Loading...
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47#include <linux/security.h>
48
49#include <rdma/ib_verbs.h>
50#include <rdma/ib_cache.h>
51#include <rdma/ib_addr.h>
52#include <rdma/rw.h>
53#include <rdma/lag.h>
54
55#include "core_priv.h"
56#include <trace/events/rdma_core.h>
57
58static int ib_resolve_eth_dmac(struct ib_device *device,
59 struct rdma_ah_attr *ah_attr);
60
61static const char * const ib_events[] = {
62 [IB_EVENT_CQ_ERR] = "CQ error",
63 [IB_EVENT_QP_FATAL] = "QP fatal error",
64 [IB_EVENT_QP_REQ_ERR] = "QP request error",
65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
66 [IB_EVENT_COMM_EST] = "communication established",
67 [IB_EVENT_SQ_DRAINED] = "send queue drained",
68 [IB_EVENT_PATH_MIG] = "path migration successful",
69 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
70 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
71 [IB_EVENT_PORT_ACTIVE] = "port active",
72 [IB_EVENT_PORT_ERR] = "port error",
73 [IB_EVENT_LID_CHANGE] = "LID change",
74 [IB_EVENT_PKEY_CHANGE] = "P_key change",
75 [IB_EVENT_SM_CHANGE] = "SM change",
76 [IB_EVENT_SRQ_ERR] = "SRQ error",
77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
80 [IB_EVENT_GID_CHANGE] = "GID changed",
81};
82
83const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84{
85 size_t index = event;
86
87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 ib_events[index] : "unrecognized event";
89}
90EXPORT_SYMBOL(ib_event_msg);
91
92static const char * const wc_statuses[] = {
93 [IB_WC_SUCCESS] = "success",
94 [IB_WC_LOC_LEN_ERR] = "local length error",
95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
97 [IB_WC_LOC_PROT_ERR] = "local protection error",
98 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
99 [IB_WC_MW_BIND_ERR] = "memory bind operation error",
100 [IB_WC_BAD_RESP_ERR] = "bad response error",
101 [IB_WC_LOC_ACCESS_ERR] = "local access error",
102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error",
103 [IB_WC_REM_ACCESS_ERR] = "remote access error",
104 [IB_WC_REM_OP_ERR] = "remote operation error",
105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
109 [IB_WC_REM_ABORT_ERR] = "operation aborted",
110 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
112 [IB_WC_FATAL_ERR] = "fatal error",
113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
114 [IB_WC_GENERAL_ERR] = "general error",
115};
116
117const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118{
119 size_t index = status;
120
121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 wc_statuses[index] : "unrecognized status";
123}
124EXPORT_SYMBOL(ib_wc_status_msg);
125
126__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127{
128 switch (rate) {
129 case IB_RATE_2_5_GBPS: return 1;
130 case IB_RATE_5_GBPS: return 2;
131 case IB_RATE_10_GBPS: return 4;
132 case IB_RATE_20_GBPS: return 8;
133 case IB_RATE_30_GBPS: return 12;
134 case IB_RATE_40_GBPS: return 16;
135 case IB_RATE_60_GBPS: return 24;
136 case IB_RATE_80_GBPS: return 32;
137 case IB_RATE_120_GBPS: return 48;
138 case IB_RATE_14_GBPS: return 6;
139 case IB_RATE_56_GBPS: return 22;
140 case IB_RATE_112_GBPS: return 45;
141 case IB_RATE_168_GBPS: return 67;
142 case IB_RATE_25_GBPS: return 10;
143 case IB_RATE_100_GBPS: return 40;
144 case IB_RATE_200_GBPS: return 80;
145 case IB_RATE_300_GBPS: return 120;
146 case IB_RATE_28_GBPS: return 11;
147 case IB_RATE_50_GBPS: return 20;
148 case IB_RATE_400_GBPS: return 160;
149 case IB_RATE_600_GBPS: return 240;
150 case IB_RATE_800_GBPS: return 320;
151 default: return -1;
152 }
153}
154EXPORT_SYMBOL(ib_rate_to_mult);
155
156__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
157{
158 switch (mult) {
159 case 1: return IB_RATE_2_5_GBPS;
160 case 2: return IB_RATE_5_GBPS;
161 case 4: return IB_RATE_10_GBPS;
162 case 8: return IB_RATE_20_GBPS;
163 case 12: return IB_RATE_30_GBPS;
164 case 16: return IB_RATE_40_GBPS;
165 case 24: return IB_RATE_60_GBPS;
166 case 32: return IB_RATE_80_GBPS;
167 case 48: return IB_RATE_120_GBPS;
168 case 6: return IB_RATE_14_GBPS;
169 case 22: return IB_RATE_56_GBPS;
170 case 45: return IB_RATE_112_GBPS;
171 case 67: return IB_RATE_168_GBPS;
172 case 10: return IB_RATE_25_GBPS;
173 case 40: return IB_RATE_100_GBPS;
174 case 80: return IB_RATE_200_GBPS;
175 case 120: return IB_RATE_300_GBPS;
176 case 11: return IB_RATE_28_GBPS;
177 case 20: return IB_RATE_50_GBPS;
178 case 160: return IB_RATE_400_GBPS;
179 case 240: return IB_RATE_600_GBPS;
180 case 320: return IB_RATE_800_GBPS;
181 default: return IB_RATE_PORT_CURRENT;
182 }
183}
184EXPORT_SYMBOL(mult_to_ib_rate);
185
186__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
187{
188 switch (rate) {
189 case IB_RATE_2_5_GBPS: return 2500;
190 case IB_RATE_5_GBPS: return 5000;
191 case IB_RATE_10_GBPS: return 10000;
192 case IB_RATE_20_GBPS: return 20000;
193 case IB_RATE_30_GBPS: return 30000;
194 case IB_RATE_40_GBPS: return 40000;
195 case IB_RATE_60_GBPS: return 60000;
196 case IB_RATE_80_GBPS: return 80000;
197 case IB_RATE_120_GBPS: return 120000;
198 case IB_RATE_14_GBPS: return 14062;
199 case IB_RATE_56_GBPS: return 56250;
200 case IB_RATE_112_GBPS: return 112500;
201 case IB_RATE_168_GBPS: return 168750;
202 case IB_RATE_25_GBPS: return 25781;
203 case IB_RATE_100_GBPS: return 103125;
204 case IB_RATE_200_GBPS: return 206250;
205 case IB_RATE_300_GBPS: return 309375;
206 case IB_RATE_28_GBPS: return 28125;
207 case IB_RATE_50_GBPS: return 53125;
208 case IB_RATE_400_GBPS: return 425000;
209 case IB_RATE_600_GBPS: return 637500;
210 case IB_RATE_800_GBPS: return 850000;
211 default: return -1;
212 }
213}
214EXPORT_SYMBOL(ib_rate_to_mbps);
215
216__attribute_const__ enum rdma_transport_type
217rdma_node_get_transport(unsigned int node_type)
218{
219
220 if (node_type == RDMA_NODE_USNIC)
221 return RDMA_TRANSPORT_USNIC;
222 if (node_type == RDMA_NODE_USNIC_UDP)
223 return RDMA_TRANSPORT_USNIC_UDP;
224 if (node_type == RDMA_NODE_RNIC)
225 return RDMA_TRANSPORT_IWARP;
226 if (node_type == RDMA_NODE_UNSPECIFIED)
227 return RDMA_TRANSPORT_UNSPECIFIED;
228
229 return RDMA_TRANSPORT_IB;
230}
231EXPORT_SYMBOL(rdma_node_get_transport);
232
233enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
234 u32 port_num)
235{
236 enum rdma_transport_type lt;
237 if (device->ops.get_link_layer)
238 return device->ops.get_link_layer(device, port_num);
239
240 lt = rdma_node_get_transport(device->node_type);
241 if (lt == RDMA_TRANSPORT_IB)
242 return IB_LINK_LAYER_INFINIBAND;
243
244 return IB_LINK_LAYER_ETHERNET;
245}
246EXPORT_SYMBOL(rdma_port_get_link_layer);
247
248/* Protection domains */
249
250/**
251 * __ib_alloc_pd - Allocates an unused protection domain.
252 * @device: The device on which to allocate the protection domain.
253 * @flags: protection domain flags
254 * @caller: caller's build-time module name
255 *
256 * A protection domain object provides an association between QPs, shared
257 * receive queues, address handles, memory regions, and memory windows.
258 *
259 * Every PD has a local_dma_lkey which can be used as the lkey value for local
260 * memory operations.
261 */
262struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
263 const char *caller)
264{
265 struct ib_pd *pd;
266 int mr_access_flags = 0;
267 int ret;
268
269 pd = rdma_zalloc_drv_obj(device, ib_pd);
270 if (!pd)
271 return ERR_PTR(-ENOMEM);
272
273 pd->device = device;
274 pd->flags = flags;
275
276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 rdma_restrack_set_name(&pd->res, caller);
278
279 ret = device->ops.alloc_pd(pd, NULL);
280 if (ret) {
281 rdma_restrack_put(&pd->res);
282 kfree(pd);
283 return ERR_PTR(ret);
284 }
285 rdma_restrack_add(&pd->res);
286
287 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
288 pd->local_dma_lkey = device->local_dma_lkey;
289 else
290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291
292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 pr_warn("%s: enabling unsafe global rkey\n", caller);
294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 }
296
297 if (mr_access_flags) {
298 struct ib_mr *mr;
299
300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 if (IS_ERR(mr)) {
302 ib_dealloc_pd(pd);
303 return ERR_CAST(mr);
304 }
305
306 mr->device = pd->device;
307 mr->pd = pd;
308 mr->type = IB_MR_TYPE_DMA;
309 mr->uobject = NULL;
310 mr->need_inval = false;
311
312 pd->__internal_mr = mr;
313
314 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
315 pd->local_dma_lkey = pd->__internal_mr->lkey;
316
317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 }
320
321 return pd;
322}
323EXPORT_SYMBOL(__ib_alloc_pd);
324
325/**
326 * ib_dealloc_pd_user - Deallocates a protection domain.
327 * @pd: The protection domain to deallocate.
328 * @udata: Valid user data or NULL for kernel object
329 *
330 * It is an error to call this function while any resources in the pd still
331 * exist. The caller is responsible to synchronously destroy them and
332 * guarantee no new allocations will happen.
333 */
334int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335{
336 int ret;
337
338 if (pd->__internal_mr) {
339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 WARN_ON(ret);
341 pd->__internal_mr = NULL;
342 }
343
344 ret = pd->device->ops.dealloc_pd(pd, udata);
345 if (ret)
346 return ret;
347
348 rdma_restrack_del(&pd->res);
349 kfree(pd);
350 return ret;
351}
352EXPORT_SYMBOL(ib_dealloc_pd_user);
353
354/* Address handles */
355
356/**
357 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
358 * @dest: Pointer to destination ah_attr. Contents of the destination
359 * pointer is assumed to be invalid and attribute are overwritten.
360 * @src: Pointer to source ah_attr.
361 */
362void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
363 const struct rdma_ah_attr *src)
364{
365 *dest = *src;
366 if (dest->grh.sgid_attr)
367 rdma_hold_gid_attr(dest->grh.sgid_attr);
368}
369EXPORT_SYMBOL(rdma_copy_ah_attr);
370
371/**
372 * rdma_replace_ah_attr - Replace valid ah_attr with new one.
373 * @old: Pointer to existing ah_attr which needs to be replaced.
374 * old is assumed to be valid or zero'd
375 * @new: Pointer to the new ah_attr.
376 *
377 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
378 * old the ah_attr is valid; after that it copies the new attribute and holds
379 * the reference to the replaced ah_attr.
380 */
381void rdma_replace_ah_attr(struct rdma_ah_attr *old,
382 const struct rdma_ah_attr *new)
383{
384 rdma_destroy_ah_attr(old);
385 *old = *new;
386 if (old->grh.sgid_attr)
387 rdma_hold_gid_attr(old->grh.sgid_attr);
388}
389EXPORT_SYMBOL(rdma_replace_ah_attr);
390
391/**
392 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
393 * @dest: Pointer to destination ah_attr to copy to.
394 * dest is assumed to be valid or zero'd
395 * @src: Pointer to the new ah_attr.
396 *
397 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
398 * if it is valid. This also transfers ownership of internal references from
399 * src to dest, making src invalid in the process. No new reference of the src
400 * ah_attr is taken.
401 */
402void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
403{
404 rdma_destroy_ah_attr(dest);
405 *dest = *src;
406 src->grh.sgid_attr = NULL;
407}
408EXPORT_SYMBOL(rdma_move_ah_attr);
409
410/*
411 * Validate that the rdma_ah_attr is valid for the device before passing it
412 * off to the driver.
413 */
414static int rdma_check_ah_attr(struct ib_device *device,
415 struct rdma_ah_attr *ah_attr)
416{
417 if (!rdma_is_port_valid(device, ah_attr->port_num))
418 return -EINVAL;
419
420 if ((rdma_is_grh_required(device, ah_attr->port_num) ||
421 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
422 !(ah_attr->ah_flags & IB_AH_GRH))
423 return -EINVAL;
424
425 if (ah_attr->grh.sgid_attr) {
426 /*
427 * Make sure the passed sgid_attr is consistent with the
428 * parameters
429 */
430 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
431 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
432 return -EINVAL;
433 }
434 return 0;
435}
436
437/*
438 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
439 * On success the caller is responsible to call rdma_unfill_sgid_attr().
440 */
441static int rdma_fill_sgid_attr(struct ib_device *device,
442 struct rdma_ah_attr *ah_attr,
443 const struct ib_gid_attr **old_sgid_attr)
444{
445 const struct ib_gid_attr *sgid_attr;
446 struct ib_global_route *grh;
447 int ret;
448
449 *old_sgid_attr = ah_attr->grh.sgid_attr;
450
451 ret = rdma_check_ah_attr(device, ah_attr);
452 if (ret)
453 return ret;
454
455 if (!(ah_attr->ah_flags & IB_AH_GRH))
456 return 0;
457
458 grh = rdma_ah_retrieve_grh(ah_attr);
459 if (grh->sgid_attr)
460 return 0;
461
462 sgid_attr =
463 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
464 if (IS_ERR(sgid_attr))
465 return PTR_ERR(sgid_attr);
466
467 /* Move ownerhip of the kref into the ah_attr */
468 grh->sgid_attr = sgid_attr;
469 return 0;
470}
471
472static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
473 const struct ib_gid_attr *old_sgid_attr)
474{
475 /*
476 * Fill didn't change anything, the caller retains ownership of
477 * whatever it passed
478 */
479 if (ah_attr->grh.sgid_attr == old_sgid_attr)
480 return;
481
482 /*
483 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
484 * doesn't see any change in the rdma_ah_attr. If we get here
485 * old_sgid_attr is NULL.
486 */
487 rdma_destroy_ah_attr(ah_attr);
488}
489
490static const struct ib_gid_attr *
491rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
492 const struct ib_gid_attr *old_attr)
493{
494 if (old_attr)
495 rdma_put_gid_attr(old_attr);
496 if (ah_attr->ah_flags & IB_AH_GRH) {
497 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
498 return ah_attr->grh.sgid_attr;
499 }
500 return NULL;
501}
502
503static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
504 struct rdma_ah_attr *ah_attr,
505 u32 flags,
506 struct ib_udata *udata,
507 struct net_device *xmit_slave)
508{
509 struct rdma_ah_init_attr init_attr = {};
510 struct ib_device *device = pd->device;
511 struct ib_ah *ah;
512 int ret;
513
514 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
515
516 if (!udata && !device->ops.create_ah)
517 return ERR_PTR(-EOPNOTSUPP);
518
519 ah = rdma_zalloc_drv_obj_gfp(
520 device, ib_ah,
521 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
522 if (!ah)
523 return ERR_PTR(-ENOMEM);
524
525 ah->device = device;
526 ah->pd = pd;
527 ah->type = ah_attr->type;
528 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
529 init_attr.ah_attr = ah_attr;
530 init_attr.flags = flags;
531 init_attr.xmit_slave = xmit_slave;
532
533 if (udata)
534 ret = device->ops.create_user_ah(ah, &init_attr, udata);
535 else
536 ret = device->ops.create_ah(ah, &init_attr, NULL);
537 if (ret) {
538 if (ah->sgid_attr)
539 rdma_put_gid_attr(ah->sgid_attr);
540 kfree(ah);
541 return ERR_PTR(ret);
542 }
543
544 atomic_inc(&pd->usecnt);
545 return ah;
546}
547
548/**
549 * rdma_create_ah - Creates an address handle for the
550 * given address vector.
551 * @pd: The protection domain associated with the address handle.
552 * @ah_attr: The attributes of the address vector.
553 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
554 *
555 * It returns 0 on success and returns appropriate error code on error.
556 * The address handle is used to reference a local or global destination
557 * in all UD QP post sends.
558 */
559struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
560 u32 flags)
561{
562 const struct ib_gid_attr *old_sgid_attr;
563 struct net_device *slave;
564 struct ib_ah *ah;
565 int ret;
566
567 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
568 if (ret)
569 return ERR_PTR(ret);
570 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
571 (flags & RDMA_CREATE_AH_SLEEPABLE) ?
572 GFP_KERNEL : GFP_ATOMIC);
573 if (IS_ERR(slave)) {
574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
575 return (void *)slave;
576 }
577 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
578 rdma_lag_put_ah_roce_slave(slave);
579 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
580 return ah;
581}
582EXPORT_SYMBOL(rdma_create_ah);
583
584/**
585 * rdma_create_user_ah - Creates an address handle for the
586 * given address vector.
587 * It resolves destination mac address for ah attribute of RoCE type.
588 * @pd: The protection domain associated with the address handle.
589 * @ah_attr: The attributes of the address vector.
590 * @udata: pointer to user's input output buffer information need by
591 * provider driver.
592 *
593 * It returns 0 on success and returns appropriate error code on error.
594 * The address handle is used to reference a local or global destination
595 * in all UD QP post sends.
596 */
597struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
598 struct rdma_ah_attr *ah_attr,
599 struct ib_udata *udata)
600{
601 const struct ib_gid_attr *old_sgid_attr;
602 struct ib_ah *ah;
603 int err;
604
605 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
606 if (err)
607 return ERR_PTR(err);
608
609 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
610 err = ib_resolve_eth_dmac(pd->device, ah_attr);
611 if (err) {
612 ah = ERR_PTR(err);
613 goto out;
614 }
615 }
616
617 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
618 udata, NULL);
619
620out:
621 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
622 return ah;
623}
624EXPORT_SYMBOL(rdma_create_user_ah);
625
626int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
627{
628 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
629 struct iphdr ip4h_checked;
630 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
631
632 /* If it's IPv6, the version must be 6, otherwise, the first
633 * 20 bytes (before the IPv4 header) are garbled.
634 */
635 if (ip6h->version != 6)
636 return (ip4h->version == 4) ? 4 : 0;
637 /* version may be 6 or 4 because the first 20 bytes could be garbled */
638
639 /* RoCE v2 requires no options, thus header length
640 * must be 5 words
641 */
642 if (ip4h->ihl != 5)
643 return 6;
644
645 /* Verify checksum.
646 * We can't write on scattered buffers so we need to copy to
647 * temp buffer.
