Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 *
5 * Copyright (c) 2003 Intracom S.A.
6 * by Pantelis Antoniou <panto@intracom.gr>
7 *
8 * 2005 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 *
11 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
12 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 */
14
15#include <linux/module.h>
16#include <linux/kernel.h>
17#include <linux/types.h>
18#include <linux/string.h>
19#include <linux/ptrace.h>
20#include <linux/errno.h>
21#include <linux/ioport.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
24#include <linux/delay.h>
25#include <linux/netdevice.h>
26#include <linux/etherdevice.h>
27#include <linux/skbuff.h>
28#include <linux/spinlock.h>
29#include <linux/ethtool.h>
30#include <linux/bitops.h>
31#include <linux/fs.h>
32#include <linux/platform_device.h>
33#include <linux/phy.h>
34#include <linux/phylink.h>
35#include <linux/property.h>
36#include <linux/of.h>
37#include <linux/of_mdio.h>
38#include <linux/of_net.h>
39#include <linux/pgtable.h>
40#include <linux/rtnetlink.h>
41
42#include <linux/vmalloc.h>
43#include <asm/irq.h>
44#include <linux/uaccess.h>
45
46#include "fs_enet.h"
47
48/*************************************************/
49
50MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
51MODULE_DESCRIPTION("Freescale Ethernet Driver");
52MODULE_LICENSE("GPL");
53
54static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
55module_param(fs_enet_debug, int, 0);
56MODULE_PARM_DESC(fs_enet_debug,
57 "Freescale bitmapped debugging message enable value");
58
59#define RX_RING_SIZE 32
60#define TX_RING_SIZE 64
61
62#ifdef CONFIG_NET_POLL_CONTROLLER
63static void fs_enet_netpoll(struct net_device *dev);
64#endif
65
66static void fs_set_multicast_list(struct net_device *dev)
67{
68 struct fs_enet_private *fep = netdev_priv(dev);
69
70 (*fep->ops->set_multicast_list)(dev);
71}
72
73static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
74{
75 struct fs_enet_private *fep = netdev_priv(dev);
76
77 return phylink_mii_ioctl(fep->phylink, ifr, cmd);
78}
79
80static void skb_align(struct sk_buff *skb, int align)
81{
82 int off = ((unsigned long)skb->data) & (align - 1);
83
84 if (off)
85 skb_reserve(skb, align - off);
86}
87
88/* NAPI function */
89static int fs_enet_napi(struct napi_struct *napi, int budget)
90{
91 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
92 const struct fs_platform_info *fpi = fep->fpi;
93 struct net_device *dev = fep->ndev;
94 int curidx, dirtyidx, received = 0;
95 int do_wake = 0, do_restart = 0;
96 int tx_left = TX_RING_SIZE;
97 struct sk_buff *skb, *skbn;
98 cbd_t __iomem *bdp;
99 u16 pkt_len, sc;
100
101 spin_lock(&fep->tx_lock);
102 bdp = fep->dirty_tx;
103
104 /* clear status bits for napi*/
105 (*fep->ops->napi_clear_event)(dev);
106
107 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
108 dirtyidx = bdp - fep->tx_bd_base;
109
110 if (fep->tx_free == fep->tx_ring)
111 break;
112
113 skb = fep->tx_skbuff[dirtyidx];
114
115 /* Check for errors. */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118 if (sc & BD_ENET_TX_HB) /* No heartbeat */
119 dev->stats.tx_heartbeat_errors++;
120 if (sc & BD_ENET_TX_LC) /* Late collision */
121 dev->stats.tx_window_errors++;
122 if (sc & BD_ENET_TX_RL) /* Retrans limit */
123 dev->stats.tx_aborted_errors++;
124 if (sc & BD_ENET_TX_UN) /* Underrun */
125 dev->stats.tx_fifo_errors++;
126 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
127 dev->stats.tx_carrier_errors++;
128
129 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 dev->stats.tx_errors++;
131 do_restart = 1;
132 }
133 } else {
134 dev->stats.tx_packets++;
135 }
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /* Deferred means some collisions occurred during transmit,
143 * but we eventually sent the packet OK.
144 */
145 if (sc & BD_ENET_TX_DEF)
146 dev->stats.collisions++;
147
148 /* unmap */
149 if (fep->mapped_as_page[dirtyidx])
150 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 else
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155
156 /* Free the sk buffer associated with this last transmit. */
157 if (skb) {
158 dev_kfree_skb(skb);
159 fep->tx_skbuff[dirtyidx] = NULL;
160 }
161
162 /* Update pointer to next buffer descriptor to be transmitted.
163 */
164 if ((sc & BD_ENET_TX_WRAP) == 0)
165 bdp++;
166 else
167 bdp = fep->tx_bd_base;
168
169 /* Since we have freed up a buffer, the ring is no longer full.
170 */
171 if (++fep->tx_free == MAX_SKB_FRAGS)
172 do_wake = 1;
173 tx_left--;
174 }
175
176 fep->dirty_tx = bdp;
177
178 if (do_restart)
179 (*fep->ops->tx_restart)(dev);
180
181 spin_unlock(&fep->tx_lock);
182
183 if (do_wake)
184 netif_wake_queue(dev);
185
186 /* First, grab all of the stats for the incoming packet.
187 * These get messed up if we get called due to a busy condition.
188 */
189 bdp = fep->cur_rx;
190
191 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
192 received < budget) {
193 curidx = bdp - fep->rx_bd_base;
194
195 /* Since we have allocated space to hold a complete frame,
196 * the last indicator should be set.
197 */
198 if ((sc & BD_ENET_RX_LAST) == 0)
199 dev_warn(fep->dev, "rcv is not +last\n");
200
201 /* Check for errors. */
202 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
203 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
204 dev->stats.rx_errors++;
205 /* Frame too long or too short. */
206 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
207 dev->stats.rx_length_errors++;
208 /* Frame alignment */
209 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
210 dev->stats.rx_frame_errors++;
211 /* CRC Error */
212 if (sc & BD_ENET_RX_CR)
213 dev->stats.rx_crc_errors++;
214 /* FIFO overrun */
215 if (sc & BD_ENET_RX_OV)
216 dev->stats.rx_crc_errors++;
217
218 skbn = fep->rx_skbuff[curidx];
219 } else {
220 skb = fep->rx_skbuff[curidx];
221
222 /* Process the incoming frame */
223 dev->stats.rx_packets++;
224 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
225 dev->stats.rx_bytes += pkt_len + 4;
226
227 if (pkt_len <= fpi->rx_copybreak) {
228 /* +2 to make IP header L1 cache aligned */
229 skbn = netdev_alloc_skb(dev, pkt_len + 2);
230 if (skbn) {
231 skb_reserve(skbn, 2); /* align IP header */
232 skb_copy_from_linear_data(skb, skbn->data,
233 pkt_len);
234 swap(skb, skbn);
235 dma_sync_single_for_cpu(fep->dev,
236 CBDR_BUFADDR(bdp),
237 L1_CACHE_ALIGN(pkt_len),
238 DMA_FROM_DEVICE);
239 }
240 } else {
241 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
242
243 if (skbn) {
244 dma_addr_t dma;
245
246 skb_align(skbn, ENET_RX_ALIGN);
247
248 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
250 DMA_FROM_DEVICE);
251
252 dma = dma_map_single(fep->dev, skbn->data,
253 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
254 DMA_FROM_DEVICE);
255 CBDW_BUFADDR(bdp, dma);
256 }
257 }
258
259 if (skbn) {
260 skb_put(skb, pkt_len); /* Make room */
261 skb->protocol = eth_type_trans(skb, dev);
262 received++;
263 netif_receive_skb(skb);
264 } else {
265 dev->stats.rx_dropped++;
266 skbn = skb;
267 }
268 }
269
270 fep->rx_skbuff[curidx] = skbn;
271 CBDW_DATLEN(bdp, 0);
272 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
273
274 /* Update BD pointer to next entry */
275 if ((sc & BD_ENET_RX_WRAP) == 0)
276 bdp++;
277 else
278 bdp = fep->rx_bd_base;
279
280 (*fep->ops->rx_bd_done)(dev);
281 }
282
283 fep->cur_rx = bdp;
284
285 if (received < budget && tx_left) {
286 /* done */
287 napi_complete_done(napi, received);
288 (*fep->ops->napi_enable)(dev);
289
290 return received;
291 }
292
293 return budget;
294}
295
296/* The interrupt handler.
