
325 { 0x3018, T_REG_32, "broadcast_frames_received", },
326 { 0x301c, T_REG_32, "multicast_frames_received", },
327 { 0x3050, T_REG_32, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32, "good_fc_received", },
329 { 0x305c, T_REG_32, "bad_fc_received", },
330 { 0x3060, T_REG_32, "undersize_received", },
331 { 0x3064, T_REG_32, "fragments_received", },
332 { 0x3068, T_REG_32, "oversize_received", },
333 { 0x306c, T_REG_32, "jabber_received", },
334 { 0x3070, T_REG_32, "mac_receive_error", },
335 { 0x3074, T_REG_32, "bad_crc_event", },
336 { 0x3078, T_REG_32, "collision", },
337 { 0x307c, T_REG_32, "late_collision", },
338 { 0x2484, T_REG_32, "rx_discard", },
339 { 0x2488, T_REG_32, "rx_overrun", },
340 { 0x3020, T_REG_32, "frames_64_octets", },
341 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64, "good_octets_sent", },
347 { 0x3040, T_REG_32, "good_frames_sent", },
348 { 0x3044, T_REG_32, "excessive_collision", },
349 { 0x3048, T_REG_32, "multicast_frames_sent", },
350 { 0x304c, T_REG_32, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32, "fc_sent", },
352 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
353};
354
355struct mvneta_pcpu_stats {
356 struct u64_stats_sync syncp;
357 u64 rx_packets;
358 u64 rx_bytes;
359 u64 tx_packets;
360 u64 tx_bytes;
361};
362
363struct mvneta_pcpu_port {
364 /* Pointer to the shared port */
365 struct mvneta_port *pp;
366
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi;
369
370 /* Cause of the previous interrupt */
371 u32 cause_rx_tx;
372};
373
374struct mvneta_port {
375 u8 id;
376 struct mvneta_pcpu_port __percpu *ports;
377 struct mvneta_pcpu_stats __percpu *stats;
378
379 int pkt_size;
380 unsigned int frag_size;
381 void __iomem *base;
382 struct mvneta_rx_queue *rxqs;
383 struct mvneta_tx_queue *txqs;
384 struct net_device *dev;
385 struct notifier_block cpu_notifier;
386 int rxq_def;
387 /* Protect the access to the percpu interrupt registers,
388 * ensuring that the configuration remains coherent.
389 */
390 spinlock_t lock;
391 bool is_stopped;
392
393 /* Core clock */
394 struct clk *clk;
395 /* AXI clock */
396 struct clk *clk_bus;
397 u8 mcast_count[256];
398 u16 tx_ring_size;
399 u16 rx_ring_size;
400
401 struct mii_bus *mii_bus;
402 struct phy_device *phy_dev;
403 phy_interface_t phy_interface;
404 struct device_node *phy_node;
405 unsigned int link;
406 unsigned int duplex;
407 unsigned int speed;
408 unsigned int tx_csum_limit;
409 unsigned int use_inband_status:1;
410
411 struct mvneta_bm *bm_priv;
412 struct mvneta_bm_pool *pool_long;
413 struct mvneta_bm_pool *pool_short;
414 int bm_win_id;
415
416 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
417
418 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
419};
420
421/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422 * layout of the transmit and reception DMA descriptors, and their
423 * layout is therefore defined by the hardware design
424 */
425
426#define MVNETA_TX_L3_OFF_SHIFT 0
427#define MVNETA_TX_IP_HLEN_SHIFT 8
428#define MVNETA_TX_L4_UDP BIT(16)
429#define MVNETA_TX_L3_IP6 BIT(17)
430#define MVNETA_TXD_IP_CSUM BIT(18)
431#define MVNETA_TXD_Z_PAD BIT(19)
432#define MVNETA_TXD_L_DESC BIT(20)
433#define MVNETA_TXD_F_DESC BIT(21)
434#define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
435 MVNETA_TXD_L_DESC | \
436 MVNETA_TXD_F_DESC)
437#define MVNETA_TX_L4_CSUM_FULL BIT(30)
438#define MVNETA_TX_L4_CSUM_NOT BIT(31)
439
440#define MVNETA_RXD_ERR_CRC 0x0
441#define MVNETA_RXD_BM_POOL_SHIFT 13
442#define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
443#define MVNETA_RXD_ERR_SUMMARY BIT(16)
444#define MVNETA_RXD_ERR_OVERRUN BIT(17)
445#define MVNETA_RXD_ERR_LEN BIT(18)
446#define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
447#define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
448#define MVNETA_RXD_L3_IP4 BIT(25)
449#define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
450#define MVNETA_RXD_L4_CSUM_OK BIT(30)
451
452#if defined(__LITTLE_ENDIAN)
453struct mvneta_tx_desc {
454 u32 command; /* Options used by HW for packet transmitting.*/
455 u16 reserverd1; /* csum_l4 (for future use) */
456 u16 data_size; /* Data size of transmitted packet in bytes */
457 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
458 u32 reserved2; /* hw_cmd - (for future use, PMT) */
459 u32 reserved3[4]; /* Reserved - (for future use) */
460};
461
462struct mvneta_rx_desc {
463 u32 status; /* Info about received packet */
464 u16 reserved1; /* pnc_info - (for future use, PnC) */
465 u16 data_size; /* Size of received packet in bytes */
466
467 u32 buf_phys_addr; /* Physical address of the buffer */
468 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
469
470 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
471 u16 reserved3; /* prefetch_cmd, for future use */
472 u16 reserved4; /* csum_l4 - (for future use, PnC) */
473
474 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
475 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
476};
477#else
478struct mvneta_tx_desc {
479 u16 data_size; /* Data size of transmitted packet in bytes */
480 u16 reserverd1; /* csum_l4 (for future use) */
481 u32 command; /* Options used by HW for packet transmitting.*/
482 u32 reserved2; /* hw_cmd - (for future use, PMT) */
483 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
484 u32 reserved3[4]; /* Reserved - (for future use) */
485};
486
487struct mvneta_rx_desc {
488 u16 data_size; /* Size of received packet in bytes */
489 u16 reserved1; /* pnc_info - (for future use, PnC) */
490 u32 status; /* Info about received packet */
491
492 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
493 u32 buf_phys_addr; /* Physical address of the buffer */
494
495 u16 reserved4; /* csum_l4 - (for future use, PnC) */
496 u16 reserved3; /* prefetch_cmd, for future use */
497 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
498
499 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
500 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
501};
502#endif
503
504struct mvneta_tx_queue {
505 /* Number of this TX queue, in the range 0-7 */
506 u8 id;
507
508 /* Number of TX DMA descriptors in the descriptor ring */
509 int size;
510
511 /* Number of currently used TX DMA descriptor in the
512 * descriptor ring
513 */
514 int count;
515 int tx_stop_threshold;
516 int tx_wake_threshold;
517
518 /* Array of transmitted skb */
519 struct sk_buff **tx_skb;
520
521 /* Index of last TX DMA descriptor that was inserted */
522 int txq_put_index;
523
524 /* Index of the TX DMA descriptor to be cleaned up */
525 int txq_get_index;
526
527 u32 done_pkts_coal;
528
529 /* Virtual address of the TX DMA descriptors array */
530 struct mvneta_tx_desc *descs;
531
532 /* DMA address of the TX DMA descriptors array */
533 dma_addr_t descs_phys;
534
535 /* Index of the last TX DMA descriptor */
536 int last_desc;
537
538 /* Index of the next TX DMA descriptor to process */
539 int next_desc_to_proc;
540
541 /* DMA buffers for TSO headers */
542 char *tso_hdrs;
543
544 /* DMA address of TSO headers */
545 dma_addr_t tso_hdrs_phys;
546
547 /* Affinity mask for CPUs*/
548 cpumask_t affinity_mask;
549};
550
551struct mvneta_rx_queue {
552 /* rx queue number, in the range 0-7 */
553 u8 id;
554
555 /* num of rx descriptors in the rx descriptor ring */
556 int size;
557
558 /* counter of times when mvneta_refill() failed */
559 int missed;
560
561 u32 pkts_coal;
562 u32 time_coal;
563
564 /* Virtual address of the RX DMA descriptors array */
565 struct mvneta_rx_desc *descs;
566
567 /* DMA address of the RX DMA descriptors array */
568 dma_addr_t descs_phys;
569
570 /* Index of the last RX DMA descriptor */
571 int last_desc;
572
573 /* Index of the next RX DMA descriptor to process */
574 int next_desc_to_proc;
575};
576
577/* The hardware supports eight (8) rx queues, but we are only allowing
578 * the first one to be used. Therefore, let's just allocate one queue.
579 */
580static int rxq_number = 8;
581static int txq_number = 8;
582
583static int rxq_def;
584
585static int rx_copybreak __read_mostly = 256;
586
587/* HW BM need that each port be identify by a unique ID */
588static int global_port_id;
589
590#define MVNETA_DRIVER_NAME "mvneta"
591#define MVNETA_DRIVER_VERSION "1.0"
592
593/* Utility/helper methods */
594
595/* Write helper method */
596static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
597{
598 writel(data, pp->base + offset);
599}
600
601/* Read helper method */
602static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
603{
604 return readl(pp->base + offset);
605}
606
607/* Increment txq get counter */
608static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
609{
610 txq->txq_get_index++;
611 if (txq->txq_get_index == txq->size)
612 txq->txq_get_index = 0;
613}
614
615/* Increment txq put counter */
616static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
617{
618 txq->txq_put_index++;
619 if (txq->txq_put_index == txq->size)
620 txq->txq_put_index = 0;
621}
622
623
624/* Clear all MIB counters */
625static void mvneta_mib_counters_clear(struct mvneta_port *pp)
626{
627 int i;
628 u32 dummy;
629
630 /* Perform dummy reads from MIB counters */
631 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
632 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
633 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
634 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
635}
636
637/* Get System Network Statistics */
638struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
639 struct rtnl_link_stats64 *stats)
640{
641 struct mvneta_port *pp = netdev_priv(dev);
642 unsigned int start;
643 int cpu;
644
645 for_each_possible_cpu(cpu) {
646 struct mvneta_pcpu_stats *cpu_stats;
647 u64 rx_packets;
648 u64 rx_bytes;
649 u64 tx_packets;
650 u64 tx_bytes;
651
652 cpu_stats = per_cpu_ptr(pp->stats, cpu);
653 do {
654 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
655 rx_packets = cpu_stats->rx_packets;
656 rx_bytes = cpu_stats->rx_bytes;
657 tx_packets = cpu_stats->tx_packets;
658 tx_bytes = cpu_stats->tx_bytes;
659 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
660
661 stats->rx_packets += rx_packets;
662 stats->rx_bytes += rx_bytes;
663 stats->tx_packets += tx_packets;
664 stats->tx_bytes += tx_bytes;
665 }
666
667 stats->rx_errors = dev->stats.rx_errors;
668 stats->rx_dropped = dev->stats.rx_dropped;
669
670 stats->tx_dropped = dev->stats.tx_dropped;
671
672 return stats;
673}
674
675/* Rx descriptors helper methods */
676
677/* Checks whether the RX descriptor having this status is both the first
678 * and the last descriptor for the RX packet. Each RX packet is currently
679 * received through a single RX descriptor, so not having each RX
680 * descriptor with its first and last bits set is an error
681 */
682static int mvneta_rxq_desc_is_first_last(u32 status)
683{
684 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
685 MVNETA_RXD_FIRST_LAST_DESC;
686}
687
688/* Add number of descriptors ready to receive new packets */
689static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
690 struct mvneta_rx_queue *rxq,
691 int ndescs)
692{
693 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
694 * be added at once
695 */
696 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
697 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
698 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
699 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
700 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
701 }
702
703 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
704 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
705}
706
707/* Get number of RX descriptors occupied by received packets */
708static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
709 struct mvneta_rx_queue *rxq)
710{
711 u32 val;
712
713 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
714 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
715}
716
717/* Update num of rx desc called upon return from rx path or
718 * from mvneta_rxq_drop_pkts().
719 */
720static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
721 struct mvneta_rx_queue *rxq,
722 int rx_done, int rx_filled)
723{
724 u32 val;
725
726 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
727 val = rx_done |
728 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
729 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
730 return;
731 }
732
733 /* Only 255 descriptors can be added at once */
734 while ((rx_done > 0) || (rx_filled > 0)) {
735 if (rx_done <= 0xff) {
736 val = rx_done;
737 rx_done = 0;
738 } else {
739 val = 0xff;
740 rx_done -= 0xff;
741 }
742 if (rx_filled <= 0xff) {
743 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
744 rx_filled = 0;
745 } else {
746 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
747 rx_filled -= 0xff;
748 }
749 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
750 }
751}
752
753/* Get pointer to next RX descriptor to be processed by SW */
754static struct mvneta_rx_desc *
755mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
756{
757 int rx_desc = rxq->next_desc_to_proc;
758
759 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
760 prefetch(rxq->descs + rxq->next_desc_to_proc);
761 return rxq->descs + rx_desc;
762}
763
764/* Change maximum receive size of the port. */
765static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
766{
767 u32 val;
768
769 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
770 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
771 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
772 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
773 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
774}
775
776
777/* Set rx queue offset */
778static void mvneta_rxq_offset_set(struct mvneta_port *pp,
779 struct mvneta_rx_queue *rxq,
780 int offset)
781{
782 u32 val;
783
784 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
785 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
786
787 /* Offset is in */
788 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
789 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
790}
791
792
793/* Tx descriptors helper methods */
794
795/* Update HW with number of TX descriptors to be sent */
796static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
797 struct mvneta_tx_queue *txq,
798 int pend_desc)
799{
800 u32 val;
801
802 /* Only 255 descriptors can be added at once ; Assume caller
803 * process TX desriptors in quanta less than 256
804 */
805 val = pend_desc;
806 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
807}
808
809/* Get pointer to next TX descriptor to be processed (send) by HW */
810static struct mvneta_tx_desc *
811mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
812{
813 int tx_desc = txq->next_desc_to_proc;
814
815 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
816 return txq->descs + tx_desc;
817}
818
819/* Release the last allocated TX descriptor. Useful to handle DMA
820 * mapping failures in the TX path.
