Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
   2/*
   3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
   4 * Copyright 2020 NXP
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/init.h>
  10#include <linux/mod_devicetable.h>
  11#include <linux/module.h>
  12#include <linux/of_mdio.h>
  13#include <linux/of_net.h>
  14#include <linux/io.h>
  15#include <linux/if_arp.h>
  16#include <linux/if_vlan.h>
  17#include <linux/icmp.h>
  18#include <linux/ip.h>
  19#include <linux/ipv6.h>
  20#include <linux/platform_device.h>
  21#include <linux/udp.h>
  22#include <linux/tcp.h>
  23#include <linux/net.h>
  24#include <linux/skbuff.h>
  25#include <linux/etherdevice.h>
  26#include <linux/if_ether.h>
  27#include <linux/highmem.h>
  28#include <linux/percpu.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/sort.h>
  31#include <linux/phy_fixed.h>
  32#include <linux/bpf.h>
  33#include <linux/bpf_trace.h>
  34#include <soc/fsl/bman.h>
  35#include <soc/fsl/qman.h>
  36#include "fman.h"
  37#include "fman_port.h"
  38#include "mac.h"
  39#include "dpaa_eth.h"
  40
  41/* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
  42 * using trace events only need to #include <trace/events/sched.h>
  43 */
  44#define CREATE_TRACE_POINTS
  45#include "dpaa_eth_trace.h"
  46
  47static int debug = -1;
  48module_param(debug, int, 0444);
  49MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
  50
  51static u16 tx_timeout = 1000;
  52module_param(tx_timeout, ushort, 0444);
  53MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
  54
  55#define FM_FD_STAT_RX_ERRORS						\
  56	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
  57	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
  58	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
  59	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
  60	 FM_FD_ERR_PRS_HDR_ERR)
  61
  62#define FM_FD_STAT_TX_ERRORS \
  63	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
  64	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
  65
  66#define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
  67			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
  68			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
  69
  70#define DPAA_INGRESS_CS_THRESHOLD 0x10000000
  71/* Ingress congestion threshold on FMan ports
  72 * The size in bytes of the ingress tail-drop threshold on FMan ports.
  73 * Traffic piling up above this value will be rejected by QMan and discarded
  74 * by FMan.
  75 */
  76
  77/* Size in bytes of the FQ taildrop threshold */
  78#define DPAA_FQ_TD 0x200000
  79
  80#define DPAA_CS_THRESHOLD_1G 0x06000000
  81/* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
  82 * The size in bytes of the egress Congestion State notification threshold on
  83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
  84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
  85 * and the larger the frame size, the more acute the problem.
  86 * So we have to find a balance between these factors:
  87 * - avoiding the device staying congested for a prolonged time (risking
  88 *   the netdev watchdog to fire - see also the tx_timeout module param);
  89 * - affecting performance of protocols such as TCP, which otherwise
  90 *   behave well under the congestion notification mechanism;
  91 * - preventing the Tx cores from tightly-looping (as if the congestion
  92 *   threshold was too low to be effective);
  93 * - running out of memory if the CS threshold is set too high.
  94 */
  95
  96#define DPAA_CS_THRESHOLD_10G 0x10000000
  97/* The size in bytes of the egress Congestion State notification threshold on
  98 * 10G ports, range 0x1000 .. 0x10000000
  99 */
 100
 101/* Largest value that the FQD's OAL field can hold */
 102#define FSL_QMAN_MAX_OAL	127
 103
 104/* Default alignment for start of data in an Rx FD */
 105#ifdef CONFIG_DPAA_ERRATUM_A050385
 106/* aligning data start to 64 avoids DMA transaction splits, unless the buffer
 107 * is crossing a 4k page boundary
 108 */
 109#define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
 110/* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
 111 * crossings; also, all SG fragments except the last must have a size multiple
 112 * of 256 to avoid DMA transaction splits
 113 */
 114#define DPAA_A050385_ALIGN 256
 115#define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
 116				   DPAA_A050385_ALIGN : 16)
 117#else
 118#define DPAA_FD_DATA_ALIGNMENT  16
 119#define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
 120#endif
 121
 122/* The DPAA requires 256 bytes reserved and mapped for the SGT */
 123#define DPAA_SGT_SIZE 256
 124
 125/* Values for the L3R field of the FM Parse Results
 126 */
 127/* L3 Type field: First IP Present IPv4 */
 128#define FM_L3_PARSE_RESULT_IPV4	0x8000
 129/* L3 Type field: First IP Present IPv6 */
 130#define FM_L3_PARSE_RESULT_IPV6	0x4000
 131/* Values for the L4R field of the FM Parse Results */
 132/* L4 Type field: UDP */
 133#define FM_L4_PARSE_RESULT_UDP	0x40
 134/* L4 Type field: TCP */
 135#define FM_L4_PARSE_RESULT_TCP	0x20
 136
 137/* FD status field indicating whether the FM Parser has attempted to validate
 138 * the L4 csum of the frame.
 139 * Note that having this bit set doesn't necessarily imply that the checksum
 140 * is valid. One would have to check the parse results to find that out.
 141 */
 142#define FM_FD_STAT_L4CV         0x00000004
 143
 144#define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
 145#define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
 146
 147#define FSL_DPAA_BPID_INV		0xff
 148#define FSL_DPAA_ETH_MAX_BUF_COUNT	128
 149#define FSL_DPAA_ETH_REFILL_THRESHOLD	80
 150
 151#define DPAA_TX_PRIV_DATA_SIZE	16
 152#define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
 153#define DPAA_TIME_STAMP_SIZE 8
 154#define DPAA_HASH_RESULTS_SIZE 8
 155#define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
 156		       + DPAA_HASH_RESULTS_SIZE)
 157#define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
 158					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
 159#ifdef CONFIG_DPAA_ERRATUM_A050385
 160#define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
 161#define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
 162				DPAA_RX_PRIV_DATA_A050385_SIZE : \
 163				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
 164#else
 165#define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
 166#endif
 167
 168#define DPAA_ETH_PCD_RXQ_NUM	128
 169
 170#define DPAA_ENQUEUE_RETRIES	100000
 171
 172enum port_type {RX, TX};
 173
 174struct fm_port_fqs {
 175	struct dpaa_fq *tx_defq;
 176	struct dpaa_fq *tx_errq;
 177	struct dpaa_fq *rx_defq;
 178	struct dpaa_fq *rx_errq;
 179	struct dpaa_fq *rx_pcdq;
 180};
 181
 182/* All the dpa bps in use at any moment */
 183static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
 184
 185#define DPAA_BP_RAW_SIZE 4096
 186
 187#ifdef CONFIG_DPAA_ERRATUM_A050385
 188#define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
 189				~(DPAA_A050385_ALIGN - 1))
 190#else
 191#define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
 192#endif
 193
 194static int dpaa_max_frm;
 195
 196static int dpaa_rx_extra_headroom;
 197
 198#define dpaa_get_max_mtu()	\
 199	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
 200
 201static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
 202
 203static int dpaa_netdev_init(struct net_device *net_dev,
 204			    const struct net_device_ops *dpaa_ops,
 205			    u16 tx_timeout)
 206{
 207	struct dpaa_priv *priv = netdev_priv(net_dev);
 208	struct device *dev = net_dev->dev.parent;
 209	struct mac_device *mac_dev = priv->mac_dev;
 210	struct dpaa_percpu_priv *percpu_priv;
 211	const u8 *mac_addr;
 212	int i, err;
 213
 214	/* Although we access another CPU's private data here
 215	 * we do it at initialization so it is safe
 216	 */
 217	for_each_possible_cpu(i) {
 218		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
 219		percpu_priv->net_dev = net_dev;
 220	}
 221
 222	net_dev->netdev_ops = dpaa_ops;
 223	mac_addr = mac_dev->addr;
 224
 225	net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
 226	net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
 227
 228	net_dev->min_mtu = ETH_MIN_MTU;
 229	net_dev->max_mtu = dpaa_get_max_mtu();
 230
 231	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 232				 NETIF_F_RXHASH);
 233
 234	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
 235	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
 236	 * For conformity, we'll still declare GSO explicitly.
 237	 */
 238	net_dev->features |= NETIF_F_GSO;
 239	net_dev->features |= NETIF_F_RXCSUM;
 240
 241	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
 242	net_dev->lltx = true;
 243	/* we do not want shared skbs on TX */
 244	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
 245
 246	net_dev->features |= net_dev->hw_features;
 247	net_dev->vlan_features = net_dev->features;
 248
 249	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
 250				NETDEV_XDP_ACT_REDIRECT |
 251				NETDEV_XDP_ACT_NDO_XMIT;
 252
 253	if (is_valid_ether_addr(mac_addr)) {
 254		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
 255		eth_hw_addr_set(net_dev, mac_addr);
 256	} else {
 257		eth_hw_addr_random(net_dev);
 258		err = mac_dev->change_addr(mac_dev->fman_mac,
 259			(const enet_addr_t *)net_dev->dev_addr);
 260		if (err) {
 261			dev_err(dev, "Failed to set random MAC address\n");
 262			return -EINVAL;
 263		}
 264		dev_info(dev, "Using random MAC address: %pM\n",
 265			 net_dev->dev_addr);
 266	}
 267
 268	net_dev->ethtool_ops = &dpaa_ethtool_ops;
 269
 270	net_dev->needed_headroom = priv->tx_headroom;
 271	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
 272
 273	/* The rest of the config is filled in by the mac device already */
 274	mac_dev->phylink_config.dev = &net_dev->dev;
 275	mac_dev->phylink_config.type = PHYLINK_NETDEV;
 276	mac_dev->update_speed = dpaa_eth_cgr_set_speed;
 277	mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
 278					  dev_fwnode(mac_dev->dev),
 279					  mac_dev->phy_if,
 280					  mac_dev->phylink_ops);
 281	if (IS_ERR(mac_dev->phylink)) {
 282		err = PTR_ERR(mac_dev->phylink);
 283		dev_err_probe(dev, err, "Could not create phylink\n");
 284		return err;
 285	}
 286
 287	/* start without the RUNNING flag, phylib controls it later */
 288	netif_carrier_off(net_dev);
 289
 290	err = register_netdev(net_dev);
 291	if (err < 0) {
 292		dev_err(dev, "register_netdev() = %d\n", err);
 293		phylink_destroy(mac_dev->phylink);
 294		return err;
 295	}
 296
 297	return 0;
 298}
 299
 300static int dpaa_stop(struct net_device *net_dev)
 301{
 302	struct mac_device *mac_dev;
 303	struct dpaa_priv *priv;
 304	int i, error;
 305	int err = 0;
 306
 307	priv = netdev_priv(net_dev);
 308	mac_dev = priv->mac_dev;
 309
 310	netif_tx_stop_all_queues(net_dev);
 311	/* Allow the Fman (Tx) port to process in-flight frames before we
 312	 * try switching it off.
 313	 */
 314	msleep(200);
 315
 316	phylink_stop(mac_dev->phylink);
 317	mac_dev->disable(mac_dev->fman_mac);
 318
 319	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
 320		error = fman_port_disable(mac_dev->port[i]);
 321		if (error)
 322			err = error;
 323	}
 324
 325	phylink_disconnect_phy(mac_dev->phylink);
 326	net_dev->phydev = NULL;
 327
 328	msleep(200);
 329
 330	return err;
 331}
 332
 333static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
 334{
 335	struct dpaa_percpu_priv *percpu_priv;
 336	const struct dpaa_priv	*priv;
 337
 338	priv = netdev_priv(net_dev);
 339	percpu_priv = this_cpu_ptr(priv->percpu_priv);
 340
 341	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
 342		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
 343
 344	percpu_priv->stats.tx_errors++;
 345}
 346
 347/* Calculates the statistics for the given device by adding the statistics
 348 * collected by each CPU.