297 * This is called from the MPC core interrupt.
298 */
299static irqreturn_t
300fs_enet_interrupt(int irq, void *dev_id)
301{
302 struct net_device *dev = dev_id;
303 u32 int_events, int_clr_events;
304 struct fs_enet_private *fep;
305 int nr, napi_ok, handled;
306
307 fep = netdev_priv(dev);
308
309 nr = 0;
310 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
311 nr++;
312
313 int_clr_events = int_events;
314 int_clr_events &= ~fep->ev_napi;
315
316 (*fep->ops->clear_int_events)(dev, int_clr_events);
317
318 if (int_events & fep->ev_err)
319 (*fep->ops->ev_error)(dev, int_events);
320
321 if (int_events & fep->ev) {
322 napi_ok = napi_schedule_prep(&fep->napi);
323
324 (*fep->ops->napi_disable)(dev);
325 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
326
327 /* NOTE: it is possible for FCCs in NAPI mode
328 * to submit a spurious interrupt while in poll
329 */
330 if (napi_ok)
331 __napi_schedule(&fep->napi);
332 }
333 }
334
335 handled = nr > 0;
336 return IRQ_RETVAL(handled);
337}
338
339void fs_init_bds(struct net_device *dev)
340{
341 struct fs_enet_private *fep = netdev_priv(dev);
342 struct sk_buff *skb;
343 cbd_t __iomem *bdp;
344 int i;
345
346 fs_cleanup_bds(dev);
347
348 fep->dirty_tx = fep->tx_bd_base;
349 fep->cur_tx = fep->tx_bd_base;
350 fep->tx_free = fep->tx_ring;
351 fep->cur_rx = fep->rx_bd_base;
352
353 /* Initialize the receive buffer descriptors */
354 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
355 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
356 if (!skb)
357 break;
358
359 skb_align(skb, ENET_RX_ALIGN);
360 fep->rx_skbuff[i] = skb;
361 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
362 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
363 DMA_FROM_DEVICE));
364 CBDW_DATLEN(bdp, 0); /* zero */
365 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
366 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
367 }
368
369 /* if we failed, fillup remainder */
370 for (; i < fep->rx_ring; i++, bdp++) {
371 fep->rx_skbuff[i] = NULL;
372 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
373 }
374
375 /* ...and the same for transmit. */
376 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
377 fep->tx_skbuff[i] = NULL;
378 CBDW_BUFADDR(bdp, 0);
379 CBDW_DATLEN(bdp, 0);
380 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
381 }
382}
383
384void fs_cleanup_bds(struct net_device *dev)
385{
386 struct fs_enet_private *fep = netdev_priv(dev);
387 struct sk_buff *skb;
388 cbd_t __iomem *bdp;
389 int i;
390
391 /* Reset SKB transmit buffers. */
392 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
393 skb = fep->tx_skbuff[i];
394 if (!skb)
395 continue;
396
397 /* unmap */
398 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
399 skb->len, DMA_TO_DEVICE);
400
401 fep->tx_skbuff[i] = NULL;
402 dev_kfree_skb(skb);
403 }
404
405 /* Reset SKB receive buffers */
406 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
407 skb = fep->rx_skbuff[i];
408 if (!skb)
409 continue;
410
411 /* unmap */
412 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
413 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
414 DMA_FROM_DEVICE);
415
416 fep->rx_skbuff[i] = NULL;
417
418 dev_kfree_skb(skb);
419 }
420}
421
422#ifdef CONFIG_FS_ENET_MPC5121_FEC
423/* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
424static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
425 struct sk_buff *skb)
426{
427 struct sk_buff *new_skb;
428
429 if (skb_linearize(skb))
430 return NULL;
431
432 /* Alloc new skb */
433 new_skb = netdev_alloc_skb(dev, skb->len + 4);
434 if (!new_skb)
435 return NULL;
436
437 /* Make sure new skb is properly aligned */
438 skb_align(new_skb, 4);
439
440 /* Copy data to new skb ... */
441 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
442 skb_put(new_skb, skb->len);
443
444 /* ... and free an old one */
445 dev_kfree_skb_any(skb);
446
447 return new_skb;
448}
449#endif
450
451static netdev_tx_t
452fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
453{
454 struct fs_enet_private *fep = netdev_priv(dev);
455 int curidx, nr_frags, len;
456 cbd_t __iomem *bdp;
457 skb_frag_t *frag;
458 u16 sc;
459#ifdef CONFIG_FS_ENET_MPC5121_FEC
460 int i, is_aligned = 1;
461
462 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
463 is_aligned = 0;
464 } else {
465 nr_frags = skb_shinfo(skb)->nr_frags;
466 frag = skb_shinfo(skb)->frags;
467 for (i = 0; i < nr_frags; i++, frag++) {
468 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
469 is_aligned = 0;
470 break;
471 }
472 }
473 }
474
475 if (!is_aligned) {
476 skb = tx_skb_align_workaround(dev, skb);
477 if (!skb) {
478 /* We have lost packet due to memory allocation error
479 * in tx_skb_align_workaround(). Hopefully original
480 * skb is still valid, so try transmit it later.
481 */
482 return NETDEV_TX_BUSY;
483 }
484 }
485#endif
486
487 spin_lock(&fep->tx_lock);
488
489 /* Fill in a Tx ring entry */
490 bdp = fep->cur_tx;
491
492 nr_frags = skb_shinfo(skb)->nr_frags;
493 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
494 netif_stop_queue(dev);
495 spin_unlock(&fep->tx_lock);
496
497 /* Ooops. All transmit buffers are full. Bail out.
498 * This should not happen, since the tx queue should be stopped.
499 */
500 dev_warn(fep->dev, "tx queue full!.\n");
501 return NETDEV_TX_BUSY;
502 }
503
504 curidx = bdp - fep->tx_bd_base;
505
506 len = skb->len;
507 dev->stats.tx_bytes += len;
508 if (nr_frags)
509 len -= skb->data_len;
510
511 fep->tx_free -= nr_frags + 1;
512 /* Push the data cache so the CPM does not get stale memory data.
513 */
514 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
515 skb->data, len, DMA_TO_DEVICE));
516 CBDW_DATLEN(bdp, len);
517
518 fep->mapped_as_page[curidx] = 0;
519 frag = skb_shinfo(skb)->frags;
520 while (nr_frags) {
521 CBDC_SC(bdp,
522 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
523 BD_ENET_TX_TC);
524 CBDS_SC(bdp, BD_ENET_TX_READY);
525
526 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
527 bdp++;
528 curidx++;
529 } else {
530 bdp = fep->tx_bd_base;
531 curidx = 0;
532 }
533
534 len = skb_frag_size(frag);
535 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
536 DMA_TO_DEVICE));
537 CBDW_DATLEN(bdp, len);
538
539 fep->tx_skbuff[curidx] = NULL;
540 fep->mapped_as_page[curidx] = 1;
541
542 frag++;
543 nr_frags--;
544 }
545
546 /* Trigger transmission start */
547 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
548 BD_ENET_TX_LAST | BD_ENET_TX_TC;
549
550 /* note that while FEC does not have this bit
551 * it marks it as available for software use
552 * yay for hw reuse :)
553 */
554 if (skb->len <= 60)
555 sc |= BD_ENET_TX_PAD;
556
557 CBDC_SC(bdp, BD_ENET_TX_STATS);
558 CBDS_SC(bdp, sc);
559
560 /* Save skb pointer. */
561 fep->tx_skbuff[curidx] = skb;
562
563 /* If this was the last BD in the ring, start at the beginning again. */
564 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
565 bdp++;
566 else
567 bdp = fep->tx_bd_base;
568
569 fep->cur_tx = bdp;
570
571 if (fep->tx_free < MAX_SKB_FRAGS)
572 netif_stop_queue(dev);
573
574 skb_tx_timestamp(skb);
575
576 (*fep->ops->tx_kickstart)(dev);
577
578 spin_unlock(&fep->tx_lock);
579
580 return NETDEV_TX_OK;
581}
582
583static void fs_timeout_work(struct work_struct *work)
584{
585 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
586 timeout_work);
587 struct net_device *dev = fep->ndev;
588 unsigned long flags;
589 int wake = 0;
590
591 dev->stats.tx_errors++;
592
593 /* In the event a timeout was detected, but the netdev is brought down
594 * shortly after, it no longer makes sense to try to recover from the
595 * timeout. netif_running() will return false when called from the
596 * .ndo_close() callback. Calling the following recovery code while
597 * called from .ndo_close() could deadlock on rtnl.
