Linux Audio

Check our new training course

Loading...
v6.13.7
   1			 ============================
   2			 LINUX KERNEL MEMORY BARRIERS
   3			 ============================
   4
   5By: David Howells <dhowells@redhat.com>
   6    Paul E. McKenney <paulmck@linux.ibm.com>
   7    Will Deacon <will.deacon@arm.com>
   8    Peter Zijlstra <peterz@infradead.org>
   9
  10==========
  11DISCLAIMER
  12==========
  13
  14This document is not a specification; it is intentionally (for the sake of
  15brevity) and unintentionally (due to being human) incomplete. This document is
  16meant as a guide to using the various memory barriers provided by Linux, but
  17in case of any doubt (and there are many) please ask.  Some doubts may be
  18resolved by referring to the formal memory consistency model and related
  19documentation at tools/memory-model/.  Nevertheless, even this memory
  20model should be viewed as the collective opinion of its maintainers rather
  21than as an infallible oracle.
  22
  23To repeat, this document is not a specification of what Linux expects from
  24hardware.
  25
  26The purpose of this document is twofold:
  27
  28 (1) to specify the minimum functionality that one can rely on for any
  29     particular barrier, and
  30
  31 (2) to provide a guide as to how to use the barriers that are available.
  32
  33Note that an architecture can provide more than the minimum requirement
  34for any particular barrier, but if the architecture provides less than
  35that, that architecture is incorrect.
  36
  37Note also that it is possible that a barrier may be a no-op for an
  38architecture because the way that arch works renders an explicit barrier
  39unnecessary in that case.
  40
  41
  42========
  43CONTENTS
  44========
  45
  46 (*) Abstract memory access model.
  47
  48     - Device operations.
  49     - Guarantees.
  50
  51 (*) What are memory barriers?
  52
  53     - Varieties of memory barrier.
  54     - What may not be assumed about memory barriers?
  55     - Address-dependency barriers (historical).
  56     - Control dependencies.
  57     - SMP barrier pairing.
  58     - Examples of memory barrier sequences.
  59     - Read memory barriers vs load speculation.
  60     - Multicopy atomicity.
  61
  62 (*) Explicit kernel barriers.
  63
  64     - Compiler barrier.
  65     - CPU memory barriers.
 
  66
  67 (*) Implicit kernel memory barriers.
  68
  69     - Lock acquisition functions.
  70     - Interrupt disabling functions.
  71     - Sleep and wake-up functions.
  72     - Miscellaneous functions.
  73
  74 (*) Inter-CPU acquiring barrier effects.
  75
  76     - Acquires vs memory accesses.
 
  77
  78 (*) Where are memory barriers needed?
  79
  80     - Interprocessor interaction.
  81     - Atomic operations.
  82     - Accessing devices.
  83     - Interrupts.
  84
  85 (*) Kernel I/O barrier effects.
  86
  87 (*) Assumed minimum execution ordering model.
  88
  89 (*) The effects of the cpu cache.
  90
 
  91     - Cache coherency vs DMA.
  92     - Cache coherency vs MMIO.
  93
  94 (*) The things CPUs get up to.
  95
  96     - And then there's the Alpha.
  97     - Virtual Machine Guests.
  98
  99 (*) Example uses.
 100
 101     - Circular buffers.
 102
 103 (*) References.
 104
 105
 106============================
 107ABSTRACT MEMORY ACCESS MODEL
 108============================
 109
 110Consider the following abstract model of the system:
 111
 112		            :                :
 113		            :                :
 114		            :                :
 115		+-------+   :   +--------+   :   +-------+
 116		|       |   :   |        |   :   |       |
 117		|       |   :   |        |   :   |       |
 118		| CPU 1 |<----->| Memory |<----->| CPU 2 |
 119		|       |   :   |        |   :   |       |
 120		|       |   :   |        |   :   |       |
 121		+-------+   :   +--------+   :   +-------+
 122		    ^       :       ^        :       ^
 123		    |       :       |        :       |
 124		    |       :       |        :       |
 125		    |       :       v        :       |
 126		    |       :   +--------+   :       |
 127		    |       :   |        |   :       |
 128		    |       :   |        |   :       |
 129		    +---------->| Device |<----------+
 130		            :   |        |   :
 131		            :   |        |   :
 132		            :   +--------+   :
 133		            :                :
 134
 135Each CPU executes a program that generates memory access operations.  In the
 136abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
 137perform the memory operations in any order it likes, provided program causality
 138appears to be maintained.  Similarly, the compiler may also arrange the
 139instructions it emits in any order it likes, provided it doesn't affect the
 140apparent operation of the program.
 141
 142So in the above diagram, the effects of the memory operations performed by a
 143CPU are perceived by the rest of the system as the operations cross the
 144interface between the CPU and rest of the system (the dotted lines).
 145
 146
 147For example, consider the following sequence of events:
 148
 149	CPU 1		CPU 2
 150	===============	===============
 151	{ A == 1; B == 2 }
 152	A = 3;		x = B;
 153	B = 4;		y = A;
 154
 155The set of accesses as seen by the memory system in the middle can be arranged
 156in 24 different combinations:
 157
 158	STORE A=3,	STORE B=4,	y=LOAD A->3,	x=LOAD B->4
 159	STORE A=3,	STORE B=4,	x=LOAD B->4,	y=LOAD A->3
 160	STORE A=3,	y=LOAD A->3,	STORE B=4,	x=LOAD B->4
 161	STORE A=3,	y=LOAD A->3,	x=LOAD B->2,	STORE B=4
 162	STORE A=3,	x=LOAD B->2,	STORE B=4,	y=LOAD A->3
 163	STORE A=3,	x=LOAD B->2,	y=LOAD A->3,	STORE B=4
 164	STORE B=4,	STORE A=3,	y=LOAD A->3,	x=LOAD B->4
 165	STORE B=4, ...
 166	...
 167
 168and can thus result in four different combinations of values:
 169
 170	x == 2, y == 1
 171	x == 2, y == 3
 172	x == 4, y == 1
 173	x == 4, y == 3
 174
 175
 176Furthermore, the stores committed by a CPU to the memory system may not be
 177perceived by the loads made by another CPU in the same order as the stores were
 178committed.
 179
 180
 181As a further example, consider this sequence of events:
 182
 183	CPU 1		CPU 2
 184	===============	===============
 185	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
 186	B = 4;		Q = P;
 187	P = &B;		D = *Q;
 188
 189There is an obvious address dependency here, as the value loaded into D depends
 190on the address retrieved from P by CPU 2.  At the end of the sequence, any of
 191the following results are possible:
 192
 193	(Q == &A) and (D == 1)
 194	(Q == &B) and (D == 2)
 195	(Q == &B) and (D == 4)
 196
 197Note that CPU 2 will never try and load C into D because the CPU will load P
 198into Q before issuing the load of *Q.
 199
 200
 201DEVICE OPERATIONS
 202-----------------
 203
 204Some devices present their control interfaces as collections of memory
 205locations, but the order in which the control registers are accessed is very
 206important.  For instance, imagine an ethernet card with a set of internal
 207registers that are accessed through an address port register (A) and a data
 208port register (D).  To read internal register 5, the following code might then
 209be used:
 210
 211	*A = 5;
 212	x = *D;
 213
 214but this might show up as either of the following two sequences:
 215
 216	STORE *A = 5, x = LOAD *D
 217	x = LOAD *D, STORE *A = 5
 218
 219the second of which will almost certainly result in a malfunction, since it set
 220the address _after_ attempting to read the register.
 221
 222
 223GUARANTEES
 224----------
 225
 226There are some minimal guarantees that may be expected of a CPU:
 227
 228 (*) On any given CPU, dependent memory accesses will be issued in order, with
 229     respect to itself.  This means that for:
 230
 231	Q = READ_ONCE(P); D = READ_ONCE(*Q);
 232
 233     the CPU will issue the following memory operations:
 234
 235	Q = LOAD P, D = LOAD *Q
 236
 237     and always in that order.  However, on DEC Alpha, READ_ONCE() also
 238     emits a memory-barrier instruction, so that a DEC Alpha CPU will
 239     instead issue the following memory operations:
 240
 241	Q = LOAD P, MEMORY_BARRIER, D = LOAD *Q, MEMORY_BARRIER
 242
 243     Whether on DEC Alpha or not, the READ_ONCE() also prevents compiler
 244     mischief.
 245
 246 (*) Overlapping loads and stores within a particular CPU will appear to be
 247     ordered within that CPU.  This means that for:
 248
 249	a = READ_ONCE(*X); WRITE_ONCE(*X, b);
 250
 251     the CPU will only issue the following sequence of memory operations:
 252
 253	a = LOAD *X, STORE *X = b
 254
 255     And for:
 256
 257	WRITE_ONCE(*X, c); d = READ_ONCE(*X);
 258
 259     the CPU will only issue:
 260
 261	STORE *X = c, d = LOAD *X
 262
 263     (Loads and stores overlap if they are targeted at overlapping pieces of
 264     memory).
 265
 266And there are a number of things that _must_ or _must_not_ be assumed:
 267
 268 (*) It _must_not_ be assumed that the compiler will do what you want
 269     with memory references that are not protected by READ_ONCE() and
 270     WRITE_ONCE().  Without them, the compiler is within its rights to
 271     do all sorts of "creative" transformations, which are covered in
 272     the COMPILER BARRIER section.
 273
 274 (*) It _must_not_ be assumed that independent loads and stores will be issued
 275     in the order given.  This means that for:
 276
 277	X = *A; Y = *B; *D = Z;
 278
 279     we may get any of the following sequences:
 280
 281	X = LOAD *A,  Y = LOAD *B,  STORE *D = Z
 282	X = LOAD *A,  STORE *D = Z, Y = LOAD *B
 283	Y = LOAD *B,  X = LOAD *A,  STORE *D = Z
 284	Y = LOAD *B,  STORE *D = Z, X = LOAD *A
 285	STORE *D = Z, X = LOAD *A,  Y = LOAD *B
 286	STORE *D = Z, Y = LOAD *B,  X = LOAD *A
 287
 288 (*) It _must_ be assumed that overlapping memory accesses may be merged or
 289     discarded.  This means that for:
 290
 291	X = *A; Y = *(A + 4);
 292
 293     we may get any one of the following sequences:
 294
 295	X = LOAD *A; Y = LOAD *(A + 4);
 296	Y = LOAD *(A + 4); X = LOAD *A;
 297	{X, Y} = LOAD {*A, *(A + 4) };
 298
 299     And for:
 300
 301	*A = X; *(A + 4) = Y;
 302
 303     we may get any of:
 304
 305	STORE *A = X; STORE *(A + 4) = Y;
 306	STORE *(A + 4) = Y; STORE *A = X;
 307	STORE {*A, *(A + 4) } = {X, Y};
 308
 309And there are anti-guarantees:
 310
 311 (*) These guarantees do not apply to bitfields, because compilers often
 312     generate code to modify these using non-atomic read-modify-write
 313     sequences.  Do not attempt to use bitfields to synchronize parallel
 314     algorithms.
 315
 316 (*) Even in cases where bitfields are protected by locks, all fields
 317     in a given bitfield must be protected by one lock.  If two fields
 318     in a given bitfield are protected by different locks, the compiler's
 319     non-atomic read-modify-write sequences can cause an update to one
 320     field to corrupt the value of an adjacent field.
 321
 322 (*) These guarantees apply only to properly aligned and sized scalar
 323     variables.  "Properly sized" currently means variables that are
 324     the same size as "char", "short", "int" and "long".  "Properly
 325     aligned" means the natural alignment, thus no constraints for
 326     "char", two-byte alignment for "short", four-byte alignment for
 327     "int", and either four-byte or eight-byte alignment for "long",
 328     on 32-bit and 64-bit systems, respectively.  Note that these
 329     guarantees were introduced into the C11 standard, so beware when
 330     using older pre-C11 compilers (for example, gcc 4.6).  The portion
 331     of the standard containing this guarantee is Section 3.14, which
 332     defines "memory location" as follows:
 333
 334     	memory location
 335		either an object of scalar type, or a maximal sequence
 336		of adjacent bit-fields all having nonzero width
 337
 338		NOTE 1: Two threads of execution can update and access
 339		separate memory locations without interfering with
 340		each other.
 341
 342		NOTE 2: A bit-field and an adjacent non-bit-field member
 343		are in separate memory locations. The same applies
 344		to two bit-fields, if one is declared inside a nested
 345		structure declaration and the other is not, or if the two
 346		are separated by a zero-length bit-field declaration,
 347		or if they are separated by a non-bit-field member
 348		declaration. It is not safe to concurrently update two
 349		bit-fields in the same structure if all members declared
 350		between them are also bit-fields, no matter what the
 351		sizes of those intervening bit-fields happen to be.
 352
 353
 354=========================
 355WHAT ARE MEMORY BARRIERS?
 356=========================
 357
 358As can be seen above, independent memory operations are effectively performed
 359in random order, but this can be a problem for CPU-CPU interaction and for I/O.
 360What is required is some way of intervening to instruct the compiler and the
 361CPU to restrict the order.
 362
 363Memory barriers are such interventions.  They impose a perceived partial
 364ordering over the memory operations on either side of the barrier.
 365
 366Such enforcement is important because the CPUs and other devices in a system
 367can use a variety of tricks to improve performance, including reordering,
 368deferral and combination of memory operations; speculative loads; speculative
 369branch prediction and various types of caching.  Memory barriers are used to
 370override or suppress these tricks, allowing the code to sanely control the
 371interaction of multiple CPUs and/or devices.
 372
 373
 374VARIETIES OF MEMORY BARRIER
 375---------------------------
 376
 377Memory barriers come in four basic varieties:
 378
 379 (1) Write (or store) memory barriers.
 380
 381     A write memory barrier gives a guarantee that all the STORE operations
 382     specified before the barrier will appear to happen before all the STORE
 383     operations specified after the barrier with respect to the other
 384     components of the system.
 385
 386     A write barrier is a partial ordering on stores only; it is not required
 387     to have any effect on loads.
 388
 389     A CPU can be viewed as committing a sequence of store operations to the
 390     memory system as time progresses.  All stores _before_ a write barrier
 391     will occur _before_ all the stores after the write barrier.
 
 
 
 
 392
 393     [!] Note that write barriers should normally be paired with read or
 394     address-dependency barriers; see the "SMP barrier pairing" subsection.
 395
 
 
 
 
 
 
 396
 397 (2) Address-dependency barriers (historical).
 398     [!] This section is marked as HISTORICAL: it covers the long-obsolete
 399     smp_read_barrier_depends() macro, the semantics of which are now
 400     implicit in all marked accesses.  For more up-to-date information,
 401     including how compiler transformations can sometimes break address
 402     dependencies, see Documentation/RCU/rcu_dereference.rst.
 403
 404     An address-dependency barrier is a weaker form of read barrier.  In the
 405     case where two loads are performed such that the second depends on the
 406     result of the first (eg: the first load retrieves the address to which
 407     the second load will be directed), an address-dependency barrier would
 408     be required to make sure that the target of the second load is updated
 409     after the address obtained by the first load is accessed.
 410
 411     An address-dependency barrier is a partial ordering on interdependent
 412     loads only; it is not required to have any effect on stores, independent
 413     loads or overlapping loads.
 414
 415     As mentioned in (1), the other CPUs in the system can be viewed as
 416     committing sequences of stores to the memory system that the CPU being
 417     considered can then perceive.  An address-dependency barrier issued by
 418     the CPU under consideration guarantees that for any load preceding it,
 419     if that load touches one of a sequence of stores from another CPU, then
 420     by the time the barrier completes, the effects of all the stores prior to
 421     that touched by the load will be perceptible to any loads issued after
 422     the address-dependency barrier.
 423
 424     See the "Examples of memory barrier sequences" subsection for diagrams
 425     showing the ordering constraints.
 426
 427     [!] Note that the first load really has to have an _address_ dependency and
 428     not a control dependency.  If the address for the second load is dependent
 429     on the first load, but the dependency is through a conditional rather than
 430     actually loading the address itself, then it's a _control_ dependency and
 431     a full read barrier or better is required.  See the "Control dependencies"
 432     subsection for more information.
 433
 434     [!] Note that address-dependency barriers should normally be paired with
 435     write barriers; see the "SMP barrier pairing" subsection.
 436
 437     [!] Kernel release v5.9 removed kernel APIs for explicit address-
 438     dependency barriers.  Nowadays, APIs for marking loads from shared
 439     variables such as READ_ONCE() and rcu_dereference() provide implicit
 440     address-dependency barriers.
 441
 442 (3) Read (or load) memory barriers.
 443
 444     A read barrier is an address-dependency barrier plus a guarantee that all
 445     the LOAD operations specified before the barrier will appear to happen
 446     before all the LOAD operations specified after the barrier with respect to
 447     the other components of the system.
 448
 449     A read barrier is a partial ordering on loads only; it is not required to
 450     have any effect on stores.
 451
 452     Read memory barriers imply address-dependency barriers, and so can
 453     substitute for them.
 454
 455     [!] Note that read barriers should normally be paired with write barriers;
 456     see the "SMP barrier pairing" subsection.
 457
 458
 459 (4) General memory barriers.
 460
 461     A general memory barrier gives a guarantee that all the LOAD and STORE
 462     operations specified before the barrier will appear to happen before all
 463     the LOAD and STORE operations specified after the barrier with respect to
 464     the other components of the system.
 465
 466     A general memory barrier is a partial ordering over both loads and stores.
 467
 468     General memory barriers imply both read and write memory barriers, and so
 469     can substitute for either.
 470
 471
 472And a couple of implicit varieties:
 473
 474 (5) ACQUIRE operations.
 475
 476     This acts as a one-way permeable barrier.  It guarantees that all memory
 477     operations after the ACQUIRE operation will appear to happen after the
 478     ACQUIRE operation with respect to the other components of the system.
 479     ACQUIRE operations include LOCK operations and both smp_load_acquire()
 480     and smp_cond_load_acquire() operations.
 481
 482     Memory operations that occur before an ACQUIRE operation may appear to
 483     happen after it completes.
 484
 485     An ACQUIRE operation should almost always be paired with a RELEASE
 486     operation.
 487
 488
 489 (6) RELEASE operations.
 490
 491     This also acts as a one-way permeable barrier.  It guarantees that all
 492     memory operations before the RELEASE operation will appear to happen
 493     before the RELEASE operation with respect to the other components of the
 494     system. RELEASE operations include UNLOCK operations and
 495     smp_store_release() operations.
 496
 497     Memory operations that occur after a RELEASE operation may appear to
 498     happen before it completes.
 499
 500     The use of ACQUIRE and RELEASE operations generally precludes the need
 501     for other sorts of memory barrier.  In addition, a RELEASE+ACQUIRE pair is
 502     -not- guaranteed to act as a full memory barrier.  However, after an
 503     ACQUIRE on a given variable, all memory accesses preceding any prior
 
 504     RELEASE on that same variable are guaranteed to be visible.  In other
 505     words, within a given variable's critical section, all accesses of all
 506     previous critical sections for that variable are guaranteed to have
 507     completed.
 508
 509     This means that ACQUIRE acts as a minimal "acquire" operation and
 510     RELEASE acts as a minimal "release" operation.
 511
 512A subset of the atomic operations described in atomic_t.txt have ACQUIRE and
 513RELEASE variants in addition to fully-ordered and relaxed (no barrier
 514semantics) definitions.  For compound atomics performing both a load and a
 515store, ACQUIRE semantics apply only to the load and RELEASE semantics apply
 516only to the store portion of the operation.
 517
 518Memory barriers are only required where there's a possibility of interaction
 519between two CPUs or between a CPU and a device.  If it can be guaranteed that
 520there won't be any such interaction in any particular piece of code, then
 521memory barriers are unnecessary in that piece of code.
 522
 523
 524Note that these are the _minimum_ guarantees.  Different architectures may give
 525more substantial guarantees, but they may _not_ be relied upon outside of arch
 526specific code.
 527
 528
 529WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
 530----------------------------------------------
 531
 532There are certain things that the Linux kernel memory barriers do not guarantee:
 533
 534 (*) There is no guarantee that any of the memory accesses specified before a
 535     memory barrier will be _complete_ by the completion of a memory barrier
 536     instruction; the barrier can be considered to draw a line in that CPU's
 537     access queue that accesses of the appropriate type may not cross.
 538
 539 (*) There is no guarantee that issuing a memory barrier on one CPU will have
 540     any direct effect on another CPU or any other hardware in the system.  The
 541     indirect effect will be the order in which the second CPU sees the effects
 542     of the first CPU's accesses occur, but see the next point:
 543
 544 (*) There is no guarantee that a CPU will see the correct order of effects
 545     from a second CPU's accesses, even _if_ the second CPU uses a memory
 546     barrier, unless the first CPU _also_ uses a matching memory barrier (see
 547     the subsection on "SMP Barrier Pairing").
 548
 549 (*) There is no guarantee that some intervening piece of off-the-CPU
 550     hardware[*] will not reorder the memory accesses.  CPU cache coherency
 551     mechanisms should propagate the indirect effects of a memory barrier
 552     between CPUs, but might not do so in order.
 553
 554	[*] For information on bus mastering DMA and coherency please read:
 555
 556	    Documentation/driver-api/pci/pci.rst
 557	    Documentation/core-api/dma-api-howto.rst
 558	    Documentation/core-api/dma-api.rst
 559
 560
 561ADDRESS-DEPENDENCY BARRIERS (HISTORICAL)
 562----------------------------------------
 563[!] This section is marked as HISTORICAL: it covers the long-obsolete
 564smp_read_barrier_depends() macro, the semantics of which are now implicit
 565in all marked accesses.  For more up-to-date information, including
 566how compiler transformations can sometimes break address dependencies,
 567see Documentation/RCU/rcu_dereference.rst.
 568
 569As of v4.15 of the Linux kernel, an smp_mb() was added to READ_ONCE() for
 570DEC Alpha, which means that about the only people who need to pay attention
 571to this section are those working on DEC Alpha architecture-specific code
 572and those working on READ_ONCE() itself.  For those who need it, and for
 573those who are interested in the history, here is the story of
 574address-dependency barriers.
 575
 576[!] While address dependencies are observed in both load-to-load and
 577load-to-store relations, address-dependency barriers are not necessary
 578for load-to-store situations.
 579
 580The requirement of address-dependency barriers is a little subtle, and
 581it's not always obvious that they're needed.  To illustrate, consider the
 582following sequence of events:
 583
 584	CPU 1		      CPU 2
 585	===============	      ===============
 586	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
 587	B = 4;
 588	<write barrier>
 589	WRITE_ONCE(P, &B);
 590			      Q = READ_ONCE_OLD(P);
 591			      D = *Q;
 592
 593[!] READ_ONCE_OLD() corresponds to READ_ONCE() of pre-4.15 kernel, which
 594doesn't imply an address-dependency barrier.
 595
 596There's a clear address dependency here, and it would seem that by the end of
 597the sequence, Q must be either &A or &B, and that:
 598
 599	(Q == &A) implies (D == 1)
 600	(Q == &B) implies (D == 4)
 601
 602But!  CPU 2's perception of P may be updated _before_ its perception of B, thus
 603leading to the following situation:
 604
 605	(Q == &B) and (D == 2) ????
 606
 607While this may seem like a failure of coherency or causality maintenance, it
 608isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
 609Alpha).
 610
 611To deal with this, READ_ONCE() provides an implicit address-dependency barrier
 612since kernel release v4.15:
 613
 614	CPU 1		      CPU 2
 615	===============	      ===============
 616	{ A == 1, B == 2, C == 3, P == &A, Q == &C }
 617	B = 4;
 618	<write barrier>
 619	WRITE_ONCE(P, &B);
 620			      Q = READ_ONCE(P);
 621			      <implicit address-dependency barrier>
 622			      D = *Q;
 623
 624This enforces the occurrence of one of the two implications, and prevents the
 625third possibility from arising.
 626
 627
 628[!] Note that this extremely counterintuitive situation arises most easily on
 629machines with split caches, so that, for example, one cache bank processes
 630even-numbered cache lines and the other bank processes odd-numbered cache
 631lines.  The pointer P might be stored in an odd-numbered cache line, and the
 632variable B might be stored in an even-numbered cache line.  Then, if the
 633even-numbered bank of the reading CPU's cache is extremely busy while the
 634odd-numbered bank is idle, one can see the new value of the pointer P (&B),
 635but the old value of the variable B (2).
 636
 637
 638An address-dependency barrier is not required to order dependent writes
 639because the CPUs that the Linux kernel supports don't do writes until they
 640are certain (1) that the write will actually happen, (2) of the location of
 641the write, and (3) of the value to be written.
 642But please carefully read the "CONTROL DEPENDENCIES" section and the
 643Documentation/RCU/rcu_dereference.rst file:  The compiler can and does break
 644dependencies in a great many highly creative ways.
 645
 646	CPU 1		      CPU 2
 647	===============	      ===============
 648	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
 649	B = 4;
 650	<write barrier>
 651	WRITE_ONCE(P, &B);
 652			      Q = READ_ONCE_OLD(P);
 653			      WRITE_ONCE(*Q, 5);
 
 654
 655Therefore, no address-dependency barrier is required to order the read into
 656Q with the store into *Q.  In other words, this outcome is prohibited,
 657even without an implicit address-dependency barrier of modern READ_ONCE():
 658
 659	(Q == &B) && (B == 4)
 660
 661Please note that this pattern should be rare.  After all, the whole point
 662of dependency ordering is to -prevent- writes to the data structure, along
 663with the expensive cache misses associated with those writes.  This pattern
 664can be used to record rare error conditions and the like, and the CPUs'
 665naturally occurring ordering prevents such records from being lost.
 666
 667
 668Note well that the ordering provided by an address dependency is local to
 669the CPU containing it.  See the section on "Multicopy atomicity" for
 670more information.
 
