Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * via686a.c - Part of lm_sensors, Linux kernel modules
4 * for hardware monitoring
5 *
6 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
7 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
8 * Mark Studebaker <mdsxyz123@yahoo.com>,
9 * and Bob Dougherty <bobd@stanford.edu>
10 *
11 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
12 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
13 */
14
15/*
16 * Supports the Via VT82C686A, VT82C686B south bridges.
17 * Reports all as a 686A.
18 * Warning - only supports a single device.
19 */
20
21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/pci.h>
26#include <linux/jiffies.h>
27#include <linux/platform_device.h>
28#include <linux/hwmon.h>
29#include <linux/hwmon-sysfs.h>
30#include <linux/err.h>
31#include <linux/init.h>
32#include <linux/mutex.h>
33#include <linux/sysfs.h>
34#include <linux/acpi.h>
35#include <linux/io.h>
36
37#define DRIVER_NAME "via686a"
38
39/*
40 * If force_addr is set to anything different from 0, we forcibly enable
41 * the device at the given address.
42 */
43static unsigned short force_addr;
44module_param(force_addr, ushort, 0);
45MODULE_PARM_DESC(force_addr,
46 "Initialize the base address of the sensors");
47
48static struct platform_device *pdev;
49
50/*
51 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
52 * This driver is a customized copy of lm78.c
53 */
54
55/* Many VIA686A constants specified below */
56
57/* Length of ISA address segment */
58#define VIA686A_EXTENT 0x80
59#define VIA686A_BASE_REG 0x70
60#define VIA686A_ENABLE_REG 0x74
61
62/* The VIA686A registers */
63/* ins numbered 0-4 */
64#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
65#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
66#define VIA686A_REG_IN(nr) (0x22 + (nr))
67
68/* fans numbered 1-2 */
69#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
70#define VIA686A_REG_FAN(nr) (0x28 + (nr))
71
72/* temps numbered 1-3 */
73static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
74static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
75static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
76/* bits 7-6 */
77#define VIA686A_REG_TEMP_LOW1 0x4b
78/* 2 = bits 5-4, 3 = bits 7-6 */
79#define VIA686A_REG_TEMP_LOW23 0x49
80
81#define VIA686A_REG_ALARM1 0x41
82#define VIA686A_REG_ALARM2 0x42
83#define VIA686A_REG_FANDIV 0x47
84#define VIA686A_REG_CONFIG 0x40
85/*
86 * The following register sets temp interrupt mode (bits 1-0 for temp1,
87 * 3-2 for temp2, 5-4 for temp3). Modes are:
88 * 00 interrupt stays as long as value is out-of-range
89 * 01 interrupt is cleared once register is read (default)
90 * 10 comparator mode- like 00, but ignores hysteresis
91 * 11 same as 00
92 */
93#define VIA686A_REG_TEMP_MODE 0x4b
94/* We'll just assume that you want to set all 3 simultaneously: */
95#define VIA686A_TEMP_MODE_MASK 0x3F
96#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
97
98/*
99 * Conversions. Limit checking is only done on the TO_REG
100 * variants.
101 *
102 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
103 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
104 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
105 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
106 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
107 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
108 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
109 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
110 * That is:
111 * volts = (25*regVal+133)*factor
112 * regVal = (volts/factor-133)/25
113 * (These conversions were contributed by Jonathan Teh Soon Yew
114 * <j.teh@iname.com>)
115 */
116static inline u8 IN_TO_REG(long val, int in_num)
117{
118 /*
119 * To avoid floating point, we multiply constants by 10 (100 for +12V).
120 * Rounding is done (120500 is actually 133000 - 12500).
121 * Remember that val is expressed in 0.001V/bit, which is why we divide
122 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
123 * for the constants.
124 */
125 if (in_num <= 1)
126 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
127 else if (in_num == 2)
128 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
129 else if (in_num == 3)
130 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
131 else
132 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
133 255);
134}
135
136static inline long IN_FROM_REG(u8 val, int in_num)
137{
138 /*
139 * To avoid floating point, we multiply constants by 10 (100 for +12V).
140 * We also multiply them by 1000 because we want 0.001V/bit for the
141 * output value. Rounding is done.
142 */
143 if (in_num <= 1)
144 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
145 else if (in_num == 2)
146 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
147 else if (in_num == 3)
148 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
149 else
150 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
151}
152
153/********* FAN RPM CONVERSIONS ********/
154/*
155 * Higher register values = slower fans (the fan's strobe gates a counter).
156 * But this chip saturates back at 0, not at 255 like all the other chips.
157 * So, 0 means 0 RPM
158 */
159static inline u8 FAN_TO_REG(long rpm, int div)
160{
161 if (rpm == 0)
162 return 0;
163 rpm = clamp_val(rpm, 1, 1000000);
164 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
165}
166
167#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
168 ((val) * (div)))
169
170/******** TEMP CONVERSIONS (Bob Dougherty) *********/
171/*
172 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
173 * if(temp<169)
174 * return double(temp)*0.427-32.08;
175 * else if(temp>=169 && temp<=202)
176 * return double(temp)*0.582-58.16;
177 * else
178 * return double(temp)*0.924-127.33;
179 *
180 * A fifth-order polynomial fits the unofficial data (provided by Alex van
181 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
182 * numbers on my machine (ie. they agree with what my BIOS tells me).
183 * Here's the fifth-order fit to the 8-bit data:
184 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
185 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
186 *
187 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
188 * finding my typos in this formula!)
189 *
190 * Alas, none of the elegant function-fit solutions will work because we
191 * aren't allowed to use floating point in the kernel and doing it with
192 * integers doesn't provide enough precision. So we'll do boring old
193 * look-up table stuff. The unofficial data (see below) have effectively
194 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
195 * that the transfer function of the device is monotonic and smooth, so a
196 * smooth function fit to the data will allow us to get better precision.
197 * I used the 5th-order poly fit described above and solved for
198 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
199 * precision. (I could have done all 1024 values for our 10-bit readings,
200 * but the function is very linear in the useful range (0-80 deg C), so
201 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
202 * is the temp at via register values 0-255:
203 */
204static const s16 temp_lut[] = {
205 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
206 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
207 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
208 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
209 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
210 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
211 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
212 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
213 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
214 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
215 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
216 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
217 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
218 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
219 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
220 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
221 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
222 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
223 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
224 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
225 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
226 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
227};
228
229/*
230 * the original LUT values from Alex van Kaam <darkside@chello.nl>
231 * (for via register values 12-240):
232 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
233 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
234 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
235 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
236 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
237 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
238 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
239 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
240 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
241 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
242 *
243 *
244 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
245 * an extra term for a good fit to these inverse data!) and then
246 * solving for each temp value from -50 to 110 (the useable range for
247 * this chip). Here's the fit:
248 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
249 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
250 * Note that n=161:
251 */
252static const u8 via_lut[] = {
253 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
254 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
255 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
256 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
257 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
258 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
259 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
260 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
261 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
262 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
263 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
264 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
265 239, 240
266};
267
268/*
269 * Converting temps to (8-bit) hyst and over registers
270 * No interpolation here.