648 */
649 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
650 ip4h_checked.check = 0;
651 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
652 /* if IPv4 header checksum is OK, believe it */
653 if (ip4h->check == ip4h_checked.check)
654 return 4;
655 return 6;
656}
657EXPORT_SYMBOL(ib_get_rdma_header_version);
658
659static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
660 u32 port_num,
661 const struct ib_grh *grh)
662{
663 int grh_version;
664
665 if (rdma_protocol_ib(device, port_num))
666 return RDMA_NETWORK_IB;
667
668 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
669
670 if (grh_version == 4)
671 return RDMA_NETWORK_IPV4;
672
673 if (grh->next_hdr == IPPROTO_UDP)
674 return RDMA_NETWORK_IPV6;
675
676 return RDMA_NETWORK_ROCE_V1;
677}
678
679struct find_gid_index_context {
680 u16 vlan_id;
681 enum ib_gid_type gid_type;
682};
683
684static bool find_gid_index(const union ib_gid *gid,
685 const struct ib_gid_attr *gid_attr,
686 void *context)
687{
688 struct find_gid_index_context *ctx = context;
689 u16 vlan_id = 0xffff;
690 int ret;
691
692 if (ctx->gid_type != gid_attr->gid_type)
693 return false;
694
695 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
696 if (ret)
697 return false;
698
699 return ctx->vlan_id == vlan_id;
700}
701
702static const struct ib_gid_attr *
703get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
704 u16 vlan_id, const union ib_gid *sgid,
705 enum ib_gid_type gid_type)
706{
707 struct find_gid_index_context context = {.vlan_id = vlan_id,
708 .gid_type = gid_type};
709
710 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
711 &context);
712}
713
714int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
715 enum rdma_network_type net_type,
716 union ib_gid *sgid, union ib_gid *dgid)
717{
718 struct sockaddr_in src_in;
719 struct sockaddr_in dst_in;
720 __be32 src_saddr, dst_saddr;
721
722 if (!sgid || !dgid)
723 return -EINVAL;
724
725 if (net_type == RDMA_NETWORK_IPV4) {
726 memcpy(&src_in.sin_addr.s_addr,
727 &hdr->roce4grh.saddr, 4);
728 memcpy(&dst_in.sin_addr.s_addr,
729 &hdr->roce4grh.daddr, 4);
730 src_saddr = src_in.sin_addr.s_addr;
731 dst_saddr = dst_in.sin_addr.s_addr;
732 ipv6_addr_set_v4mapped(src_saddr,
733 (struct in6_addr *)sgid);
734 ipv6_addr_set_v4mapped(dst_saddr,
735 (struct in6_addr *)dgid);
736 return 0;
737 } else if (net_type == RDMA_NETWORK_IPV6 ||
738 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
739 *dgid = hdr->ibgrh.dgid;
740 *sgid = hdr->ibgrh.sgid;
741 return 0;
742 } else {
743 return -EINVAL;
744 }
745}
746EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
747
748/* Resolve destination mac address and hop limit for unicast destination
749 * GID entry, considering the source GID entry as well.
750 * ah_attribute must have valid port_num, sgid_index.
751 */
752static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
753 struct rdma_ah_attr *ah_attr)
754{
755 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
756 const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
757 int hop_limit = 0xff;
758 int ret = 0;
759
760 /* If destination is link local and source GID is RoCEv1,
761 * IP stack is not used.
762 */
763 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
764 sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
765 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
766 ah_attr->roce.dmac);
767 return ret;
768 }
769
770 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
771 ah_attr->roce.dmac,
772 sgid_attr, &hop_limit);
773
774 grh->hop_limit = hop_limit;
775 return ret;
776}
777
778/*
779 * This function initializes address handle attributes from the incoming packet.
780 * Incoming packet has dgid of the receiver node on which this code is
781 * getting executed and, sgid contains the GID of the sender.
782 *
783 * When resolving mac address of destination, the arrived dgid is used
784 * as sgid and, sgid is used as dgid because sgid contains destinations
785 * GID whom to respond to.
786 *
787 * On success the caller is responsible to call rdma_destroy_ah_attr on the
788 * attr.
789 */
790int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
791 const struct ib_wc *wc, const struct ib_grh *grh,
792 struct rdma_ah_attr *ah_attr)
793{
794 u32 flow_class;
795 int ret;
796 enum rdma_network_type net_type = RDMA_NETWORK_IB;
797 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
798 const struct ib_gid_attr *sgid_attr;
799 int hoplimit = 0xff;
800 union ib_gid dgid;
801 union ib_gid sgid;
802
803 might_sleep();
804
805 memset(ah_attr, 0, sizeof *ah_attr);
806 ah_attr->type = rdma_ah_find_type(device, port_num);
807 if (rdma_cap_eth_ah(device, port_num)) {
808 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
809 net_type = wc->network_hdr_type;
810 else
811 net_type = ib_get_net_type_by_grh(device, port_num, grh);
812 gid_type = ib_network_to_gid_type(net_type);
813 }
814 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
815 &sgid, &dgid);
816 if (ret)
817 return ret;
818
819 rdma_ah_set_sl(ah_attr, wc->sl);
820 rdma_ah_set_port_num(ah_attr, port_num);
821
822 if (rdma_protocol_roce(device, port_num)) {
823 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
824 wc->vlan_id : 0xffff;
825
826 if (!(wc->wc_flags & IB_WC_GRH))
827 return -EPROTOTYPE;
828
829 sgid_attr = get_sgid_attr_from_eth(device, port_num,
830 vlan_id, &dgid,
831 gid_type);
832 if (IS_ERR(sgid_attr))
833 return PTR_ERR(sgid_attr);
834
835 flow_class = be32_to_cpu(grh->version_tclass_flow);
836 rdma_move_grh_sgid_attr(ah_attr,
837 &sgid,
838 flow_class & 0xFFFFF,
839 hoplimit,
840 (flow_class >> 20) & 0xFF,
841 sgid_attr);
842
843 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
844 if (ret)
845 rdma_destroy_ah_attr(ah_attr);
846
847 return ret;
848 } else {
849 rdma_ah_set_dlid(ah_attr, wc->slid);
850 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
851
852 if ((wc->wc_flags & IB_WC_GRH) == 0)
853 return 0;
854
855 if (dgid.global.interface_id !=
856 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
857 sgid_attr = rdma_find_gid_by_port(
858 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
859 } else
860 sgid_attr = rdma_get_gid_attr(device, port_num, 0);
861
862 if (IS_ERR(sgid_attr))
863 return PTR_ERR(sgid_attr);
864 flow_class = be32_to_cpu(grh->version_tclass_flow);
865 rdma_move_grh_sgid_attr(ah_attr,
866 &sgid,
867 flow_class & 0xFFFFF,
868 hoplimit,
869 (flow_class >> 20) & 0xFF,
870 sgid_attr);
871
872 return 0;
873 }
874}
875EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
876
877/**
878 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
879 * of the reference
880 *
881 * @attr: Pointer to AH attribute structure
882 * @dgid: Destination GID
883 * @flow_label: Flow label
884 * @hop_limit: Hop limit
885 * @traffic_class: traffic class
886 * @sgid_attr: Pointer to SGID attribute
887 *
888 * This takes ownership of the sgid_attr reference. The caller must ensure
889 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
890 * calling this function.
891 */
892void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
893 u32 flow_label, u8 hop_limit, u8 traffic_class,
894 const struct ib_gid_attr *sgid_attr)
895{
896 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
897 traffic_class);
898 attr->grh.sgid_attr = sgid_attr;
899}
900EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
901
902/**
903 * rdma_destroy_ah_attr - Release reference to SGID attribute of
904 * ah attribute.
905 * @ah_attr: Pointer to ah attribute
906 *
907 * Release reference to the SGID attribute of the ah attribute if it is
908 * non NULL. It is safe to call this multiple times, and safe to call it on
909 * a zero initialized ah_attr.
910 */
911void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
912{
913 if (ah_attr->grh.sgid_attr) {
914 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
915 ah_attr->grh.sgid_attr = NULL;
916 }
917}
918EXPORT_SYMBOL(rdma_destroy_ah_attr);
919
920struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
921 const struct ib_grh *grh, u32 port_num)
922{
923 struct rdma_ah_attr ah_attr;
924 struct ib_ah *ah;
925 int ret;
926
927 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
928 if (ret)
929 return ERR_PTR(ret);
930
931 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
932
933 rdma_destroy_ah_attr(&ah_attr);
934 return ah;
935}
936EXPORT_SYMBOL(ib_create_ah_from_wc);
937
938int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
939{
940 const struct ib_gid_attr *old_sgid_attr;
941 int ret;
942
943 if (ah->type != ah_attr->type)
944 return -EINVAL;
945
946 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
947 if (ret)
948 return ret;
949
950 ret = ah->device->ops.modify_ah ?
951 ah->device->ops.modify_ah(ah, ah_attr) :
952 -EOPNOTSUPP;
953
954 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
955 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
956 return ret;
957}
958EXPORT_SYMBOL(rdma_modify_ah);
959
960int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
961{
962 ah_attr->grh.sgid_attr = NULL;
963
964 return ah->device->ops.query_ah ?
965 ah->device->ops.query_ah(ah, ah_attr) :
966 -EOPNOTSUPP;
967}
968EXPORT_SYMBOL(rdma_query_ah);
969
970int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
971{
972 const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
973 struct ib_pd *pd;
974 int ret;
975
976 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
977
978 pd = ah->pd;
979
980 ret = ah->device->ops.destroy_ah(ah, flags);
981 if (ret)
982 return ret;
983
984 atomic_dec(&pd->usecnt);
985 if (sgid_attr)
986 rdma_put_gid_attr(sgid_attr);
987
988 kfree(ah);
989 return ret;
990}
991EXPORT_SYMBOL(rdma_destroy_ah_user);
992
993/* Shared receive queues */
994
995/**
996 * ib_create_srq_user - Creates a SRQ associated with the specified protection
997 * domain.
998 * @pd: The protection domain associated with the SRQ.
999 * @srq_init_attr: A list of initial attributes required to create the
1000 * SRQ. If SRQ creation succeeds, then the attributes are updated to
1001 * the actual capabilities of the created SRQ.
1002 * @uobject: uobject pointer if this is not a kernel SRQ
1003 * @udata: udata pointer if this is not a kernel SRQ
1004 *
1005 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1006 * requested size of the SRQ, and set to the actual values allocated
1007 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
1008 * will always be at least as large as the requested values.
1009 */
1010struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1011 struct ib_srq_init_attr *srq_init_attr,
1012 struct ib_usrq_object *uobject,
1013 struct ib_udata *udata)
1014{
1015 struct ib_srq *srq;
1016 int ret;
1017
1018 srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1019 if (!srq)
1020 return ERR_PTR(-ENOMEM);
1021
1022 srq->device = pd->device;
1023 srq->pd = pd;
1024 srq->event_handler = srq_init_attr->event_handler;
1025 srq->srq_context = srq_init_attr->srq_context;
1026 srq->srq_type = srq_init_attr->srq_type;
1027 srq->uobject = uobject;
1028
1029 if (ib_srq_has_cq(srq->srq_type)) {
1030 srq->ext.cq = srq_init_attr->ext.cq;
1031 atomic_inc(&srq->ext.cq->usecnt);
1032 }
1033 if (srq->srq_type == IB_SRQT_XRC) {
1034 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1035 if (srq->ext.xrc.xrcd)
1036 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1037 }
1038 atomic_inc(&pd->usecnt);
1039
1040 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1041 rdma_restrack_parent_name(&srq->res, &pd->res);
1042
1043 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1044 if (ret) {
1045 rdma_restrack_put(&srq->res);
1046 atomic_dec(&pd->usecnt);
1047 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1048 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1049 if (ib_srq_has_cq(srq->srq_type))
1050 atomic_dec(&srq->ext.cq->usecnt);
1051 kfree(srq);
1052 return ERR_PTR(ret);
1053 }
1054
1055 rdma_restrack_add(&srq->res);
1056
1057 return srq;
1058}
1059EXPORT_SYMBOL(ib_create_srq_user);
1060
1061int ib_modify_srq(struct ib_srq *srq,
1062 struct ib_srq_attr *srq_attr,
1063 enum ib_srq_attr_mask srq_attr_mask)
1064{
1065 return srq->device->ops.modify_srq ?
1066 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1067 NULL) : -EOPNOTSUPP;
1068}
1069EXPORT_SYMBOL(ib_modify_srq);
1070
1071int ib_query_srq(struct ib_srq *srq,
1072 struct ib_srq_attr *srq_attr)
1073{
1074 return srq->device->ops.query_srq ?
1075 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1076}
1077EXPORT_SYMBOL(ib_query_srq);
1078
1079int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1080{
1081 int ret;
1082
1083 if (atomic_read(&srq->usecnt))
1084 return -EBUSY;
1085
1086 ret = srq->device->ops.destroy_srq(srq, udata);
1087 if (ret)
1088 return ret;
1089
1090 atomic_dec(&srq->pd->usecnt);
1091 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1092 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1093 if (ib_srq_has_cq(srq->srq_type))
1094 atomic_dec(&srq->ext.cq->usecnt);
1095 rdma_restrack_del(&srq->res);
1096 kfree(srq);
1097
1098 return ret;
1099}
1100EXPORT_SYMBOL(ib_destroy_srq_user);
1101
1102/* Queue pairs */
1103
1104static void __ib_qp_event_handler(struct ib_event *event, void *context)
1105{
1106 struct ib_qp *qp = event->element.qp;
1107
1108 if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1109 complete(&qp->srq_completion);
1110 if (qp->registered_event_handler)
1111 qp->registered_event_handler(event, qp->qp_context);
1112}
1113
1114static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1115{
1116 struct ib_qp *qp = context;
1117 unsigned long flags;
1118
1119 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1120 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1121 if (event->element.qp->event_handler)
1122 event->element.qp->event_handler(event, event->element.qp->qp_context);
1123 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1124}
1125
1126static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1127 void (*event_handler)(struct ib_event *, void *),
1128 void *qp_context)
1129{
1130 struct ib_qp *qp;
1131 unsigned long flags;
1132 int err;
1133
1134 qp = kzalloc(sizeof *qp, GFP_KERNEL);
1135 if (!qp)
1136 return ERR_PTR(-ENOMEM);
1137
1138 qp->real_qp = real_qp;
1139 err = ib_open_shared_qp_security(qp, real_qp->device);
1140 if (err) {
1141 kfree(qp);
1142 return ERR_PTR(err);
1143 }
1144
1145 qp->real_qp = real_qp;
1146 atomic_inc(&real_qp->usecnt);
1147 qp->device = real_qp->device;
1148 qp->event_handler = event_handler;
1149 qp->qp_context = qp_context;
1150 qp->qp_num = real_qp->qp_num;
1151 qp->qp_type = real_qp->qp_type;
1152
1153 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1154 list_add(&qp->open_list, &real_qp->open_list);
1155 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1156
1157 return qp;
1158}
1159
1160struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1161 struct ib_qp_open_attr *qp_open_attr)
1162{
1163 struct ib_qp *qp, *real_qp;
1164
1165 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1166 return ERR_PTR(-EINVAL);
1167
1168 down_read(&xrcd->tgt_qps_rwsem);
1169 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1170 if (!real_qp) {
1171 up_read(&xrcd->tgt_qps_rwsem);
1172 return ERR_PTR(-EINVAL);
1173 }
1174 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1175 qp_open_attr->qp_context);
1176 up_read(&xrcd->tgt_qps_rwsem);
1177 return qp;
1178}
1179EXPORT_SYMBOL(ib_open_qp);
1180
1181static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1182 struct ib_qp_init_attr *qp_init_attr)
1183{
1184 struct ib_qp *real_qp = qp;
1185 int err;
1186
1187 qp->event_handler = __ib_shared_qp_event_handler;
1188 qp->qp_context = qp;
1189 qp->pd = NULL;
1190 qp->send_cq = qp->recv_cq = NULL;
1191 qp->srq = NULL;
1192 qp->xrcd = qp_init_attr->xrcd;
1193 atomic_inc(&qp_init_attr->xrcd->usecnt);
1194 INIT_LIST_HEAD(&qp->open_list);
1195
1196 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1197 qp_init_attr->qp_context);
1198 if (IS_ERR(qp))
1199 return qp;
1200
1201 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1202 real_qp, GFP_KERNEL));
1203 if (err) {
1204 ib_close_qp(qp);
1205 return ERR_PTR(err);
1206 }
1207 return qp;
1208}
1209
1210static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1211 struct ib_qp_init_attr *attr,
1212 struct ib_udata *udata,
1213 struct ib_uqp_object *uobj, const char *caller)
1214{
1215 struct ib_udata dummy = {};
1216 struct ib_qp *qp;
1217 int ret;
1218
1219 if (!dev->ops.create_qp)
1220 return ERR_PTR(-EOPNOTSUPP);
1221
1222 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1223 if (!qp)
1224 return ERR_PTR(-ENOMEM);
1225
1226 qp->device = dev;
1227 qp->pd = pd;
1228 qp->uobject = uobj;
1229 qp->real_qp = qp;
1230
1231 qp->qp_type = attr->qp_type;
1232 qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1233 qp->srq = attr->srq;
1234 qp->event_handler = __ib_qp_event_handler;
1235 qp->registered_event_handler = attr->event_handler;
1236 qp->port = attr->port_num;
1237 qp->qp_context = attr->qp_context;
1238
1239 spin_lock_init(&qp->mr_lock);
1240 INIT_LIST_HEAD(&qp->rdma_mrs);
1241 INIT_LIST_HEAD(&qp->sig_mrs);
1242 init_completion(&qp->srq_completion);
1243
1244 qp->send_cq = attr->send_cq;
1245 qp->recv_cq = attr->recv_cq;
1246
1247 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1248 WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1249 rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1250 ret = dev->ops.create_qp(qp, attr, udata);
1251 if (ret)
1252 goto err_create;
1253
1254 /*
1255 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1256 * Unfortunately, it is not an easy task to fix that driver.
1257 */
1258 qp->send_cq = attr->send_cq;
1259 qp->recv_cq = attr->recv_cq;
1260
1261 ret = ib_create_qp_security(qp, dev);
1262 if (ret)
1263 goto err_security;
1264
1265 rdma_restrack_add(&qp->res);
1266 return qp;
1267
1268err_security:
1269 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1270err_create:
1271 rdma_restrack_put(&qp->res);
1272 kfree(qp);
1273 return ERR_PTR(ret);
1274
1275}
1276
1277/**
1278 * ib_create_qp_user - Creates a QP associated with the specified protection
1279 * domain.
1280 * @dev: IB device
1281 * @pd: The protection domain associated with the QP.
1282 * @attr: A list of initial attributes required to create the
1283 * QP. If QP creation succeeds, then the attributes are updated to
1284 * the actual capabilities of the created QP.