 
 
 
 
 671
 672
 673The address-dependency barrier is very important to the RCU system,
 674for example.  See rcu_assign_pointer() and rcu_dereference() in
 675include/linux/rcupdate.h.  This permits the current target of an RCU'd
 676pointer to be replaced with a new modified target, without the replacement
 677target appearing to be incompletely initialised.
 678
 
 
 679
 680CONTROL DEPENDENCIES
 681--------------------
 682
 683Control dependencies can be a bit tricky because current compilers do
 684not understand them.  The purpose of this section is to help you prevent
 685the compiler's ignorance from breaking your code.
 686
 687A load-load control dependency requires a full read memory barrier, not
 688simply an (implicit) address-dependency barrier to make it work correctly.
 689Consider the following bit of code:
 690
 691	q = READ_ONCE(a);
 692	<implicit address-dependency barrier>
 693	if (q) {
 694		/* BUG: No address dependency!!! */
 695		p = READ_ONCE(b);
 696	}
 697
 698This will not have the desired effect because there is no actual address
 699dependency, but rather a control dependency that the CPU may short-circuit
 700by attempting to predict the outcome in advance, so that other CPUs see
 701the load from b as having happened before the load from a.  In such a case
 702what's actually required is:
 703
 704	q = READ_ONCE(a);
 705	if (q) {
 706		<read barrier>
 707		p = READ_ONCE(b);
 708	}
 709
 710However, stores are not speculated.  This means that ordering -is- provided
 711for load-store control dependencies, as in the following example:
 712
 713	q = READ_ONCE(a);
 714	if (q) {
 715		WRITE_ONCE(b, 1);
 716	}
 717
 718Control dependencies pair normally with other types of barriers.
 719That said, please note that neither READ_ONCE() nor WRITE_ONCE()
 720are optional! Without the READ_ONCE(), the compiler might combine the
 721load from 'a' with other loads from 'a'.  Without the WRITE_ONCE(),
 722the compiler might combine the store to 'b' with other stores to 'b'.
 723Either can result in highly counterintuitive effects on ordering.
 724
 725Worse yet, if the compiler is able to prove (say) that the value of
 726variable 'a' is always non-zero, it would be well within its rights
 727to optimize the original example by eliminating the "if" statement
 728as follows:
 729
 730	q = a;
 731	b = 1;  /* BUG: Compiler and CPU can both reorder!!! */
 732
 733So don't leave out the READ_ONCE().
 734
 735It is tempting to try to enforce ordering on identical stores on both
 736branches of the "if" statement as follows:
 737
 738	q = READ_ONCE(a);
 739	if (q) {
 740		barrier();
 741		WRITE_ONCE(b, 1);
 742		do_something();
 743	} else {
 744		barrier();
 745		WRITE_ONCE(b, 1);
 746		do_something_else();
 747	}
 748
 749Unfortunately, current compilers will transform this as follows at high
 750optimization levels:
 751
 752	q = READ_ONCE(a);
 753	barrier();
 754	WRITE_ONCE(b, 1);  /* BUG: No ordering vs. load from a!!! */
 755	if (q) {
 756		/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
 757		do_something();
 758	} else {
 759		/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
 760		do_something_else();
 761	}
 762
 763Now there is no conditional between the load from 'a' and the store to
 764'b', which means that the CPU is within its rights to reorder them:
 765The conditional is absolutely required, and must be present in the
 766assembly code even after all compiler optimizations have been applied.
 767Therefore, if you need ordering in this example, you need explicit
 768memory barriers, for example, smp_store_release():
 769
 770	q = READ_ONCE(a);
 771	if (q) {
 772		smp_store_release(&b, 1);
 773		do_something();
 774	} else {
 775		smp_store_release(&b, 1);
 776		do_something_else();
 777	}
 778
 779In contrast, without explicit memory barriers, two-legged-if control
 780ordering is guaranteed only when the stores differ, for example:
 781
 782	q = READ_ONCE(a);
 783	if (q) {
 784		WRITE_ONCE(b, 1);
 785		do_something();
 786	} else {
 787		WRITE_ONCE(b, 2);
 788		do_something_else();
 789	}
 790
 791The initial READ_ONCE() is still required to prevent the compiler from
 792proving the value of 'a'.
 793
 794In addition, you need to be careful what you do with the local variable 'q',
 795otherwise the compiler might be able to guess the value and again remove
 796the needed conditional.  For example:
 797
 798	q = READ_ONCE(a);
 799	if (q % MAX) {
 800		WRITE_ONCE(b, 1);
 801		do_something();
 802	} else {
 803		WRITE_ONCE(b, 2);
 804		do_something_else();
 805	}
 806
 807If MAX is defined to be 1, then the compiler knows that (q % MAX) is
 808equal to zero, in which case the compiler is within its rights to
 809transform the above code into the following:
 810
 811	q = READ_ONCE(a);
 812	WRITE_ONCE(b, 2);
 813	do_something_else();
 814
 815Given this transformation, the CPU is not required to respect the ordering
 816between the load from variable 'a' and the store to variable 'b'.  It is
 817tempting to add a barrier(), but this does not help.  The conditional
 818is gone, and the barrier won't bring it back.  Therefore, if you are
 819relying on this ordering, you should make sure that MAX is greater than
 820one, perhaps as follows:
 821
 822	q = READ_ONCE(a);
 823	BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
 824	if (q % MAX) {
 825		WRITE_ONCE(b, 1);
 826		do_something();
 827	} else {
 828		WRITE_ONCE(b, 2);
 829		do_something_else();
 830	}
 831
 832Please note once again that the stores to 'b' differ.  If they were
 833identical, as noted earlier, the compiler could pull this store outside
 834of the 'if' statement.
 835
 836You must also be careful not to rely too much on boolean short-circuit
 837evaluation.  Consider this example:
 838
 839	q = READ_ONCE(a);
 840	if (q || 1 > 0)
 841		WRITE_ONCE(b, 1);
 842
 843Because the first condition cannot fault and the second condition is
 844always true, the compiler can transform this example as following,
 845defeating control dependency:
 846
 847	q = READ_ONCE(a);
 848	WRITE_ONCE(b, 1);
 849
 850This example underscores the need to ensure that the compiler cannot
 851out-guess your code.  More generally, although READ_ONCE() does force
 852the compiler to actually emit code for a given load, it does not force
 853the compiler to use the results.
 854
 855In addition, control dependencies apply only to the then-clause and
 856else-clause of the if-statement in question.  In particular, it does
 857not necessarily apply to code following the if-statement:
 858
 859	q = READ_ONCE(a);
 860	if (q) {
 861		WRITE_ONCE(b, 1);
 862	} else {
 863		WRITE_ONCE(b, 2);
 864	}
 865	WRITE_ONCE(c, 1);  /* BUG: No ordering against the read from 'a'. */
 866
 867It is tempting to argue that there in fact is ordering because the
 868compiler cannot reorder volatile accesses and also cannot reorder
 869the writes to 'b' with the condition.  Unfortunately for this line
 870of reasoning, the compiler might compile the two writes to 'b' as
 871conditional-move instructions, as in this fanciful pseudo-assembly
 872language:
 873
 874	ld r1,a
 875	cmp r1,$0
 876	cmov,ne r4,$1
 877	cmov,eq r4,$2
 878	st r4,b
 879	st $1,c
 880
 881A weakly ordered CPU would have no dependency of any sort between the load
 882from 'a' and the store to 'c'.  The control dependencies would extend
 883only to the pair of cmov instructions and the store depending on them.
 884In short, control dependencies apply only to the stores in the then-clause
 885and else-clause of the if-statement in question (including functions
 886invoked by those two clauses), not to code following that if-statement.
 887
 888
 889Note well that the ordering provided by a control dependency is local
 890to the CPU containing it.  See the section on "Multicopy atomicity"
 891for more information.
 892
 893
 894In summary:
 895
 896  (*) Control dependencies can order prior loads against later stores.
 897      However, they do -not- guarantee any other sort of ordering:
 898      Not prior loads against later loads, nor prior stores against
 899      later anything.  If you need these other forms of ordering,
 900      use smp_rmb(), smp_wmb(), or, in the case of prior stores and
 901      later loads, smp_mb().
 902
 903  (*) If both legs of the "if" statement begin with identical stores to
 904      the same variable, then those stores must be ordered, either by
 905      preceding both of them with smp_mb() or by using smp_store_release()
 906      to carry out the stores.  Please note that it is -not- sufficient
 907      to use barrier() at beginning of each leg of the "if" statement
 908      because, as shown by the example above, optimizing compilers can
 909      destroy the control dependency while respecting the letter of the
 910      barrier() law.
 911
 912  (*) Control dependencies require at least one run-time conditional
 913      between the prior load and the subsequent store, and this
 914      conditional must involve the prior load.  If the compiler is able
 915      to optimize the conditional away, it will have also optimized
 916      away the ordering.  Careful use of READ_ONCE() and WRITE_ONCE()
 917      can help to preserve the needed conditional.
 918
 919  (*) Control dependencies require that the compiler avoid reordering the
 920      dependency into nonexistence.  Careful use of READ_ONCE() or
 921      atomic{,64}_read() can help to preserve your control dependency.
 922      Please see the COMPILER BARRIER section for more information.
 923
 924  (*) Control dependencies apply only to the then-clause and else-clause
 925      of the if-statement containing the control dependency, including
 926      any functions that these two clauses call.  Control dependencies
 927      do -not- apply to code following the if-statement containing the
 928      control dependency.
 929
 930  (*) Control dependencies pair normally with other types of barriers.
 931
 932  (*) Control dependencies do -not- provide multicopy atomicity.  If you
 933      need all the CPUs to see a given store at the same time, use smp_mb().
 934
 935  (*) Compilers do not understand control dependencies.  It is therefore
 936      your job to ensure that they do not break your code.
 937
 938
 939SMP BARRIER PAIRING
 940-------------------
 941
 942When dealing with CPU-CPU interactions, certain types of memory barrier should
 943always be paired.  A lack of appropriate pairing is almost certainly an error.
 944
 945General barriers pair with each other, though they also pair with most
 946other types of barriers, albeit without multicopy atomicity.  An acquire
 947barrier pairs with a release barrier, but both may also pair with other
 948barriers, including of course general barriers.  A write barrier pairs
 949with an address-dependency barrier, a control dependency, an acquire barrier,
 950a release barrier, a read barrier, or a general barrier.  Similarly a
 951read barrier, control dependency, or an address-dependency barrier pairs
 952with a write barrier, an acquire barrier, a release barrier, or a
 953general barrier:
 954
 955	CPU 1		      CPU 2
 956	===============	      ===============
 957	WRITE_ONCE(a, 1);
 958	<write barrier>
 959	WRITE_ONCE(b, 2);     x = READ_ONCE(b);
 960			      <read barrier>
 961			      y = READ_ONCE(a);
 962
 963Or:
 964
 965	CPU 1		      CPU 2
 966	===============	      ===============================
 967	a = 1;
 968	<write barrier>
 969	WRITE_ONCE(b, &a);    x = READ_ONCE(b);
 970			      <implicit address-dependency barrier>
 971			      y = *x;
 972
 973Or even:
 974
 975	CPU 1		      CPU 2
 976	===============	      ===============================
 977	r1 = READ_ONCE(y);
 978	<general barrier>
 979	WRITE_ONCE(x, 1);     if (r2 = READ_ONCE(x)) {
 980			         <implicit control dependency>
 981			         WRITE_ONCE(y, 1);
 982			      }
 983
 984	assert(r1 == 0 || r2 == 0);
 985
 986Basically, the read barrier always has to be there, even though it can be of
 987the "weaker" type.
 988
 989[!] Note that the stores before the write barrier would normally be expected to
 990match the loads after the read barrier or the address-dependency barrier, and
 991vice versa:
 992
 993	CPU 1                               CPU 2
 994	===================                 ===================
 995	WRITE_ONCE(a, 1);    }----   --->{  v = READ_ONCE(c);
 996	WRITE_ONCE(b, 2);    }    \ /    {  w = READ_ONCE(d);
 997	<write barrier>            \        <read barrier>
 998	WRITE_ONCE(c, 3);    }    / \    {  x = READ_ONCE(a);
 999	WRITE_ONCE(d, 4);    }----   --->{  y = READ_ONCE(b);
1000
1001
1002EXAMPLES OF MEMORY BARRIER SEQUENCES
1003------------------------------------
1004
1005Firstly, write barriers act as partial orderings on store operations.
1006Consider the following sequence of events:
1007
1008	CPU 1
1009	=======================
1010	STORE A = 1
1011	STORE B = 2
1012	STORE C = 3
1013	<write barrier>
1014	STORE D = 4
1015	STORE E = 5
1016
1017This sequence of events is committed to the memory coherence system in an order
1018that the rest of the system might perceive as the unordered set of { STORE A,
1019STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E
1020}:
1021
1022	+-------+       :      :
1023	|       |       +------+
1024	|       |------>| C=3  |     }     /\
1025	|       |  :    +------+     }-----  \  -----> Events perceptible to
1026	|       |  :    | A=1  |     }        \/       the rest of the system
1027	|       |  :    +------+     }
1028	| CPU 1 |  :    | B=2  |     }
1029	|       |       +------+     }
1030	|       |   wwwwwwwwwwwwwwww }   <--- At this point the write barrier
1031	|       |       +------+     }        requires all stores prior to the
1032	|       |  :    | E=5  |     }        barrier to be committed before
1033	|       |  :    +------+     }        further stores may take place
1034	|       |------>| D=4  |     }
1035	|       |       +------+
1036	+-------+       :      :
1037	                   |
1038	                   | Sequence in which stores are committed to the
1039	                   | memory system by CPU 1
1040	                   V
1041
1042
1043Secondly, address-dependency barriers act as partial orderings on address-
1044dependent loads.  Consider the following sequence of events:
1045
1046	CPU 1			CPU 2
1047	=======================	=======================
1048		{ B = 7; X = 9; Y = 8; C = &Y }
1049	STORE A = 1
1050	STORE B = 2
1051	<write barrier>
1052	STORE C = &B		LOAD X
1053	STORE D = 4		LOAD C (gets &B)
1054				LOAD *C (reads B)
1055
1056Without intervention, CPU 2 may perceive the events on CPU 1 in some
1057effectively random order, despite the write barrier issued by CPU 1:
1058
1059	+-------+       :      :                :       :
1060	|       |       +------+                +-------+  | Sequence of update
1061	|       |------>| B=2  |-----       --->| Y->8  |  | of perception on
1062	|       |  :    +------+     \          +-------+  | CPU 2
1063	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |  V
1064	|       |       +------+       |        +-------+
1065	|       |   wwwwwwwwwwwwwwww   |        :       :
1066	|       |       +------+       |        :       :
1067	|       |  :    | C=&B |---    |        :       :       +-------+
1068	|       |  :    +------+   \   |        +-------+       |       |
1069	|       |------>| D=4  |    ----------->| C->&B |------>|       |
1070	|       |       +------+       |        +-------+       |       |
1071	+-------+       :      :       |        :       :       |       |
1072	                               |        :       :       |       |
1073	                               |        :       :       | CPU 2 |
1074	                               |        +-------+       |       |
1075	    Apparently incorrect --->  |        | B->7  |------>|       |
1076	    perception of B (!)        |        +-------+       |       |
1077	                               |        :       :       |       |
1078	                               |        +-------+       |       |
1079	    The load of X holds --->    \       | X->9  |------>|       |
1080	    up the maintenance           \      +-------+       |       |
1081	    of coherence of B             ----->| B->2  |       +-------+
1082	                                        +-------+
1083	                                        :       :
1084
1085
1086In the above example, CPU 2 perceives that B is 7, despite the load of *C
1087(which would be B) coming after the LOAD of C.
1088
1089If, however, an address-dependency barrier were to be placed between the load
1090of C and the load of *C (ie: B) on CPU 2:
1091
1092	CPU 1			CPU 2
1093	=======================	=======================
1094		{ B = 7; X = 9; Y = 8; C = &Y }
1095	STORE A = 1
1096	STORE B = 2
1097	<write barrier>
1098	STORE C = &B		LOAD X
1099	STORE D = 4		LOAD C (gets &B)
1100				<address-dependency barrier>
1101				LOAD *C (reads B)
1102
1103then the following will occur:
1104
1105	+-------+       :      :                :       :
1106	|       |       +------+                +-------+
1107	|       |------>| B=2  |-----       --->| Y->8  |
1108	|       |  :    +------+     \          +-------+
1109	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |
1110	|       |       +------+       |        +-------+
1111	|       |   wwwwwwwwwwwwwwww   |        :       :
1112	|       |       +------+       |        :       :
1113	|       |  :    | C=&B |---    |        :       :       +-------+
1114	|       |  :    +------+   \   |        +-------+       |       |
1115	|       |------>| D=4  |    ----------->| C->&B |------>|       |
1116	|       |       +------+       |        +-------+       |       |
1117	+-------+       :      :       |        :       :       |       |
1118	                               |        :       :       |       |
1119	                               |        :       :       | CPU 2 |
1120	                               |        +-------+       |       |
1121	                               |        | X->9  |------>|       |
1122	                               |        +-------+       |       |
1123	  Makes sure all effects --->   \   aaaaaaaaaaaaaaaaa   |       |
1124	  prior to the store of C        \      +-------+       |       |
1125	  are perceptible to              ----->| B->2  |------>|       |
1126	  subsequent loads                      +-------+       |       |
1127	                                        :       :       +-------+
1128
1129
1130And thirdly, a read barrier acts as a partial order on loads.  Consider the
1131following sequence of events:
1132
1133	CPU 1			CPU 2
1134	=======================	=======================
1135		{ A = 0, B = 9 }
1136	STORE A=1
1137	<write barrier>
1138	STORE B=2
1139				LOAD B
1140				LOAD A
1141
1142Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
1143some effectively random order, despite the write barrier issued by CPU 1:
1144
1145	+-------+       :      :                :       :
1146	|       |       +------+                +-------+
1147	|       |------>| A=1  |------      --->| A->0  |
1148	|       |       +------+      \         +-------+
1149	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1150	|       |       +------+        |       +-------+
1151	|       |------>| B=2  |---     |       :       :
1152	|       |       +------+   \    |       :       :       +-------+
1153	+-------+       :      :    \   |       +-------+       |       |
1154	                             ---------->| B->2  |------>|       |
1155	                                |       +-------+       | CPU 2 |
1156	                                |       | A->0  |------>|       |
1157	                                |       +-------+       |       |
1158	                                |       :       :       +-------+
1159	                                 \      :       :
1160	                                  \     +-------+
1161	                                   ---->| A->1  |
1162	                                        +-------+
1163	                                        :       :
1164
1165
1166If, however, a read barrier were to be placed between the load of B and the
1167load of A on CPU 2:
1168
1169	CPU 1			CPU 2
1170	=======================	=======================
1171		{ A = 0, B = 9 }
1172	STORE A=1
1173	<write barrier>
1174	STORE B=2
1175				LOAD B
1176				<read barrier>
1177				LOAD A
1178
1179then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
11802:
1181
1182	+-------+       :      :                :       :
1183	|       |       +------+                +-------+
1184	|       |------>| A=1  |------      --->| A->0  |
1185	|       |       +------+      \         +-------+
1186	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1187	|       |       +------+        |       +-------+
1188	|       |------>| B=2  |---     |       :       :
1189	|       |       +------+   \    |       :       :       +-------+
1190	+-------+       :      :    \   |       +-------+       |       |
1191	                             ---------->| B->2  |------>|       |
1192	                                |       +-------+       | CPU 2 |
1193	                                |       :       :       |       |
1194	                                |       :       :       |       |
1195	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1196	  barrier causes all effects      \     +-------+       |       |
1197	  prior to the storage of B        ---->| A->1  |------>|       |
1198	  to be perceptible to CPU 2            +-------+       |       |
1199	                                        :       :       +-------+
1200
1201
1202To illustrate this more completely, consider what could happen if the code
1203contained a load of A either side of the read barrier:
1204
1205	CPU 1			CPU 2
1206	=======================	=======================
1207		{ A = 0, B = 9 }
1208	STORE A=1
1209	<write barrier>
1210	STORE B=2
1211				LOAD B
1212				LOAD A [first load of A]
1213				<read barrier>
1214				LOAD A [second load of A]
1215
1216Even though the two loads of A both occur after the load of B, they may both
1217come up with different values:
1218
1219	+-------+       :      :                :       :
1220	|       |       +------+                +-------+
1221	|       |------>| A=1  |------      --->| A->0  |
1222	|       |       +------+      \         +-------+
1223	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1224	|       |       +------+        |       +-------+
1225	|       |------>| B=2  |---     |       :       :
1226	|       |       +------+   \    |       :       :       +-------+
1227	+-------+       :      :    \   |       +-------+       |       |
1228	                             ---------->| B->2  |------>|       |
1229	                                |       +-------+       | CPU 2 |
1230	                                |       :       :       |       |
1231	                                |       :       :       |       |
1232	                                |       +-------+       |       |
1233	                                |       | A->0  |------>| 1st   |
1234	                                |       +-------+       |       |
1235	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1236	  barrier causes all effects      \     +-------+       |       |
1237	  prior to the storage of B        ---->| A->1  |------>| 2nd   |
1238	  to be perceptible to CPU 2            +-------+       |       |
1239	                                        :       :       +-------+
1240
1241
1242But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
1243before the read barrier completes anyway:
1244
1245	+-------+       :      :                :       :
1246	|       |       +------+                +-------+
1247	|       |------>| A=1  |------      --->| A->0  |
1248	|       |       +------+      \         +-------+
1249	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1250	|       |       +------+        |       +-------+
1251	|       |------>| B=2  |---     |       :       :
1252	|       |       +------+   \    |       :       :       +-------+
1253	+-------+       :      :    \   |       +-------+       |       |
1254	                             ---------->| B->2  |------>|       |
1255	                                |       +-------+       | CPU 2 |
1256	                                |       :       :       |       |
1257	                                 \      :       :       |       |
1258	                                  \     +-------+       |       |
1259	                                   ---->| A->1  |------>| 1st   |
1260	                                        +-------+       |       |
1261	                                    rrrrrrrrrrrrrrrrr   |       |
1262	                                        +-------+       |       |
1263	                                        | A->1  |------>| 2nd   |
1264	                                        +-------+       |       |
1265	                                        :       :       +-------+
1266
1267
1268The guarantee is that the second load will always come up with A == 1 if the
1269load of B came up with B == 2.  No such guarantee exists for the first load of
1270A; that may come up with either A == 0 or A == 1.
1271
1272
1273READ MEMORY BARRIERS VS LOAD SPECULATION
1274----------------------------------------
1275
1276Many CPUs speculate with loads: that is they see that they will need to load an
1277item from memory, and they find a time where they're not using the bus for any
1278other loads, and so do the load in advance - even though they haven't actually
1279got to that point in the instruction execution flow yet.  This permits the
1280actual load instruction to potentially complete immediately because the CPU
1281already has the value to hand.
1282
1283It may turn out that the CPU didn't actually need the value - perhaps because a
1284branch circumvented the load - in which case it can discard the value or just
1285cache it for later use.
1286
1287Consider:
1288
1289	CPU 1			CPU 2
1290	=======================	=======================
1291				LOAD B
1292				DIVIDE		} Divide instructions generally
1293				DIVIDE		} take a long time to perform
1294				LOAD A
1295
1296Which might appear as this:
1297
1298	                                        :       :       +-------+
1299	                                        +-------+       |       |
1300	                                    --->| B->2  |------>|       |
1301	                                        +-------+       | CPU 2 |
1302	                                        :       :DIVIDE |       |
1303	                                        +-------+       |       |
1304	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1305	division speculates on the              +-------+   ~   |       |
1306	LOAD of A                               :       :   ~   |       |
1307	                                        :       :DIVIDE |       |
1308	                                        :       :   ~   |       |
1309	Once the divisions are complete -->     :       :   ~-->|       |
1310	the CPU can then perform the            :       :       |       |
1311	LOAD with immediate effect              :       :       +-------+
1312
1313
1314Placing a read barrier or an address-dependency barrier just before the second
1315load:
1316
1317	CPU 1			CPU 2
1318	=======================	=======================
1319				LOAD B
1320				DIVIDE
1321				DIVIDE
1322				<read barrier>
1323				LOAD A
1324
1325will force any value speculatively obtained to be reconsidered to an extent
1326dependent on the type of barrier used.  If there was no change made to the
1327speculated memory location, then the speculated value will just be used:
1328
1329	                                        :       :       +-------+
1330	                                        +-------+       |       |
1331	                                    --->| B->2  |------>|       |
1332	                                        +-------+       | CPU 2 |
1333	                                        :       :DIVIDE |       |
1334	                                        +-------+       |       |
1335	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1336	division speculates on the              +-------+   ~   |       |
1337	LOAD of A                               :       :   ~   |       |
1338	                                        :       :DIVIDE |       |
1339	                                        :       :   ~   |       |
1340	                                        :       :   ~   |       |
1341	                                    rrrrrrrrrrrrrrrr~   |       |
1342	                                        :       :   ~   |       |
1343	                                        :       :   ~-->|       |
1344	                                        :       :       |       |
1345	                                        :       :       +-------+
1346
1347
1348but if there was an update or an invalidation from another CPU pending, then
1349the speculation will be cancelled and the value reloaded:
1350
1351	                                        :       :       +-------+
1352	                                        +-------+       |       |
1353	                                    --->| B->2  |------>|       |
1354	                                        +-------+       | CPU 2 |
1355	                                        :       :DIVIDE |       |
1356	                                        +-------+       |       |
1357	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1358	division speculates on the              +-------+   ~   |       |
1359	LOAD of A                               :       :   ~   |       |
1360	                                        :       :DIVIDE |       |
1361	                                        :       :   ~   |       |
1362	                                        :       :   ~   |       |
1363	                                    rrrrrrrrrrrrrrrrr   |       |
1364	                                        +-------+       |       |
1365	The speculation is discarded --->   --->| A->1  |------>|       |
1366	and an updated value is                 +-------+       |       |
1367	retrieved                               :       :       +-------+
1368
1369
1370MULTICOPY ATOMICITY
1371--------------------
1372
1373Multicopy atomicity is a deeply intuitive notion about ordering that is
1374not always provided by real computer systems, namely that a given store
1375becomes visible at the same time to all CPUs, or, alternatively, that all
1376CPUs agree on the order in which all stores become visible.  However,
1377support of full multicopy atomicity would rule out valuable hardware
1378optimizations, so a weaker form called ``other multicopy atomicity''
1379instead guarantees only that a given store becomes visible at the same
1380time to all -other- CPUs.  The remainder of this document discusses this
1381weaker form, but for brevity will call it simply ``multicopy atomicity''.
1382
1383The following example demonstrates multicopy atomicity:
 