271 * The +50 is because the temps start at -50
272 */
273static inline u8 TEMP_TO_REG(long val)
274{
275 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
276 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
277}
278
279/* for 8-bit temperature hyst and over registers */
280#define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
281
282/* for 10-bit temperature readings */
283static inline long TEMP_FROM_REG10(u16 val)
284{
285 u16 eight_bits = val >> 2;
286 u16 two_bits = val & 3;
287
288 /* no interpolation for these */
289 if (two_bits == 0 || eight_bits == 255)
290 return TEMP_FROM_REG(eight_bits);
291
292 /* do some linear interpolation */
293 return (temp_lut[eight_bits] * (4 - two_bits) +
294 temp_lut[eight_bits + 1] * two_bits) * 25;
295}
296
297#define DIV_FROM_REG(val) (1 << (val))
298#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
299
300/*
301 * For each registered chip, we need to keep some data in memory.
302 * The structure is dynamically allocated.
303 */
304struct via686a_data {
305 unsigned short addr;
306 const char *name;
307 struct device *hwmon_dev;
308 struct mutex update_lock;
309 bool valid; /* true if following fields are valid */
310 unsigned long last_updated; /* In jiffies */
311
312 u8 in[5]; /* Register value */
313 u8 in_max[5]; /* Register value */
314 u8 in_min[5]; /* Register value */
315 u8 fan[2]; /* Register value */
316 u8 fan_min[2]; /* Register value */
317 u16 temp[3]; /* Register value 10 bit */
318 u8 temp_over[3]; /* Register value */
319 u8 temp_hyst[3]; /* Register value */
320 u8 fan_div[2]; /* Register encoding, shifted right */
321 u16 alarms; /* Register encoding, combined */
322};
323
324static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
325
326static inline int via686a_read_value(struct via686a_data *data, u8 reg)
327{
328 return inb_p(data->addr + reg);
329}
330
331static inline void via686a_write_value(struct via686a_data *data, u8 reg,
332 u8 value)
333{
334 outb_p(value, data->addr + reg);
335}
336
337static void via686a_update_fan_div(struct via686a_data *data)
338{
339 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
340 data->fan_div[0] = (reg >> 4) & 0x03;
341 data->fan_div[1] = reg >> 6;
342}
343
344static struct via686a_data *via686a_update_device(struct device *dev)
345{
346 struct via686a_data *data = dev_get_drvdata(dev);
347 int i;
348
349 mutex_lock(&data->update_lock);
350
351 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
352 || !data->valid) {
353 for (i = 0; i <= 4; i++) {
354 data->in[i] =
355 via686a_read_value(data, VIA686A_REG_IN(i));
356 data->in_min[i] = via686a_read_value(data,
357 VIA686A_REG_IN_MIN
358 (i));
359 data->in_max[i] =
360 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
361 }
362 for (i = 1; i <= 2; i++) {
363 data->fan[i - 1] =
364 via686a_read_value(data, VIA686A_REG_FAN(i));
365 data->fan_min[i - 1] = via686a_read_value(data,
366 VIA686A_REG_FAN_MIN(i));
367 }
368 for (i = 0; i <= 2; i++) {
369 data->temp[i] = via686a_read_value(data,
370 VIA686A_REG_TEMP[i]) << 2;
371 data->temp_over[i] =
372 via686a_read_value(data,
373 VIA686A_REG_TEMP_OVER[i]);
374 data->temp_hyst[i] =
375 via686a_read_value(data,
376 VIA686A_REG_TEMP_HYST[i]);
377 }
378 /*
379 * add in lower 2 bits
380 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
381 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
382 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
383 */
384 data->temp[0] |= (via686a_read_value(data,
385 VIA686A_REG_TEMP_LOW1)
386 & 0xc0) >> 6;
387 data->temp[1] |=
388 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
389 0x30) >> 4;
390 data->temp[2] |=
391 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
392 0xc0) >> 6;
393
394 via686a_update_fan_div(data);
395 data->alarms =
396 via686a_read_value(data,
397 VIA686A_REG_ALARM1) |
398 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
399 data->last_updated = jiffies;
400 data->valid = true;
401 }
402
403 mutex_unlock(&data->update_lock);
404
405 return data;
406}
407
408/* following are the sysfs callback functions */
409
410/* 7 voltage sensors */
411static ssize_t in_show(struct device *dev, struct device_attribute *da,
412 char *buf) {
413 struct via686a_data *data = via686a_update_device(dev);
414 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
415 int nr = attr->index;
416 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
417}
418
419static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
420 char *buf) {
421 struct via686a_data *data = via686a_update_device(dev);
422 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
423 int nr = attr->index;
424 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
425}
426
427static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
428 char *buf) {
429 struct via686a_data *data = via686a_update_device(dev);
430 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
431 int nr = attr->index;
432 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
433}
434
435static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
436 const char *buf, size_t count) {
437 struct via686a_data *data = dev_get_drvdata(dev);
438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
439 int nr = attr->index;
440 unsigned long val;
441 int err;
442
443 err = kstrtoul(buf, 10, &val);
444 if (err)
445 return err;
446
447 mutex_lock(&data->update_lock);
448 data->in_min[nr] = IN_TO_REG(val, nr);
449 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
450 data->in_min[nr]);
451 mutex_unlock(&data->update_lock);
452 return count;
453}
454static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
455 const char *buf, size_t count) {
456 struct via686a_data *data = dev_get_drvdata(dev);
457 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
458 int nr = attr->index;
459 unsigned long val;
460 int err;
461
462 err = kstrtoul(buf, 10, &val);
463 if (err)
464 return err;
465
466 mutex_lock(&data->update_lock);
467 data->in_max[nr] = IN_TO_REG(val, nr);
468 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
469 data->in_max[nr]);
470 mutex_unlock(&data->update_lock);
471 return count;
472}
473
474static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
475static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
476static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
477static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
478static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
479static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
480static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
481static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
482static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
483static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
484static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
485static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
486static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
487static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
488static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
489
490/* 3 temperatures */
491static ssize_t temp_show(struct device *dev, struct device_attribute *da,
492 char *buf) {
493 struct via686a_data *data = via686a_update_device(dev);
494 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
495 int nr = attr->index;
496 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
497}
498static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
499 char *buf) {
500 struct via686a_data *data = via686a_update_device(dev);
501 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
