Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v6.13.7.
   1--------------------------------------------------------------------------------
   2+ ABSTRACT
   3--------------------------------------------------------------------------------
   4
   5This file documents the mmap() facility available with the PACKET
   6socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
   7i) capture network traffic with utilities like tcpdump, ii) transmit network
   8traffic, or any other that needs raw access to network interface.
   9
  10You can find the latest version of this document at:
  11    http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
  12
  13Howto can be found at:
  14    http://wiki.gnu-log.net (packet_mmap)
  15
  16Please send your comments to
  17    Ulisses Alonso CamarĂ³ <uaca@i.hate.spam.alumni.uv.es>
  18    Johann Baudy <johann.baudy@gnu-log.net>
  19
  20-------------------------------------------------------------------------------
  21+ Why use PACKET_MMAP
  22--------------------------------------------------------------------------------
  23
  24In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
  25inefficient. It uses very limited buffers and requires one system call to
  26capture each packet, it requires two if you want to get packet's timestamp
  27(like libpcap always does).
  28
  29In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 
  30configurable circular buffer mapped in user space that can be used to either
  31send or receive packets. This way reading packets just needs to wait for them,
  32most of the time there is no need to issue a single system call. Concerning
  33transmission, multiple packets can be sent through one system call to get the
  34highest bandwidth. By using a shared buffer between the kernel and the user
  35also has the benefit of minimizing packet copies.
  36
  37It's fine to use PACKET_MMAP to improve the performance of the capture and
  38transmission process, but it isn't everything. At least, if you are capturing
  39at high speeds (this is relative to the cpu speed), you should check if the
  40device driver of your network interface card supports some sort of interrupt
  41load mitigation or (even better) if it supports NAPI, also make sure it is
  42enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
  43supported by devices of your network. CPU IRQ pinning of your network interface
  44card can also be an advantage.
  45
  46--------------------------------------------------------------------------------
  47+ How to use mmap() to improve capture process
  48--------------------------------------------------------------------------------
  49
  50From the user standpoint, you should use the higher level libpcap library, which
  51is a de facto standard, portable across nearly all operating systems
  52including Win32. 
  53
  54Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
  55support for PACKET_MMAP, and also probably the libpcap included in your distribution. 
  56
  57I'm aware of two implementations of PACKET_MMAP in libpcap:
  58
  59    http://wiki.ipxwarzone.com/		     (by Simon Patarin, based on libpcap 0.6.2)
  60    http://public.lanl.gov/cpw/              (by Phil Wood, based on lastest libpcap)
  61
  62The rest of this document is intended for people who want to understand
  63the low level details or want to improve libpcap by including PACKET_MMAP
  64support.
  65
  66--------------------------------------------------------------------------------
  67+ How to use mmap() directly to improve capture process
  68--------------------------------------------------------------------------------
  69
  70From the system calls stand point, the use of PACKET_MMAP involves
  71the following process:
  72
  73
  74[setup]     socket() -------> creation of the capture socket
  75            setsockopt() ---> allocation of the circular buffer (ring)
  76                              option: PACKET_RX_RING
  77            mmap() ---------> mapping of the allocated buffer to the
  78                              user process
  79
  80[capture]   poll() ---------> to wait for incoming packets
  81
  82[shutdown]  close() --------> destruction of the capture socket and
  83                              deallocation of all associated 
  84                              resources.
  85
  86
  87socket creation and destruction is straight forward, and is done 
  88the same way with or without PACKET_MMAP:
  89
  90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
  91
  92where mode is SOCK_RAW for the raw interface were link level
  93information can be captured or SOCK_DGRAM for the cooked
  94interface where link level information capture is not 
  95supported and a link level pseudo-header is provided 
  96by the kernel.
  97
  98The destruction of the socket and all associated resources
  99is done by a simple call to close(fd).
 100
 101Similarly as without PACKET_MMAP, it is possible to use one socket
 102for capture and transmission. This can be done by mapping the
 103allocated RX and TX buffer ring with a single mmap() call.
 104See "Mapping and use of the circular buffer (ring)".
 105
 106Next I will describe PACKET_MMAP settings and its constraints,
 107also the mapping of the circular buffer in the user process and 
 108the use of this buffer.
 109
 110--------------------------------------------------------------------------------
 111+ How to use mmap() directly to improve transmission process
 112--------------------------------------------------------------------------------
 113Transmission process is similar to capture as shown below.