 
1384
1385	CPU 1			CPU 2			CPU 3
1386	=======================	=======================	=======================
1387		{ X = 0, Y = 0 }
1388	STORE X=1		r1=LOAD X (reads 1)	LOAD Y (reads 1)
1389				<general barrier>	<read barrier>
1390				STORE Y=r1		LOAD X
1391
1392Suppose that CPU 2's load from X returns 1, which it then stores to Y,
1393and CPU 3's load from Y returns 1.  This indicates that CPU 1's store
1394to X precedes CPU 2's load from X and that CPU 2's store to Y precedes
1395CPU 3's load from Y.  In addition, the memory barriers guarantee that
1396CPU 2 executes its load before its store, and CPU 3 loads from Y before
1397it loads from X.  The question is then "Can CPU 3's load from X return 0?"
1398
1399Because CPU 3's load from X in some sense comes after CPU 2's load, it
1400is natural to expect that CPU 3's load from X must therefore return 1.
1401This expectation follows from multicopy atomicity: if a load executing
1402on CPU B follows a load from the same variable executing on CPU A (and
1403CPU A did not originally store the value which it read), then on
1404multicopy-atomic systems, CPU B's load must return either the same value
1405that CPU A's load did or some later value.  However, the Linux kernel
1406does not require systems to be multicopy atomic.
1407
1408The use of a general memory barrier in the example above compensates
1409for any lack of multicopy atomicity.  In the example, if CPU 2's load
1410from X returns 1 and CPU 3's load from Y returns 1, then CPU 3's load
1411from X must indeed also return 1.
1412
1413However, dependencies, read barriers, and write barriers are not always
1414able to compensate for non-multicopy atomicity.  For example, suppose
1415that CPU 2's general barrier is removed from the above example, leaving
1416only the data dependency shown below:
1417
1418	CPU 1			CPU 2			CPU 3
1419	=======================	=======================	=======================
1420		{ X = 0, Y = 0 }
1421	STORE X=1		r1=LOAD X (reads 1)	LOAD Y (reads 1)
1422				<data dependency>	<read barrier>
1423				STORE Y=r1		LOAD X (reads 0)
1424
1425This substitution allows non-multicopy atomicity to run rampant: in
1426this example, it is perfectly legal for CPU 2's load from X to return 1,
1427CPU 3's load from Y to return 1, and its load from X to return 0.
1428
1429The key point is that although CPU 2's data dependency orders its load
1430and store, it does not guarantee to order CPU 1's store.  Thus, if this
1431example runs on a non-multicopy-atomic system where CPUs 1 and 2 share a
1432store buffer or a level of cache, CPU 2 might have early access to CPU 1's
1433writes.  General barriers are therefore required to ensure that all CPUs
1434agree on the combined order of multiple accesses.
1435
1436General barriers can compensate not only for non-multicopy atomicity,
1437but can also generate additional ordering that can ensure that -all-
1438CPUs will perceive the same order of -all- operations.  In contrast, a
1439chain of release-acquire pairs do not provide this additional ordering,
1440which means that only those CPUs on the chain are guaranteed to agree
1441on the combined order of the accesses.  For example, switching to C code
1442in deference to the ghost of Herman Hollerith:
1443
1444	int u, v, x, y, z;
1445
1446	void cpu0(void)
1447	{
1448		r0 = smp_load_acquire(&x);
1449		WRITE_ONCE(u, 1);
1450		smp_store_release(&y, 1);
1451	}
1452
1453	void cpu1(void)
1454	{
1455		r1 = smp_load_acquire(&y);
1456		r4 = READ_ONCE(v);
1457		r5 = READ_ONCE(u);
1458		smp_store_release(&z, 1);
1459	}
1460
1461	void cpu2(void)
1462	{
1463		r2 = smp_load_acquire(&z);
1464		smp_store_release(&x, 1);
1465	}
1466
1467	void cpu3(void)
1468	{
1469		WRITE_ONCE(v, 1);
1470		smp_mb();
1471		r3 = READ_ONCE(u);
1472	}
1473
1474Because cpu0(), cpu1(), and cpu2() participate in a chain of
1475smp_store_release()/smp_load_acquire() pairs, the following outcome
1476is prohibited:
1477
1478	r0 == 1 && r1 == 1 && r2 == 1
1479
1480Furthermore, because of the release-acquire relationship between cpu0()
1481and cpu1(), cpu1() must see cpu0()'s writes, so that the following
1482outcome is prohibited:
1483
1484	r1 == 1 && r5 == 0
1485
1486However, the ordering provided by a release-acquire chain is local
1487to the CPUs participating in that chain and does not apply to cpu3(),
1488at least aside from stores.  Therefore, the following outcome is possible:
1489
1490	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0
1491
1492As an aside, the following outcome is also possible:
1493
1494	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1
1495
1496Although cpu0(), cpu1(), and cpu2() will see their respective reads and
1497writes in order, CPUs not involved in the release-acquire chain might
1498well disagree on the order.  This disagreement stems from the fact that
1499the weak memory-barrier instructions used to implement smp_load_acquire()
1500and smp_store_release() are not required to order prior stores against
1501subsequent loads in all cases.  This means that cpu3() can see cpu0()'s
1502store to u as happening -after- cpu1()'s load from v, even though
1503both cpu0() and cpu1() agree that these two operations occurred in the
1504intended order.
1505
1506However, please keep in mind that smp_load_acquire() is not magic.
1507In particular, it simply reads from its argument with ordering.  It does
1508-not- ensure that any particular value will be read.  Therefore, the
1509following outcome is possible:
1510
1511	r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0
1512
1513Note that this outcome can happen even on a mythical sequentially
1514consistent system where nothing is ever reordered.
1515
1516To reiterate, if your code requires full ordering of all operations,
1517use general barriers throughout.
1518
1519
1520========================
1521EXPLICIT KERNEL BARRIERS
1522========================
1523
1524The Linux kernel has a variety of different barriers that act at different
1525levels:
1526
1527  (*) Compiler barrier.
1528
1529  (*) CPU memory barriers.
1530
 
 
1531
1532COMPILER BARRIER
1533----------------
1534
1535The Linux kernel has an explicit compiler barrier function that prevents the
1536compiler from moving the memory accesses either side of it to the other side:
1537
1538	barrier();
1539
1540This is a general barrier -- there are no read-read or write-write
1541variants of barrier().  However, READ_ONCE() and WRITE_ONCE() can be
1542thought of as weak forms of barrier() that affect only the specific
1543accesses flagged by the READ_ONCE() or WRITE_ONCE().
1544
1545The barrier() function has the following effects:
1546
1547 (*) Prevents the compiler from reordering accesses following the
1548     barrier() to precede any accesses preceding the barrier().
1549     One example use for this property is to ease communication between
1550     interrupt-handler code and the code that was interrupted.
1551
1552 (*) Within a loop, forces the compiler to load the variables used
1553     in that loop's conditional on each pass through that loop.
1554
1555The READ_ONCE() and WRITE_ONCE() functions can prevent any number of
1556optimizations that, while perfectly safe in single-threaded code, can
1557be fatal in concurrent code.  Here are some examples of these sorts
1558of optimizations:
1559
1560 (*) The compiler is within its rights to reorder loads and stores
1561     to the same variable, and in some cases, the CPU is within its
1562     rights to reorder loads to the same variable.  This means that
1563     the following code:
1564
1565	a[0] = x;
1566	a[1] = x;
1567
1568     Might result in an older value of x stored in a[1] than in a[0].
1569     Prevent both the compiler and the CPU from doing this as follows:
1570
1571	a[0] = READ_ONCE(x);
1572	a[1] = READ_ONCE(x);
1573
1574     In short, READ_ONCE() and WRITE_ONCE() provide cache coherence for
1575     accesses from multiple CPUs to a single variable.
1576
1577 (*) The compiler is within its rights to merge successive loads from
1578     the same variable.  Such merging can cause the compiler to "optimize"
1579     the following code:
1580
1581	while (tmp = a)
1582		do_something_with(tmp);
1583
1584     into the following code, which, although in some sense legitimate
1585     for single-threaded code, is almost certainly not what the developer
1586     intended:
1587
1588	if (tmp = a)
1589		for (;;)
1590			do_something_with(tmp);
1591
1592     Use READ_ONCE() to prevent the compiler from doing this to you:
1593
1594	while (tmp = READ_ONCE(a))
1595		do_something_with(tmp);
1596
1597 (*) The compiler is within its rights to reload a variable, for example,
1598     in cases where high register pressure prevents the compiler from
1599     keeping all data of interest in registers.  The compiler might
1600     therefore optimize the variable 'tmp' out of our previous example:
1601
1602	while (tmp = a)
1603		do_something_with(tmp);
1604
1605     This could result in the following code, which is perfectly safe in
1606     single-threaded code, but can be fatal in concurrent code:
1607
1608	while (a)
1609		do_something_with(a);
1610
1611     For example, the optimized version of this code could result in
1612     passing a zero to do_something_with() in the case where the variable
1613     a was modified by some other CPU between the "while" statement and
1614     the call to do_something_with().
1615
1616     Again, use READ_ONCE() to prevent the compiler from doing this:
1617
1618	while (tmp = READ_ONCE(a))
1619		do_something_with(tmp);
1620
1621     Note that if the compiler runs short of registers, it might save
1622     tmp onto the stack.  The overhead of this saving and later restoring
1623     is why compilers reload variables.  Doing so is perfectly safe for
1624     single-threaded code, so you need to tell the compiler about cases
1625     where it is not safe.
1626
1627 (*) The compiler is within its rights to omit a load entirely if it knows
1628     what the value will be.  For example, if the compiler can prove that
1629     the value of variable 'a' is always zero, it can optimize this code:
1630
1631	while (tmp = a)
1632		do_something_with(tmp);
1633
1634     Into this:
1635
1636	do { } while (0);
1637
1638     This transformation is a win for single-threaded code because it
1639     gets rid of a load and a branch.  The problem is that the compiler
1640     will carry out its proof assuming that the current CPU is the only
1641     one updating variable 'a'.  If variable 'a' is shared, then the
1642     compiler's proof will be erroneous.  Use READ_ONCE() to tell the
1643     compiler that it doesn't know as much as it thinks it does:
1644
1645	while (tmp = READ_ONCE(a))
1646		do_something_with(tmp);
1647
1648     But please note that the compiler is also closely watching what you
1649     do with the value after the READ_ONCE().  For example, suppose you
1650     do the following and MAX is a preprocessor macro with the value 1:
1651
1652	while ((tmp = READ_ONCE(a)) % MAX)
1653		do_something_with(tmp);
1654
1655     Then the compiler knows that the result of the "%" operator applied
1656     to MAX will always be zero, again allowing the compiler to optimize
1657     the code into near-nonexistence.  (It will still load from the
1658     variable 'a'.)
1659
1660 (*) Similarly, the compiler is within its rights to omit a store entirely
1661     if it knows that the variable already has the value being stored.
1662     Again, the compiler assumes that the current CPU is the only one
1663     storing into the variable, which can cause the compiler to do the
1664     wrong thing for shared variables.  For example, suppose you have
1665     the following:
1666
1667	a = 0;
1668	... Code that does not store to variable a ...
1669	a = 0;
1670
1671     The compiler sees that the value of variable 'a' is already zero, so
1672     it might well omit the second store.  This would come as a fatal
1673     surprise if some other CPU might have stored to variable 'a' in the
1674     meantime.
1675
1676     Use WRITE_ONCE() to prevent the compiler from making this sort of
1677     wrong guess:
1678
1679	WRITE_ONCE(a, 0);
1680	... Code that does not store to variable a ...
1681	WRITE_ONCE(a, 0);
1682
1683 (*) The compiler is within its rights to reorder memory accesses unless
1684     you tell it not to.  For example, consider the following interaction
1685     between process-level code and an interrupt handler:
1686
1687	void process_level(void)
1688	{
1689		msg = get_message();
1690		flag = true;
1691	}
1692
1693	void interrupt_handler(void)
1694	{
1695		if (flag)
1696			process_message(msg);
1697	}
1698
1699     There is nothing to prevent the compiler from transforming
1700     process_level() to the following, in fact, this might well be a
1701     win for single-threaded code:
1702
1703	void process_level(void)
1704	{
1705		flag = true;
1706		msg = get_message();
1707	}
1708
1709     If the interrupt occurs between these two statement, then
1710     interrupt_handler() might be passed a garbled msg.  Use WRITE_ONCE()
1711     to prevent this as follows:
1712
1713	void process_level(void)
1714	{
1715		WRITE_ONCE(msg, get_message());
1716		WRITE_ONCE(flag, true);
1717	}
1718
1719	void interrupt_handler(void)
1720	{
1721		if (READ_ONCE(flag))
1722			process_message(READ_ONCE(msg));
1723	}
1724
1725     Note that the READ_ONCE() and WRITE_ONCE() wrappers in
1726     interrupt_handler() are needed if this interrupt handler can itself
1727     be interrupted by something that also accesses 'flag' and 'msg',
1728     for example, a nested interrupt or an NMI.  Otherwise, READ_ONCE()
1729     and WRITE_ONCE() are not needed in interrupt_handler() other than
1730     for documentation purposes.  (Note also that nested interrupts
1731     do not typically occur in modern Linux kernels, in fact, if an
1732     interrupt handler returns with interrupts enabled, you will get a
1733     WARN_ONCE() splat.)
1734
1735     You should assume that the compiler can move READ_ONCE() and
1736     WRITE_ONCE() past code not containing READ_ONCE(), WRITE_ONCE(),
1737     barrier(), or similar primitives.
1738
1739     This effect could also be achieved using barrier(), but READ_ONCE()
1740     and WRITE_ONCE() are more selective:  With READ_ONCE() and
1741     WRITE_ONCE(), the compiler need only forget the contents of the
1742     indicated memory locations, while with barrier() the compiler must
1743     discard the value of all memory locations that it has currently
1744     cached in any machine registers.  Of course, the compiler must also
1745     respect the order in which the READ_ONCE()s and WRITE_ONCE()s occur,
1746     though the CPU of course need not do so.
1747
1748 (*) The compiler is within its rights to invent stores to a variable,
1749     as in the following example:
1750
1751	if (a)
1752		b = a;
1753	else
1754		b = 42;
1755
1756     The compiler might save a branch by optimizing this as follows:
1757
1758	b = 42;
1759	if (a)
1760		b = a;
1761
1762     In single-threaded code, this is not only safe, but also saves
1763     a branch.  Unfortunately, in concurrent code, this optimization
1764     could cause some other CPU to see a spurious value of 42 -- even
1765     if variable 'a' was never zero -- when loading variable 'b'.
1766     Use WRITE_ONCE() to prevent this as follows:
1767
1768	if (a)
1769		WRITE_ONCE(b, a);
1770	else
1771		WRITE_ONCE(b, 42);
1772
1773     The compiler can also invent loads.  These are usually less
1774     damaging, but they can result in cache-line bouncing and thus in
1775     poor performance and scalability.  Use READ_ONCE() to prevent
1776     invented loads.
1777
1778 (*) For aligned memory locations whose size allows them to be accessed
1779     with a single memory-reference instruction, prevents "load tearing"
1780     and "store tearing," in which a single large access is replaced by
1781     multiple smaller accesses.  For example, given an architecture having
1782     16-bit store instructions with 7-bit immediate fields, the compiler
1783     might be tempted to use two 16-bit store-immediate instructions to
1784     implement the following 32-bit store:
1785
1786	p = 0x00010002;
1787
1788     Please note that GCC really does use this sort of optimization,
1789     which is not surprising given that it would likely take more
1790     than two instructions to build the constant and then store it.
1791     This optimization can therefore be a win in single-threaded code.
1792     In fact, a recent bug (since fixed) caused GCC to incorrectly use
1793     this optimization in a volatile store.  In the absence of such bugs,
1794     use of WRITE_ONCE() prevents store tearing in the following example:
1795
1796	WRITE_ONCE(p, 0x00010002);
1797
1798     Use of packed structures can also result in load and store tearing,
1799     as in this example:
1800
1801	struct __attribute__((__packed__)) foo {
1802		short a;
1803		int b;
1804		short c;
1805	};
1806	struct foo foo1, foo2;
1807	...
1808
1809	foo2.a = foo1.a;
1810	foo2.b = foo1.b;
1811	foo2.c = foo1.c;
1812
1813     Because there are no READ_ONCE() or WRITE_ONCE() wrappers and no
1814     volatile markings, the compiler would be well within its rights to
1815     implement these three assignment statements as a pair of 32-bit
1816     loads followed by a pair of 32-bit stores.  This would result in
1817     load tearing on 'foo1.b' and store tearing on 'foo2.b'.  READ_ONCE()
1818     and WRITE_ONCE() again prevent tearing in this example:
1819
1820	foo2.a = foo1.a;
1821	WRITE_ONCE(foo2.b, READ_ONCE(foo1.b));
1822	foo2.c = foo1.c;
1823
1824All that aside, it is never necessary to use READ_ONCE() and
1825WRITE_ONCE() on a variable that has been marked volatile.  For example,
1826because 'jiffies' is marked volatile, it is never necessary to
1827say READ_ONCE(jiffies).  The reason for this is that READ_ONCE() and
1828WRITE_ONCE() are implemented as volatile casts, which has no effect when
1829its argument is already marked volatile.
1830
1831Please note that these compiler barriers have no direct effect on the CPU,
1832which may then reorder things however it wishes.
1833
1834
1835CPU MEMORY BARRIERS
1836-------------------
1837
1838The Linux kernel has seven basic CPU memory barriers:
1839
1840	TYPE			MANDATORY	SMP CONDITIONAL
1841	=======================	===============	===============
1842	GENERAL			mb()		smp_mb()
1843	WRITE			wmb()		smp_wmb()
1844	READ			rmb()		smp_rmb()
1845	ADDRESS DEPENDENCY			READ_ONCE()
1846
1847
1848All memory barriers except the address-dependency barriers imply a compiler
1849barrier.  Address dependencies do not impose any additional compiler ordering.
1850
1851Aside: In the case of address dependencies, the compiler would be expected
1852to issue the loads in the correct order (eg. `a[b]` would have to load
1853the value of b before loading a[b]), however there is no guarantee in
1854the C specification that the compiler may not speculate the value of b
1855(eg. is equal to 1) and load a[b] before b (eg. tmp = a[1]; if (b != 1)
1856tmp = a[b]; ).  There is also the problem of a compiler reloading b after
1857having loaded a[b], thus having a newer copy of b than a[b].  A consensus
1858has not yet been reached about these problems, however the READ_ONCE()
1859macro is a good place to start looking.
1860
1861SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
1862systems because it is assumed that a CPU will appear to be self-consistent,
1863and will order overlapping accesses correctly with respect to itself.
1864However, see the subsection on "Virtual Machine Guests" below.
1865
1866[!] Note that SMP memory barriers _must_ be used to control the ordering of
1867references to shared memory on SMP systems, though the use of locking instead
1868is sufficient.
1869
1870Mandatory barriers should not be used to control SMP effects, since mandatory
1871barriers impose unnecessary overhead on both SMP and UP systems. They may,
1872however, be used to control MMIO effects on accesses through relaxed memory I/O
1873windows.  These barriers are required even on non-SMP systems as they affect
1874the order in which memory operations appear to a device by prohibiting both the
1875compiler and the CPU from reordering them.
1876
1877
1878There are some more advanced barrier functions:
1879
1880 (*) smp_store_mb(var, value)
1881
1882     This assigns the value to the variable and then inserts a full memory
1883     barrier after it.  It isn't guaranteed to insert anything more than a
1884     compiler barrier in a UP compilation.
1885
1886
1887 (*) smp_mb__before_atomic();
1888 (*) smp_mb__after_atomic();
1889
1890     These are for use with atomic RMW functions that do not imply memory
1891     barriers, but where the code needs a memory barrier. Examples for atomic
1892     RMW functions that do not imply a memory barrier are e.g. add,
1893     subtract, (failed) conditional operations, _relaxed functions,
1894     but not atomic_read or atomic_set. A common example where a memory
1895     barrier may be required is when atomic ops are used for reference
1896     counting.
1897
1898     These are also used for atomic RMW bitop functions that do not imply a
1899     memory barrier (such as set_bit and clear_bit).
1900
1901     As an example, consider a piece of code that marks an object as being dead
1902     and then decrements the object's reference count:
1903
1904	obj->dead = 1;
1905	smp_mb__before_atomic();
1906	atomic_dec(&obj->ref_count);
1907
1908     This makes sure that the death mark on the object is perceived to be set
1909     *before* the reference counter is decremented.
1910
1911     See Documentation/atomic_{t,bitops}.txt for more information.
 