 349 */
 350static void dpaa_get_stats64(struct net_device *net_dev,
 351			     struct rtnl_link_stats64 *s)
 352{
 353	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
 354	struct dpaa_priv *priv = netdev_priv(net_dev);
 355	struct dpaa_percpu_priv *percpu_priv;
 356	u64 *netstats = (u64 *)s;
 357	u64 *cpustats;
 358	int i, j;
 359
 360	for_each_possible_cpu(i) {
 361		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
 362
 363		cpustats = (u64 *)&percpu_priv->stats;
 364
 365		/* add stats from all CPUs */
 366		for (j = 0; j < numstats; j++)
 367			netstats[j] += cpustats[j];
 368	}
 369}
 370
 371static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
 372			 void *type_data)
 373{
 374	struct dpaa_priv *priv = netdev_priv(net_dev);
 375	int num_txqs_per_tc = dpaa_num_txqs_per_tc();
 376	struct tc_mqprio_qopt *mqprio = type_data;
 377	u8 num_tc;
 378	int i;
 379
 380	if (type != TC_SETUP_QDISC_MQPRIO)
 381		return -EOPNOTSUPP;
 382
 383	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 384	num_tc = mqprio->num_tc;
 385
 386	if (num_tc == priv->num_tc)
 387		return 0;
 388
 389	if (!num_tc) {
 390		netdev_reset_tc(net_dev);
 391		goto out;
 392	}
 393
 394	if (num_tc > DPAA_TC_NUM) {
 395		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
 396			   DPAA_TC_NUM);
 397		return -EINVAL;
 398	}
 399
 400	netdev_set_num_tc(net_dev, num_tc);
 401
 402	for (i = 0; i < num_tc; i++)
 403		netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
 404				    i * num_txqs_per_tc);
 405
 406out:
 407	priv->num_tc = num_tc ? : 1;
 408	netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
 409	return 0;
 410}
 411
 412static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
 413{
 414	struct dpaa_eth_data *eth_data;
 415	struct device *dpaa_dev;
 416	struct mac_device *mac_dev;
 417
 418	dpaa_dev = &pdev->dev;
 419	eth_data = dpaa_dev->platform_data;
 420	if (!eth_data) {
 421		dev_err(dpaa_dev, "eth_data missing\n");
 422		return ERR_PTR(-ENODEV);
 423	}
 424	mac_dev = eth_data->mac_dev;
 425	if (!mac_dev) {
 426		dev_err(dpaa_dev, "mac_dev missing\n");
 427		return ERR_PTR(-EINVAL);
 428	}
 429
 430	return mac_dev;
 431}
 432
 433static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
 434{
 435	const struct dpaa_priv *priv;
 436	struct mac_device *mac_dev;
 437	struct sockaddr old_addr;
 438	int err;
 439
 440	priv = netdev_priv(net_dev);
 441
 442	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
 443
 444	err = eth_mac_addr(net_dev, addr);
 445	if (err < 0) {
 446		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
 447		return err;
 448	}
 449
 450	mac_dev = priv->mac_dev;
 451
 452	err = mac_dev->change_addr(mac_dev->fman_mac,
 453				   (const enet_addr_t *)net_dev->dev_addr);
 454	if (err < 0) {
 455		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
 456			  err);
 457		/* reverting to previous address */
 458		eth_mac_addr(net_dev, &old_addr);
 459
 460		return err;
 461	}
 462
 463	return 0;
 464}
 465
 466static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
 467{
 468	const struct dpaa_priv *priv = netdev_priv(net_dev);
 469
 470	return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
 471						(enet_addr_t *)addr);
 472}
 473
 474static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
 475{
 476	const struct dpaa_priv *priv = netdev_priv(net_dev);
 477
 478	return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
 479						   (enet_addr_t *)addr);
 480}
 481
 482static void dpaa_set_rx_mode(struct net_device *net_dev)
 483{
 484	const struct dpaa_priv	*priv;
 485	int err;
 486
 487	priv = netdev_priv(net_dev);
 488
 489	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
 490		priv->mac_dev->promisc = !priv->mac_dev->promisc;
 491		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
 492						 priv->mac_dev->promisc);
 493		if (err < 0)
 494			netif_err(priv, drv, net_dev,
 495				  "mac_dev->set_promisc() = %d\n",
 496				  err);
 497	}
 498
 499	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
 500		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
 501		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
 502						  priv->mac_dev->allmulti);
 503		if (err < 0)
 504			netif_err(priv, drv, net_dev,
 505				  "mac_dev->set_allmulti() = %d\n",
 506				  err);
 507	}
 508
 509	err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
 510	if (err < 0)
 511		netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
 512			  err);
 513}
 514
 515static struct dpaa_bp *dpaa_bpid2pool(int bpid)
 516{
 517	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
 518		return NULL;
 519
 520	return dpaa_bp_array[bpid];
 521}
 522
 523/* checks if this bpool is already allocated */
 524static bool dpaa_bpid2pool_use(int bpid)
 525{
 526	if (dpaa_bpid2pool(bpid)) {
 527		refcount_inc(&dpaa_bp_array[bpid]->refs);
 528		return true;
 529	}
 530
 531	return false;
 532}
 533
 534/* called only once per bpid by dpaa_bp_alloc_pool() */
 535static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
 536{
 537	dpaa_bp_array[bpid] = dpaa_bp;
 538	refcount_set(&dpaa_bp->refs, 1);
 539}
 540
 541static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
 542{
 543	int err;
 544
 545	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
 546		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
 547		       __func__);
 548		return -EINVAL;
 549	}
 550
 551	/* If the pool is already specified, we only create one per bpid */
 552	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
 553	    dpaa_bpid2pool_use(dpaa_bp->bpid))
 554		return 0;
 555
 556	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
 557		dpaa_bp->pool = bman_new_pool();
 558		if (!dpaa_bp->pool) {
 559			pr_err("%s: bman_new_pool() failed\n",
 560			       __func__);
 561			return -ENODEV;
 562		}
 563
 564		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
 565	}
 566
 567	if (dpaa_bp->seed_cb) {
 568		err = dpaa_bp->seed_cb(dpaa_bp);
 569		if (err)
 570			goto pool_seed_failed;
 571	}
 572
 573	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
 574
 575	return 0;
 576
 577pool_seed_failed:
 578	pr_err("%s: pool seeding failed\n", __func__);
 579	bman_free_pool(dpaa_bp->pool);
 580
 581	return err;
 582}
 583
 584/* remove and free all the buffers from the given buffer pool */
 585static void dpaa_bp_drain(struct dpaa_bp *bp)
 586{
 587	u8 num = 8;
 588	int ret;
 589
 590	do {
 591		struct bm_buffer bmb[8];
 592		int i;
 593
 594		ret = bman_acquire(bp->pool, bmb, num);
 595		if (ret < 0) {
 596			if (num == 8) {
 597				/* we have less than 8 buffers left;
 598				 * drain them one by one
 599				 */
 600				num = 1;
 601				ret = 1;
 602				continue;
 603			} else {
 604				/* Pool is fully drained */
 605				break;
 606			}
 607		}
 608
 609		if (bp->free_buf_cb)
 610			for (i = 0; i < num; i++)
 611				bp->free_buf_cb(bp, &bmb[i]);
 612	} while (ret > 0);
 613}
 614
 615static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
 616{
 617	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
 618
 619	/* the mapping between bpid and dpaa_bp is done very late in the
 620	 * allocation procedure; if something failed before the mapping, the bp
 621	 * was not configured, therefore we don't need the below instructions
 622	 */
 623	if (!bp)
 624		return;
 625
 626	if (!refcount_dec_and_test(&bp->refs))
 627		return;
 628
 629	if (bp->free_buf_cb)
 630		dpaa_bp_drain(bp);
 631
 632	dpaa_bp_array[bp->bpid] = NULL;
 633	bman_free_pool(bp->pool);
 634}
 635
 636static void dpaa_bps_free(struct dpaa_priv *priv)
 637{
 638	dpaa_bp_free(priv->dpaa_bp);
 639}
 640
 641/* Use multiple WQs for FQ assignment:
 642 *	- Tx Confirmation queues go to WQ1.
 643 *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
 644 *	  to be scheduled, in case there are many more FQs in WQ6).
 645 *	- Rx Default goes to WQ6.
 646 *	- Tx queues go to different WQs depending on their priority. Equal
 647 *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
 648 *	  WQ0 (highest priority).
 649 * This ensures that Tx-confirmed buffers are timely released. In particular,
 650 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
 651 * are greatly outnumbered by other FQs in the system, while
 652 * dequeue scheduling is round-robin.
 653 */
 654static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
 655{
 656	switch (fq->fq_type) {
 657	case FQ_TYPE_TX_CONFIRM:
 658	case FQ_TYPE_TX_CONF_MQ:
 659		fq->wq = 1;
 660		break;
 661	case FQ_TYPE_RX_ERROR:
 662	case FQ_TYPE_TX_ERROR:
 663		fq->wq = 5;
 664		break;
 665	case FQ_TYPE_RX_DEFAULT:
 666	case FQ_TYPE_RX_PCD:
 667		fq->wq = 6;
 668		break;
 669	case FQ_TYPE_TX:
 670		switch (idx / dpaa_num_txqs_per_tc()) {
 671		case 0:
 672			/* Low priority (best effort) */
 673			fq->wq = 6;
 674			break;
 675		case 1:
 676			/* Medium priority */
 677			fq->wq = 2;
 678			break;
 679		case 2:
 680			/* High priority */
 681			fq->wq = 1;
 682			break;
 683		case 3:
 684			/* Very high priority */
 685			fq->wq = 0;
 686			break;
 687		default:
 688			WARN(1, "Too many TX FQs: more than %zu!\n",
 689			     dpaa_max_num_txqs());
 690		}
 691		break;
 692	default:
 693		WARN(1, "Invalid FQ type %d for FQID %d!\n",
 694		     fq->fq_type, fq->fqid);
 695	}
 696}
 697
 698static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
 699				     u32 start, u32 count,
 700				     struct list_head *list,
 701				     enum dpaa_fq_type fq_type)
 702{
 703	struct dpaa_fq *dpaa_fq;
 704	int i;
 705
 706	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
 707			       GFP_KERNEL);
 708	if (!dpaa_fq)
 709		return NULL;
 710
 711	for (i = 0; i < count; i++) {
 712		dpaa_fq[i].fq_type = fq_type;
 713		dpaa_fq[i].fqid = start ? start + i : 0;
 714		list_add_tail(&dpaa_fq[i].list, list);
 715	}
 716
 717	for (i = 0; i < count; i++)
 718		dpaa_assign_wq(dpaa_fq + i, i);
 719
 720	return dpaa_fq;
 721}
 722
 723static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
 724			      struct fm_port_fqs *port_fqs)
 725{
 726	struct dpaa_fq *dpaa_fq;
 727	u32 fq_base, fq_base_aligned, i;
 728
 729	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
 730	if (!dpaa_fq)
 731		goto fq_alloc_failed;
 732
 733	port_fqs->rx_errq = &dpaa_fq[0];
 734
 735	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
 736	if (!dpaa_fq)
 737		goto fq_alloc_failed;
 738
 739	port_fqs->rx_defq = &dpaa_fq[0];
 740
 741	/* the PCD FQIDs range needs to be aligned for correct operation */
 742	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
 743		goto fq_alloc_failed;
 744
 745	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
 746
 747	for (i = fq_base; i < fq_base_aligned; i++)
 748		qman_release_fqid(i);
 749
 750	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
 751	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
 752		qman_release_fqid(i);
 753
 754	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
 755				list, FQ_TYPE_RX_PCD);
 756	if (!dpaa_fq)
 757		goto fq_alloc_failed;
 758
 759	port_fqs->rx_pcdq = &dpaa_fq[0];
 760
 761	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
 762			   FQ_TYPE_TX_CONF_MQ))
 763		goto fq_alloc_failed;
 764
 765	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
 766	if (!dpaa_fq)
 767		goto fq_alloc_failed;
 768
 769	port_fqs->tx_errq = &dpaa_fq[0];
 770
 771	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
 772	if (!dpaa_fq)
 773		goto fq_alloc_failed;
 774
 775	port_fqs->tx_defq = &dpaa_fq[0];
 776
 777	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
 778		goto fq_alloc_failed;
 779
 780	return 0;
 781
 782fq_alloc_failed:
 783	dev_err(dev, "dpaa_fq_alloc() failed\n");
 784	return -ENOMEM;
 785}
 786
 787static u32 rx_pool_channel;
 788static DEFINE_SPINLOCK(rx_pool_channel_init);
 789
 790static int dpaa_get_channel(void)
 791{
 792	spin_lock(&rx_pool_channel_init);
 793	if (!rx_pool_channel) {
 794		u32 pool;
 795		int ret;
 796
 797		ret = qman_alloc_pool(&pool);
 798
 799		if (!ret)
 800			rx_pool_channel = pool;
 801	}
 802	spin_unlock(&rx_pool_channel_init);
 803	if (!rx_pool_channel)
 804		return -ENOMEM;
 805	return rx_pool_channel;
 806}
 807
 808static void dpaa_release_channel(void)
 809{
 810	qman_release_pool(rx_pool_channel);
 811}
 812
 813static void dpaa_eth_add_channel(u16 channel, struct device *dev)
 814{
 815	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
 816	const cpumask_t *cpus = qman_affine_cpus();
 817	struct qman_portal *portal;
 818	int cpu;
 819
 820	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
 821		portal = qman_get_affine_portal(cpu);
 822		qman_p_static_dequeue_add(portal, pool);
 823		qman_start_using_portal(portal, dev);
 824	}
 825}
 826
 827/* Congestion group state change notification callback.
 828 * Stops the device's egress queues while they are congested and
 829 * wakes them upon exiting congested state.
 830 * Also updates some CGR-related stats.
 831 */
 832static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
 833			   int congested)
 834{
 835	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
 836		struct dpaa_priv, cgr_data.cgr);
 837
 838	if (congested) {
 839		priv->cgr_data.congestion_start_jiffies = jiffies;
 840		netif_tx_stop_all_queues(priv->net_dev);
 841		priv->cgr_data.cgr_congested_count++;
 842	} else {
 843		priv->cgr_data.congested_jiffies +=
 844			(jiffies - priv->cgr_data.congestion_start_jiffies);
 845		netif_tx_wake_all_queues(priv->net_dev);
 846	}
 847}
 848
 849static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
 850{
 851	struct qm_mcc_initcgr initcgr;
 852	u32 cs_th;
 853	int err;
 854
 855	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
 856	if (err < 0) {
 857		if (netif_msg_drv(priv))
 858			pr_err("%s: Error %d allocating CGR ID\n",
 859			       __func__, err);
 860		goto out_error;
 861	}
 862	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
 863
 864	/* Enable Congestion State Change Notifications and CS taildrop */
 865	memset(&initcgr, 0, sizeof(initcgr));
 866	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
 867	initcgr.cgr.cscn_en = QM_CGR_EN;
 868
 869	/* Set different thresholds based on the configured MAC speed.