821 */
822static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
823{
824 if (txq->next_desc_to_proc == 0)
825 txq->next_desc_to_proc = txq->last_desc - 1;
826 else
827 txq->next_desc_to_proc--;
828}
829
830/* Set rxq buf size */
831static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
832 struct mvneta_rx_queue *rxq,
833 int buf_size)
834{
835 u32 val;
836
837 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
838
839 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
840 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
841
842 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
843}
844
845/* Disable buffer management (BM) */
846static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
847 struct mvneta_rx_queue *rxq)
848{
849 u32 val;
850
851 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
852 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
853 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
854}
855
856/* Enable buffer management (BM) */
857static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
858 struct mvneta_rx_queue *rxq)
859{
860 u32 val;
861
862 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
863 val |= MVNETA_RXQ_HW_BUF_ALLOC;
864 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
865}
866
867/* Notify HW about port's assignment of pool for bigger packets */
868static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
869 struct mvneta_rx_queue *rxq)
870{
871 u32 val;
872
873 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
874 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
875 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
876
877 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
878}
879
880/* Notify HW about port's assignment of pool for smaller packets */
881static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
882 struct mvneta_rx_queue *rxq)
883{
884 u32 val;
885
886 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
887 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
888 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
889
890 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
891}
892
893/* Set port's receive buffer size for assigned BM pool */
894static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
895 int buf_size,
896 u8 pool_id)
897{
898 u32 val;
899
900 if (!IS_ALIGNED(buf_size, 8)) {
901 dev_warn(pp->dev->dev.parent,
902 "illegal buf_size value %d, round to %d\n",
903 buf_size, ALIGN(buf_size, 8));
904 buf_size = ALIGN(buf_size, 8);
905 }
906
907 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
908 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
909 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
910}
911
912/* Configure MBUS window in order to enable access BM internal SRAM */
913static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
914 u8 target, u8 attr)
915{
916 u32 win_enable, win_protect;
917 int i;
918
919 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
920
921 if (pp->bm_win_id < 0) {
922 /* Find first not occupied window */
923 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
924 if (win_enable & (1 << i)) {
925 pp->bm_win_id = i;
926 break;
927 }
928 }
929 if (i == MVNETA_MAX_DECODE_WIN)
930 return -ENOMEM;
931 } else {
932 i = pp->bm_win_id;
933 }
934
935 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
936 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
937
938 if (i < 4)
939 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
940
941 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
942 (attr << 8) | target);
943
944 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
945
946 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
947 win_protect |= 3 << (2 * i);
948 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
949
950 win_enable &= ~(1 << i);
951 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
952
953 return 0;
954}
955
956/* Assign and initialize pools for port. In case of fail
957 * buffer manager will remain disabled for current port.
958 */
959static int mvneta_bm_port_init(struct platform_device *pdev,
960 struct mvneta_port *pp)
961{
962 struct device_node *dn = pdev->dev.of_node;
963 u32 long_pool_id, short_pool_id, wsize;
964 u8 target, attr;
965 int err;
966
967 /* Get BM window information */
968 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
969 &target, &attr);
970 if (err < 0)
971 return err;
972
973 pp->bm_win_id = -1;
974
975 /* Open NETA -> BM window */
976 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
977 target, attr);
978 if (err < 0) {
979 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
980 return err;
981 }
982
983 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
984 netdev_info(pp->dev, "missing long pool id\n");
985 return -EINVAL;
986 }
987
988 /* Create port's long pool depending on mtu */
989 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
990 MVNETA_BM_LONG, pp->id,
991 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
992 if (!pp->pool_long) {
993 netdev_info(pp->dev, "fail to obtain long pool for port\n");
994 return -ENOMEM;
995 }
996
997 pp->pool_long->port_map |= 1 << pp->id;
998
999 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1000 pp->pool_long->id);
1001
1002 /* If short pool id is not defined, assume using single pool */
1003 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1004 short_pool_id = long_pool_id;
1005
1006 /* Create port's short pool */
1007 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1008 MVNETA_BM_SHORT, pp->id,
1009 MVNETA_BM_SHORT_PKT_SIZE);
1010 if (!pp->pool_short) {
1011 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1012 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1013 return -ENOMEM;
1014 }
1015
1016 if (short_pool_id != long_pool_id) {
1017 pp->pool_short->port_map |= 1 << pp->id;
1018 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1019 pp->pool_short->id);
1020 }
1021
1022 return 0;
1023}
1024
1025/* Update settings of a pool for bigger packets */
1026static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1027{
1028 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1029 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1030 int num;
1031
1032 /* Release all buffers from long pool */
1033 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1034 if (hwbm_pool->buf_num) {
1035 WARN(1, "cannot free all buffers in pool %d\n",
1036 bm_pool->id);
1037 goto bm_mtu_err;
1038 }
1039
1040 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1041 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1042 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1043 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1044
1045 /* Fill entire long pool */
1046 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1047 if (num != hwbm_pool->size) {
1048 WARN(1, "pool %d: %d of %d allocated\n",
1049 bm_pool->id, num, hwbm_pool->size);
1050 goto bm_mtu_err;
1051 }
1052 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1053
1054 return;
1055
1056bm_mtu_err:
1057 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1058 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1059
1060 pp->bm_priv = NULL;
1061 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1062 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1063}
1064
1065/* Start the Ethernet port RX and TX activity */
1066static void mvneta_port_up(struct mvneta_port *pp)
1067{
1068 int queue;
1069 u32 q_map;
1070
1071 /* Enable all initialized TXs. */
1072 q_map = 0;
1073 for (queue = 0; queue < txq_number; queue++) {
1074 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1075 if (txq->descs != NULL)
1076 q_map |= (1 << queue);
1077 }
1078 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1079
1080 /* Enable all initialized RXQs. */
1081 for (queue = 0; queue < rxq_number; queue++) {
1082 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1083
1084 if (rxq->descs != NULL)
1085 q_map |= (1 << queue);
1086 }
1087 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1088}
1089
1090/* Stop the Ethernet port activity */
1091static void mvneta_port_down(struct mvneta_port *pp)
1092{
1093 u32 val;
1094 int count;
1095
1096 /* Stop Rx port activity. Check port Rx activity. */
1097 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1098
1099 /* Issue stop command for active channels only */
1100 if (val != 0)
1101 mvreg_write(pp, MVNETA_RXQ_CMD,
1102 val << MVNETA_RXQ_DISABLE_SHIFT);
1103
1104 /* Wait for all Rx activity to terminate. */
1105 count = 0;
1106 do {
1107 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1108 netdev_warn(pp->dev,
1109 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1110 val);
1111 break;
1112 }
1113 mdelay(1);
1114
1115 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1116 } while (val & MVNETA_RXQ_ENABLE_MASK);
1117
1118 /* Stop Tx port activity. Check port Tx activity. Issue stop
1119 * command for active channels only
1120 */
1121 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1122
1123 if (val != 0)
1124 mvreg_write(pp, MVNETA_TXQ_CMD,
1125 (val << MVNETA_TXQ_DISABLE_SHIFT));
1126
1127 /* Wait for all Tx activity to terminate. */
1128 count = 0;
1129 do {
1130 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1131 netdev_warn(pp->dev,
1132 "TIMEOUT for TX stopped status=0x%08x\n",
1133 val);
1134 break;
1135 }
1136 mdelay(1);
1137
1138 /* Check TX Command reg that all Txqs are stopped */
1139 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1140
1141 } while (val & MVNETA_TXQ_ENABLE_MASK);
1142
1143 /* Double check to verify that TX FIFO is empty */
1144 count = 0;
1145 do {
1146 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1147 netdev_warn(pp->dev,
1148 "TX FIFO empty timeout status=0x%08x\n",
1149 val);
1150 break;
1151 }
1152 mdelay(1);
1153
1154 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1155 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1156 (val & MVNETA_TX_IN_PRGRS));
1157
1158 udelay(200);
1159}
1160
1161/* Enable the port by setting the port enable bit of the MAC control register */
1162static void mvneta_port_enable(struct mvneta_port *pp)
1163{
1164 u32 val;
1165
1166 /* Enable port */
1167 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1168 val |= MVNETA_GMAC0_PORT_ENABLE;
1169 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1170}
1171
1172/* Disable the port and wait for about 200 usec before retuning */
1173static void mvneta_port_disable(struct mvneta_port *pp)
1174{
1175 u32 val;
1176
1177 /* Reset the Enable bit in the Serial Control Register */
1178 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1179 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1180 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1181
1182 udelay(200);
1183}
1184
1185/* Multicast tables methods */
1186
1187/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1188static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1189{
1190 int offset;
1191 u32 val;
1192
1193 if (queue == -1) {
1194 val = 0;
1195 } else {
1196 val = 0x1 | (queue << 1);
1197 val |= (val << 24) | (val << 16) | (val << 8);
1198 }
1199
1200 for (offset = 0; offset <= 0xc; offset += 4)
1201 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1202}
1203
1204/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1205static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1206{
1207 int offset;
1208 u32 val;
1209
1210 if (queue == -1) {
1211 val = 0;
1212 } else {
1213 val = 0x1 | (queue << 1);
1214 val |= (val << 24) | (val << 16) | (val << 8);
1215 }
1216
1217 for (offset = 0; offset <= 0xfc; offset += 4)
1218 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1219
1220}
1221
1222/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1223static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1224{
1225 int offset;
1226 u32 val;
1227
1228 if (queue == -1) {
1229 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1230 val = 0;
1231 } else {
1232 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1233 val = 0x1 | (queue << 1);
1234 val |= (val << 24) | (val << 16) | (val << 8);
1235 }
1236
1237 for (offset = 0; offset <= 0xfc; offset += 4)
1238 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1239}
1240
1241static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1242{
1243 u32 val;
1244
1245 if (enable) {
1246 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1247 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1248 MVNETA_GMAC_FORCE_LINK_DOWN |
1249 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1250 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1251 MVNETA_GMAC_AN_SPEED_EN |
1252 MVNETA_GMAC_AN_DUPLEX_EN;
1253 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1254
1255 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1256 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1257 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1258
1259 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1260 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1261 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1262 } else {
1263 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1264 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1265 MVNETA_GMAC_AN_SPEED_EN |
1266 MVNETA_GMAC_AN_DUPLEX_EN);
1267 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1268
1269 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1270 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1271 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1272
1273 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1274 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1275 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1276 }
1277}
1278
1279static void mvneta_percpu_unmask_interrupt(void *arg)
1280{
1281 struct mvneta_port *pp = arg;
1282
1283 /* All the queue are unmasked, but actually only the ones
1284 * mapped to this CPU will be unmasked
1285 */
1286 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1287 MVNETA_RX_INTR_MASK_ALL |
1288 MVNETA_TX_INTR_MASK_ALL |
1289 MVNETA_MISCINTR_INTR_MASK);
1290}
1291
1292static void mvneta_percpu_mask_interrupt(void *arg)
1293{
1294 struct mvneta_port *pp = arg;
1295
1296 /* All the queue are masked, but actually only the ones
1297 * mapped to this CPU will be masked
1298 */
1299 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1300 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1301 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1302}
1303
1304static void mvneta_percpu_clear_intr_cause(void *arg)
1305{
1306 struct mvneta_port *pp = arg;
1307
1308 /* All the queue are cleared, but actually only the ones
1309 * mapped to this CPU will be cleared
1310 */
1311 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1312 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1313 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1314}
1315
1316/* This method sets defaults to the NETA port:
1317 * Clears interrupt Cause and Mask registers.
1318 * Clears all MAC tables.
1319 * Sets defaults to all registers.
1320 * Resets RX and TX descriptor rings.
1321 * Resets PHY.
1322 * This method can be called after mvneta_port_down() to return the port
1323 * settings to defaults.
1324 */
1325static void mvneta_defaults_set(struct mvneta_port *pp)
1326{
1327 int cpu;
1328 int queue;
1329 u32 val;
1330 int max_cpu = num_present_cpus();
1331
1332 /* Clear all Cause registers */
1333 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1334
1335 /* Mask all interrupts */
1336 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1337 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1338
1339 /* Enable MBUS Retry bit16 */
1340 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1341
1342 /* Set CPU queue access map. CPUs are assigned to the RX and
1343 * TX queues modulo their number. If there is only one TX
1344 * queue then it is assigned to the CPU associated to the
1345 * default RX queue.
1346 */
1347 for_each_present_cpu(cpu) {
1348 int rxq_map = 0, txq_map = 0;
1349 int rxq, txq;
1350
1351 for (rxq = 0; rxq < rxq_number; rxq++)
1352 if ((rxq % max_cpu) == cpu)
1353 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1354
1355 for (txq = 0; txq < txq_number; txq++)
1356 if ((txq % max_cpu) == cpu)
1357 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1358
1359 /* With only one TX queue we configure a special case
1360 * which will allow to get all the irq on a single
1361 * CPU
1362 */
1363 if (txq_number == 1)
1364 txq_map = (cpu == pp->rxq_def) ?