502 int nr = attr->index;
503 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
504}
505static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
506 char *buf) {
507 struct via686a_data *data = via686a_update_device(dev);
508 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
509 int nr = attr->index;
510 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
511}
512static ssize_t temp_over_store(struct device *dev,
513 struct device_attribute *da, const char *buf,
514 size_t count) {
515 struct via686a_data *data = dev_get_drvdata(dev);
516 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
517 int nr = attr->index;
518 long val;
519 int err;
520
521 err = kstrtol(buf, 10, &val);
522 if (err)
523 return err;
524
525 mutex_lock(&data->update_lock);
526 data->temp_over[nr] = TEMP_TO_REG(val);
527 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
528 data->temp_over[nr]);
529 mutex_unlock(&data->update_lock);
530 return count;
531}
532static ssize_t temp_hyst_store(struct device *dev,
533 struct device_attribute *da, const char *buf,
534 size_t count) {
535 struct via686a_data *data = dev_get_drvdata(dev);
536 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
537 int nr = attr->index;
538 long val;
539 int err;
540
541 err = kstrtol(buf, 10, &val);
542 if (err)
543 return err;
544
545 mutex_lock(&data->update_lock);
546 data->temp_hyst[nr] = TEMP_TO_REG(val);
547 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
548 data->temp_hyst[nr]);
549 mutex_unlock(&data->update_lock);
550 return count;
551}
552
553static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
554static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
555static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
556static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
557static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
558static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
559static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
560static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
561static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
562
563/* 2 Fans */
564static ssize_t fan_show(struct device *dev, struct device_attribute *da,
565 char *buf) {
566 struct via686a_data *data = via686a_update_device(dev);
567 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
568 int nr = attr->index;
569 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
570 DIV_FROM_REG(data->fan_div[nr])));
571}
572static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
573 char *buf) {
574 struct via686a_data *data = via686a_update_device(dev);
575 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
576 int nr = attr->index;
577 return sprintf(buf, "%d\n",
578 FAN_FROM_REG(data->fan_min[nr],
579 DIV_FROM_REG(data->fan_div[nr])));
580}
581static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
582 char *buf) {
583 struct via686a_data *data = via686a_update_device(dev);
584 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
585 int nr = attr->index;
586 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
587}
588static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
589 const char *buf, size_t count) {
590 struct via686a_data *data = dev_get_drvdata(dev);
591 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
592 int nr = attr->index;
593 unsigned long val;
594 int err;
595
596 err = kstrtoul(buf, 10, &val);
597 if (err)
598 return err;
599
600 mutex_lock(&data->update_lock);
601 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
602 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
603 mutex_unlock(&data->update_lock);
604 return count;
605}
606static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
607 const char *buf, size_t count) {
608 struct via686a_data *data = dev_get_drvdata(dev);
609 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
610 int nr = attr->index;
611 int old;
612 unsigned long val;
613 int err;
614
615 err = kstrtoul(buf, 10, &val);
616 if (err)
617 return err;
618
619 mutex_lock(&data->update_lock);
620 old = via686a_read_value(data, VIA686A_REG_FANDIV);
621 data->fan_div[nr] = DIV_TO_REG(val);
622 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
623 via686a_write_value(data, VIA686A_REG_FANDIV, old);
624 mutex_unlock(&data->update_lock);
625 return count;
626}
627
628static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
629static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
630static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
631static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
632static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
633static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
634
635/* Alarms */
636static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
637 char *buf)
638{
639 struct via686a_data *data = via686a_update_device(dev);
640 return sprintf(buf, "%u\n", data->alarms);
641}
642
643static DEVICE_ATTR_RO(alarms);
644
645static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
646 char *buf)
647{
648 int bitnr = to_sensor_dev_attr(attr)->index;
649 struct via686a_data *data = via686a_update_device(dev);
650 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
651}
652static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
653static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
654static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
655static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
656static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
657static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
658static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
659static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
660static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
661static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
662
663static ssize_t name_show(struct device *dev, struct device_attribute
664 *devattr, char *buf)
665{
666 struct via686a_data *data = dev_get_drvdata(dev);
667 return sprintf(buf, "%s\n", data->name);
668}
669static DEVICE_ATTR_RO(name);
670
671static struct attribute *via686a_attributes[] = {
672 &sensor_dev_attr_in0_input.dev_attr.attr,
673 &sensor_dev_attr_in1_input.dev_attr.attr,
674 &sensor_dev_attr_in2_input.dev_attr.attr,
675 &sensor_dev_attr_in3_input.dev_attr.attr,
676 &sensor_dev_attr_in4_input.dev_attr.attr,
677 &sensor_dev_attr_in0_min.dev_attr.attr,
678 &sensor_dev_attr_in1_min.dev_attr.attr,
679 &sensor_dev_attr_in2_min.dev_attr.attr,
680 &sensor_dev_attr_in3_min.dev_attr.attr,
681 &sensor_dev_attr_in4_min.dev_attr.attr,
682 &sensor_dev_attr_in0_max.dev_attr.attr,
683 &sensor_dev_attr_in1_max.dev_attr.attr,
684 &sensor_dev_attr_in2_max.dev_attr.attr,
685 &sensor_dev_attr_in3_max.dev_attr.attr,
686 &sensor_dev_attr_in4_max.dev_attr.attr,
687 &sensor_dev_attr_in0_alarm.dev_attr.attr,
688 &sensor_dev_attr_in1_alarm.dev_attr.attr,
689 &sensor_dev_attr_in2_alarm.dev_attr.attr,
690 &sensor_dev_attr_in3_alarm.dev_attr.attr,
691 &sensor_dev_attr_in4_alarm.dev_attr.attr,
692
693 &sensor_dev_attr_temp1_input.dev_attr.attr,
694 &sensor_dev_attr_temp2_input.dev_attr.attr,
695 &sensor_dev_attr_temp3_input.dev_attr.attr,
696 &sensor_dev_attr_temp1_max.dev_attr.attr,
697 &sensor_dev_attr_temp2_max.dev_attr.attr,
698 &sensor_dev_attr_temp3_max.dev_attr.attr,
699 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
700 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
701 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
702 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
703 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