1285 * @udata: User data
1286 * @uobj: uverbs obect
1287 * @caller: caller's build-time module name
1288 */
1289struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1290 struct ib_qp_init_attr *attr,
1291 struct ib_udata *udata,
1292 struct ib_uqp_object *uobj, const char *caller)
1293{
1294 struct ib_qp *qp, *xrc_qp;
1295
1296 if (attr->qp_type == IB_QPT_XRC_TGT)
1297 qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1298 else
1299 qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1300 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1301 return qp;
1302
1303 xrc_qp = create_xrc_qp_user(qp, attr);
1304 if (IS_ERR(xrc_qp)) {
1305 ib_destroy_qp(qp);
1306 return xrc_qp;
1307 }
1308
1309 xrc_qp->uobject = uobj;
1310 return xrc_qp;
1311}
1312EXPORT_SYMBOL(ib_create_qp_user);
1313
1314void ib_qp_usecnt_inc(struct ib_qp *qp)
1315{
1316 if (qp->pd)
1317 atomic_inc(&qp->pd->usecnt);
1318 if (qp->send_cq)
1319 atomic_inc(&qp->send_cq->usecnt);
1320 if (qp->recv_cq)
1321 atomic_inc(&qp->recv_cq->usecnt);
1322 if (qp->srq)
1323 atomic_inc(&qp->srq->usecnt);
1324 if (qp->rwq_ind_tbl)
1325 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1326}
1327EXPORT_SYMBOL(ib_qp_usecnt_inc);
1328
1329void ib_qp_usecnt_dec(struct ib_qp *qp)
1330{
1331 if (qp->rwq_ind_tbl)
1332 atomic_dec(&qp->rwq_ind_tbl->usecnt);
1333 if (qp->srq)
1334 atomic_dec(&qp->srq->usecnt);
1335 if (qp->recv_cq)
1336 atomic_dec(&qp->recv_cq->usecnt);
1337 if (qp->send_cq)
1338 atomic_dec(&qp->send_cq->usecnt);
1339 if (qp->pd)
1340 atomic_dec(&qp->pd->usecnt);
1341}
1342EXPORT_SYMBOL(ib_qp_usecnt_dec);
1343
1344struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1345 struct ib_qp_init_attr *qp_init_attr,
1346 const char *caller)
1347{
1348 struct ib_device *device = pd->device;
1349 struct ib_qp *qp;
1350 int ret;
1351
1352 /*
1353 * If the callers is using the RDMA API calculate the resources
1354 * needed for the RDMA READ/WRITE operations.
1355 *
1356 * Note that these callers need to pass in a port number.
1357 */
1358 if (qp_init_attr->cap.max_rdma_ctxs)
1359 rdma_rw_init_qp(device, qp_init_attr);
1360
1361 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1362 if (IS_ERR(qp))
1363 return qp;
1364
1365 ib_qp_usecnt_inc(qp);
1366
1367 if (qp_init_attr->cap.max_rdma_ctxs) {
1368 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1369 if (ret)
1370 goto err;
1371 }
1372
1373 /*
1374 * Note: all hw drivers guarantee that max_send_sge is lower than
1375 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1376 * max_send_sge <= max_sge_rd.
1377 */
1378 qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1379 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1380 device->attrs.max_sge_rd);
1381 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1382 qp->integrity_en = true;
1383
1384 return qp;
1385
1386err:
1387 ib_destroy_qp(qp);
1388 return ERR_PTR(ret);
1389
1390}
1391EXPORT_SYMBOL(ib_create_qp_kernel);
1392
1393static const struct {
1394 int valid;
1395 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
1396 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
1397} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1398 [IB_QPS_RESET] = {
1399 [IB_QPS_RESET] = { .valid = 1 },
1400 [IB_QPS_INIT] = {
1401 .valid = 1,
1402 .req_param = {
1403 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1404 IB_QP_PORT |
1405 IB_QP_QKEY),
1406 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1407 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1408 IB_QP_PORT |
1409 IB_QP_ACCESS_FLAGS),
1410 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1411 IB_QP_PORT |
1412 IB_QP_ACCESS_FLAGS),
1413 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1414 IB_QP_PORT |
1415 IB_QP_ACCESS_FLAGS),
1416 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1417 IB_QP_PORT |
1418 IB_QP_ACCESS_FLAGS),
1419 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1420 IB_QP_QKEY),
1421 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1422 IB_QP_QKEY),
1423 }
1424 },
1425 },
1426 [IB_QPS_INIT] = {
1427 [IB_QPS_RESET] = { .valid = 1 },
1428 [IB_QPS_ERR] = { .valid = 1 },
1429 [IB_QPS_INIT] = {
1430 .valid = 1,
1431 .opt_param = {
1432 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1433 IB_QP_PORT |
1434 IB_QP_QKEY),
1435 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
1436 IB_QP_PORT |
1437 IB_QP_ACCESS_FLAGS),
1438 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
1439 IB_QP_PORT |
1440 IB_QP_ACCESS_FLAGS),
1441 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
1442 IB_QP_PORT |
1443 IB_QP_ACCESS_FLAGS),
1444 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
1445 IB_QP_PORT |
1446 IB_QP_ACCESS_FLAGS),
1447 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1448 IB_QP_QKEY),
1449 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1450 IB_QP_QKEY),
1451 }
1452 },
1453 [IB_QPS_RTR] = {
1454 .valid = 1,
1455 .req_param = {
1456 [IB_QPT_UC] = (IB_QP_AV |
1457 IB_QP_PATH_MTU |
1458 IB_QP_DEST_QPN |
1459 IB_QP_RQ_PSN),
1460 [IB_QPT_RC] = (IB_QP_AV |
1461 IB_QP_PATH_MTU |
1462 IB_QP_DEST_QPN |
1463 IB_QP_RQ_PSN |
1464 IB_QP_MAX_DEST_RD_ATOMIC |
1465 IB_QP_MIN_RNR_TIMER),
1466 [IB_QPT_XRC_INI] = (IB_QP_AV |
1467 IB_QP_PATH_MTU |
1468 IB_QP_DEST_QPN |
1469 IB_QP_RQ_PSN),
1470 [IB_QPT_XRC_TGT] = (IB_QP_AV |
1471 IB_QP_PATH_MTU |
1472 IB_QP_DEST_QPN |
1473 IB_QP_RQ_PSN |
1474 IB_QP_MAX_DEST_RD_ATOMIC |
1475 IB_QP_MIN_RNR_TIMER),
1476 },
1477 .opt_param = {
1478 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1479 IB_QP_QKEY),
1480 [IB_QPT_UC] = (IB_QP_ALT_PATH |
1481 IB_QP_ACCESS_FLAGS |
1482 IB_QP_PKEY_INDEX),
1483 [IB_QPT_RC] = (IB_QP_ALT_PATH |
1484 IB_QP_ACCESS_FLAGS |
1485 IB_QP_PKEY_INDEX),
1486 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
1487 IB_QP_ACCESS_FLAGS |
1488 IB_QP_PKEY_INDEX),
1489 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
1490 IB_QP_ACCESS_FLAGS |
1491 IB_QP_PKEY_INDEX),
1492 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1493 IB_QP_QKEY),
1494 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1495 IB_QP_QKEY),
1496 },
1497 },
1498 },
1499 [IB_QPS_RTR] = {
1500 [IB_QPS_RESET] = { .valid = 1 },
1501 [IB_QPS_ERR] = { .valid = 1 },
1502 [IB_QPS_RTS] = {
1503 .valid = 1,
1504 .req_param = {
1505 [IB_QPT_UD] = IB_QP_SQ_PSN,
1506 [IB_QPT_UC] = IB_QP_SQ_PSN,
1507 [IB_QPT_RC] = (IB_QP_TIMEOUT |
1508 IB_QP_RETRY_CNT |
1509 IB_QP_RNR_RETRY |
1510 IB_QP_SQ_PSN |
1511 IB_QP_MAX_QP_RD_ATOMIC),
1512 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
1513 IB_QP_RETRY_CNT |
1514 IB_QP_RNR_RETRY |
1515 IB_QP_SQ_PSN |
1516 IB_QP_MAX_QP_RD_ATOMIC),
1517 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
1518 IB_QP_SQ_PSN),
1519 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1520 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1521 },
1522 .opt_param = {
1523 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1524 IB_QP_QKEY),
1525 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1526 IB_QP_ALT_PATH |
1527 IB_QP_ACCESS_FLAGS |
1528 IB_QP_PATH_MIG_STATE),
1529 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1530 IB_QP_ALT_PATH |
1531 IB_QP_ACCESS_FLAGS |
1532 IB_QP_MIN_RNR_TIMER |
1533 IB_QP_PATH_MIG_STATE),
1534 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1535 IB_QP_ALT_PATH |
1536 IB_QP_ACCESS_FLAGS |
1537 IB_QP_PATH_MIG_STATE),
1538 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1539 IB_QP_ALT_PATH |
1540 IB_QP_ACCESS_FLAGS |
1541 IB_QP_MIN_RNR_TIMER |
1542 IB_QP_PATH_MIG_STATE),
1543 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1544 IB_QP_QKEY),
1545 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1546 IB_QP_QKEY),
1547 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1548 }
1549 }
1550 },
1551 [IB_QPS_RTS] = {
1552 [IB_QPS_RESET] = { .valid = 1 },
1553 [IB_QPS_ERR] = { .valid = 1 },
1554 [IB_QPS_RTS] = {
1555 .valid = 1,
1556 .opt_param = {
1557 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1558 IB_QP_QKEY),
1559 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1560 IB_QP_ACCESS_FLAGS |
1561 IB_QP_ALT_PATH |
1562 IB_QP_PATH_MIG_STATE),
1563 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1564 IB_QP_ACCESS_FLAGS |
1565 IB_QP_ALT_PATH |
1566 IB_QP_PATH_MIG_STATE |
1567 IB_QP_MIN_RNR_TIMER),
1568 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1569 IB_QP_ACCESS_FLAGS |
1570 IB_QP_ALT_PATH |
1571 IB_QP_PATH_MIG_STATE),
1572 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1573 IB_QP_ACCESS_FLAGS |
1574 IB_QP_ALT_PATH |
1575 IB_QP_PATH_MIG_STATE |
1576 IB_QP_MIN_RNR_TIMER),
1577 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1578 IB_QP_QKEY),
1579 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1580 IB_QP_QKEY),
1581 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1582 }
1583 },
1584 [IB_QPS_SQD] = {
1585 .valid = 1,
1586 .opt_param = {
1587 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1588 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1589 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1590 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1591 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1592 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1593 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1594 }
1595 },
1596 },
1597 [IB_QPS_SQD] = {
1598 [IB_QPS_RESET] = { .valid = 1 },
1599 [IB_QPS_ERR] = { .valid = 1 },
1600 [IB_QPS_RTS] = {
1601 .valid = 1,
1602 .opt_param = {
1603 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1604 IB_QP_QKEY),
1605 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1606 IB_QP_ALT_PATH |
1607 IB_QP_ACCESS_FLAGS |
1608 IB_QP_PATH_MIG_STATE),
1609 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1610 IB_QP_ALT_PATH |
1611 IB_QP_ACCESS_FLAGS |
1612 IB_QP_MIN_RNR_TIMER |
1613 IB_QP_PATH_MIG_STATE),
1614 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1615 IB_QP_ALT_PATH |
1616 IB_QP_ACCESS_FLAGS |
1617 IB_QP_PATH_MIG_STATE),
1618 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1619 IB_QP_ALT_PATH |
1620 IB_QP_ACCESS_FLAGS |
1621 IB_QP_MIN_RNR_TIMER |
1622 IB_QP_PATH_MIG_STATE),
1623 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1624 IB_QP_QKEY),
1625 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1626 IB_QP_QKEY),
1627 }
1628 },
1629 [IB_QPS_SQD] = {
1630 .valid = 1,
1631 .opt_param = {
1632 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1633 IB_QP_QKEY),
1634 [IB_QPT_UC] = (IB_QP_AV |
1635 IB_QP_ALT_PATH |
1636 IB_QP_ACCESS_FLAGS |
1637 IB_QP_PKEY_INDEX |
1638 IB_QP_PATH_MIG_STATE),
1639 [IB_QPT_RC] = (IB_QP_PORT |
1640 IB_QP_AV |
1641 IB_QP_TIMEOUT |
1642 IB_QP_RETRY_CNT |
1643 IB_QP_RNR_RETRY |
1644 IB_QP_MAX_QP_RD_ATOMIC |
1645 IB_QP_MAX_DEST_RD_ATOMIC |
1646 IB_QP_ALT_PATH |
1647 IB_QP_ACCESS_FLAGS |
1648 IB_QP_PKEY_INDEX |
1649 IB_QP_MIN_RNR_TIMER |
1650 IB_QP_PATH_MIG_STATE),
1651 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1652 IB_QP_AV |
1653 IB_QP_TIMEOUT |
1654 IB_QP_RETRY_CNT |
1655 IB_QP_RNR_RETRY |
1656 IB_QP_MAX_QP_RD_ATOMIC |
1657 IB_QP_ALT_PATH |
1658 IB_QP_ACCESS_FLAGS |
1659 IB_QP_PKEY_INDEX |
1660 IB_QP_PATH_MIG_STATE),
1661 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1662 IB_QP_AV |
1663 IB_QP_TIMEOUT |
1664 IB_QP_MAX_DEST_RD_ATOMIC |
1665 IB_QP_ALT_PATH |
1666 IB_QP_ACCESS_FLAGS |
1667 IB_QP_PKEY_INDEX |
1668 IB_QP_MIN_RNR_TIMER |
1669 IB_QP_PATH_MIG_STATE),
1670 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1671 IB_QP_QKEY),
1672 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1673 IB_QP_QKEY),
1674 }
1675 }
1676 },
1677 [IB_QPS_SQE] = {
1678 [IB_QPS_RESET] = { .valid = 1 },
1679 [IB_QPS_ERR] = { .valid = 1 },
1680 [IB_QPS_RTS] = {
1681 .valid = 1,
1682 .opt_param = {
1683 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1684 IB_QP_QKEY),
1685 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1686 IB_QP_ACCESS_FLAGS),
1687 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1688 IB_QP_QKEY),
1689 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1690 IB_QP_QKEY),
1691 }
1692 }
1693 },
1694 [IB_QPS_ERR] = {
1695 [IB_QPS_RESET] = { .valid = 1 },
1696 [IB_QPS_ERR] = { .valid = 1 }
1697 }
1698};
1699
1700bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1701 enum ib_qp_type type, enum ib_qp_attr_mask mask)
1702{
1703 enum ib_qp_attr_mask req_param, opt_param;
1704
1705 if (mask & IB_QP_CUR_STATE &&
1706 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1707 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1708 return false;
1709
1710 if (!qp_state_table[cur_state][next_state].valid)
1711 return false;
1712
1713 req_param = qp_state_table[cur_state][next_state].req_param[type];
1714 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1715
1716 if ((mask & req_param) != req_param)
1717 return false;
1718
1719 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1720 return false;
1721
1722 return true;
1723}
1724EXPORT_SYMBOL(ib_modify_qp_is_ok);
1725
1726/**
1727 * ib_resolve_eth_dmac - Resolve destination mac address
1728 * @device: Device to consider
1729 * @ah_attr: address handle attribute which describes the
1730 * source and destination parameters
1731 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1732 * returns 0 on success or appropriate error code. It initializes the
1733 * necessary ah_attr fields when call is successful.
1734 */
1735static int ib_resolve_eth_dmac(struct ib_device *device,
1736 struct rdma_ah_attr *ah_attr)
1737{
1738 int ret = 0;
1739
1740 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1741 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1742 __be32 addr = 0;
1743
1744 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1745 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1746 } else {
1747 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1748 (char *)ah_attr->roce.dmac);
1749 }
1750 } else {
1751 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1752 }
1753 return ret;
1754}
1755
1756static bool is_qp_type_connected(const struct ib_qp *qp)
1757{
1758 return (qp->qp_type == IB_QPT_UC ||
1759 qp->qp_type == IB_QPT_RC ||
1760 qp->qp_type == IB_QPT_XRC_INI ||
1761 qp->qp_type == IB_QPT_XRC_TGT);
1762}
1763
1764/*
1765 * IB core internal function to perform QP attributes modification.
1766 */
1767static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1768 int attr_mask, struct ib_udata *udata)
1769{
1770 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1771 const struct ib_gid_attr *old_sgid_attr_av;
1772 const struct ib_gid_attr *old_sgid_attr_alt_av;
1773 int ret;
1774
1775 attr->xmit_slave = NULL;
1776 if (attr_mask & IB_QP_AV) {
1777 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1778 &old_sgid_attr_av);
1779 if (ret)
1780 return ret;
1781
1782 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1783 is_qp_type_connected(qp)) {
1784 struct net_device *slave;
1785
1786 /*
1787 * If the user provided the qp_attr then we have to
1788 * resolve it. Kerne users have to provide already
1789 * resolved rdma_ah_attr's.
1790 */
1791 if (udata) {
1792 ret = ib_resolve_eth_dmac(qp->device,
1793 &attr->ah_attr);
1794 if (ret)
1795 goto out_av;
1796 }
1797 slave = rdma_lag_get_ah_roce_slave(qp->device,
1798 &attr->ah_attr,
1799 GFP_KERNEL);
1800 if (IS_ERR(slave)) {
1801 ret = PTR_ERR(slave);
1802 goto out_av;
1803 }
1804 attr->xmit_slave = slave;
1805 }
1806 }
1807 if (attr_mask & IB_QP_ALT_PATH) {
1808 /*
1809 * FIXME: This does not track the migration state, so if the
1810 * user loads a new alternate path after the HW has migrated
1811 * from primary->alternate we will keep the wrong
1812 * references. This is OK for IB because the reference
1813 * counting does not serve any functional purpose.
1814 */
1815 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1816 &old_sgid_attr_alt_av);
1817 if (ret)
1818 goto out_av;
1819
1820 /*
1821 * Today the core code can only handle alternate paths and APM
1822 * for IB. Ban them in roce mode.
1823 */
1824 if (!(rdma_protocol_ib(qp->device,
1825 attr->alt_ah_attr.port_num) &&
1826 rdma_protocol_ib(qp->device, port))) {
1827 ret = -EINVAL;
1828 goto out;
1829 }
1830 }
1831
1832 if (rdma_ib_or_roce(qp->device, port)) {
1833 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1834 dev_warn(&qp->device->dev,
1835 "%s rq_psn overflow, masking to 24 bits\n",
1836 __func__);
1837 attr->rq_psn &= 0xffffff;
1838 }
1839
1840 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1841 dev_warn(&qp->device->dev,
1842 " %s sq_psn overflow, masking to 24 bits\n",
1843 __func__);
1844 attr->sq_psn &= 0xffffff;
1845 }
1846 }
1847
1848 /*
1849 * Bind this qp to a counter automatically based on the rdma counter
1850 * rules. This only set in RST2INIT with port specified
1851 */
1852 if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1853 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1854 rdma_counter_bind_qp_auto(qp, attr->port_num);
1855
1856 ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1857 if (ret)
1858 goto out;
1859
1860 if (attr_mask & IB_QP_PORT)
1861 qp->port = attr->port_num;
1862 if (attr_mask & IB_QP_AV)
1863 qp->av_sgid_attr =
1864 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1865 if (attr_mask & IB_QP_ALT_PATH)
1866 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1867 &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1868
1869out:
1870 if (attr_mask & IB_QP_ALT_PATH)
1871 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1872out_av:
1873 if (attr_mask & IB_QP_AV) {
1874 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1875 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1876 }
1877 return ret;
1878}
1879
1880/**
1881 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1882 * @ib_qp: The QP to modify.
1883 * @attr: On input, specifies the QP attributes to modify. On output,
1884 * the current values of selected QP attributes are returned.
1885 * @attr_mask: A bit-mask used to specify which attributes of the QP
1886 * are being modified.
1887 * @udata: pointer to user's input output buffer information
1888 * are being modified.
1889 * It returns 0 on success and returns appropriate error code on error.