1365 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1366
1367 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1368 }
1369
1370 /* Reset RX and TX DMAs */
1371 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1372 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1373
1374 /* Disable Legacy WRR, Disable EJP, Release from reset */
1375 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1376 for (queue = 0; queue < txq_number; queue++) {
1377 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1378 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1379 }
1380
1381 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1382 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1383
1384 /* Set Port Acceleration Mode */
1385 if (pp->bm_priv)
1386 /* HW buffer management + legacy parser */
1387 val = MVNETA_ACC_MODE_EXT2;
1388 else
1389 /* SW buffer management + legacy parser */
1390 val = MVNETA_ACC_MODE_EXT1;
1391 mvreg_write(pp, MVNETA_ACC_MODE, val);
1392
1393 if (pp->bm_priv)
1394 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1395
1396 /* Update val of portCfg register accordingly with all RxQueue types */
1397 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1398 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1399
1400 val = 0;
1401 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1402 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1403
1404 /* Build PORT_SDMA_CONFIG_REG */
1405 val = 0;
1406
1407 /* Default burst size */
1408 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1409 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1410 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1411
1412#if defined(__BIG_ENDIAN)
1413 val |= MVNETA_DESC_SWAP;
1414#endif
1415
1416 /* Assign port SDMA configuration */
1417 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1418
1419 /* Disable PHY polling in hardware, since we're using the
1420 * kernel phylib to do this.
1421 */
1422 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1423 val &= ~MVNETA_PHY_POLLING_ENABLE;
1424 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1425
1426 mvneta_set_autoneg(pp, pp->use_inband_status);
1427 mvneta_set_ucast_table(pp, -1);
1428 mvneta_set_special_mcast_table(pp, -1);
1429 mvneta_set_other_mcast_table(pp, -1);
1430
1431 /* Set port interrupt enable register - default enable all */
1432 mvreg_write(pp, MVNETA_INTR_ENABLE,
1433 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1434 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1435
1436 mvneta_mib_counters_clear(pp);
1437}
1438
1439/* Set max sizes for tx queues */
1440static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1441
1442{
1443 u32 val, size, mtu;
1444 int queue;
1445
1446 mtu = max_tx_size * 8;
1447 if (mtu > MVNETA_TX_MTU_MAX)
1448 mtu = MVNETA_TX_MTU_MAX;
1449
1450 /* Set MTU */
1451 val = mvreg_read(pp, MVNETA_TX_MTU);
1452 val &= ~MVNETA_TX_MTU_MAX;
1453 val |= mtu;
1454 mvreg_write(pp, MVNETA_TX_MTU, val);
1455
1456 /* TX token size and all TXQs token size must be larger that MTU */
1457 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1458
1459 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1460 if (size < mtu) {
1461 size = mtu;
1462 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1463 val |= size;
1464 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1465 }
1466 for (queue = 0; queue < txq_number; queue++) {
1467 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1468
1469 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1470 if (size < mtu) {
1471 size = mtu;
1472 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1473 val |= size;
1474 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1475 }
1476 }
1477}
1478
1479/* Set unicast address */
1480static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1481 int queue)
1482{
1483 unsigned int unicast_reg;
1484 unsigned int tbl_offset;
1485 unsigned int reg_offset;
1486
1487 /* Locate the Unicast table entry */
1488 last_nibble = (0xf & last_nibble);
1489
1490 /* offset from unicast tbl base */
1491 tbl_offset = (last_nibble / 4) * 4;
1492
1493 /* offset within the above reg */
1494 reg_offset = last_nibble % 4;
1495
1496 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1497
1498 if (queue == -1) {
1499 /* Clear accepts frame bit at specified unicast DA tbl entry */
1500 unicast_reg &= ~(0xff << (8 * reg_offset));
1501 } else {
1502 unicast_reg &= ~(0xff << (8 * reg_offset));
1503 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1504 }
1505
1506 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1507}
1508
1509/* Set mac address */
1510static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1511 int queue)
1512{
1513 unsigned int mac_h;
1514 unsigned int mac_l;
1515
1516 if (queue != -1) {
1517 mac_l = (addr[4] << 8) | (addr[5]);
1518 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1519 (addr[2] << 8) | (addr[3] << 0);
1520
1521 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1522 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1523 }
1524
1525 /* Accept frames of this address */
1526 mvneta_set_ucast_addr(pp, addr[5], queue);
1527}
1528
1529/* Set the number of packets that will be received before RX interrupt
1530 * will be generated by HW.
1531 */
1532static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1533 struct mvneta_rx_queue *rxq, u32 value)
1534{
1535 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1536 value | MVNETA_RXQ_NON_OCCUPIED(0));
1537 rxq->pkts_coal = value;
1538}
1539
1540/* Set the time delay in usec before RX interrupt will be generated by
1541 * HW.
1542 */
1543static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1544 struct mvneta_rx_queue *rxq, u32 value)
1545{
1546 u32 val;
1547 unsigned long clk_rate;
1548
1549 clk_rate = clk_get_rate(pp->clk);
1550 val = (clk_rate / 1000000) * value;
1551
1552 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1553 rxq->time_coal = value;
1554}
1555
1556/* Set threshold for TX_DONE pkts coalescing */
1557static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1558 struct mvneta_tx_queue *txq, u32 value)
1559{
1560 u32 val;
1561
1562 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1563
1564 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1565 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1566
1567 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1568
1569 txq->done_pkts_coal = value;
1570}
1571
1572/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1573static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1574 u32 phys_addr, u32 cookie)
1575{
1576 rx_desc->buf_cookie = cookie;
1577 rx_desc->buf_phys_addr = phys_addr;
1578}
1579
1580/* Decrement sent descriptors counter */
1581static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1582 struct mvneta_tx_queue *txq,
1583 int sent_desc)
1584{
1585 u32 val;
1586
1587 /* Only 255 TX descriptors can be updated at once */
1588 while (sent_desc > 0xff) {
1589 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1590 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1591 sent_desc = sent_desc - 0xff;
1592 }
1593
1594 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1595 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1596}
1597
1598/* Get number of TX descriptors already sent by HW */
1599static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1600 struct mvneta_tx_queue *txq)
1601{
1602 u32 val;
1603 int sent_desc;
1604
1605 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1606 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1607 MVNETA_TXQ_SENT_DESC_SHIFT;
1608
1609 return sent_desc;
1610}
1611
1612/* Get number of sent descriptors and decrement counter.
1613 * The number of sent descriptors is returned.
1614 */
1615static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1616 struct mvneta_tx_queue *txq)
1617{
1618 int sent_desc;
1619
1620 /* Get number of sent descriptors */
1621 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1622
1623 /* Decrement sent descriptors counter */
1624 if (sent_desc)
1625 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1626
1627 return sent_desc;
1628}
1629
1630/* Set TXQ descriptors fields relevant for CSUM calculation */
1631static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1632 int ip_hdr_len, int l4_proto)
1633{
1634 u32 command;
1635
1636 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1637 * G_L4_chk, L4_type; required only for checksum
1638 * calculation
1639 */
1640 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1641 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1642
1643 if (l3_proto == htons(ETH_P_IP))
1644 command |= MVNETA_TXD_IP_CSUM;
1645 else
1646 command |= MVNETA_TX_L3_IP6;
1647
1648 if (l4_proto == IPPROTO_TCP)
1649 command |= MVNETA_TX_L4_CSUM_FULL;
1650 else if (l4_proto == IPPROTO_UDP)
1651 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1652 else
1653 command |= MVNETA_TX_L4_CSUM_NOT;
1654
1655 return command;
1656}
1657
1658
1659/* Display more error info */
1660static void mvneta_rx_error(struct mvneta_port *pp,
1661 struct mvneta_rx_desc *rx_desc)
1662{
1663 u32 status = rx_desc->status;
1664
1665 if (!mvneta_rxq_desc_is_first_last(status)) {
1666 netdev_err(pp->dev,
1667 "bad rx status %08x (buffer oversize), size=%d\n",
1668 status, rx_desc->data_size);
1669 return;
1670 }
1671
1672 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1673 case MVNETA_RXD_ERR_CRC:
1674 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1675 status, rx_desc->data_size);
1676 break;
1677 case MVNETA_RXD_ERR_OVERRUN:
1678 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1679 status, rx_desc->data_size);
1680 break;
1681 case MVNETA_RXD_ERR_LEN:
1682 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1683 status, rx_desc->data_size);
1684 break;
1685 case MVNETA_RXD_ERR_RESOURCE:
1686 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1687 status, rx_desc->data_size);
1688 break;
1689 }
1690}
1691
1692/* Handle RX checksum offload based on the descriptor's status */
1693static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1694 struct sk_buff *skb)
1695{
1696 if ((status & MVNETA_RXD_L3_IP4) &&
1697 (status & MVNETA_RXD_L4_CSUM_OK)) {
1698 skb->csum = 0;
1699 skb->ip_summed = CHECKSUM_UNNECESSARY;
1700 return;
1701 }
1702
1703 skb->ip_summed = CHECKSUM_NONE;
1704}
1705
1706/* Return tx queue pointer (find last set bit) according to <cause> returned
1707 * form tx_done reg. <cause> must not be null. The return value is always a
1708 * valid queue for matching the first one found in <cause>.
1709 */
1710static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1711 u32 cause)
1712{
1713 int queue = fls(cause) - 1;
1714
1715 return &pp->txqs[queue];
1716}
1717
1718/* Free tx queue skbuffs */
1719static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1720 struct mvneta_tx_queue *txq, int num)
1721{
1722 int i;
1723
1724 for (i = 0; i < num; i++) {
1725 struct mvneta_tx_desc *tx_desc = txq->descs +
1726 txq->txq_get_index;
1727 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1728
1729 mvneta_txq_inc_get(txq);
1730
1731 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1732 dma_unmap_single(pp->dev->dev.parent,
1733 tx_desc->buf_phys_addr,
1734 tx_desc->data_size, DMA_TO_DEVICE);
1735 if (!skb)
1736 continue;
1737 dev_kfree_skb_any(skb);
1738 }
1739}
1740
1741/* Handle end of transmission */
1742static void mvneta_txq_done(struct mvneta_port *pp,
1743 struct mvneta_tx_queue *txq)
1744{
1745 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1746 int tx_done;
1747
1748 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1749 if (!tx_done)
1750 return;
1751
1752 mvneta_txq_bufs_free(pp, txq, tx_done);
1753
1754 txq->count -= tx_done;
1755
1756 if (netif_tx_queue_stopped(nq)) {
1757 if (txq->count <= txq->tx_wake_threshold)
1758 netif_tx_wake_queue(nq);
1759 }
1760}
1761
1762void *mvneta_frag_alloc(unsigned int frag_size)
1763{
1764 if (likely(frag_size <= PAGE_SIZE))
1765 return netdev_alloc_frag(frag_size);
1766 else
1767 return kmalloc(frag_size, GFP_ATOMIC);
1768}
1769EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1770
1771void mvneta_frag_free(unsigned int frag_size, void *data)
1772{
1773 if (likely(frag_size <= PAGE_SIZE))
1774 skb_free_frag(data);
1775 else
1776 kfree(data);
1777}
1778EXPORT_SYMBOL_GPL(mvneta_frag_free);
1779
1780/* Refill processing for SW buffer management */
1781static int mvneta_rx_refill(struct mvneta_port *pp,
1782 struct mvneta_rx_desc *rx_desc)
1783
1784{
1785 dma_addr_t phys_addr;
1786 void *data;
1787
1788 data = mvneta_frag_alloc(pp->frag_size);
1789 if (!data)
1790 return -ENOMEM;
1791
1792 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1793 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1794 DMA_FROM_DEVICE);
1795 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1796 mvneta_frag_free(pp->frag_size, data);
1797 return -ENOMEM;
1798 }
1799
1800 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1801 return 0;
1802}
1803
1804/* Handle tx checksum */
1805static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1806{
1807 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1808 int ip_hdr_len = 0;
1809 __be16 l3_proto = vlan_get_protocol(skb);
1810 u8 l4_proto;
1811
1812 if (l3_proto == htons(ETH_P_IP)) {
1813 struct iphdr *ip4h = ip_hdr(skb);
1814
1815 /* Calculate IPv4 checksum and L4 checksum */
1816 ip_hdr_len = ip4h->ihl;
1817 l4_proto = ip4h->protocol;
1818 } else if (l3_proto == htons(ETH_P_IPV6)) {
1819 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1820
1821 /* Read l4_protocol from one of IPv6 extra headers */
1822 if (skb_network_header_len(skb) > 0)
1823 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1824 l4_proto = ip6h->nexthdr;
1825 } else
1826 return MVNETA_TX_L4_CSUM_NOT;
1827
1828 return mvneta_txq_desc_csum(skb_network_offset(skb),
1829 l3_proto, ip_hdr_len, l4_proto);
1830 }
1831
1832 return MVNETA_TX_L4_CSUM_NOT;
1833}
1834
1835/* Drop packets received by the RXQ and free buffers */
1836static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1837 struct mvneta_rx_queue *rxq)
1838{
1839 int rx_done, i;
1840
1841 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1842 if (rx_done)
1843 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1844
1845 if (pp->bm_priv) {
1846 for (i = 0; i < rx_done; i++) {
1847 struct mvneta_rx_desc *rx_desc =
1848 mvneta_rxq_next_desc_get(rxq);
1849 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1850 struct mvneta_bm_pool *bm_pool;
1851
1852 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1853 /* Return dropped buffer to the pool */
1854 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1855 rx_desc->buf_phys_addr);
1856 }
1857 return;
1858 }
1859
1860 for (i = 0; i < rxq->size; i++) {
1861 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1862 void *data = (void *)rx_desc->buf_cookie;
1863
1864 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1865 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1866 mvneta_frag_free(pp->frag_size, data);
1867 }
1868}
1869
1870/* Main rx processing when using software buffer management */
1871static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1872 struct mvneta_rx_queue *rxq)
1873{
1874 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1875 struct net_device *dev = pp->dev;
1876 int rx_done;
1877 u32 rcvd_pkts = 0;
1878 u32 rcvd_bytes = 0;
1879
1880 /* Get number of received packets */
1881 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1882
1883 if (rx_todo > rx_done)
1884 rx_todo = rx_done;
1885
1886 rx_done = 0;
1887
1888 /* Fairness NAPI loop */
1889 while (rx_done < rx_todo) {
1890 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1891 struct sk_buff *skb;
1892 unsigned char *data;
1893 dma_addr_t phys_addr;
1894 u32 rx_status, frag_size;
1895 int rx_bytes, err;
1896
1897 rx_done++;
1898 rx_status = rx_desc->status;
1899 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1900 data = (unsigned char *)rx_desc->buf_cookie;
1901 phys_addr = rx_desc->buf_phys_addr;
1902
1903 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1904 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1905err_drop_frame:
1906 dev->stats.rx_errors++;
1907 mvneta_rx_error(pp, rx_desc);
1908 /* leave the descriptor untouched */
1909 continue;
1910 }
1911
1912 if (rx_bytes <= rx_copybreak) {
1913 /* better copy a small frame and not unmap the DMA region */
1914 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1915 if (unlikely(!skb))
1916 goto err_drop_frame;
1917
1918 dma_sync_single_range_for_cpu(dev->dev.parent,
1919 rx_desc->buf_phys_addr,
1920 MVNETA_MH_SIZE + NET_SKB_PAD,
1921 rx_bytes,
1922 DMA_FROM_DEVICE);
1923 memcpy(skb_put(skb, rx_bytes),
1924 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1925 rx_bytes);
1926
1927 skb->protocol = eth_type_trans(skb, dev);
1928 mvneta_rx_csum(pp, rx_status, skb);
1929 napi_gro_receive(&port->napi, skb);
1930
1931 rcvd_pkts++;
1932 rcvd_bytes += rx_bytes;
1933
1934 /* leave the descriptor and buffer untouched */
1935 continue;
1936 }
1937
1938 /* Refill processing */
1939 err = mvneta_rx_refill(pp, rx_desc);
1940 if (err) {
1941 netdev_err(dev, "Linux processing - Can't refill\n");
1942 rxq->missed++;
1943 goto err_drop_frame;
1944 }
1945
1946 frag_size = pp->frag_size;
1947
1948 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1949
1950 /* After refill old buffer has to be unmapped regardless
1951 * the skb is successfully built or not.