598 */
599 if (!netif_running(dev))
600 return;
601
602 rtnl_lock();
603 phylink_stop(fep->phylink);
604 phylink_start(fep->phylink);
605 rtnl_unlock();
606
607 spin_lock_irqsave(&fep->lock, flags);
608 wake = fep->tx_free >= MAX_SKB_FRAGS &&
609 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
610 spin_unlock_irqrestore(&fep->lock, flags);
611
612 if (wake)
613 netif_wake_queue(dev);
614}
615
616static void fs_timeout(struct net_device *dev, unsigned int txqueue)
617{
618 struct fs_enet_private *fep = netdev_priv(dev);
619
620 schedule_work(&fep->timeout_work);
621}
622
623static void fs_mac_link_up(struct phylink_config *config,
624 struct phy_device *phy,
625 unsigned int mode, phy_interface_t interface,
626 int speed, int duplex,
627 bool tx_pause, bool rx_pause)
628{
629 struct net_device *ndev = to_net_dev(config->dev);
630 struct fs_enet_private *fep = netdev_priv(ndev);
631 unsigned long flags;
632
633 spin_lock_irqsave(&fep->lock, flags);
634 fep->ops->restart(ndev, interface, speed, duplex);
635 spin_unlock_irqrestore(&fep->lock, flags);
636}
637
638static void fs_mac_link_down(struct phylink_config *config,
639 unsigned int mode, phy_interface_t interface)
640{
641 struct net_device *ndev = to_net_dev(config->dev);
642 struct fs_enet_private *fep = netdev_priv(ndev);
643 unsigned long flags;
644
645 spin_lock_irqsave(&fep->lock, flags);
646 fep->ops->stop(ndev);
647 spin_unlock_irqrestore(&fep->lock, flags);
648}
649
650static void fs_mac_config(struct phylink_config *config, unsigned int mode,
651 const struct phylink_link_state *state)
652{
653 /* Nothing to do */
654}
655
656static int fs_enet_open(struct net_device *dev)
657{
658 struct fs_enet_private *fep = netdev_priv(dev);
659 int r;
660 int err;
661
662 /* to initialize the fep->cur_rx,...
663 * not doing this, will cause a crash in fs_enet_napi
664 */
665 fs_init_bds(fep->ndev);
666
667 napi_enable(&fep->napi);
668
669 /* Install our interrupt handler. */
670 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
671 "fs_enet-mac", dev);
672 if (r != 0) {
673 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
674 napi_disable(&fep->napi);
675 return -EINVAL;
676 }
677
678 err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
679 if (err) {
680 free_irq(fep->interrupt, dev);
681 napi_disable(&fep->napi);
682 return err;
683 }
684 phylink_start(fep->phylink);
685
686 netif_start_queue(dev);
687
688 return 0;
689}
690
691static int fs_enet_close(struct net_device *dev)
692{
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 netif_stop_queue(dev);
697 napi_disable(&fep->napi);
698 cancel_work(&fep->timeout_work);
699 phylink_stop(fep->phylink);
700
701 spin_lock_irqsave(&fep->lock, flags);
702 spin_lock(&fep->tx_lock);
703 (*fep->ops->stop)(dev);
704 spin_unlock(&fep->tx_lock);
705 spin_unlock_irqrestore(&fep->lock, flags);
706 phylink_disconnect_phy(fep->phylink);
707
708 /* release any irqs */
709 free_irq(fep->interrupt, dev);
710
711 return 0;
712}
713
714static void fs_get_drvinfo(struct net_device *dev,
715 struct ethtool_drvinfo *info)
716{
717 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
718}
719
720static int fs_get_regs_len(struct net_device *dev)
721{
722 struct fs_enet_private *fep = netdev_priv(dev);
723
724 return (*fep->ops->get_regs_len)(dev);
725}
726
727static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
728 void *p)
729{
730 struct fs_enet_private *fep = netdev_priv(dev);
731 unsigned long flags;
732 int r, len;
733
734 len = regs->len;
735
736 spin_lock_irqsave(&fep->lock, flags);
737 r = (*fep->ops->get_regs)(dev, p, &len);
738 spin_unlock_irqrestore(&fep->lock, flags);
739
740 if (r == 0)
741 regs->version = 0;
742}
743
744static u32 fs_get_msglevel(struct net_device *dev)
745{
746 struct fs_enet_private *fep = netdev_priv(dev);
747
748 return fep->msg_enable;
749}
750
751static void fs_set_msglevel(struct net_device *dev, u32 value)
752{
753 struct fs_enet_private *fep = netdev_priv(dev);
754
755 fep->msg_enable = value;
756}
757
758static int fs_get_tunable(struct net_device *dev,
759 const struct ethtool_tunable *tuna, void *data)
760{
761 struct fs_enet_private *fep = netdev_priv(dev);
762 struct fs_platform_info *fpi = fep->fpi;
763 int ret = 0;
764
765 switch (tuna->id) {
766 case ETHTOOL_RX_COPYBREAK:
767 *(u32 *)data = fpi->rx_copybreak;
768 break;
769 default:
770 ret = -EINVAL;
771 break;
772 }
773
774 return ret;
775}
776
777static int fs_set_tunable(struct net_device *dev,
778 const struct ethtool_tunable *tuna, const void *data)
779{
780 struct fs_enet_private *fep = netdev_priv(dev);
781 struct fs_platform_info *fpi = fep->fpi;
782 int ret = 0;
783
784 switch (tuna->id) {
785 case ETHTOOL_RX_COPYBREAK:
786 fpi->rx_copybreak = *(u32 *)data;
787 break;
788 default:
789 ret = -EINVAL;
790 break;
791 }
792
793 return ret;
794}
795
796static int fs_ethtool_set_link_ksettings(struct net_device *dev,
797 const struct ethtool_link_ksettings *cmd)
798{
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return phylink_ethtool_ksettings_set(fep->phylink, cmd);
802}
803
804static int fs_ethtool_get_link_ksettings(struct net_device *dev,
805 struct ethtool_link_ksettings *cmd)
806{
807 struct fs_enet_private *fep = netdev_priv(dev);
808
809 return phylink_ethtool_ksettings_get(fep->phylink, cmd);
810}
811
812static const struct ethtool_ops fs_ethtool_ops = {
813 .get_drvinfo = fs_get_drvinfo,
814 .get_regs_len = fs_get_regs_len,
815 .nway_reset = phy_ethtool_nway_reset,
816 .get_link = ethtool_op_get_link,
817 .get_msglevel = fs_get_msglevel,
818 .set_msglevel = fs_set_msglevel,
819 .get_regs = fs_get_regs,
820 .get_ts_info = ethtool_op_get_ts_info,
821 .get_link_ksettings = fs_ethtool_get_link_ksettings,
822 .set_link_ksettings = fs_ethtool_set_link_ksettings,
823 .get_tunable = fs_get_tunable,
824 .set_tunable = fs_set_tunable,
825};
826
827#ifdef CONFIG_FS_ENET_HAS_FEC
828#define IS_FEC(ops) ((ops) == &fs_fec_ops)
829#else
830#define IS_FEC(ops) 0
831#endif
832
833static const struct net_device_ops fs_enet_netdev_ops = {
834 .ndo_open = fs_enet_open,
835 .ndo_stop = fs_enet_close,
836 .ndo_start_xmit = fs_enet_start_xmit,
837 .ndo_tx_timeout = fs_timeout,
838 .ndo_set_rx_mode = fs_set_multicast_list,
839 .ndo_eth_ioctl = fs_eth_ioctl,
840 .ndo_validate_addr = eth_validate_addr,
841 .ndo_set_mac_address = eth_mac_addr,
842#ifdef CONFIG_NET_POLL_CONTROLLER
843 .ndo_poll_controller = fs_enet_netpoll,
844#endif
845};
846
847static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
848 .mac_config = fs_mac_config,
849 .mac_link_down = fs_mac_link_down,
850 .mac_link_up = fs_mac_link_up,
851};
852
853static int fs_enet_probe(struct platform_device *ofdev)
854{
855 int privsize, len, ret = -ENODEV;
856 struct fs_platform_info *fpi;
857 struct fs_enet_private *fep;
858 phy_interface_t phy_mode;
859 const struct fs_ops *ops;
860 struct net_device *ndev;
861 struct phylink *phylink;
862 const u32 *data;
863 struct clk *clk;
864
865 ops = device_get_match_data(&ofdev->dev);
866 if (!ops)
867 return -EINVAL;
868
869 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
870 if (!fpi)
871 return -ENOMEM;
872
873 if (!IS_FEC(ops)) {