 
 
 
 
 
 
 
 
 
 
 
1912
1913
1914 (*) dma_wmb();
1915 (*) dma_rmb();
1916 (*) dma_mb();
1917
1918     These are for use with consistent memory to guarantee the ordering
1919     of writes or reads of shared memory accessible to both the CPU and a
1920     DMA capable device. See Documentation/core-api/dma-api.rst file for more
1921     information about consistent memory.
1922
1923     For example, consider a device driver that shares memory with a device
1924     and uses a descriptor status value to indicate if the descriptor belongs
1925     to the device or the CPU, and a doorbell to notify it when new
1926     descriptors are available:
1927
1928	if (desc->status != DEVICE_OWN) {
1929		/* do not read data until we own descriptor */
1930		dma_rmb();
1931
1932		/* read/modify data */
1933		read_data = desc->data;
1934		desc->data = write_data;
1935
1936		/* flush modifications before status update */
1937		dma_wmb();
1938
1939		/* assign ownership */
1940		desc->status = DEVICE_OWN;
1941
1942		/* Make descriptor status visible to the device followed by
1943		 * notify device of new descriptor
1944		 */
 
1945		writel(DESC_NOTIFY, doorbell);
1946	}
1947
1948     The dma_rmb() allows us to guarantee that the device has released ownership
1949     before we read the data from the descriptor, and the dma_wmb() allows
1950     us to guarantee the data is written to the descriptor before the device
1951     can see it now has ownership.  The dma_mb() implies both a dma_rmb() and
1952     a dma_wmb().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953
1954     Note that the dma_*() barriers do not provide any ordering guarantees for
1955     accesses to MMIO regions.  See the later "KERNEL I/O BARRIER EFFECTS"
1956     subsection for more information about I/O accessors and MMIO ordering.
1957
1958 (*) pmem_wmb();
1959
1960     This is for use with persistent memory to ensure that stores for which
1961     modifications are written to persistent storage reached a platform
1962     durability domain.
1963
1964     For example, after a non-temporal write to pmem region, we use pmem_wmb()
1965     to ensure that stores have reached a platform durability domain. This ensures
1966     that stores have updated persistent storage before any data access or
1967     data transfer caused by subsequent instructions is initiated. This is
1968     in addition to the ordering done by wmb().
1969
1970     For load from persistent memory, existing read memory barriers are sufficient
1971     to ensure read ordering.
1972
1973 (*) io_stop_wc();
1974
1975     For memory accesses with write-combining attributes (e.g. those returned
1976     by ioremap_wc()), the CPU may wait for prior accesses to be merged with
1977     subsequent ones. io_stop_wc() can be used to prevent the merging of
1978     write-combining memory accesses before this macro with those after it when
1979     such wait has performance implications.
1980
1981===============================
1982IMPLICIT KERNEL MEMORY BARRIERS
1983===============================
1984
1985Some of the other functions in the linux kernel imply memory barriers, amongst
1986which are locking and scheduling functions.
1987
1988This specification is a _minimum_ guarantee; any particular architecture may
1989provide more substantial guarantees, but these may not be relied upon outside
1990of arch specific code.
1991
1992
1993LOCK ACQUISITION FUNCTIONS
1994--------------------------
1995
1996The Linux kernel has a number of locking constructs:
1997
1998 (*) spin locks
1999 (*) R/W spin locks
2000 (*) mutexes
2001 (*) semaphores
2002 (*) R/W semaphores
2003
2004In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations
2005for each construct.  These operations all imply certain barriers:
2006
2007 (1) ACQUIRE operation implication:
2008
2009     Memory operations issued after the ACQUIRE will be completed after the
2010     ACQUIRE operation has completed.
2011
2012     Memory operations issued before the ACQUIRE may be completed after
2013     the ACQUIRE operation has completed.
 
 
 
2014
2015 (2) RELEASE operation implication:
2016
2017     Memory operations issued before the RELEASE will be completed before the
2018     RELEASE operation has completed.
2019
2020     Memory operations issued after the RELEASE may be completed before the
2021     RELEASE operation has completed.
2022
2023 (3) ACQUIRE vs ACQUIRE implication:
2024
2025     All ACQUIRE operations issued before another ACQUIRE operation will be
2026     completed before that ACQUIRE operation.
2027
2028 (4) ACQUIRE vs RELEASE implication:
2029
2030     All ACQUIRE operations issued before a RELEASE operation will be
2031     completed before the RELEASE operation.
2032
2033 (5) Failed conditional ACQUIRE implication:
2034
2035     Certain locking variants of the ACQUIRE operation may fail, either due to
2036     being unable to get the lock immediately, or due to receiving an unblocked
2037     signal while asleep waiting for the lock to become available.  Failed
2038     locks do not imply any sort of barrier.
2039
2040[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
2041one-way barriers is that the effects of instructions outside of a critical
2042section may seep into the inside of the critical section.
2043
2044An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier
2045because it is possible for an access preceding the ACQUIRE to happen after the
2046ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and
2047the two accesses can themselves then cross:
2048
2049	*A = a;
2050	ACQUIRE M
2051	RELEASE M
2052	*B = b;
2053
2054may occur as:
2055
2056	ACQUIRE M, STORE *B, STORE *A, RELEASE M
2057
2058When the ACQUIRE and RELEASE are a lock acquisition and release,
2059respectively, this same reordering can occur if the lock's ACQUIRE and
2060RELEASE are to the same lock variable, but only from the perspective of
2061another CPU not holding that lock.  In short, a ACQUIRE followed by an
2062RELEASE may -not- be assumed to be a full memory barrier.
2063
2064Similarly, the reverse case of a RELEASE followed by an ACQUIRE does
2065not imply a full memory barrier.  Therefore, the CPU's execution of the
2066critical sections corresponding to the RELEASE and the ACQUIRE can cross,
2067so that:
2068
2069	*A = a;
2070	RELEASE M
2071	ACQUIRE N
2072	*B = b;
2073
2074could occur as:
2075
2076	ACQUIRE N, STORE *B, STORE *A, RELEASE M
2077
2078It might appear that this reordering could introduce a deadlock.
2079However, this cannot happen because if such a deadlock threatened,
2080the RELEASE would simply complete, thereby avoiding the deadlock.
2081
2082	Why does this work?
2083
2084	One key point is that we are only talking about the CPU doing
2085	the reordering, not the compiler.  If the compiler (or, for
2086	that matter, the developer) switched the operations, deadlock
2087	-could- occur.
2088
2089	But suppose the CPU reordered the operations.  In this case,
2090	the unlock precedes the lock in the assembly code.  The CPU
2091	simply elected to try executing the later lock operation first.
2092	If there is a deadlock, this lock operation will simply spin (or
2093	try to sleep, but more on that later).	The CPU will eventually
2094	execute the unlock operation (which preceded the lock operation
2095	in the assembly code), which will unravel the potential deadlock,
2096	allowing the lock operation to succeed.
2097
2098	But what if the lock is a sleeplock?  In that case, the code will
2099	try to enter the scheduler, where it will eventually encounter
2100	a memory barrier, which will force the earlier unlock operation
2101	to complete, again unraveling the deadlock.  There might be
2102	a sleep-unlock race, but the locking primitive needs to resolve
2103	such races properly in any case.
2104
2105Locks and semaphores may not provide any guarantee of ordering on UP compiled
2106systems, and so cannot be counted on in such a situation to actually achieve
2107anything at all - especially with respect to I/O accesses - unless combined
2108with interrupt disabling operations.
2109
2110See also the section on "Inter-CPU acquiring barrier effects".
2111
2112
2113As an example, consider the following:
2114
2115	*A = a;
2116	*B = b;
2117	ACQUIRE
2118	*C = c;
2119	*D = d;
2120	RELEASE
2121	*E = e;
2122	*F = f;
2123
2124The following sequence of events is acceptable:
2125
2126	ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE
2127
2128	[+] Note that {*F,*A} indicates a combined access.
2129
2130But none of the following are:
2131
2132	{*F,*A}, *B,	ACQUIRE, *C, *D,	RELEASE, *E
2133	*A, *B, *C,	ACQUIRE, *D,		RELEASE, *E, *F
2134	*A, *B,		ACQUIRE, *C,		RELEASE, *D, *E, *F
2135	*B,		ACQUIRE, *C, *D,	RELEASE, {*F,*A}, *E
2136
2137
2138
2139INTERRUPT DISABLING FUNCTIONS
2140-----------------------------
2141
2142Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts
2143(RELEASE equivalent) will act as compiler barriers only.  So if memory or I/O
2144barriers are required in such a situation, they must be provided from some
2145other means.
2146
2147
2148SLEEP AND WAKE-UP FUNCTIONS
2149---------------------------
2150
2151Sleeping and waking on an event flagged in global data can be viewed as an
2152interaction between two pieces of data: the task state of the task waiting for
2153the event and the global data used to indicate the event.  To make sure that
2154these appear to happen in the right order, the primitives to begin the process
2155of going to sleep, and the primitives to initiate a wake up imply certain
2156barriers.
2157
2158Firstly, the sleeper normally follows something like this sequence of events:
2159
2160	for (;;) {
2161		set_current_state(TASK_UNINTERRUPTIBLE);
2162		if (event_indicated)
2163			break;
2164		schedule();
2165	}
2166
2167A general memory barrier is interpolated automatically by set_current_state()
2168after it has altered the task state:
2169
2170	CPU 1
2171	===============================
2172	set_current_state();
2173	  smp_store_mb();
2174	    STORE current->state
2175	    <general barrier>
2176	LOAD event_indicated
2177
2178set_current_state() may be wrapped by:
2179
2180	prepare_to_wait();
2181	prepare_to_wait_exclusive();
2182
2183which therefore also imply a general memory barrier after setting the state.
2184The whole sequence above is available in various canned forms, all of which
2185interpolate the memory barrier in the right place:
2186
2187	wait_event();
2188	wait_event_interruptible();
2189	wait_event_interruptible_exclusive();
2190	wait_event_interruptible_timeout();
2191	wait_event_killable();
2192	wait_event_timeout();
2193	wait_on_bit();
2194	wait_on_bit_lock();
2195
2196
2197Secondly, code that performs a wake up normally follows something like this:
2198
2199	event_indicated = 1;
2200	wake_up(&event_wait_queue);
2201
2202or:
2203
2204	event_indicated = 1;
2205	wake_up_process(event_daemon);
2206
2207A general memory barrier is executed by wake_up() if it wakes something up.
2208If it doesn't wake anything up then a memory barrier may or may not be
2209executed; you must not rely on it.  The barrier occurs before the task state
2210is accessed, in particular, it sits between the STORE to indicate the event
2211and the STORE to set TASK_RUNNING:
2212
2213	CPU 1 (Sleeper)			CPU 2 (Waker)
2214	===============================	===============================
2215	set_current_state();		STORE event_indicated
2216	  smp_store_mb();		wake_up();
2217	    STORE current->state	  ...
2218	    <general barrier>		  <general barrier>
2219	LOAD event_indicated		  if ((LOAD task->state) & TASK_NORMAL)
2220					    STORE task->state
2221
2222where "task" is the thread being woken up and it equals CPU 1's "current".
2223
2224To repeat, a general memory barrier is guaranteed to be executed by wake_up()
2225if something is actually awakened, but otherwise there is no such guarantee.
2226To see this, consider the following sequence of events, where X and Y are both
2227initially zero:
2228
2229	CPU 1				CPU 2
2230	===============================	===============================
2231	X = 1;				Y = 1;
2232	smp_mb();			wake_up();
2233	LOAD Y				LOAD X
2234
2235If a wakeup does occur, one (at least) of the two loads must see 1.  If, on
2236the other hand, a wakeup does not occur, both loads might see 0.
2237
2238wake_up_process() always executes a general memory barrier.  The barrier again
2239occurs before the task state is accessed.  In particular, if the wake_up() in
2240the previous snippet were replaced by a call to wake_up_process() then one of
2241the two loads would be guaranteed to see 1.
2242
2243The available waker functions include:
2244
2245	complete();
2246	wake_up();
2247	wake_up_all();
2248	wake_up_bit();
2249	wake_up_interruptible();
2250	wake_up_interruptible_all();
2251	wake_up_interruptible_nr();
2252	wake_up_interruptible_poll();
2253	wake_up_interruptible_sync();
2254	wake_up_interruptible_sync_poll();
2255	wake_up_locked();
2256	wake_up_locked_poll();
2257	wake_up_nr();
2258	wake_up_poll();
2259	wake_up_process();
2260
2261In terms of memory ordering, these functions all provide the same guarantees of
2262a wake_up() (or stronger).
2263
2264[!] Note that the memory barriers implied by the sleeper and the waker do _not_
2265order multiple stores before the wake-up with respect to loads of those stored
2266values after the sleeper has called set_current_state().  For instance, if the
2267sleeper does:
2268
2269	set_current_state(TASK_INTERRUPTIBLE);
2270	if (event_indicated)
2271		break;
2272	__set_current_state(TASK_RUNNING);
2273	do_something(my_data);
2274
2275and the waker does:
2276
2277	my_data = value;
2278	event_indicated = 1;
2279	wake_up(&event_wait_queue);
2280
2281there's no guarantee that the change to event_indicated will be perceived by
2282the sleeper as coming after the change to my_data.  In such a circumstance, the
2283code on both sides must interpolate its own memory barriers between the
2284separate data accesses.  Thus the above sleeper ought to do:
2285
2286	set_current_state(TASK_INTERRUPTIBLE);
2287	if (event_indicated) {
2288		smp_rmb();
2289		do_something(my_data);
2290	}
2291
2292and the waker should do:
2293
2294	my_data = value;
2295	smp_wmb();
2296	event_indicated = 1;
2297	wake_up(&event_wait_queue);
2298
2299
2300MISCELLANEOUS FUNCTIONS
2301-----------------------
2302
2303Other functions that imply barriers:
2304
2305 (*) schedule() and similar imply full memory barriers.
2306
2307
2308===================================
2309INTER-CPU ACQUIRING BARRIER EFFECTS
2310===================================
2311
2312On SMP systems locking primitives give a more substantial form of barrier: one
2313that does affect memory access ordering on other CPUs, within the context of
2314conflict on any particular lock.
2315
2316
2317ACQUIRES VS MEMORY ACCESSES
2318---------------------------
2319
2320Consider the following: the system has a pair of spinlocks (M) and (Q), and
2321three CPUs; then should the following sequence of events occur:
2322
2323	CPU 1				CPU 2
2324	===============================	===============================
2325	WRITE_ONCE(*A, a);		WRITE_ONCE(*E, e);
2326	ACQUIRE M			ACQUIRE Q
2327	WRITE_ONCE(*B, b);		WRITE_ONCE(*F, f);
2328	WRITE_ONCE(*C, c);		WRITE_ONCE(*G, g);
2329	RELEASE M			RELEASE Q
2330	WRITE_ONCE(*D, d);		WRITE_ONCE(*H, h);
2331
2332Then there is no guarantee as to what order CPU 3 will see the accesses to *A
2333through *H occur in, other than the constraints imposed by the separate locks
2334on the separate CPUs.  It might, for example, see:
2335
2336	*E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M
2337
2338But it won't see any of:
2339
2340	*B, *C or *D preceding ACQUIRE M
2341	*A, *B or *C following RELEASE M
2342	*F, *G or *H preceding ACQUIRE Q
2343	*E, *F or *G following RELEASE Q
2344
2345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346=================================
2347WHERE ARE MEMORY BARRIERS NEEDED?
2348=================================
2349
2350Under normal operation, memory operation reordering is generally not going to
2351be a problem as a single-threaded linear piece of code will still appear to
2352work correctly, even if it's in an SMP kernel.  There are, however, four
2353circumstances in which reordering definitely _could_ be a problem:
2354
2355 (*) Interprocessor interaction.
2356
2357 (*) Atomic operations.
2358
2359 (*) Accessing devices.
2360
2361 (*) Interrupts.
2362
2363
2364INTERPROCESSOR INTERACTION
2365--------------------------
2366
2367When there's a system with more than one processor, more than one CPU in the
2368system may be working on the same data set at the same time.  This can cause
2369synchronisation problems, and the usual way of dealing with them is to use
2370locks.  Locks, however, are quite expensive, and so it may be preferable to
2371operate without the use of a lock if at all possible.  In such a case
2372operations that affect both CPUs may have to be carefully ordered to prevent
2373a malfunction.
2374
2375Consider, for example, the R/W semaphore slow path.  Here a waiting process is
2376queued on the semaphore, by virtue of it having a piece of its stack linked to
2377the semaphore's list of waiting processes:
2378
2379	struct rw_semaphore {
2380		...
2381		spinlock_t lock;
2382		struct list_head waiters;
2383	};
2384
2385	struct rwsem_waiter {
2386		struct list_head list;
2387		struct task_struct *task;
2388	};
2389
2390To wake up a particular waiter, the up_read() or up_write() functions have to:
2391
2392 (1) read the next pointer from this waiter's record to know as to where the
2393     next waiter record is;
2394
2395 (2) read the pointer to the waiter's task structure;
2396
2397 (3) clear the task pointer to tell the waiter it has been given the semaphore;
2398
2399 (4) call wake_up_process() on the task; and
2400
2401 (5) release the reference held on the waiter's task struct.
2402
2403In other words, it has to perform this sequence of events:
2404
2405	LOAD waiter->list.next;
2406	LOAD waiter->task;
2407	STORE waiter->task;
2408	CALL wakeup
2409	RELEASE task
2410
2411and if any of these steps occur out of order, then the whole thing may
2412malfunction.
2413
2414Once it has queued itself and dropped the semaphore lock, the waiter does not
2415get the lock again; it instead just waits for its task pointer to be cleared
2416before proceeding.  Since the record is on the waiter's stack, this means that
2417if the task pointer is cleared _before_ the next pointer in the list is read,
2418another CPU might start processing the waiter and might clobber the waiter's
2419stack before the up*() function has a chance to read the next pointer.
2420
2421Consider then what might happen to the above sequence of events:
2422
2423	CPU 1				CPU 2
2424	===============================	===============================
2425					down_xxx()
2426					Queue waiter
2427					Sleep
2428	up_yyy()
2429	LOAD waiter->task;
2430	STORE waiter->task;
2431					Woken up by other event
2432	<preempt>
2433					Resume processing
2434					down_xxx() returns
2435					call foo()
2436					foo() clobbers *waiter
2437	</preempt>
2438	LOAD waiter->list.next;
2439	--- OOPS ---
2440
2441This could be dealt with using the semaphore lock, but then the down_xxx()
2442function has to needlessly get the spinlock again after being woken up.
2443
2444The way to deal with this is to insert a general SMP memory barrier:
2445
2446	LOAD waiter->list.next;
2447	LOAD waiter->task;
2448	smp_mb();
2449	STORE waiter->task;
2450	CALL wakeup
2451	RELEASE task
2452
2453In this case, the barrier makes a guarantee that all memory accesses before the
2454barrier will appear to happen before all the memory accesses after the barrier
2455with respect to the other CPUs on the system.  It does _not_ guarantee that all
2456the memory accesses before the barrier will be complete by the time the barrier
2457instruction itself is complete.
2458
2459On a UP system - where this wouldn't be a problem - the smp_mb() is just a
2460compiler barrier, thus making sure the compiler emits the instructions in the
2461right order without actually intervening in the CPU.  Since there's only one
2462CPU, that CPU's dependency ordering logic will take care of everything else.
2463
2464
2465ATOMIC OPERATIONS
2466-----------------
2467
2468While they are technically interprocessor interaction considerations, atomic
2469operations are noted specially as some of them imply full memory barriers and
2470some don't, but they're very heavily relied on as a group throughout the
2471kernel.
2472
2473See Documentation/atomic_t.txt for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2474
2475
2476ACCESSING DEVICES
2477-----------------
2478
2479Many devices can be memory mapped, and so appear to the CPU as if they're just
2480a set of memory locations.  To control such a device, the driver usually has to
2481make the right memory accesses in exactly the right order.
2482
2483However, having a clever CPU or a clever compiler creates a potential problem
2484in that the carefully sequenced accesses in the driver code won't reach the
2485device in the requisite order if the CPU or the compiler thinks it is more
2486efficient to reorder, combine or merge accesses - something that would cause
2487the device to malfunction.
2488
2489Inside of the Linux kernel, I/O should be done through the appropriate accessor
2490routines - such as inb() or writel() - which know how to make such accesses
2491appropriately sequential.  While this, for the most part, renders the explicit
2492use of memory barriers unnecessary, if the accessor functions are used to refer
2493to an I/O memory window with relaxed memory access properties, then _mandatory_
2494memory barriers are required to enforce ordering.
 
 
 
 
 
 
 
2495
2496See Documentation/driver-api/device-io.rst for more information.
2497
2498
2499INTERRUPTS
2500----------
2501
2502A driver may be interrupted by its own interrupt service routine, and thus the
2503two parts of the driver may interfere with each other's attempts to control or
2504access the device.
2505
2506This may be alleviated - at least in part - by disabling local interrupts (a
2507form of locking), such that the critical operations are all contained within
2508the interrupt-disabled section in the driver.  While the driver's interrupt
2509routine is executing, the driver's core may not run on the same CPU, and its
2510interrupt is not permitted to happen again until the current interrupt has been
2511handled, thus the interrupt handler does not need to lock against that.
2512
2513However, consider a driver that was talking to an ethernet card that sports an
2514address register and a data register.  If that driver's core talks to the card
2515under interrupt-disablement and then the driver's interrupt handler is invoked:
2516
2517	LOCAL IRQ DISABLE
2518	writew(ADDR, 3);
2519	writew(DATA, y);
2520	LOCAL IRQ ENABLE
2521	<interrupt>
2522	writew(ADDR, 4);
2523	q = readw(DATA);
2524	</interrupt>
2525
2526The store to the data register might happen after the second store to the
2527address register if ordering rules are sufficiently relaxed:
2528
2529	STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
2530
2531
2532If ordering rules are relaxed, it must be assumed that accesses done inside an
2533interrupt disabled section may leak outside of it and may interleave with
2534accesses performed in an interrupt - and vice versa - unless implicit or
2535explicit barriers are used.
2536
2537Normally this won't be a problem because the I/O accesses done inside such
2538sections will include synchronous load operations on strictly ordered I/O
2539registers that form implicit I/O barriers.
 