 870	 * This may turn suboptimal if the MAC is reconfigured at another
 871	 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
 872	 * callback.
 873	 */
 874	if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
 875		cs_th = DPAA_CS_THRESHOLD_10G;
 876	else
 877		cs_th = DPAA_CS_THRESHOLD_1G;
 878	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
 879
 880	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
 881	initcgr.cgr.cstd_en = QM_CGR_EN;
 882
 883	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
 884			      &initcgr);
 885	if (err < 0) {
 886		if (netif_msg_drv(priv))
 887			pr_err("%s: Error %d creating CGR with ID %d\n",
 888			       __func__, err, priv->cgr_data.cgr.cgrid);
 889		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
 890		goto out_error;
 891	}
 892	if (netif_msg_drv(priv))
 893		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
 894			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
 895			 priv->cgr_data.cgr.chan);
 896
 897out_error:
 898	return err;
 899}
 900
 901static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
 902{
 903	struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
 904	struct dpaa_priv *priv = netdev_priv(net_dev);
 905	struct qm_mcc_initcgr opts = { };
 906	u32 cs_th;
 907	int err;
 908
 909	opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
 910	switch (speed) {
 911	case SPEED_10000:
 912		cs_th = DPAA_CS_THRESHOLD_10G;
 913		break;
 914	case SPEED_1000:
 915	default:
 916		cs_th = DPAA_CS_THRESHOLD_1G;
 917		break;
 918	}
 919	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
 920
 921	err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
 922	if (err)
 923		netdev_err(net_dev, "could not update speed: %d\n", err);
 924}
 925
 926static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
 927				      struct dpaa_fq *fq,
 928				      const struct qman_fq *template)
 929{
 930	fq->fq_base = *template;
 931	fq->net_dev = priv->net_dev;
 932
 933	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
 934	fq->channel = priv->channel;
 935}
 936
 937static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
 938				     struct dpaa_fq *fq,
 939				     struct fman_port *port,
 940				     const struct qman_fq *template)
 941{
 942	fq->fq_base = *template;
 943	fq->net_dev = priv->net_dev;
 944
 945	if (port) {
 946		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
 947		fq->channel = (u16)fman_port_get_qman_channel_id(port);
 948	} else {
 949		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
 950	}
 951}
 952
 953static int dpaa_fq_setup(struct dpaa_priv *priv,
 954			 const struct dpaa_fq_cbs *fq_cbs,
 955			 struct fman_port *tx_port)
 956{
 957	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
 958	const cpumask_t *affine_cpus = qman_affine_cpus();
 959	struct dpaa_fq *fq;
 960	u16 *channels;
 961
 962	channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
 963	if (!channels)
 964		return -ENOMEM;
 965
 966	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
 967		channels[num_portals++] = qman_affine_channel(cpu);
 968
 969	if (num_portals == 0)
 970		dev_err(priv->net_dev->dev.parent,
 971			"No Qman software (affine) channels found\n");
 972
 973	/* Initialize each FQ in the list */
 974	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
 975		switch (fq->fq_type) {
 976		case FQ_TYPE_RX_DEFAULT:
 977			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
 978			break;
 979		case FQ_TYPE_RX_ERROR:
 980			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
 981			break;
 982		case FQ_TYPE_RX_PCD:
 983			if (!num_portals)
 984				continue;
 985			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
 986			fq->channel = channels[portal_cnt++ % num_portals];
 987			break;
 988		case FQ_TYPE_TX:
 989			dpaa_setup_egress(priv, fq, tx_port,
 990					  &fq_cbs->egress_ern);
 991			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
 992			break;
 993		case FQ_TYPE_TX_CONF_MQ:
 994			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
 995			fallthrough;
 996		case FQ_TYPE_TX_CONFIRM:
 997			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
 998			break;
 999		case FQ_TYPE_TX_ERROR:
1000			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1001			break;
1002		default:
1003			dev_warn(priv->net_dev->dev.parent,
1004				 "Unknown FQ type detected!\n");
1005			break;
1006		}
1007	}
1008
1009	kfree(channels);
1010
1011	return 0;
1012}
1013
1014static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1015				   struct qman_fq *tx_fq)
1016{
1017	int i;
1018
1019	for (i = 0; i < dpaa_max_num_txqs(); i++)
1020		if (priv->egress_fqs[i] == tx_fq)
1021			return i;
1022
1023	return -EINVAL;
1024}
1025
1026static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1027{
1028	const struct dpaa_priv	*priv;
1029	struct qman_fq *confq = NULL;
1030	struct qm_mcc_initfq initfq;
1031	struct device *dev;
1032	struct qman_fq *fq;
1033	int queue_id;
1034	int err;
1035
1036	priv = netdev_priv(dpaa_fq->net_dev);
1037	dev = dpaa_fq->net_dev->dev.parent;
1038
1039	if (dpaa_fq->fqid == 0)
1040		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1041
1042	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1043
1044	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1045	if (err) {
1046		dev_err(dev, "qman_create_fq() failed\n");
1047		return err;
1048	}
1049	fq = &dpaa_fq->fq_base;
1050
1051	if (dpaa_fq->init) {
1052		memset(&initfq, 0, sizeof(initfq));
1053
1054		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1055		/* Note: we may get to keep an empty FQ in cache */
1056		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1057
1058		/* Try to reduce the number of portal interrupts for
1059		 * Tx Confirmation FQs.
1060		 */
1061		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1062			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1063
1064		/* FQ placement */
1065		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1066
1067		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1068
1069		/* Put all egress queues in a congestion group of their own.
1070		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1071		 * rather than Tx - but they nonetheless account for the
1072		 * memory footprint on behalf of egress traffic. We therefore
1073		 * place them in the netdev's CGR, along with the Tx FQs.
1074		 */
1075		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1076		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1077		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1078			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1079			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1080			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1081			/* Set a fixed overhead accounting, in an attempt to
1082			 * reduce the impact of fixed-size skb shells and the
1083			 * driver's needed headroom on system memory. This is
1084			 * especially the case when the egress traffic is
1085			 * composed of small datagrams.
1086			 * Unfortunately, QMan's OAL value is capped to an
1087			 * insufficient value, but even that is better than
1088			 * no overhead accounting at all.
1089			 */
1090			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1091			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1092			qm_fqd_set_oal(&initfq.fqd,
1093				       min(sizeof(struct sk_buff) +
1094				       priv->tx_headroom,
1095				       (size_t)FSL_QMAN_MAX_OAL));
1096		}
1097
1098		if (td_enable) {
1099			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1100			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1101			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1102		}
1103
1104		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1105			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1106			if (queue_id >= 0)
1107				confq = priv->conf_fqs[queue_id];
1108			if (confq) {
1109				initfq.we_mask |=
1110					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1111			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1112			 *	     A2V=1 (contextA A2 field is valid)
1113			 *	     A0V=1 (contextA A0 field is valid)
1114			 *	     B0V=1 (contextB field is valid)
1115			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1116			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1117			 */
1118				qm_fqd_context_a_set64(&initfq.fqd,
1119						       0x1e00000080000000ULL);
1120			}
1121		}
1122
1123		/* Put all the ingress queues in our "ingress CGR". */
1124		if (priv->use_ingress_cgr &&
1125		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1126		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1127		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1128			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1129			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1130			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1131			/* Set a fixed overhead accounting, just like for the
1132			 * egress CGR.
1133			 */
1134			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1135			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1136			qm_fqd_set_oal(&initfq.fqd,
1137				       min(sizeof(struct sk_buff) +
1138				       priv->tx_headroom,
1139				       (size_t)FSL_QMAN_MAX_OAL));
1140		}
1141
1142		/* Initialization common to all ingress queues */
1143		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1144			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1145			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1146						QM_FQCTRL_CTXASTASHING);
1147			initfq.fqd.context_a.stashing.exclusive =
1148				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1149				QM_STASHING_EXCL_ANNOTATION;
1150			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1151					    DIV_ROUND_UP(sizeof(struct qman_fq),
1152							 64));
1153		}
1154
1155		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1156		if (err < 0) {
1157			dev_err(dev, "qman_init_fq(%u) = %d\n",
1158				qman_fq_fqid(fq), err);
1159			qman_destroy_fq(fq);
1160			return err;
1161		}
1162	}
1163
1164	dpaa_fq->fqid = qman_fq_fqid(fq);
1165
1166	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1167	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1168		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1169				       dpaa_fq->fqid, 0);
1170		if (err) {
1171			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1172			return err;
1173		}
1174
1175		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1176						 MEM_TYPE_PAGE_ORDER0, NULL);
1177		if (err) {
1178			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1179				err);
1180			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1181			return err;
1182		}
1183	}
1184
1185	return 0;
1186}
1187
1188static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1189{
1190	const struct dpaa_priv  *priv;
1191	struct dpaa_fq *dpaa_fq;
1192	int err, error;
1193
1194	err = 0;
1195
1196	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1197	priv = netdev_priv(dpaa_fq->net_dev);
1198
1199	if (dpaa_fq->init) {
1200		err = qman_retire_fq(fq, NULL);
1201		if (err < 0 && netif_msg_drv(priv))
1202			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1203				qman_fq_fqid(fq), err);
1204
1205		error = qman_oos_fq(fq);
1206		if (error < 0 && netif_msg_drv(priv)) {
1207			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1208				qman_fq_fqid(fq), error);
1209			if (err >= 0)
1210				err = error;
1211		}
1212	}
1213
1214	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1215	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1216	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1217		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1218
1219	qman_destroy_fq(fq);
1220	list_del(&dpaa_fq->list);
1221
1222	return err;
1223}
1224
1225static int dpaa_fq_free(struct device *dev, struct list_head *list)
1226{
1227	struct dpaa_fq *dpaa_fq, *tmp;
1228	int err, error;
1229
1230	err = 0;
1231	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1232		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1233		if (error < 0 && err >= 0)
1234			err = error;
1235	}
1236
1237	return err;
1238}
1239
1240static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1241				 struct dpaa_fq *defq,
1242				 struct dpaa_buffer_layout *buf_layout)
1243{
1244	struct fman_buffer_prefix_content buf_prefix_content;
1245	struct fman_port_params params;
1246	int err;
1247
1248	memset(&params, 0, sizeof(params));
1249	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1250
1251	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1252	buf_prefix_content.pass_prs_result = true;
1253	buf_prefix_content.pass_hash_result = true;
1254	buf_prefix_content.pass_time_stamp = true;
1255	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1256
1257	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1258	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1259
1260	err = fman_port_config(port, &params);
1261	if (err) {
1262		pr_err("%s: fman_port_config failed\n", __func__);
1263		return err;
1264	}
1265
1266	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1267	if (err) {
1268		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1269		       __func__);
1270		return err;
1271	}
1272
1273	err = fman_port_init(port);
1274	if (err)
1275		pr_err("%s: fm_port_init failed\n", __func__);
1276
1277	return err;
1278}
1279
1280static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1281				 struct dpaa_fq *errq,
1282				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1283				 struct dpaa_buffer_layout *buf_layout)
1284{
1285	struct fman_buffer_prefix_content buf_prefix_content;
1286	struct fman_port_rx_params *rx_p;
1287	struct fman_port_params params;
1288	int err;
1289
1290	memset(&params, 0, sizeof(params));
1291	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1292
1293	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1294	buf_prefix_content.pass_prs_result = true;
1295	buf_prefix_content.pass_hash_result = true;
1296	buf_prefix_content.pass_time_stamp = true;
1297	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1298
1299	rx_p = &params.specific_params.rx_params;
1300	rx_p->err_fqid = errq->fqid;
1301	rx_p->dflt_fqid = defq->fqid;
1302	if (pcdq) {
1303		rx_p->pcd_base_fqid = pcdq->fqid;
1304		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1305	}
1306
1307	rx_p->ext_buf_pools.num_of_pools_used = 1;
1308	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1309	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1310
1311	err = fman_port_config(port, &params);
1312	if (err) {
1313		pr_err("%s: fman_port_config failed\n", __func__);
1314		return err;
1315	}
1316
1317	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1318	if (err) {
1319		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1320		       __func__);
1321		return err;
1322	}
1323
1324	err = fman_port_init(port);
1325	if (err)
1326		pr_err("%s: fm_port_init failed\n", __func__);
1327
1328	return err;
1329}
1330
1331static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1332			       struct dpaa_bp *bp,
1333			       struct fm_port_fqs *port_fqs,
1334			       struct dpaa_buffer_layout *buf_layout,
1335			       struct device *dev)
1336{
1337	struct fman_port *rxport = mac_dev->port[RX];
1338	struct fman_port *txport = mac_dev->port[TX];
1339	int err;
1340
1341	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1342				    port_fqs->tx_defq, &buf_layout[TX]);
1343	if (err)
1344		return err;
1345
1346	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1347				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1348				    &buf_layout[RX]);
1349
1350	return err;
1351}
1352
1353static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1354			     struct bm_buffer *bmb, int cnt)
1355{
1356	int err;
1357
1358	err = bman_release(dpaa_bp->pool, bmb, cnt);
1359	/* Should never occur, address anyway to avoid leaking the buffers */
1360	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1361		while (cnt-- > 0)
1362			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1363
1364	return cnt;
1365}
1366
1367static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1368{
1369	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1370	struct dpaa_bp *dpaa_bp;
1371	int i = 0, j;
1372
1373	memset(bmb, 0, sizeof(bmb));
1374
1375	do {
1376		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1377		if (!dpaa_bp)
1378			return;
1379
1380		j = 0;
1381		do {
1382			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1383
1384			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1385
1386			j++; i++;
1387		} while (j < ARRAY_SIZE(bmb) &&
1388				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1389				sgt[i - 1].bpid == sgt[i].bpid);
1390
1391		dpaa_bman_release(dpaa_bp, bmb, j);
1392	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1393}
1394
1395static void dpaa_fd_release(const struct net_device *net_dev,
1396			    const struct qm_fd *fd)
1397{
1398	struct qm_sg_entry *sgt;
1399	struct dpaa_bp *dpaa_bp;
1400	struct bm_buffer bmb;
1401	dma_addr_t addr;
1402	void *vaddr;
1403
1404	bmb.data = 0;
1405	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1406
1407	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1408	if (!dpaa_bp)
1409		return;
1410
1411	if (qm_fd_get_format(fd) == qm_fd_sg) {
1412		vaddr = phys_to_virt(qm_fd_addr(fd));
1413		sgt = vaddr + qm_fd_get_offset(fd);
1414
1415		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1416			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1417
1418		dpaa_release_sgt_members(sgt);
1419
1420		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1421				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1422				    DMA_FROM_DEVICE);
1423		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1424			netdev_err(net_dev, "DMA mapping failed\n");
1425			return;
1426		}
1427		bm_buffer_set64(&bmb, addr);
1428	}
1429
1430	dpaa_bman_release(dpaa_bp, &bmb, 1);
1431}
1432
1433static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1434		      const union qm_mr_entry *msg)
1435{
1436	switch (msg->ern.rc & QM_MR_RC_MASK) {
1437	case QM_MR_RC_CGR_TAILDROP:
1438		percpu_priv->ern_cnt.cg_tdrop++;
1439		break;
1440	case QM_MR_RC_WRED:
1441		percpu_priv->ern_cnt.wred++;
1442		break;
1443	case QM_MR_RC_ERROR:
1444		percpu_priv->ern_cnt.err_cond++;
1445		break;
1446	case QM_MR_RC_ORPWINDOW_EARLY:
1447		percpu_priv->ern_cnt.early_window++;
1448		break;
1449	case QM_MR_RC_ORPWINDOW_LATE:
1450		percpu_priv->ern_cnt.late_window++;
1451		break;
1452	case QM_MR_RC_FQ_TAILDROP:
1453		percpu_priv->ern_cnt.fq_tdrop++;
1454		break;
1455	case QM_MR_RC_ORPWINDOW_RETIRED:
1456		percpu_priv->ern_cnt.fq_retired++;
1457		break;
1458	case QM_MR_RC_ORP_ZERO:
1459		percpu_priv->ern_cnt.orp_zero++;
1460		break;
1461	}
1462}
1463
1464/* Turn on HW checksum computation for this outgoing frame.