704 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
705
706 &sensor_dev_attr_fan1_input.dev_attr.attr,
707 &sensor_dev_attr_fan2_input.dev_attr.attr,
708 &sensor_dev_attr_fan1_min.dev_attr.attr,
709 &sensor_dev_attr_fan2_min.dev_attr.attr,
710 &sensor_dev_attr_fan1_div.dev_attr.attr,
711 &sensor_dev_attr_fan2_div.dev_attr.attr,
712 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
713 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
714
715 &dev_attr_alarms.attr,
716 &dev_attr_name.attr,
717 NULL
718};
719
720static const struct attribute_group via686a_group = {
721 .attrs = via686a_attributes,
722};
723
724static void via686a_init_device(struct via686a_data *data)
725{
726 u8 reg;
727
728 /* Start monitoring */
729 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
730 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
731
732 /* Configure temp interrupt mode for continuous-interrupt operation */
733 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
734 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
735 (reg & ~VIA686A_TEMP_MODE_MASK)
736 | VIA686A_TEMP_MODE_CONTINUOUS);
737
738 /* Pre-read fan clock divisor values */
739 via686a_update_fan_div(data);
740}
741
742/* This is called when the module is loaded */
743static int via686a_probe(struct platform_device *pdev)
744{
745 struct via686a_data *data;
746 struct resource *res;
747 int err;
748
749 /* Reserve the ISA region */
750 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
751 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
752 DRIVER_NAME)) {
753 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
754 (unsigned long)res->start, (unsigned long)res->end);
755 return -ENODEV;
756 }
757
758 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
759 GFP_KERNEL);
760 if (!data)
761 return -ENOMEM;
762
763 platform_set_drvdata(pdev, data);
764 data->addr = res->start;
765 data->name = DRIVER_NAME;
766 mutex_init(&data->update_lock);
767
768 /* Initialize the VIA686A chip */
769 via686a_init_device(data);
770
771 /* Register sysfs hooks */
772 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
773 if (err)
774 return err;
775
776 data->hwmon_dev = hwmon_device_register(&pdev->dev);
777 if (IS_ERR(data->hwmon_dev)) {
778 err = PTR_ERR(data->hwmon_dev);
779 goto exit_remove_files;
780 }
781
782 return 0;
783
784exit_remove_files:
785 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
786 return err;
787}
788
789static void via686a_remove(struct platform_device *pdev)
790{
791 struct via686a_data *data = platform_get_drvdata(pdev);
792
793 hwmon_device_unregister(data->hwmon_dev);
794 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
795}
796
797static struct platform_driver via686a_driver = {
798 .driver = {
799 .name = DRIVER_NAME,
800 },
801 .probe = via686a_probe,
802 .remove = via686a_remove,
803};
804
805static const struct pci_device_id via686a_pci_ids[] = {
806 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
807 { }
808};
809MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
810
811static int via686a_device_add(unsigned short address)
812{
813 struct resource res = {
814 .start = address,
815 .end = address + VIA686A_EXTENT - 1,
816 .name = DRIVER_NAME,
817 .flags = IORESOURCE_IO,
818 };
819 int err;
820
821 err = acpi_check_resource_conflict(&res);
822 if (err)
823 goto exit;
824
825 pdev = platform_device_alloc(DRIVER_NAME, address);
826 if (!pdev) {
827 err = -ENOMEM;
828 pr_err("Device allocation failed\n");
829 goto exit;
830 }
831
832 err = platform_device_add_resources(pdev, &res, 1);
833 if (err) {
834 pr_err("Device resource addition failed (%d)\n", err);
835 goto exit_device_put;
836 }
837
838 err = platform_device_add(pdev);
839 if (err) {
840 pr_err("Device addition failed (%d)\n", err);
841 goto exit_device_put;
842 }
843
844 return 0;
845
846exit_device_put:
847 platform_device_put(pdev);
848exit:
849 return err;
850}
851
852static int via686a_pci_probe(struct pci_dev *dev,
853 const struct pci_device_id *id)
854{
855 u16 address, val;
856 int ret;
857
858 if (force_addr) {
859 address = force_addr & ~(VIA686A_EXTENT - 1);
860 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
861 ret = pci_write_config_word(dev, VIA686A_BASE_REG, address | 1);
862 if (ret != PCIBIOS_SUCCESSFUL)
863 return -ENODEV;
864 }
865 ret = pci_read_config_word(dev, VIA686A_BASE_REG, &val);
866 if (ret != PCIBIOS_SUCCESSFUL)
867 return -ENODEV;
868
869 address = val & ~(VIA686A_EXTENT - 1);
870 if (address == 0) {
871 dev_err(&dev->dev,
872 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
873 return -ENODEV;
874 }
875
876 ret = pci_read_config_word(dev, VIA686A_ENABLE_REG, &val);
877 if (ret != PCIBIOS_SUCCESSFUL)
878 return -ENODEV;
879 if (!(val & 0x0001)) {
880 if (!force_addr) {
881 dev_warn(&dev->dev,
882 "Sensors disabled, enable with force_addr=0x%x\n",
883 address);
884 return -ENODEV;
885 }
886
887 dev_warn(&dev->dev, "Enabling sensors\n");
888 ret = pci_write_config_word(dev, VIA686A_ENABLE_REG, val | 0x1);
889 if (ret != PCIBIOS_SUCCESSFUL)
890 return -ENODEV;
891 }
892
893 if (platform_driver_register(&via686a_driver))
894 goto exit;
895
896 /* Sets global pdev as a side effect */
897 if (via686a_device_add(address))
898 goto exit_unregister;
899
900 /*
901 * Always return failure here. This is to allow other drivers to bind
902 * to this pci device. We don't really want to have control over the
903 * pci device, we only wanted to read as few register values from it.
904 */
905 s_bridge = pci_dev_get(dev);
906 return -ENODEV;
907
908exit_unregister:
909 platform_driver_unregister(&via686a_driver);
910exit:
911 return -ENODEV;
912}
913
914static struct pci_driver via686a_pci_driver = {
915 .name = DRIVER_NAME,
916 .id_table = via686a_pci_ids,
917 .probe = via686a_pci_probe,
918};
919
920static int __init sm_via686a_init(void)
921{
922 return pci_register_driver(&via686a_pci_driver);
923}
924
925static void __exit sm_via686a_exit(void)
926{
927 pci_unregister_driver(&via686a_pci_driver);
928 if (s_bridge != NULL) {
929 platform_device_unregister(pdev);
930 platform_driver_unregister(&via686a_driver);
931 pci_dev_put(s_bridge);
932 s_bridge = NULL;
933 }
934}
935
936MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
937 "Mark Studebaker <mdsxyz123@yahoo.com> "
938 "and Bob Dougherty <bobd@stanford.edu>");
939MODULE_DESCRIPTION("VIA 686A Sensor device");
940MODULE_LICENSE("GPL");
941
942module_init(sm_via686a_init);
943module_exit(sm_via686a_exit);
1/*
2 * via686a.c - Part of lm_sensors, Linux kernel modules
3 * for hardware monitoring
4 *
5 * Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>,
6 * Kyösti Mälkki <kmalkki@cc.hut.fi>,
7 * Mark Studebaker <mdsxyz123@yahoo.com>,
8 * and Bob Dougherty <bobd@stanford.edu>
9 *
10 * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
11 * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27
28/*
29 * Supports the Via VT82C686A, VT82C686B south bridges.
30 * Reports all as a 686A.
31 * Warning - only supports a single device.
32 */
33
34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35
36#include <linux/module.h>
37#include <linux/slab.h>
38#include <linux/pci.h>
39#include <linux/jiffies.h>
40#include <linux/platform_device.h>
41#include <linux/hwmon.h>
42#include <linux/hwmon-sysfs.h>
43#include <linux/err.h>
44#include <linux/init.h>
45#include <linux/mutex.h>
46#include <linux/sysfs.h>
47#include <linux/acpi.h>
48#include <linux/io.h>
49
50
51/*
52 * If force_addr is set to anything different from 0, we forcibly enable
53 * the device at the given address.