1890 */
1891int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1892 int attr_mask, struct ib_udata *udata)
1893{
1894 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1895}
1896EXPORT_SYMBOL(ib_modify_qp_with_udata);
1897
1898static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1899 u16 *speed, u8 *width)
1900{
1901 if (!lanes) {
1902 if (netdev_speed <= SPEED_1000) {
1903 *width = IB_WIDTH_1X;
1904 *speed = IB_SPEED_SDR;
1905 } else if (netdev_speed <= SPEED_10000) {
1906 *width = IB_WIDTH_1X;
1907 *speed = IB_SPEED_FDR10;
1908 } else if (netdev_speed <= SPEED_20000) {
1909 *width = IB_WIDTH_4X;
1910 *speed = IB_SPEED_DDR;
1911 } else if (netdev_speed <= SPEED_25000) {
1912 *width = IB_WIDTH_1X;
1913 *speed = IB_SPEED_EDR;
1914 } else if (netdev_speed <= SPEED_40000) {
1915 *width = IB_WIDTH_4X;
1916 *speed = IB_SPEED_FDR10;
1917 } else if (netdev_speed <= SPEED_50000) {
1918 *width = IB_WIDTH_2X;
1919 *speed = IB_SPEED_EDR;
1920 } else if (netdev_speed <= SPEED_100000) {
1921 *width = IB_WIDTH_4X;
1922 *speed = IB_SPEED_EDR;
1923 } else if (netdev_speed <= SPEED_200000) {
1924 *width = IB_WIDTH_4X;
1925 *speed = IB_SPEED_HDR;
1926 } else {
1927 *width = IB_WIDTH_4X;
1928 *speed = IB_SPEED_NDR;
1929 }
1930
1931 return;
1932 }
1933
1934 switch (lanes) {
1935 case 1:
1936 *width = IB_WIDTH_1X;
1937 break;
1938 case 2:
1939 *width = IB_WIDTH_2X;
1940 break;
1941 case 4:
1942 *width = IB_WIDTH_4X;
1943 break;
1944 case 8:
1945 *width = IB_WIDTH_8X;
1946 break;
1947 case 12:
1948 *width = IB_WIDTH_12X;
1949 break;
1950 default:
1951 *width = IB_WIDTH_1X;
1952 }
1953
1954 switch (netdev_speed / lanes) {
1955 case SPEED_2500:
1956 *speed = IB_SPEED_SDR;
1957 break;
1958 case SPEED_5000:
1959 *speed = IB_SPEED_DDR;
1960 break;
1961 case SPEED_10000:
1962 *speed = IB_SPEED_FDR10;
1963 break;
1964 case SPEED_14000:
1965 *speed = IB_SPEED_FDR;
1966 break;
1967 case SPEED_25000:
1968 *speed = IB_SPEED_EDR;
1969 break;
1970 case SPEED_50000:
1971 *speed = IB_SPEED_HDR;
1972 break;
1973 case SPEED_100000:
1974 *speed = IB_SPEED_NDR;
1975 break;
1976 default:
1977 *speed = IB_SPEED_SDR;
1978 }
1979}
1980
1981int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1982{
1983 int rc;
1984 u32 netdev_speed;
1985 struct net_device *netdev;
1986 struct ethtool_link_ksettings lksettings = {};
1987
1988 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1989 return -EINVAL;
1990
1991 netdev = ib_device_get_netdev(dev, port_num);
1992 if (!netdev)
1993 return -ENODEV;
1994
1995 rtnl_lock();
1996 rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1997 rtnl_unlock();
1998
1999 dev_put(netdev);
2000
2001 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2002 netdev_speed = lksettings.base.speed;
2003 } else {
2004 netdev_speed = SPEED_1000;
2005 if (rc)
2006 pr_warn("%s speed is unknown, defaulting to %u\n",
2007 netdev->name, netdev_speed);
2008 }
2009
2010 ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2011 speed, width);
2012
2013 return 0;
2014}
2015EXPORT_SYMBOL(ib_get_eth_speed);
2016
2017int ib_modify_qp(struct ib_qp *qp,
2018 struct ib_qp_attr *qp_attr,
2019 int qp_attr_mask)
2020{
2021 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2022}
2023EXPORT_SYMBOL(ib_modify_qp);
2024
2025int ib_query_qp(struct ib_qp *qp,
2026 struct ib_qp_attr *qp_attr,
2027 int qp_attr_mask,
2028 struct ib_qp_init_attr *qp_init_attr)
2029{
2030 qp_attr->ah_attr.grh.sgid_attr = NULL;
2031 qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2032
2033 return qp->device->ops.query_qp ?
2034 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2035 qp_init_attr) : -EOPNOTSUPP;
2036}
2037EXPORT_SYMBOL(ib_query_qp);
2038
2039int ib_close_qp(struct ib_qp *qp)
2040{
2041 struct ib_qp *real_qp;
2042 unsigned long flags;
2043
2044 real_qp = qp->real_qp;
2045 if (real_qp == qp)
2046 return -EINVAL;
2047
2048 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2049 list_del(&qp->open_list);
2050 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2051
2052 atomic_dec(&real_qp->usecnt);
2053 if (qp->qp_sec)
2054 ib_close_shared_qp_security(qp->qp_sec);
2055 kfree(qp);
2056
2057 return 0;
2058}
2059EXPORT_SYMBOL(ib_close_qp);
2060
2061static int __ib_destroy_shared_qp(struct ib_qp *qp)
2062{
2063 struct ib_xrcd *xrcd;
2064 struct ib_qp *real_qp;
2065 int ret;
2066
2067 real_qp = qp->real_qp;
2068 xrcd = real_qp->xrcd;
2069 down_write(&xrcd->tgt_qps_rwsem);
2070 ib_close_qp(qp);
2071 if (atomic_read(&real_qp->usecnt) == 0)
2072 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2073 else
2074 real_qp = NULL;
2075 up_write(&xrcd->tgt_qps_rwsem);
2076
2077 if (real_qp) {
2078 ret = ib_destroy_qp(real_qp);
2079 if (!ret)
2080 atomic_dec(&xrcd->usecnt);
2081 }
2082
2083 return 0;
2084}
2085
2086int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2087{
2088 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2089 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2090 struct ib_qp_security *sec;
2091 int ret;
2092
2093 WARN_ON_ONCE(qp->mrs_used > 0);
2094
2095 if (atomic_read(&qp->usecnt))
2096 return -EBUSY;
2097
2098 if (qp->real_qp != qp)
2099 return __ib_destroy_shared_qp(qp);
2100
2101 sec = qp->qp_sec;
2102 if (sec)
2103 ib_destroy_qp_security_begin(sec);
2104
2105 if (!qp->uobject)
2106 rdma_rw_cleanup_mrs(qp);
2107
2108 rdma_counter_unbind_qp(qp, true);
2109 ret = qp->device->ops.destroy_qp(qp, udata);
2110 if (ret) {
2111 if (sec)
2112 ib_destroy_qp_security_abort(sec);
2113 return ret;
2114 }
2115
2116 if (alt_path_sgid_attr)
2117 rdma_put_gid_attr(alt_path_sgid_attr);
2118 if (av_sgid_attr)
2119 rdma_put_gid_attr(av_sgid_attr);
2120
2121 ib_qp_usecnt_dec(qp);
2122 if (sec)
2123 ib_destroy_qp_security_end(sec);
2124
2125 rdma_restrack_del(&qp->res);
2126 kfree(qp);
2127 return ret;
2128}
2129EXPORT_SYMBOL(ib_destroy_qp_user);
2130
2131/* Completion queues */
2132
2133struct ib_cq *__ib_create_cq(struct ib_device *device,
2134 ib_comp_handler comp_handler,
2135 void (*event_handler)(struct ib_event *, void *),
2136 void *cq_context,
2137 const struct ib_cq_init_attr *cq_attr,
2138 const char *caller)
2139{
2140 struct ib_cq *cq;
2141 int ret;
2142
2143 cq = rdma_zalloc_drv_obj(device, ib_cq);
2144 if (!cq)
2145 return ERR_PTR(-ENOMEM);
2146
2147 cq->device = device;
2148 cq->uobject = NULL;
2149 cq->comp_handler = comp_handler;
2150 cq->event_handler = event_handler;
2151 cq->cq_context = cq_context;
2152 atomic_set(&cq->usecnt, 0);
2153
2154 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2155 rdma_restrack_set_name(&cq->res, caller);
2156
2157 ret = device->ops.create_cq(cq, cq_attr, NULL);
2158 if (ret) {
2159 rdma_restrack_put(&cq->res);
2160 kfree(cq);
2161 return ERR_PTR(ret);
2162 }
2163
2164 rdma_restrack_add(&cq->res);
2165 return cq;
2166}
2167EXPORT_SYMBOL(__ib_create_cq);
2168
2169int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2170{
2171 if (cq->shared)
2172 return -EOPNOTSUPP;
2173
2174 return cq->device->ops.modify_cq ?
2175 cq->device->ops.modify_cq(cq, cq_count,
2176 cq_period) : -EOPNOTSUPP;
2177}
2178EXPORT_SYMBOL(rdma_set_cq_moderation);
2179
2180int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2181{
2182 int ret;
2183
2184 if (WARN_ON_ONCE(cq->shared))
2185 return -EOPNOTSUPP;
2186
2187 if (atomic_read(&cq->usecnt))
2188 return -EBUSY;
2189
2190 ret = cq->device->ops.destroy_cq(cq, udata);
2191 if (ret)
2192 return ret;
2193
2194 rdma_restrack_del(&cq->res);
2195 kfree(cq);
2196 return ret;
2197}
2198EXPORT_SYMBOL(ib_destroy_cq_user);
2199
2200int ib_resize_cq(struct ib_cq *cq, int cqe)
2201{
2202 if (cq->shared)
2203 return -EOPNOTSUPP;
2204
2205 return cq->device->ops.resize_cq ?
2206 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2207}
2208EXPORT_SYMBOL(ib_resize_cq);
2209
2210/* Memory regions */
2211
2212struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2213 u64 virt_addr, int access_flags)
2214{
2215 struct ib_mr *mr;
2216
2217 if (access_flags & IB_ACCESS_ON_DEMAND) {
2218 if (!(pd->device->attrs.kernel_cap_flags &
2219 IBK_ON_DEMAND_PAGING)) {
2220 pr_debug("ODP support not available\n");
2221 return ERR_PTR(-EINVAL);
2222 }
2223 }
2224
2225 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2226 access_flags, NULL);
2227
2228 if (IS_ERR(mr))
2229 return mr;
2230
2231 mr->device = pd->device;
2232 mr->type = IB_MR_TYPE_USER;
2233 mr->pd = pd;
2234 mr->dm = NULL;
2235 atomic_inc(&pd->usecnt);
2236 mr->iova = virt_addr;
2237 mr->length = length;
2238
2239 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2240 rdma_restrack_parent_name(&mr->res, &pd->res);
2241 rdma_restrack_add(&mr->res);
2242
2243 return mr;
2244}
2245EXPORT_SYMBOL(ib_reg_user_mr);
2246
2247int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2248 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2249{
2250 if (!pd->device->ops.advise_mr)
2251 return -EOPNOTSUPP;
2252
2253 if (!num_sge)
2254 return 0;
2255
2256 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2257 NULL);
2258}
2259EXPORT_SYMBOL(ib_advise_mr);
2260
2261int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2262{
2263 struct ib_pd *pd = mr->pd;
2264 struct ib_dm *dm = mr->dm;
2265 struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2266 int ret;
2267
2268 trace_mr_dereg(mr);
2269 rdma_restrack_del(&mr->res);
2270 ret = mr->device->ops.dereg_mr(mr, udata);
2271 if (!ret) {
2272 atomic_dec(&pd->usecnt);
2273 if (dm)
2274 atomic_dec(&dm->usecnt);
2275 kfree(sig_attrs);
2276 }
2277
2278 return ret;
2279}
2280EXPORT_SYMBOL(ib_dereg_mr_user);
2281
2282/**
2283 * ib_alloc_mr() - Allocates a memory region
2284 * @pd: protection domain associated with the region
2285 * @mr_type: memory region type
2286 * @max_num_sg: maximum sg entries available for registration.
2287 *
2288 * Notes:
2289 * Memory registeration page/sg lists must not exceed max_num_sg.
2290 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2291 * max_num_sg * used_page_size.
2292 *
2293 */
2294struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2295 u32 max_num_sg)
2296{
2297 struct ib_mr *mr;
2298
2299 if (!pd->device->ops.alloc_mr) {
2300 mr = ERR_PTR(-EOPNOTSUPP);
2301 goto out;
2302 }
2303
2304 if (mr_type == IB_MR_TYPE_INTEGRITY) {
2305 WARN_ON_ONCE(1);
2306 mr = ERR_PTR(-EINVAL);
2307 goto out;
2308 }
2309
2310 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2311 if (IS_ERR(mr))
2312 goto out;
2313
2314 mr->device = pd->device;
2315 mr->pd = pd;
2316 mr->dm = NULL;
2317 mr->uobject = NULL;
2318 atomic_inc(&pd->usecnt);
2319 mr->need_inval = false;
2320 mr->type = mr_type;
2321 mr->sig_attrs = NULL;
2322
2323 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2324 rdma_restrack_parent_name(&mr->res, &pd->res);
2325 rdma_restrack_add(&mr->res);
2326out:
2327 trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2328 return mr;
2329}
2330EXPORT_SYMBOL(ib_alloc_mr);
2331
2332/**
2333 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2334 * @pd: protection domain associated with the region
2335 * @max_num_data_sg: maximum data sg entries available for registration
2336 * @max_num_meta_sg: maximum metadata sg entries available for
2337 * registration
2338 *
2339 * Notes:
2340 * Memory registration page/sg lists must not exceed max_num_sg,
2341 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2342 *
2343 */
2344struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2345 u32 max_num_data_sg,
2346 u32 max_num_meta_sg)
2347{
2348 struct ib_mr *mr;
2349 struct ib_sig_attrs *sig_attrs;
2350
2351 if (!pd->device->ops.alloc_mr_integrity ||
2352 !pd->device->ops.map_mr_sg_pi) {
2353 mr = ERR_PTR(-EOPNOTSUPP);
2354 goto out;
2355 }
2356
2357 if (!max_num_meta_sg) {
2358 mr = ERR_PTR(-EINVAL);
2359 goto out;
2360 }
2361
2362 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2363 if (!sig_attrs) {
2364 mr = ERR_PTR(-ENOMEM);
2365 goto out;
2366 }
2367
2368 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2369 max_num_meta_sg);
2370 if (IS_ERR(mr)) {
2371 kfree(sig_attrs);
2372 goto out;
2373 }
2374
2375 mr->device = pd->device;
2376 mr->pd = pd;
2377 mr->dm = NULL;
2378 mr->uobject = NULL;
2379 atomic_inc(&pd->usecnt);
2380 mr->need_inval = false;
2381 mr->type = IB_MR_TYPE_INTEGRITY;
2382 mr->sig_attrs = sig_attrs;
2383
2384 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2385 rdma_restrack_parent_name(&mr->res, &pd->res);
2386 rdma_restrack_add(&mr->res);
2387out:
2388 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2389 return mr;
2390}
2391EXPORT_SYMBOL(ib_alloc_mr_integrity);
2392
2393/* Multicast groups */
2394
2395static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2396{
2397 struct ib_qp_init_attr init_attr = {};
2398 struct ib_qp_attr attr = {};
2399 int num_eth_ports = 0;
2400 unsigned int port;
2401
2402 /* If QP state >= init, it is assigned to a port and we can check this
2403 * port only.
2404 */
2405 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2406 if (attr.qp_state >= IB_QPS_INIT) {
2407 if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2408 IB_LINK_LAYER_INFINIBAND)
2409 return true;
2410 goto lid_check;
2411 }
2412 }
2413
2414 /* Can't get a quick answer, iterate over all ports */
2415 rdma_for_each_port(qp->device, port)
2416 if (rdma_port_get_link_layer(qp->device, port) !=
2417 IB_LINK_LAYER_INFINIBAND)
2418 num_eth_ports++;
2419
2420 /* If we have at lease one Ethernet port, RoCE annex declares that
2421 * multicast LID should be ignored. We can't tell at this step if the
2422 * QP belongs to an IB or Ethernet port.
2423 */
2424 if (num_eth_ports)
2425 return true;
2426
2427 /* If all the ports are IB, we can check according to IB spec. */
2428lid_check:
2429 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2430 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2431}
2432
2433int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2434{
2435 int ret;
2436
2437 if (!qp->device->ops.attach_mcast)
2438 return -EOPNOTSUPP;
2439
2440 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2441 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2442 return -EINVAL;
2443
2444 ret = qp->device->ops.attach_mcast(qp, gid, lid);
2445 if (!ret)
2446 atomic_inc(&qp->usecnt);
2447 return ret;
2448}
2449EXPORT_SYMBOL(ib_attach_mcast);
2450
2451int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2452{
2453 int ret;
2454
2455 if (!qp->device->ops.detach_mcast)
2456 return -EOPNOTSUPP;
2457
2458 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2459 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2460 return -EINVAL;
2461
2462 ret = qp->device->ops.detach_mcast(qp, gid, lid);
2463 if (!ret)
2464 atomic_dec(&qp->usecnt);
2465 return ret;
2466}
2467EXPORT_SYMBOL(ib_detach_mcast);
2468
2469/**
2470 * ib_alloc_xrcd_user - Allocates an XRC domain.
2471 * @device: The device on which to allocate the XRC domain.
2472 * @inode: inode to connect XRCD
2473 * @udata: Valid user data or NULL for kernel object
2474 */
2475struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2476 struct inode *inode, struct ib_udata *udata)
2477{
2478 struct ib_xrcd *xrcd;
2479 int ret;
2480
2481 if (!device->ops.alloc_xrcd)
2482 return ERR_PTR(-EOPNOTSUPP);
2483
2484 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2485 if (!xrcd)
2486 return ERR_PTR(-ENOMEM);
2487
2488 xrcd->device = device;
2489 xrcd->inode = inode;
2490 atomic_set(&xrcd->usecnt, 0);
2491 init_rwsem(&xrcd->tgt_qps_rwsem);
2492 xa_init(&xrcd->tgt_qps);
2493
2494 ret = device->ops.alloc_xrcd(xrcd, udata);
2495 if (ret)
2496 goto err;
2497 return xrcd;
2498err:
2499 kfree(xrcd);
2500 return ERR_PTR(ret);
2501}
2502EXPORT_SYMBOL(ib_alloc_xrcd_user);
2503
2504/**
2505 * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2506 * @xrcd: The XRC domain to deallocate.
2507 * @udata: Valid user data or NULL for kernel object
2508 */
2509int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2510{
2511 int ret;
2512
2513 if (atomic_read(&xrcd->usecnt))
2514 return -EBUSY;
2515
2516 WARN_ON(!xa_empty(&xrcd->tgt_qps));
2517 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2518 if (ret)
2519 return ret;
2520 kfree(xrcd);
2521 return ret;
2522}
2523EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2524
2525/**
2526 * ib_create_wq - Creates a WQ associated with the specified protection
2527 * domain.
2528 * @pd: The protection domain associated with the WQ.
2529 * @wq_attr: A list of initial attributes required to create the
2530 * WQ. If WQ creation succeeds, then the attributes are updated to
2531 * the actual capabilities of the created WQ.
2532 *
2533 * wq_attr->max_wr and wq_attr->max_sge determine
2534 * the requested size of the WQ, and set to the actual values allocated
2535 * on return.
2536 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2537 * at least as large as the requested values.