1465 * If the current protocol is not something we support in this regard
1466 * (or if the stack has already computed the SW checksum), we do nothing.
1467 *
1468 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1469 * otherwise.
1470 *
1471 * Note that this function may modify the fd->cmd field and the skb data buffer
1472 * (the Parse Results area).
1473 */
1474static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1475			       struct sk_buff *skb,
1476			       struct qm_fd *fd,
1477			       void *parse_results)
1478{
1479	struct fman_prs_result *parse_result;
1480	u16 ethertype = ntohs(skb->protocol);
1481	struct ipv6hdr *ipv6h = NULL;
1482	struct iphdr *iph;
1483	int retval = 0;
1484	u8 l4_proto;
1485
1486	if (skb->ip_summed != CHECKSUM_PARTIAL)
1487		return 0;
1488
1489	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1490	 * L4 alone from the FM configuration anyway.
1491	 */
1492
1493	/* Fill in some fields of the Parse Results array, so the FMan
1494	 * can find them as if they came from the FMan Parser.
1495	 */
1496	parse_result = (struct fman_prs_result *)parse_results;
1497
1498	/* If we're dealing with VLAN, get the real Ethernet type */
1499	if (ethertype == ETH_P_8021Q)
1500		ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1501
1502	/* Fill in the relevant L3 parse result fields
1503	 * and read the L4 protocol type
1504	 */
1505	switch (ethertype) {
1506	case ETH_P_IP:
1507		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1508		iph = ip_hdr(skb);
1509		WARN_ON(!iph);
1510		l4_proto = iph->protocol;
1511		break;
1512	case ETH_P_IPV6:
1513		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1514		ipv6h = ipv6_hdr(skb);
1515		WARN_ON(!ipv6h);
1516		l4_proto = ipv6h->nexthdr;
1517		break;
1518	default:
1519		/* We shouldn't even be here */
1520		if (net_ratelimit())
1521			netif_alert(priv, tx_err, priv->net_dev,
1522				    "Can't compute HW csum for L3 proto 0x%x\n",
1523				    ntohs(skb->protocol));
1524		retval = -EIO;
1525		goto return_error;
1526	}
1527
1528	/* Fill in the relevant L4 parse result fields */
1529	switch (l4_proto) {
1530	case IPPROTO_UDP:
1531		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1532		break;
1533	case IPPROTO_TCP:
1534		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1535		break;
1536	default:
1537		if (net_ratelimit())
1538			netif_alert(priv, tx_err, priv->net_dev,
1539				    "Can't compute HW csum for L4 proto 0x%x\n",
1540				    l4_proto);
1541		retval = -EIO;
1542		goto return_error;
1543	}
1544
1545	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1546	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1547	parse_result->l4_off = (u8)skb_transport_offset(skb);
1548
1549	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1550	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1551
1552	/* On P1023 and similar platforms fd->cmd interpretation could
1553	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1554	 * is not set so we do not need to check; in the future, if/when
1555	 * using context_a we need to check this bit
1556	 */
1557
1558return_error:
1559	return retval;
1560}
1561
1562static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1563{
1564	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1565	struct bm_buffer bmb[8];
1566	dma_addr_t addr;
1567	struct page *p;
1568	u8 i;
1569
1570	for (i = 0; i < 8; i++) {
1571		p = dev_alloc_pages(0);
1572		if (unlikely(!p)) {
1573			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1574			goto release_previous_buffs;
1575		}
1576
1577		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1578				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1579		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1580					       addr))) {
1581			netdev_err(net_dev, "DMA map failed\n");
1582			goto release_previous_buffs;
1583		}
1584
1585		bmb[i].data = 0;
1586		bm_buffer_set64(&bmb[i], addr);
1587	}
1588
1589release_bufs:
1590	return dpaa_bman_release(dpaa_bp, bmb, i);
1591
1592release_previous_buffs:
1593	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1594
1595	bm_buffer_set64(&bmb[i], 0);
1596	/* Avoid releasing a completely null buffer; bman_release() requires
1597	 * at least one buffer.
1598	 */
1599	if (likely(i))
1600		goto release_bufs;
1601
1602	return 0;
1603}
1604
1605static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1606{
1607	int i;
1608
1609	/* Give each CPU an allotment of "config_count" buffers */
1610	for_each_possible_cpu(i) {
1611		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1612		int j;
1613
1614		/* Although we access another CPU's counters here
1615		 * we do it at boot time so it is safe
1616		 */
1617		for (j = 0; j < dpaa_bp->config_count; j += 8)
1618			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1619	}
1620	return 0;
1621}
1622
1623/* Add buffers/(pages) for Rx processing whenever bpool count falls below
1624 * REFILL_THRESHOLD.
1625 */
1626static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1627{
1628	int count = *countptr;
1629	int new_bufs;
1630
1631	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1632		do {
1633			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1634			if (unlikely(!new_bufs)) {
1635				/* Avoid looping forever if we've temporarily
1636				 * run out of memory. We'll try again at the
1637				 * next NAPI cycle.
1638				 */
1639				break;
1640			}
1641			count += new_bufs;
1642		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1643
1644		*countptr = count;
1645		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1646			return -ENOMEM;
1647	}
1648
1649	return 0;
1650}
1651
1652static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1653{
1654	struct dpaa_bp *dpaa_bp;
1655	int *countptr;
1656
1657	dpaa_bp = priv->dpaa_bp;
1658	if (!dpaa_bp)
1659		return -EINVAL;
1660	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1661
1662	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1663}
1664
1665/* Cleanup function for outgoing frame descriptors that were built on Tx path,
1666 * either contiguous frames or scatter/gather ones.
1667 * Skb freeing is not handled here.
1668 *
1669 * This function may be called on error paths in the Tx function, so guard
1670 * against cases when not all fd relevant fields were filled in. To avoid
1671 * reading the invalid transmission timestamp for the error paths set ts to
1672 * false.
1673 *
1674 * Return the skb backpointer, since for S/G frames the buffer containing it
1675 * gets freed here.
1676 *
1677 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1678 * and return NULL in this case.
1679 */
1680static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1681					  const struct qm_fd *fd, bool ts)
1682{
1683	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1684	struct device *dev = priv->net_dev->dev.parent;
1685	struct skb_shared_hwtstamps shhwtstamps;
1686	dma_addr_t addr = qm_fd_addr(fd);
1687	void *vaddr = phys_to_virt(addr);
1688	const struct qm_sg_entry *sgt;
1689	struct dpaa_eth_swbp *swbp;
1690	struct sk_buff *skb;
1691	u64 ns;
1692	int i;
1693
1694	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1695		dma_unmap_page(priv->tx_dma_dev, addr,
1696			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1697			       dma_dir);
1698
1699		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1700		 * it's from lowmem.
1701		 */
1702		sgt = vaddr + qm_fd_get_offset(fd);
1703
1704		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1705		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1706				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1707
1708		/* remaining pages were mapped with skb_frag_dma_map() */
1709		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1710		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1711			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1712
1713			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1714				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1715		}
1716	} else {
1717		dma_unmap_single(priv->tx_dma_dev, addr,
1718				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1719				 dma_dir);
1720	}
1721
1722	swbp = (struct dpaa_eth_swbp *)vaddr;
1723	skb = swbp->skb;
1724
1725	/* No skb backpointer is set when running XDP. An xdp_frame
1726	 * backpointer is saved instead.
1727	 */
1728	if (!skb) {
1729		xdp_return_frame(swbp->xdpf);
1730		return NULL;
1731	}
1732
1733	/* DMA unmapping is required before accessing the HW provided info */
1734	if (ts && priv->tx_tstamp &&
1735	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1736		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1737
1738		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1739					  &ns)) {
1740			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1741			skb_tstamp_tx(skb, &shhwtstamps);
1742		} else {
1743			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1744		}
1745	}
1746
1747	if (qm_fd_get_format(fd) == qm_fd_sg)
1748		/* Free the page that we allocated on Tx for the SGT */
1749		free_pages((unsigned long)vaddr, 0);
1750
1751	return skb;
1752}
1753
1754static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1755{
1756	/* The parser has run and performed L4 checksum validation.
1757	 * We know there were no parser errors (and implicitly no
1758	 * L4 csum error), otherwise we wouldn't be here.
1759	 */
1760	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1761	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1762		return CHECKSUM_UNNECESSARY;
1763
1764	/* We're here because either the parser didn't run or the L4 checksum
1765	 * was not verified. This may include the case of a UDP frame with
1766	 * checksum zero or an L4 proto other than TCP/UDP
1767	 */
1768	return CHECKSUM_NONE;
1769}
1770
1771#define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1772
1773/* Build a linear skb around the received buffer.
1774 * We are guaranteed there is enough room at the end of the data buffer to
1775 * accommodate the shared info area of the skb.
1776 */
1777static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1778					const struct qm_fd *fd)
1779{
1780	ssize_t fd_off = qm_fd_get_offset(fd);
1781	dma_addr_t addr = qm_fd_addr(fd);
1782	struct dpaa_bp *dpaa_bp;
1783	struct sk_buff *skb;
1784	void *vaddr;
1785
1786	vaddr = phys_to_virt(addr);
1787	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1788
1789	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1790	if (!dpaa_bp)
1791		goto free_buffer;
1792
1793	skb = build_skb(vaddr, dpaa_bp->size +
1794			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1795	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1796		goto free_buffer;
1797	skb_reserve(skb, fd_off);
1798	skb_put(skb, qm_fd_get_length(fd));
1799
1800	skb->ip_summed = rx_csum_offload(priv, fd);
1801
1802	return skb;
1803
1804free_buffer:
1805	free_pages((unsigned long)vaddr, 0);
1806	return NULL;
1807}
1808
1809/* Build an skb with the data of the first S/G entry in the linear portion and
1810 * the rest of the frame as skb fragments.
1811 *
1812 * The page fragment holding the S/G Table is recycled here.