1952 */
1953 dma_unmap_single(dev->dev.parent, phys_addr,
1954 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1955 DMA_FROM_DEVICE);
1956
1957 if (!skb)
1958 goto err_drop_frame;
1959
1960 rcvd_pkts++;
1961 rcvd_bytes += rx_bytes;
1962
1963 /* Linux processing */
1964 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1965 skb_put(skb, rx_bytes);
1966
1967 skb->protocol = eth_type_trans(skb, dev);
1968
1969 mvneta_rx_csum(pp, rx_status, skb);
1970
1971 napi_gro_receive(&port->napi, skb);
1972 }
1973
1974 if (rcvd_pkts) {
1975 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1976
1977 u64_stats_update_begin(&stats->syncp);
1978 stats->rx_packets += rcvd_pkts;
1979 stats->rx_bytes += rcvd_bytes;
1980 u64_stats_update_end(&stats->syncp);
1981 }
1982
1983 /* Update rxq management counters */
1984 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1985
1986 return rx_done;
1987}
1988
1989/* Main rx processing when using hardware buffer management */
1990static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1991 struct mvneta_rx_queue *rxq)
1992{
1993 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1994 struct net_device *dev = pp->dev;
1995 int rx_done;
1996 u32 rcvd_pkts = 0;
1997 u32 rcvd_bytes = 0;
1998
1999 /* Get number of received packets */
2000 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2001
2002 if (rx_todo > rx_done)
2003 rx_todo = rx_done;
2004
2005 rx_done = 0;
2006
2007 /* Fairness NAPI loop */
2008 while (rx_done < rx_todo) {
2009 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2010 struct mvneta_bm_pool *bm_pool = NULL;
2011 struct sk_buff *skb;
2012 unsigned char *data;
2013 dma_addr_t phys_addr;
2014 u32 rx_status, frag_size;
2015 int rx_bytes, err;
2016 u8 pool_id;
2017
2018 rx_done++;
2019 rx_status = rx_desc->status;
2020 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2021 data = (unsigned char *)rx_desc->buf_cookie;
2022 phys_addr = rx_desc->buf_phys_addr;
2023 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2024 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2025
2026 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2027 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2028err_drop_frame_ret_pool:
2029 /* Return the buffer to the pool */
2030 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2031 rx_desc->buf_phys_addr);
2032err_drop_frame:
2033 dev->stats.rx_errors++;
2034 mvneta_rx_error(pp, rx_desc);
2035 /* leave the descriptor untouched */
2036 continue;
2037 }
2038
2039 if (rx_bytes <= rx_copybreak) {
2040 /* better copy a small frame and not unmap the DMA region */
2041 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2042 if (unlikely(!skb))
2043 goto err_drop_frame_ret_pool;
2044
2045 dma_sync_single_range_for_cpu(dev->dev.parent,
2046 rx_desc->buf_phys_addr,
2047 MVNETA_MH_SIZE + NET_SKB_PAD,
2048 rx_bytes,
2049 DMA_FROM_DEVICE);
2050 memcpy(skb_put(skb, rx_bytes),
2051 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2052 rx_bytes);
2053
2054 skb->protocol = eth_type_trans(skb, dev);
2055 mvneta_rx_csum(pp, rx_status, skb);
2056 napi_gro_receive(&port->napi, skb);
2057
2058 rcvd_pkts++;
2059 rcvd_bytes += rx_bytes;
2060
2061 /* Return the buffer to the pool */
2062 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2063 rx_desc->buf_phys_addr);
2064
2065 /* leave the descriptor and buffer untouched */
2066 continue;
2067 }
2068
2069 /* Refill processing */
2070 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2071 if (err) {
2072 netdev_err(dev, "Linux processing - Can't refill\n");
2073 rxq->missed++;
2074 goto err_drop_frame_ret_pool;
2075 }
2076
2077 frag_size = bm_pool->hwbm_pool.frag_size;
2078
2079 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2080
2081 /* After refill old buffer has to be unmapped regardless
2082 * the skb is successfully built or not.
2083 */
2084 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2085 bm_pool->buf_size, DMA_FROM_DEVICE);
2086 if (!skb)
2087 goto err_drop_frame;
2088
2089 rcvd_pkts++;
2090 rcvd_bytes += rx_bytes;
2091
2092 /* Linux processing */
2093 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2094 skb_put(skb, rx_bytes);
2095
2096 skb->protocol = eth_type_trans(skb, dev);
2097
2098 mvneta_rx_csum(pp, rx_status, skb);
2099
2100 napi_gro_receive(&port->napi, skb);
2101 }
2102
2103 if (rcvd_pkts) {
2104 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2105
2106 u64_stats_update_begin(&stats->syncp);
2107 stats->rx_packets += rcvd_pkts;
2108 stats->rx_bytes += rcvd_bytes;
2109 u64_stats_update_end(&stats->syncp);
2110 }
2111
2112 /* Update rxq management counters */
2113 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2114
2115 return rx_done;
2116}
2117
2118static inline void
2119mvneta_tso_put_hdr(struct sk_buff *skb,
2120 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2121{
2122 struct mvneta_tx_desc *tx_desc;
2123 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2124
2125 txq->tx_skb[txq->txq_put_index] = NULL;
2126 tx_desc = mvneta_txq_next_desc_get(txq);
2127 tx_desc->data_size = hdr_len;
2128 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2129 tx_desc->command |= MVNETA_TXD_F_DESC;
2130 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2131 txq->txq_put_index * TSO_HEADER_SIZE;
2132 mvneta_txq_inc_put(txq);
2133}
2134
2135static inline int
2136mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2137 struct sk_buff *skb, char *data, int size,
2138 bool last_tcp, bool is_last)
2139{
2140 struct mvneta_tx_desc *tx_desc;
2141
2142 tx_desc = mvneta_txq_next_desc_get(txq);
2143 tx_desc->data_size = size;
2144 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2145 size, DMA_TO_DEVICE);
2146 if (unlikely(dma_mapping_error(dev->dev.parent,
2147 tx_desc->buf_phys_addr))) {
2148 mvneta_txq_desc_put(txq);
2149 return -ENOMEM;
2150 }
2151
2152 tx_desc->command = 0;
2153 txq->tx_skb[txq->txq_put_index] = NULL;
2154
2155 if (last_tcp) {
2156 /* last descriptor in the TCP packet */
2157 tx_desc->command = MVNETA_TXD_L_DESC;
2158
2159 /* last descriptor in SKB */
2160 if (is_last)
2161 txq->tx_skb[txq->txq_put_index] = skb;
2162 }
2163 mvneta_txq_inc_put(txq);
2164 return 0;
2165}
2166
2167static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2168 struct mvneta_tx_queue *txq)
2169{
2170 int total_len, data_left;
2171 int desc_count = 0;
2172 struct mvneta_port *pp = netdev_priv(dev);
2173 struct tso_t tso;
2174 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2175 int i;
2176
2177 /* Count needed descriptors */
2178 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2179 return 0;
2180
2181 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2182 pr_info("*** Is this even possible???!?!?\n");
2183 return 0;
2184 }
2185
2186 /* Initialize the TSO handler, and prepare the first payload */
2187 tso_start(skb, &tso);
2188
2189 total_len = skb->len - hdr_len;
2190 while (total_len > 0) {
2191 char *hdr;
2192
2193 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2194 total_len -= data_left;
2195 desc_count++;
2196
2197 /* prepare packet headers: MAC + IP + TCP */
2198 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2199 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2200
2201 mvneta_tso_put_hdr(skb, pp, txq);
2202
2203 while (data_left > 0) {
2204 int size;
2205 desc_count++;
2206
2207 size = min_t(int, tso.size, data_left);
2208
2209 if (mvneta_tso_put_data(dev, txq, skb,
2210 tso.data, size,
2211 size == data_left,
2212 total_len == 0))
2213 goto err_release;
2214 data_left -= size;
2215
2216 tso_build_data(skb, &tso, size);
2217 }
2218 }
2219
2220 return desc_count;
2221
2222err_release:
2223 /* Release all used data descriptors; header descriptors must not
2224 * be DMA-unmapped.