2538 */
2539struct ib_wq *ib_create_wq(struct ib_pd *pd,
2540 struct ib_wq_init_attr *wq_attr)
2541{
2542 struct ib_wq *wq;
2543
2544 if (!pd->device->ops.create_wq)
2545 return ERR_PTR(-EOPNOTSUPP);
2546
2547 wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2548 if (!IS_ERR(wq)) {
2549 wq->event_handler = wq_attr->event_handler;
2550 wq->wq_context = wq_attr->wq_context;
2551 wq->wq_type = wq_attr->wq_type;
2552 wq->cq = wq_attr->cq;
2553 wq->device = pd->device;
2554 wq->pd = pd;
2555 wq->uobject = NULL;
2556 atomic_inc(&pd->usecnt);
2557 atomic_inc(&wq_attr->cq->usecnt);
2558 atomic_set(&wq->usecnt, 0);
2559 }
2560 return wq;
2561}
2562EXPORT_SYMBOL(ib_create_wq);
2563
2564/**
2565 * ib_destroy_wq_user - Destroys the specified user WQ.
2566 * @wq: The WQ to destroy.
2567 * @udata: Valid user data
2568 */
2569int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2570{
2571 struct ib_cq *cq = wq->cq;
2572 struct ib_pd *pd = wq->pd;
2573 int ret;
2574
2575 if (atomic_read(&wq->usecnt))
2576 return -EBUSY;
2577
2578 ret = wq->device->ops.destroy_wq(wq, udata);
2579 if (ret)
2580 return ret;
2581
2582 atomic_dec(&pd->usecnt);
2583 atomic_dec(&cq->usecnt);
2584 return ret;
2585}
2586EXPORT_SYMBOL(ib_destroy_wq_user);
2587
2588int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2589 struct ib_mr_status *mr_status)
2590{
2591 if (!mr->device->ops.check_mr_status)
2592 return -EOPNOTSUPP;
2593
2594 return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2595}
2596EXPORT_SYMBOL(ib_check_mr_status);
2597
2598int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2599 int state)
2600{
2601 if (!device->ops.set_vf_link_state)
2602 return -EOPNOTSUPP;
2603
2604 return device->ops.set_vf_link_state(device, vf, port, state);
2605}
2606EXPORT_SYMBOL(ib_set_vf_link_state);
2607
2608int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2609 struct ifla_vf_info *info)
2610{
2611 if (!device->ops.get_vf_config)
2612 return -EOPNOTSUPP;
2613
2614 return device->ops.get_vf_config(device, vf, port, info);
2615}
2616EXPORT_SYMBOL(ib_get_vf_config);
2617
2618int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2619 struct ifla_vf_stats *stats)
2620{
2621 if (!device->ops.get_vf_stats)
2622 return -EOPNOTSUPP;
2623
2624 return device->ops.get_vf_stats(device, vf, port, stats);
2625}
2626EXPORT_SYMBOL(ib_get_vf_stats);
2627
2628int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2629 int type)
2630{
2631 if (!device->ops.set_vf_guid)
2632 return -EOPNOTSUPP;
2633
2634 return device->ops.set_vf_guid(device, vf, port, guid, type);
2635}
2636EXPORT_SYMBOL(ib_set_vf_guid);
2637
2638int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2639 struct ifla_vf_guid *node_guid,
2640 struct ifla_vf_guid *port_guid)
2641{
2642 if (!device->ops.get_vf_guid)
2643 return -EOPNOTSUPP;
2644
2645 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2646}
2647EXPORT_SYMBOL(ib_get_vf_guid);
2648/**
2649 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2650 * information) and set an appropriate memory region for registration.
2651 * @mr: memory region
2652 * @data_sg: dma mapped scatterlist for data
2653 * @data_sg_nents: number of entries in data_sg
2654 * @data_sg_offset: offset in bytes into data_sg
2655 * @meta_sg: dma mapped scatterlist for metadata
2656 * @meta_sg_nents: number of entries in meta_sg
2657 * @meta_sg_offset: offset in bytes into meta_sg
2658 * @page_size: page vector desired page size
2659 *
2660 * Constraints:
2661 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2662 *
2663 * Return: 0 on success.
2664 *
2665 * After this completes successfully, the memory region
2666 * is ready for registration.
2667 */
2668int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2669 int data_sg_nents, unsigned int *data_sg_offset,
2670 struct scatterlist *meta_sg, int meta_sg_nents,
2671 unsigned int *meta_sg_offset, unsigned int page_size)
2672{
2673 if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2674 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2675 return -EOPNOTSUPP;
2676
2677 mr->page_size = page_size;
2678
2679 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2680 data_sg_offset, meta_sg,
2681 meta_sg_nents, meta_sg_offset);
2682}
2683EXPORT_SYMBOL(ib_map_mr_sg_pi);
2684
2685/**
2686 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2687 * and set it the memory region.
2688 * @mr: memory region
2689 * @sg: dma mapped scatterlist
2690 * @sg_nents: number of entries in sg
2691 * @sg_offset: offset in bytes into sg
2692 * @page_size: page vector desired page size
2693 *
2694 * Constraints:
2695 *
2696 * - The first sg element is allowed to have an offset.
2697 * - Each sg element must either be aligned to page_size or virtually
2698 * contiguous to the previous element. In case an sg element has a
2699 * non-contiguous offset, the mapping prefix will not include it.
2700 * - The last sg element is allowed to have length less than page_size.
2701 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2702 * then only max_num_sg entries will be mapped.
2703 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2704 * constraints holds and the page_size argument is ignored.
2705 *
2706 * Returns the number of sg elements that were mapped to the memory region.
2707 *
2708 * After this completes successfully, the memory region
2709 * is ready for registration.
2710 */
2711int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2712 unsigned int *sg_offset, unsigned int page_size)
2713{
2714 if (unlikely(!mr->device->ops.map_mr_sg))
2715 return -EOPNOTSUPP;
2716
2717 mr->page_size = page_size;
2718
2719 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2720}
2721EXPORT_SYMBOL(ib_map_mr_sg);
2722
2723/**
2724 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2725 * to a page vector
2726 * @mr: memory region
2727 * @sgl: dma mapped scatterlist
2728 * @sg_nents: number of entries in sg
2729 * @sg_offset_p: ==== =======================================================
2730 * IN start offset in bytes into sg
2731 * OUT offset in bytes for element n of the sg of the first
2732 * byte that has not been processed where n is the return
2733 * value of this function.
2734 * ==== =======================================================
2735 * @set_page: driver page assignment function pointer
2736 *
2737 * Core service helper for drivers to convert the largest
2738 * prefix of given sg list to a page vector. The sg list
2739 * prefix converted is the prefix that meet the requirements
2740 * of ib_map_mr_sg.
2741 *
2742 * Returns the number of sg elements that were assigned to
2743 * a page vector.
2744 */
2745int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2746 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2747{
2748 struct scatterlist *sg;
2749 u64 last_end_dma_addr = 0;
2750 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2751 unsigned int last_page_off = 0;
2752 u64 page_mask = ~((u64)mr->page_size - 1);
2753 int i, ret;
2754
2755 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2756 return -EINVAL;
2757
2758 mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2759 mr->length = 0;
2760
2761 for_each_sg(sgl, sg, sg_nents, i) {
2762 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2763 u64 prev_addr = dma_addr;
2764 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2765 u64 end_dma_addr = dma_addr + dma_len;
2766 u64 page_addr = dma_addr & page_mask;
2767
2768 /*
2769 * For the second and later elements, check whether either the
2770 * end of element i-1 or the start of element i is not aligned
2771 * on a page boundary.
2772 */
2773 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2774 /* Stop mapping if there is a gap. */
2775 if (last_end_dma_addr != dma_addr)
2776 break;
2777
2778 /*
2779 * Coalesce this element with the last. If it is small
2780 * enough just update mr->length. Otherwise start
2781 * mapping from the next page.
2782 */
2783 goto next_page;
2784 }
2785
2786 do {
2787 ret = set_page(mr, page_addr);
2788 if (unlikely(ret < 0)) {
2789 sg_offset = prev_addr - sg_dma_address(sg);
2790 mr->length += prev_addr - dma_addr;
2791 if (sg_offset_p)
2792 *sg_offset_p = sg_offset;
2793 return i || sg_offset ? i : ret;
2794 }
2795 prev_addr = page_addr;
2796next_page:
2797 page_addr += mr->page_size;
2798 } while (page_addr < end_dma_addr);
2799
2800 mr->length += dma_len;
2801 last_end_dma_addr = end_dma_addr;
2802 last_page_off = end_dma_addr & ~page_mask;
2803
2804 sg_offset = 0;
2805 }
2806
2807 if (sg_offset_p)
2808 *sg_offset_p = 0;
2809 return i;
2810}
2811EXPORT_SYMBOL(ib_sg_to_pages);
2812
2813struct ib_drain_cqe {
2814 struct ib_cqe cqe;
2815 struct completion done;
2816};
2817
2818static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2819{
2820 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2821 cqe);
2822
2823 complete(&cqe->done);
2824}
2825
2826/*
2827 * Post a WR and block until its completion is reaped for the SQ.
2828 */
2829static void __ib_drain_sq(struct ib_qp *qp)
2830{
2831 struct ib_cq *cq = qp->send_cq;
2832 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2833 struct ib_drain_cqe sdrain;
2834 struct ib_rdma_wr swr = {
2835 .wr = {
2836 .next = NULL,
2837 { .wr_cqe = &sdrain.cqe, },
2838 .opcode = IB_WR_RDMA_WRITE,
2839 },
2840 };
2841 int ret;
2842
2843 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2844 if (ret) {
2845 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2846 return;
2847 }
2848
2849 sdrain.cqe.done = ib_drain_qp_done;
2850 init_completion(&sdrain.done);
2851
2852 ret = ib_post_send(qp, &swr.wr, NULL);
2853 if (ret) {
2854 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2855 return;
2856 }
2857
2858 if (cq->poll_ctx == IB_POLL_DIRECT)
2859 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2860 ib_process_cq_direct(cq, -1);
2861 else
2862 wait_for_completion(&sdrain.done);
2863}
2864
2865/*
2866 * Post a WR and block until its completion is reaped for the RQ.
2867 */
2868static void __ib_drain_rq(struct ib_qp *qp)
2869{
2870 struct ib_cq *cq = qp->recv_cq;
2871 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2872 struct ib_drain_cqe rdrain;
2873 struct ib_recv_wr rwr = {};
2874 int ret;
2875
2876 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2877 if (ret) {
2878 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2879 return;
2880 }
2881
2882 rwr.wr_cqe = &rdrain.cqe;
2883 rdrain.cqe.done = ib_drain_qp_done;
2884 init_completion(&rdrain.done);
2885
2886 ret = ib_post_recv(qp, &rwr, NULL);
2887 if (ret) {
2888 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2889 return;
2890 }
2891
2892 if (cq->poll_ctx == IB_POLL_DIRECT)
2893 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2894 ib_process_cq_direct(cq, -1);
2895 else
2896 wait_for_completion(&rdrain.done);
2897}
2898
2899/*
2900 * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2901 * expires.
2902 * @qp: queue pair associated with SRQ to drain
2903 *
2904 * Quoting 10.3.1 Queue Pair and EE Context States:
2905 *
2906 * Note, for QPs that are associated with an SRQ, the Consumer should take the
2907 * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2908 * Reset State. The Consumer may invoke the Destroy QP without first performing
2909 * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2910 * Last WQE Reached Event. However, if the Consumer does not wait for the
2911 * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2912 * leakage may occur. Therefore, it is good programming practice to tear down a
2913 * QP that is associated with an SRQ by using the following process:
2914 *
2915 * - Put the QP in the Error State
2916 * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2917 * - either:
2918 * drain the CQ by invoking the Poll CQ verb and either wait for CQ
2919 * to be empty or the number of Poll CQ operations has exceeded
2920 * CQ capacity size;
2921 * - or
2922 * post another WR that completes on the same CQ and wait for this
2923 * WR to return as a WC;
2924 * - and then invoke a Destroy QP or Reset QP.
2925 *
2926 * We use the first option.
2927 */
2928static void __ib_drain_srq(struct ib_qp *qp)
2929{
2930 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2931 struct ib_cq *cq;
2932 int n, polled = 0;
2933 int ret;
2934
2935 if (!qp->srq) {
2936 WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2937 return;
2938 }
2939
2940 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2941 if (ret) {
2942 WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
2943 return;
2944 }
2945
2946 if (ib_srq_has_cq(qp->srq->srq_type)) {
2947 cq = qp->srq->ext.cq;
2948 } else if (qp->recv_cq) {
2949 cq = qp->recv_cq;
2950 } else {
2951 WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
2952 return;
2953 }
2954
2955 if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
2956 while (polled != cq->cqe) {
2957 n = ib_process_cq_direct(cq, cq->cqe - polled);
2958 if (!n)
2959 return;
2960 polled += n;
2961 }
2962 }
2963}
2964
2965/**
2966 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2967 * application.
2968 * @qp: queue pair to drain
2969 *
2970 * If the device has a provider-specific drain function, then
2971 * call that. Otherwise call the generic drain function
2972 * __ib_drain_sq().
2973 *
2974 * The caller must:
2975 *
2976 * ensure there is room in the CQ and SQ for the drain work request and
2977 * completion.
2978 *
2979 * allocate the CQ using ib_alloc_cq().
2980 *
2981 * ensure that there are no other contexts that are posting WRs concurrently.
2982 * Otherwise the drain is not guaranteed.
2983 */
2984void ib_drain_sq(struct ib_qp *qp)
2985{
2986 if (qp->device->ops.drain_sq)
2987 qp->device->ops.drain_sq(qp);
2988 else
2989 __ib_drain_sq(qp);
2990 trace_cq_drain_complete(qp->send_cq);
2991}
2992EXPORT_SYMBOL(ib_drain_sq);
2993
2994/**
2995 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2996 * application.
2997 * @qp: queue pair to drain
2998 *
2999 * If the device has a provider-specific drain function, then
3000 * call that. Otherwise call the generic drain function
3001 * __ib_drain_rq().
3002 *
3003 * The caller must:
3004 *
3005 * ensure there is room in the CQ and RQ for the drain work request and
3006 * completion.
3007 *
3008 * allocate the CQ using ib_alloc_cq().
3009 *
3010 * ensure that there are no other contexts that are posting WRs concurrently.
3011 * Otherwise the drain is not guaranteed.
3012 */
3013void ib_drain_rq(struct ib_qp *qp)
3014{
3015 if (qp->device->ops.drain_rq)
3016 qp->device->ops.drain_rq(qp);
3017 else
3018 __ib_drain_rq(qp);
3019 trace_cq_drain_complete(qp->recv_cq);
3020}
3021EXPORT_SYMBOL(ib_drain_rq);
3022
3023/**
3024 * ib_drain_qp() - Block until all CQEs have been consumed by the
3025 * application on both the RQ and SQ.
3026 * @qp: queue pair to drain
3027 *
3028 * The caller must:
3029 *
3030 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3031 * and completions.
3032 *
3033 * allocate the CQs using ib_alloc_cq().
3034 *
3035 * ensure that there are no other contexts that are posting WRs concurrently.
3036 * Otherwise the drain is not guaranteed.
3037 */
3038void ib_drain_qp(struct ib_qp *qp)
3039{
3040 ib_drain_sq(qp);
3041 if (!qp->srq)
3042 ib_drain_rq(qp);
3043 else
3044 __ib_drain_srq(qp);
3045}
3046EXPORT_SYMBOL(ib_drain_qp);
3047
3048struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3049 enum rdma_netdev_t type, const char *name,
3050 unsigned char name_assign_type,
3051 void (*setup)(struct net_device *))
3052{
3053 struct rdma_netdev_alloc_params params;
3054 struct net_device *netdev;
3055 int rc;
3056
3057 if (!device->ops.rdma_netdev_get_params)
3058 return ERR_PTR(-EOPNOTSUPP);
3059
3060 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3061 ¶ms);
3062 if (rc)
3063 return ERR_PTR(rc);
3064
3065 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3066 setup, params.txqs, params.rxqs);
3067 if (!netdev)
3068 return ERR_PTR(-ENOMEM);
3069
3070 return netdev;
3071}
3072EXPORT_SYMBOL(rdma_alloc_netdev);
3073
3074int rdma_init_netdev(struct ib_device *device, u32 port_num,
3075 enum rdma_netdev_t type, const char *name,
3076 unsigned char name_assign_type,
3077 void (*setup)(struct net_device *),
3078 struct net_device *netdev)
3079{
3080 struct rdma_netdev_alloc_params params;
3081 int rc;
3082
3083 if (!device->ops.rdma_netdev_get_params)
3084 return -EOPNOTSUPP;
3085
3086 rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3087 ¶ms);
3088 if (rc)
3089 return rc;
3090
3091 return params.initialize_rdma_netdev(device, port_num,
3092 netdev, params.param);
3093}
3094EXPORT_SYMBOL(rdma_init_netdev);
3095
3096void __rdma_block_iter_start(struct ib_block_iter *biter,
3097 struct scatterlist *sglist, unsigned int nents,
3098 unsigned long pgsz)
3099{
3100 memset(biter, 0, sizeof(struct ib_block_iter));
3101 biter->__sg = sglist;
3102 biter->__sg_nents = nents;
3103
3104 /* Driver provides best block size to use */
3105 biter->__pg_bit = __fls(pgsz);
3106}
3107EXPORT_SYMBOL(__rdma_block_iter_start);
3108
3109bool __rdma_block_iter_next(struct ib_block_iter *biter)
3110{
3111 unsigned int block_offset;
3112 unsigned int sg_delta;
3113
3114 if (!biter->__sg_nents || !biter->__sg)
3115 return false;
3116
3117 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3118 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3119 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset;
3120
3121 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) {
3122 biter->__sg_advance += sg_delta;
3123 } else {
3124 biter->__sg_advance = 0;
3125 biter->__sg = sg_next(biter->__sg);
3126 biter->__sg_nents--;
3127 }
3128
3129 return true;
3130}
3131EXPORT_SYMBOL(__rdma_block_iter_next);
3132
3133/**
3134 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3135 * for the drivers.