874 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
875 if (!data || len != 4)
876 goto out_free_fpi;
877
878 fpi->cp_command = *data;
879 }
880
881 ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
882 if (ret) {
883 /* For compatibility, if the mode isn't specified in DT,
884 * assume MII
885 */
886 phy_mode = PHY_INTERFACE_MODE_MII;
887 }
888
889 fpi->rx_ring = RX_RING_SIZE;
890 fpi->tx_ring = TX_RING_SIZE;
891 fpi->rx_copybreak = 240;
892 fpi->napi_weight = 17;
893
894 /* make clock lookup non-fatal (the driver is shared among platforms),
895 * but require enable to succeed when a clock was specified/found,
896 * keep a reference to the clock upon successful acquisition
897 */
898 clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
899 if (IS_ERR(clk))
900 goto out_free_fpi;
901
902 privsize = sizeof(*fep) +
903 sizeof(struct sk_buff **) *
904 (fpi->rx_ring + fpi->tx_ring) +
905 sizeof(char) * fpi->tx_ring;
906
907 ndev = alloc_etherdev(privsize);
908 if (!ndev) {
909 ret = -ENOMEM;
910 goto out_free_fpi;
911 }
912
913 SET_NETDEV_DEV(ndev, &ofdev->dev);
914 platform_set_drvdata(ofdev, ndev);
915
916 fep = netdev_priv(ndev);
917 fep->dev = &ofdev->dev;
918 fep->ndev = ndev;
919 fep->fpi = fpi;
920 fep->ops = ops;
921
922 fep->phylink_config.dev = &ndev->dev;
923 fep->phylink_config.type = PHYLINK_NETDEV;
924 fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
925
926 __set_bit(PHY_INTERFACE_MODE_MII,
927 fep->phylink_config.supported_interfaces);
928
929 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
930 __set_bit(PHY_INTERFACE_MODE_RMII,
931 fep->phylink_config.supported_interfaces);
932
933 phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
934 phy_mode, &fs_enet_phylink_mac_ops);
935 if (IS_ERR(phylink)) {
936 ret = PTR_ERR(phylink);
937 goto out_free_dev;
938 }
939
940 fep->phylink = phylink;
941
942 ret = fep->ops->setup_data(ndev);
943 if (ret)
944 goto out_phylink;
945
946 fep->rx_skbuff = (struct sk_buff **)&fep[1];
947 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
948 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
949 fpi->tx_ring);
950
951 spin_lock_init(&fep->lock);
952 spin_lock_init(&fep->tx_lock);
953
954 of_get_ethdev_address(ofdev->dev.of_node, ndev);
955
956 ret = fep->ops->allocate_bd(ndev);
957 if (ret)
958 goto out_cleanup_data;
959
960 fep->rx_bd_base = fep->ring_base;
961 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
962
963 fep->tx_ring = fpi->tx_ring;
964 fep->rx_ring = fpi->rx_ring;
965
966 ndev->netdev_ops = &fs_enet_netdev_ops;
967 ndev->watchdog_timeo = 2 * HZ;
968 INIT_WORK(&fep->timeout_work, fs_timeout_work);
969 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
970 fpi->napi_weight);
971
972 ndev->ethtool_ops = &fs_ethtool_ops;
973
974 ndev->features |= NETIF_F_SG;
975
976 ret = register_netdev(ndev);
977 if (ret)
978 goto out_free_bd;
979
980 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
981
982 return 0;
983
984out_free_bd:
985 fep->ops->free_bd(ndev);
986out_cleanup_data:
987 fep->ops->cleanup_data(ndev);
988out_phylink:
989 phylink_destroy(fep->phylink);
990out_free_dev:
991 free_netdev(ndev);
992out_free_fpi:
993 kfree(fpi);
994 return ret;
995}
996
997static void fs_enet_remove(struct platform_device *ofdev)
998{
999 struct net_device *ndev = platform_get_drvdata(ofdev);
1000 struct fs_enet_private *fep = netdev_priv(ndev);
1001
1002 unregister_netdev(ndev);
1003
1004 fep->ops->free_bd(ndev);
1005 fep->ops->cleanup_data(ndev);
1006 dev_set_drvdata(fep->dev, NULL);
1007 phylink_destroy(fep->phylink);
1008 free_netdev(ndev);
1009}
1010
1011static const struct of_device_id fs_enet_match[] = {
1012#ifdef CONFIG_FS_ENET_HAS_SCC
1013 {
1014 .compatible = "fsl,cpm1-scc-enet",
1015 .data = (void *)&fs_scc_ops,
1016 },
1017 {
1018 .compatible = "fsl,cpm2-scc-enet",
1019 .data = (void *)&fs_scc_ops,
1020 },
1021#endif
1022#ifdef CONFIG_FS_ENET_HAS_FCC
1023 {
1024 .compatible = "fsl,cpm2-fcc-enet",
1025 .data = (void *)&fs_fcc_ops,
1026 },
1027#endif
1028#ifdef CONFIG_FS_ENET_HAS_FEC
1029#ifdef CONFIG_FS_ENET_MPC5121_FEC
1030 {
1031 .compatible = "fsl,mpc5121-fec",
1032 .data = (void *)&fs_fec_ops,
1033 },
1034 {
1035 .compatible = "fsl,mpc5125-fec",
1036 .data = (void *)&fs_fec_ops,
1037 },
1038#else
1039 {
1040 .compatible = "fsl,pq1-fec-enet",
1041 .data = (void *)&fs_fec_ops,
1042 },
1043#endif
1044#endif
1045 {}
1046};
1047MODULE_DEVICE_TABLE(of, fs_enet_match);
1048
1049static struct platform_driver fs_enet_driver = {
1050 .driver = {
1051 .name = "fs_enet",
1052 .of_match_table = fs_enet_match,
1053 },
1054 .probe = fs_enet_probe,
1055 .remove = fs_enet_remove,
1056};
1057
1058#ifdef CONFIG_NET_POLL_CONTROLLER
1059static void fs_enet_netpoll(struct net_device *dev)
1060{
1061 disable_irq(dev->irq);
1062 fs_enet_interrupt(dev->irq, dev);
1063 enable_irq(dev->irq);
1064}
1065#endif
1066
1067module_platform_driver(fs_enet_driver);
1/*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3 *
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
9 *
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/kernel.h>
20#include <linux/types.h>
21#include <linux/string.h>
22#include <linux/ptrace.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/slab.h>
26#include <linux/interrupt.h>
27#include <linux/delay.h>
28#include <linux/netdevice.h>
29#include <linux/etherdevice.h>
30#include <linux/skbuff.h>
31#include <linux/spinlock.h>
32#include <linux/mii.h>
33#include <linux/ethtool.h>
34#include <linux/bitops.h>
35#include <linux/fs.h>
36#include <linux/platform_device.h>
37#include <linux/phy.h>
38#include <linux/of.h>
39#include <linux/of_mdio.h>
40#include <linux/of_platform.h>
41#include <linux/of_gpio.h>
42#include <linux/of_net.h>
43
44#include <linux/vmalloc.h>
45#include <asm/pgtable.h>
46#include <asm/irq.h>
47#include <asm/uaccess.h>
48
49#include "fs_enet.h"
50
51/*************************************************/
52
53MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54MODULE_DESCRIPTION("Freescale Ethernet Driver");
55MODULE_LICENSE("GPL");
56MODULE_VERSION(DRV_MODULE_VERSION);
57
58static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59module_param(fs_enet_debug, int, 0);
60MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
62
63#ifdef CONFIG_NET_POLL_CONTROLLER
64static void fs_enet_netpoll(struct net_device *dev);
65#endif
66
67static void fs_set_multicast_list(struct net_device *dev)
68{
69 struct fs_enet_private *fep = netdev_priv(dev);
70
71 (*fep->ops->set_multicast_list)(dev);
72}
73
74static void skb_align(struct sk_buff *skb, int align)
75{
76 int off = ((unsigned long)skb->data) & (align - 1);
77
78 if (off)
79 skb_reserve(skb, align - off);
80}
81
82/* NAPI receive function */
83static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
84{
85 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
86 struct net_device *dev = fep->ndev;
87 const struct fs_platform_info *fpi = fep->fpi;
88 cbd_t __iomem *bdp;
89 struct sk_buff *skb, *skbn;
90 int received = 0;
91 u16 pkt_len, sc;
92 int curidx;
93
94 if (budget <= 0)
95 return received;
96
97 /*
98 * First, grab all of the stats for the incoming packet.