54 */
55static unsigned short force_addr;
56module_param(force_addr, ushort, 0);
57MODULE_PARM_DESC(force_addr,
58 "Initialize the base address of the sensors");
59
60static struct platform_device *pdev;
61
62/*
63 * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
64 * This driver is a customized copy of lm78.c
65 */
66
67/* Many VIA686A constants specified below */
68
69/* Length of ISA address segment */
70#define VIA686A_EXTENT 0x80
71#define VIA686A_BASE_REG 0x70
72#define VIA686A_ENABLE_REG 0x74
73
74/* The VIA686A registers */
75/* ins numbered 0-4 */
76#define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
77#define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
78#define VIA686A_REG_IN(nr) (0x22 + (nr))
79
80/* fans numbered 1-2 */
81#define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
82#define VIA686A_REG_FAN(nr) (0x28 + (nr))
83
84/* temps numbered 1-3 */
85static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
86static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
87static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
88/* bits 7-6 */
89#define VIA686A_REG_TEMP_LOW1 0x4b
90/* 2 = bits 5-4, 3 = bits 7-6 */
91#define VIA686A_REG_TEMP_LOW23 0x49
92
93#define VIA686A_REG_ALARM1 0x41
94#define VIA686A_REG_ALARM2 0x42
95#define VIA686A_REG_FANDIV 0x47
96#define VIA686A_REG_CONFIG 0x40
97/*
98 * The following register sets temp interrupt mode (bits 1-0 for temp1,
99 * 3-2 for temp2, 5-4 for temp3). Modes are:
100 * 00 interrupt stays as long as value is out-of-range
101 * 01 interrupt is cleared once register is read (default)
102 * 10 comparator mode- like 00, but ignores hysteresis
103 * 11 same as 00
104 */
105#define VIA686A_REG_TEMP_MODE 0x4b
106/* We'll just assume that you want to set all 3 simultaneously: */
107#define VIA686A_TEMP_MODE_MASK 0x3F
108#define VIA686A_TEMP_MODE_CONTINUOUS 0x00
109
110/*
111 * Conversions. Limit checking is only done on the TO_REG
112 * variants.
113 *
114 ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
115 * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
116 * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
117 * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
118 * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
119 * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
120 * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
121 * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
122 * That is:
123 * volts = (25*regVal+133)*factor
124 * regVal = (volts/factor-133)/25
125 * (These conversions were contributed by Jonathan Teh Soon Yew
126 * <j.teh@iname.com>)
127 */
128static inline u8 IN_TO_REG(long val, int in_num)
129{
130 /*
131 * To avoid floating point, we multiply constants by 10 (100 for +12V).
132 * Rounding is done (120500 is actually 133000 - 12500).
133 * Remember that val is expressed in 0.001V/bit, which is why we divide
134 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
135 * for the constants.
136 */
137 if (in_num <= 1)
138 return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
139 else if (in_num == 2)
140 return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
141 else if (in_num == 3)
142 return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
143 else
144 return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
145 255);
146}
147
148static inline long IN_FROM_REG(u8 val, int in_num)
149{
150 /*
151 * To avoid floating point, we multiply constants by 10 (100 for +12V).
152 * We also multiply them by 1000 because we want 0.001V/bit for the
153 * output value. Rounding is done.
154 */
155 if (in_num <= 1)
156 return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
157 else if (in_num == 2)
158 return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
159 else if (in_num == 3)
160 return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
161 else
162 return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
163}
164
165/********* FAN RPM CONVERSIONS ********/
166/*
167 * Higher register values = slower fans (the fan's strobe gates a counter).
168 * But this chip saturates back at 0, not at 255 like all the other chips.
169 * So, 0 means 0 RPM
170 */
171static inline u8 FAN_TO_REG(long rpm, int div)
172{
173 if (rpm == 0)
174 return 0;
175 rpm = clamp_val(rpm, 1, 1000000);
176 return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
177}
178
179#define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
180 ((val) * (div)))
181
182/******** TEMP CONVERSIONS (Bob Dougherty) *********/
183/*
184 * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
185 * if(temp<169)
186 * return double(temp)*0.427-32.08;
187 * else if(temp>=169 && temp<=202)
188 * return double(temp)*0.582-58.16;
189 * else
190 * return double(temp)*0.924-127.33;
191 *
192 * A fifth-order polynomial fits the unofficial data (provided by Alex van
193 * Kaam <darkside@chello.nl>) a bit better. It also give more reasonable
194 * numbers on my machine (ie. they agree with what my BIOS tells me).
195 * Here's the fifth-order fit to the 8-bit data:
196 * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
197 * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
198 *
199 * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
200 * finding my typos in this formula!)
201 *
202 * Alas, none of the elegant function-fit solutions will work because we
203 * aren't allowed to use floating point in the kernel and doing it with
204 * integers doesn't provide enough precision. So we'll do boring old
205 * look-up table stuff. The unofficial data (see below) have effectively
206 * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
207 * that the transfer function of the device is monotonic and smooth, so a
208 * smooth function fit to the data will allow us to get better precision.
209 * I used the 5th-order poly fit described above and solved for
210 * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
211 * precision. (I could have done all 1024 values for our 10-bit readings,
212 * but the function is very linear in the useful range (0-80 deg C), so
213 * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
214 * is the temp at via register values 0-255:
215 */
216static const s16 temp_lut[] = {
217 -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
218 -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
219 -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
220 -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
221 -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
222 -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
223 -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
224 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
225 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
226 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
227 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
228 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
229 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
230 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
231 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
232 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
233 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
234 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
235 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
236 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
237 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
238 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
239};
240
241/*
242 * the original LUT values from Alex van Kaam <darkside@chello.nl>
243 * (for via register values 12-240):
244 * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
245 * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
246 * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
247 * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
248 * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
249 * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
250 * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
251 * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
252 * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
253 * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
254 *
255 *
256 * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
257 * an extra term for a good fit to these inverse data!) and then
258 * solving for each temp value from -50 to 110 (the useable range for
259 * this chip). Here's the fit:
260 * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
261 * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
262 * Note that n=161:
263 */
264static const u8 via_lut[] = {
265 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
266 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
267 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
268 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
269 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
270 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
271 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
272 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
273 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
274 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
275 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
276 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
277 239, 240
278};
279
280/*
281 * Converting temps to (8-bit) hyst and over registers
282 * No interpolation here.