3136 * @descs: array of static descriptors
3137 * @num_counters: number of elements in array
3138 * @lifespan: milliseconds between updates
3139 */
3140struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3141 const struct rdma_stat_desc *descs, int num_counters,
3142 unsigned long lifespan)
3143{
3144 struct rdma_hw_stats *stats;
3145
3146 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3147 if (!stats)
3148 return NULL;
3149
3150 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3151 sizeof(*stats->is_disabled), GFP_KERNEL);
3152 if (!stats->is_disabled)
3153 goto err;
3154
3155 stats->descs = descs;
3156 stats->num_counters = num_counters;
3157 stats->lifespan = msecs_to_jiffies(lifespan);
3158 mutex_init(&stats->lock);
3159
3160 return stats;
3161
3162err:
3163 kfree(stats);
3164 return NULL;
3165}
3166EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3167
3168/**
3169 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3170 * @stats: statistics to release
3171 */
3172void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3173{
3174 if (!stats)
3175 return;
3176
3177 kfree(stats->is_disabled);
3178 kfree(stats);
3179}
3180EXPORT_SYMBOL(rdma_free_hw_stats_struct);
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#include <linux/errno.h>
40#include <linux/err.h>
41#include <linux/export.h>
42#include <linux/string.h>
43#include <linux/slab.h>
44#include <linux/in.h>
45#include <linux/in6.h>
46#include <net/addrconf.h>
47
48#include <rdma/ib_verbs.h>
49#include <rdma/ib_cache.h>
50#include <rdma/ib_addr.h>
51
52#include "core_priv.h"
53
54static const char * const ib_events[] = {
55 [IB_EVENT_CQ_ERR] = "CQ error",
56 [IB_EVENT_QP_FATAL] = "QP fatal error",
57 [IB_EVENT_QP_REQ_ERR] = "QP request error",
58 [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
59 [IB_EVENT_COMM_EST] = "communication established",
60 [IB_EVENT_SQ_DRAINED] = "send queue drained",
61 [IB_EVENT_PATH_MIG] = "path migration successful",
62 [IB_EVENT_PATH_MIG_ERR] = "path migration error",
63 [IB_EVENT_DEVICE_FATAL] = "device fatal error",
64 [IB_EVENT_PORT_ACTIVE] = "port active",
65 [IB_EVENT_PORT_ERR] = "port error",
66 [IB_EVENT_LID_CHANGE] = "LID change",
67 [IB_EVENT_PKEY_CHANGE] = "P_key change",
68 [IB_EVENT_SM_CHANGE] = "SM change",
69 [IB_EVENT_SRQ_ERR] = "SRQ error",
70 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
71 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
72 [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
73 [IB_EVENT_GID_CHANGE] = "GID changed",
74};
75
76const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
77{
78 size_t index = event;
79
80 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
81 ib_events[index] : "unrecognized event";
82}
83EXPORT_SYMBOL(ib_event_msg);
84
85static const char * const wc_statuses[] = {
86 [IB_WC_SUCCESS] = "success",
87 [IB_WC_LOC_LEN_ERR] = "local length error",
88 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
89 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
90 [IB_WC_LOC_PROT_ERR] = "local protection error",
91 [IB_WC_WR_FLUSH_ERR] = "WR flushed",
92 [IB_WC_MW_BIND_ERR] = "memory management operation error",
93 [IB_WC_BAD_RESP_ERR] = "bad response error",
94 [IB_WC_LOC_ACCESS_ERR] = "local access error",
95 [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
96 [IB_WC_REM_ACCESS_ERR] = "remote access error",
97 [IB_WC_REM_OP_ERR] = "remote operation error",
98 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
99 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
100 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
101 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
102 [IB_WC_REM_ABORT_ERR] = "operation aborted",
103 [IB_WC_INV_EECN_ERR] = "invalid EE context number",
104 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
105 [IB_WC_FATAL_ERR] = "fatal error",
106 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
107 [IB_WC_GENERAL_ERR] = "general error",
108};
109
110const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
111{
112 size_t index = status;
113
114 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
115 wc_statuses[index] : "unrecognized status";
116}
117EXPORT_SYMBOL(ib_wc_status_msg);
118
119__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
120{
121 switch (rate) {
122 case IB_RATE_2_5_GBPS: return 1;
123 case IB_RATE_5_GBPS: return 2;
124 case IB_RATE_10_GBPS: return 4;
125 case IB_RATE_20_GBPS: return 8;
126 case IB_RATE_30_GBPS: return 12;
127 case IB_RATE_40_GBPS: return 16;
128 case IB_RATE_60_GBPS: return 24;
129 case IB_RATE_80_GBPS: return 32;
130 case IB_RATE_120_GBPS: return 48;
131 default: return -1;
132 }
133}
134EXPORT_SYMBOL(ib_rate_to_mult);
135
136__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
137{
138 switch (mult) {
139 case 1: return IB_RATE_2_5_GBPS;
140 case 2: return IB_RATE_5_GBPS;
141 case 4: return IB_RATE_10_GBPS;
142 case 8: return IB_RATE_20_GBPS;
143 case 12: return IB_RATE_30_GBPS;
144 case 16: return IB_RATE_40_GBPS;
145 case 24: return IB_RATE_60_GBPS;
146 case 32: return IB_RATE_80_GBPS;
147 case 48: return IB_RATE_120_GBPS;
148 default: return IB_RATE_PORT_CURRENT;
149 }
150}
151EXPORT_SYMBOL(mult_to_ib_rate);
152
153__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
154{
155 switch (rate) {
156 case IB_RATE_2_5_GBPS: return 2500;
157 case IB_RATE_5_GBPS: return 5000;
158 case IB_RATE_10_GBPS: return 10000;
159 case IB_RATE_20_GBPS: return 20000;
160 case IB_RATE_30_GBPS: return 30000;
161 case IB_RATE_40_GBPS: return 40000;
162 case IB_RATE_60_GBPS: return 60000;
163 case IB_RATE_80_GBPS: return 80000;
164 case IB_RATE_120_GBPS: return 120000;
165 case IB_RATE_14_GBPS: return 14062;
166 case IB_RATE_56_GBPS: return 56250;
167 case IB_RATE_112_GBPS: return 112500;
168 case IB_RATE_168_GBPS: return 168750;
169 case IB_RATE_25_GBPS: return 25781;
170 case IB_RATE_100_GBPS: return 103125;
171 case IB_RATE_200_GBPS: return 206250;
172 case IB_RATE_300_GBPS: return 309375;
173 default: return -1;
174 }
175}
176EXPORT_SYMBOL(ib_rate_to_mbps);
177
178__attribute_const__ enum rdma_transport_type
179rdma_node_get_transport(enum rdma_node_type node_type)
180{
181 switch (node_type) {
182 case RDMA_NODE_IB_CA:
183 case RDMA_NODE_IB_SWITCH:
184 case RDMA_NODE_IB_ROUTER:
185 return RDMA_TRANSPORT_IB;
186 case RDMA_NODE_RNIC:
187 return RDMA_TRANSPORT_IWARP;
188 case RDMA_NODE_USNIC:
189 return RDMA_TRANSPORT_USNIC;
190 case RDMA_NODE_USNIC_UDP:
191 return RDMA_TRANSPORT_USNIC_UDP;
192 default:
193 BUG();
194 return 0;
195 }
196}
197EXPORT_SYMBOL(rdma_node_get_transport);
198
199enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
200{
201 if (device->get_link_layer)
202 return device->get_link_layer(device, port_num);
203
204 switch (rdma_node_get_transport(device->node_type)) {
205 case RDMA_TRANSPORT_IB:
206 return IB_LINK_LAYER_INFINIBAND;
207 case RDMA_TRANSPORT_IWARP:
208 case RDMA_TRANSPORT_USNIC:
209 case RDMA_TRANSPORT_USNIC_UDP:
210 return IB_LINK_LAYER_ETHERNET;
211 default:
212 return IB_LINK_LAYER_UNSPECIFIED;
213 }
214}
215EXPORT_SYMBOL(rdma_port_get_link_layer);
216
217/* Protection domains */
218
219/**
220 * ib_alloc_pd - Allocates an unused protection domain.
221 * @device: The device on which to allocate the protection domain.
222 *
223 * A protection domain object provides an association between QPs, shared
224 * receive queues, address handles, memory regions, and memory windows.
225 *
226 * Every PD has a local_dma_lkey which can be used as the lkey value for local
227 * memory operations.
228 */
229struct ib_pd *ib_alloc_pd(struct ib_device *device)
230{
231 struct ib_pd *pd;
232
233 pd = device->alloc_pd(device, NULL, NULL);
234 if (IS_ERR(pd))
235 return pd;
236
237 pd->device = device;
238 pd->uobject = NULL;
239 pd->local_mr = NULL;
240 atomic_set(&pd->usecnt, 0);
241
242 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
243 pd->local_dma_lkey = device->local_dma_lkey;
244 else {
245 struct ib_mr *mr;
246
247 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
248 if (IS_ERR(mr)) {
249 ib_dealloc_pd(pd);
250 return (struct ib_pd *)mr;
251 }
252
253 pd->local_mr = mr;
254 pd->local_dma_lkey = pd->local_mr->lkey;
255 }
256 return pd;
257}
258EXPORT_SYMBOL(ib_alloc_pd);
259
260/**
261 * ib_dealloc_pd - Deallocates a protection domain.
262 * @pd: The protection domain to deallocate.
263 *
264 * It is an error to call this function while any resources in the pd still
265 * exist. The caller is responsible to synchronously destroy them and
266 * guarantee no new allocations will happen.
267 */
268void ib_dealloc_pd(struct ib_pd *pd)
269{
270 int ret;
271
272 if (pd->local_mr) {
273 ret = ib_dereg_mr(pd->local_mr);
274 WARN_ON(ret);
275 pd->local_mr = NULL;
276 }
277
278 /* uverbs manipulates usecnt with proper locking, while the kabi
279 requires the caller to guarantee we can't race here. */
280 WARN_ON(atomic_read(&pd->usecnt));
281
282 /* Making delalloc_pd a void return is a WIP, no driver should return
283 an error here. */
284 ret = pd->device->dealloc_pd(pd);
285 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
286}
287EXPORT_SYMBOL(ib_dealloc_pd);
288
289/* Address handles */
290
291struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
292{
293 struct ib_ah *ah;
294
295 ah = pd->device->create_ah(pd, ah_attr);
296
297 if (!IS_ERR(ah)) {
298 ah->device = pd->device;
299 ah->pd = pd;
300 ah->uobject = NULL;
301 atomic_inc(&pd->usecnt);
302 }
303
304 return ah;
305}
306EXPORT_SYMBOL(ib_create_ah);
307
308static int ib_get_header_version(const union rdma_network_hdr *hdr)
309{
310 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
311 struct iphdr ip4h_checked;
312 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
313
314 /* If it's IPv6, the version must be 6, otherwise, the first
315 * 20 bytes (before the IPv4 header) are garbled.
316 */
317 if (ip6h->version != 6)
318 return (ip4h->version == 4) ? 4 : 0;
319 /* version may be 6 or 4 because the first 20 bytes could be garbled */
320
321 /* RoCE v2 requires no options, thus header length
322 * must be 5 words
323 */
324 if (ip4h->ihl != 5)
325 return 6;
326
327 /* Verify checksum.
328 * We can't write on scattered buffers so we need to copy to
329 * temp buffer.
330 */
331 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
332 ip4h_checked.check = 0;
333 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
334 /* if IPv4 header checksum is OK, believe it */
335 if (ip4h->check == ip4h_checked.check)
336 return 4;
337 return 6;
338}
339
340static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
341 u8 port_num,
342 const struct ib_grh *grh)
343{
344 int grh_version;
345
346 if (rdma_protocol_ib(device, port_num))
347 return RDMA_NETWORK_IB;
348
349 grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
350
351 if (grh_version == 4)
352 return RDMA_NETWORK_IPV4;
353
354 if (grh->next_hdr == IPPROTO_UDP)
355 return RDMA_NETWORK_IPV6;
356
357 return RDMA_NETWORK_ROCE_V1;
358}
359
360struct find_gid_index_context {
361 u16 vlan_id;
362 enum ib_gid_type gid_type;
363};
364
365static bool find_gid_index(const union ib_gid *gid,
366 const struct ib_gid_attr *gid_attr,
367 void *context)
368{
369 struct find_gid_index_context *ctx =
370 (struct find_gid_index_context *)context;
371
372 if (ctx->gid_type != gid_attr->gid_type)
373 return false;
374
375 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
376 (is_vlan_dev(gid_attr->ndev) &&
377 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
378 return false;
379
380 return true;
381}
382
383static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
384 u16 vlan_id, const union ib_gid *sgid,
385 enum ib_gid_type gid_type,
386 u16 *gid_index)
387{
388 struct find_gid_index_context context = {.vlan_id = vlan_id,
389 .gid_type = gid_type};
390
391 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
392 &context, gid_index);
393}
394
395static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
396 enum rdma_network_type net_type,
397 union ib_gid *sgid, union ib_gid *dgid)
398{
399 struct sockaddr_in src_in;
400 struct sockaddr_in dst_in;
401 __be32 src_saddr, dst_saddr;
402
403 if (!sgid || !dgid)
404 return -EINVAL;
405
406 if (net_type == RDMA_NETWORK_IPV4) {
407 memcpy(&src_in.sin_addr.s_addr,
408 &hdr->roce4grh.saddr, 4);
409 memcpy(&dst_in.sin_addr.s_addr,
410 &hdr->roce4grh.daddr, 4);
411 src_saddr = src_in.sin_addr.s_addr;
412 dst_saddr = dst_in.sin_addr.s_addr;
413 ipv6_addr_set_v4mapped(src_saddr,
414 (struct in6_addr *)sgid);
415 ipv6_addr_set_v4mapped(dst_saddr,
416 (struct in6_addr *)dgid);
417 return 0;
418 } else if (net_type == RDMA_NETWORK_IPV6 ||
419 net_type == RDMA_NETWORK_IB) {
420 *dgid = hdr->ibgrh.dgid;
421 *sgid = hdr->ibgrh.sgid;
422 return 0;
423 } else {
424 return -EINVAL;
425 }
426}
427
428int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
429 const struct ib_wc *wc, const struct ib_grh *grh,
430 struct ib_ah_attr *ah_attr)
431{
432 u32 flow_class;
433 u16 gid_index;
434 int ret;
435 enum rdma_network_type net_type = RDMA_NETWORK_IB;
436 enum ib_gid_type gid_type = IB_GID_TYPE_IB;
437 int hoplimit = 0xff;
438 union ib_gid dgid;
439 union ib_gid sgid;
440
441 memset(ah_attr, 0, sizeof *ah_attr);
442 if (rdma_cap_eth_ah(device, port_num)) {
443 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
444 net_type = wc->network_hdr_type;
445 else
446 net_type = ib_get_net_type_by_grh(device, port_num, grh);
447 gid_type = ib_network_to_gid_type(net_type);
448 }
449 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
450 &sgid, &dgid);
451 if (ret)
452 return ret;
453
454 if (rdma_protocol_roce(device, port_num)) {
455 int if_index = 0;
456 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
457 wc->vlan_id : 0xffff;
458 struct net_device *idev;
459 struct net_device *resolved_dev;
460
461 if (!(wc->wc_flags & IB_WC_GRH))
462 return -EPROTOTYPE;
463
464 if (!device->get_netdev)
465 return -EOPNOTSUPP;
466
467 idev = device->get_netdev(device, port_num);
468 if (!idev)
469 return -ENODEV;
470
471 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
472 ah_attr->dmac,
473 wc->wc_flags & IB_WC_WITH_VLAN ?
474 NULL : &vlan_id,
475 &if_index, &hoplimit);
476 if (ret) {
477 dev_put(idev);
478 return ret;
479 }
480
481 resolved_dev = dev_get_by_index(&init_net, if_index);
482 if (resolved_dev->flags & IFF_LOOPBACK) {
483 dev_put(resolved_dev);
484 resolved_dev = idev;
485 dev_hold(resolved_dev);
486 }
487 rcu_read_lock();
488 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
489 resolved_dev))
490 ret = -EHOSTUNREACH;
491 rcu_read_unlock();
492 dev_put(idev);
493 dev_put(resolved_dev);
494 if (ret)
495 return ret;
496
497 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
498 &dgid, gid_type, &gid_index);
499 if (ret)
500 return ret;
501 }
502
503 ah_attr->dlid = wc->slid;
504 ah_attr->sl = wc->sl;
505 ah_attr->src_path_bits = wc->dlid_path_bits;
506 ah_attr->port_num = port_num;
507
508 if (wc->wc_flags & IB_WC_GRH) {
509 ah_attr->ah_flags = IB_AH_GRH;
510 ah_attr->grh.dgid = sgid;
511
512 if (!rdma_cap_eth_ah(device, port_num)) {
513 ret = ib_find_cached_gid_by_port(device, &dgid,
514 IB_GID_TYPE_IB,
515 port_num, NULL,
516 &gid_index);
517 if (ret)
518 return ret;
519 }
520
521 ah_attr->grh.sgid_index = (u8) gid_index;
522 flow_class = be32_to_cpu(grh->version_tclass_flow);
523 ah_attr->grh.flow_label = flow_class & 0xFFFFF;
524 ah_attr->grh.hop_limit = hoplimit;
525 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
526 }
527 return 0;
528}
529EXPORT_SYMBOL(ib_init_ah_from_wc);
530
531struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
532 const struct ib_grh *grh, u8 port_num)
533{
534 struct ib_ah_attr ah_attr;
535 int ret;
536
537 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
538 if (ret)
539 return ERR_PTR(ret);
540
541 return ib_create_ah(pd, &ah_attr);
542}
543EXPORT_SYMBOL(ib_create_ah_from_wc);
544
545int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
546{
547 return ah->device->modify_ah ?
548 ah->device->modify_ah(ah, ah_attr) :
549 -ENOSYS;
550}
551EXPORT_SYMBOL(ib_modify_ah);
552
553int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
554{
555 return ah->device->query_ah ?
556 ah->device->query_ah(ah, ah_attr) :
557 -ENOSYS;
558}
559EXPORT_SYMBOL(ib_query_ah);
560
561int ib_destroy_ah(struct ib_ah *ah)
562{
563 struct ib_pd *pd;
564 int ret;
565
566 pd = ah->pd;
567 ret = ah->device->destroy_ah(ah);
568 if (!ret)
569 atomic_dec(&pd->usecnt);
570
571 return ret;
572}
573EXPORT_SYMBOL(ib_destroy_ah);
574
575/* Shared receive queues */
576
577struct ib_srq *ib_create_srq(struct ib_pd *pd,
578 struct ib_srq_init_attr *srq_init_attr)
579{
580 struct ib_srq *srq;
581
582 if (!pd->device->create_srq)
583 return ERR_PTR(-ENOSYS);
584
585 srq = pd->device->create_srq(pd, srq_init_attr, NULL);
586
587 if (!IS_ERR(srq)) {
588 srq->device = pd->device;
589 srq->pd = pd;
590 srq->uobject = NULL;
591 srq->event_handler = srq_init_attr->event_handler;
592 srq->srq_context = srq_init_attr->srq_context;
593 srq->srq_type = srq_init_attr->srq_type;
594 if (srq->srq_type == IB_SRQT_XRC) {
595 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
596 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq;
597 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
598 atomic_inc(&srq->ext.xrc.cq->usecnt);
599 }
600 atomic_inc(&pd->usecnt);
601 atomic_set(&srq->usecnt, 0);
602 }
603
604 return srq;
605}
606EXPORT_SYMBOL(ib_create_srq);
607
608int ib_modify_srq(struct ib_srq *srq,
609 struct ib_srq_attr *srq_attr,
610 enum ib_srq_attr_mask srq_attr_mask)
611{
612 return srq->device->modify_srq ?
613 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
614 -ENOSYS;
615}
616EXPORT_SYMBOL(ib_modify_srq);
617
618int ib_query_srq(struct ib_srq *srq,
619 struct ib_srq_attr *srq_attr)
620{
621 return srq->device->query_srq ?