1813 */
1814static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1815				    const struct qm_fd *fd)
1816{
1817	ssize_t fd_off = qm_fd_get_offset(fd);
1818	dma_addr_t addr = qm_fd_addr(fd);
1819	const struct qm_sg_entry *sgt;
1820	struct page *page, *head_page;
1821	struct dpaa_bp *dpaa_bp;
1822	void *vaddr, *sg_vaddr;
1823	struct sk_buff *skb;
1824	dma_addr_t sg_addr;
1825	int page_offset;
1826	unsigned int sz;
1827	int *count_ptr;
1828	int i, j;
1829
1830	vaddr = phys_to_virt(addr);
1831	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1832
1833	/* Iterate through the SGT entries and add data buffers to the skb */
1834	sgt = vaddr + fd_off;
1835	skb = NULL;
1836	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1837		/* Extension bit is not supported */
1838		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1839
1840		sg_addr = qm_sg_addr(&sgt[i]);
1841		sg_vaddr = phys_to_virt(sg_addr);
1842		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1843
1844		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1845			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1846
1847		/* We may use multiple Rx pools */
1848		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1849		if (!dpaa_bp)
1850			goto free_buffers;
1851
1852		if (!skb) {
1853			sz = dpaa_bp->size +
1854				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1855			skb = build_skb(sg_vaddr, sz);
1856			if (WARN_ON(!skb))
1857				goto free_buffers;
1858
1859			skb->ip_summed = rx_csum_offload(priv, fd);
1860
1861			/* Make sure forwarded skbs will have enough space
1862			 * on Tx, if extra headers are added.
1863			 */
1864			WARN_ON(fd_off != priv->rx_headroom);
1865			/* The offset to data start within the buffer holding
1866			 * the SGT should always be equal to the offset to data
1867			 * start within the first buffer holding the frame.
1868			 */
1869			WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1870			skb_reserve(skb, fd_off);
1871			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1872		} else {
1873			/* Not the first S/G entry; all data from buffer will
1874			 * be added in an skb fragment; fragment index is offset
1875			 * by one since first S/G entry was incorporated in the
1876			 * linear part of the skb.
1877			 *
1878			 * Caution: 'page' may be a tail page.
1879			 */
1880			page = virt_to_page(sg_vaddr);
1881			head_page = virt_to_head_page(sg_vaddr);
1882
1883			/* Compute offset of sg_vaddr in (possibly tail) page */
1884			page_offset = ((unsigned long)sg_vaddr &
1885					(PAGE_SIZE - 1)) +
1886				(page_address(page) - page_address(head_page));
1887
1888			/* Non-initial SGT entries should not have a buffer
1889			 * offset.
1890			 */
1891			WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1892
1893			/* skb_add_rx_frag() does no checking on the page; if
1894			 * we pass it a tail page, we'll end up with
1895			 * bad page accounting and eventually with segfaults.
1896			 */
1897			skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1898					qm_sg_entry_get_len(&sgt[i]),
1899					dpaa_bp->size);
1900		}
1901
1902		/* Update the pool count for the current {cpu x bpool} */
1903		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1904		(*count_ptr)--;
1905
1906		if (qm_sg_entry_is_final(&sgt[i]))
1907			break;
1908	}
1909	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1910
1911	/* free the SG table buffer */
1912	free_pages((unsigned long)vaddr, 0);
1913
1914	return skb;
1915
1916free_buffers:
1917	/* free all the SG entries */
1918	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1919		sg_addr = qm_sg_addr(&sgt[j]);
1920		sg_vaddr = phys_to_virt(sg_addr);
1921		/* all pages 0..i were unmaped */
1922		if (j > i)
1923			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1924				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1925		free_pages((unsigned long)sg_vaddr, 0);
1926		/* counters 0..i-1 were decremented */
1927		if (j >= i) {
1928			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1929			if (dpaa_bp) {
1930				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1931				(*count_ptr)--;
1932			}
1933		}
1934
1935		if (qm_sg_entry_is_final(&sgt[j]))
1936			break;
1937	}
1938	/* free the SGT fragment */
1939	free_pages((unsigned long)vaddr, 0);
1940
1941	return NULL;
1942}
1943
1944static int skb_to_contig_fd(struct dpaa_priv *priv,
1945			    struct sk_buff *skb, struct qm_fd *fd,
1946			    int *offset)
1947{
1948	struct net_device *net_dev = priv->net_dev;
1949	enum dma_data_direction dma_dir;
1950	struct dpaa_eth_swbp *swbp;
1951	unsigned char *buff_start;
1952	dma_addr_t addr;
1953	int err;
1954
1955	/* We are guaranteed to have at least tx_headroom bytes
1956	 * available, so just use that for offset.
1957	 */
1958	fd->bpid = FSL_DPAA_BPID_INV;
1959	buff_start = skb->data - priv->tx_headroom;
1960	dma_dir = DMA_TO_DEVICE;
1961
1962	swbp = (struct dpaa_eth_swbp *)buff_start;
1963	swbp->skb = skb;
1964
1965	/* Enable L3/L4 hardware checksum computation.
1966	 *
1967	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1968	 * need to write into the skb.
1969	 */
1970	err = dpaa_enable_tx_csum(priv, skb, fd,
1971				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1972	if (unlikely(err < 0)) {
1973		if (net_ratelimit())
1974			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1975				  err);
1976		return err;
1977	}
1978
1979	/* Fill in the rest of the FD fields */
1980	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1981	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1982
1983	/* Map the entire buffer size that may be seen by FMan, but no more */
1984	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1985			      priv->tx_headroom + skb->len, dma_dir);
1986	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1987		if (net_ratelimit())
1988			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1989		return -EINVAL;
1990	}
1991	qm_fd_addr_set64(fd, addr);
1992
1993	return 0;
1994}
1995
1996static int skb_to_sg_fd(struct dpaa_priv *priv,
1997			struct sk_buff *skb, struct qm_fd *fd)
1998{
1999	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
2000	const int nr_frags = skb_shinfo(skb)->nr_frags;
2001	struct net_device *net_dev = priv->net_dev;
2002	struct dpaa_eth_swbp *swbp;
2003	struct qm_sg_entry *sgt;
2004	void *buff_start;
2005	skb_frag_t *frag;
2006	dma_addr_t addr;
2007	size_t frag_len;
2008	struct page *p;
2009	int i, j, err;
2010
2011	/* get a page to store the SGTable */
2012	p = dev_alloc_pages(0);
2013	if (unlikely(!p)) {
2014		netdev_err(net_dev, "dev_alloc_pages() failed\n");
2015		return -ENOMEM;
2016	}
2017	buff_start = page_address(p);
2018
2019	/* Enable L3/L4 hardware checksum computation.
2020	 *
2021	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2022	 * need to write into the skb.
2023	 */
2024	err = dpaa_enable_tx_csum(priv, skb, fd,
2025				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
2026	if (unlikely(err < 0)) {
2027		if (net_ratelimit())
2028			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2029				  err);
2030		goto csum_failed;
2031	}
2032
2033	/* SGT[0] is used by the linear part */
2034	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2035	frag_len = skb_headlen(skb);
2036	qm_sg_entry_set_len(&sgt[0], frag_len);
2037	sgt[0].bpid = FSL_DPAA_BPID_INV;
2038	sgt[0].offset = 0;
2039	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2040			      skb_headlen(skb), dma_dir);
2041	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2042		netdev_err(priv->net_dev, "DMA mapping failed\n");
2043		err = -EINVAL;
2044		goto sg0_map_failed;
2045	}
2046	qm_sg_entry_set64(&sgt[0], addr);
2047
2048	/* populate the rest of SGT entries */
2049	for (i = 0; i < nr_frags; i++) {
2050		frag = &skb_shinfo(skb)->frags[i];
2051		frag_len = skb_frag_size(frag);
2052		WARN_ON(!skb_frag_page(frag));
2053		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2054					frag_len, dma_dir);
2055		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2056			netdev_err(priv->net_dev, "DMA mapping failed\n");
2057			err = -EINVAL;
2058			goto sg_map_failed;
2059		}
2060
2061		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2062		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2063		sgt[i + 1].offset = 0;
2064
2065		/* keep the offset in the address */
2066		qm_sg_entry_set64(&sgt[i + 1], addr);
2067	}
2068
2069	/* Set the final bit in the last used entry of the SGT */
2070	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2071
2072	/* set fd offset to priv->tx_headroom */
2073	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2074
2075	/* DMA map the SGT page */
2076	swbp = (struct dpaa_eth_swbp *)buff_start;
2077	swbp->skb = skb;
2078
2079	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2080			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2081	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2082		netdev_err(priv->net_dev, "DMA mapping failed\n");
2083		err = -EINVAL;
2084		goto sgt_map_failed;
2085	}
2086
2087	fd->bpid = FSL_DPAA_BPID_INV;
2088	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2089	qm_fd_addr_set64(fd, addr);
2090
2091	return 0;
2092
2093sgt_map_failed:
2094sg_map_failed:
2095	for (j = 0; j < i; j++)
2096		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2097			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2098sg0_map_failed:
2099csum_failed:
2100	free_pages((unsigned long)buff_start, 0);
2101
2102	return err;
2103}
2104
2105static inline int dpaa_xmit(struct dpaa_priv *priv,
2106			    struct rtnl_link_stats64 *percpu_stats,
2107			    int queue,
2108			    struct qm_fd *fd)
2109{
2110	struct qman_fq *egress_fq;
2111	int err, i;
2112
2113	egress_fq = priv->egress_fqs[queue];
2114	if (fd->bpid == FSL_DPAA_BPID_INV)
2115		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2116
2117	/* Trace this Tx fd */
2118	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2119
2120	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2121		err = qman_enqueue(egress_fq, fd);
2122		if (err != -EBUSY)
2123			break;
2124	}
2125
2126	if (unlikely(err < 0)) {
2127		percpu_stats->tx_fifo_errors++;
2128		return err;
2129	}
2130
2131	percpu_stats->tx_packets++;
2132	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2133
2134	return 0;
2135}
2136
2137#ifdef CONFIG_DPAA_ERRATUM_A050385
2138static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2139{
2140	struct dpaa_priv *priv = netdev_priv(net_dev);
2141	struct sk_buff *new_skb, *skb = *s;
2142	unsigned char *start, i;
2143
2144	/* check linear buffer alignment */
2145	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2146		goto workaround;
2147
2148	/* linear buffers just need to have an aligned start */
2149	if (!skb_is_nonlinear(skb))
2150		return 0;
2151
2152	/* linear data size for nonlinear skbs needs to be aligned */
2153	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2154		goto workaround;
2155
2156	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2157		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2158
2159		/* all fragments need to have aligned start addresses */
2160		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2161			goto workaround;
2162
2163		/* all but last fragment need to have aligned sizes */
2164		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2165		    (i < skb_shinfo(skb)->nr_frags - 1))
2166			goto workaround;
2167	}
2168
2169	return 0;
2170
2171workaround:
2172	/* copy all the skb content into a new linear buffer */
2173	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2174						priv->tx_headroom);
2175	if (!new_skb)
2176		return -ENOMEM;
2177
2178	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2179	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2180
2181	/* Workaround for DPAA_A050385 requires data start to be aligned */
2182	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2183	if (start - new_skb->data)
2184		skb_reserve(new_skb, start - new_skb->data);
2185
2186	skb_put(new_skb, skb->len);
2187	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2188	skb_copy_header(new_skb, skb);
2189	new_skb->dev = skb->dev;
2190
2191	/* Copy relevant timestamp info from the old skb to the new */
2192	if (priv->tx_tstamp) {
2193		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2194		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2195		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2196		if (skb->sk)
2197			skb_set_owner_w(new_skb, skb->sk);
2198	}
2199
2200	/* We move the headroom when we align it so we have to reset the
2201	 * network and transport header offsets relative to the new data
2202	 * pointer. The checksum offload relies on these offsets.
2203	 */
2204	skb_set_network_header(new_skb, skb_network_offset(skb));
2205	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2206
2207	dev_kfree_skb(skb);
2208	*s = new_skb;
2209
2210	return 0;
2211}
2212
2213static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2214				struct xdp_frame **init_xdpf)
2215{
2216	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2217	void *new_buff, *aligned_data;
2218	struct page *p;
2219	u32 data_shift;
2220	int headroom;
2221
2222	/* Check the data alignment and make sure the headroom is large
2223	 * enough to store the xdpf backpointer. Use an aligned headroom
2224	 * value.
2225	 *
2226	 * Due to alignment constraints, we give XDP access to the full 256
2227	 * byte frame headroom. If the XDP program uses all of it, copy the
2228	 * data to a new buffer and make room for storing the backpointer.
2229	 */
2230	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2231	    xdpf->headroom >= priv->tx_headroom) {
2232		xdpf->headroom = priv->tx_headroom;
2233		return 0;
2234	}
2235
2236	/* Try to move the data inside the buffer just enough to align it and
2237	 * store the xdpf backpointer. If the available headroom isn't large
2238	 * enough, resort to allocating a new buffer and copying the data.
2239	 */
2240	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2241	data_shift = xdpf->data - aligned_data;
2242
2243	/* The XDP frame's headroom needs to be large enough to accommodate
2244	 * shifting the data as well as storing the xdpf backpointer.
2245	 */
2246	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2247		memmove(aligned_data, xdpf->data, xdpf->len);
2248		xdpf->data = aligned_data;
2249		xdpf->headroom = priv->tx_headroom;
2250		return 0;
2251	}
2252
2253	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2254	 * in the headroom for storing it along with the driver's private
2255	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2256	 * guarantee the data's alignment in the buffer.