2540
2541
2542A similar situation may occur between an interrupt routine and two routines
2543running on separate CPUs that communicate with each other.  If such a case is
2544likely, then interrupt-disabling locks should be used to guarantee ordering.
2545
2546
2547==========================
2548KERNEL I/O BARRIER EFFECTS
2549==========================
2550
2551Interfacing with peripherals via I/O accesses is deeply architecture and device
2552specific. Therefore, drivers which are inherently non-portable may rely on
2553specific behaviours of their target systems in order to achieve synchronization
2554in the most lightweight manner possible. For drivers intending to be portable
2555between multiple architectures and bus implementations, the kernel offers a
2556series of accessor functions that provide various degrees of ordering
2557guarantees:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558
2559 (*) readX(), writeX():
2560
2561	The readX() and writeX() MMIO accessors take a pointer to the
2562	peripheral being accessed as an __iomem * parameter. For pointers
2563	mapped with the default I/O attributes (e.g. those returned by
2564	ioremap()), the ordering guarantees are as follows:
2565
2566	1. All readX() and writeX() accesses to the same peripheral are ordered
2567	   with respect to each other. This ensures that MMIO register accesses
2568	   by the same CPU thread to a particular device will arrive in program
2569	   order.
2570
2571	2. A writeX() issued by a CPU thread holding a spinlock is ordered
2572	   before a writeX() to the same peripheral from another CPU thread
2573	   issued after a later acquisition of the same spinlock. This ensures
2574	   that MMIO register writes to a particular device issued while holding
2575	   a spinlock will arrive in an order consistent with acquisitions of
2576	   the lock.
2577
2578	3. A writeX() by a CPU thread to the peripheral will first wait for the
2579	   completion of all prior writes to memory either issued by, or
2580	   propagated to, the same thread. This ensures that writes by the CPU
2581	   to an outbound DMA buffer allocated by dma_alloc_coherent() will be
2582	   visible to a DMA engine when the CPU writes to its MMIO control
2583	   register to trigger the transfer.
2584
2585	4. A readX() by a CPU thread from the peripheral will complete before
2586	   any subsequent reads from memory by the same thread can begin. This
2587	   ensures that reads by the CPU from an incoming DMA buffer allocated
2588	   by dma_alloc_coherent() will not see stale data after reading from
2589	   the DMA engine's MMIO status register to establish that the DMA
2590	   transfer has completed.
2591
2592	5. A readX() by a CPU thread from the peripheral will complete before
2593	   any subsequent delay() loop can begin execution on the same thread.
2594	   This ensures that two MMIO register writes by the CPU to a peripheral
2595	   will arrive at least 1us apart if the first write is immediately read
2596	   back with readX() and udelay(1) is called prior to the second
2597	   writeX():
2598
2599		writel(42, DEVICE_REGISTER_0); // Arrives at the device...
2600		readl(DEVICE_REGISTER_0);
2601		udelay(1);
2602		writel(42, DEVICE_REGISTER_1); // ...at least 1us before this.
2603
2604	The ordering properties of __iomem pointers obtained with non-default
2605	attributes (e.g. those returned by ioremap_wc()) are specific to the
2606	underlying architecture and therefore the guarantees listed above cannot
2607	generally be relied upon for accesses to these types of mappings.
2608
2609 (*) readX_relaxed(), writeX_relaxed():
2610
2611	These are similar to readX() and writeX(), but provide weaker memory
2612	ordering guarantees. Specifically, they do not guarantee ordering with
2613	respect to locking, normal memory accesses or delay() loops (i.e.
2614	bullets 2-5 above) but they are still guaranteed to be ordered with
2615	respect to other accesses from the same CPU thread to the same
2616	peripheral when operating on __iomem pointers mapped with the default
2617	I/O attributes.
2618
2619 (*) readsX(), writesX():
2620
2621	The readsX() and writesX() MMIO accessors are designed for accessing
2622	register-based, memory-mapped FIFOs residing on peripherals that are not
2623	capable of performing DMA. Consequently, they provide only the ordering
2624	guarantees of readX_relaxed() and writeX_relaxed(), as documented above.
2625
2626 (*) inX(), outX():
2627
2628	The inX() and outX() accessors are intended to access legacy port-mapped
2629	I/O peripherals, which may require special instructions on some
2630	architectures (notably x86). The port number of the peripheral being
2631	accessed is passed as an argument.
2632
2633	Since many CPU architectures ultimately access these peripherals via an
2634	internal virtual memory mapping, the portable ordering guarantees
2635	provided by inX() and outX() are the same as those provided by readX()
2636	and writeX() respectively when accessing a mapping with the default I/O
2637	attributes.
2638
2639	Device drivers may expect outX() to emit a non-posted write transaction
2640	that waits for a completion response from the I/O peripheral before
2641	returning. This is not guaranteed by all architectures and is therefore
2642	not part of the portable ordering semantics.
2643
2644 (*) insX(), outsX():
2645
2646	As above, the insX() and outsX() accessors provide the same ordering
2647	guarantees as readsX() and writesX() respectively when accessing a
2648	mapping with the default I/O attributes.
2649
2650 (*) ioreadX(), iowriteX():
2651
2652	These will perform appropriately for the type of access they're actually
2653	doing, be it inX()/outX() or readX()/writeX().
2654
2655With the exception of the string accessors (insX(), outsX(), readsX() and
2656writesX()), all of the above assume that the underlying peripheral is
2657little-endian and will therefore perform byte-swapping operations on big-endian
2658architectures.
2659
2660
2661========================================
2662ASSUMED MINIMUM EXECUTION ORDERING MODEL
2663========================================
2664
2665It has to be assumed that the conceptual CPU is weakly-ordered but that it will
2666maintain the appearance of program causality with respect to itself.  Some CPUs
2667(such as i386 or x86_64) are more constrained than others (such as powerpc or
2668frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
2669of arch-specific code.
2670
2671This means that it must be considered that the CPU will execute its instruction
2672stream in any order it feels like - or even in parallel - provided that if an
2673instruction in the stream depends on an earlier instruction, then that
2674earlier instruction must be sufficiently complete[*] before the later
2675instruction may proceed; in other words: provided that the appearance of
2676causality is maintained.
2677
2678 [*] Some instructions have more than one effect - such as changing the
2679     condition codes, changing registers or changing memory - and different
2680     instructions may depend on different effects.
2681
2682A CPU may also discard any instruction sequence that winds up having no
2683ultimate effect.  For example, if two adjacent instructions both load an
2684immediate value into the same register, the first may be discarded.
2685
2686
2687Similarly, it has to be assumed that compiler might reorder the instruction
2688stream in any way it sees fit, again provided the appearance of causality is
2689maintained.
2690
2691
2692============================
2693THE EFFECTS OF THE CPU CACHE
2694============================
2695
2696The way cached memory operations are perceived across the system is affected to
2697a certain extent by the caches that lie between CPUs and memory, and by the
2698memory coherence system that maintains the consistency of state in the system.
2699
2700As far as the way a CPU interacts with another part of the system through the
2701caches goes, the memory system has to include the CPU's caches, and memory
2702barriers for the most part act at the interface between the CPU and its cache
2703(memory barriers logically act on the dotted line in the following diagram):
2704
2705	    <--- CPU --->         :       <----------- Memory ----------->
2706	                          :
2707	+--------+    +--------+  :   +--------+    +-----------+
2708	|        |    |        |  :   |        |    |           |    +--------+
2709	|  CPU   |    | Memory |  :   | CPU    |    |           |    |        |
2710	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2711	|        |    | Queue  |  :   |        |    |           |--->| Memory |
2712	|        |    |        |  :   |        |    |           |    |        |
2713	+--------+    +--------+  :   +--------+    |           |    |        |
2714	                          :                 | Cache     |    +--------+
2715	                          :                 | Coherency |
2716	                          :                 | Mechanism |    +--------+
2717	+--------+    +--------+  :   +--------+    |           |    |	      |
2718	|        |    |        |  :   |        |    |           |    |        |
2719	|  CPU   |    | Memory |  :   | CPU    |    |           |--->| Device |
2720	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2721	|        |    | Queue  |  :   |        |    |           |    |        |
2722	|        |    |        |  :   |        |    |           |    +--------+
2723	+--------+    +--------+  :   +--------+    +-----------+
2724	                          :
2725	                          :
2726
2727Although any particular load or store may not actually appear outside of the
2728CPU that issued it since it may have been satisfied within the CPU's own cache,
2729it will still appear as if the full memory access had taken place as far as the
2730other CPUs are concerned since the cache coherency mechanisms will migrate the
2731cacheline over to the accessing CPU and propagate the effects upon conflict.
2732
2733The CPU core may execute instructions in any order it deems fit, provided the
2734expected program causality appears to be maintained.  Some of the instructions
2735generate load and store operations which then go into the queue of memory
2736accesses to be performed.  The core may place these in the queue in any order
2737it wishes, and continue execution until it is forced to wait for an instruction
2738to complete.
2739
2740What memory barriers are concerned with is controlling the order in which
2741accesses cross from the CPU side of things to the memory side of things, and
2742the order in which the effects are perceived to happen by the other observers
2743in the system.
2744
2745[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
2746their own loads and stores as if they had happened in program order.
2747
2748[!] MMIO or other device accesses may bypass the cache system.  This depends on
2749the properties of the memory window through which devices are accessed and/or
2750the use of any special device communication instructions the CPU may have.
2751
2752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753CACHE COHERENCY VS DMA
2754----------------------
2755
2756Not all systems maintain cache coherency with respect to devices doing DMA.  In
2757such cases, a device attempting DMA may obtain stale data from RAM because
2758dirty cache lines may be resident in the caches of various CPUs, and may not
2759have been written back to RAM yet.  To deal with this, the appropriate part of
2760the kernel must flush the overlapping bits of cache on each CPU (and maybe
2761invalidate them as well).
2762
2763In addition, the data DMA'd to RAM by a device may be overwritten by dirty
2764cache lines being written back to RAM from a CPU's cache after the device has
2765installed its own data, or cache lines present in the CPU's cache may simply
2766obscure the fact that RAM has been updated, until at such time as the cacheline
2767is discarded from the CPU's cache and reloaded.  To deal with this, the
2768appropriate part of the kernel must invalidate the overlapping bits of the
2769cache on each CPU.
2770
2771See Documentation/core-api/cachetlb.rst for more information on cache
2772management.
2773
2774
2775CACHE COHERENCY VS MMIO
2776-----------------------
2777
2778Memory mapped I/O usually takes place through memory locations that are part of
2779a window in the CPU's memory space that has different properties assigned than
2780the usual RAM directed window.
2781
2782Amongst these properties is usually the fact that such accesses bypass the
2783caching entirely and go directly to the device buses.  This means MMIO accesses
2784may, in effect, overtake accesses to cached memory that were emitted earlier.
2785A memory barrier isn't sufficient in such a case, but rather the cache must be
2786flushed between the cached memory write and the MMIO access if the two are in
2787any way dependent.
2788
2789
2790=========================
2791THE THINGS CPUS GET UP TO
2792=========================
2793
2794A programmer might take it for granted that the CPU will perform memory
2795operations in exactly the order specified, so that if the CPU is, for example,
2796given the following piece of code to execute:
2797
2798	a = READ_ONCE(*A);
2799	WRITE_ONCE(*B, b);
2800	c = READ_ONCE(*C);
2801	d = READ_ONCE(*D);
2802	WRITE_ONCE(*E, e);
2803
2804they would then expect that the CPU will complete the memory operation for each
2805instruction before moving on to the next one, leading to a definite sequence of
2806operations as seen by external observers in the system:
2807
2808	LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
2809
2810
2811Reality is, of course, much messier.  With many CPUs and compilers, the above
2812assumption doesn't hold because:
2813
2814 (*) loads are more likely to need to be completed immediately to permit
2815     execution progress, whereas stores can often be deferred without a
2816     problem;
2817
2818 (*) loads may be done speculatively, and the result discarded should it prove
2819     to have been unnecessary;
2820
2821 (*) loads may be done speculatively, leading to the result having been fetched
2822     at the wrong time in the expected sequence of events;
2823
2824 (*) the order of the memory accesses may be rearranged to promote better use
2825     of the CPU buses and caches;
2826
2827 (*) loads and stores may be combined to improve performance when talking to
2828     memory or I/O hardware that can do batched accesses of adjacent locations,
2829     thus cutting down on transaction setup costs (memory and PCI devices may
2830     both be able to do this); and
2831
2832 (*) the CPU's data cache may affect the ordering, and while cache-coherency
2833     mechanisms may alleviate this - once the store has actually hit the cache
2834     - there's no guarantee that the coherency management will be propagated in
2835     order to other CPUs.
2836
2837So what another CPU, say, might actually observe from the above piece of code
2838is:
2839
2840	LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
2841
2842	(Where "LOAD {*C,*D}" is a combined load)
2843
2844
2845However, it is guaranteed that a CPU will be self-consistent: it will see its
2846_own_ accesses appear to be correctly ordered, without the need for a memory
2847barrier.  For instance with the following code:
2848
2849	U = READ_ONCE(*A);
2850	WRITE_ONCE(*A, V);
2851	WRITE_ONCE(*A, W);
2852	X = READ_ONCE(*A);
2853	WRITE_ONCE(*A, Y);
2854	Z = READ_ONCE(*A);
2855
2856and assuming no intervention by an external influence, it can be assumed that
2857the final result will appear to be:
2858
2859	U == the original value of *A
2860	X == W
2861	Z == Y
2862	*A == Y
2863
2864The code above may cause the CPU to generate the full sequence of memory
2865accesses:
2866
2867	U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
2868
2869in that order, but, without intervention, the sequence may have almost any
2870combination of elements combined or discarded, provided the program's view
2871of the world remains consistent.  Note that READ_ONCE() and WRITE_ONCE()
2872are -not- optional in the above example, as there are architectures
2873where a given CPU might reorder successive loads to the same location.
2874On such architectures, READ_ONCE() and WRITE_ONCE() do whatever is
2875necessary to prevent this, for example, on Itanium the volatile casts
2876used by READ_ONCE() and WRITE_ONCE() cause GCC to emit the special ld.acq
2877and st.rel instructions (respectively) that prevent such reordering.
2878
2879The compiler may also combine, discard or defer elements of the sequence before
2880the CPU even sees them.
2881
2882For instance:
2883
2884	*A = V;
2885	*A = W;
2886
2887may be reduced to:
2888
2889	*A = W;
2890
2891since, without either a write barrier or an WRITE_ONCE(), it can be
2892assumed that the effect of the storage of V to *A is lost.  Similarly:
2893
2894	*A = Y;
2895	Z = *A;
2896
2897may, without a memory barrier or an READ_ONCE() and WRITE_ONCE(), be
2898reduced to:
2899
2900	*A = Y;
2901	Z = Y;
2902
2903and the LOAD operation never appear outside of the CPU.
2904
2905
2906AND THEN THERE'S THE ALPHA
2907--------------------------
2908
2909The DEC Alpha CPU is one of the most relaxed CPUs there is.  Not only that,
2910some versions of the Alpha CPU have a split data cache, permitting them to have
2911two semantically-related cache lines updated at separate times.  This is where
2912the address-dependency barrier really becomes necessary as this synchronises
2913both caches with the memory coherence system, thus making it seem like pointer
2914changes vs new data occur in the right order.
2915
2916The Alpha defines the Linux kernel's memory model, although as of v4.15
2917the Linux kernel's addition of smp_mb() to READ_ONCE() on Alpha greatly
2918reduced its impact on the memory model.
2919
 
2920
2921VIRTUAL MACHINE GUESTS
2922----------------------
2923
2924Guests running within virtual machines might be affected by SMP effects even if
2925the guest itself is compiled without SMP support.  This is an artifact of
2926interfacing with an SMP host while running an UP kernel.  Using mandatory
2927barriers for this use-case would be possible but is often suboptimal.
2928
2929To handle this case optimally, low-level virt_mb() etc macros are available.
2930These have the same effect as smp_mb() etc when SMP is enabled, but generate
2931identical code for SMP and non-SMP systems.  For example, virtual machine guests
2932should use virt_mb() rather than smp_mb() when synchronizing against a
2933(possibly SMP) host.
2934
2935These are equivalent to smp_mb() etc counterparts in all other respects,
2936in particular, they do not control MMIO effects: to control
2937MMIO effects, use mandatory barriers.
2938
2939
2940============
2941EXAMPLE USES
2942============
2943
2944CIRCULAR BUFFERS
2945----------------
2946
2947Memory barriers can be used to implement circular buffering without the need
2948of a lock to serialise the producer with the consumer.  See:
2949
2950	Documentation/core-api/circular-buffers.rst
2951
2952for details.
2953
2954
2955==========
2956REFERENCES
2957==========
2958
2959Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
2960Digital Press)
2961	Chapter 5.2: Physical Address Space Characteristics
2962	Chapter 5.4: Caches and Write Buffers
2963	Chapter 5.5: Data Sharing
2964	Chapter 5.6: Read/Write Ordering
2965
2966AMD64 Architecture Programmer's Manual Volume 2: System Programming
2967	Chapter 7.1: Memory-Access Ordering
2968	Chapter 7.4: Buffering and Combining Memory Writes
2969
2970ARM Architecture Reference Manual (ARMv8, for ARMv8-A architecture profile)
2971	Chapter B2: The AArch64 Application Level Memory Model
2972
2973IA-32 Intel Architecture Software Developer's Manual, Volume 3:
2974System Programming Guide
2975	Chapter 7.1: Locked Atomic Operations
2976	Chapter 7.2: Memory Ordering
2977	Chapter 7.4: Serializing Instructions
2978
2979The SPARC Architecture Manual, Version 9
2980	Chapter 8: Memory Models
2981	Appendix D: Formal Specification of the Memory Models
2982	Appendix J: Programming with the Memory Models
2983
2984Storage in the PowerPC (Stone and Fitzgerald)
2985
2986UltraSPARC Programmer Reference Manual
2987	Chapter 5: Memory Accesses and Cacheability
2988	Chapter 15: Sparc-V9 Memory Models
2989
2990UltraSPARC III Cu User's Manual
2991	Chapter 9: Memory Models
2992
2993UltraSPARC IIIi Processor User's Manual
2994	Chapter 8: Memory Models
2995
2996UltraSPARC Architecture 2005
2997	Chapter 9: Memory
2998	Appendix D: Formal Specifications of the Memory Models
2999
3000UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
3001	Chapter 8: Memory Models
3002	Appendix F: Caches and Cache Coherency
3003
3004Solaris Internals, Core Kernel Architecture, p63-68:
3005	Chapter 3.3: Hardware Considerations for Locks and
3006			Synchronization
3007
3008Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
3009for Kernel Programmers:
3010	Chapter 13: Other Memory Models
3011
3012Intel Itanium Architecture Software Developer's Manual: Volume 1:
3013	Section 2.6: Speculation
3014	Section 4.4: Memory Access
v4.6
   1			 ============================
   2			 LINUX KERNEL MEMORY BARRIERS
   3			 ============================
   4
   5By: David Howells <dhowells@redhat.com>
   6    Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 
 
   7
   8Contents:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9
  10 (*) Abstract memory access model.
  11
  12     - Device operations.
  13     - Guarantees.
  14
  15 (*) What are memory barriers?
  16
  17     - Varieties of memory barrier.
  18     - What may not be assumed about memory barriers?
  19     - Data dependency barriers.
  20     - Control dependencies.
  21     - SMP barrier pairing.
  22     - Examples of memory barrier sequences.
  23     - Read memory barriers vs load speculation.
  24     - Transitivity
  25
  26 (*) Explicit kernel barriers.
  27
  28     - Compiler barrier.
  29     - CPU memory barriers.
  30     - MMIO write barrier.
  31
  32 (*) Implicit kernel memory barriers.
  33
  34     - Locking functions.
  35     - Interrupt disabling functions.
  36     - Sleep and wake-up functions.
  37     - Miscellaneous functions.
  38
  39 (*) Inter-CPU locking barrier effects.
  40
  41     - Locks vs memory accesses.
  42     - Locks vs I/O accesses.
  43
  44 (*) Where are memory barriers needed?
  45
  46     - Interprocessor interaction.
  47     - Atomic operations.
  48     - Accessing devices.
  49     - Interrupts.
  50
  51 (*) Kernel I/O barrier effects.
  52
  53 (*) Assumed minimum execution ordering model.
  54
  55 (*) The effects of the cpu cache.
  56
  57     - Cache coherency.
  58     - Cache coherency vs DMA.
  59     - Cache coherency vs MMIO.
  60
  61 (*) The things CPUs get up to.
  62
  63     - And then there's the Alpha.
 
  64
  65 (*) Example uses.
  66
  67     - Circular buffers.
  68
  69 (*) References.
  70
  71
  72============================
  73ABSTRACT MEMORY ACCESS MODEL
  74============================
  75
  76Consider the following abstract model of the system:
  77
  78		            :                :
  79		            :                :
  80		            :                :
  81		+-------+   :   +--------+   :   +-------+
  82		|       |   :   |        |   :   |       |
  83		|       |   :   |        |   :   |       |
  84		| CPU 1 |<----->| Memory |<----->| CPU 2 |
  85		|       |   :   |        |   :   |       |
  86		|       |   :   |        |   :   |       |
  87		+-------+   :   +--------+   :   +-------+
  88		    ^       :       ^        :       ^
  89		    |       :       |        :       |
  90		    |       :       |        :       |
  91		    |       :       v        :       |
  92		    |       :   +--------+   :       |
  93		    |       :   |        |   :       |
  94		    |       :   |        |   :       |
  95		    +---------->| Device |<----------+
  96		            :   |        |   :
  97		            :   |        |   :
  98		            :   +--------+   :
  99		            :                :
 100
 101Each CPU executes a program that generates memory access operations.  In the
 102abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
 103perform the memory operations in any order it likes, provided program causality
 104appears to be maintained.  Similarly, the compiler may also arrange the
 105instructions it emits in any order it likes, provided it doesn't affect the
 106apparent operation of the program.
 107
 108So in the above diagram, the effects of the memory operations performed by a
 109CPU are perceived by the rest of the system as the operations cross the
 110interface between the CPU and rest of the system (the dotted lines).
 111
 112
 113For example, consider the following sequence of events:
 114
 115	CPU 1		CPU 2
 116	===============	===============
 117	{ A == 1; B == 2 }
 118	A = 3;		x = B;
 119	B = 4;		y = A;
 120
 121The set of accesses as seen by the memory system in the middle can be arranged
 122in 24 different combinations:
 123
 124	STORE A=3,	STORE B=4,	y=LOAD A->3,	x=LOAD B->4
 125	STORE A=3,	STORE B=4,	x=LOAD B->4,	y=LOAD A->3
 126	STORE A=3,	y=LOAD A->3,	STORE B=4,	x=LOAD B->4
 127	STORE A=3,	y=LOAD A->3,	x=LOAD B->2,	STORE B=4
 128	STORE A=3,	x=LOAD B->2,	STORE B=4,	y=LOAD A->3
 129	STORE A=3,	x=LOAD B->2,	y=LOAD A->3,	STORE B=4
 130	STORE B=4,	STORE A=3,	y=LOAD A->3,	x=LOAD B->4
 131	STORE B=4, ...
 132	...
 133
 134and can thus result in four different combinations of values:
 135
 136	x == 2, y == 1
 137	x == 2, y == 3
 138	x == 4, y == 1
 139	x == 4, y == 3
 140
 141
 142Furthermore, the stores committed by a CPU to the memory system may not be
 143perceived by the loads made by another CPU in the same order as the stores were
 144committed.
 145
 146
 147As a further example, consider this sequence of events:
 148
 149	CPU 1		CPU 2
 150	===============	===============
 151	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
 152	B = 4;		Q = P;
 153	P = &B		D = *Q;
 154
 155There is an obvious data dependency here, as the value loaded into D depends on
 156the address retrieved from P by CPU 2.  At the end of the sequence, any of the
 157following results are possible:
 158
 159	(Q == &A) and (D == 1)
 160	(Q == &B) and (D == 2)
 161	(Q == &B) and (D == 4)
 162
 163Note that CPU 2 will never try and load C into D because the CPU will load P
 164into Q before issuing the load of *Q.
 165
 166
 167DEVICE OPERATIONS
 168-----------------
 169
 170Some devices present their control interfaces as collections of memory
 171locations, but the order in which the control registers are accessed is very
 172important.  For instance, imagine an ethernet card with a set of internal
 173registers that are accessed through an address port register (A) and a data
 174port register (D).  To read internal register 5, the following code might then
 175be used:
 176
 177	*A = 5;
 178	x = *D;
 179
 180but this might show up as either of the following two sequences:
 181
 182	STORE *A = 5, x = LOAD *D
 183	x = LOAD *D, STORE *A = 5
 184
 185the second of which will almost certainly result in a malfunction, since it set
 186the address _after_ attempting to read the register.
 187
 188
 189GUARANTEES
 190----------
 191
 192There are some minimal guarantees that may be expected of a CPU:
 193
 194 (*) On any given CPU, dependent memory accesses will be issued in order, with
 195     respect to itself.  This means that for:
 196
 197	Q = READ_ONCE(P); smp_read_barrier_depends(); D = READ_ONCE(*Q);
 198
 199     the CPU will issue the following memory operations:
 200
 201	Q = LOAD P, D = LOAD *Q
 202
 203     and always in that order.  On most systems, smp_read_barrier_depends()
 204     does nothing, but it is required for DEC Alpha.  The READ_ONCE()
 205     is required to prevent compiler mischief.  Please note that you
 206     should normally use something like rcu_dereference() instead of
 207     open-coding smp_read_barrier_depends().
 