 114
 115[setup]          socket() -------> creation of the transmission socket
 116                 setsockopt() ---> allocation of the circular buffer (ring)
 117                                   option: PACKET_TX_RING
 118                 bind() ---------> bind transmission socket with a network interface
 119                 mmap() ---------> mapping of the allocated buffer to the
 120                                   user process
 121
 122[transmission]   poll() ---------> wait for free packets (optional)
 123                 send() ---------> send all packets that are set as ready in
 124                                   the ring
 125                                   The flag MSG_DONTWAIT can be used to return
 126                                   before end of transfer.
 127
 128[shutdown]  close() --------> destruction of the transmission socket and
 129                              deallocation of all associated resources.
 130
 131Socket creation and destruction is also straight forward, and is done
 132the same way as in capturing described in the previous paragraph:
 133
 134 int fd = socket(PF_PACKET, mode, 0);
 135
 136The protocol can optionally be 0 in case we only want to transmit
 137via this socket, which avoids an expensive call to packet_rcv().
 138In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
 139set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
 140
 141Binding the socket to your network interface is mandatory (with zero copy) to
 142know the header size of frames used in the circular buffer.
 143
 144As capture, each frame contains two parts:
 145
 146 --------------------
 147| struct tpacket_hdr | Header. It contains the status of
 148|                    | of this frame
 149|--------------------|
 150| data buffer        |
 151.                    .  Data that will be sent over the network interface.
 152.                    .
 153 --------------------
 154
 155 bind() associates the socket to your network interface thanks to
 156 sll_ifindex parameter of struct sockaddr_ll.
 157
 158 Initialization example:
 159
 160 struct sockaddr_ll my_addr;
 161 struct ifreq s_ifr;
 162 ...
 163
 164 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
 165
 166 /* get interface index of eth0 */
 167 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
 168
 169 /* fill sockaddr_ll struct to prepare binding */
 170 my_addr.sll_family = AF_PACKET;
 171 my_addr.sll_protocol = htons(ETH_P_ALL);
 172 my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
 173
 174 /* bind socket to eth0 */
 175 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
 176
 177 A complete tutorial is available at: http://wiki.gnu-log.net/
 178
 179By default, the user should put data at :
 180 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
 181
 182So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
 183the beginning of the user data will be at :
 184 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 185
 186If you wish to put user data at a custom offset from the beginning of
 187the frame (for payload alignment with SOCK_RAW mode for instance) you
 188can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
 189to make this work it must be enabled previously with setsockopt()
 190and the PACKET_TX_HAS_OFF option.
 191
 192--------------------------------------------------------------------------------
 193+ PACKET_MMAP settings
 194--------------------------------------------------------------------------------
 195
 196To setup PACKET_MMAP from user level code is done with a call like
 197
 198 - Capture process
 199     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
 200 - Transmission process
 201     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
 202
 203The most significant argument in the previous call is the req parameter, 
 204this parameter must to have the following structure:
 205
 206    struct tpacket_req
 207    {
 208        unsigned int    tp_block_size;  /* Minimal size of contiguous block */
 209        unsigned int    tp_block_nr;    /* Number of blocks */
 210        unsigned int    tp_frame_size;  /* Size of frame */
 211        unsigned int    tp_frame_nr;    /* Total number of frames */
 212    };
 213
 214This structure is defined in /usr/include/linux/if_packet.h and establishes a 
 215circular buffer (ring) of unswappable memory.
 216Being mapped in the capture process allows reading the captured frames and 
 217related meta-information like timestamps without requiring a system call.
 218
 219Frames are grouped in blocks. Each block is a physically contiguous
 220region of memory and holds tp_block_size/tp_frame_size frames. The total number 
 221of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
 222
 223    frames_per_block = tp_block_size/tp_frame_size
 224
 225indeed, packet_set_ring checks that the following condition is true
 226
 227    frames_per_block * tp_block_nr == tp_frame_nr
 228
 229Lets see an example, with the following values:
 230
 231     tp_block_size= 4096
 232     tp_frame_size= 2048
 233     tp_block_nr  = 4
 234     tp_frame_nr  = 8
 235
 236we will get the following buffer structure:
 237
 238        block #1                 block #2         
 239+---------+---------+    +---------+---------+    
 240| frame 1 | frame 2 |    | frame 3 | frame 4 |    
 241+---------+---------+    +---------+---------+    
 242
 243        block #3                 block #4
 244+---------+---------+    +---------+---------+
 245| frame 5 | frame 6 |    | frame 7 | frame 8 |
 246+---------+---------+    +---------+---------+
 247
 248A frame can be of any size with the only condition it can fit in a block. A block
 249can only hold an integer number of frames, or in other words, a frame cannot 
 250be spawned across two blocks, so there are some details you have to take into 
 251account when choosing the frame_size. See "Mapping and use of the circular 
 252buffer (ring)".