283 * The +50 is because the temps start at -50
284 */
285static inline u8 TEMP_TO_REG(long val)
286{
287 return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
288 (val < 0 ? val - 500 : val + 500) / 1000 + 50];
289}
290
291/* for 8-bit temperature hyst and over registers */
292#define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
293
294/* for 10-bit temperature readings */
295static inline long TEMP_FROM_REG10(u16 val)
296{
297 u16 eight_bits = val >> 2;
298 u16 two_bits = val & 3;
299
300 /* no interpolation for these */
301 if (two_bits == 0 || eight_bits == 255)
302 return TEMP_FROM_REG(eight_bits);
303
304 /* do some linear interpolation */
305 return (temp_lut[eight_bits] * (4 - two_bits) +
306 temp_lut[eight_bits + 1] * two_bits) * 25;
307}
308
309#define DIV_FROM_REG(val) (1 << (val))
310#define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
311
312/*
313 * For each registered chip, we need to keep some data in memory.
314 * The structure is dynamically allocated.
315 */
316struct via686a_data {
317 unsigned short addr;
318 const char *name;
319 struct device *hwmon_dev;
320 struct mutex update_lock;
321 char valid; /* !=0 if following fields are valid */
322 unsigned long last_updated; /* In jiffies */
323
324 u8 in[5]; /* Register value */
325 u8 in_max[5]; /* Register value */
326 u8 in_min[5]; /* Register value */
327 u8 fan[2]; /* Register value */
328 u8 fan_min[2]; /* Register value */
329 u16 temp[3]; /* Register value 10 bit */
330 u8 temp_over[3]; /* Register value */
331 u8 temp_hyst[3]; /* Register value */
332 u8 fan_div[2]; /* Register encoding, shifted right */
333 u16 alarms; /* Register encoding, combined */
334};
335
336static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
337
338static int via686a_probe(struct platform_device *pdev);
339static int via686a_remove(struct platform_device *pdev);
340
341static inline int via686a_read_value(struct via686a_data *data, u8 reg)
342{
343 return inb_p(data->addr + reg);
344}
345
346static inline void via686a_write_value(struct via686a_data *data, u8 reg,
347 u8 value)
348{
349 outb_p(value, data->addr + reg);
350}
351
352static struct via686a_data *via686a_update_device(struct device *dev);
353static void via686a_init_device(struct via686a_data *data);
354
355/* following are the sysfs callback functions */
356
357/* 7 voltage sensors */
358static ssize_t show_in(struct device *dev, struct device_attribute *da,
359 char *buf) {
360 struct via686a_data *data = via686a_update_device(dev);
361 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
362 int nr = attr->index;
363 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
364}
365
366static ssize_t show_in_min(struct device *dev, struct device_attribute *da,
367 char *buf) {
368 struct via686a_data *data = via686a_update_device(dev);
369 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
370 int nr = attr->index;
371 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
372}
373
374static ssize_t show_in_max(struct device *dev, struct device_attribute *da,
375 char *buf) {
376 struct via686a_data *data = via686a_update_device(dev);
377 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
378 int nr = attr->index;
379 return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
380}
381
382static ssize_t set_in_min(struct device *dev, struct device_attribute *da,
383 const char *buf, size_t count) {
384 struct via686a_data *data = dev_get_drvdata(dev);
385 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
386 int nr = attr->index;
387 unsigned long val;
388 int err;
389
390 err = kstrtoul(buf, 10, &val);
391 if (err)
392 return err;
393
394 mutex_lock(&data->update_lock);
395 data->in_min[nr] = IN_TO_REG(val, nr);
396 via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
397 data->in_min[nr]);
398 mutex_unlock(&data->update_lock);
399 return count;
400}
401static ssize_t set_in_max(struct device *dev, struct device_attribute *da,
402 const char *buf, size_t count) {
403 struct via686a_data *data = dev_get_drvdata(dev);
404 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
405 int nr = attr->index;
406 unsigned long val;
407 int err;
408
409 err = kstrtoul(buf, 10, &val);
410 if (err)
411 return err;
412
413 mutex_lock(&data->update_lock);
414 data->in_max[nr] = IN_TO_REG(val, nr);
415 via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
416 data->in_max[nr]);
417 mutex_unlock(&data->update_lock);
418 return count;
419}
420#define show_in_offset(offset) \
421static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
422 show_in, NULL, offset); \
423static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
424 show_in_min, set_in_min, offset); \
425static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
426 show_in_max, set_in_max, offset);
427
428show_in_offset(0);
429show_in_offset(1);
430show_in_offset(2);
431show_in_offset(3);
432show_in_offset(4);
433
434/* 3 temperatures */
435static ssize_t show_temp(struct device *dev, struct device_attribute *da,
436 char *buf) {
437 struct via686a_data *data = via686a_update_device(dev);
438 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
439 int nr = attr->index;
440 return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
441}
442static ssize_t show_temp_over(struct device *dev, struct device_attribute *da,
443 char *buf) {
444 struct via686a_data *data = via686a_update_device(dev);
445 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
446 int nr = attr->index;
447 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
448}
449static ssize_t show_temp_hyst(struct device *dev, struct device_attribute *da,
450 char *buf) {
451 struct via686a_data *data = via686a_update_device(dev);
452 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
453 int nr = attr->index;
454 return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
455}
456static ssize_t set_temp_over(struct device *dev, struct device_attribute *da,
457 const char *buf, size_t count) {
458 struct via686a_data *data = dev_get_drvdata(dev);
459 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
460 int nr = attr->index;
461 long val;
462 int err;
463
464 err = kstrtol(buf, 10, &val);
465 if (err)
466 return err;
467
468 mutex_lock(&data->update_lock);
469 data->temp_over[nr] = TEMP_TO_REG(val);
470 via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
471 data->temp_over[nr]);
472 mutex_unlock(&data->update_lock);
473 return count;
474}
475static ssize_t set_temp_hyst(struct device *dev, struct device_attribute *da,
476 const char *buf, size_t count) {
477 struct via686a_data *data = dev_get_drvdata(dev);
478 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
479 int nr = attr->index;
480 long val;
481 int err;
482
483 err = kstrtol(buf, 10, &val);
484 if (err)
485 return err;
486
487 mutex_lock(&data->update_lock);
488 data->temp_hyst[nr] = TEMP_TO_REG(val);
489 via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
490 data->temp_hyst[nr]);
491 mutex_unlock(&data->update_lock);
492 return count;
493}
494#define show_temp_offset(offset) \
495static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
496 show_temp, NULL, offset - 1); \
497static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