99 * These get messed up if we get called due to a busy condition.
100 */
101 bdp = fep->cur_rx;
102
103 /* clear RX status bits for napi*/
104 (*fep->ops->napi_clear_rx_event)(dev);
105
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107 curidx = bdp - fep->rx_bd_base;
108
109 /*
110 * Since we have allocated space to hold a complete frame,
111 * the last indicator should be set.
112 */
113 if ((sc & BD_ENET_RX_LAST) == 0)
114 dev_warn(fep->dev, "rcv is not +last\n");
115
116 /*
117 * Check for errors.
118 */
119 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121 fep->stats.rx_errors++;
122 /* Frame too long or too short. */
123 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124 fep->stats.rx_length_errors++;
125 /* Frame alignment */
126 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127 fep->stats.rx_frame_errors++;
128 /* CRC Error */
129 if (sc & BD_ENET_RX_CR)
130 fep->stats.rx_crc_errors++;
131 /* FIFO overrun */
132 if (sc & BD_ENET_RX_OV)
133 fep->stats.rx_crc_errors++;
134
135 skb = fep->rx_skbuff[curidx];
136
137 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139 DMA_FROM_DEVICE);
140
141 skbn = skb;
142
143 } else {
144 skb = fep->rx_skbuff[curidx];
145
146 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148 DMA_FROM_DEVICE);
149
150 /*
151 * Process the incoming frame.
152 */
153 fep->stats.rx_packets++;
154 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155 fep->stats.rx_bytes += pkt_len + 4;
156
157 if (pkt_len <= fpi->rx_copybreak) {
158 /* +2 to make IP header L1 cache aligned */
159 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160 if (skbn != NULL) {
161 skb_reserve(skbn, 2); /* align IP header */
162 skb_copy_from_linear_data(skb,
163 skbn->data, pkt_len);
164 swap(skb, skbn);
165 }
166 } else {
167 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
168
169 if (skbn)
170 skb_align(skbn, ENET_RX_ALIGN);
171 }
172
173 if (skbn != NULL) {
174 skb_put(skb, pkt_len); /* Make room */
175 skb->protocol = eth_type_trans(skb, dev);
176 received++;
177 netif_receive_skb(skb);
178 } else {
179 fep->stats.rx_dropped++;
180 skbn = skb;
181 }
182 }
183
184 fep->rx_skbuff[curidx] = skbn;
185 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
186 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
187 DMA_FROM_DEVICE));
188 CBDW_DATLEN(bdp, 0);
189 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
190
191 /*
192 * Update BD pointer to next entry.
193 */
194 if ((sc & BD_ENET_RX_WRAP) == 0)
195 bdp++;
196 else
197 bdp = fep->rx_bd_base;
198
199 (*fep->ops->rx_bd_done)(dev);
200
201 if (received >= budget)
202 break;
203 }
204
205 fep->cur_rx = bdp;
206
207 if (received < budget) {
208 /* done */
209 napi_complete(napi);
210 (*fep->ops->napi_enable_rx)(dev);
211 }
212 return received;
213}
214
215static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
216{
217 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
218 napi_tx);
219 struct net_device *dev = fep->ndev;
220 cbd_t __iomem *bdp;
221 struct sk_buff *skb;
222 int dirtyidx, do_wake, do_restart;
223 u16 sc;
224 int has_tx_work = 0;
225
226 spin_lock(&fep->tx_lock);
227 bdp = fep->dirty_tx;
228
229 /* clear TX status bits for napi*/
230 (*fep->ops->napi_clear_tx_event)(dev);
231
232 do_wake = do_restart = 0;
233 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
234 dirtyidx = bdp - fep->tx_bd_base;
235
236 if (fep->tx_free == fep->tx_ring)
237 break;
238
239 skb = fep->tx_skbuff[dirtyidx];
240
241 /*
242 * Check for errors.
243 */
244 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
245 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
246
247 if (sc & BD_ENET_TX_HB) /* No heartbeat */
248 fep->stats.tx_heartbeat_errors++;
249 if (sc & BD_ENET_TX_LC) /* Late collision */
250 fep->stats.tx_window_errors++;
251 if (sc & BD_ENET_TX_RL) /* Retrans limit */
252 fep->stats.tx_aborted_errors++;
253 if (sc & BD_ENET_TX_UN) /* Underrun */
254 fep->stats.tx_fifo_errors++;
255 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
256 fep->stats.tx_carrier_errors++;
257
258 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
259 fep->stats.tx_errors++;
260 do_restart = 1;
261 }
262 } else
263 fep->stats.tx_packets++;
264
265 if (sc & BD_ENET_TX_READY) {
266 dev_warn(fep->dev,
267 "HEY! Enet xmit interrupt and TX_READY.\n");
268 }
269
270 /*
271 * Deferred means some collisions occurred during transmit,
272 * but we eventually sent the packet OK.
273 */
274 if (sc & BD_ENET_TX_DEF)
275 fep->stats.collisions++;
276
277 /* unmap */
278 if (fep->mapped_as_page[dirtyidx])
279 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
280 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
281 else
282 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
283 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284
285 /*
286 * Free the sk buffer associated with this last transmit.
287 */
288 if (skb) {
289 dev_kfree_skb(skb);
290 fep->tx_skbuff[dirtyidx] = NULL;
291 }
292
293 /*
294 * Update pointer to next buffer descriptor to be transmitted.
295 */
296 if ((sc & BD_ENET_TX_WRAP) == 0)
297 bdp++;
298 else
299 bdp = fep->tx_bd_base;
300
301 /*
302 * Since we have freed up a buffer, the ring is no longer
303 * full.
304 */
305 if (++fep->tx_free >= MAX_SKB_FRAGS)
306 do_wake = 1;
307 has_tx_work = 1;
308 }
309
310 fep->dirty_tx = bdp;
311
312 if (do_restart)
313 (*fep->ops->tx_restart)(dev);
314
315 if (!has_tx_work) {
316 napi_complete(napi);
317 (*fep->ops->napi_enable_tx)(dev);
318 }
319
320 spin_unlock(&fep->tx_lock);
321
322 if (do_wake)
323 netif_wake_queue(dev);
324
325 if (has_tx_work)
326 return budget;
327 return 0;
328}
329
330/*
331 * The interrupt handler.
332 * This is called from the MPC core interrupt.