 253
 254--------------------------------------------------------------------------------
 255+ PACKET_MMAP setting constraints
 256--------------------------------------------------------------------------------
 257
 258In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
 259the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
 26016384 in a 64 bit architecture. For information on these kernel versions
 261see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
 262
 263 Block size limit
 264------------------
 265
 266As stated earlier, each block is a contiguous physical region of memory. These 
 267memory regions are allocated with calls to the __get_free_pages() function. As 
 268the name indicates, this function allocates pages of memory, and the second
 269argument is "order" or a power of two number of pages, that is 
 270(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 
 271order=2 ==> 16384 bytes, etc. The maximum size of a 
 272region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 
 273precisely the limit can be calculated as:
 274
 275   PAGE_SIZE << MAX_ORDER
 276
 277   In a i386 architecture PAGE_SIZE is 4096 bytes 
 278   In a 2.4/i386 kernel MAX_ORDER is 10
 279   In a 2.6/i386 kernel MAX_ORDER is 11
 280
 281So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 
 282respectively, with an i386 architecture.
 283
 284User space programs can include /usr/include/sys/user.h and 
 285/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
 286
 287The pagesize can also be determined dynamically with the getpagesize (2) 
 288system call. 
 289
 290 Block number limit
 291--------------------
 292
 293To understand the constraints of PACKET_MMAP, we have to see the structure 
 294used to hold the pointers to each block.
 295
 296Currently, this structure is a dynamically allocated vector with kmalloc 
 297called pg_vec, its size limits the number of blocks that can be allocated.
 298
 299    +---+---+---+---+
 300    | x | x | x | x |
 301    +---+---+---+---+
 302      |   |   |   |
 303      |   |   |   v
 304      |   |   v  block #4
 305      |   v  block #3
 306      v  block #2
 307     block #1
 308
 309kmalloc allocates any number of bytes of physically contiguous memory from 
 310a pool of pre-determined sizes. This pool of memory is maintained by the slab 
 311allocator which is at the end the responsible for doing the allocation and 
 312hence which imposes the maximum memory that kmalloc can allocate. 
 313
 314In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 
 315predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 
 316entries of /proc/slabinfo
 317
 318In a 32 bit architecture, pointers are 4 bytes long, so the total number of 
 319pointers to blocks is
 320
 321     131072/4 = 32768 blocks
 322
 323 PACKET_MMAP buffer size calculator
 324------------------------------------
 325
 326Definitions:
 327
 328<size-max>    : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
 329<pointer size>: depends on the architecture -- sizeof(void *)
 330<page size>   : depends on the architecture -- PAGE_SIZE or getpagesize (2)
 331<max-order>   : is the value defined with MAX_ORDER
 332<frame size>  : it's an upper bound of frame's capture size (more on this later)
 333
 334from these definitions we will derive 
 335
 336	<block number> = <size-max>/<pointer size>
 337	<block size> = <pagesize> << <max-order>
 338
 339so, the max buffer size is
 340
 341	<block number> * <block size>
 342
 343and, the number of frames be
 344
 345	<block number> * <block size> / <frame size>
 346
 347Suppose the following parameters, which apply for 2.6 kernel and an
 348i386 architecture:
 349
 350	<size-max> = 131072 bytes
 351	<pointer size> = 4 bytes
 352	<pagesize> = 4096 bytes
 353	<max-order> = 11
 354
 355and a value for <frame size> of 2048 bytes. These parameters will yield
 356
 357	<block number> = 131072/4 = 32768 blocks
 358	<block size> = 4096 << 11 = 8 MiB.
 359
 360and hence the buffer will have a 262144 MiB size. So it can hold 
 361262144 MiB / 2048 bytes = 134217728 frames
 362
 363Actually, this buffer size is not possible with an i386 architecture. 
 364Remember that the memory is allocated in kernel space, in the case of 
 365an i386 kernel's memory size is limited to 1GiB.
 366
 367All memory allocations are not freed until the socket is closed. The memory 
 368allocations are done with GFP_KERNEL priority, this basically means that 
 369the allocation can wait and swap other process' memory in order to allocate 
 370the necessary memory, so normally limits can be reached.