2257	 */
2258	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2259			 DPAA_FD_DATA_ALIGNMENT);
2260
2261	/* Assure the extended headroom and data don't overflow the buffer,
2262	 * while maintaining the mandatory tailroom.
2263	 */
2264	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2265			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2266		return -ENOMEM;
2267
2268	p = dev_alloc_pages(0);
2269	if (unlikely(!p))
2270		return -ENOMEM;
2271
2272	/* Copy the data to the new buffer at a properly aligned offset */
2273	new_buff = page_address(p);
2274	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2275
2276	/* Create an XDP frame around the new buffer in a similar fashion
2277	 * to xdp_convert_buff_to_frame.
2278	 */
2279	new_xdpf = new_buff;
2280	new_xdpf->data = new_buff + headroom;
2281	new_xdpf->len = xdpf->len;
2282	new_xdpf->headroom = priv->tx_headroom;
2283	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2284	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2285
2286	/* Release the initial buffer */
2287	xdp_return_frame_rx_napi(xdpf);
2288
2289	*init_xdpf = new_xdpf;
2290	return 0;
2291}
2292#endif
2293
2294static netdev_tx_t
2295dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2296{
2297	const int queue_mapping = skb_get_queue_mapping(skb);
2298	struct rtnl_link_stats64 *percpu_stats;
2299	struct dpaa_percpu_priv *percpu_priv;
2300	struct netdev_queue *txq;
2301	struct dpaa_priv *priv;
2302	struct qm_fd fd;
2303	bool nonlinear;
2304	int offset = 0;
2305	int err = 0;
2306
2307	priv = netdev_priv(net_dev);
2308	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2309	percpu_stats = &percpu_priv->stats;
2310
2311	qm_fd_clear_fd(&fd);
2312
2313	/* Packet data is always read as 32-bit words, so zero out any part of
2314	 * the skb which might be sent if we have to pad the packet
2315	 */
2316	if (__skb_put_padto(skb, ETH_ZLEN, false))
2317		goto enomem;
2318
2319	nonlinear = skb_is_nonlinear(skb);
2320	if (!nonlinear) {
2321		/* We're going to store the skb backpointer at the beginning
2322		 * of the data buffer, so we need a privately owned skb
2323		 *
2324		 * We've made sure skb is not shared in dev->priv_flags,
2325		 * we need to verify the skb head is not cloned
2326		 */
2327		if (skb_cow_head(skb, priv->tx_headroom))
2328			goto enomem;
2329
2330		WARN_ON(skb_is_nonlinear(skb));
2331	}
2332
2333	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2334	 * make sure we don't feed FMan with more fragments than it supports.
2335	 */
2336	if (unlikely(nonlinear &&
2337		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2338		/* If the egress skb contains more fragments than we support
2339		 * we have no choice but to linearize it ourselves.
2340		 */
2341		if (__skb_linearize(skb))
2342			goto enomem;
2343
2344		nonlinear = skb_is_nonlinear(skb);
2345	}
2346
2347#ifdef CONFIG_DPAA_ERRATUM_A050385
2348	if (unlikely(fman_has_errata_a050385())) {
2349		if (dpaa_a050385_wa_skb(net_dev, &skb))
2350			goto enomem;
2351		nonlinear = skb_is_nonlinear(skb);
2352	}
2353#endif
2354
2355	if (nonlinear) {
2356		/* Just create a S/G fd based on the skb */
2357		err = skb_to_sg_fd(priv, skb, &fd);
2358		percpu_priv->tx_frag_skbuffs++;
2359	} else {
2360		/* Create a contig FD from this skb */
2361		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2362	}
2363	if (unlikely(err < 0))
2364		goto skb_to_fd_failed;
2365
2366	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2367
2368	/* LLTX requires to do our own update of trans_start */
2369	txq_trans_cond_update(txq);
2370
2371	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2372		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2373		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2374	}
2375
2376	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2377		return NETDEV_TX_OK;
2378
2379	dpaa_cleanup_tx_fd(priv, &fd, false);
2380skb_to_fd_failed:
2381enomem:
2382	percpu_stats->tx_errors++;
2383	dev_kfree_skb(skb);
2384	return NETDEV_TX_OK;
2385}
2386
2387static void dpaa_rx_error(struct net_device *net_dev,
2388			  const struct dpaa_priv *priv,
2389			  struct dpaa_percpu_priv *percpu_priv,
2390			  const struct qm_fd *fd,
2391			  u32 fqid)
2392{
2393	if (net_ratelimit())
2394		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2395			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2396
2397	percpu_priv->stats.rx_errors++;
2398
2399	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2400		percpu_priv->rx_errors.dme++;
2401	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2402		percpu_priv->rx_errors.fpe++;
2403	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2404		percpu_priv->rx_errors.fse++;
2405	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2406		percpu_priv->rx_errors.phe++;
2407
2408	dpaa_fd_release(net_dev, fd);
2409}
2410
2411static void dpaa_tx_error(struct net_device *net_dev,
2412			  const struct dpaa_priv *priv,
2413			  struct dpaa_percpu_priv *percpu_priv,
2414			  const struct qm_fd *fd,
2415			  u32 fqid)
2416{
2417	struct sk_buff *skb;
2418
2419	if (net_ratelimit())
2420		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2421			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2422
2423	percpu_priv->stats.tx_errors++;
2424
2425	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2426	dev_kfree_skb(skb);
2427}
2428
2429static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2430{
2431	struct dpaa_napi_portal *np =
2432			container_of(napi, struct dpaa_napi_portal, napi);
2433	int cleaned;
2434
2435	np->xdp_act = 0;
2436
2437	cleaned = qman_p_poll_dqrr(np->p, budget);
2438
2439	if (np->xdp_act & XDP_REDIRECT)
2440		xdp_do_flush();
2441
2442	if (cleaned < budget) {
2443		napi_complete_done(napi, cleaned);
2444		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2445	} else if (np->down) {
2446		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2447	}
2448
2449	return cleaned;
2450}
2451
2452static void dpaa_tx_conf(struct net_device *net_dev,
2453			 const struct dpaa_priv *priv,
2454			 struct dpaa_percpu_priv *percpu_priv,
2455			 const struct qm_fd *fd,
2456			 u32 fqid)
2457{
2458	struct sk_buff	*skb;
2459
2460	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2461		if (net_ratelimit())
2462			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2463				   be32_to_cpu(fd->status) &
2464				   FM_FD_STAT_TX_ERRORS);
2465
2466		percpu_priv->stats.tx_errors++;
2467	}
2468
2469	percpu_priv->tx_confirm++;
2470
2471	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2472
2473	consume_skb(skb);
2474}
2475
2476static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2477					 struct qman_portal *portal, bool sched_napi)
2478{
2479	if (sched_napi) {
2480		/* Disable QMan IRQ and invoke NAPI */
2481		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2482
2483		percpu_priv->np.p = portal;
2484		napi_schedule(&percpu_priv->np.napi);
2485		percpu_priv->in_interrupt++;
2486		return 1;
2487	}
2488	return 0;
2489}
2490
2491static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2492					      struct qman_fq *fq,
2493					      const struct qm_dqrr_entry *dq,
2494					      bool sched_napi)
2495{
2496	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2497	struct dpaa_percpu_priv *percpu_priv;
2498	struct net_device *net_dev;
2499	struct dpaa_bp *dpaa_bp;
2500	struct dpaa_priv *priv;
2501
2502	net_dev = dpaa_fq->net_dev;
2503	priv = netdev_priv(net_dev);
2504	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2505	if (!dpaa_bp)
2506		return qman_cb_dqrr_consume;
2507
2508	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2509
2510	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2511		return qman_cb_dqrr_stop;
2512
2513	dpaa_eth_refill_bpools(priv);
2514	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2515
2516	return qman_cb_dqrr_consume;
2517}
2518
2519static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2520			       struct xdp_frame *xdpf)
2521{
2522	struct dpaa_priv *priv = netdev_priv(net_dev);
2523	struct rtnl_link_stats64 *percpu_stats;
2524	struct dpaa_percpu_priv *percpu_priv;
2525	struct dpaa_eth_swbp *swbp;
2526	struct netdev_queue *txq;
2527	void *buff_start;
2528	struct qm_fd fd;
2529	dma_addr_t addr;
2530	int err;
2531
2532	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2533	percpu_stats = &percpu_priv->stats;
2534
2535#ifdef CONFIG_DPAA_ERRATUM_A050385
2536	if (unlikely(fman_has_errata_a050385())) {
2537		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2538			err = -ENOMEM;
2539			goto out_error;
2540		}
2541	}
2542#endif
2543
2544	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2545		err = -EINVAL;
2546		goto out_error;
2547	}
2548
2549	buff_start = xdpf->data - xdpf->headroom;
2550
2551	/* Leave empty the skb backpointer at the start of the buffer.
2552	 * Save the XDP frame for easy cleanup on confirmation.
2553	 */
2554	swbp = (struct dpaa_eth_swbp *)buff_start;
2555	swbp->skb = NULL;
2556	swbp->xdpf = xdpf;
2557
2558	qm_fd_clear_fd(&fd);
2559	fd.bpid = FSL_DPAA_BPID_INV;
2560	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2561	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2562
2563	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2564			      xdpf->headroom + xdpf->len,
2565			      DMA_TO_DEVICE);
2566	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2567		err = -EINVAL;
2568		goto out_error;
2569	}
2570
2571	qm_fd_addr_set64(&fd, addr);
2572
2573	/* Bump the trans_start */
2574	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2575	txq_trans_cond_update(txq);
2576
2577	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2578	if (err) {
2579		dma_unmap_single(priv->tx_dma_dev, addr,
2580				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2581				 DMA_TO_DEVICE);
2582		goto out_error;
2583	}
2584
2585	return 0;
2586
2587out_error:
2588	percpu_stats->tx_errors++;
2589	return err;
2590}
2591
2592static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2593			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2594{
2595	ssize_t fd_off = qm_fd_get_offset(fd);
2596	struct bpf_prog *xdp_prog;
2597	struct xdp_frame *xdpf;
2598	struct xdp_buff xdp;
2599	u32 xdp_act;
2600	int err;
2601
2602	xdp_prog = READ_ONCE(priv->xdp_prog);
2603	if (!xdp_prog)
2604		return XDP_PASS;
2605
2606	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2607		      &dpaa_fq->xdp_rxq);
2608	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2609			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2610
2611	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2612	 * offer it all to XDP programs to use. If no room is left for the
2613	 * xdpf backpointer on TX, we will need to copy the data.
2614	 * Disable metadata support since data realignments might be required
2615	 * and the information can be lost.
2616	 */
2617#ifdef CONFIG_DPAA_ERRATUM_A050385
2618	if (unlikely(fman_has_errata_a050385())) {
2619		xdp_set_data_meta_invalid(&xdp);
2620		xdp.data_hard_start = vaddr;
2621		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2622	}
2623#endif
2624
2625	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2626
2627	/* Update the length and the offset of the FD */
2628	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2629
2630	switch (xdp_act) {
2631	case XDP_PASS:
2632#ifdef CONFIG_DPAA_ERRATUM_A050385
2633		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2634				xdp.data - xdp.data_meta;
2635#else
2636		*xdp_meta_len = xdp.data - xdp.data_meta;
2637#endif
2638		break;
2639	case XDP_TX:
2640		/* We can access the full headroom when sending the frame
2641		 * back out
2642		 */
2643		xdp.data_hard_start = vaddr;
2644		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2645		xdpf = xdp_convert_buff_to_frame(&xdp);
2646		if (unlikely(!xdpf)) {
2647			free_pages((unsigned long)vaddr, 0);
2648			break;
2649		}
2650
2651		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2652			xdp_return_frame_rx_napi(xdpf);
2653
2654		break;
2655	case XDP_REDIRECT:
2656		/* Allow redirect to use the full headroom */
2657		xdp.data_hard_start = vaddr;
2658		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2659
2660		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2661		if (err) {
2662			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2663			free_pages((unsigned long)vaddr, 0);
2664		}
2665		break;
2666	default:
2667		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2668		fallthrough;
2669	case XDP_ABORTED:
2670		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2671		fallthrough;
2672	case XDP_DROP:
2673		/* Free the buffer */
2674		free_pages((unsigned long)vaddr, 0);
2675		break;
2676	}
2677
2678	return xdp_act;
2679}
2680
2681static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2682						struct qman_fq *fq,
2683						const struct qm_dqrr_entry *dq,
2684						bool sched_napi)
2685{
2686	bool ts_valid = false, hash_valid = false;
2687	struct skb_shared_hwtstamps *shhwtstamps;
2688	unsigned int skb_len, xdp_meta_len = 0;
2689	struct rtnl_link_stats64 *percpu_stats;
2690	struct dpaa_percpu_priv *percpu_priv;
2691	const struct qm_fd *fd = &dq->fd;
2692	dma_addr_t addr = qm_fd_addr(fd);
2693	struct dpaa_napi_portal *np;
2694	enum qm_fd_format fd_format;
2695	struct net_device *net_dev;
2696	u32 fd_status, hash_offset;
2697	struct qm_sg_entry *sgt;
2698	struct dpaa_bp *dpaa_bp;
2699	struct dpaa_fq *dpaa_fq;
2700	struct dpaa_priv *priv;
2701	struct sk_buff *skb;
2702	int *count_ptr;
2703	u32 xdp_act;
2704	void *vaddr;
2705	u32 hash;
2706	u64 ns;
2707
2708	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2709	fd_status = be32_to_cpu(fd->status);
2710	fd_format = qm_fd_get_format(fd);
2711	net_dev = dpaa_fq->net_dev;
2712	priv = netdev_priv(net_dev);
2713	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2714	if (!dpaa_bp)
2715		return qman_cb_dqrr_consume;
2716
2717	/* Trace the Rx fd */
2718	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2719
2720	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2721	percpu_stats = &percpu_priv->stats;
2722	np = &percpu_priv->np;
2723
2724	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2725		return qman_cb_dqrr_stop;
2726
2727	/* Make sure we didn't run out of buffers */
2728	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2729		/* Unable to refill the buffer pool due to insufficient
2730		 * system memory. Just release the frame back into the pool,
2731		 * otherwise we'll soon end up with an empty buffer pool.