498 show_temp_over, set_temp_over, offset - 1); \
499static SENSOR_DEVICE_ATTR(temp##offset##_max_hyst, S_IRUGO | S_IWUSR, \
500 show_temp_hyst, set_temp_hyst, offset - 1);
501
502show_temp_offset(1);
503show_temp_offset(2);
504show_temp_offset(3);
505
506/* 2 Fans */
507static ssize_t show_fan(struct device *dev, struct device_attribute *da,
508 char *buf) {
509 struct via686a_data *data = via686a_update_device(dev);
510 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
511 int nr = attr->index;
512 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
513 DIV_FROM_REG(data->fan_div[nr])));
514}
515static ssize_t show_fan_min(struct device *dev, struct device_attribute *da,
516 char *buf) {
517 struct via686a_data *data = via686a_update_device(dev);
518 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
519 int nr = attr->index;
520 return sprintf(buf, "%d\n",
521 FAN_FROM_REG(data->fan_min[nr],
522 DIV_FROM_REG(data->fan_div[nr])));
523}
524static ssize_t show_fan_div(struct device *dev, struct device_attribute *da,
525 char *buf) {
526 struct via686a_data *data = via686a_update_device(dev);
527 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
528 int nr = attr->index;
529 return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
530}
531static ssize_t set_fan_min(struct device *dev, struct device_attribute *da,
532 const char *buf, size_t count) {
533 struct via686a_data *data = dev_get_drvdata(dev);
534 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
535 int nr = attr->index;
536 unsigned long val;
537 int err;
538
539 err = kstrtoul(buf, 10, &val);
540 if (err)
541 return err;
542
543 mutex_lock(&data->update_lock);
544 data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
545 via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
546 mutex_unlock(&data->update_lock);
547 return count;
548}
549static ssize_t set_fan_div(struct device *dev, struct device_attribute *da,
550 const char *buf, size_t count) {
551 struct via686a_data *data = dev_get_drvdata(dev);
552 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
553 int nr = attr->index;
554 int old;
555 unsigned long val;
556 int err;
557
558 err = kstrtoul(buf, 10, &val);
559 if (err)
560 return err;
561
562 mutex_lock(&data->update_lock);
563 old = via686a_read_value(data, VIA686A_REG_FANDIV);
564 data->fan_div[nr] = DIV_TO_REG(val);
565 old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
566 via686a_write_value(data, VIA686A_REG_FANDIV, old);
567 mutex_unlock(&data->update_lock);
568 return count;
569}
570
571#define show_fan_offset(offset) \
572static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
573 show_fan, NULL, offset - 1); \
574static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
575 show_fan_min, set_fan_min, offset - 1); \
576static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
577 show_fan_div, set_fan_div, offset - 1);
578
579show_fan_offset(1);
580show_fan_offset(2);
581
582/* Alarms */
583static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
584 char *buf)
585{
586 struct via686a_data *data = via686a_update_device(dev);
587 return sprintf(buf, "%u\n", data->alarms);
588}
589
590static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
591
592static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
593 char *buf)
594{
595 int bitnr = to_sensor_dev_attr(attr)->index;
596 struct via686a_data *data = via686a_update_device(dev);
597 return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
598}
599static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
600static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
601static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
602static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
603static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
604static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
605static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 11);
606static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 15);
607static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
608static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
609
610static ssize_t show_name(struct device *dev, struct device_attribute
611 *devattr, char *buf)
612{
613 struct via686a_data *data = dev_get_drvdata(dev);
614 return sprintf(buf, "%s\n", data->name);
615}
616static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
617
618static struct attribute *via686a_attributes[] = {
619 &sensor_dev_attr_in0_input.dev_attr.attr,
620 &sensor_dev_attr_in1_input.dev_attr.attr,
621 &sensor_dev_attr_in2_input.dev_attr.attr,
622 &sensor_dev_attr_in3_input.dev_attr.attr,
623 &sensor_dev_attr_in4_input.dev_attr.attr,
624 &sensor_dev_attr_in0_min.dev_attr.attr,
625 &sensor_dev_attr_in1_min.dev_attr.attr,
626 &sensor_dev_attr_in2_min.dev_attr.attr,
627 &sensor_dev_attr_in3_min.dev_attr.attr,
628 &sensor_dev_attr_in4_min.dev_attr.attr,
629 &sensor_dev_attr_in0_max.dev_attr.attr,
630 &sensor_dev_attr_in1_max.dev_attr.attr,
631 &sensor_dev_attr_in2_max.dev_attr.attr,
632 &sensor_dev_attr_in3_max.dev_attr.attr,
633 &sensor_dev_attr_in4_max.dev_attr.attr,
634 &sensor_dev_attr_in0_alarm.dev_attr.attr,
635 &sensor_dev_attr_in1_alarm.dev_attr.attr,
636 &sensor_dev_attr_in2_alarm.dev_attr.attr,
637 &sensor_dev_attr_in3_alarm.dev_attr.attr,
638 &sensor_dev_attr_in4_alarm.dev_attr.attr,
639
640 &sensor_dev_attr_temp1_input.dev_attr.attr,
641 &sensor_dev_attr_temp2_input.dev_attr.attr,
642 &sensor_dev_attr_temp3_input.dev_attr.attr,
643 &sensor_dev_attr_temp1_max.dev_attr.attr,
644 &sensor_dev_attr_temp2_max.dev_attr.attr,
645 &sensor_dev_attr_temp3_max.dev_attr.attr,
646 &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
647 &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
648 &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
649 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
650 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
651 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
652
653 &sensor_dev_attr_fan1_input.dev_attr.attr,
654 &sensor_dev_attr_fan2_input.dev_attr.attr,
655 &sensor_dev_attr_fan1_min.dev_attr.attr,
656 &sensor_dev_attr_fan2_min.dev_attr.attr,
657 &sensor_dev_attr_fan1_div.dev_attr.attr,
658 &sensor_dev_attr_fan2_div.dev_attr.attr,
659 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
660 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
661
662 &dev_attr_alarms.attr,
663 &dev_attr_name.attr,
664 NULL
665};
666
667static const struct attribute_group via686a_group = {
668 .attrs = via686a_attributes,
669};
670
671static struct platform_driver via686a_driver = {
672 .driver = {
673 .name = "via686a",
674 },
675 .probe = via686a_probe,
676 .remove = via686a_remove,
677};
678
679
680/* This is called when the module is loaded */
681static int via686a_probe(struct platform_device *pdev)
682{
683 struct via686a_data *data;
684 struct resource *res;
685 int err;
686
687 /* Reserve the ISA region */
688 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
689 if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
690 via686a_driver.driver.name)) {
691 dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
692 (unsigned long)res->start, (unsigned long)res->end);