333 */
334static irqreturn_t
335fs_enet_interrupt(int irq, void *dev_id)
336{
337 struct net_device *dev = dev_id;
338 struct fs_enet_private *fep;
339 const struct fs_platform_info *fpi;
340 u32 int_events;
341 u32 int_clr_events;
342 int nr, napi_ok;
343 int handled;
344
345 fep = netdev_priv(dev);
346 fpi = fep->fpi;
347
348 nr = 0;
349 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
350 nr++;
351
352 int_clr_events = int_events;
353 int_clr_events &= ~fep->ev_napi_rx;
354
355 (*fep->ops->clear_int_events)(dev, int_clr_events);
356
357 if (int_events & fep->ev_err)
358 (*fep->ops->ev_error)(dev, int_events);
359
360 if (int_events & fep->ev_rx) {
361 napi_ok = napi_schedule_prep(&fep->napi);
362
363 (*fep->ops->napi_disable_rx)(dev);
364 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
365
366 /* NOTE: it is possible for FCCs in NAPI mode */
367 /* to submit a spurious interrupt while in poll */
368 if (napi_ok)
369 __napi_schedule(&fep->napi);
370 }
371
372 if (int_events & fep->ev_tx) {
373 napi_ok = napi_schedule_prep(&fep->napi_tx);
374
375 (*fep->ops->napi_disable_tx)(dev);
376 (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
377
378 /* NOTE: it is possible for FCCs in NAPI mode */
379 /* to submit a spurious interrupt while in poll */
380 if (napi_ok)
381 __napi_schedule(&fep->napi_tx);
382 }
383 }
384
385 handled = nr > 0;
386 return IRQ_RETVAL(handled);
387}
388
389void fs_init_bds(struct net_device *dev)
390{
391 struct fs_enet_private *fep = netdev_priv(dev);
392 cbd_t __iomem *bdp;
393 struct sk_buff *skb;
394 int i;
395
396 fs_cleanup_bds(dev);
397
398 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
399 fep->tx_free = fep->tx_ring;
400 fep->cur_rx = fep->rx_bd_base;
401
402 /*
403 * Initialize the receive buffer descriptors.
404 */
405 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
406 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
407 if (skb == NULL)
408 break;
409
410 skb_align(skb, ENET_RX_ALIGN);
411 fep->rx_skbuff[i] = skb;
412 CBDW_BUFADDR(bdp,
413 dma_map_single(fep->dev, skb->data,
414 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
415 DMA_FROM_DEVICE));
416 CBDW_DATLEN(bdp, 0); /* zero */
417 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
418 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
419 }
420 /*
421 * if we failed, fillup remainder
422 */
423 for (; i < fep->rx_ring; i++, bdp++) {
424 fep->rx_skbuff[i] = NULL;
425 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
426 }
427
428 /*
429 * ...and the same for transmit.
430 */
431 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
432 fep->tx_skbuff[i] = NULL;
433 CBDW_BUFADDR(bdp, 0);
434 CBDW_DATLEN(bdp, 0);
435 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
436 }
437}
438
439void fs_cleanup_bds(struct net_device *dev)
440{
441 struct fs_enet_private *fep = netdev_priv(dev);
442 struct sk_buff *skb;
443 cbd_t __iomem *bdp;
444 int i;
445
446 /*
447 * Reset SKB transmit buffers.
448 */
449 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
450 if ((skb = fep->tx_skbuff[i]) == NULL)
451 continue;
452
453 /* unmap */
454 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
455 skb->len, DMA_TO_DEVICE);
456
457 fep->tx_skbuff[i] = NULL;
458 dev_kfree_skb(skb);
459 }
460
461 /*
462 * Reset SKB receive buffers
463 */
464 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
465 if ((skb = fep->rx_skbuff[i]) == NULL)
466 continue;
467
468 /* unmap */
469 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
470 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
471 DMA_FROM_DEVICE);
472
473 fep->rx_skbuff[i] = NULL;
474
475 dev_kfree_skb(skb);
476 }
477}
478
479/**********************************************************************************/
480
481#ifdef CONFIG_FS_ENET_MPC5121_FEC
482/*
483 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
484 */
485static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
486 struct sk_buff *skb)
487{
488 struct sk_buff *new_skb;
489
490 if (skb_linearize(skb))
491 return NULL;
492
493 /* Alloc new skb */
494 new_skb = netdev_alloc_skb(dev, skb->len + 4);
495 if (!new_skb)
496 return NULL;
497
498 /* Make sure new skb is properly aligned */
499 skb_align(new_skb, 4);
500
501 /* Copy data to new skb ... */
502 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503 skb_put(new_skb, skb->len);
504
505 /* ... and free an old one */
506 dev_kfree_skb_any(skb);
507
508 return new_skb;
509}
510#endif
511
512static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513{
514 struct fs_enet_private *fep = netdev_priv(dev);
515 cbd_t __iomem *bdp;
516 int curidx;
517 u16 sc;
518 int nr_frags;
519 skb_frag_t *frag;
520 int len;
521#ifdef CONFIG_FS_ENET_MPC5121_FEC
522 int is_aligned = 1;
523 int i;
524
525 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
526 is_aligned = 0;
527 } else {
528 nr_frags = skb_shinfo(skb)->nr_frags;
529 frag = skb_shinfo(skb)->frags;
530 for (i = 0; i < nr_frags; i++, frag++) {
531 if (!IS_ALIGNED(frag->page_offset, 4)) {
532 is_aligned = 0;
533 break;
534 }
535 }
536 }
537
538 if (!is_aligned) {
539 skb = tx_skb_align_workaround(dev, skb);
540 if (!skb) {
541 /*
542 * We have lost packet due to memory allocation error
543 * in tx_skb_align_workaround(). Hopefully original
544 * skb is still valid, so try transmit it later.
545 */
546 return NETDEV_TX_BUSY;
547 }
548 }
549#endif
550
551 spin_lock(&fep->tx_lock);
552
553 /*
554 * Fill in a Tx ring entry
555 */
556 bdp = fep->cur_tx;
557
558 nr_frags = skb_shinfo(skb)->nr_frags;
559 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
560 netif_stop_queue(dev);
561 spin_unlock(&fep->tx_lock);
562
563 /*
564 * Ooops. All transmit buffers are full. Bail out.
565 * This should not happen, since the tx queue should be stopped.
566 */
567 dev_warn(fep->dev, "tx queue full!.\n");
568 return NETDEV_TX_BUSY;
569 }
570
571 curidx = bdp - fep->tx_bd_base;
572
573 len = skb->len;
574 fep->stats.tx_bytes += len;
575 if (nr_frags)
576 len -= skb->data_len;
577 fep->tx_free -= nr_frags + 1;
578 /*
579 * Push the data cache so the CPM does not get stale memory data.