2225 */
2226 for (i = desc_count - 1; i >= 0; i--) {
2227 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2228 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2229 dma_unmap_single(pp->dev->dev.parent,
2230 tx_desc->buf_phys_addr,
2231 tx_desc->data_size,
2232 DMA_TO_DEVICE);
2233 mvneta_txq_desc_put(txq);
2234 }
2235 return 0;
2236}
2237
2238/* Handle tx fragmentation processing */
2239static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2240 struct mvneta_tx_queue *txq)
2241{
2242 struct mvneta_tx_desc *tx_desc;
2243 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2244
2245 for (i = 0; i < nr_frags; i++) {
2246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2247 void *addr = page_address(frag->page.p) + frag->page_offset;
2248
2249 tx_desc = mvneta_txq_next_desc_get(txq);
2250 tx_desc->data_size = frag->size;
2251
2252 tx_desc->buf_phys_addr =
2253 dma_map_single(pp->dev->dev.parent, addr,
2254 tx_desc->data_size, DMA_TO_DEVICE);
2255
2256 if (dma_mapping_error(pp->dev->dev.parent,
2257 tx_desc->buf_phys_addr)) {
2258 mvneta_txq_desc_put(txq);
2259 goto error;
2260 }
2261
2262 if (i == nr_frags - 1) {
2263 /* Last descriptor */
2264 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2265 txq->tx_skb[txq->txq_put_index] = skb;
2266 } else {
2267 /* Descriptor in the middle: Not First, Not Last */
2268 tx_desc->command = 0;
2269 txq->tx_skb[txq->txq_put_index] = NULL;
2270 }
2271 mvneta_txq_inc_put(txq);
2272 }
2273
2274 return 0;
2275
2276error:
2277 /* Release all descriptors that were used to map fragments of
2278 * this packet, as well as the corresponding DMA mappings
2279 */
2280 for (i = i - 1; i >= 0; i--) {
2281 tx_desc = txq->descs + i;
2282 dma_unmap_single(pp->dev->dev.parent,
2283 tx_desc->buf_phys_addr,
2284 tx_desc->data_size,
2285 DMA_TO_DEVICE);
2286 mvneta_txq_desc_put(txq);
2287 }
2288
2289 return -ENOMEM;
2290}
2291
2292/* Main tx processing */
2293static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2294{
2295 struct mvneta_port *pp = netdev_priv(dev);
2296 u16 txq_id = skb_get_queue_mapping(skb);
2297 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2298 struct mvneta_tx_desc *tx_desc;
2299 int len = skb->len;
2300 int frags = 0;
2301 u32 tx_cmd;
2302
2303 if (!netif_running(dev))
2304 goto out;
2305
2306 if (skb_is_gso(skb)) {
2307 frags = mvneta_tx_tso(skb, dev, txq);
2308 goto out;
2309 }
2310
2311 frags = skb_shinfo(skb)->nr_frags + 1;
2312
2313 /* Get a descriptor for the first part of the packet */
2314 tx_desc = mvneta_txq_next_desc_get(txq);
2315
2316 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2317
2318 tx_desc->data_size = skb_headlen(skb);
2319
2320 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2321 tx_desc->data_size,
2322 DMA_TO_DEVICE);
2323 if (unlikely(dma_mapping_error(dev->dev.parent,
2324 tx_desc->buf_phys_addr))) {
2325 mvneta_txq_desc_put(txq);
2326 frags = 0;
2327 goto out;
2328 }
2329
2330 if (frags == 1) {
2331 /* First and Last descriptor */
2332 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2333 tx_desc->command = tx_cmd;
2334 txq->tx_skb[txq->txq_put_index] = skb;
2335 mvneta_txq_inc_put(txq);
2336 } else {
2337 /* First but not Last */
2338 tx_cmd |= MVNETA_TXD_F_DESC;
2339 txq->tx_skb[txq->txq_put_index] = NULL;
2340 mvneta_txq_inc_put(txq);
2341 tx_desc->command = tx_cmd;
2342 /* Continue with other skb fragments */
2343 if (mvneta_tx_frag_process(pp, skb, txq)) {
2344 dma_unmap_single(dev->dev.parent,
2345 tx_desc->buf_phys_addr,
2346 tx_desc->data_size,
2347 DMA_TO_DEVICE);
2348 mvneta_txq_desc_put(txq);
2349 frags = 0;
2350 goto out;
2351 }
2352 }
2353
2354out:
2355 if (frags > 0) {
2356 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2357 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2358
2359 txq->count += frags;
2360 mvneta_txq_pend_desc_add(pp, txq, frags);
2361
2362 if (txq->count >= txq->tx_stop_threshold)
2363 netif_tx_stop_queue(nq);
2364
2365 u64_stats_update_begin(&stats->syncp);
2366 stats->tx_packets++;
2367 stats->tx_bytes += len;
2368 u64_stats_update_end(&stats->syncp);
2369 } else {
2370 dev->stats.tx_dropped++;
2371 dev_kfree_skb_any(skb);
2372 }
2373
2374 return NETDEV_TX_OK;
2375}
2376
2377
2378/* Free tx resources, when resetting a port */
2379static void mvneta_txq_done_force(struct mvneta_port *pp,
2380 struct mvneta_tx_queue *txq)
2381
2382{
2383 int tx_done = txq->count;
2384
2385 mvneta_txq_bufs_free(pp, txq, tx_done);
2386
2387 /* reset txq */
2388 txq->count = 0;
2389 txq->txq_put_index = 0;
2390 txq->txq_get_index = 0;
2391}
2392
2393/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2394 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2395 */
2396static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2397{
2398 struct mvneta_tx_queue *txq;
2399 struct netdev_queue *nq;
2400
2401 while (cause_tx_done) {
2402 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2403
2404 nq = netdev_get_tx_queue(pp->dev, txq->id);
2405 __netif_tx_lock(nq, smp_processor_id());
2406
2407 if (txq->count)
2408 mvneta_txq_done(pp, txq);
2409
2410 __netif_tx_unlock(nq);
2411 cause_tx_done &= ~((1 << txq->id));
2412 }
2413}
2414
2415/* Compute crc8 of the specified address, using a unique algorithm ,
2416 * according to hw spec, different than generic crc8 algorithm
2417 */
2418static int mvneta_addr_crc(unsigned char *addr)
2419{
2420 int crc = 0;
2421 int i;
2422
2423 for (i = 0; i < ETH_ALEN; i++) {
2424 int j;
2425
2426 crc = (crc ^ addr[i]) << 8;
2427 for (j = 7; j >= 0; j--) {
2428 if (crc & (0x100 << j))
2429 crc ^= 0x107 << j;
2430 }
2431 }
2432
2433 return crc;
2434}
2435
2436/* This method controls the net device special MAC multicast support.
2437 * The Special Multicast Table for MAC addresses supports MAC of the form
2438 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2439 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2440 * Table entries in the DA-Filter table. This method set the Special
2441 * Multicast Table appropriate entry.
2442 */
2443static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2444 unsigned char last_byte,
2445 int queue)
2446{
2447 unsigned int smc_table_reg;
2448 unsigned int tbl_offset;
2449 unsigned int reg_offset;
2450
2451 /* Register offset from SMC table base */
2452 tbl_offset = (last_byte / 4);
2453 /* Entry offset within the above reg */
2454 reg_offset = last_byte % 4;
2455
2456 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2457 + tbl_offset * 4));
2458
2459 if (queue == -1)
2460 smc_table_reg &= ~(0xff << (8 * reg_offset));
2461 else {
2462 smc_table_reg &= ~(0xff << (8 * reg_offset));
2463 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2464 }
2465
2466 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2467 smc_table_reg);
2468}
2469
2470/* This method controls the network device Other MAC multicast support.
2471 * The Other Multicast Table is used for multicast of another type.
2472 * A CRC-8 is used as an index to the Other Multicast Table entries
2473 * in the DA-Filter table.
2474 * The method gets the CRC-8 value from the calling routine and
2475 * sets the Other Multicast Table appropriate entry according to the
2476 * specified CRC-8 .
2477 */
2478static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2479 unsigned char crc8,
2480 int queue)
2481{
2482 unsigned int omc_table_reg;
2483 unsigned int tbl_offset;
2484 unsigned int reg_offset;
2485
2486 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2487 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2488
2489 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2490
2491 if (queue == -1) {
2492 /* Clear accepts frame bit at specified Other DA table entry */
2493 omc_table_reg &= ~(0xff << (8 * reg_offset));
2494 } else {
2495 omc_table_reg &= ~(0xff << (8 * reg_offset));
2496 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2497 }
2498
2499 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2500}
2501
2502/* The network device supports multicast using two tables:
2503 * 1) Special Multicast Table for MAC addresses of the form
2504 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506 * Table entries in the DA-Filter table.
2507 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2508 * is used as an index to the Other Multicast Table entries in the
2509 * DA-Filter table.
2510 */
2511static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2512 int queue)
2513{
2514 unsigned char crc_result = 0;
2515
2516 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2517 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2518 return 0;
2519 }
2520
2521 crc_result = mvneta_addr_crc(p_addr);
2522 if (queue == -1) {
2523 if (pp->mcast_count[crc_result] == 0) {
2524 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2525 crc_result);
2526 return -EINVAL;
2527 }
2528
2529 pp->mcast_count[crc_result]--;
2530 if (pp->mcast_count[crc_result] != 0) {
2531 netdev_info(pp->dev,
2532 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2533 pp->mcast_count[crc_result], crc_result);
2534 return -EINVAL;
2535 }
2536 } else
2537 pp->mcast_count[crc_result]++;
2538
2539 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2540
2541 return 0;
2542}
2543
2544/* Configure Fitering mode of Ethernet port */
2545static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2546 int is_promisc)
2547{
2548 u32 port_cfg_reg, val;
2549
2550 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2551
2552 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2553
2554 /* Set / Clear UPM bit in port configuration register */
2555 if (is_promisc) {
2556 /* Accept all Unicast addresses */
2557 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2558 val |= MVNETA_FORCE_UNI;
2559 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2560 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2561 } else {
2562 /* Reject all Unicast addresses */
2563 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2564 val &= ~MVNETA_FORCE_UNI;
2565 }
2566
2567 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2568 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2569}
2570
2571/* register unicast and multicast addresses */
2572static void mvneta_set_rx_mode(struct net_device *dev)
2573{
2574 struct mvneta_port *pp = netdev_priv(dev);
2575 struct netdev_hw_addr *ha;
2576
2577 if (dev->flags & IFF_PROMISC) {
2578 /* Accept all: Multicast + Unicast */
2579 mvneta_rx_unicast_promisc_set(pp, 1);
2580 mvneta_set_ucast_table(pp, pp->rxq_def);
2581 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2582 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2583 } else {
2584 /* Accept single Unicast */
2585 mvneta_rx_unicast_promisc_set(pp, 0);
2586 mvneta_set_ucast_table(pp, -1);
2587 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2588
2589 if (dev->flags & IFF_ALLMULTI) {
2590 /* Accept all multicast */
2591 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2592 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2593 } else {
2594 /* Accept only initialized multicast */
2595 mvneta_set_special_mcast_table(pp, -1);
2596 mvneta_set_other_mcast_table(pp, -1);
2597
2598 if (!netdev_mc_empty(dev)) {
2599 netdev_for_each_mc_addr(ha, dev) {
2600 mvneta_mcast_addr_set(pp, ha->addr,
2601 pp->rxq_def);
2602 }
2603 }
2604 }
2605 }
2606}
2607
2608/* Interrupt handling - the callback for request_irq() */
2609static irqreturn_t mvneta_isr(int irq, void *dev_id)
2610{
2611 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2612
2613 disable_percpu_irq(port->pp->dev->irq);
2614 napi_schedule(&port->napi);
2615
2616 return IRQ_HANDLED;
2617}
2618
2619static int mvneta_fixed_link_update(struct mvneta_port *pp,
2620 struct phy_device *phy)
2621{
2622 struct fixed_phy_status status;
2623 struct fixed_phy_status changed = {};
2624 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2625
2626 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2627 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2628 status.speed = SPEED_1000;
2629 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2630 status.speed = SPEED_100;
2631 else
2632 status.speed = SPEED_10;
2633 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2634 changed.link = 1;
2635 changed.speed = 1;
2636 changed.duplex = 1;
2637 fixed_phy_update_state(phy, &status, &changed);
2638 return 0;
2639}
2640
2641/* NAPI handler
2642 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2643 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2644 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2645 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2646 * Each CPU has its own causeRxTx register
2647 */
2648static int mvneta_poll(struct napi_struct *napi, int budget)
2649{
2650 int rx_done = 0;
2651 u32 cause_rx_tx;
2652 int rx_queue;
2653 struct mvneta_port *pp = netdev_priv(napi->dev);
2654 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2655
2656 if (!netif_running(pp->dev)) {
2657 napi_complete(&port->napi);
2658 return rx_done;
2659 }
2660
2661 /* Read cause register */
2662 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665
2666 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667 if (pp->use_inband_status && (cause_misc &
2668 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669 MVNETA_CAUSE_LINK_CHANGE |
2670 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2671 mvneta_fixed_link_update(pp, pp->phy_dev);
2672 }
2673 }
2674
2675 /* Release Tx descriptors */
2676 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2677 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2678 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679 }
2680
2681 /* For the case where the last mvneta_poll did not process all
2682 * RX packets
2683 */
2684 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685
2686 cause_rx_tx |= port->cause_rx_tx;
2687
2688 if (rx_queue) {
2689 rx_queue = rx_queue - 1;
2690 if (pp->bm_priv)
2691 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692 else
2693 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2694 }
2695
2696 budget -= rx_done;
2697
2698 if (budget > 0) {
2699 cause_rx_tx = 0;
2700 napi_complete(&port->napi);
2701 enable_percpu_irq(pp->dev->irq, 0);
2702 }
2703
2704 port->cause_rx_tx = cause_rx_tx;
2705 return rx_done;
2706}
2707
2708/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710 int num)
2711{
2712 int i;
2713
2714 for (i = 0; i < num; i++) {
2715 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2718 __func__, rxq->id, i, num);
2719 break;
2720 }
2721 }
2722
2723 /* Add this number of RX descriptors as non occupied (ready to
2724 * get packets)
2725 */
2726 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727
2728 return i;
2729}
2730
2731/* Free all packets pending transmit from all TXQs and reset TX port */
2732static void mvneta_tx_reset(struct mvneta_port *pp)
2733{
2734 int queue;
2735
2736 /* free the skb's in the tx ring */
2737 for (queue = 0; queue < txq_number; queue++)
2738 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739
2740 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742}
2743
2744static void mvneta_rx_reset(struct mvneta_port *pp)
2745{
2746 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748}
2749
2750/* Rx/Tx queue initialization/cleanup methods */
2751
2752/* Create a specified RX queue */
2753static int mvneta_rxq_init(struct mvneta_port *pp,
2754 struct mvneta_rx_queue *rxq)
2755
2756{
2757 rxq->size = pp->rx_ring_size;
2758
2759 /* Allocate memory for RX descriptors */
2760 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762 &rxq->descs_phys, GFP_KERNEL);
2763 if (rxq->descs == NULL)
2764 return -ENOMEM;
2765
2766 rxq->last_desc = rxq->size - 1;
2767
2768 /* Set Rx descriptors queue starting address */
2769 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771
2772 /* Set Offset */
2773 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774
2775 /* Set coalescing pkts and time */
2776 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778
2779 if (!pp->bm_priv) {
2780 /* Fill RXQ with buffers from RX pool */
2781 mvneta_rxq_buf_size_set(pp, rxq,
2782 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783 mvneta_rxq_bm_disable(pp, rxq);
2784 } else {
2785 mvneta_rxq_bm_enable(pp, rxq);
2786 mvneta_rxq_long_pool_set(pp, rxq);
2787 mvneta_rxq_short_pool_set(pp, rxq);
2788 }
2789
2790 mvneta_rxq_fill(pp, rxq, rxq->size);
2791
2792 return 0;
2793}
2794
2795/* Cleanup Rx queue */
2796static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797 struct mvneta_rx_queue *rxq)
2798{
2799 mvneta_rxq_drop_pkts(pp, rxq);
2800
2801 if (rxq->descs)
2802 dma_free_coherent(pp->dev->dev.parent,
2803 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804 rxq->descs,
2805 rxq->descs_phys);
2806
2807 rxq->descs = NULL;
2808 rxq->last_desc = 0;
2809 rxq->next_desc_to_proc = 0;
2810 rxq->descs_phys = 0;
2811}
2812
2813/* Create and initialize a tx queue */
2814static int mvneta_txq_init(struct mvneta_port *pp,
2815 struct mvneta_tx_queue *txq)
2816{
2817 int cpu;
2818
2819 txq->size = pp->tx_ring_size;
2820
2821 /* A queue must always have room for at least one skb.