2732		 */
2733		dpaa_fd_release(net_dev, &dq->fd);
2734		return qman_cb_dqrr_consume;
2735	}
2736
2737	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2738		if (net_ratelimit())
2739			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2740				   fd_status & FM_FD_STAT_RX_ERRORS);
2741
2742		percpu_stats->rx_errors++;
2743		dpaa_fd_release(net_dev, fd);
2744		return qman_cb_dqrr_consume;
2745	}
2746
2747	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2748		       DMA_FROM_DEVICE);
2749
2750	/* prefetch the first 64 bytes of the frame or the SGT start */
2751	vaddr = phys_to_virt(addr);
2752	prefetch(vaddr + qm_fd_get_offset(fd));
2753
2754	/* The only FD types that we may receive are contig and S/G */
2755	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2756
2757	/* Account for either the contig buffer or the SGT buffer (depending on
2758	 * which case we were in) having been removed from the pool.
2759	 */
2760	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2761	(*count_ptr)--;
2762
2763	/* Extract the timestamp stored in the headroom before running XDP */
2764	if (priv->rx_tstamp) {
2765		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2766			ts_valid = true;
2767		else
2768			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2769	}
2770
2771	/* Extract the hash stored in the headroom before running XDP */
2772	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2773	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2774					      &hash_offset)) {
2775		hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2776		hash_valid = true;
2777	}
2778
2779	if (likely(fd_format == qm_fd_contig)) {
2780		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2781				       dpaa_fq, &xdp_meta_len);
2782		np->xdp_act |= xdp_act;
2783		if (xdp_act != XDP_PASS) {
2784			percpu_stats->rx_packets++;
2785			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2786			return qman_cb_dqrr_consume;
2787		}
2788		skb = contig_fd_to_skb(priv, fd);
2789	} else {
2790		/* XDP doesn't support S/G frames. Return the fragments to the
2791		 * buffer pool and release the SGT.
2792		 */
2793		if (READ_ONCE(priv->xdp_prog)) {
2794			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2795			sgt = vaddr + qm_fd_get_offset(fd);
2796			dpaa_release_sgt_members(sgt);
2797			free_pages((unsigned long)vaddr, 0);
2798			return qman_cb_dqrr_consume;
2799		}
2800		skb = sg_fd_to_skb(priv, fd);
2801	}
2802	if (!skb)
2803		return qman_cb_dqrr_consume;
2804
2805	if (xdp_meta_len)
2806		skb_metadata_set(skb, xdp_meta_len);
2807
2808	/* Set the previously extracted timestamp */
2809	if (ts_valid) {
2810		shhwtstamps = skb_hwtstamps(skb);
2811		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2812		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2813	}
2814
2815	skb->protocol = eth_type_trans(skb, net_dev);
2816
2817	/* Set the previously extracted hash */
2818	if (hash_valid) {
2819		enum pkt_hash_types type;
2820
2821		/* if L4 exists, it was used in the hash generation */
2822		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2823			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2824		skb_set_hash(skb, hash, type);
2825	}
2826
2827	skb_len = skb->len;
2828
2829	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2830		percpu_stats->rx_dropped++;
2831		return qman_cb_dqrr_consume;
2832	}
2833
2834	percpu_stats->rx_packets++;
2835	percpu_stats->rx_bytes += skb_len;
2836
2837	return qman_cb_dqrr_consume;
2838}
2839
2840static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2841						struct qman_fq *fq,
2842						const struct qm_dqrr_entry *dq,
2843						bool sched_napi)
2844{
2845	struct dpaa_percpu_priv *percpu_priv;
2846	struct net_device *net_dev;
2847	struct dpaa_priv *priv;
2848
2849	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850	priv = netdev_priv(net_dev);
2851
2852	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2853
2854	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2855		return qman_cb_dqrr_stop;
2856
2857	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2858
2859	return qman_cb_dqrr_consume;
2860}
2861
2862static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2863					       struct qman_fq *fq,
2864					       const struct qm_dqrr_entry *dq,
2865					       bool sched_napi)
2866{
2867	struct dpaa_percpu_priv *percpu_priv;
2868	struct net_device *net_dev;
2869	struct dpaa_priv *priv;
2870
2871	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2872	priv = netdev_priv(net_dev);
2873
2874	/* Trace the fd */
2875	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2876
2877	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2878
2879	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2880		return qman_cb_dqrr_stop;
2881
2882	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2883
2884	return qman_cb_dqrr_consume;
2885}
2886
2887static void egress_ern(struct qman_portal *portal,
2888		       struct qman_fq *fq,
2889		       const union qm_mr_entry *msg)
2890{
2891	const struct qm_fd *fd = &msg->ern.fd;
2892	struct dpaa_percpu_priv *percpu_priv;
2893	const struct dpaa_priv *priv;
2894	struct net_device *net_dev;
2895	struct sk_buff *skb;
2896
2897	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2898	priv = netdev_priv(net_dev);
2899	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2900
2901	percpu_priv->stats.tx_dropped++;
2902	percpu_priv->stats.tx_fifo_errors++;
2903	count_ern(percpu_priv, msg);
2904
2905	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2906	dev_kfree_skb_any(skb);
2907}
2908
2909static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2910	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2911	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2912	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2913	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2914	.egress_ern = { .cb = { .ern = egress_ern } }
2915};
2916
2917static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2918{
2919	struct dpaa_percpu_priv *percpu_priv;
2920	int i;
2921
2922	for_each_online_cpu(i) {
2923		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2924
2925		percpu_priv->np.down = false;
2926		napi_enable(&percpu_priv->np.napi);
2927	}
2928}
2929
2930static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2931{
2932	struct dpaa_percpu_priv *percpu_priv;
2933	int i;
2934
2935	for_each_online_cpu(i) {
2936		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2937
2938		percpu_priv->np.down = true;
2939		napi_disable(&percpu_priv->np.napi);
2940	}
2941}
2942
2943static int dpaa_open(struct net_device *net_dev)
2944{
2945	struct mac_device *mac_dev;
2946	struct dpaa_priv *priv;
2947	int err, i;
2948
2949	priv = netdev_priv(net_dev);
2950	mac_dev = priv->mac_dev;
2951	dpaa_eth_napi_enable(priv);
2952
2953	err = phylink_of_phy_connect(mac_dev->phylink,
2954				     mac_dev->dev->of_node, 0);
2955	if (err)
2956		goto phy_init_failed;
2957
2958	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2959		err = fman_port_enable(mac_dev->port[i]);
2960		if (err)
2961			goto mac_start_failed;
2962	}
2963
2964	err = priv->mac_dev->enable(mac_dev->fman_mac);
2965	if (err < 0) {
2966		netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2967		goto mac_start_failed;
2968	}
2969	phylink_start(mac_dev->phylink);
2970
2971	netif_tx_start_all_queues(net_dev);
2972
2973	return 0;
2974
2975mac_start_failed:
2976	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2977		fman_port_disable(mac_dev->port[i]);
2978	phylink_disconnect_phy(mac_dev->phylink);
2979
2980phy_init_failed:
2981	dpaa_eth_napi_disable(priv);
2982
2983	return err;
2984}
2985
2986static int dpaa_eth_stop(struct net_device *net_dev)
2987{
2988	struct dpaa_priv *priv;
2989	int err;
2990
2991	err = dpaa_stop(net_dev);
2992
2993	priv = netdev_priv(net_dev);
2994	dpaa_eth_napi_disable(priv);
2995
2996	return err;
2997}
2998
2999static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
3000{
3001	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3002
3003	/* We do not support S/G fragments when XDP is enabled.
3004	 * Limit the MTU in relation to the buffer size.
3005	 */
3006	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3007		dev_warn(priv->net_dev->dev.parent,
3008			 "The maximum MTU for XDP is %d\n",
3009			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3010		return false;
3011	}
3012
3013	return true;
3014}
3015
3016static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3017{
3018	struct dpaa_priv *priv = netdev_priv(net_dev);
3019
3020	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3021		return -EINVAL;
3022
3023	WRITE_ONCE(net_dev->mtu, new_mtu);
3024	return 0;
3025}
3026
3027static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3028{
3029	struct dpaa_priv *priv = netdev_priv(net_dev);
3030	struct bpf_prog *old_prog;
3031	int err;
3032	bool up;
3033
3034	/* S/G fragments are not supported in XDP-mode */
3035	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3036		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3037		return -EINVAL;
3038	}
3039
3040	up = netif_running(net_dev);
3041
3042	if (up)
3043		dpaa_eth_stop(net_dev);
3044
3045	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3046	if (old_prog)
3047		bpf_prog_put(old_prog);
3048
3049	if (up) {
3050		err = dpaa_open(net_dev);
3051		if (err) {
3052			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3053			return err;
3054		}
3055	}
3056
3057	return 0;
3058}
3059
3060static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3061{
3062	switch (xdp->command) {
3063	case XDP_SETUP_PROG:
3064		return dpaa_setup_xdp(net_dev, xdp);
3065	default:
3066		return -EINVAL;
3067	}
3068}
3069
3070static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3071			 struct xdp_frame **frames, u32 flags)
3072{
3073	struct xdp_frame *xdpf;
3074	int i, nxmit = 0;
3075
3076	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3077		return -EINVAL;
3078
3079	if (!netif_running(net_dev))
3080		return -ENETDOWN;
3081
3082	for (i = 0; i < n; i++) {
3083		xdpf = frames[i];
3084		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3085			break;
3086		nxmit++;
3087	}
3088
3089	return nxmit;
3090}
3091
3092static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3093{
3094	struct dpaa_priv *priv = netdev_priv(dev);
3095	struct hwtstamp_config config;
3096
3097	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3098		return -EFAULT;
3099
3100	switch (config.tx_type) {
3101	case HWTSTAMP_TX_OFF:
3102		/* Couldn't disable rx/tx timestamping separately.
3103		 * Do nothing here.
3104		 */
3105		priv->tx_tstamp = false;
3106		break;
3107	case HWTSTAMP_TX_ON:
3108		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3109		priv->tx_tstamp = true;
3110		break;
3111	default:
3112		return -ERANGE;
3113	}
3114
3115	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3116		/* Couldn't disable rx/tx timestamping separately.
3117		 * Do nothing here.
3118		 */
3119		priv->rx_tstamp = false;
3120	} else {
3121		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3122		priv->rx_tstamp = true;
3123		/* TS is set for all frame types, not only those requested */
3124		config.rx_filter = HWTSTAMP_FILTER_ALL;
3125	}
3126
3127	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3128			-EFAULT : 0;
3129}
3130
3131static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3132{
3133	int ret = -EINVAL;
3134	struct dpaa_priv *priv = netdev_priv(net_dev);
3135
3136	if (cmd == SIOCGMIIREG) {
3137		if (net_dev->phydev)
3138			return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3139						 cmd);
3140	}
3141
3142	if (cmd == SIOCSHWTSTAMP)
3143		return dpaa_ts_ioctl(net_dev, rq, cmd);
3144
3145	return ret;
3146}
3147
3148static const struct net_device_ops dpaa_ops = {
3149	.ndo_open = dpaa_open,
3150	.ndo_start_xmit = dpaa_start_xmit,
3151	.ndo_stop = dpaa_eth_stop,
3152	.ndo_tx_timeout = dpaa_tx_timeout,
3153	.ndo_get_stats64 = dpaa_get_stats64,
3154	.ndo_change_carrier = fixed_phy_change_carrier,
3155	.ndo_set_mac_address = dpaa_set_mac_address,
3156	.ndo_validate_addr = eth_validate_addr,
3157	.ndo_set_rx_mode = dpaa_set_rx_mode,
3158	.ndo_eth_ioctl = dpaa_ioctl,
3159	.ndo_setup_tc = dpaa_setup_tc,
3160	.ndo_change_mtu = dpaa_change_mtu,
3161	.ndo_bpf = dpaa_xdp,
3162	.ndo_xdp_xmit = dpaa_xdp_xmit,
3163};
3164
3165static int dpaa_napi_add(struct net_device *net_dev)
3166{
3167	struct dpaa_priv *priv = netdev_priv(net_dev);
3168	struct dpaa_percpu_priv *percpu_priv;
3169	int cpu;
3170
3171	for_each_possible_cpu(cpu) {
3172		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3173
3174		netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3175	}
3176
3177	return 0;
3178}
3179
3180static void dpaa_napi_del(struct net_device *net_dev)
3181{
3182	struct dpaa_priv *priv = netdev_priv(net_dev);
3183	struct dpaa_percpu_priv *percpu_priv;
3184	int cpu;
3185
3186	for_each_possible_cpu(cpu) {
3187		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3188
3189		__netif_napi_del(&percpu_priv->np.napi);
3190	}
3191	synchronize_net();
3192}
3193
3194static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3195				   struct bm_buffer *bmb)
3196{
3197	dma_addr_t addr = bm_buf_addr(bmb);
3198
3199	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3200		       DMA_FROM_DEVICE);
3201
3202	skb_free_frag(phys_to_virt(addr));
3203}
3204
3205/* Alloc the dpaa_bp struct and configure default values */
3206static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3207{
3208	struct dpaa_bp *dpaa_bp;
3209
3210	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3211	if (!dpaa_bp)
3212		return ERR_PTR(-ENOMEM);
3213
3214	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3215	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3216	if (!dpaa_bp->percpu_count)
3217		return ERR_PTR(-ENOMEM);
3218
3219	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3220
3221	dpaa_bp->seed_cb = dpaa_bp_seed;
3222	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3223
3224	return dpaa_bp;
3225}
3226
3227/* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3228 * We won't be sending congestion notifications to FMan; for now, we just use
3229 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3230 * before they reach our ingress queues and eat up memory.