622 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
623}
624EXPORT_SYMBOL(ib_query_srq);
625
626int ib_destroy_srq(struct ib_srq *srq)
627{
628 struct ib_pd *pd;
629 enum ib_srq_type srq_type;
630 struct ib_xrcd *uninitialized_var(xrcd);
631 struct ib_cq *uninitialized_var(cq);
632 int ret;
633
634 if (atomic_read(&srq->usecnt))
635 return -EBUSY;
636
637 pd = srq->pd;
638 srq_type = srq->srq_type;
639 if (srq_type == IB_SRQT_XRC) {
640 xrcd = srq->ext.xrc.xrcd;
641 cq = srq->ext.xrc.cq;
642 }
643
644 ret = srq->device->destroy_srq(srq);
645 if (!ret) {
646 atomic_dec(&pd->usecnt);
647 if (srq_type == IB_SRQT_XRC) {
648 atomic_dec(&xrcd->usecnt);
649 atomic_dec(&cq->usecnt);
650 }
651 }
652
653 return ret;
654}
655EXPORT_SYMBOL(ib_destroy_srq);
656
657/* Queue pairs */
658
659static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
660{
661 struct ib_qp *qp = context;
662 unsigned long flags;
663
664 spin_lock_irqsave(&qp->device->event_handler_lock, flags);
665 list_for_each_entry(event->element.qp, &qp->open_list, open_list)
666 if (event->element.qp->event_handler)
667 event->element.qp->event_handler(event, event->element.qp->qp_context);
668 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
669}
670
671static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
672{
673 mutex_lock(&xrcd->tgt_qp_mutex);
674 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
675 mutex_unlock(&xrcd->tgt_qp_mutex);
676}
677
678static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
679 void (*event_handler)(struct ib_event *, void *),
680 void *qp_context)
681{
682 struct ib_qp *qp;
683 unsigned long flags;
684
685 qp = kzalloc(sizeof *qp, GFP_KERNEL);
686 if (!qp)
687 return ERR_PTR(-ENOMEM);
688
689 qp->real_qp = real_qp;
690 atomic_inc(&real_qp->usecnt);
691 qp->device = real_qp->device;
692 qp->event_handler = event_handler;
693 qp->qp_context = qp_context;
694 qp->qp_num = real_qp->qp_num;
695 qp->qp_type = real_qp->qp_type;
696
697 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
698 list_add(&qp->open_list, &real_qp->open_list);
699 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
700
701 return qp;
702}
703
704struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
705 struct ib_qp_open_attr *qp_open_attr)
706{
707 struct ib_qp *qp, *real_qp;
708
709 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
710 return ERR_PTR(-EINVAL);
711
712 qp = ERR_PTR(-EINVAL);
713 mutex_lock(&xrcd->tgt_qp_mutex);
714 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
715 if (real_qp->qp_num == qp_open_attr->qp_num) {
716 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
717 qp_open_attr->qp_context);
718 break;
719 }
720 }
721 mutex_unlock(&xrcd->tgt_qp_mutex);
722 return qp;
723}
724EXPORT_SYMBOL(ib_open_qp);
725
726struct ib_qp *ib_create_qp(struct ib_pd *pd,
727 struct ib_qp_init_attr *qp_init_attr)
728{
729 struct ib_qp *qp, *real_qp;
730 struct ib_device *device;
731
732 device = pd ? pd->device : qp_init_attr->xrcd->device;
733 qp = device->create_qp(pd, qp_init_attr, NULL);
734
735 if (!IS_ERR(qp)) {
736 qp->device = device;
737 qp->real_qp = qp;
738 qp->uobject = NULL;
739 qp->qp_type = qp_init_attr->qp_type;
740
741 atomic_set(&qp->usecnt, 0);
742 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
743 qp->event_handler = __ib_shared_qp_event_handler;
744 qp->qp_context = qp;
745 qp->pd = NULL;
746 qp->send_cq = qp->recv_cq = NULL;
747 qp->srq = NULL;
748 qp->xrcd = qp_init_attr->xrcd;
749 atomic_inc(&qp_init_attr->xrcd->usecnt);
750 INIT_LIST_HEAD(&qp->open_list);
751
752 real_qp = qp;
753 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
754 qp_init_attr->qp_context);
755 if (!IS_ERR(qp))
756 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
757 else
758 real_qp->device->destroy_qp(real_qp);
759 } else {
760 qp->event_handler = qp_init_attr->event_handler;
761 qp->qp_context = qp_init_attr->qp_context;
762 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
763 qp->recv_cq = NULL;
764 qp->srq = NULL;
765 } else {
766 qp->recv_cq = qp_init_attr->recv_cq;
767 atomic_inc(&qp_init_attr->recv_cq->usecnt);
768 qp->srq = qp_init_attr->srq;
769 if (qp->srq)
770 atomic_inc(&qp_init_attr->srq->usecnt);
771 }
772
773 qp->pd = pd;
774 qp->send_cq = qp_init_attr->send_cq;
775 qp->xrcd = NULL;
776
777 atomic_inc(&pd->usecnt);
778 atomic_inc(&qp_init_attr->send_cq->usecnt);
779 }
780 }
781
782 return qp;
783}
784EXPORT_SYMBOL(ib_create_qp);
785
786static const struct {
787 int valid;
788 enum ib_qp_attr_mask req_param[IB_QPT_MAX];
789 enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
790} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
791 [IB_QPS_RESET] = {
792 [IB_QPS_RESET] = { .valid = 1 },
793 [IB_QPS_INIT] = {
794 .valid = 1,
795 .req_param = {
796 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
797 IB_QP_PORT |
798 IB_QP_QKEY),
799 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
800 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
801 IB_QP_PORT |
802 IB_QP_ACCESS_FLAGS),
803 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
804 IB_QP_PORT |
805 IB_QP_ACCESS_FLAGS),
806 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
807 IB_QP_PORT |
808 IB_QP_ACCESS_FLAGS),
809 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
810 IB_QP_PORT |
811 IB_QP_ACCESS_FLAGS),
812 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
813 IB_QP_QKEY),
814 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
815 IB_QP_QKEY),
816 }
817 },
818 },
819 [IB_QPS_INIT] = {
820 [IB_QPS_RESET] = { .valid = 1 },
821 [IB_QPS_ERR] = { .valid = 1 },
822 [IB_QPS_INIT] = {
823 .valid = 1,
824 .opt_param = {
825 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
826 IB_QP_PORT |
827 IB_QP_QKEY),
828 [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
829 IB_QP_PORT |
830 IB_QP_ACCESS_FLAGS),
831 [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
832 IB_QP_PORT |
833 IB_QP_ACCESS_FLAGS),
834 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
835 IB_QP_PORT |
836 IB_QP_ACCESS_FLAGS),
837 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
838 IB_QP_PORT |
839 IB_QP_ACCESS_FLAGS),
840 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
841 IB_QP_QKEY),
842 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
843 IB_QP_QKEY),
844 }
845 },
846 [IB_QPS_RTR] = {
847 .valid = 1,
848 .req_param = {
849 [IB_QPT_UC] = (IB_QP_AV |
850 IB_QP_PATH_MTU |
851 IB_QP_DEST_QPN |
852 IB_QP_RQ_PSN),
853 [IB_QPT_RC] = (IB_QP_AV |
854 IB_QP_PATH_MTU |
855 IB_QP_DEST_QPN |
856 IB_QP_RQ_PSN |
857 IB_QP_MAX_DEST_RD_ATOMIC |
858 IB_QP_MIN_RNR_TIMER),
859 [IB_QPT_XRC_INI] = (IB_QP_AV |
860 IB_QP_PATH_MTU |
861 IB_QP_DEST_QPN |
862 IB_QP_RQ_PSN),
863 [IB_QPT_XRC_TGT] = (IB_QP_AV |
864 IB_QP_PATH_MTU |
865 IB_QP_DEST_QPN |
866 IB_QP_RQ_PSN |
867 IB_QP_MAX_DEST_RD_ATOMIC |
868 IB_QP_MIN_RNR_TIMER),
869 },
870 .opt_param = {
871 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
872 IB_QP_QKEY),
873 [IB_QPT_UC] = (IB_QP_ALT_PATH |
874 IB_QP_ACCESS_FLAGS |
875 IB_QP_PKEY_INDEX),
876 [IB_QPT_RC] = (IB_QP_ALT_PATH |
877 IB_QP_ACCESS_FLAGS |
878 IB_QP_PKEY_INDEX),
879 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
880 IB_QP_ACCESS_FLAGS |
881 IB_QP_PKEY_INDEX),
882 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
883 IB_QP_ACCESS_FLAGS |
884 IB_QP_PKEY_INDEX),
885 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
886 IB_QP_QKEY),
887 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
888 IB_QP_QKEY),
889 },
890 },
891 },
892 [IB_QPS_RTR] = {
893 [IB_QPS_RESET] = { .valid = 1 },
894 [IB_QPS_ERR] = { .valid = 1 },
895 [IB_QPS_RTS] = {
896 .valid = 1,
897 .req_param = {
898 [IB_QPT_UD] = IB_QP_SQ_PSN,
899 [IB_QPT_UC] = IB_QP_SQ_PSN,
900 [IB_QPT_RC] = (IB_QP_TIMEOUT |
901 IB_QP_RETRY_CNT |
902 IB_QP_RNR_RETRY |
903 IB_QP_SQ_PSN |
904 IB_QP_MAX_QP_RD_ATOMIC),
905 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
906 IB_QP_RETRY_CNT |
907 IB_QP_RNR_RETRY |
908 IB_QP_SQ_PSN |
909 IB_QP_MAX_QP_RD_ATOMIC),
910 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
911 IB_QP_SQ_PSN),
912 [IB_QPT_SMI] = IB_QP_SQ_PSN,
913 [IB_QPT_GSI] = IB_QP_SQ_PSN,
914 },
915 .opt_param = {
916 [IB_QPT_UD] = (IB_QP_CUR_STATE |
917 IB_QP_QKEY),
918 [IB_QPT_UC] = (IB_QP_CUR_STATE |
919 IB_QP_ALT_PATH |
920 IB_QP_ACCESS_FLAGS |
921 IB_QP_PATH_MIG_STATE),
922 [IB_QPT_RC] = (IB_QP_CUR_STATE |
923 IB_QP_ALT_PATH |
924 IB_QP_ACCESS_FLAGS |
925 IB_QP_MIN_RNR_TIMER |
926 IB_QP_PATH_MIG_STATE),
927 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
928 IB_QP_ALT_PATH |
929 IB_QP_ACCESS_FLAGS |
930 IB_QP_PATH_MIG_STATE),
931 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
932 IB_QP_ALT_PATH |
933 IB_QP_ACCESS_FLAGS |
934 IB_QP_MIN_RNR_TIMER |
935 IB_QP_PATH_MIG_STATE),
936 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
937 IB_QP_QKEY),
938 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
939 IB_QP_QKEY),
940 }
941 }
942 },
943 [IB_QPS_RTS] = {
944 [IB_QPS_RESET] = { .valid = 1 },
945 [IB_QPS_ERR] = { .valid = 1 },
946 [IB_QPS_RTS] = {
947 .valid = 1,
948 .opt_param = {
949 [IB_QPT_UD] = (IB_QP_CUR_STATE |
950 IB_QP_QKEY),
951 [IB_QPT_UC] = (IB_QP_CUR_STATE |
952 IB_QP_ACCESS_FLAGS |
953 IB_QP_ALT_PATH |
954 IB_QP_PATH_MIG_STATE),
955 [IB_QPT_RC] = (IB_QP_CUR_STATE |
956 IB_QP_ACCESS_FLAGS |
957 IB_QP_ALT_PATH |
958 IB_QP_PATH_MIG_STATE |
959 IB_QP_MIN_RNR_TIMER),
960 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
961 IB_QP_ACCESS_FLAGS |
962 IB_QP_ALT_PATH |
963 IB_QP_PATH_MIG_STATE),
964 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
965 IB_QP_ACCESS_FLAGS |
966 IB_QP_ALT_PATH |
967 IB_QP_PATH_MIG_STATE |
968 IB_QP_MIN_RNR_TIMER),
969 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
970 IB_QP_QKEY),
971 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
972 IB_QP_QKEY),
973 }
974 },
975 [IB_QPS_SQD] = {
976 .valid = 1,
977 .opt_param = {
978 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
979 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
980 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
981 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
982 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
983 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
984 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
985 }
986 },
987 },
988 [IB_QPS_SQD] = {
989 [IB_QPS_RESET] = { .valid = 1 },
990 [IB_QPS_ERR] = { .valid = 1 },
991 [IB_QPS_RTS] = {
992 .valid = 1,
993 .opt_param = {
994 [IB_QPT_UD] = (IB_QP_CUR_STATE |
995 IB_QP_QKEY),
996 [IB_QPT_UC] = (IB_QP_CUR_STATE |
997 IB_QP_ALT_PATH |
998 IB_QP_ACCESS_FLAGS |
999 IB_QP_PATH_MIG_STATE),
1000 [IB_QPT_RC] = (IB_QP_CUR_STATE |
1001 IB_QP_ALT_PATH |
1002 IB_QP_ACCESS_FLAGS |
1003 IB_QP_MIN_RNR_TIMER |
1004 IB_QP_PATH_MIG_STATE),
1005 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
1006 IB_QP_ALT_PATH |
1007 IB_QP_ACCESS_FLAGS |
1008 IB_QP_PATH_MIG_STATE),
1009 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
1010 IB_QP_ALT_PATH |
1011 IB_QP_ACCESS_FLAGS |
1012 IB_QP_MIN_RNR_TIMER |
1013 IB_QP_PATH_MIG_STATE),
1014 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1015 IB_QP_QKEY),
1016 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1017 IB_QP_QKEY),
1018 }
1019 },
1020 [IB_QPS_SQD] = {
1021 .valid = 1,
1022 .opt_param = {
1023 [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
1024 IB_QP_QKEY),
1025 [IB_QPT_UC] = (IB_QP_AV |
1026 IB_QP_ALT_PATH |
1027 IB_QP_ACCESS_FLAGS |
1028 IB_QP_PKEY_INDEX |
1029 IB_QP_PATH_MIG_STATE),
1030 [IB_QPT_RC] = (IB_QP_PORT |
1031 IB_QP_AV |
1032 IB_QP_TIMEOUT |
1033 IB_QP_RETRY_CNT |
1034 IB_QP_RNR_RETRY |
1035 IB_QP_MAX_QP_RD_ATOMIC |
1036 IB_QP_MAX_DEST_RD_ATOMIC |
1037 IB_QP_ALT_PATH |
1038 IB_QP_ACCESS_FLAGS |
1039 IB_QP_PKEY_INDEX |
1040 IB_QP_MIN_RNR_TIMER |
1041 IB_QP_PATH_MIG_STATE),
1042 [IB_QPT_XRC_INI] = (IB_QP_PORT |
1043 IB_QP_AV |
1044 IB_QP_TIMEOUT |
1045 IB_QP_RETRY_CNT |
1046 IB_QP_RNR_RETRY |
1047 IB_QP_MAX_QP_RD_ATOMIC |
1048 IB_QP_ALT_PATH |
1049 IB_QP_ACCESS_FLAGS |
1050 IB_QP_PKEY_INDEX |
1051 IB_QP_PATH_MIG_STATE),
1052 [IB_QPT_XRC_TGT] = (IB_QP_PORT |
1053 IB_QP_AV |
1054 IB_QP_TIMEOUT |
1055 IB_QP_MAX_DEST_RD_ATOMIC |
1056 IB_QP_ALT_PATH |
1057 IB_QP_ACCESS_FLAGS |
1058 IB_QP_PKEY_INDEX |
1059 IB_QP_MIN_RNR_TIMER |
1060 IB_QP_PATH_MIG_STATE),
1061 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
1062 IB_QP_QKEY),
1063 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
1064 IB_QP_QKEY),
1065 }
1066 }
1067 },
1068 [IB_QPS_SQE] = {
1069 [IB_QPS_RESET] = { .valid = 1 },
1070 [IB_QPS_ERR] = { .valid = 1 },
1071 [IB_QPS_RTS] = {
1072 .valid = 1,
1073 .opt_param = {
1074 [IB_QPT_UD] = (IB_QP_CUR_STATE |
1075 IB_QP_QKEY),
1076 [IB_QPT_UC] = (IB_QP_CUR_STATE |
1077 IB_QP_ACCESS_FLAGS),
1078 [IB_QPT_SMI] = (IB_QP_CUR_STATE |
1079 IB_QP_QKEY),
1080 [IB_QPT_GSI] = (IB_QP_CUR_STATE |
1081 IB_QP_QKEY),
1082 }
1083 }
1084 },
1085 [IB_QPS_ERR] = {
1086 [IB_QPS_RESET] = { .valid = 1 },
1087 [IB_QPS_ERR] = { .valid = 1 }
1088 }
1089};
1090
1091int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1092 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1093 enum rdma_link_layer ll)
1094{
1095 enum ib_qp_attr_mask req_param, opt_param;
1096
1097 if (cur_state < 0 || cur_state > IB_QPS_ERR ||
1098 next_state < 0 || next_state > IB_QPS_ERR)
1099 return 0;
1100
1101 if (mask & IB_QP_CUR_STATE &&
1102 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1103 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1104 return 0;
1105
1106 if (!qp_state_table[cur_state][next_state].valid)
1107 return 0;
1108
1109 req_param = qp_state_table[cur_state][next_state].req_param[type];
1110 opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1111
1112 if ((mask & req_param) != req_param)
1113 return 0;
1114
1115 if (mask & ~(req_param | opt_param | IB_QP_STATE))
1116 return 0;
1117
1118 return 1;
1119}
1120EXPORT_SYMBOL(ib_modify_qp_is_ok);
1121
1122int ib_resolve_eth_dmac(struct ib_qp *qp,
1123 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1124{
1125 int ret = 0;
1126
1127 if (*qp_attr_mask & IB_QP_AV) {
1128 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1129 qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1130 return -EINVAL;
1131
1132 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1133 return 0;
1134
1135 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1136 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1137 qp_attr->ah_attr.dmac);
1138 } else {
1139 union ib_gid sgid;
1140 struct ib_gid_attr sgid_attr;
1141 int ifindex;
1142 int hop_limit;
1143
1144 ret = ib_query_gid(qp->device,
1145 qp_attr->ah_attr.port_num,
1146 qp_attr->ah_attr.grh.sgid_index,
1147 &sgid, &sgid_attr);
1148
1149 if (ret || !sgid_attr.ndev) {
1150 if (!ret)
1151 ret = -ENXIO;
1152 goto out;
1153 }
1154
1155 ifindex = sgid_attr.ndev->ifindex;
1156
1157 ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1158 &qp_attr->ah_attr.grh.dgid,
1159 qp_attr->ah_attr.dmac,
1160 NULL, &ifindex, &hop_limit);
1161
1162 dev_put(sgid_attr.ndev);
1163
1164 qp_attr->ah_attr.grh.hop_limit = hop_limit;
1165 }
1166 }
1167out:
1168 return ret;
1169}
1170EXPORT_SYMBOL(ib_resolve_eth_dmac);
1171
1172
1173int ib_modify_qp(struct ib_qp *qp,
1174 struct ib_qp_attr *qp_attr,
1175 int qp_attr_mask)
1176{
1177 int ret;
1178
1179 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1180 if (ret)
1181 return ret;
1182
1183 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1184}
1185EXPORT_SYMBOL(ib_modify_qp);
1186
1187int ib_query_qp(struct ib_qp *qp,
1188 struct ib_qp_attr *qp_attr,
1189 int qp_attr_mask,
1190 struct ib_qp_init_attr *qp_init_attr)
1191{
1192 return qp->device->query_qp ?