 
 
 208
 209 (*) Overlapping loads and stores within a particular CPU will appear to be
 210     ordered within that CPU.  This means that for:
 211
 212	a = READ_ONCE(*X); WRITE_ONCE(*X, b);
 213
 214     the CPU will only issue the following sequence of memory operations:
 215
 216	a = LOAD *X, STORE *X = b
 217
 218     And for:
 219
 220	WRITE_ONCE(*X, c); d = READ_ONCE(*X);
 221
 222     the CPU will only issue:
 223
 224	STORE *X = c, d = LOAD *X
 225
 226     (Loads and stores overlap if they are targeted at overlapping pieces of
 227     memory).
 228
 229And there are a number of things that _must_ or _must_not_ be assumed:
 230
 231 (*) It _must_not_ be assumed that the compiler will do what you want
 232     with memory references that are not protected by READ_ONCE() and
 233     WRITE_ONCE().  Without them, the compiler is within its rights to
 234     do all sorts of "creative" transformations, which are covered in
 235     the COMPILER BARRIER section.
 236
 237 (*) It _must_not_ be assumed that independent loads and stores will be issued
 238     in the order given.  This means that for:
 239
 240	X = *A; Y = *B; *D = Z;
 241
 242     we may get any of the following sequences:
 243
 244	X = LOAD *A,  Y = LOAD *B,  STORE *D = Z
 245	X = LOAD *A,  STORE *D = Z, Y = LOAD *B
 246	Y = LOAD *B,  X = LOAD *A,  STORE *D = Z
 247	Y = LOAD *B,  STORE *D = Z, X = LOAD *A
 248	STORE *D = Z, X = LOAD *A,  Y = LOAD *B
 249	STORE *D = Z, Y = LOAD *B,  X = LOAD *A
 250
 251 (*) It _must_ be assumed that overlapping memory accesses may be merged or
 252     discarded.  This means that for:
 253
 254	X = *A; Y = *(A + 4);
 255
 256     we may get any one of the following sequences:
 257
 258	X = LOAD *A; Y = LOAD *(A + 4);
 259	Y = LOAD *(A + 4); X = LOAD *A;
 260	{X, Y} = LOAD {*A, *(A + 4) };
 261
 262     And for:
 263
 264	*A = X; *(A + 4) = Y;
 265
 266     we may get any of:
 267
 268	STORE *A = X; STORE *(A + 4) = Y;
 269	STORE *(A + 4) = Y; STORE *A = X;
 270	STORE {*A, *(A + 4) } = {X, Y};
 271
 272And there are anti-guarantees:
 273
 274 (*) These guarantees do not apply to bitfields, because compilers often
 275     generate code to modify these using non-atomic read-modify-write
 276     sequences.  Do not attempt to use bitfields to synchronize parallel
 277     algorithms.
 278
 279 (*) Even in cases where bitfields are protected by locks, all fields
 280     in a given bitfield must be protected by one lock.  If two fields
 281     in a given bitfield are protected by different locks, the compiler's
 282     non-atomic read-modify-write sequences can cause an update to one
 283     field to corrupt the value of an adjacent field.
 284
 285 (*) These guarantees apply only to properly aligned and sized scalar
 286     variables.  "Properly sized" currently means variables that are
 287     the same size as "char", "short", "int" and "long".  "Properly
 288     aligned" means the natural alignment, thus no constraints for
 289     "char", two-byte alignment for "short", four-byte alignment for
 290     "int", and either four-byte or eight-byte alignment for "long",
 291     on 32-bit and 64-bit systems, respectively.  Note that these
 292     guarantees were introduced into the C11 standard, so beware when
 293     using older pre-C11 compilers (for example, gcc 4.6).  The portion
 294     of the standard containing this guarantee is Section 3.14, which
 295     defines "memory location" as follows:
 296
 297     	memory location
 298		either an object of scalar type, or a maximal sequence
 299		of adjacent bit-fields all having nonzero width
 300
 301		NOTE 1: Two threads of execution can update and access
 302		separate memory locations without interfering with
 303		each other.
 304
 305		NOTE 2: A bit-field and an adjacent non-bit-field member
 306		are in separate memory locations. The same applies
 307		to two bit-fields, if one is declared inside a nested
 308		structure declaration and the other is not, or if the two
 309		are separated by a zero-length bit-field declaration,
 310		or if they are separated by a non-bit-field member
 311		declaration. It is not safe to concurrently update two
 312		bit-fields in the same structure if all members declared
 313		between them are also bit-fields, no matter what the
 314		sizes of those intervening bit-fields happen to be.
 315
 316
 317=========================
 318WHAT ARE MEMORY BARRIERS?
 319=========================
 320
 321As can be seen above, independent memory operations are effectively performed
 322in random order, but this can be a problem for CPU-CPU interaction and for I/O.
 323What is required is some way of intervening to instruct the compiler and the
 324CPU to restrict the order.
 325
 326Memory barriers are such interventions.  They impose a perceived partial
 327ordering over the memory operations on either side of the barrier.
 328
 329Such enforcement is important because the CPUs and other devices in a system
 330can use a variety of tricks to improve performance, including reordering,
 331deferral and combination of memory operations; speculative loads; speculative
 332branch prediction and various types of caching.  Memory barriers are used to
 333override or suppress these tricks, allowing the code to sanely control the
 334interaction of multiple CPUs and/or devices.
 335
 336
 337VARIETIES OF MEMORY BARRIER
 338---------------------------
 339
 340Memory barriers come in four basic varieties:
 341
 342 (1) Write (or store) memory barriers.
 343
 344     A write memory barrier gives a guarantee that all the STORE operations
 345     specified before the barrier will appear to happen before all the STORE
 346     operations specified after the barrier with respect to the other
 347     components of the system.
 348
 349     A write barrier is a partial ordering on stores only; it is not required
 350     to have any effect on loads.
 351
 352     A CPU can be viewed as committing a sequence of store operations to the
 353     memory system as time progresses.  All stores before a write barrier will
 354     occur in the sequence _before_ all the stores after the write barrier.
 355
 356     [!] Note that write barriers should normally be paired with read or data
 357     dependency barriers; see the "SMP barrier pairing" subsection.
 358
 359
 360 (2) Data dependency barriers.
 
 361
 362     A data dependency barrier is a weaker form of read barrier.  In the case
 363     where two loads are performed such that the second depends on the result
 364     of the first (eg: the first load retrieves the address to which the second
 365     load will be directed), a data dependency barrier would be required to
 366     make sure that the target of the second load is updated before the address
 367     obtained by the first load is accessed.
 368
 369     A data dependency barrier is a partial ordering on interdependent loads
 370     only; it is not required to have any effect on stores, independent loads
 371     or overlapping loads.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373     As mentioned in (1), the other CPUs in the system can be viewed as
 374     committing sequences of stores to the memory system that the CPU being
 375     considered can then perceive.  A data dependency barrier issued by the CPU
 376     under consideration guarantees that for any load preceding it, if that
 377     load touches one of a sequence of stores from another CPU, then by the
 378     time the barrier completes, the effects of all the stores prior to that
 379     touched by the load will be perceptible to any loads issued after the data
 380     dependency barrier.
 381
 382     See the "Examples of memory barrier sequences" subsection for diagrams
 383     showing the ordering constraints.
 384
 385     [!] Note that the first load really has to have a _data_ dependency and
 386     not a control dependency.  If the address for the second load is dependent
 387     on the first load, but the dependency is through a conditional rather than
 388     actually loading the address itself, then it's a _control_ dependency and
 389     a full read barrier or better is required.  See the "Control dependencies"
 390     subsection for more information.
 391
 392     [!] Note that data dependency barriers should normally be paired with
 393     write barriers; see the "SMP barrier pairing" subsection.
 394
 
 
 
 
 395
 396 (3) Read (or load) memory barriers.
 397
 398     A read barrier is a data dependency barrier plus a guarantee that all the
 399     LOAD operations specified before the barrier will appear to happen before
 400     all the LOAD operations specified after the barrier with respect to the
 401     other components of the system.
 402
 403     A read barrier is a partial ordering on loads only; it is not required to
 404     have any effect on stores.
 405
 406     Read memory barriers imply data dependency barriers, and so can substitute
 407     for them.
 408
 409     [!] Note that read barriers should normally be paired with write barriers;
 410     see the "SMP barrier pairing" subsection.
 411
 412
 413 (4) General memory barriers.
 414
 415     A general memory barrier gives a guarantee that all the LOAD and STORE
 416     operations specified before the barrier will appear to happen before all
 417     the LOAD and STORE operations specified after the barrier with respect to
 418     the other components of the system.
 419
 420     A general memory barrier is a partial ordering over both loads and stores.
 421
 422     General memory barriers imply both read and write memory barriers, and so
 423     can substitute for either.
 424
 425
 426And a couple of implicit varieties:
 427
 428 (5) ACQUIRE operations.
 429
 430     This acts as a one-way permeable barrier.  It guarantees that all memory
 431     operations after the ACQUIRE operation will appear to happen after the
 432     ACQUIRE operation with respect to the other components of the system.
 433     ACQUIRE operations include LOCK operations and smp_load_acquire()
 434     operations.
 435
 436     Memory operations that occur before an ACQUIRE operation may appear to
 437     happen after it completes.
 438
 439     An ACQUIRE operation should almost always be paired with a RELEASE
 440     operation.
 441
 442
 443 (6) RELEASE operations.
 444
 445     This also acts as a one-way permeable barrier.  It guarantees that all
 446     memory operations before the RELEASE operation will appear to happen
 447     before the RELEASE operation with respect to the other components of the
 448     system. RELEASE operations include UNLOCK operations and
 449     smp_store_release() operations.
 450
 451     Memory operations that occur after a RELEASE operation may appear to
 452     happen before it completes.
 453
 454     The use of ACQUIRE and RELEASE operations generally precludes the need
 455     for other sorts of memory barrier (but note the exceptions mentioned in
 456     the subsection "MMIO write barrier").  In addition, a RELEASE+ACQUIRE
 457     pair is -not- guaranteed to act as a full memory barrier.  However, after
 458     an ACQUIRE on a given variable, all memory accesses preceding any prior
 459     RELEASE on that same variable are guaranteed to be visible.  In other
 460     words, within a given variable's critical section, all accesses of all
 461     previous critical sections for that variable are guaranteed to have
 462     completed.
 463
 464     This means that ACQUIRE acts as a minimal "acquire" operation and
 465     RELEASE acts as a minimal "release" operation.
 466
 
 
 
 
 
 467
 468Memory barriers are only required where there's a possibility of interaction
 469between two CPUs or between a CPU and a device.  If it can be guaranteed that
 470there won't be any such interaction in any particular piece of code, then
 471memory barriers are unnecessary in that piece of code.
 472
 473
 474Note that these are the _minimum_ guarantees.  Different architectures may give
 475more substantial guarantees, but they may _not_ be relied upon outside of arch
 476specific code.
 477
 478
 479WHAT MAY NOT BE ASSUMED ABOUT MEMORY BARRIERS?
 480----------------------------------------------
 481
 482There are certain things that the Linux kernel memory barriers do not guarantee:
 483
 484 (*) There is no guarantee that any of the memory accesses specified before a
 485     memory barrier will be _complete_ by the completion of a memory barrier
 486     instruction; the barrier can be considered to draw a line in that CPU's
 487     access queue that accesses of the appropriate type may not cross.
 488
 489 (*) There is no guarantee that issuing a memory barrier on one CPU will have
 490     any direct effect on another CPU or any other hardware in the system.  The
 491     indirect effect will be the order in which the second CPU sees the effects
 492     of the first CPU's accesses occur, but see the next point:
 493
 494 (*) There is no guarantee that a CPU will see the correct order of effects
 495     from a second CPU's accesses, even _if_ the second CPU uses a memory
 496     barrier, unless the first CPU _also_ uses a matching memory barrier (see
 497     the subsection on "SMP Barrier Pairing").
 498
 499 (*) There is no guarantee that some intervening piece of off-the-CPU
 500     hardware[*] will not reorder the memory accesses.  CPU cache coherency
 501     mechanisms should propagate the indirect effects of a memory barrier
 502     between CPUs, but might not do so in order.
 503
 504	[*] For information on bus mastering DMA and coherency please read:
 505
 506	    Documentation/PCI/pci.txt
 507	    Documentation/DMA-API-HOWTO.txt
 508	    Documentation/DMA-API.txt
 509
 510
 511DATA DEPENDENCY BARRIERS
 512------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513
 514The usage requirements of data dependency barriers are a little subtle, and
 515it's not always obvious that they're needed.  To illustrate, consider the
 516following sequence of events:
 517
 518	CPU 1		      CPU 2
 519	===============	      ===============
 520	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
 521	B = 4;
 522	<write barrier>
 523	WRITE_ONCE(P, &B)
 524			      Q = READ_ONCE(P);
 525			      D = *Q;
 526
 527There's a clear data dependency here, and it would seem that by the end of the
 528sequence, Q must be either &A or &B, and that:
 
 
 
 529
 530	(Q == &A) implies (D == 1)
 531	(Q == &B) implies (D == 4)
 532
 533But!  CPU 2's perception of P may be updated _before_ its perception of B, thus
 534leading to the following situation:
 535
 536	(Q == &B) and (D == 2) ????
 537
 538Whilst this may seem like a failure of coherency or causality maintenance, it
 539isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
 540Alpha).
 541
 542To deal with this, a data dependency barrier or better must be inserted
 543between the address load and the data load:
 544
 545	CPU 1		      CPU 2
 546	===============	      ===============
 547	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
 548	B = 4;
 549	<write barrier>
 550	WRITE_ONCE(P, &B);
 551			      Q = READ_ONCE(P);
 552			      <data dependency barrier>
 553			      D = *Q;
 554
 555This enforces the occurrence of one of the two implications, and prevents the
 556third possibility from arising.
 557
 558A data-dependency barrier must also order against dependent writes:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559
 560	CPU 1		      CPU 2
 561	===============	      ===============
 562	{ A == 1, B == 2, C = 3, P == &A, Q == &C }
 563	B = 4;
 564	<write barrier>
 565	WRITE_ONCE(P, &B);
 566			      Q = READ_ONCE(P);
 567			      <data dependency barrier>
 568			      *Q = 5;
 569
 570The data-dependency barrier must order the read into Q with the store
 571into *Q.  This prohibits this outcome:
 
 572
 573	(Q == B) && (B == 4)
 574
 575Please note that this pattern should be rare.  After all, the whole point
 576of dependency ordering is to -prevent- writes to the data structure, along
 577with the expensive cache misses associated with those writes.  This pattern
 578can be used to record rare error conditions and the like, and the ordering
 579prevents such records from being lost.
 580
 581
 582[!] Note that this extremely counterintuitive situation arises most easily on
 583machines with split caches, so that, for example, one cache bank processes
 584even-numbered cache lines and the other bank processes odd-numbered cache
 585lines.  The pointer P might be stored in an odd-numbered cache line, and the
 586variable B might be stored in an even-numbered cache line.  Then, if the
 587even-numbered bank of the reading CPU's cache is extremely busy while the
 588odd-numbered bank is idle, one can see the new value of the pointer P (&B),
 589but the old value of the variable B (2).
 590
 591
 592The data dependency barrier is very important to the RCU system,
 593for example.  See rcu_assign_pointer() and rcu_dereference() in
 594include/linux/rcupdate.h.  This permits the current target of an RCU'd
 595pointer to be replaced with a new modified target, without the replacement
 596target appearing to be incompletely initialised.
 597
 598See also the subsection on "Cache Coherency" for a more thorough example.
 599
 600
 601CONTROL DEPENDENCIES
 602--------------------
 603
 
 
 
 
 604A load-load control dependency requires a full read memory barrier, not
 605simply a data dependency barrier to make it work correctly.  Consider the
 606following bit of code:
 607
 608	q = READ_ONCE(a);
 
 609	if (q) {
 610		<data dependency barrier>  /* BUG: No data dependency!!! */
 611		p = READ_ONCE(b);
 612	}
 613
 614This will not have the desired effect because there is no actual data
 615dependency, but rather a control dependency that the CPU may short-circuit
 616by attempting to predict the outcome in advance, so that other CPUs see
 617the load from b as having happened before the load from a.  In such a
 618case what's actually required is:
 619
 620	q = READ_ONCE(a);
 621	if (q) {
 622		<read barrier>
 623		p = READ_ONCE(b);
 624	}
 625
 626However, stores are not speculated.  This means that ordering -is- provided
 627for load-store control dependencies, as in the following example:
 628
 629	q = READ_ONCE(a);
 630	if (q) {
 631		WRITE_ONCE(b, p);
 632	}
 633
 634Control dependencies pair normally with other types of barriers.  That
 635said, please note that READ_ONCE() is not optional! Without the
 636READ_ONCE(), the compiler might combine the load from 'a' with other
 637loads from 'a', and the store to 'b' with other stores to 'b', with
 638possible highly counterintuitive effects on ordering.
 
 639
 640Worse yet, if the compiler is able to prove (say) that the value of
 641variable 'a' is always non-zero, it would be well within its rights
 642to optimize the original example by eliminating the "if" statement
 643as follows:
 644
 645	q = a;
 646	b = p;  /* BUG: Compiler and CPU can both reorder!!! */
 647
 648So don't leave out the READ_ONCE().
 649
 650It is tempting to try to enforce ordering on identical stores on both
 651branches of the "if" statement as follows:
 652
 653	q = READ_ONCE(a);
 654	if (q) {
 655		barrier();
 656		WRITE_ONCE(b, p);
 657		do_something();
 658	} else {
 659		barrier();
 660		WRITE_ONCE(b, p);
 661		do_something_else();
 662	}
 663
 664Unfortunately, current compilers will transform this as follows at high
 665optimization levels:
 666
 667	q = READ_ONCE(a);
 668	barrier();
 669	WRITE_ONCE(b, p);  /* BUG: No ordering vs. load from a!!! */
 670	if (q) {
 671		/* WRITE_ONCE(b, p); -- moved up, BUG!!! */
 672		do_something();
 673	} else {
 674		/* WRITE_ONCE(b, p); -- moved up, BUG!!! */
 675		do_something_else();
 676	}
 677
 678Now there is no conditional between the load from 'a' and the store to
 679'b', which means that the CPU is within its rights to reorder them:
 680The conditional is absolutely required, and must be present in the
 681assembly code even after all compiler optimizations have been applied.
 682Therefore, if you need ordering in this example, you need explicit
 683memory barriers, for example, smp_store_release():
 684
 685	q = READ_ONCE(a);
 686	if (q) {
 687		smp_store_release(&b, p);
 688		do_something();
 689	} else {
 690		smp_store_release(&b, p);
 691		do_something_else();
 692	}
 693
 694In contrast, without explicit memory barriers, two-legged-if control
 695ordering is guaranteed only when the stores differ, for example:
 696
 697	q = READ_ONCE(a);
 698	if (q) {
 699		WRITE_ONCE(b, p);
 700		do_something();
 701	} else {
 702		WRITE_ONCE(b, r);
 703		do_something_else();
 704	}
 705
 706The initial READ_ONCE() is still required to prevent the compiler from
 707proving the value of 'a'.
 708
 709In addition, you need to be careful what you do with the local variable 'q',
 710otherwise the compiler might be able to guess the value and again remove
 711the needed conditional.  For example:
 712
 713	q = READ_ONCE(a);
 714	if (q % MAX) {
 715		WRITE_ONCE(b, p);
 716		do_something();
 717	} else {
 718		WRITE_ONCE(b, r);
 719		do_something_else();
 720	}
 721
 722If MAX is defined to be 1, then the compiler knows that (q % MAX) is
 723equal to zero, in which case the compiler is within its rights to
 724transform the above code into the following:
 725
 726	q = READ_ONCE(a);
 727	WRITE_ONCE(b, p);
 728	do_something_else();
 729
 730Given this transformation, the CPU is not required to respect the ordering
 731between the load from variable 'a' and the store to variable 'b'.  It is
 732tempting to add a barrier(), but this does not help.  The conditional
 733is gone, and the barrier won't bring it back.  Therefore, if you are
 734relying on this ordering, you should make sure that MAX is greater than
 735one, perhaps as follows:
 736
 737	q = READ_ONCE(a);
 738	BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
 739	if (q % MAX) {
 740		WRITE_ONCE(b, p);
 741		do_something();
 742	} else {
 743		WRITE_ONCE(b, r);
 744		do_something_else();
 745	}
 746
 747Please note once again that the stores to 'b' differ.  If they were
 748identical, as noted earlier, the compiler could pull this store outside
 749of the 'if' statement.
 750
 751You must also be careful not to rely too much on boolean short-circuit
 752evaluation.  Consider this example:
 753
 754	q = READ_ONCE(a);
 755	if (q || 1 > 0)
 756		WRITE_ONCE(b, 1);
 757
 758Because the first condition cannot fault and the second condition is
 759always true, the compiler can transform this example as following,
 760defeating control dependency:
 761
 762	q = READ_ONCE(a);
 763	WRITE_ONCE(b, 1);
 764
 765This example underscores the need to ensure that the compiler cannot
 766out-guess your code.  More generally, although READ_ONCE() does force
 767the compiler to actually emit code for a given load, it does not force
 768the compiler to use the results.
 769
 770Finally, control dependencies do -not- provide transitivity.  This is
 771demonstrated by two related examples, with the initial values of
 772x and y both being zero:
 773
 774	CPU 0                     CPU 1
 775	=======================   =======================
 776	r1 = READ_ONCE(x);        r2 = READ_ONCE(y);
 777	if (r1 > 0)               if (r2 > 0)
 778	  WRITE_ONCE(y, 1);         WRITE_ONCE(x, 1);
 779
 780	assert(!(r1 == 1 && r2 == 1));
 781
 782The above two-CPU example will never trigger the assert().  However,
 783if control dependencies guaranteed transitivity (which they do not),
 784then adding the following CPU would guarantee a related assertion:
 785
 786	CPU 2
 787	=====================
 788	WRITE_ONCE(x, 2);
 789
 790	assert(!(r1 == 2 && r2 == 1 && x == 2)); /* FAILS!!! */
 791
 792But because control dependencies do -not- provide transitivity, the above
 793assertion can fail after the combined three-CPU example completes.  If you
 794need the three-CPU example to provide ordering, you will need smp_mb()
 795between the loads and stores in the CPU 0 and CPU 1 code fragments,
 796that is, just before or just after the "if" statements.  Furthermore,
 797the original two-CPU example is very fragile and should be avoided.
 798
 799These two examples are the LB and WWC litmus tests from this paper:
 800http://www.cl.cam.ac.uk/users/pes20/ppc-supplemental/test6.pdf and this
 801site: https://www.cl.cam.ac.uk/~pes20/ppcmem/index.html.
 