 371
 372 Other constraints
 373-------------------
 374
 375If you check the source code you will see that what I draw here as a frame
 376is not only the link level frame. At the beginning of each frame there is a 
 377header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
 378meta information like timestamp. So what we draw here a frame it's really 
 379the following (from include/linux/if_packet.h):
 380
 381/*
 382   Frame structure:
 383
 384   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
 385   - struct tpacket_hdr
 386   - pad to TPACKET_ALIGNMENT=16
 387   - struct sockaddr_ll
 388   - Gap, chosen so that packet data (Start+tp_net) aligns to 
 389     TPACKET_ALIGNMENT=16
 390   - Start+tp_mac: [ Optional MAC header ]
 391   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
 392   - Pad to align to TPACKET_ALIGNMENT=16
 393 */
 394 
 395 The following are conditions that are checked in packet_set_ring
 396
 397   tp_block_size must be a multiple of PAGE_SIZE (1)
 398   tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
 399   tp_frame_size must be a multiple of TPACKET_ALIGNMENT
 400   tp_frame_nr   must be exactly frames_per_block*tp_block_nr
 401
 402Note that tp_block_size should be chosen to be a power of two or there will
 403be a waste of memory.
 404
 405--------------------------------------------------------------------------------
 406+ Mapping and use of the circular buffer (ring)
 407--------------------------------------------------------------------------------
 408
 409The mapping of the buffer in the user process is done with the conventional 
 410mmap function. Even the circular buffer is compound of several physically
 411discontiguous blocks of memory, they are contiguous to the user space, hence
 412just one call to mmap is needed:
 413
 414    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 415
 416If tp_frame_size is a divisor of tp_block_size frames will be 
 417contiguously spaced by tp_frame_size bytes. If not, each
 418tp_block_size/tp_frame_size frames there will be a gap between 
 419the frames. This is because a frame cannot be spawn across two
 420blocks. 
 421
 422To use one socket for capture and transmission, the mapping of both the
 423RX and TX buffer ring has to be done with one call to mmap:
 424
 425    ...
 426    setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
 427    setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
 428    ...
 429    rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 430    tx_ring = rx_ring + size;
 431
 432RX must be the first as the kernel maps the TX ring memory right
 433after the RX one.
 434
 435At the beginning of each frame there is an status field (see 
 436struct tpacket_hdr). If this field is 0 means that the frame is ready
 437to be used for the kernel, If not, there is a frame the user can read 
 438and the following flags apply:
 439
 440+++ Capture process:
 441     from include/linux/if_packet.h
 442
 443     #define TP_STATUS_COPY          (1 << 1)
 444     #define TP_STATUS_LOSING        (1 << 2)
 445     #define TP_STATUS_CSUMNOTREADY  (1 << 3)
 446     #define TP_STATUS_CSUM_VALID    (1 << 7)
 447
 448TP_STATUS_COPY        : This flag indicates that the frame (and associated
 449                        meta information) has been truncated because it's 
 450                        larger than tp_frame_size. This packet can be 
 451                        read entirely with recvfrom().
 452                        
 453                        In order to make this work it must to be
 454                        enabled previously with setsockopt() and 
 455                        the PACKET_COPY_THRESH option. 
 456
 457                        The number of frames that can be buffered to
 458                        be read with recvfrom is limited like a normal socket.
 459                        See the SO_RCVBUF option in the socket (7) man page.
 460
 461TP_STATUS_LOSING      : indicates there were packet drops from last time 
 462                        statistics where checked with getsockopt() and
 463                        the PACKET_STATISTICS option.
 464
 465TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 
 466                        its checksum will be done in hardware. So while
 467                        reading the packet we should not try to check the 
 468                        checksum. 
 469
 470TP_STATUS_CSUM_VALID  : This flag indicates that at least the transport
 471                        header checksum of the packet has been already
 472                        validated on the kernel side. If the flag is not set
 473                        then we are free to check the checksum by ourselves
 474                        provided that TP_STATUS_CSUMNOTREADY is also not set.
 475
 476for convenience there are also the following defines:
 477
 478     #define TP_STATUS_KERNEL        0
 479     #define TP_STATUS_USER          1
 480
 481The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
 482receives a packet it puts in the buffer and updates the status with
 483at least the TP_STATUS_USER flag. Then the user can read the packet,
 484once the packet is read the user must zero the status field, so the kernel 
 485can use again that frame buffer.