3231 */
3232static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3233{
3234	struct qm_mcc_initcgr initcgr;
3235	u32 cs_th;
3236	int err;
3237
3238	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3239	if (err < 0) {
3240		if (netif_msg_drv(priv))
3241			pr_err("Error %d allocating CGR ID\n", err);
3242		goto out_error;
3243	}
3244
3245	/* Enable CS TD, but disable Congestion State Change Notifications. */
3246	memset(&initcgr, 0, sizeof(initcgr));
3247	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3248	initcgr.cgr.cscn_en = QM_CGR_EN;
3249	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3250	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3251
3252	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3253	initcgr.cgr.cstd_en = QM_CGR_EN;
3254
3255	/* This CGR will be associated with the SWP affined to the current CPU.
3256	 * However, we'll place all our ingress FQs in it.
3257	 */
3258	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3259			      &initcgr);
3260	if (err < 0) {
3261		if (netif_msg_drv(priv))
3262			pr_err("Error %d creating ingress CGR with ID %d\n",
3263			       err, priv->ingress_cgr.cgrid);
3264		qman_release_cgrid(priv->ingress_cgr.cgrid);
3265		goto out_error;
3266	}
3267	if (netif_msg_drv(priv))
3268		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3269			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3270
3271	priv->use_ingress_cgr = true;
3272
3273out_error:
3274	return err;
3275}
3276
3277static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3278			     enum port_type port)
3279{
3280	u16 headroom;
3281
3282	/* The frame headroom must accommodate:
3283	 * - the driver private data area
3284	 * - parse results, hash results, timestamp if selected
3285	 * If either hash results or time stamp are selected, both will
3286	 * be copied to/from the frame headroom, as TS is located between PR and
3287	 * HR in the IC and IC copy size has a granularity of 16bytes
3288	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3289	 *
3290	 * Also make sure the headroom is a multiple of data_align bytes
3291	 */
3292	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3293
3294	if (port == RX) {
3295#ifdef CONFIG_DPAA_ERRATUM_A050385
3296		if (unlikely(fman_has_errata_a050385()))
3297			headroom = XDP_PACKET_HEADROOM;
3298#endif
3299
3300		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3301	} else {
3302		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3303	}
3304}
3305
3306static int dpaa_eth_probe(struct platform_device *pdev)
3307{
3308	struct net_device *net_dev = NULL;
3309	struct dpaa_bp *dpaa_bp = NULL;
3310	struct dpaa_fq *dpaa_fq, *tmp;
3311	struct dpaa_priv *priv = NULL;
3312	struct fm_port_fqs port_fqs;
3313	struct mac_device *mac_dev;
3314	int err = 0, channel;
3315	struct device *dev;
3316
3317	dev = &pdev->dev;
3318
3319	err = bman_is_probed();
3320	if (!err)
3321		return -EPROBE_DEFER;
3322	if (err < 0) {
3323		dev_err(dev, "failing probe due to bman probe error\n");
3324		return -ENODEV;
3325	}
3326	err = qman_is_probed();
3327	if (!err)
3328		return -EPROBE_DEFER;
3329	if (err < 0) {
3330		dev_err(dev, "failing probe due to qman probe error\n");
3331		return -ENODEV;
3332	}
3333	err = bman_portals_probed();
3334	if (!err)
3335		return -EPROBE_DEFER;
3336	if (err < 0) {
3337		dev_err(dev,
3338			"failing probe due to bman portals probe error\n");
3339		return -ENODEV;
3340	}
3341	err = qman_portals_probed();
3342	if (!err)
3343		return -EPROBE_DEFER;
3344	if (err < 0) {
3345		dev_err(dev,
3346			"failing probe due to qman portals probe error\n");
3347		return -ENODEV;
3348	}
3349
3350	/* Allocate this early, so we can store relevant information in
3351	 * the private area
3352	 */
3353	net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3354	if (!net_dev) {
3355		dev_err(dev, "alloc_etherdev_mq() failed\n");
3356		return -ENOMEM;
3357	}
3358
3359	/* Do this here, so we can be verbose early */
3360	SET_NETDEV_DEV(net_dev, dev->parent);
3361	dev_set_drvdata(dev, net_dev);
3362
3363	priv = netdev_priv(net_dev);
3364	priv->net_dev = net_dev;
3365
3366	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3367
3368	priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3369					sizeof(*priv->egress_fqs),
3370					GFP_KERNEL);
3371	if (!priv->egress_fqs) {
3372		err = -ENOMEM;
3373		goto free_netdev;
3374	}
3375
3376	priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3377				      sizeof(*priv->conf_fqs),
3378				      GFP_KERNEL);
3379	if (!priv->conf_fqs) {
3380		err = -ENOMEM;
3381		goto free_netdev;
3382	}
3383
3384	mac_dev = dpaa_mac_dev_get(pdev);
3385	if (IS_ERR(mac_dev)) {
3386		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3387		err = PTR_ERR(mac_dev);
3388		goto free_netdev;
3389	}
3390
3391	/* Devices used for DMA mapping */
3392	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3393	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3394	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3395	if (!err)
3396		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3397						   DMA_BIT_MASK(40));
3398	if (err) {
3399		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3400		goto free_netdev;
3401	}
3402
3403	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3404	 * we choose conservatively and let the user explicitly set a higher
3405	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3406	 * in the same LAN.
3407	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3408	 * start with the maximum allowed.
3409	 */
3410	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3411
3412	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3413		   net_dev->mtu);
3414
3415	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3416	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3417
3418	/* bp init */
3419	dpaa_bp = dpaa_bp_alloc(dev);
3420	if (IS_ERR(dpaa_bp)) {
3421		err = PTR_ERR(dpaa_bp);
3422		goto free_dpaa_bps;
3423	}
3424	/* the raw size of the buffers used for reception */
3425	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3426	/* avoid runtime computations by keeping the usable size here */
3427	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3428	dpaa_bp->priv = priv;
3429
3430	err = dpaa_bp_alloc_pool(dpaa_bp);
3431	if (err < 0)
3432		goto free_dpaa_bps;
3433	priv->dpaa_bp = dpaa_bp;
3434
3435	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3436
3437	memset(&port_fqs, 0, sizeof(port_fqs));
3438
3439	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3440	if (err < 0) {
3441		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3442		goto free_dpaa_bps;
3443	}
3444
3445	priv->mac_dev = mac_dev;
3446
3447	channel = dpaa_get_channel();
3448	if (channel < 0) {
3449		dev_err(dev, "dpaa_get_channel() failed\n");
3450		err = channel;
3451		goto free_dpaa_bps;
3452	}
3453
3454	priv->channel = (u16)channel;
3455
3456	/* Walk the CPUs with affine portals
3457	 * and add this pool channel to each's dequeue mask.
3458	 */
3459	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3460
3461	err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3462	if (err)
3463		goto free_dpaa_bps;
3464
3465	/* Create a congestion group for this netdev, with
3466	 * dynamically-allocated CGR ID.
3467	 * Must be executed after probing the MAC, but before
3468	 * assigning the egress FQs to the CGRs.
3469	 */
3470	err = dpaa_eth_cgr_init(priv);
3471	if (err < 0) {
3472		dev_err(dev, "Error initializing CGR\n");
3473		goto free_dpaa_bps;
3474	}
3475
3476	err = dpaa_ingress_cgr_init(priv);
3477	if (err < 0) {
3478		dev_err(dev, "Error initializing ingress CGR\n");
3479		goto delete_egress_cgr;
3480	}
3481
3482	/* Add the FQs to the interface, and make them active */
3483	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3484		err = dpaa_fq_init(dpaa_fq, false);
3485		if (err < 0)
3486			goto free_dpaa_fqs;
3487	}
3488
3489	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3490	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3491
3492	/* All real interfaces need their ports initialized */
3493	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3494				  &priv->buf_layout[0], dev);
3495	if (err)
3496		goto free_dpaa_fqs;
3497
3498	/* Rx traffic distribution based on keygen hashing defaults to on */
3499	priv->keygen_in_use = true;
3500
3501	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3502	if (!priv->percpu_priv) {
3503		dev_err(dev, "devm_alloc_percpu() failed\n");
3504		err = -ENOMEM;
3505		goto free_dpaa_fqs;
3506	}
3507
3508	priv->num_tc = 1;
3509	netif_set_real_num_tx_queues(net_dev,
3510				     priv->num_tc * dpaa_num_txqs_per_tc());
3511
3512	/* Initialize NAPI */
3513	err = dpaa_napi_add(net_dev);
3514	if (err < 0)
3515		goto delete_dpaa_napi;
3516
3517	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3518	if (err < 0)
3519		goto delete_dpaa_napi;
3520
3521	dpaa_eth_sysfs_init(&net_dev->dev);
3522
3523	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3524		   net_dev->name);
3525
3526	return 0;
3527
3528delete_dpaa_napi:
3529	dpaa_napi_del(net_dev);
3530free_dpaa_fqs:
3531	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3532	qman_delete_cgr_safe(&priv->ingress_cgr);
3533	qman_release_cgrid(priv->ingress_cgr.cgrid);
3534delete_egress_cgr:
3535	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3536	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3537free_dpaa_bps:
3538	dpaa_bps_free(priv);
3539free_netdev:
3540	dev_set_drvdata(dev, NULL);
3541	free_netdev(net_dev);
3542
3543	return err;
3544}
3545
3546static void dpaa_remove(struct platform_device *pdev)
3547{
3548	struct net_device *net_dev;
3549	struct dpaa_priv *priv;
3550	struct device *dev;
3551	int err;
3552
3553	dev = &pdev->dev;
3554	net_dev = dev_get_drvdata(dev);
3555
3556	priv = netdev_priv(net_dev);
3557
3558	dpaa_eth_sysfs_remove(dev);
3559
3560	dev_set_drvdata(dev, NULL);
3561	unregister_netdev(net_dev);
3562	phylink_destroy(priv->mac_dev->phylink);
3563
3564	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3565	if (err)
3566		dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3567			ERR_PTR(err));
3568
3569	qman_delete_cgr_safe(&priv->ingress_cgr);
3570	qman_release_cgrid(priv->ingress_cgr.cgrid);
3571	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3572	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3573
3574	dpaa_napi_del(net_dev);
3575
3576	dpaa_bps_free(priv);
3577
3578	free_netdev(net_dev);
3579}
3580
3581static const struct platform_device_id dpaa_devtype[] = {
3582	{
3583		.name = "dpaa-ethernet",
3584		.driver_data = 0,
3585	}, {
3586	}
3587};
3588MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3589
3590static struct platform_driver dpaa_driver = {
3591	.driver = {
3592		.name = KBUILD_MODNAME,
3593	},
3594	.id_table = dpaa_devtype,
3595	.probe = dpaa_eth_probe,
3596	.remove = dpaa_remove
3597};
3598
3599static int __init dpaa_load(void)
3600{
3601	int err;
3602
3603	pr_debug("FSL DPAA Ethernet driver\n");
3604
3605	/* initialize dpaa_eth mirror values */
3606	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3607	dpaa_max_frm = fman_get_max_frm();
3608
3609	err = platform_driver_register(&dpaa_driver);
3610	if (err < 0)
3611		pr_err("Error, platform_driver_register() = %d\n", err);
3612
3613	return err;
3614}
3615module_init(dpaa_load);
3616
3617static void __exit dpaa_unload(void)
3618{
3619	platform_driver_unregister(&dpaa_driver);
3620
3621	/* Only one channel is used and needs to be released after all
3622	 * interfaces are removed
3623	 */
3624	dpaa_release_channel();
3625}
3626module_exit(dpaa_unload);
3627
3628MODULE_LICENSE("Dual BSD/GPL");
3629MODULE_DESCRIPTION("FSL DPAA Ethernet driver");