2822 * Therefore, stop the queue when the free entries reaches
2823 * the maximum number of descriptors per skb.
2824 */
2825 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827
2828
2829 /* Allocate memory for TX descriptors */
2830 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832 &txq->descs_phys, GFP_KERNEL);
2833 if (txq->descs == NULL)
2834 return -ENOMEM;
2835
2836 txq->last_desc = txq->size - 1;
2837
2838 /* Set maximum bandwidth for enabled TXQs */
2839 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841
2842 /* Set Tx descriptors queue starting address */
2843 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845
2846 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847 if (txq->tx_skb == NULL) {
2848 dma_free_coherent(pp->dev->dev.parent,
2849 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 txq->descs, txq->descs_phys);
2851 return -ENOMEM;
2852 }
2853
2854 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856 txq->size * TSO_HEADER_SIZE,
2857 &txq->tso_hdrs_phys, GFP_KERNEL);
2858 if (txq->tso_hdrs == NULL) {
2859 kfree(txq->tx_skb);
2860 dma_free_coherent(pp->dev->dev.parent,
2861 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862 txq->descs, txq->descs_phys);
2863 return -ENOMEM;
2864 }
2865 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866
2867 /* Setup XPS mapping */
2868 if (txq_number > 1)
2869 cpu = txq->id % num_present_cpus();
2870 else
2871 cpu = pp->rxq_def % num_present_cpus();
2872 cpumask_set_cpu(cpu, &txq->affinity_mask);
2873 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874
2875 return 0;
2876}
2877
2878/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879static void mvneta_txq_deinit(struct mvneta_port *pp,
2880 struct mvneta_tx_queue *txq)
2881{
2882 kfree(txq->tx_skb);
2883
2884 if (txq->tso_hdrs)
2885 dma_free_coherent(pp->dev->dev.parent,
2886 txq->size * TSO_HEADER_SIZE,
2887 txq->tso_hdrs, txq->tso_hdrs_phys);
2888 if (txq->descs)
2889 dma_free_coherent(pp->dev->dev.parent,
2890 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891 txq->descs, txq->descs_phys);
2892
2893 txq->descs = NULL;
2894 txq->last_desc = 0;
2895 txq->next_desc_to_proc = 0;
2896 txq->descs_phys = 0;
2897
2898 /* Set minimum bandwidth for disabled TXQs */
2899 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901
2902 /* Set Tx descriptors queue starting address and size */
2903 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905}
2906
2907/* Cleanup all Tx queues */
2908static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909{
2910 int queue;
2911
2912 for (queue = 0; queue < txq_number; queue++)
2913 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914}
2915
2916/* Cleanup all Rx queues */
2917static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918{
2919 int queue;
2920
2921 for (queue = 0; queue < txq_number; queue++)
2922 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2923}
2924
2925
2926/* Init all Rx queues */
2927static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928{
2929 int queue;
2930
2931 for (queue = 0; queue < rxq_number; queue++) {
2932 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933
2934 if (err) {
2935 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936 __func__, queue);
2937 mvneta_cleanup_rxqs(pp);
2938 return err;
2939 }
2940 }
2941
2942 return 0;
2943}
2944
2945/* Init all tx queues */
2946static int mvneta_setup_txqs(struct mvneta_port *pp)
2947{
2948 int queue;
2949
2950 for (queue = 0; queue < txq_number; queue++) {
2951 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952 if (err) {
2953 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954 __func__, queue);
2955 mvneta_cleanup_txqs(pp);
2956 return err;
2957 }
2958 }
2959
2960 return 0;
2961}
2962
2963static void mvneta_start_dev(struct mvneta_port *pp)
2964{
2965 int cpu;
2966
2967 mvneta_max_rx_size_set(pp, pp->pkt_size);
2968 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2969
2970 /* start the Rx/Tx activity */
2971 mvneta_port_enable(pp);
2972
2973 /* Enable polling on the port */
2974 for_each_online_cpu(cpu) {
2975 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2976
2977 napi_enable(&port->napi);
2978 }
2979
2980 /* Unmask interrupts. It has to be done from each CPU */
2981 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2982
2983 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2984 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2985 MVNETA_CAUSE_LINK_CHANGE |
2986 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2987
2988 phy_start(pp->phy_dev);
2989 netif_tx_start_all_queues(pp->dev);
2990}
2991
2992static void mvneta_stop_dev(struct mvneta_port *pp)
2993{
2994 unsigned int cpu;
2995
2996 phy_stop(pp->phy_dev);
2997
2998 for_each_online_cpu(cpu) {
2999 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3000
3001 napi_disable(&port->napi);
3002 }
3003
3004 netif_carrier_off(pp->dev);
3005
3006 mvneta_port_down(pp);
3007 netif_tx_stop_all_queues(pp->dev);
3008
3009 /* Stop the port activity */
3010 mvneta_port_disable(pp);
3011
3012 /* Clear all ethernet port interrupts */
3013 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3014
3015 /* Mask all ethernet port interrupts */
3016 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3017
3018 mvneta_tx_reset(pp);
3019 mvneta_rx_reset(pp);
3020}
3021
3022/* Return positive if MTU is valid */
3023static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3024{
3025 if (mtu < 68) {
3026 netdev_err(dev, "cannot change mtu to less than 68\n");
3027 return -EINVAL;
3028 }
3029
3030 /* 9676 == 9700 - 20 and rounding to 8 */
3031 if (mtu > 9676) {
3032 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3033 mtu = 9676;
3034 }
3035
3036 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3037 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3038 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3039 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3040 }
3041
3042 return mtu;
3043}
3044
3045static void mvneta_percpu_enable(void *arg)
3046{
3047 struct mvneta_port *pp = arg;
3048
3049 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3050}
3051
3052static void mvneta_percpu_disable(void *arg)
3053{
3054 struct mvneta_port *pp = arg;
3055
3056 disable_percpu_irq(pp->dev->irq);
3057}
3058
3059/* Change the device mtu */
3060static int mvneta_change_mtu(struct net_device *dev, int mtu)
3061{
3062 struct mvneta_port *pp = netdev_priv(dev);
3063 int ret;
3064
3065 mtu = mvneta_check_mtu_valid(dev, mtu);
3066 if (mtu < 0)
3067 return -EINVAL;
3068
3069 dev->mtu = mtu;
3070
3071 if (!netif_running(dev)) {
3072 if (pp->bm_priv)
3073 mvneta_bm_update_mtu(pp, mtu);
3074
3075 netdev_update_features(dev);
3076 return 0;
3077 }
3078
3079 /* The interface is running, so we have to force a
3080 * reallocation of the queues
3081 */
3082 mvneta_stop_dev(pp);
3083 on_each_cpu(mvneta_percpu_disable, pp, true);
3084
3085 mvneta_cleanup_txqs(pp);
3086 mvneta_cleanup_rxqs(pp);
3087
3088 if (pp->bm_priv)
3089 mvneta_bm_update_mtu(pp, mtu);
3090
3091 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3092 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3093 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3094
3095 ret = mvneta_setup_rxqs(pp);
3096 if (ret) {
3097 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3098 return ret;
3099 }
3100
3101 ret = mvneta_setup_txqs(pp);
3102 if (ret) {
3103 netdev_err(dev, "unable to setup txqs after MTU change\n");
3104 return ret;
3105 }
3106
3107 on_each_cpu(mvneta_percpu_enable, pp, true);
3108 mvneta_start_dev(pp);
3109 mvneta_port_up(pp);
3110
3111 netdev_update_features(dev);
3112
3113 return 0;
3114}
3115
3116static netdev_features_t mvneta_fix_features(struct net_device *dev,
3117 netdev_features_t features)
3118{
3119 struct mvneta_port *pp = netdev_priv(dev);
3120
3121 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3122 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3123 netdev_info(dev,
3124 "Disable IP checksum for MTU greater than %dB\n",
3125 pp->tx_csum_limit);
3126 }
3127
3128 return features;
3129}
3130
3131/* Get mac address */
3132static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3133{
3134 u32 mac_addr_l, mac_addr_h;
3135
3136 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3137 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3138 addr[0] = (mac_addr_h >> 24) & 0xFF;
3139 addr[1] = (mac_addr_h >> 16) & 0xFF;
3140 addr[2] = (mac_addr_h >> 8) & 0xFF;
3141 addr[3] = mac_addr_h & 0xFF;
3142 addr[4] = (mac_addr_l >> 8) & 0xFF;
3143 addr[5] = mac_addr_l & 0xFF;
3144}
3145
3146/* Handle setting mac address */
3147static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3148{
3149 struct mvneta_port *pp = netdev_priv(dev);
3150 struct sockaddr *sockaddr = addr;
3151 int ret;
3152
3153 ret = eth_prepare_mac_addr_change(dev, addr);
3154 if (ret < 0)
3155 return ret;
3156 /* Remove previous address table entry */
3157 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3158
3159 /* Set new addr in hw */
3160 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3161
3162 eth_commit_mac_addr_change(dev, addr);
3163 return 0;
3164}
3165
3166static void mvneta_adjust_link(struct net_device *ndev)
3167{
3168 struct mvneta_port *pp = netdev_priv(ndev);
3169 struct phy_device *phydev = pp->phy_dev;
3170 int status_change = 0;
3171
3172 if (phydev->link) {
3173 if ((pp->speed != phydev->speed) ||
3174 (pp->duplex != phydev->duplex)) {
3175 u32 val;
3176
3177 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3178 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3179 MVNETA_GMAC_CONFIG_GMII_SPEED |
3180 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3181
3182 if (phydev->duplex)
3183 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3184
3185 if (phydev->speed == SPEED_1000)
3186 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3187 else if (phydev->speed == SPEED_100)
3188 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3189
3190 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3191
3192 pp->duplex = phydev->duplex;
3193 pp->speed = phydev->speed;
3194 }
3195 }
3196
3197 if (phydev->link != pp->link) {
3198 if (!phydev->link) {
3199 pp->duplex = -1;
3200 pp->speed = 0;
3201 }
3202
3203 pp->link = phydev->link;
3204 status_change = 1;
3205 }
3206
3207 if (status_change) {
3208 if (phydev->link) {
3209 if (!pp->use_inband_status) {
3210 u32 val = mvreg_read(pp,
3211 MVNETA_GMAC_AUTONEG_CONFIG);
3212 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3213 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3214 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3215 val);
3216 }
3217 mvneta_port_up(pp);
3218 } else {
3219 if (!pp->use_inband_status) {
3220 u32 val = mvreg_read(pp,
3221 MVNETA_GMAC_AUTONEG_CONFIG);
3222 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3223 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3224 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3225 val);
3226 }
3227 mvneta_port_down(pp);
3228 }
3229 phy_print_status(phydev);
3230 }
3231}
3232
3233static int mvneta_mdio_probe(struct mvneta_port *pp)
3234{
3235 struct phy_device *phy_dev;
3236
3237 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3238 pp->phy_interface);
3239 if (!phy_dev) {
3240 netdev_err(pp->dev, "could not find the PHY\n");
3241 return -ENODEV;
3242 }
3243
3244 phy_dev->supported &= PHY_GBIT_FEATURES;
3245 phy_dev->advertising = phy_dev->supported;
3246
3247 pp->phy_dev = phy_dev;
3248 pp->link = 0;
3249 pp->duplex = 0;
3250 pp->speed = 0;
3251
3252 return 0;
3253}
3254
3255static void mvneta_mdio_remove(struct mvneta_port *pp)
3256{
3257 phy_disconnect(pp->phy_dev);
3258 pp->phy_dev = NULL;
3259}
3260
3261/* Electing a CPU must be done in an atomic way: it should be done
3262 * after or before the removal/insertion of a CPU and this function is
3263 * not reentrant.
3264 */
3265static void mvneta_percpu_elect(struct mvneta_port *pp)
3266{
3267 int elected_cpu = 0, max_cpu, cpu, i = 0;
3268
3269 /* Use the cpu associated to the rxq when it is online, in all
3270 * the other cases, use the cpu 0 which can't be offline.
3271 */
3272 if (cpu_online(pp->rxq_def))
3273 elected_cpu = pp->rxq_def;
3274
3275 max_cpu = num_present_cpus();
3276
3277 for_each_online_cpu(cpu) {
3278 int rxq_map = 0, txq_map = 0;
3279 int rxq;
3280
3281 for (rxq = 0; rxq < rxq_number; rxq++)
3282 if ((rxq % max_cpu) == cpu)
3283 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3284
3285 if (cpu == elected_cpu)
3286 /* Map the default receive queue queue to the
3287 * elected CPU
3288 */
3289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3290
3291 /* We update the TX queue map only if we have one
3292 * queue. In this case we associate the TX queue to
3293 * the CPU bound to the default RX queue
3294 */
3295 if (txq_number == 1)
3296 txq_map = (cpu == elected_cpu) ?