 486
 487The user can use poll (any other variant should apply too) to check if new
 488packets are in the ring:
 489
 490    struct pollfd pfd;
 491
 492    pfd.fd = fd;
 493    pfd.revents = 0;
 494    pfd.events = POLLIN|POLLRDNORM|POLLERR;
 495
 496    if (status == TP_STATUS_KERNEL)
 497        retval = poll(&pfd, 1, timeout);
 498
 499It doesn't incur in a race condition to first check the status value and 
 500then poll for frames.
 501
 502++ Transmission process
 503Those defines are also used for transmission:
 504
 505     #define TP_STATUS_AVAILABLE        0 // Frame is available
 506     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
 507     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
 508     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
 509
 510First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
 511packet, the user fills a data buffer of an available frame, sets tp_len to
 512current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
 513This can be done on multiple frames. Once the user is ready to transmit, it
 514calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
 515forwarded to the network device. The kernel updates each status of sent
 516frames with TP_STATUS_SENDING until the end of transfer.
 517At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
 518
 519    header->tp_len = in_i_size;
 520    header->tp_status = TP_STATUS_SEND_REQUEST;
 521    retval = send(this->socket, NULL, 0, 0);
 522
 523The user can also use poll() to check if a buffer is available:
 524(status == TP_STATUS_SENDING)
 525
 526    struct pollfd pfd;
 527    pfd.fd = fd;
 528    pfd.revents = 0;
 529    pfd.events = POLLOUT;
 530    retval = poll(&pfd, 1, timeout);
 531
 532-------------------------------------------------------------------------------
 533+ What TPACKET versions are available and when to use them?
 534-------------------------------------------------------------------------------
 535
 536 int val = tpacket_version;
 537 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 538 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 539
 540where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
 541
 542TPACKET_V1:
 543	- Default if not otherwise specified by setsockopt(2)
 544	- RX_RING, TX_RING available
 545
 546TPACKET_V1 --> TPACKET_V2:
 547	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
 548	  structures, thus this also works on 64 bit kernel with 32 bit
 549	  userspace and the like
 550	- Timestamp resolution in nanoseconds instead of microseconds
 551	- RX_RING, TX_RING available
 552	- VLAN metadata information available for packets
 553	  (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
 554	  in the tpacket2_hdr structure:
 555		- TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
 556		  that the tp_vlan_tci field has valid VLAN TCI value
 557		- TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
 558		  indicates that the tp_vlan_tpid field has valid VLAN TPID value
 559	- How to switch to TPACKET_V2:
 560		1. Replace struct tpacket_hdr by struct tpacket2_hdr
 561		2. Query header len and save
 562		3. Set protocol version to 2, set up ring as usual
 563		4. For getting the sockaddr_ll,
 564		   use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
 565		   (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 566
 567TPACKET_V2 --> TPACKET_V3:
 568	- Flexible buffer implementation:
 569		1. Blocks can be configured with non-static frame-size
 570		2. Read/poll is at a block-level (as opposed to packet-level)
 571		3. Added poll timeout to avoid indefinite user-space wait
 572		   on idle links
 573		4. Added user-configurable knobs:
 574			4.1 block::timeout
 575			4.2 tpkt_hdr::sk_rxhash
 576	- RX Hash data available in user space
 577	- Currently only RX_RING available
 578
 579-------------------------------------------------------------------------------
 580+ AF_PACKET fanout mode
 581-------------------------------------------------------------------------------
 582
 583In the AF_PACKET fanout mode, packet reception can be load balanced among
 584processes. This also works in combination with mmap(2) on packet sockets.