1193 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1194 -ENOSYS;
1195}
1196EXPORT_SYMBOL(ib_query_qp);
1197
1198int ib_close_qp(struct ib_qp *qp)
1199{
1200 struct ib_qp *real_qp;
1201 unsigned long flags;
1202
1203 real_qp = qp->real_qp;
1204 if (real_qp == qp)
1205 return -EINVAL;
1206
1207 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1208 list_del(&qp->open_list);
1209 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1210
1211 atomic_dec(&real_qp->usecnt);
1212 kfree(qp);
1213
1214 return 0;
1215}
1216EXPORT_SYMBOL(ib_close_qp);
1217
1218static int __ib_destroy_shared_qp(struct ib_qp *qp)
1219{
1220 struct ib_xrcd *xrcd;
1221 struct ib_qp *real_qp;
1222 int ret;
1223
1224 real_qp = qp->real_qp;
1225 xrcd = real_qp->xrcd;
1226
1227 mutex_lock(&xrcd->tgt_qp_mutex);
1228 ib_close_qp(qp);
1229 if (atomic_read(&real_qp->usecnt) == 0)
1230 list_del(&real_qp->xrcd_list);
1231 else
1232 real_qp = NULL;
1233 mutex_unlock(&xrcd->tgt_qp_mutex);
1234
1235 if (real_qp) {
1236 ret = ib_destroy_qp(real_qp);
1237 if (!ret)
1238 atomic_dec(&xrcd->usecnt);
1239 else
1240 __ib_insert_xrcd_qp(xrcd, real_qp);
1241 }
1242
1243 return 0;
1244}
1245
1246int ib_destroy_qp(struct ib_qp *qp)
1247{
1248 struct ib_pd *pd;
1249 struct ib_cq *scq, *rcq;
1250 struct ib_srq *srq;
1251 int ret;
1252
1253 if (atomic_read(&qp->usecnt))
1254 return -EBUSY;
1255
1256 if (qp->real_qp != qp)
1257 return __ib_destroy_shared_qp(qp);
1258
1259 pd = qp->pd;
1260 scq = qp->send_cq;
1261 rcq = qp->recv_cq;
1262 srq = qp->srq;
1263
1264 ret = qp->device->destroy_qp(qp);
1265 if (!ret) {
1266 if (pd)
1267 atomic_dec(&pd->usecnt);
1268 if (scq)
1269 atomic_dec(&scq->usecnt);
1270 if (rcq)
1271 atomic_dec(&rcq->usecnt);
1272 if (srq)
1273 atomic_dec(&srq->usecnt);
1274 }
1275
1276 return ret;
1277}
1278EXPORT_SYMBOL(ib_destroy_qp);
1279
1280/* Completion queues */
1281
1282struct ib_cq *ib_create_cq(struct ib_device *device,
1283 ib_comp_handler comp_handler,
1284 void (*event_handler)(struct ib_event *, void *),
1285 void *cq_context,
1286 const struct ib_cq_init_attr *cq_attr)
1287{
1288 struct ib_cq *cq;
1289
1290 cq = device->create_cq(device, cq_attr, NULL, NULL);
1291
1292 if (!IS_ERR(cq)) {
1293 cq->device = device;
1294 cq->uobject = NULL;
1295 cq->comp_handler = comp_handler;
1296 cq->event_handler = event_handler;
1297 cq->cq_context = cq_context;
1298 atomic_set(&cq->usecnt, 0);
1299 }
1300
1301 return cq;
1302}
1303EXPORT_SYMBOL(ib_create_cq);
1304
1305int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1306{
1307 return cq->device->modify_cq ?
1308 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1309}
1310EXPORT_SYMBOL(ib_modify_cq);
1311
1312int ib_destroy_cq(struct ib_cq *cq)
1313{
1314 if (atomic_read(&cq->usecnt))
1315 return -EBUSY;
1316
1317 return cq->device->destroy_cq(cq);
1318}
1319EXPORT_SYMBOL(ib_destroy_cq);
1320
1321int ib_resize_cq(struct ib_cq *cq, int cqe)
1322{
1323 return cq->device->resize_cq ?
1324 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1325}
1326EXPORT_SYMBOL(ib_resize_cq);
1327
1328/* Memory regions */
1329
1330struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1331{
1332 struct ib_mr *mr;
1333 int err;
1334
1335 err = ib_check_mr_access(mr_access_flags);
1336 if (err)
1337 return ERR_PTR(err);
1338
1339 mr = pd->device->get_dma_mr(pd, mr_access_flags);
1340
1341 if (!IS_ERR(mr)) {
1342 mr->device = pd->device;
1343 mr->pd = pd;
1344 mr->uobject = NULL;
1345 atomic_inc(&pd->usecnt);
1346 }
1347
1348 return mr;
1349}
1350EXPORT_SYMBOL(ib_get_dma_mr);
1351
1352int ib_dereg_mr(struct ib_mr *mr)
1353{
1354 struct ib_pd *pd = mr->pd;
1355 int ret;
1356
1357 ret = mr->device->dereg_mr(mr);
1358 if (!ret)
1359 atomic_dec(&pd->usecnt);
1360
1361 return ret;
1362}
1363EXPORT_SYMBOL(ib_dereg_mr);
1364
1365/**
1366 * ib_alloc_mr() - Allocates a memory region
1367 * @pd: protection domain associated with the region
1368 * @mr_type: memory region type
1369 * @max_num_sg: maximum sg entries available for registration.
1370 *
1371 * Notes:
1372 * Memory registeration page/sg lists must not exceed max_num_sg.
1373 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1374 * max_num_sg * used_page_size.
1375 *
1376 */
1377struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1378 enum ib_mr_type mr_type,
1379 u32 max_num_sg)
1380{
1381 struct ib_mr *mr;
1382
1383 if (!pd->device->alloc_mr)
1384 return ERR_PTR(-ENOSYS);
1385
1386 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1387 if (!IS_ERR(mr)) {
1388 mr->device = pd->device;
1389 mr->pd = pd;
1390 mr->uobject = NULL;
1391 atomic_inc(&pd->usecnt);
1392 }
1393
1394 return mr;
1395}
1396EXPORT_SYMBOL(ib_alloc_mr);
1397
1398/* "Fast" memory regions */
1399
1400struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1401 int mr_access_flags,
1402 struct ib_fmr_attr *fmr_attr)
1403{
1404 struct ib_fmr *fmr;
1405
1406 if (!pd->device->alloc_fmr)
1407 return ERR_PTR(-ENOSYS);
1408
1409 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1410 if (!IS_ERR(fmr)) {
1411 fmr->device = pd->device;
1412 fmr->pd = pd;
1413 atomic_inc(&pd->usecnt);
1414 }
1415
1416 return fmr;
1417}
1418EXPORT_SYMBOL(ib_alloc_fmr);
1419
1420int ib_unmap_fmr(struct list_head *fmr_list)
1421{
1422 struct ib_fmr *fmr;
1423
1424 if (list_empty(fmr_list))
1425 return 0;
1426
1427 fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1428 return fmr->device->unmap_fmr(fmr_list);
1429}
1430EXPORT_SYMBOL(ib_unmap_fmr);
1431
1432int ib_dealloc_fmr(struct ib_fmr *fmr)
1433{
1434 struct ib_pd *pd;
1435 int ret;
1436
1437 pd = fmr->pd;
1438 ret = fmr->device->dealloc_fmr(fmr);
1439 if (!ret)
1440 atomic_dec(&pd->usecnt);
1441
1442 return ret;
1443}
1444EXPORT_SYMBOL(ib_dealloc_fmr);
1445
1446/* Multicast groups */
1447
1448int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1449{
1450 int ret;
1451
1452 if (!qp->device->attach_mcast)
1453 return -ENOSYS;
1454 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1455 return -EINVAL;
1456
1457 ret = qp->device->attach_mcast(qp, gid, lid);
1458 if (!ret)
1459 atomic_inc(&qp->usecnt);
1460 return ret;
1461}
1462EXPORT_SYMBOL(ib_attach_mcast);
1463
1464int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1465{
1466 int ret;
1467
1468 if (!qp->device->detach_mcast)
1469 return -ENOSYS;
1470 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1471 return -EINVAL;
1472
1473 ret = qp->device->detach_mcast(qp, gid, lid);
1474 if (!ret)
1475 atomic_dec(&qp->usecnt);
1476 return ret;
1477}
1478EXPORT_SYMBOL(ib_detach_mcast);
1479
1480struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1481{
1482 struct ib_xrcd *xrcd;
1483
1484 if (!device->alloc_xrcd)
1485 return ERR_PTR(-ENOSYS);
1486
1487 xrcd = device->alloc_xrcd(device, NULL, NULL);
1488 if (!IS_ERR(xrcd)) {
1489 xrcd->device = device;
1490 xrcd->inode = NULL;
1491 atomic_set(&xrcd->usecnt, 0);
1492 mutex_init(&xrcd->tgt_qp_mutex);
1493 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1494 }
1495
1496 return xrcd;
1497}
1498EXPORT_SYMBOL(ib_alloc_xrcd);
1499
1500int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1501{
1502 struct ib_qp *qp;
1503 int ret;
1504
1505 if (atomic_read(&xrcd->usecnt))
1506 return -EBUSY;
1507
1508 while (!list_empty(&xrcd->tgt_qp_list)) {
1509 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1510 ret = ib_destroy_qp(qp);
1511 if (ret)
1512 return ret;
1513 }
1514
1515 return xrcd->device->dealloc_xrcd(xrcd);
1516}
1517EXPORT_SYMBOL(ib_dealloc_xrcd);
1518
1519struct ib_flow *ib_create_flow(struct ib_qp *qp,
1520 struct ib_flow_attr *flow_attr,
1521 int domain)
1522{
1523 struct ib_flow *flow_id;
1524 if (!qp->device->create_flow)
1525 return ERR_PTR(-ENOSYS);
1526
1527 flow_id = qp->device->create_flow(qp, flow_attr, domain);
1528 if (!IS_ERR(flow_id))
1529 atomic_inc(&qp->usecnt);
1530 return flow_id;
1531}
1532EXPORT_SYMBOL(ib_create_flow);
1533
1534int ib_destroy_flow(struct ib_flow *flow_id)
1535{
1536 int err;
1537 struct ib_qp *qp = flow_id->qp;
1538
1539 err = qp->device->destroy_flow(flow_id);
1540 if (!err)
1541 atomic_dec(&qp->usecnt);
1542 return err;
1543}
1544EXPORT_SYMBOL(ib_destroy_flow);
1545
1546int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1547 struct ib_mr_status *mr_status)
1548{
1549 return mr->device->check_mr_status ?
1550 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1551}
1552EXPORT_SYMBOL(ib_check_mr_status);
1553
1554int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1555 int state)
1556{
1557 if (!device->set_vf_link_state)
1558 return -ENOSYS;
1559
1560 return device->set_vf_link_state(device, vf, port, state);
1561}
1562EXPORT_SYMBOL(ib_set_vf_link_state);
1563
1564int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1565 struct ifla_vf_info *info)
1566{
1567 if (!device->get_vf_config)
1568 return -ENOSYS;
1569
1570 return device->get_vf_config(device, vf, port, info);
1571}
1572EXPORT_SYMBOL(ib_get_vf_config);
1573
1574int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1575 struct ifla_vf_stats *stats)
1576{
1577 if (!device->get_vf_stats)
1578 return -ENOSYS;
1579
1580 return device->get_vf_stats(device, vf, port, stats);
1581}
1582EXPORT_SYMBOL(ib_get_vf_stats);
1583
1584int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1585 int type)
1586{
1587 if (!device->set_vf_guid)
1588 return -ENOSYS;
1589
1590 return device->set_vf_guid(device, vf, port, guid, type);
1591}
1592EXPORT_SYMBOL(ib_set_vf_guid);
1593
1594/**
1595 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1596 * and set it the memory region.
1597 * @mr: memory region
1598 * @sg: dma mapped scatterlist
1599 * @sg_nents: number of entries in sg
1600 * @page_size: page vector desired page size
1601 *
1602 * Constraints:
1603 * - The first sg element is allowed to have an offset.
1604 * - Each sg element must be aligned to page_size (or physically
1605 * contiguous to the previous element). In case an sg element has a
1606 * non contiguous offset, the mapping prefix will not include it.
1607 * - The last sg element is allowed to have length less than page_size.
1608 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1609 * then only max_num_sg entries will be mapped.
1610 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these
1611 * constraints holds and the page_size argument is ignored.
1612 *
1613 * Returns the number of sg elements that were mapped to the memory region.
1614 *
1615 * After this completes successfully, the memory region
1616 * is ready for registration.
1617 */
1618int ib_map_mr_sg(struct ib_mr *mr,
1619 struct scatterlist *sg,
1620 int sg_nents,
1621 unsigned int page_size)
1622{
1623 if (unlikely(!mr->device->map_mr_sg))
1624 return -ENOSYS;
1625
1626 mr->page_size = page_size;
1627
1628 return mr->device->map_mr_sg(mr, sg, sg_nents);
1629}
1630EXPORT_SYMBOL(ib_map_mr_sg);
1631
1632/**
1633 * ib_sg_to_pages() - Convert the largest prefix of a sg list
1634 * to a page vector
1635 * @mr: memory region
1636 * @sgl: dma mapped scatterlist
1637 * @sg_nents: number of entries in sg
1638 * @set_page: driver page assignment function pointer
1639 *
1640 * Core service helper for drivers to convert the largest
1641 * prefix of given sg list to a page vector. The sg list
1642 * prefix converted is the prefix that meet the requirements
1643 * of ib_map_mr_sg.
1644 *
1645 * Returns the number of sg elements that were assigned to
1646 * a page vector.
1647 */
1648int ib_sg_to_pages(struct ib_mr *mr,
1649 struct scatterlist *sgl,
1650 int sg_nents,
1651 int (*set_page)(struct ib_mr *, u64))
1652{
1653 struct scatterlist *sg;
1654 u64 last_end_dma_addr = 0;
1655 unsigned int last_page_off = 0;
1656 u64 page_mask = ~((u64)mr->page_size - 1);
1657 int i, ret;
1658
1659 mr->iova = sg_dma_address(&sgl[0]);
1660 mr->length = 0;
1661
1662 for_each_sg(sgl, sg, sg_nents, i) {
1663 u64 dma_addr = sg_dma_address(sg);
1664 unsigned int dma_len = sg_dma_len(sg);
1665 u64 end_dma_addr = dma_addr + dma_len;
1666 u64 page_addr = dma_addr & page_mask;
1667
1668 /*
1669 * For the second and later elements, check whether either the
1670 * end of element i-1 or the start of element i is not aligned
1671 * on a page boundary.
1672 */
1673 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1674 /* Stop mapping if there is a gap. */
1675 if (last_end_dma_addr != dma_addr)
1676 break;
1677
1678 /*
1679 * Coalesce this element with the last. If it is small
1680 * enough just update mr->length. Otherwise start
1681 * mapping from the next page.
1682 */
1683 goto next_page;
1684 }
1685
1686 do {
1687 ret = set_page(mr, page_addr);
1688 if (unlikely(ret < 0))
1689 return i ? : ret;
1690next_page:
1691 page_addr += mr->page_size;
1692 } while (page_addr < end_dma_addr);
1693
1694 mr->length += dma_len;
1695 last_end_dma_addr = end_dma_addr;
1696 last_page_off = end_dma_addr & ~page_mask;
1697 }
1698
1699 return i;
1700}
1701EXPORT_SYMBOL(ib_sg_to_pages);
1702
1703struct ib_drain_cqe {
1704 struct ib_cqe cqe;
1705 struct completion done;
1706};
1707
1708static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1709{
1710 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1711 cqe);
1712
1713 complete(&cqe->done);
1714}
1715
1716/*
1717 * Post a WR and block until its completion is reaped for the SQ.
1718 */
1719static void __ib_drain_sq(struct ib_qp *qp)
1720{
1721 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1722 struct ib_drain_cqe sdrain;
1723 struct ib_send_wr swr = {}, *bad_swr;
1724 int ret;
1725
1726 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1727 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1728 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1729 return;
1730 }
1731
1732 swr.wr_cqe = &sdrain.cqe;
1733 sdrain.cqe.done = ib_drain_qp_done;
1734 init_completion(&sdrain.done);
1735
1736 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1737 if (ret) {
1738 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1739 return;
1740 }
1741
1742 ret = ib_post_send(qp, &swr, &bad_swr);
1743 if (ret) {
1744 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1745 return;
1746 }
1747
1748 wait_for_completion(&sdrain.done);
1749}
1750
1751/*
1752 * Post a WR and block until its completion is reaped for the RQ.
1753 */
1754static void __ib_drain_rq(struct ib_qp *qp)
1755{
1756 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1757 struct ib_drain_cqe rdrain;
1758 struct ib_recv_wr rwr = {}, *bad_rwr;
1759 int ret;
1760
1761 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1762 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1763 "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1764 return;
1765 }
1766
1767 rwr.wr_cqe = &rdrain.cqe;
1768 rdrain.cqe.done = ib_drain_qp_done;
1769 init_completion(&rdrain.done);
1770
1771 ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1772 if (ret) {
1773 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1774 return;
1775 }
1776
1777 ret = ib_post_recv(qp, &rwr, &bad_rwr);
1778 if (ret) {
1779 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1780 return;
1781 }
1782
1783 wait_for_completion(&rdrain.done);
1784}
1785
1786/**
1787 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
1788 * application.
1789 * @qp: queue pair to drain
1790 *
1791 * If the device has a provider-specific drain function, then
1792 * call that. Otherwise call the generic drain function
1793 * __ib_drain_sq().
1794 *
1795 * The caller must:
1796 *
1797 * ensure there is room in the CQ and SQ for the drain work request and
1798 * completion.
1799 *
1800 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1801 * IB_POLL_DIRECT.
1802 *
1803 * ensure that there are no other contexts that are posting WRs concurrently.
1804 * Otherwise the drain is not guaranteed.
1805 */
1806void ib_drain_sq(struct ib_qp *qp)
1807{
1808 if (qp->device->drain_sq)
1809 qp->device->drain_sq(qp);
1810 else
1811 __ib_drain_sq(qp);
1812}
1813EXPORT_SYMBOL(ib_drain_sq);
1814
1815/**
1816 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
1817 * application.
1818 * @qp: queue pair to drain
1819 *
1820 * If the device has a provider-specific drain function, then
1821 * call that. Otherwise call the generic drain function
1822 * __ib_drain_rq().
1823 *
1824 * The caller must:
1825 *
1826 * ensure there is room in the CQ and RQ for the drain work request and
1827 * completion.
1828 *
1829 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
1830 * IB_POLL_DIRECT.
1831 *
1832 * ensure that there are no other contexts that are posting WRs concurrently.
1833 * Otherwise the drain is not guaranteed.
1834 */
1835void ib_drain_rq(struct ib_qp *qp)
1836{
1837 if (qp->device->drain_rq)
1838 qp->device->drain_rq(qp);
1839 else
1840 __ib_drain_rq(qp);
1841}
1842EXPORT_SYMBOL(ib_drain_rq);
1843
1844/**
1845 * ib_drain_qp() - Block until all CQEs have been consumed by the
1846 * application on both the RQ and SQ.
1847 * @qp: queue pair to drain
1848 *
1849 * The caller must:
1850 *
1851 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
1852 * and completions.
1853 *
1854 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
1855 * IB_POLL_DIRECT.
1856 *
1857 * ensure that there are no other contexts that are posting WRs concurrently.
1858 * Otherwise the drain is not guaranteed.
1859 */
1860void ib_drain_qp(struct ib_qp *qp)
1861{
1862 ib_drain_sq(qp);
1863 if (!qp->srq)
1864 ib_drain_rq(qp);
1865}
1866EXPORT_SYMBOL(ib_drain_qp);