3297 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3298 else
3299 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3300 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3301
3302 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3303
3304 /* Update the interrupt mask on each CPU according the
3305 * new mapping
3306 */
3307 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3308 pp, true);
3309 i++;
3310
3311 }
3312};
3313
3314static int mvneta_percpu_notifier(struct notifier_block *nfb,
3315 unsigned long action, void *hcpu)
3316{
3317 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3318 cpu_notifier);
3319 int cpu = (unsigned long)hcpu, other_cpu;
3320 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3321
3322 switch (action) {
3323 case CPU_ONLINE:
3324 case CPU_ONLINE_FROZEN:
3325 case CPU_DOWN_FAILED:
3326 case CPU_DOWN_FAILED_FROZEN:
3327 spin_lock(&pp->lock);
3328 /* Configuring the driver for a new CPU while the
3329 * driver is stopping is racy, so just avoid it.
3330 */
3331 if (pp->is_stopped) {
3332 spin_unlock(&pp->lock);
3333 break;
3334 }
3335 netif_tx_stop_all_queues(pp->dev);
3336
3337 /* We have to synchronise on tha napi of each CPU
3338 * except the one just being waked up
3339 */
3340 for_each_online_cpu(other_cpu) {
3341 if (other_cpu != cpu) {
3342 struct mvneta_pcpu_port *other_port =
3343 per_cpu_ptr(pp->ports, other_cpu);
3344
3345 napi_synchronize(&other_port->napi);
3346 }
3347 }
3348
3349 /* Mask all ethernet port interrupts */
3350 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3351 napi_enable(&port->napi);
3352
3353
3354 /* Enable per-CPU interrupts on the CPU that is
3355 * brought up.
3356 */
3357 mvneta_percpu_enable(pp);
3358
3359 /* Enable per-CPU interrupt on the one CPU we care
3360 * about.
3361 */
3362 mvneta_percpu_elect(pp);
3363
3364 /* Unmask all ethernet port interrupts */
3365 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3366 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3367 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3368 MVNETA_CAUSE_LINK_CHANGE |
3369 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3370 netif_tx_start_all_queues(pp->dev);
3371 spin_unlock(&pp->lock);
3372 break;
3373 case CPU_DOWN_PREPARE:
3374 case CPU_DOWN_PREPARE_FROZEN:
3375 netif_tx_stop_all_queues(pp->dev);
3376 /* Thanks to this lock we are sure that any pending
3377 * cpu election is done
3378 */
3379 spin_lock(&pp->lock);
3380 /* Mask all ethernet port interrupts */
3381 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3382 spin_unlock(&pp->lock);
3383
3384 napi_synchronize(&port->napi);
3385 napi_disable(&port->napi);
3386 /* Disable per-CPU interrupts on the CPU that is
3387 * brought down.
3388 */
3389 mvneta_percpu_disable(pp);
3390
3391 break;
3392 case CPU_DEAD:
3393 case CPU_DEAD_FROZEN:
3394 /* Check if a new CPU must be elected now this on is down */
3395 spin_lock(&pp->lock);
3396 mvneta_percpu_elect(pp);
3397 spin_unlock(&pp->lock);
3398 /* Unmask all ethernet port interrupts */
3399 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3400 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3401 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3402 MVNETA_CAUSE_LINK_CHANGE |
3403 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3404 netif_tx_start_all_queues(pp->dev);
3405 break;
3406 }
3407
3408 return NOTIFY_OK;
3409}
3410
3411static int mvneta_open(struct net_device *dev)
3412{
3413 struct mvneta_port *pp = netdev_priv(dev);
3414 int ret;
3415
3416 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3417 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3418 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3419
3420 ret = mvneta_setup_rxqs(pp);
3421 if (ret)
3422 return ret;
3423
3424 ret = mvneta_setup_txqs(pp);
3425 if (ret)
3426 goto err_cleanup_rxqs;
3427
3428 /* Connect to port interrupt line */
3429 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3430 MVNETA_DRIVER_NAME, pp->ports);
3431 if (ret) {
3432 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3433 goto err_cleanup_txqs;
3434 }
3435
3436 /* Enable per-CPU interrupt on all the CPU to handle our RX
3437 * queue interrupts
3438 */
3439 on_each_cpu(mvneta_percpu_enable, pp, true);
3440
3441 pp->is_stopped = false;
3442 /* Register a CPU notifier to handle the case where our CPU
3443 * might be taken offline.
3444 */
3445 register_cpu_notifier(&pp->cpu_notifier);
3446
3447 /* In default link is down */
3448 netif_carrier_off(pp->dev);
3449
3450 ret = mvneta_mdio_probe(pp);
3451 if (ret < 0) {
3452 netdev_err(dev, "cannot probe MDIO bus\n");
3453 goto err_free_irq;
3454 }
3455
3456 mvneta_start_dev(pp);
3457
3458 return 0;
3459
3460err_free_irq:
3461 free_percpu_irq(pp->dev->irq, pp->ports);
3462err_cleanup_txqs:
3463 mvneta_cleanup_txqs(pp);
3464err_cleanup_rxqs:
3465 mvneta_cleanup_rxqs(pp);
3466 return ret;
3467}
3468
3469/* Stop the port, free port interrupt line */
3470static int mvneta_stop(struct net_device *dev)
3471{
3472 struct mvneta_port *pp = netdev_priv(dev);
3473
3474 /* Inform that we are stopping so we don't want to setup the
3475 * driver for new CPUs in the notifiers. The code of the
3476 * notifier for CPU online is protected by the same spinlock,
3477 * so when we get the lock, the notifer work is done.
3478 */
3479 spin_lock(&pp->lock);
3480 pp->is_stopped = true;
3481 spin_unlock(&pp->lock);
3482
3483 mvneta_stop_dev(pp);
3484 mvneta_mdio_remove(pp);
3485 unregister_cpu_notifier(&pp->cpu_notifier);
3486 on_each_cpu(mvneta_percpu_disable, pp, true);
3487 free_percpu_irq(dev->irq, pp->ports);
3488 mvneta_cleanup_rxqs(pp);
3489 mvneta_cleanup_txqs(pp);
3490
3491 return 0;
3492}
3493
3494static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3495{
3496 struct mvneta_port *pp = netdev_priv(dev);
3497
3498 if (!pp->phy_dev)
3499 return -ENOTSUPP;
3500
3501 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3502}
3503
3504/* Ethtool methods */
3505
3506/* Get settings (phy address, speed) for ethtools */
3507int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3508{
3509 struct mvneta_port *pp = netdev_priv(dev);
3510
3511 if (!pp->phy_dev)
3512 return -ENODEV;
3513
3514 return phy_ethtool_gset(pp->phy_dev, cmd);
3515}
3516
3517/* Set settings (phy address, speed) for ethtools */
3518int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3519{
3520 struct mvneta_port *pp = netdev_priv(dev);
3521 struct phy_device *phydev = pp->phy_dev;
3522
3523 if (!phydev)
3524 return -ENODEV;
3525
3526 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3527 u32 val;
3528
3529 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3530
3531 if (cmd->autoneg == AUTONEG_DISABLE) {
3532 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3533 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3534 MVNETA_GMAC_CONFIG_GMII_SPEED |
3535 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3536
3537 if (phydev->duplex)
3538 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3539
3540 if (phydev->speed == SPEED_1000)
3541 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3542 else if (phydev->speed == SPEED_100)
3543 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3544
3545 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3546 }
3547
3548 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3549 netdev_info(pp->dev, "autoneg status set to %i\n",
3550 pp->use_inband_status);
3551
3552 if (netif_running(dev)) {
3553 mvneta_port_down(pp);
3554 mvneta_port_up(pp);
3555 }
3556 }
3557
3558 return phy_ethtool_sset(pp->phy_dev, cmd);
3559}
3560
3561/* Set interrupt coalescing for ethtools */
3562static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3563 struct ethtool_coalesce *c)
3564{
3565 struct mvneta_port *pp = netdev_priv(dev);
3566 int queue;
3567
3568 for (queue = 0; queue < rxq_number; queue++) {
3569 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3570 rxq->time_coal = c->rx_coalesce_usecs;
3571 rxq->pkts_coal = c->rx_max_coalesced_frames;
3572 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3573 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3574 }
3575
3576 for (queue = 0; queue < txq_number; queue++) {
3577 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3578 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3579 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3580 }
3581
3582 return 0;
3583}
3584
3585/* get coalescing for ethtools */
3586static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3587 struct ethtool_coalesce *c)
3588{
3589 struct mvneta_port *pp = netdev_priv(dev);
3590
3591 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3592 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3593
3594 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3595 return 0;
3596}
3597
3598
3599static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3600 struct ethtool_drvinfo *drvinfo)
3601{
3602 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3603 sizeof(drvinfo->driver));
3604 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3605 sizeof(drvinfo->version));
3606 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3607 sizeof(drvinfo->bus_info));
3608}
3609
3610
3611static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3612 struct ethtool_ringparam *ring)
3613{
3614 struct mvneta_port *pp = netdev_priv(netdev);
3615
3616 ring->rx_max_pending = MVNETA_MAX_RXD;
3617 ring->tx_max_pending = MVNETA_MAX_TXD;
3618 ring->rx_pending = pp->rx_ring_size;
3619 ring->tx_pending = pp->tx_ring_size;
3620}
3621
3622static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3623 struct ethtool_ringparam *ring)
3624{
3625 struct mvneta_port *pp = netdev_priv(dev);
3626
3627 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3628 return -EINVAL;
3629 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3630 ring->rx_pending : MVNETA_MAX_RXD;
3631
3632 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3633 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3634 if (pp->tx_ring_size != ring->tx_pending)
3635 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3636 pp->tx_ring_size, ring->tx_pending);
3637
3638 if (netif_running(dev)) {
3639 mvneta_stop(dev);
3640 if (mvneta_open(dev)) {
3641 netdev_err(dev,
3642 "error on opening device after ring param change\n");
3643 return -ENOMEM;
3644 }
3645 }
3646
3647 return 0;
3648}
3649
3650static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3651 u8 *data)
3652{
3653 if (sset == ETH_SS_STATS) {
3654 int i;
3655
3656 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3657 memcpy(data + i * ETH_GSTRING_LEN,
3658 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3659 }
3660}
3661
3662static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3663{
3664 const struct mvneta_statistic *s;
3665 void __iomem *base = pp->base;
3666 u32 high, low, val;
3667 u64 val64;
3668 int i;
3669
3670 for (i = 0, s = mvneta_statistics;
3671 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3672 s++, i++) {
3673 switch (s->type) {
3674 case T_REG_32:
3675 val = readl_relaxed(base + s->offset);
3676 pp->ethtool_stats[i] += val;
3677 break;
3678 case T_REG_64:
3679 /* Docs say to read low 32-bit then high */
3680 low = readl_relaxed(base + s->offset);
3681 high = readl_relaxed(base + s->offset + 4);
3682 val64 = (u64)high << 32 | low;
3683 pp->ethtool_stats[i] += val64;
3684 break;
3685 }
3686 }
3687}
3688
3689static void mvneta_ethtool_get_stats(struct net_device *dev,
3690 struct ethtool_stats *stats, u64 *data)
3691{
3692 struct mvneta_port *pp = netdev_priv(dev);
3693 int i;
3694
3695 mvneta_ethtool_update_stats(pp);
3696
3697 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3698 *data++ = pp->ethtool_stats[i];
3699}
3700
3701static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3702{
3703 if (sset == ETH_SS_STATS)
3704 return ARRAY_SIZE(mvneta_statistics);
3705 return -EOPNOTSUPP;
3706}
3707
3708static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3709{
3710 return MVNETA_RSS_LU_TABLE_SIZE;
3711}
3712
3713static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3714 struct ethtool_rxnfc *info,
3715 u32 *rules __always_unused)
3716{
3717 switch (info->cmd) {
3718 case ETHTOOL_GRXRINGS:
3719 info->data = rxq_number;
3720 return 0;
3721 case ETHTOOL_GRXFH:
3722 return -EOPNOTSUPP;
3723 default:
3724 return -EOPNOTSUPP;
3725 }
3726}
3727
3728static int mvneta_config_rss(struct mvneta_port *pp)
3729{
3730 int cpu;
3731 u32 val;
3732
3733 netif_tx_stop_all_queues(pp->dev);
3734
3735 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3736
3737 /* We have to synchronise on the napi of each CPU */
3738 for_each_online_cpu(cpu) {
3739 struct mvneta_pcpu_port *pcpu_port =
3740 per_cpu_ptr(pp->ports, cpu);
3741
3742 napi_synchronize(&pcpu_port->napi);
3743 napi_disable(&pcpu_port->napi);
3744 }
3745
3746 pp->rxq_def = pp->indir[0];
3747
3748 /* Update unicast mapping */
3749 mvneta_set_rx_mode(pp->dev);
3750
3751 /* Update val of portCfg register accordingly with all RxQueue types */
3752 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3753 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3754
3755 /* Update the elected CPU matching the new rxq_def */
3756 spin_lock(&pp->lock);
3757 mvneta_percpu_elect(pp);
3758 spin_unlock(&pp->lock);
3759
3760 /* We have to synchronise on the napi of each CPU */
3761 for_each_online_cpu(cpu) {
3762 struct mvneta_pcpu_port *pcpu_port =
3763 per_cpu_ptr(pp->ports, cpu);
3764
3765 napi_enable(&pcpu_port->napi);