 
 
 
 
 
 802
 803In summary:
 804
 805  (*) Control dependencies can order prior loads against later stores.
 806      However, they do -not- guarantee any other sort of ordering:
 807      Not prior loads against later loads, nor prior stores against
 808      later anything.  If you need these other forms of ordering,
 809      use smp_rmb(), smp_wmb(), or, in the case of prior stores and
 810      later loads, smp_mb().
 811
 812  (*) If both legs of the "if" statement begin with identical stores to
 813      the same variable, then those stores must be ordered, either by
 814      preceding both of them with smp_mb() or by using smp_store_release()
 815      to carry out the stores.  Please note that it is -not- sufficient
 816      to use barrier() at beginning of each leg of the "if" statement,
 817      as optimizing compilers do not necessarily respect barrier()
 818      in this case.
 
 819
 820  (*) Control dependencies require at least one run-time conditional
 821      between the prior load and the subsequent store, and this
 822      conditional must involve the prior load.  If the compiler is able
 823      to optimize the conditional away, it will have also optimized
 824      away the ordering.  Careful use of READ_ONCE() and WRITE_ONCE()
 825      can help to preserve the needed conditional.
 826
 827  (*) Control dependencies require that the compiler avoid reordering the
 828      dependency into nonexistence.  Careful use of READ_ONCE() or
 829      atomic{,64}_read() can help to preserve your control dependency.
 830      Please see the COMPILER BARRIER section for more information.
 831
 
 
 
 
 
 
 832  (*) Control dependencies pair normally with other types of barriers.
 833
 834  (*) Control dependencies do -not- provide transitivity.  If you
 835      need transitivity, use smp_mb().
 
 
 
 836
 837
 838SMP BARRIER PAIRING
 839-------------------
 840
 841When dealing with CPU-CPU interactions, certain types of memory barrier should
 842always be paired.  A lack of appropriate pairing is almost certainly an error.
 843
 844General barriers pair with each other, though they also pair with most
 845other types of barriers, albeit without transitivity.  An acquire barrier
 846pairs with a release barrier, but both may also pair with other barriers,
 847including of course general barriers.  A write barrier pairs with a data
 848dependency barrier, a control dependency, an acquire barrier, a release
 849barrier, a read barrier, or a general barrier.  Similarly a read barrier,
 850control dependency, or a data dependency barrier pairs with a write
 851barrier, an acquire barrier, a release barrier, or a general barrier:
 
 852
 853	CPU 1		      CPU 2
 854	===============	      ===============
 855	WRITE_ONCE(a, 1);
 856	<write barrier>
 857	WRITE_ONCE(b, 2);     x = READ_ONCE(b);
 858			      <read barrier>
 859			      y = READ_ONCE(a);
 860
 861Or:
 862
 863	CPU 1		      CPU 2
 864	===============	      ===============================
 865	a = 1;
 866	<write barrier>
 867	WRITE_ONCE(b, &a);    x = READ_ONCE(b);
 868			      <data dependency barrier>
 869			      y = *x;
 870
 871Or even:
 872
 873	CPU 1		      CPU 2
 874	===============	      ===============================
 875	r1 = READ_ONCE(y);
 876	<general barrier>
 877	WRITE_ONCE(y, 1);     if (r2 = READ_ONCE(x)) {
 878			         <implicit control dependency>
 879			         WRITE_ONCE(y, 1);
 880			      }
 881
 882	assert(r1 == 0 || r2 == 0);
 883
 884Basically, the read barrier always has to be there, even though it can be of
 885the "weaker" type.
 886
 887[!] Note that the stores before the write barrier would normally be expected to
 888match the loads after the read barrier or the data dependency barrier, and vice
 889versa:
 890
 891	CPU 1                               CPU 2
 892	===================                 ===================
 893	WRITE_ONCE(a, 1);    }----   --->{  v = READ_ONCE(c);
 894	WRITE_ONCE(b, 2);    }    \ /    {  w = READ_ONCE(d);
 895	<write barrier>            \        <read barrier>
 896	WRITE_ONCE(c, 3);    }    / \    {  x = READ_ONCE(a);
 897	WRITE_ONCE(d, 4);    }----   --->{  y = READ_ONCE(b);
 898
 899
 900EXAMPLES OF MEMORY BARRIER SEQUENCES
 901------------------------------------
 902
 903Firstly, write barriers act as partial orderings on store operations.
 904Consider the following sequence of events:
 905
 906	CPU 1
 907	=======================
 908	STORE A = 1
 909	STORE B = 2
 910	STORE C = 3
 911	<write barrier>
 912	STORE D = 4
 913	STORE E = 5
 914
 915This sequence of events is committed to the memory coherence system in an order
 916that the rest of the system might perceive as the unordered set of { STORE A,
 917STORE B, STORE C } all occurring before the unordered set of { STORE D, STORE E
 918}:
 919
 920	+-------+       :      :
 921	|       |       +------+
 922	|       |------>| C=3  |     }     /\
 923	|       |  :    +------+     }-----  \  -----> Events perceptible to
 924	|       |  :    | A=1  |     }        \/       the rest of the system
 925	|       |  :    +------+     }
 926	| CPU 1 |  :    | B=2  |     }
 927	|       |       +------+     }
 928	|       |   wwwwwwwwwwwwwwww }   <--- At this point the write barrier
 929	|       |       +------+     }        requires all stores prior to the
 930	|       |  :    | E=5  |     }        barrier to be committed before
 931	|       |  :    +------+     }        further stores may take place
 932	|       |------>| D=4  |     }
 933	|       |       +------+
 934	+-------+       :      :
 935	                   |
 936	                   | Sequence in which stores are committed to the
 937	                   | memory system by CPU 1
 938	                   V
 939
 940
 941Secondly, data dependency barriers act as partial orderings on data-dependent
 942loads.  Consider the following sequence of events:
 943
 944	CPU 1			CPU 2
 945	=======================	=======================
 946		{ B = 7; X = 9; Y = 8; C = &Y }
 947	STORE A = 1
 948	STORE B = 2
 949	<write barrier>
 950	STORE C = &B		LOAD X
 951	STORE D = 4		LOAD C (gets &B)
 952				LOAD *C (reads B)
 953
 954Without intervention, CPU 2 may perceive the events on CPU 1 in some
 955effectively random order, despite the write barrier issued by CPU 1:
 956
 957	+-------+       :      :                :       :
 958	|       |       +------+                +-------+  | Sequence of update
 959	|       |------>| B=2  |-----       --->| Y->8  |  | of perception on
 960	|       |  :    +------+     \          +-------+  | CPU 2
 961	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |  V
 962	|       |       +------+       |        +-------+
 963	|       |   wwwwwwwwwwwwwwww   |        :       :
 964	|       |       +------+       |        :       :
 965	|       |  :    | C=&B |---    |        :       :       +-------+
 966	|       |  :    +------+   \   |        +-------+       |       |
 967	|       |------>| D=4  |    ----------->| C->&B |------>|       |
 968	|       |       +------+       |        +-------+       |       |
 969	+-------+       :      :       |        :       :       |       |
 970	                               |        :       :       |       |
 971	                               |        :       :       | CPU 2 |
 972	                               |        +-------+       |       |
 973	    Apparently incorrect --->  |        | B->7  |------>|       |
 974	    perception of B (!)        |        +-------+       |       |
 975	                               |        :       :       |       |
 976	                               |        +-------+       |       |
 977	    The load of X holds --->    \       | X->9  |------>|       |
 978	    up the maintenance           \      +-------+       |       |
 979	    of coherence of B             ----->| B->2  |       +-------+
 980	                                        +-------+
 981	                                        :       :
 982
 983
 984In the above example, CPU 2 perceives that B is 7, despite the load of *C
 985(which would be B) coming after the LOAD of C.
 986
 987If, however, a data dependency barrier were to be placed between the load of C
 988and the load of *C (ie: B) on CPU 2:
 989
 990	CPU 1			CPU 2
 991	=======================	=======================
 992		{ B = 7; X = 9; Y = 8; C = &Y }
 993	STORE A = 1
 994	STORE B = 2
 995	<write barrier>
 996	STORE C = &B		LOAD X
 997	STORE D = 4		LOAD C (gets &B)
 998				<data dependency barrier>
 999				LOAD *C (reads B)
1000
1001then the following will occur:
1002
1003	+-------+       :      :                :       :
1004	|       |       +------+                +-------+
1005	|       |------>| B=2  |-----       --->| Y->8  |
1006	|       |  :    +------+     \          +-------+
1007	| CPU 1 |  :    | A=1  |      \     --->| C->&Y |
1008	|       |       +------+       |        +-------+
1009	|       |   wwwwwwwwwwwwwwww   |        :       :
1010	|       |       +------+       |        :       :
1011	|       |  :    | C=&B |---    |        :       :       +-------+
1012	|       |  :    +------+   \   |        +-------+       |       |
1013	|       |------>| D=4  |    ----------->| C->&B |------>|       |
1014	|       |       +------+       |        +-------+       |       |
1015	+-------+       :      :       |        :       :       |       |
1016	                               |        :       :       |       |
1017	                               |        :       :       | CPU 2 |
1018	                               |        +-------+       |       |
1019	                               |        | X->9  |------>|       |
1020	                               |        +-------+       |       |
1021	  Makes sure all effects --->   \   ddddddddddddddddd   |       |
1022	  prior to the store of C        \      +-------+       |       |
1023	  are perceptible to              ----->| B->2  |------>|       |
1024	  subsequent loads                      +-------+       |       |
1025	                                        :       :       +-------+
1026
1027
1028And thirdly, a read barrier acts as a partial order on loads.  Consider the
1029following sequence of events:
1030
1031	CPU 1			CPU 2
1032	=======================	=======================
1033		{ A = 0, B = 9 }
1034	STORE A=1
1035	<write barrier>
1036	STORE B=2
1037				LOAD B
1038				LOAD A
1039
1040Without intervention, CPU 2 may then choose to perceive the events on CPU 1 in
1041some effectively random order, despite the write barrier issued by CPU 1:
1042
1043	+-------+       :      :                :       :
1044	|       |       +------+                +-------+
1045	|       |------>| A=1  |------      --->| A->0  |
1046	|       |       +------+      \         +-------+
1047	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1048	|       |       +------+        |       +-------+
1049	|       |------>| B=2  |---     |       :       :
1050	|       |       +------+   \    |       :       :       +-------+
1051	+-------+       :      :    \   |       +-------+       |       |
1052	                             ---------->| B->2  |------>|       |
1053	                                |       +-------+       | CPU 2 |
1054	                                |       | A->0  |------>|       |
1055	                                |       +-------+       |       |
1056	                                |       :       :       +-------+
1057	                                 \      :       :
1058	                                  \     +-------+
1059	                                   ---->| A->1  |
1060	                                        +-------+
1061	                                        :       :
1062
1063
1064If, however, a read barrier were to be placed between the load of B and the
1065load of A on CPU 2:
1066
1067	CPU 1			CPU 2
1068	=======================	=======================
1069		{ A = 0, B = 9 }
1070	STORE A=1
1071	<write barrier>
1072	STORE B=2
1073				LOAD B
1074				<read barrier>
1075				LOAD A
1076
1077then the partial ordering imposed by CPU 1 will be perceived correctly by CPU
10782:
1079
1080	+-------+       :      :                :       :
1081	|       |       +------+                +-------+
1082	|       |------>| A=1  |------      --->| A->0  |
1083	|       |       +------+      \         +-------+
1084	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1085	|       |       +------+        |       +-------+
1086	|       |------>| B=2  |---     |       :       :
1087	|       |       +------+   \    |       :       :       +-------+
1088	+-------+       :      :    \   |       +-------+       |       |
1089	                             ---------->| B->2  |------>|       |
1090	                                |       +-------+       | CPU 2 |
1091	                                |       :       :       |       |
1092	                                |       :       :       |       |
1093	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1094	  barrier causes all effects      \     +-------+       |       |
1095	  prior to the storage of B        ---->| A->1  |------>|       |
1096	  to be perceptible to CPU 2            +-------+       |       |
1097	                                        :       :       +-------+
1098
1099
1100To illustrate this more completely, consider what could happen if the code
1101contained a load of A either side of the read barrier:
1102
1103	CPU 1			CPU 2
1104	=======================	=======================
1105		{ A = 0, B = 9 }
1106	STORE A=1
1107	<write barrier>
1108	STORE B=2
1109				LOAD B
1110				LOAD A [first load of A]
1111				<read barrier>
1112				LOAD A [second load of A]
1113
1114Even though the two loads of A both occur after the load of B, they may both
1115come up with different values:
1116
1117	+-------+       :      :                :       :
1118	|       |       +------+                +-------+
1119	|       |------>| A=1  |------      --->| A->0  |
1120	|       |       +------+      \         +-------+
1121	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1122	|       |       +------+        |       +-------+
1123	|       |------>| B=2  |---     |       :       :
1124	|       |       +------+   \    |       :       :       +-------+
1125	+-------+       :      :    \   |       +-------+       |       |
1126	                             ---------->| B->2  |------>|       |
1127	                                |       +-------+       | CPU 2 |
1128	                                |       :       :       |       |
1129	                                |       :       :       |       |
1130	                                |       +-------+       |       |
1131	                                |       | A->0  |------>| 1st   |
1132	                                |       +-------+       |       |
1133	  At this point the read ---->   \  rrrrrrrrrrrrrrrrr   |       |
1134	  barrier causes all effects      \     +-------+       |       |
1135	  prior to the storage of B        ---->| A->1  |------>| 2nd   |
1136	  to be perceptible to CPU 2            +-------+       |       |
1137	                                        :       :       +-------+
1138
1139
1140But it may be that the update to A from CPU 1 becomes perceptible to CPU 2
1141before the read barrier completes anyway:
1142
1143	+-------+       :      :                :       :
1144	|       |       +------+                +-------+
1145	|       |------>| A=1  |------      --->| A->0  |
1146	|       |       +------+      \         +-------+
1147	| CPU 1 |   wwwwwwwwwwwwwwww   \    --->| B->9  |
1148	|       |       +------+        |       +-------+
1149	|       |------>| B=2  |---     |       :       :
1150	|       |       +------+   \    |       :       :       +-------+
1151	+-------+       :      :    \   |       +-------+       |       |
1152	                             ---------->| B->2  |------>|       |
1153	                                |       +-------+       | CPU 2 |
1154	                                |       :       :       |       |
1155	                                 \      :       :       |       |
1156	                                  \     +-------+       |       |
1157	                                   ---->| A->1  |------>| 1st   |
1158	                                        +-------+       |       |
1159	                                    rrrrrrrrrrrrrrrrr   |       |
1160	                                        +-------+       |       |
1161	                                        | A->1  |------>| 2nd   |
1162	                                        +-------+       |       |
1163	                                        :       :       +-------+
1164
1165
1166The guarantee is that the second load will always come up with A == 1 if the
1167load of B came up with B == 2.  No such guarantee exists for the first load of
1168A; that may come up with either A == 0 or A == 1.
1169
1170
1171READ MEMORY BARRIERS VS LOAD SPECULATION
1172----------------------------------------
1173
1174Many CPUs speculate with loads: that is they see that they will need to load an
1175item from memory, and they find a time where they're not using the bus for any
1176other loads, and so do the load in advance - even though they haven't actually
1177got to that point in the instruction execution flow yet.  This permits the
1178actual load instruction to potentially complete immediately because the CPU
1179already has the value to hand.
1180
1181It may turn out that the CPU didn't actually need the value - perhaps because a
1182branch circumvented the load - in which case it can discard the value or just
1183cache it for later use.
1184
1185Consider:
1186
1187	CPU 1			CPU 2
1188	=======================	=======================
1189				LOAD B
1190				DIVIDE		} Divide instructions generally
1191				DIVIDE		} take a long time to perform
1192				LOAD A
1193
1194Which might appear as this:
1195
1196	                                        :       :       +-------+
1197	                                        +-------+       |       |
1198	                                    --->| B->2  |------>|       |
1199	                                        +-------+       | CPU 2 |
1200	                                        :       :DIVIDE |       |
1201	                                        +-------+       |       |
1202	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1203	division speculates on the              +-------+   ~   |       |
1204	LOAD of A                               :       :   ~   |       |
1205	                                        :       :DIVIDE |       |
1206	                                        :       :   ~   |       |
1207	Once the divisions are complete -->     :       :   ~-->|       |
1208	the CPU can then perform the            :       :       |       |
1209	LOAD with immediate effect              :       :       +-------+
1210
1211
1212Placing a read barrier or a data dependency barrier just before the second
1213load:
1214
1215	CPU 1			CPU 2
1216	=======================	=======================
1217				LOAD B
1218				DIVIDE
1219				DIVIDE
1220				<read barrier>
1221				LOAD A
1222
1223will force any value speculatively obtained to be reconsidered to an extent
1224dependent on the type of barrier used.  If there was no change made to the
1225speculated memory location, then the speculated value will just be used:
1226
1227	                                        :       :       +-------+
1228	                                        +-------+       |       |
1229	                                    --->| B->2  |------>|       |
1230	                                        +-------+       | CPU 2 |
1231	                                        :       :DIVIDE |       |
1232	                                        +-------+       |       |
1233	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1234	division speculates on the              +-------+   ~   |       |
1235	LOAD of A                               :       :   ~   |       |
1236	                                        :       :DIVIDE |       |
1237	                                        :       :   ~   |       |
1238	                                        :       :   ~   |       |
1239	                                    rrrrrrrrrrrrrrrr~   |       |
1240	                                        :       :   ~   |       |
1241	                                        :       :   ~-->|       |
1242	                                        :       :       |       |
1243	                                        :       :       +-------+
1244
1245
1246but if there was an update or an invalidation from another CPU pending, then
1247the speculation will be cancelled and the value reloaded:
1248
1249	                                        :       :       +-------+
1250	                                        +-------+       |       |
1251	                                    --->| B->2  |------>|       |
1252	                                        +-------+       | CPU 2 |
1253	                                        :       :DIVIDE |       |
1254	                                        +-------+       |       |
1255	The CPU being busy doing a --->     --->| A->0  |~~~~   |       |
1256	division speculates on the              +-------+   ~   |       |
1257	LOAD of A                               :       :   ~   |       |
1258	                                        :       :DIVIDE |       |
1259	                                        :       :   ~   |       |
1260	                                        :       :   ~   |       |
1261	                                    rrrrrrrrrrrrrrrrr   |       |
1262	                                        +-------+       |       |
1263	The speculation is discarded --->   --->| A->1  |------>|       |
1264	and an updated value is                 +-------+       |       |
1265	retrieved                               :       :       +-------+
1266
1267
1268TRANSITIVITY
1269------------
 
 
 
 
 
 
 
 
 
 
1270
1271Transitivity is a deeply intuitive notion about ordering that is not
1272always provided by real computer systems.  The following example
1273demonstrates transitivity:
1274
1275	CPU 1			CPU 2			CPU 3
1276	=======================	=======================	=======================
1277		{ X = 0, Y = 0 }
1278	STORE X=1		LOAD X			STORE Y=1
1279				<general barrier>	<general barrier>
1280				LOAD Y			LOAD X
1281
1282Suppose that CPU 2's load from X returns 1 and its load from Y returns 0.
1283This indicates that CPU 2's load from X in some sense follows CPU 1's
1284store to X and that CPU 2's load from Y in some sense preceded CPU 3's
1285store to Y.  The question is then "Can CPU 3's load from X return 0?"
 
 
1286
1287Because CPU 2's load from X in some sense came after CPU 1's store, it
1288is natural to expect that CPU 3's load from X must therefore return 1.
1289This expectation is an example of transitivity: if a load executing on
1290CPU A follows a load from the same variable executing on CPU B, then
1291CPU A's load must either return the same value that CPU B's load did,
1292or must return some later value.
1293
1294In the Linux kernel, use of general memory barriers guarantees
1295transitivity.  Therefore, in the above example, if CPU 2's load from X
1296returns 1 and its load from Y returns 0, then CPU 3's load from X must
1297also return 1.
1298
1299However, transitivity is -not- guaranteed for read or write barriers.
1300For example, suppose that CPU 2's general barrier in the above example
1301is changed to a read barrier as shown below:
 
 
 
1302
1303	CPU 1			CPU 2			CPU 3
1304	=======================	=======================	=======================
1305		{ X = 0, Y = 0 }
1306	STORE X=1		LOAD X			STORE Y=1
1307				<read barrier>		<general barrier>
1308				LOAD Y			LOAD X
1309
1310This substitution destroys transitivity: in this example, it is perfectly
1311legal for CPU 2's load from X to return 1, its load from Y to return 0,
1312and CPU 3's load from X to return 0.
1313
1314The key point is that although CPU 2's read barrier orders its pair
1315of loads, it does not guarantee to order CPU 1's store.  Therefore, if
1316this example runs on a system where CPUs 1 and 2 share a store buffer
1317or a level of cache, CPU 2 might have early access to CPU 1's writes.
1318General barriers are therefore required to ensure that all CPUs agree
1319on the combined order of CPU 1's and CPU 2's accesses.
1320
1321General barriers provide "global transitivity", so that all CPUs will
1322agree on the order of operations.  In contrast, a chain of release-acquire
1323pairs provides only "local transitivity", so that only those CPUs on
1324the chain are guaranteed to agree on the combined order of the accesses.
1325For example, switching to C code in deference to Herman Hollerith:
 