580 */
581 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
582 skb->data, len, DMA_TO_DEVICE));
583 CBDW_DATLEN(bdp, len);
584
585 fep->mapped_as_page[curidx] = 0;
586 frag = skb_shinfo(skb)->frags;
587 while (nr_frags) {
588 CBDC_SC(bdp,
589 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
590 BD_ENET_TX_TC);
591 CBDS_SC(bdp, BD_ENET_TX_READY);
592
593 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
594 bdp++, curidx++;
595 else
596 bdp = fep->tx_bd_base, curidx = 0;
597
598 len = skb_frag_size(frag);
599 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
600 DMA_TO_DEVICE));
601 CBDW_DATLEN(bdp, len);
602
603 fep->tx_skbuff[curidx] = NULL;
604 fep->mapped_as_page[curidx] = 1;
605
606 frag++;
607 nr_frags--;
608 }
609
610 /* Trigger transmission start */
611 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
612 BD_ENET_TX_LAST | BD_ENET_TX_TC;
613
614 /* note that while FEC does not have this bit
615 * it marks it as available for software use
616 * yay for hw reuse :) */
617 if (skb->len <= 60)
618 sc |= BD_ENET_TX_PAD;
619 CBDC_SC(bdp, BD_ENET_TX_STATS);
620 CBDS_SC(bdp, sc);
621
622 /* Save skb pointer. */
623 fep->tx_skbuff[curidx] = skb;
624
625 /* If this was the last BD in the ring, start at the beginning again. */
626 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
627 bdp++;
628 else
629 bdp = fep->tx_bd_base;
630 fep->cur_tx = bdp;
631
632 if (fep->tx_free < MAX_SKB_FRAGS)
633 netif_stop_queue(dev);
634
635 skb_tx_timestamp(skb);
636
637 (*fep->ops->tx_kickstart)(dev);
638
639 spin_unlock(&fep->tx_lock);
640
641 return NETDEV_TX_OK;
642}
643
644static void fs_timeout(struct net_device *dev)
645{
646 struct fs_enet_private *fep = netdev_priv(dev);
647 unsigned long flags;
648 int wake = 0;
649
650 fep->stats.tx_errors++;
651
652 spin_lock_irqsave(&fep->lock, flags);
653
654 if (dev->flags & IFF_UP) {
655 phy_stop(fep->phydev);
656 (*fep->ops->stop)(dev);
657 (*fep->ops->restart)(dev);
658 phy_start(fep->phydev);
659 }
660
661 phy_start(fep->phydev);
662 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
663 spin_unlock_irqrestore(&fep->lock, flags);
664
665 if (wake)
666 netif_wake_queue(dev);
667}
668
669/*-----------------------------------------------------------------------------
670 * generic link-change handler - should be sufficient for most cases
671 *-----------------------------------------------------------------------------*/
672static void generic_adjust_link(struct net_device *dev)
673{
674 struct fs_enet_private *fep = netdev_priv(dev);
675 struct phy_device *phydev = fep->phydev;
676 int new_state = 0;
677
678 if (phydev->link) {
679 /* adjust to duplex mode */
680 if (phydev->duplex != fep->oldduplex) {
681 new_state = 1;
682 fep->oldduplex = phydev->duplex;
683 }
684
685 if (phydev->speed != fep->oldspeed) {
686 new_state = 1;
687 fep->oldspeed = phydev->speed;
688 }
689
690 if (!fep->oldlink) {
691 new_state = 1;
692 fep->oldlink = 1;
693 }
694
695 if (new_state)
696 fep->ops->restart(dev);
697 } else if (fep->oldlink) {
698 new_state = 1;
699 fep->oldlink = 0;
700 fep->oldspeed = 0;
701 fep->oldduplex = -1;
702 }
703
704 if (new_state && netif_msg_link(fep))
705 phy_print_status(phydev);
706}
707
708
709static void fs_adjust_link(struct net_device *dev)
710{
711 struct fs_enet_private *fep = netdev_priv(dev);
712 unsigned long flags;
713
714 spin_lock_irqsave(&fep->lock, flags);
715
716 if(fep->ops->adjust_link)
717 fep->ops->adjust_link(dev);
718 else
719 generic_adjust_link(dev);
720
721 spin_unlock_irqrestore(&fep->lock, flags);
722}
723
724static int fs_init_phy(struct net_device *dev)
725{
726 struct fs_enet_private *fep = netdev_priv(dev);
727 struct phy_device *phydev;
728 phy_interface_t iface;
729
730 fep->oldlink = 0;
731 fep->oldspeed = 0;
732 fep->oldduplex = -1;
733
734 iface = fep->fpi->use_rmii ?
735 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
736
737 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
738 iface);
739 if (!phydev) {
740 dev_err(&dev->dev, "Could not attach to PHY\n");
741 return -ENODEV;
742 }
743
744 fep->phydev = phydev;
745
746 return 0;
747}
748
749static int fs_enet_open(struct net_device *dev)
750{
751 struct fs_enet_private *fep = netdev_priv(dev);
752 int r;
753 int err;
754
755 /* to initialize the fep->cur_rx,... */
756 /* not doing this, will cause a crash in fs_enet_rx_napi */
757 fs_init_bds(fep->ndev);
758
759 napi_enable(&fep->napi);
760 napi_enable(&fep->napi_tx);
761
762 /* Install our interrupt handler. */
763 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
764 "fs_enet-mac", dev);
765 if (r != 0) {
766 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
767 napi_disable(&fep->napi);
768 napi_disable(&fep->napi_tx);
769 return -EINVAL;
770 }
771
772 err = fs_init_phy(dev);
773 if (err) {
774 free_irq(fep->interrupt, dev);
775 napi_disable(&fep->napi);
776 napi_disable(&fep->napi_tx);
777 return err;
778 }
779 phy_start(fep->phydev);
780
781 netif_start_queue(dev);
782
783 return 0;
784}
785
786static int fs_enet_close(struct net_device *dev)
787{
788 struct fs_enet_private *fep = netdev_priv(dev);
789 unsigned long flags;
790
791 netif_stop_queue(dev);
792 netif_carrier_off(dev);
793 napi_disable(&fep->napi);
794 napi_disable(&fep->napi_tx);
795 phy_stop(fep->phydev);
796
797 spin_lock_irqsave(&fep->lock, flags);
798 spin_lock(&fep->tx_lock);
799 (*fep->ops->stop)(dev);
800 spin_unlock(&fep->tx_lock);
801 spin_unlock_irqrestore(&fep->lock, flags);
802
803 /* release any irqs */
804 phy_disconnect(fep->phydev);
805 fep->phydev = NULL;
806 free_irq(fep->interrupt, dev);
807
808 return 0;
809}
810
811static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
812{
813 struct fs_enet_private *fep = netdev_priv(dev);
814 return &fep->stats;
815}
816
817/*************************************************************************/
818
819static void fs_get_drvinfo(struct net_device *dev,
820 struct ethtool_drvinfo *info)
821{
822 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
823 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
824}
825
826static int fs_get_regs_len(struct net_device *dev)
827{
828 struct fs_enet_private *fep = netdev_priv(dev);
829
830 return (*fep->ops->get_regs_len)(dev);
831}
832
833static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
834 void *p)
835{
836 struct fs_enet_private *fep = netdev_priv(dev);
837 unsigned long flags;
838 int r, len;
839
840 len = regs->len;
841
842 spin_lock_irqsave(&fep->lock, flags);
843 r = (*fep->ops->get_regs)(dev, p, &len);
844 spin_unlock_irqrestore(&fep->lock, flags);
845
846 if (r == 0)
847 regs->version = 0;
848}
849
850static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
851{
852 struct fs_enet_private *fep = netdev_priv(dev);
853
854 if (!fep->phydev)
855 return -ENODEV;
856
857 return phy_ethtool_gset(fep->phydev, cmd);
858}
859
860static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
861{
862 struct fs_enet_private *fep = netdev_priv(dev);
863
864 if (!fep->phydev)
865 return -ENODEV;
866
867 return phy_ethtool_sset(fep->phydev, cmd);
868}
869
870static int fs_nway_reset(struct net_device *dev)
871{
872 return 0;
873}
874
875static u32 fs_get_msglevel(struct net_device *dev)
876{
877 struct fs_enet_private *fep = netdev_priv(dev);
878 return fep->msg_enable;
879}
880
881static void fs_set_msglevel(struct net_device *dev, u32 value)
882{
883 struct fs_enet_private *fep = netdev_priv(dev);
884 fep->msg_enable = value;
885}
886
887static const struct ethtool_ops fs_ethtool_ops = {
888 .get_drvinfo = fs_get_drvinfo,
889 .get_regs_len = fs_get_regs_len,
890 .get_settings = fs_get_settings,
891 .set_settings = fs_set_settings,
892 .nway_reset = fs_nway_reset,
893 .get_link = ethtool_op_get_link,
894 .get_msglevel = fs_get_msglevel,
895 .set_msglevel = fs_set_msglevel,
896 .get_regs = fs_get_regs,
897 .get_ts_info = ethtool_op_get_ts_info,
898};
899
900static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
901{
902 struct fs_enet_private *fep = netdev_priv(dev);
903
904 if (!netif_running(dev))
905 return -EINVAL;
906
907 return phy_mii_ioctl(fep->phydev, rq, cmd);
908}
909
910extern int fs_mii_connect(struct net_device *dev);
911extern void fs_mii_disconnect(struct net_device *dev);
912
913/**************************************************************************************/
914
915#ifdef CONFIG_FS_ENET_HAS_FEC
916#define IS_FEC(match) ((match)->data == &fs_fec_ops)
917#else
918#define IS_FEC(match) 0
919#endif
920
921static const struct net_device_ops fs_enet_netdev_ops = {
922 .ndo_open = fs_enet_open,
923 .ndo_stop = fs_enet_close,
924 .ndo_get_stats = fs_enet_get_stats,
925 .ndo_start_xmit = fs_enet_start_xmit,
926 .ndo_tx_timeout = fs_timeout,
927 .ndo_set_rx_mode = fs_set_multicast_list,
928 .ndo_do_ioctl = fs_ioctl,
929 .ndo_validate_addr = eth_validate_addr,
930 .ndo_set_mac_address = eth_mac_addr,
931 .ndo_change_mtu = eth_change_mtu,
932#ifdef CONFIG_NET_POLL_CONTROLLER
933 .ndo_poll_controller = fs_enet_netpoll,
934#endif
935};
936
937static const struct of_device_id fs_enet_match[];
938static int fs_enet_probe(struct platform_device *ofdev)
939{
940 const struct of_device_id *match;
941 struct net_device *ndev;
942 struct fs_enet_private *fep;
943 struct fs_platform_info *fpi;
944 const u32 *data;
945 struct clk *clk;
946 int err;
947 const u8 *mac_addr;
948 const char *phy_connection_type;
949 int privsize, len, ret = -ENODEV;
950
951 match = of_match_device(fs_enet_match, &ofdev->dev);
952 if (!match)
953 return -EINVAL;
954
955 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
956 if (!fpi)
957 return -ENOMEM;
958
959 if (!IS_FEC(match)) {
960 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
961 if (!data || len != 4)
962 goto out_free_fpi;
963
964 fpi->cp_command = *data;
965 }
966
967 fpi->rx_ring = 32;
968 fpi->tx_ring = 64;
969 fpi->rx_copybreak = 240;
970 fpi->napi_weight = 17;
971 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
972 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
973 err = of_phy_register_fixed_link(ofdev->dev.of_node);
974 if (err)
975 goto out_free_fpi;
976
977 /* In the case of a fixed PHY, the DT node associated
978 * to the PHY is the Ethernet MAC DT node.