 585
 586Currently implemented fanout policies are:
 587
 588  - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
 589  - PACKET_FANOUT_LB: schedule to socket by round-robin
 590  - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
 591  - PACKET_FANOUT_RND: schedule to socket by random selection
 592  - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
 593  - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
 594
 595Minimal example code by David S. Miller (try things like "./test eth0 hash",
 596"./test eth0 lb", etc.):
 597
 598#include <stddef.h>
 599#include <stdlib.h>
 600#include <stdio.h>
 601#include <string.h>
 602
 603#include <sys/types.h>
 604#include <sys/wait.h>
 605#include <sys/socket.h>
 606#include <sys/ioctl.h>
 607
 608#include <unistd.h>
 609
 610#include <linux/if_ether.h>
 611#include <linux/if_packet.h>
 612
 613#include <net/if.h>
 614
 615static const char *device_name;
 616static int fanout_type;
 617static int fanout_id;
 618
 619#ifndef PACKET_FANOUT
 620# define PACKET_FANOUT			18
 621# define PACKET_FANOUT_HASH		0
 622# define PACKET_FANOUT_LB		1
 623#endif
 624
 625static int setup_socket(void)
 626{
 627	int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
 628	struct sockaddr_ll ll;
 629	struct ifreq ifr;
 630	int fanout_arg;
 631
 632	if (fd < 0) {
 633		perror("socket");
 634		return EXIT_FAILURE;
 635	}
 636
 637	memset(&ifr, 0, sizeof(ifr));
 638	strcpy(ifr.ifr_name, device_name);
 639	err = ioctl(fd, SIOCGIFINDEX, &ifr);
 640	if (err < 0) {
 641		perror("SIOCGIFINDEX");
 642		return EXIT_FAILURE;
 643	}
 644
 645	memset(&ll, 0, sizeof(ll));
 646	ll.sll_family = AF_PACKET;
 647	ll.sll_ifindex = ifr.ifr_ifindex;
 648	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 649	if (err < 0) {
 650		perror("bind");
 651		return EXIT_FAILURE;
 652	}
 653
 654	fanout_arg = (fanout_id | (fanout_type << 16));
 655	err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
 656			 &fanout_arg, sizeof(fanout_arg));
 657	if (err) {
 658		perror("setsockopt");
 659		return EXIT_FAILURE;
 660	}
 661
 662	return fd;
 663}
 664
 665static void fanout_thread(void)
 666{
 667	int fd = setup_socket();
 668	int limit = 10000;
 669
 670	if (fd < 0)
 671		exit(fd);
 672
 673	while (limit-- > 0) {
 674		char buf[1600];
 675		int err;
 676
 677		err = read(fd, buf, sizeof(buf));
 678		if (err < 0) {
 679			perror("read");
 680			exit(EXIT_FAILURE);
 681		}
 682		if ((limit % 10) == 0)
 683			fprintf(stdout, "(%d) \n", getpid());
 684	}
 685
 686	fprintf(stdout, "%d: Received 10000 packets\n", getpid());
 687
 688	close(fd);
 689	exit(0);
 690}
 691
 692int main(int argc, char **argp)
 693{
 694	int fd, err;
 695	int i;
 696
 697	if (argc != 3) {
 698		fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
 699		return EXIT_FAILURE;
 700	}
 701
 702	if (!strcmp(argp[2], "hash"))
 703		fanout_type = PACKET_FANOUT_HASH;
 704	else if (!strcmp(argp[2], "lb"))
 705		fanout_type = PACKET_FANOUT_LB;
 706	else {
 707		fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
 708		exit(EXIT_FAILURE);
 709	}
 710
 711	device_name = argp[1];
 712	fanout_id = getpid() & 0xffff;
 713
 714	for (i = 0; i < 4; i++) {
 715		pid_t pid = fork();
 716
 717		switch (pid) {
 718		case 0:
 719			fanout_thread();
 720
 721		case -1:
 722			perror("fork");
 723			exit(EXIT_FAILURE);
 724		}
 725	}
 726
 727	for (i = 0; i < 4; i++) {
 728		int status;
 729
 730		wait(&status);
 731	}
 732
 733	return 0;
 734}
 735
 736-------------------------------------------------------------------------------
 737+ AF_PACKET TPACKET_V3 example
 738-------------------------------------------------------------------------------
 739
 740AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
 741sizes by doing it's own memory management. It is based on blocks where polling
 742works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
 743
 744It is said that TPACKET_V3 brings the following benefits:
 745 *) ~15 - 20% reduction in CPU-usage
 746 *) ~20% increase in packet capture rate
 747 *) ~2x increase in packet density
 748 *) Port aggregation analysis
 749 *) Non static frame size to capture entire packet payload
 750
 751So it seems to be a good candidate to be used with packet fanout.