693 return -ENODEV;
694 }
695
696 data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
697 GFP_KERNEL);
698 if (!data)
699 return -ENOMEM;
700
701 platform_set_drvdata(pdev, data);
702 data->addr = res->start;
703 data->name = "via686a";
704 mutex_init(&data->update_lock);
705
706 /* Initialize the VIA686A chip */
707 via686a_init_device(data);
708
709 /* Register sysfs hooks */
710 err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
711 if (err)
712 return err;
713
714 data->hwmon_dev = hwmon_device_register(&pdev->dev);
715 if (IS_ERR(data->hwmon_dev)) {
716 err = PTR_ERR(data->hwmon_dev);
717 goto exit_remove_files;
718 }
719
720 return 0;
721
722exit_remove_files:
723 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
724 return err;
725}
726
727static int via686a_remove(struct platform_device *pdev)
728{
729 struct via686a_data *data = platform_get_drvdata(pdev);
730
731 hwmon_device_unregister(data->hwmon_dev);
732 sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
733
734 return 0;
735}
736
737static void via686a_update_fan_div(struct via686a_data *data)
738{
739 int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
740 data->fan_div[0] = (reg >> 4) & 0x03;
741 data->fan_div[1] = reg >> 6;
742}
743
744static void via686a_init_device(struct via686a_data *data)
745{
746 u8 reg;
747
748 /* Start monitoring */
749 reg = via686a_read_value(data, VIA686A_REG_CONFIG);
750 via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
751
752 /* Configure temp interrupt mode for continuous-interrupt operation */
753 reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
754 via686a_write_value(data, VIA686A_REG_TEMP_MODE,
755 (reg & ~VIA686A_TEMP_MODE_MASK)
756 | VIA686A_TEMP_MODE_CONTINUOUS);
757
758 /* Pre-read fan clock divisor values */
759 via686a_update_fan_div(data);
760}
761
762static struct via686a_data *via686a_update_device(struct device *dev)
763{
764 struct via686a_data *data = dev_get_drvdata(dev);
765 int i;
766
767 mutex_lock(&data->update_lock);
768
769 if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
770 || !data->valid) {
771 for (i = 0; i <= 4; i++) {
772 data->in[i] =
773 via686a_read_value(data, VIA686A_REG_IN(i));
774 data->in_min[i] = via686a_read_value(data,
775 VIA686A_REG_IN_MIN
776 (i));
777 data->in_max[i] =
778 via686a_read_value(data, VIA686A_REG_IN_MAX(i));
779 }
780 for (i = 1; i <= 2; i++) {
781 data->fan[i - 1] =
782 via686a_read_value(data, VIA686A_REG_FAN(i));
783 data->fan_min[i - 1] = via686a_read_value(data,
784 VIA686A_REG_FAN_MIN(i));
785 }
786 for (i = 0; i <= 2; i++) {
787 data->temp[i] = via686a_read_value(data,
788 VIA686A_REG_TEMP[i]) << 2;
789 data->temp_over[i] =
790 via686a_read_value(data,
791 VIA686A_REG_TEMP_OVER[i]);
792 data->temp_hyst[i] =
793 via686a_read_value(data,
794 VIA686A_REG_TEMP_HYST[i]);
795 }
796 /*
797 * add in lower 2 bits
798 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
799 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
800 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
801 */
802 data->temp[0] |= (via686a_read_value(data,
803 VIA686A_REG_TEMP_LOW1)
804 & 0xc0) >> 6;
805 data->temp[1] |=
806 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
807 0x30) >> 4;
808 data->temp[2] |=
809 (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
810 0xc0) >> 6;
811
812 via686a_update_fan_div(data);
813 data->alarms =
814 via686a_read_value(data,
815 VIA686A_REG_ALARM1) |
816 (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
817 data->last_updated = jiffies;
818 data->valid = 1;
819 }
820
821 mutex_unlock(&data->update_lock);
822
823 return data;
824}
825
826static const struct pci_device_id via686a_pci_ids[] = {
827 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
828 { }
829};
830MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
831
832static int via686a_device_add(unsigned short address)
833{
834 struct resource res = {
835 .start = address,
836 .end = address + VIA686A_EXTENT - 1,
837 .name = "via686a",
838 .flags = IORESOURCE_IO,
839 };
840 int err;
841
842 err = acpi_check_resource_conflict(&res);
843 if (err)
844 goto exit;
845
846 pdev = platform_device_alloc("via686a", address);
847 if (!pdev) {
848 err = -ENOMEM;
849 pr_err("Device allocation failed\n");
850 goto exit;
851 }
852
853 err = platform_device_add_resources(pdev, &res, 1);
854 if (err) {
855 pr_err("Device resource addition failed (%d)\n", err);
856 goto exit_device_put;
857 }
858
859 err = platform_device_add(pdev);
860 if (err) {
861 pr_err("Device addition failed (%d)\n", err);
862 goto exit_device_put;
863 }
864
865 return 0;
866
867exit_device_put:
868 platform_device_put(pdev);
869exit:
870 return err;
871}
872
873static int via686a_pci_probe(struct pci_dev *dev,
874 const struct pci_device_id *id)
875{
876 u16 address, val;
877
878 if (force_addr) {
879 address = force_addr & ~(VIA686A_EXTENT - 1);
880 dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
881 if (PCIBIOS_SUCCESSFUL !=
882 pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
883 return -ENODEV;
884 }
885 if (PCIBIOS_SUCCESSFUL !=
886 pci_read_config_word(dev, VIA686A_BASE_REG, &val))
887 return -ENODEV;
888
889 address = val & ~(VIA686A_EXTENT - 1);
890 if (address == 0) {
891 dev_err(&dev->dev,
892 "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
893 return -ENODEV;
894 }
895
896 if (PCIBIOS_SUCCESSFUL !=
897 pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
898 return -ENODEV;
899 if (!(val & 0x0001)) {
900 if (!force_addr) {
901 dev_warn(&dev->dev,
902 "Sensors disabled, enable with force_addr=0x%x\n",
903 address);
904 return -ENODEV;
905 }
906
907 dev_warn(&dev->dev, "Enabling sensors\n");
908 if (PCIBIOS_SUCCESSFUL !=
909 pci_write_config_word(dev, VIA686A_ENABLE_REG,
910 val | 0x0001))
911 return -ENODEV;
912 }
913
914 if (platform_driver_register(&via686a_driver))
915 goto exit;
916
917 /* Sets global pdev as a side effect */
918 if (via686a_device_add(address))
919 goto exit_unregister;
920
921 /*
922 * Always return failure here. This is to allow other drivers to bind
923 * to this pci device. We don't really want to have control over the
924 * pci device, we only wanted to read as few register values from it.
925 */
926 s_bridge = pci_dev_get(dev);
927 return -ENODEV;
928
929exit_unregister:
930 platform_driver_unregister(&via686a_driver);
931exit:
932 return -ENODEV;
933}
934
935static struct pci_driver via686a_pci_driver = {
936 .name = "via686a",
937 .id_table = via686a_pci_ids,
938 .probe = via686a_pci_probe,
939};
940
941static int __init sm_via686a_init(void)
942{
943 return pci_register_driver(&via686a_pci_driver);
944}
945
946static void __exit sm_via686a_exit(void)
947{
948 pci_unregister_driver(&via686a_pci_driver);
949 if (s_bridge != NULL) {
950 platform_device_unregister(pdev);
951 platform_driver_unregister(&via686a_driver);
952 pci_dev_put(s_bridge);
953 s_bridge = NULL;
954 }
955}
956
957MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
958 "Mark Studebaker <mdsxyz123@yahoo.com> "
959 "and Bob Dougherty <bobd@stanford.edu>");
960MODULE_DESCRIPTION("VIA 686A Sensor device");
961MODULE_LICENSE("GPL");
962
963module_init(sm_via686a_init);
964module_exit(sm_via686a_exit);