979 */
980 fpi->phy_node = of_node_get(ofdev->dev.of_node);
981 }
982
983 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
984 phy_connection_type = of_get_property(ofdev->dev.of_node,
985 "phy-connection-type", NULL);
986 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
987 fpi->use_rmii = 1;
988 }
989
990 /* make clock lookup non-fatal (the driver is shared among platforms),
991 * but require enable to succeed when a clock was specified/found,
992 * keep a reference to the clock upon successful acquisition
993 */
994 clk = devm_clk_get(&ofdev->dev, "per");
995 if (!IS_ERR(clk)) {
996 err = clk_prepare_enable(clk);
997 if (err) {
998 ret = err;
999 goto out_free_fpi;
1000 }
1001 fpi->clk_per = clk;
1002 }
1003
1004 privsize = sizeof(*fep) +
1005 sizeof(struct sk_buff **) *
1006 (fpi->rx_ring + fpi->tx_ring) +
1007 sizeof(char) * fpi->tx_ring;
1008
1009 ndev = alloc_etherdev(privsize);
1010 if (!ndev) {
1011 ret = -ENOMEM;
1012 goto out_put;
1013 }
1014
1015 SET_NETDEV_DEV(ndev, &ofdev->dev);
1016 platform_set_drvdata(ofdev, ndev);
1017
1018 fep = netdev_priv(ndev);
1019 fep->dev = &ofdev->dev;
1020 fep->ndev = ndev;
1021 fep->fpi = fpi;
1022 fep->ops = match->data;
1023
1024 ret = fep->ops->setup_data(ndev);
1025 if (ret)
1026 goto out_free_dev;
1027
1028 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1029 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1030 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1031 fpi->tx_ring);
1032
1033 spin_lock_init(&fep->lock);
1034 spin_lock_init(&fep->tx_lock);
1035
1036 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1037 if (mac_addr)
1038 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1039
1040 ret = fep->ops->allocate_bd(ndev);
1041 if (ret)
1042 goto out_cleanup_data;
1043
1044 fep->rx_bd_base = fep->ring_base;
1045 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1046
1047 fep->tx_ring = fpi->tx_ring;
1048 fep->rx_ring = fpi->rx_ring;
1049
1050 ndev->netdev_ops = &fs_enet_netdev_ops;
1051 ndev->watchdog_timeo = 2 * HZ;
1052 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1053 netif_tx_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1054
1055 ndev->ethtool_ops = &fs_ethtool_ops;
1056
1057 init_timer(&fep->phy_timer_list);
1058
1059 netif_carrier_off(ndev);
1060
1061 ndev->features |= NETIF_F_SG;
1062
1063 ret = register_netdev(ndev);
1064 if (ret)
1065 goto out_free_bd;
1066
1067 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1068
1069 return 0;
1070
1071out_free_bd:
1072 fep->ops->free_bd(ndev);
1073out_cleanup_data:
1074 fep->ops->cleanup_data(ndev);
1075out_free_dev:
1076 free_netdev(ndev);
1077out_put:
1078 of_node_put(fpi->phy_node);
1079 if (fpi->clk_per)
1080 clk_disable_unprepare(fpi->clk_per);
1081out_free_fpi:
1082 kfree(fpi);
1083 return ret;
1084}
1085
1086static int fs_enet_remove(struct platform_device *ofdev)
1087{
1088 struct net_device *ndev = platform_get_drvdata(ofdev);
1089 struct fs_enet_private *fep = netdev_priv(ndev);
1090
1091 unregister_netdev(ndev);
1092
1093 fep->ops->free_bd(ndev);
1094 fep->ops->cleanup_data(ndev);
1095 dev_set_drvdata(fep->dev, NULL);
1096 of_node_put(fep->fpi->phy_node);
1097 if (fep->fpi->clk_per)
1098 clk_disable_unprepare(fep->fpi->clk_per);
1099 free_netdev(ndev);
1100 return 0;
1101}
1102
1103static const struct of_device_id fs_enet_match[] = {
1104#ifdef CONFIG_FS_ENET_HAS_SCC
1105 {
1106 .compatible = "fsl,cpm1-scc-enet",
1107 .data = (void *)&fs_scc_ops,
1108 },
1109 {
1110 .compatible = "fsl,cpm2-scc-enet",
1111 .data = (void *)&fs_scc_ops,
1112 },
1113#endif
1114#ifdef CONFIG_FS_ENET_HAS_FCC
1115 {
1116 .compatible = "fsl,cpm2-fcc-enet",
1117 .data = (void *)&fs_fcc_ops,
1118 },
1119#endif
1120#ifdef CONFIG_FS_ENET_HAS_FEC
1121#ifdef CONFIG_FS_ENET_MPC5121_FEC
1122 {
1123 .compatible = "fsl,mpc5121-fec",
1124 .data = (void *)&fs_fec_ops,
1125 },
1126 {
1127 .compatible = "fsl,mpc5125-fec",
1128 .data = (void *)&fs_fec_ops,
1129 },
1130#else
1131 {
1132 .compatible = "fsl,pq1-fec-enet",
1133 .data = (void *)&fs_fec_ops,
1134 },
1135#endif
1136#endif
1137 {}
1138};
1139MODULE_DEVICE_TABLE(of, fs_enet_match);
1140
1141static struct platform_driver fs_enet_driver = {
1142 .driver = {
1143 .name = "fs_enet",
1144 .of_match_table = fs_enet_match,
1145 },
1146 .probe = fs_enet_probe,
1147 .remove = fs_enet_remove,
1148};
1149
1150#ifdef CONFIG_NET_POLL_CONTROLLER
1151static void fs_enet_netpoll(struct net_device *dev)
1152{
1153 disable_irq(dev->irq);
1154 fs_enet_interrupt(dev->irq, dev);
1155 enable_irq(dev->irq);
1156}
1157#endif
1158
1159module_platform_driver(fs_enet_driver);