 752
 753Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
 754it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
 755
 756/* Written from scratch, but kernel-to-user space API usage
 757 * dissected from lolpcap:
 758 *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
 759 *  License: GPL, version 2.0
 760 */
 761
 762#include <stdio.h>
 763#include <stdlib.h>
 764#include <stdint.h>
 765#include <string.h>
 766#include <assert.h>
 767#include <net/if.h>
 768#include <arpa/inet.h>
 769#include <netdb.h>
 770#include <poll.h>
 771#include <unistd.h>
 772#include <signal.h>
 773#include <inttypes.h>
 774#include <sys/socket.h>
 775#include <sys/mman.h>
 776#include <linux/if_packet.h>
 777#include <linux/if_ether.h>
 778#include <linux/ip.h>
 779
 780#ifndef likely
 781# define likely(x)		__builtin_expect(!!(x), 1)
 782#endif
 783#ifndef unlikely
 784# define unlikely(x)		__builtin_expect(!!(x), 0)
 785#endif
 786
 787struct block_desc {
 788	uint32_t version;
 789	uint32_t offset_to_priv;
 790	struct tpacket_hdr_v1 h1;
 791};
 792
 793struct ring {
 794	struct iovec *rd;
 795	uint8_t *map;
 796	struct tpacket_req3 req;
 797};
 798
 799static unsigned long packets_total = 0, bytes_total = 0;
 800static sig_atomic_t sigint = 0;
 801
 802static void sighandler(int num)
 803{
 804	sigint = 1;
 805}
 806
 807static int setup_socket(struct ring *ring, char *netdev)
 808{
 809	int err, i, fd, v = TPACKET_V3;
 810	struct sockaddr_ll ll;
 811	unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
 812	unsigned int blocknum = 64;
 813
 814	fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
 815	if (fd < 0) {
 816		perror("socket");
 817		exit(1);
 818	}
 819
 820	err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
 821	if (err < 0) {
 822		perror("setsockopt");
 823		exit(1);
 824	}
 825
 826	memset(&ring->req, 0, sizeof(ring->req));
 827	ring->req.tp_block_size = blocksiz;
 828	ring->req.tp_frame_size = framesiz;
 829	ring->req.tp_block_nr = blocknum;
 830	ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
 831	ring->req.tp_retire_blk_tov = 60;
 832	ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
 833
 834	err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
 835			 sizeof(ring->req));
 836	if (err < 0) {
 837		perror("setsockopt");
 838		exit(1);
 839	}
 840
 841	ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
 842			 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
 843	if (ring->map == MAP_FAILED) {
 844		perror("mmap");
 845		exit(1);
 846	}
 847
 848	ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
 849	assert(ring->rd);
 850	for (i = 0; i < ring->req.tp_block_nr; ++i) {
 851		ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
 852		ring->rd[i].iov_len = ring->req.tp_block_size;
 853	}
 854
 855	memset(&ll, 0, sizeof(ll));
 856	ll.sll_family = PF_PACKET;
 857	ll.sll_protocol = htons(ETH_P_ALL);
 858	ll.sll_ifindex = if_nametoindex(netdev);
 859	ll.sll_hatype = 0;
 860	ll.sll_pkttype = 0;
 861	ll.sll_halen = 0;
 862
 863	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 864	if (err < 0) {
 865		perror("bind");
 866		exit(1);
 867	}
 868
 869	return fd;
 870}
 871
 872static void display(struct tpacket3_hdr *ppd)
 873{
 874	struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
 875	struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
 876
 877	if (eth->h_proto == htons(ETH_P_IP)) {
 878		struct sockaddr_in ss, sd;
 879		char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
 880
 881		memset(&ss, 0, sizeof(ss));
 882		ss.sin_family = PF_INET;
 883		ss.sin_addr.s_addr = ip->saddr;
 884		getnameinfo((struct sockaddr *) &ss, sizeof(ss),
 885			    sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
 886
 887		memset(&sd, 0, sizeof(sd));
 888		sd.sin_family = PF_INET;
 889		sd.sin_addr.s_addr = ip->daddr;
 890		getnameinfo((struct sockaddr *) &sd, sizeof(sd),
 891			    dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
 892
 893		printf("%s -> %s, ", sbuff, dbuff);
 894	}
 895
 896	printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
 897}
 898
 899static void walk_block(struct block_desc *pbd, const int block_num)
 900{
 901	int num_pkts = pbd->h1.num_pkts, i;
 902	unsigned long bytes = 0;
 903	struct tpacket3_hdr *ppd;
 904
 905	ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
 906				       pbd->h1.offset_to_first_pkt);
 907	for (i = 0; i < num_pkts; ++i) {
 908		bytes += ppd->tp_snaplen;
 909		display(ppd);
 910
 911		ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
 912					       ppd->tp_next_offset);
 913	}
 914
 915	packets_total += num_pkts;
 916	bytes_total += bytes;
 917}
 918
 919static void flush_block(struct block_desc *pbd)
 920{
 921	pbd->h1.block_status = TP_STATUS_KERNEL;
 922}
 923
 924static void teardown_socket(struct ring *ring, int fd)
 925{
 926	munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
 927	free(ring->rd);
 928	close(fd);
 929}
 930
 931int main(int argc, char **argp)
 932{
 933	int fd, err;
 934	socklen_t len;
 935	struct ring ring;
 936	struct pollfd pfd;
 937	unsigned int block_num = 0, blocks = 64;
 938	struct block_desc *pbd;
 939	struct tpacket_stats_v3 stats;