3766 }
3767
3768 netif_tx_start_all_queues(pp->dev);
3769
3770 return 0;
3771}
3772
3773static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3774 const u8 *key, const u8 hfunc)
3775{
3776 struct mvneta_port *pp = netdev_priv(dev);
3777 /* We require at least one supported parameter to be changed
3778 * and no change in any of the unsupported parameters
3779 */
3780 if (key ||
3781 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3782 return -EOPNOTSUPP;
3783
3784 if (!indir)
3785 return 0;
3786
3787 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3788
3789 return mvneta_config_rss(pp);
3790}
3791
3792static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3793 u8 *hfunc)
3794{
3795 struct mvneta_port *pp = netdev_priv(dev);
3796
3797 if (hfunc)
3798 *hfunc = ETH_RSS_HASH_TOP;
3799
3800 if (!indir)
3801 return 0;
3802
3803 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3804
3805 return 0;
3806}
3807
3808static const struct net_device_ops mvneta_netdev_ops = {
3809 .ndo_open = mvneta_open,
3810 .ndo_stop = mvneta_stop,
3811 .ndo_start_xmit = mvneta_tx,
3812 .ndo_set_rx_mode = mvneta_set_rx_mode,
3813 .ndo_set_mac_address = mvneta_set_mac_addr,
3814 .ndo_change_mtu = mvneta_change_mtu,
3815 .ndo_fix_features = mvneta_fix_features,
3816 .ndo_get_stats64 = mvneta_get_stats64,
3817 .ndo_do_ioctl = mvneta_ioctl,
3818};
3819
3820const struct ethtool_ops mvneta_eth_tool_ops = {
3821 .get_link = ethtool_op_get_link,
3822 .get_settings = mvneta_ethtool_get_settings,
3823 .set_settings = mvneta_ethtool_set_settings,
3824 .set_coalesce = mvneta_ethtool_set_coalesce,
3825 .get_coalesce = mvneta_ethtool_get_coalesce,
3826 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3827 .get_ringparam = mvneta_ethtool_get_ringparam,
3828 .set_ringparam = mvneta_ethtool_set_ringparam,
3829 .get_strings = mvneta_ethtool_get_strings,
3830 .get_ethtool_stats = mvneta_ethtool_get_stats,
3831 .get_sset_count = mvneta_ethtool_get_sset_count,
3832 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3833 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3834 .get_rxfh = mvneta_ethtool_get_rxfh,
3835 .set_rxfh = mvneta_ethtool_set_rxfh,
3836};
3837
3838/* Initialize hw */
3839static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3840{
3841 int queue;
3842
3843 /* Disable port */
3844 mvneta_port_disable(pp);
3845
3846 /* Set port default values */
3847 mvneta_defaults_set(pp);
3848
3849 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3850 GFP_KERNEL);
3851 if (!pp->txqs)
3852 return -ENOMEM;
3853
3854 /* Initialize TX descriptor rings */
3855 for (queue = 0; queue < txq_number; queue++) {
3856 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3857 txq->id = queue;
3858 txq->size = pp->tx_ring_size;
3859 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3860 }
3861
3862 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3863 GFP_KERNEL);
3864 if (!pp->rxqs)
3865 return -ENOMEM;
3866
3867 /* Create Rx descriptor rings */
3868 for (queue = 0; queue < rxq_number; queue++) {
3869 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3870 rxq->id = queue;
3871 rxq->size = pp->rx_ring_size;
3872 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3873 rxq->time_coal = MVNETA_RX_COAL_USEC;
3874 }
3875
3876 return 0;
3877}
3878
3879/* platform glue : initialize decoding windows */
3880static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3881 const struct mbus_dram_target_info *dram)
3882{
3883 u32 win_enable;
3884 u32 win_protect;
3885 int i;
3886
3887 for (i = 0; i < 6; i++) {
3888 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3889 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3890
3891 if (i < 4)
3892 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3893 }
3894
3895 win_enable = 0x3f;
3896 win_protect = 0;
3897
3898 for (i = 0; i < dram->num_cs; i++) {
3899 const struct mbus_dram_window *cs = dram->cs + i;
3900 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3901 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3902
3903 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3904 (cs->size - 1) & 0xffff0000);
3905
3906 win_enable &= ~(1 << i);
3907 win_protect |= 3 << (2 * i);
3908 }
3909
3910 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3911 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3912}
3913
3914/* Power up the port */
3915static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3916{
3917 u32 ctrl;
3918
3919 /* MAC Cause register should be cleared */
3920 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3921
3922 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3923
3924 /* Even though it might look weird, when we're configured in
3925 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3926 */
3927 switch(phy_mode) {
3928 case PHY_INTERFACE_MODE_QSGMII:
3929 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3930 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3931 break;
3932 case PHY_INTERFACE_MODE_SGMII:
3933 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3934 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3935 break;
3936 case PHY_INTERFACE_MODE_RGMII:
3937 case PHY_INTERFACE_MODE_RGMII_ID:
3938 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3939 break;
3940 default:
3941 return -EINVAL;
3942 }
3943
3944 /* Cancel Port Reset */
3945 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3946 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3947
3948 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3949 MVNETA_GMAC2_PORT_RESET) != 0)
3950 continue;
3951
3952 return 0;
3953}
3954
3955/* Device initialization routine */
3956static int mvneta_probe(struct platform_device *pdev)
3957{
3958 const struct mbus_dram_target_info *dram_target_info;
3959 struct resource *res;
3960 struct device_node *dn = pdev->dev.of_node;
3961 struct device_node *phy_node;
3962 struct device_node *bm_node;
3963 struct mvneta_port *pp;
3964 struct net_device *dev;
3965 const char *dt_mac_addr;
3966 char hw_mac_addr[ETH_ALEN];
3967 const char *mac_from;
3968 const char *managed;
3969 int tx_csum_limit;
3970 int phy_mode;
3971 int err;
3972 int cpu;
3973
3974 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3975 if (!dev)
3976 return -ENOMEM;
3977
3978 dev->irq = irq_of_parse_and_map(dn, 0);
3979 if (dev->irq == 0) {
3980 err = -EINVAL;
3981 goto err_free_netdev;
3982 }
3983
3984 phy_node = of_parse_phandle(dn, "phy", 0);
3985 if (!phy_node) {
3986 if (!of_phy_is_fixed_link(dn)) {
3987 dev_err(&pdev->dev, "no PHY specified\n");
3988 err = -ENODEV;
3989 goto err_free_irq;
3990 }
3991
3992 err = of_phy_register_fixed_link(dn);
3993 if (err < 0) {
3994 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3995 goto err_free_irq;
3996 }
3997
3998 /* In the case of a fixed PHY, the DT node associated
3999 * to the PHY is the Ethernet MAC DT node.
4000 */
4001 phy_node = of_node_get(dn);
4002 }
4003
4004 phy_mode = of_get_phy_mode(dn);
4005 if (phy_mode < 0) {
4006 dev_err(&pdev->dev, "incorrect phy-mode\n");
4007 err = -EINVAL;
4008 goto err_put_phy_node;
4009 }
4010
4011 dev->tx_queue_len = MVNETA_MAX_TXD;
4012 dev->watchdog_timeo = 5 * HZ;
4013 dev->netdev_ops = &mvneta_netdev_ops;
4014
4015 dev->ethtool_ops = &mvneta_eth_tool_ops;
4016
4017 pp = netdev_priv(dev);
4018 spin_lock_init(&pp->lock);
4019 pp->phy_node = phy_node;
4020 pp->phy_interface = phy_mode;
4021
4022 err = of_property_read_string(dn, "managed", &managed);
4023 pp->use_inband_status = (err == 0 &&
4024 strcmp(managed, "in-band-status") == 0);
4025 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4026
4027 pp->rxq_def = rxq_def;
4028
4029 pp->indir[0] = rxq_def;
4030
4031 pp->clk = devm_clk_get(&pdev->dev, "core");
4032 if (IS_ERR(pp->clk))
4033 pp->clk = devm_clk_get(&pdev->dev, NULL);
4034 if (IS_ERR(pp->clk)) {
4035 err = PTR_ERR(pp->clk);
4036 goto err_put_phy_node;
4037 }
4038
4039 clk_prepare_enable(pp->clk);
4040
4041 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4042 if (!IS_ERR(pp->clk_bus))
4043 clk_prepare_enable(pp->clk_bus);
4044
4045 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4046 pp->base = devm_ioremap_resource(&pdev->dev, res);
4047 if (IS_ERR(pp->base)) {
4048 err = PTR_ERR(pp->base);
4049 goto err_clk;
4050 }
4051
4052 /* Alloc per-cpu port structure */
4053 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4054 if (!pp->ports) {
4055 err = -ENOMEM;
4056 goto err_clk;
4057 }
4058
4059 /* Alloc per-cpu stats */
4060 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4061 if (!pp->stats) {
4062 err = -ENOMEM;
4063 goto err_free_ports;
4064 }
4065
4066 dt_mac_addr = of_get_mac_address(dn);
4067 if (dt_mac_addr) {
4068 mac_from = "device tree";
4069 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4070 } else {
4071 mvneta_get_mac_addr(pp, hw_mac_addr);
4072 if (is_valid_ether_addr(hw_mac_addr)) {
4073 mac_from = "hardware";
4074 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4075 } else {
4076 mac_from = "random";
4077 eth_hw_addr_random(dev);
4078 }
4079 }
4080
4081 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4082 if (tx_csum_limit < 0 ||
4083 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4084 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4085 dev_info(&pdev->dev,
4086 "Wrong TX csum limit in DT, set to %dB\n",
4087 MVNETA_TX_CSUM_DEF_SIZE);
4088 }
4089 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4090 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4091 } else {
4092 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4093 }
4094
4095 pp->tx_csum_limit = tx_csum_limit;
4096
4097 dram_target_info = mv_mbus_dram_info();
4098 if (dram_target_info)
4099 mvneta_conf_mbus_windows(pp, dram_target_info);
4100
4101 pp->tx_ring_size = MVNETA_MAX_TXD;
4102 pp->rx_ring_size = MVNETA_MAX_RXD;
4103
4104 pp->dev = dev;
4105 SET_NETDEV_DEV(dev, &pdev->dev);
4106
4107 pp->id = global_port_id++;
4108
4109 /* Obtain access to BM resources if enabled and already initialized */
4110 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4111 if (bm_node && bm_node->data) {
4112 pp->bm_priv = bm_node->data;
4113 err = mvneta_bm_port_init(pdev, pp);
4114 if (err < 0) {
4115 dev_info(&pdev->dev, "use SW buffer management\n");
4116 pp->bm_priv = NULL;
4117 }
4118 }
4119
4120 err = mvneta_init(&pdev->dev, pp);
4121 if (err < 0)
4122 goto err_netdev;
4123
4124 err = mvneta_port_power_up(pp, phy_mode);
4125 if (err < 0) {
4126 dev_err(&pdev->dev, "can't power up port\n");
4127 goto err_netdev;
4128 }
4129
4130 for_each_present_cpu(cpu) {
4131 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4132
4133 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4134 port->pp = pp;
4135 }
4136
4137 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4138 dev->hw_features |= dev->features;
4139 dev->vlan_features |= dev->features;
4140 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4141 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4142
4143 err = register_netdev(dev);
4144 if (err < 0) {
4145 dev_err(&pdev->dev, "failed to register\n");
4146 goto err_free_stats;
4147 }
4148
4149 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4150 dev->dev_addr);
4151
4152 platform_set_drvdata(pdev, pp->dev);
4153
4154 if (pp->use_inband_status) {
4155 struct phy_device *phy = of_phy_find_device(dn);
4156
4157 mvneta_fixed_link_update(pp, phy);
4158
4159 put_device(&phy->mdio.dev);
4160 }
4161
4162 return 0;
4163
4164err_netdev:
4165 unregister_netdev(dev);
4166 if (pp->bm_priv) {
4167 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4168 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4169 1 << pp->id);
4170 }
4171err_free_stats:
4172 free_percpu(pp->stats);
4173err_free_ports:
4174 free_percpu(pp->ports);
4175err_clk:
4176 clk_disable_unprepare(pp->clk_bus);
4177 clk_disable_unprepare(pp->clk);
4178err_put_phy_node:
4179 of_node_put(phy_node);
4180err_free_irq:
4181 irq_dispose_mapping(dev->irq);
4182err_free_netdev:
4183 free_netdev(dev);
4184 return err;
4185}
4186
4187/* Device removal routine */
4188static int mvneta_remove(struct platform_device *pdev)
4189{
4190 struct net_device *dev = platform_get_drvdata(pdev);
4191 struct mvneta_port *pp = netdev_priv(dev);
4192
4193 unregister_netdev(dev);
4194 clk_disable_unprepare(pp->clk_bus);
4195 clk_disable_unprepare(pp->clk);
4196 free_percpu(pp->ports);
4197 free_percpu(pp->stats);
4198 irq_dispose_mapping(dev->irq);
4199 of_node_put(pp->phy_node);
4200 free_netdev(dev);
4201
4202 if (pp->bm_priv) {
4203 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4204 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4205 1 << pp->id);
4206 }
4207
4208 return 0;
4209}
4210
4211static const struct of_device_id mvneta_match[] = {
4212 { .compatible = "marvell,armada-370-neta" },
4213 { .compatible = "marvell,armada-xp-neta" },
4214 { }
4215};
4216MODULE_DEVICE_TABLE(of, mvneta_match);
4217
4218static struct platform_driver mvneta_driver = {
4219 .probe = mvneta_probe,
4220 .remove = mvneta_remove,
4221 .driver = {
4222 .name = MVNETA_DRIVER_NAME,
4223 .of_match_table = mvneta_match,
4224 },
4225};
4226
4227module_platform_driver(mvneta_driver);
4228
4229MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4230MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4231MODULE_LICENSE("GPL");
4232
4233module_param(rxq_number, int, S_IRUGO);
4234module_param(txq_number, int, S_IRUGO);
4235
4236module_param(rxq_def, int, S_IRUGO);
4237module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);