 940
 941	if (argc != 2) {
 942		fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
 943		return EXIT_FAILURE;
 944	}
 945
 946	signal(SIGINT, sighandler);
 947
 948	memset(&ring, 0, sizeof(ring));
 949	fd = setup_socket(&ring, argp[argc - 1]);
 950	assert(fd > 0);
 951
 952	memset(&pfd, 0, sizeof(pfd));
 953	pfd.fd = fd;
 954	pfd.events = POLLIN | POLLERR;
 955	pfd.revents = 0;
 956
 957	while (likely(!sigint)) {
 958		pbd = (struct block_desc *) ring.rd[block_num].iov_base;
 959
 960		if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
 961			poll(&pfd, 1, -1);
 962			continue;
 963		}
 964
 965		walk_block(pbd, block_num);
 966		flush_block(pbd);
 967		block_num = (block_num + 1) % blocks;
 968	}
 969
 970	len = sizeof(stats);
 971	err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
 972	if (err < 0) {
 973		perror("getsockopt");
 974		exit(1);
 975	}
 976
 977	fflush(stdout);
 978	printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
 979	       stats.tp_packets, bytes_total, stats.tp_drops,
 980	       stats.tp_freeze_q_cnt);
 981
 982	teardown_socket(&ring, fd);
 983	return 0;
 984}
 985
 986-------------------------------------------------------------------------------
 987+ PACKET_QDISC_BYPASS
 988-------------------------------------------------------------------------------
 989
 990If there is a requirement to load the network with many packets in a similar
 991fashion as pktgen does, you might set the following option after socket
 992creation:
 993
 994    int one = 1;
 995    setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
 996
 997This has the side-effect, that packets sent through PF_PACKET will bypass the
 998kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
 999packet are not buffered, tc disciplines are ignored, increased loss can occur
1000and such packets are also not visible to other PF_PACKET sockets anymore. So,
1001you have been warned; generally, this can be useful for stress testing various
1002components of a system.
1003
1004On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
1005on PF_PACKET sockets.
1006
1007-------------------------------------------------------------------------------
1008+ PACKET_TIMESTAMP
1009-------------------------------------------------------------------------------
1010
1011The PACKET_TIMESTAMP setting determines the source of the timestamp in
1012the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1013NIC is capable of timestamping packets in hardware, you can request those
1014hardware timestamps to be used. Note: you may need to enable the generation
1015of hardware timestamps with SIOCSHWTSTAMP (see related information from
1016Documentation/networking/timestamping.txt).
1017
1018PACKET_TIMESTAMP accepts the same integer bit field as SO_TIMESTAMPING:
1019
1020    int req = SOF_TIMESTAMPING_RAW_HARDWARE;
1021    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1022
1023For the mmap(2)ed ring buffers, such timestamps are stored in the
1024tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
1025what kind of timestamp has been reported, the tp_status field is binary |'ed
1026with the following possible bits ...
1027
1028    TP_STATUS_TS_RAW_HARDWARE
1029    TP_STATUS_TS_SOFTWARE
1030
1031... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
1032RX_RING, if neither is set (i.e. PACKET_TIMESTAMP is not set), then a
1033software fallback was invoked *within* PF_PACKET's processing code (less
1034precise).
1035
1036Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1037ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1038frames to be updated resp. the frame handed over to the application, iv) walk
1039through the frames to pick up the individual hw/sw timestamps.
1040
1041Only (!) if transmit timestamping is enabled, then these bits are combined
1042with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1043application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1044in a first step to see if the frame belongs to the application, and then
1045one can extract the type of timestamp in a second step from tp_status)!
1046
1047If you don't care about them, thus having it disabled, checking for
1048TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1049TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1050members do not contain a valid value. For TX_RINGs, by default no timestamp
1051is generated!
1052
1053See include/linux/net_tstamp.h and Documentation/networking/timestamping
1054for more information on hardware timestamps.
1055
1056-------------------------------------------------------------------------------
1057+ Miscellaneous bits
1058-------------------------------------------------------------------------------
1059
1060- Packet sockets work well together with Linux socket filters, thus you also
1061  might want to have a look at Documentation/networking/filter.txt
1062
1063--------------------------------------------------------------------------------
1064+ THANKS
1065--------------------------------------------------------------------------------
1066   
1067   Jesse Brandeburg, for fixing my grammathical/spelling errors
1068