 
1326
1327	int u, v, x, y, z;
1328
1329	void cpu0(void)
1330	{
1331		r0 = smp_load_acquire(&x);
1332		WRITE_ONCE(u, 1);
1333		smp_store_release(&y, 1);
1334	}
1335
1336	void cpu1(void)
1337	{
1338		r1 = smp_load_acquire(&y);
1339		r4 = READ_ONCE(v);
1340		r5 = READ_ONCE(u);
1341		smp_store_release(&z, 1);
1342	}
1343
1344	void cpu2(void)
1345	{
1346		r2 = smp_load_acquire(&z);
1347		smp_store_release(&x, 1);
1348	}
1349
1350	void cpu3(void)
1351	{
1352		WRITE_ONCE(v, 1);
1353		smp_mb();
1354		r3 = READ_ONCE(u);
1355	}
1356
1357Because cpu0(), cpu1(), and cpu2() participate in a local transitive
1358chain of smp_store_release()/smp_load_acquire() pairs, the following
1359outcome is prohibited:
1360
1361	r0 == 1 && r1 == 1 && r2 == 1
1362
1363Furthermore, because of the release-acquire relationship between cpu0()
1364and cpu1(), cpu1() must see cpu0()'s writes, so that the following
1365outcome is prohibited:
1366
1367	r1 == 1 && r5 == 0
1368
1369However, the transitivity of release-acquire is local to the participating
1370CPUs and does not apply to cpu3().  Therefore, the following outcome
1371is possible:
1372
1373	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0
1374
1375As an aside, the following outcome is also possible:
1376
1377	r0 == 0 && r1 == 1 && r2 == 1 && r3 == 0 && r4 == 0 && r5 == 1
1378
1379Although cpu0(), cpu1(), and cpu2() will see their respective reads and
1380writes in order, CPUs not involved in the release-acquire chain might
1381well disagree on the order.  This disagreement stems from the fact that
1382the weak memory-barrier instructions used to implement smp_load_acquire()
1383and smp_store_release() are not required to order prior stores against
1384subsequent loads in all cases.  This means that cpu3() can see cpu0()'s
1385store to u as happening -after- cpu1()'s load from v, even though
1386both cpu0() and cpu1() agree that these two operations occurred in the
1387intended order.
1388
1389However, please keep in mind that smp_load_acquire() is not magic.
1390In particular, it simply reads from its argument with ordering.  It does
1391-not- ensure that any particular value will be read.  Therefore, the
1392following outcome is possible:
1393
1394	r0 == 0 && r1 == 0 && r2 == 0 && r5 == 0
1395
1396Note that this outcome can happen even on a mythical sequentially
1397consistent system where nothing is ever reordered.
1398
1399To reiterate, if your code requires global transitivity, use general
1400barriers throughout.
1401
1402
1403========================
1404EXPLICIT KERNEL BARRIERS
1405========================
1406
1407The Linux kernel has a variety of different barriers that act at different
1408levels:
1409
1410  (*) Compiler barrier.
1411
1412  (*) CPU memory barriers.
1413
1414  (*) MMIO write barrier.
1415
1416
1417COMPILER BARRIER
1418----------------
1419
1420The Linux kernel has an explicit compiler barrier function that prevents the
1421compiler from moving the memory accesses either side of it to the other side:
1422
1423	barrier();
1424
1425This is a general barrier -- there are no read-read or write-write
1426variants of barrier().  However, READ_ONCE() and WRITE_ONCE() can be
1427thought of as weak forms of barrier() that affect only the specific
1428accesses flagged by the READ_ONCE() or WRITE_ONCE().
1429
1430The barrier() function has the following effects:
1431
1432 (*) Prevents the compiler from reordering accesses following the
1433     barrier() to precede any accesses preceding the barrier().
1434     One example use for this property is to ease communication between
1435     interrupt-handler code and the code that was interrupted.
1436
1437 (*) Within a loop, forces the compiler to load the variables used
1438     in that loop's conditional on each pass through that loop.
1439
1440The READ_ONCE() and WRITE_ONCE() functions can prevent any number of
1441optimizations that, while perfectly safe in single-threaded code, can
1442be fatal in concurrent code.  Here are some examples of these sorts
1443of optimizations:
1444
1445 (*) The compiler is within its rights to reorder loads and stores
1446     to the same variable, and in some cases, the CPU is within its
1447     rights to reorder loads to the same variable.  This means that
1448     the following code:
1449
1450	a[0] = x;
1451	a[1] = x;
1452
1453     Might result in an older value of x stored in a[1] than in a[0].
1454     Prevent both the compiler and the CPU from doing this as follows:
1455
1456	a[0] = READ_ONCE(x);
1457	a[1] = READ_ONCE(x);
1458
1459     In short, READ_ONCE() and WRITE_ONCE() provide cache coherence for
1460     accesses from multiple CPUs to a single variable.
1461
1462 (*) The compiler is within its rights to merge successive loads from
1463     the same variable.  Such merging can cause the compiler to "optimize"
1464     the following code:
1465
1466	while (tmp = a)
1467		do_something_with(tmp);
1468
1469     into the following code, which, although in some sense legitimate
1470     for single-threaded code, is almost certainly not what the developer
1471     intended:
1472
1473	if (tmp = a)
1474		for (;;)
1475			do_something_with(tmp);
1476
1477     Use READ_ONCE() to prevent the compiler from doing this to you:
1478
1479	while (tmp = READ_ONCE(a))
1480		do_something_with(tmp);
1481
1482 (*) The compiler is within its rights to reload a variable, for example,
1483     in cases where high register pressure prevents the compiler from
1484     keeping all data of interest in registers.  The compiler might
1485     therefore optimize the variable 'tmp' out of our previous example:
1486
1487	while (tmp = a)
1488		do_something_with(tmp);
1489
1490     This could result in the following code, which is perfectly safe in
1491     single-threaded code, but can be fatal in concurrent code:
1492
1493	while (a)
1494		do_something_with(a);
1495
1496     For example, the optimized version of this code could result in
1497     passing a zero to do_something_with() in the case where the variable
1498     a was modified by some other CPU between the "while" statement and
1499     the call to do_something_with().
1500
1501     Again, use READ_ONCE() to prevent the compiler from doing this:
1502
1503	while (tmp = READ_ONCE(a))
1504		do_something_with(tmp);
1505
1506     Note that if the compiler runs short of registers, it might save
1507     tmp onto the stack.  The overhead of this saving and later restoring
1508     is why compilers reload variables.  Doing so is perfectly safe for
1509     single-threaded code, so you need to tell the compiler about cases
1510     where it is not safe.
1511
1512 (*) The compiler is within its rights to omit a load entirely if it knows
1513     what the value will be.  For example, if the compiler can prove that
1514     the value of variable 'a' is always zero, it can optimize this code:
1515
1516	while (tmp = a)
1517		do_something_with(tmp);
1518
1519     Into this:
1520
1521	do { } while (0);
1522
1523     This transformation is a win for single-threaded code because it
1524     gets rid of a load and a branch.  The problem is that the compiler
1525     will carry out its proof assuming that the current CPU is the only
1526     one updating variable 'a'.  If variable 'a' is shared, then the
1527     compiler's proof will be erroneous.  Use READ_ONCE() to tell the
1528     compiler that it doesn't know as much as it thinks it does:
1529
1530	while (tmp = READ_ONCE(a))
1531		do_something_with(tmp);
1532
1533     But please note that the compiler is also closely watching what you
1534     do with the value after the READ_ONCE().  For example, suppose you
1535     do the following and MAX is a preprocessor macro with the value 1:
1536
1537	while ((tmp = READ_ONCE(a)) % MAX)
1538		do_something_with(tmp);
1539
1540     Then the compiler knows that the result of the "%" operator applied
1541     to MAX will always be zero, again allowing the compiler to optimize
1542     the code into near-nonexistence.  (It will still load from the
1543     variable 'a'.)
1544
1545 (*) Similarly, the compiler is within its rights to omit a store entirely
1546     if it knows that the variable already has the value being stored.
1547     Again, the compiler assumes that the current CPU is the only one
1548     storing into the variable, which can cause the compiler to do the
1549     wrong thing for shared variables.  For example, suppose you have
1550     the following:
1551
1552	a = 0;
1553	... Code that does not store to variable a ...
1554	a = 0;
1555
1556     The compiler sees that the value of variable 'a' is already zero, so
1557     it might well omit the second store.  This would come as a fatal
1558     surprise if some other CPU might have stored to variable 'a' in the
1559     meantime.
1560
1561     Use WRITE_ONCE() to prevent the compiler from making this sort of
1562     wrong guess:
1563
1564	WRITE_ONCE(a, 0);
1565	... Code that does not store to variable a ...
1566	WRITE_ONCE(a, 0);
1567
1568 (*) The compiler is within its rights to reorder memory accesses unless
1569     you tell it not to.  For example, consider the following interaction
1570     between process-level code and an interrupt handler:
1571
1572	void process_level(void)
1573	{
1574		msg = get_message();
1575		flag = true;
1576	}
1577
1578	void interrupt_handler(void)
1579	{
1580		if (flag)
1581			process_message(msg);
1582	}
1583
1584     There is nothing to prevent the compiler from transforming
1585     process_level() to the following, in fact, this might well be a
1586     win for single-threaded code:
1587
1588	void process_level(void)
1589	{
1590		flag = true;
1591		msg = get_message();
1592	}
1593
1594     If the interrupt occurs between these two statement, then
1595     interrupt_handler() might be passed a garbled msg.  Use WRITE_ONCE()
1596     to prevent this as follows:
1597
1598	void process_level(void)
1599	{
1600		WRITE_ONCE(msg, get_message());
1601		WRITE_ONCE(flag, true);
1602	}
1603
1604	void interrupt_handler(void)
1605	{
1606		if (READ_ONCE(flag))
1607			process_message(READ_ONCE(msg));
1608	}
1609
1610     Note that the READ_ONCE() and WRITE_ONCE() wrappers in
1611     interrupt_handler() are needed if this interrupt handler can itself
1612     be interrupted by something that also accesses 'flag' and 'msg',
1613     for example, a nested interrupt or an NMI.  Otherwise, READ_ONCE()
1614     and WRITE_ONCE() are not needed in interrupt_handler() other than
1615     for documentation purposes.  (Note also that nested interrupts
1616     do not typically occur in modern Linux kernels, in fact, if an
1617     interrupt handler returns with interrupts enabled, you will get a
1618     WARN_ONCE() splat.)
1619
1620     You should assume that the compiler can move READ_ONCE() and
1621     WRITE_ONCE() past code not containing READ_ONCE(), WRITE_ONCE(),
1622     barrier(), or similar primitives.
1623
1624     This effect could also be achieved using barrier(), but READ_ONCE()
1625     and WRITE_ONCE() are more selective:  With READ_ONCE() and
1626     WRITE_ONCE(), the compiler need only forget the contents of the
1627     indicated memory locations, while with barrier() the compiler must
1628     discard the value of all memory locations that it has currented
1629     cached in any machine registers.  Of course, the compiler must also
1630     respect the order in which the READ_ONCE()s and WRITE_ONCE()s occur,
1631     though the CPU of course need not do so.
1632
1633 (*) The compiler is within its rights to invent stores to a variable,
1634     as in the following example:
1635
1636	if (a)
1637		b = a;
1638	else
1639		b = 42;
1640
1641     The compiler might save a branch by optimizing this as follows:
1642
1643	b = 42;
1644	if (a)
1645		b = a;
1646
1647     In single-threaded code, this is not only safe, but also saves
1648     a branch.  Unfortunately, in concurrent code, this optimization
1649     could cause some other CPU to see a spurious value of 42 -- even
1650     if variable 'a' was never zero -- when loading variable 'b'.
1651     Use WRITE_ONCE() to prevent this as follows:
1652
1653	if (a)
1654		WRITE_ONCE(b, a);
1655	else
1656		WRITE_ONCE(b, 42);
1657
1658     The compiler can also invent loads.  These are usually less
1659     damaging, but they can result in cache-line bouncing and thus in
1660     poor performance and scalability.  Use READ_ONCE() to prevent
1661     invented loads.
1662
1663 (*) For aligned memory locations whose size allows them to be accessed
1664     with a single memory-reference instruction, prevents "load tearing"
1665     and "store tearing," in which a single large access is replaced by
1666     multiple smaller accesses.  For example, given an architecture having
1667     16-bit store instructions with 7-bit immediate fields, the compiler
1668     might be tempted to use two 16-bit store-immediate instructions to
1669     implement the following 32-bit store:
1670
1671	p = 0x00010002;
1672
1673     Please note that GCC really does use this sort of optimization,
1674     which is not surprising given that it would likely take more
1675     than two instructions to build the constant and then store it.
1676     This optimization can therefore be a win in single-threaded code.
1677     In fact, a recent bug (since fixed) caused GCC to incorrectly use
1678     this optimization in a volatile store.  In the absence of such bugs,
1679     use of WRITE_ONCE() prevents store tearing in the following example:
1680
1681	WRITE_ONCE(p, 0x00010002);
1682
1683     Use of packed structures can also result in load and store tearing,
1684     as in this example:
1685
1686	struct __attribute__((__packed__)) foo {
1687		short a;
1688		int b;
1689		short c;
1690	};
1691	struct foo foo1, foo2;
1692	...
1693
1694	foo2.a = foo1.a;
1695	foo2.b = foo1.b;
1696	foo2.c = foo1.c;
1697
1698     Because there are no READ_ONCE() or WRITE_ONCE() wrappers and no
1699     volatile markings, the compiler would be well within its rights to
1700     implement these three assignment statements as a pair of 32-bit
1701     loads followed by a pair of 32-bit stores.  This would result in
1702     load tearing on 'foo1.b' and store tearing on 'foo2.b'.  READ_ONCE()
1703     and WRITE_ONCE() again prevent tearing in this example:
1704
1705	foo2.a = foo1.a;
1706	WRITE_ONCE(foo2.b, READ_ONCE(foo1.b));
1707	foo2.c = foo1.c;
1708
1709All that aside, it is never necessary to use READ_ONCE() and
1710WRITE_ONCE() on a variable that has been marked volatile.  For example,
1711because 'jiffies' is marked volatile, it is never necessary to
1712say READ_ONCE(jiffies).  The reason for this is that READ_ONCE() and
1713WRITE_ONCE() are implemented as volatile casts, which has no effect when
1714its argument is already marked volatile.
1715
1716Please note that these compiler barriers have no direct effect on the CPU,
1717which may then reorder things however it wishes.
1718
1719
1720CPU MEMORY BARRIERS
1721-------------------
1722
1723The Linux kernel has eight basic CPU memory barriers:
1724
1725	TYPE		MANDATORY		SMP CONDITIONAL
1726	===============	=======================	===========================
1727	GENERAL		mb()			smp_mb()
1728	WRITE		wmb()			smp_wmb()
1729	READ		rmb()			smp_rmb()
1730	DATA DEPENDENCY	read_barrier_depends()	smp_read_barrier_depends()
1731
1732
1733All memory barriers except the data dependency barriers imply a compiler
1734barrier. Data dependencies do not impose any additional compiler ordering.
1735
1736Aside: In the case of data dependencies, the compiler would be expected
1737to issue the loads in the correct order (eg. `a[b]` would have to load
1738the value of b before loading a[b]), however there is no guarantee in
1739the C specification that the compiler may not speculate the value of b
1740(eg. is equal to 1) and load a before b (eg. tmp = a[1]; if (b != 1)
1741tmp = a[b]; ). There is also the problem of a compiler reloading b after
1742having loaded a[b], thus having a newer copy of b than a[b]. A consensus
1743has not yet been reached about these problems, however the READ_ONCE()
1744macro is a good place to start looking.
1745
1746SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
1747systems because it is assumed that a CPU will appear to be self-consistent,
1748and will order overlapping accesses correctly with respect to itself.
1749However, see the subsection on "Virtual Machine Guests" below.
1750
1751[!] Note that SMP memory barriers _must_ be used to control the ordering of
1752references to shared memory on SMP systems, though the use of locking instead
1753is sufficient.
1754
1755Mandatory barriers should not be used to control SMP effects, since mandatory
1756barriers impose unnecessary overhead on both SMP and UP systems. They may,
1757however, be used to control MMIO effects on accesses through relaxed memory I/O
1758windows.  These barriers are required even on non-SMP systems as they affect
1759the order in which memory operations appear to a device by prohibiting both the
1760compiler and the CPU from reordering them.
1761
1762
1763There are some more advanced barrier functions:
1764
1765 (*) smp_store_mb(var, value)
1766
1767     This assigns the value to the variable and then inserts a full memory
1768     barrier after it.  It isn't guaranteed to insert anything more than a
1769     compiler barrier in a UP compilation.
1770
1771
1772 (*) smp_mb__before_atomic();
1773 (*) smp_mb__after_atomic();
1774
1775     These are for use with atomic (such as add, subtract, increment and
1776     decrement) functions that don't return a value, especially when used for
1777     reference counting.  These functions do not imply memory barriers.
 
 
 
 
1778
1779     These are also used for atomic bitop functions that do not return a
1780     value (such as set_bit and clear_bit).
1781
1782     As an example, consider a piece of code that marks an object as being dead
1783     and then decrements the object's reference count:
1784
1785	obj->dead = 1;
1786	smp_mb__before_atomic();
1787	atomic_dec(&obj->ref_count);
1788
1789     This makes sure that the death mark on the object is perceived to be set
1790     *before* the reference counter is decremented.
1791
1792     See Documentation/atomic_ops.txt for more information.  See the "Atomic
1793     operations" subsection for information on where to use these.
1794
1795
1796 (*) lockless_dereference();
1797     This can be thought of as a pointer-fetch wrapper around the
1798     smp_read_barrier_depends() data-dependency barrier.
1799
1800     This is also similar to rcu_dereference(), but in cases where
1801     object lifetime is handled by some mechanism other than RCU, for
1802     example, when the objects removed only when the system goes down.
1803     In addition, lockless_dereference() is used in some data structures
1804     that can be used both with and without RCU.
1805
1806
1807 (*) dma_wmb();
1808 (*) dma_rmb();
 
1809
1810     These are for use with consistent memory to guarantee the ordering
1811     of writes or reads of shared memory accessible to both the CPU and a
1812     DMA capable device.
 
1813
1814     For example, consider a device driver that shares memory with a device
1815     and uses a descriptor status value to indicate if the descriptor belongs
1816     to the device or the CPU, and a doorbell to notify it when new
1817     descriptors are available:
1818
1819	if (desc->status != DEVICE_OWN) {
1820		/* do not read data until we own descriptor */
1821		dma_rmb();
1822
1823		/* read/modify data */
1824		read_data = desc->data;
1825		desc->data = write_data;
1826
1827		/* flush modifications before status update */
1828		dma_wmb();
1829
1830		/* assign ownership */
1831		desc->status = DEVICE_OWN;
1832
1833		/* force memory to sync before notifying device via MMIO */
1834		wmb();
1835
1836		/* notify device of new descriptors */
1837		writel(DESC_NOTIFY, doorbell);
1838	}
1839
1840     The dma_rmb() allows us guarantee the device has released ownership
1841     before we read the data from the descriptor, and the dma_wmb() allows
1842     us to guarantee the data is written to the descriptor before the device
1843     can see it now has ownership.  The wmb() is needed to guarantee that the
1844     cache coherent memory writes have completed before attempting a write to
1845     the cache incoherent MMIO region.
1846
1847     See Documentation/DMA-API.txt for more information on consistent memory.
1848
1849MMIO WRITE BARRIER
1850------------------
1851
1852The Linux kernel also has a special barrier for use with memory-mapped I/O
1853writes:
1854
1855	mmiowb();
1856
1857This is a variation on the mandatory write barrier that causes writes to weakly
1858ordered I/O regions to be partially ordered.  Its effects may go beyond the
1859CPU->Hardware interface and actually affect the hardware at some level.
1860
1861See the subsection "Locks vs I/O accesses" for more information.
1862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863
1864===============================
1865IMPLICIT KERNEL MEMORY BARRIERS
1866===============================
1867
1868Some of the other functions in the linux kernel imply memory barriers, amongst
1869which are locking and scheduling functions.
1870
1871This specification is a _minimum_ guarantee; any particular architecture may
1872provide more substantial guarantees, but these may not be relied upon outside
1873of arch specific code.
1874
1875
1876ACQUIRING FUNCTIONS
1877-------------------
1878
1879The Linux kernel has a number of locking constructs:
1880
1881 (*) spin locks
1882 (*) R/W spin locks
1883 (*) mutexes
1884 (*) semaphores
1885 (*) R/W semaphores
1886
1887In all cases there are variants on "ACQUIRE" operations and "RELEASE" operations
1888for each construct.  These operations all imply certain barriers:
1889
1890 (1) ACQUIRE operation implication:
1891
1892     Memory operations issued after the ACQUIRE will be completed after the
1893     ACQUIRE operation has completed.
1894
1895     Memory operations issued before the ACQUIRE may be completed after
1896     the ACQUIRE operation has completed.  An smp_mb__before_spinlock(),
1897     combined with a following ACQUIRE, orders prior stores against
1898     subsequent loads and stores. Note that this is weaker than smp_mb()!
1899     The smp_mb__before_spinlock() primitive is free on many architectures.
1900
1901 (2) RELEASE operation implication:
1902
1903     Memory operations issued before the RELEASE will be completed before the
1904     RELEASE operation has completed.
1905
1906     Memory operations issued after the RELEASE may be completed before the
1907     RELEASE operation has completed.
1908
1909 (3) ACQUIRE vs ACQUIRE implication:
1910
1911     All ACQUIRE operations issued before another ACQUIRE operation will be
1912     completed before that ACQUIRE operation.
1913
1914 (4) ACQUIRE vs RELEASE implication:
1915
1916     All ACQUIRE operations issued before a RELEASE operation will be
1917     completed before the RELEASE operation.
1918
1919 (5) Failed conditional ACQUIRE implication:
1920
1921     Certain locking variants of the ACQUIRE operation may fail, either due to
1922     being unable to get the lock immediately, or due to receiving an unblocked
1923     signal whilst asleep waiting for the lock to become available.  Failed
1924     locks do not imply any sort of barrier.
1925
1926[!] Note: one of the consequences of lock ACQUIREs and RELEASEs being only
1927one-way barriers is that the effects of instructions outside of a critical
1928section may seep into the inside of the critical section.
1929
1930An ACQUIRE followed by a RELEASE may not be assumed to be full memory barrier
1931because it is possible for an access preceding the ACQUIRE to happen after the
1932ACQUIRE, and an access following the RELEASE to happen before the RELEASE, and
1933the two accesses can themselves then cross:
1934
1935	*A = a;
1936	ACQUIRE M
1937	RELEASE M
1938	*B = b;
1939
1940may occur as:
1941
1942	ACQUIRE M, STORE *B, STORE *A, RELEASE M
1943
1944When the ACQUIRE and RELEASE are a lock acquisition and release,
1945respectively, this same reordering can occur if the lock's ACQUIRE and
1946RELEASE are to the same lock variable, but only from the perspective of
1947another CPU not holding that lock.  In short, a ACQUIRE followed by an
1948RELEASE may -not- be assumed to be a full memory barrier.
1949
1950Similarly, the reverse case of a RELEASE followed by an ACQUIRE does
1951not imply a full memory barrier.  Therefore, the CPU's execution of the
1952critical sections corresponding to the RELEASE and the ACQUIRE can cross,
1953so that:
1954
1955	*A = a;
1956	RELEASE M
1957	ACQUIRE N
1958	*B = b;
1959
1960could occur as:
1961
1962	ACQUIRE N, STORE *B, STORE *A, RELEASE M
1963
1964It might appear that this reordering could introduce a deadlock.
1965However, this cannot happen because if such a deadlock threatened,
1966the RELEASE would simply complete, thereby avoiding the deadlock.
1967
1968	Why does this work?
1969
1970	One key point is that we are only talking about the CPU doing
1971	the reordering, not the compiler.  If the compiler (or, for
1972	that matter, the developer) switched the operations, deadlock
1973	-could- occur.
1974
1975	But suppose the CPU reordered the operations.  In this case,
1976	the unlock precedes the lock in the assembly code.  The CPU
1977	simply elected to try executing the later lock operation first.
1978	If there is a deadlock, this lock operation will simply spin (or
1979	try to sleep, but more on that later).	The CPU will eventually
1980	execute the unlock operation (which preceded the lock operation
1981	in the assembly code), which will unravel the potential deadlock,
1982	allowing the lock operation to succeed.
1983
1984	But what if the lock is a sleeplock?  In that case, the code will
1985	try to enter the scheduler, where it will eventually encounter
1986	a memory barrier, which will force the earlier unlock operation
1987	to complete, again unraveling the deadlock.  There might be
1988	a sleep-unlock race, but the locking primitive needs to resolve
1989	such races properly in any case.
1990
1991Locks and semaphores may not provide any guarantee of ordering on UP compiled
1992systems, and so cannot be counted on in such a situation to actually achieve
1993anything at all - especially with respect to I/O accesses - unless combined
1994with interrupt disabling operations.
1995
1996See also the section on "Inter-CPU locking barrier effects".
1997
1998
1999As an example, consider the following:
2000
2001	*A = a;
2002	*B = b;
2003	ACQUIRE
2004	*C = c;
2005	*D = d;
2006	RELEASE
2007	*E = e;
2008	*F = f;
2009
2010The following sequence of events is acceptable:
2011
2012	ACQUIRE, {*F,*A}, *E, {*C,*D}, *B, RELEASE
2013
2014	[+] Note that {*F,*A} indicates a combined access.
2015
2016But none of the following are:
2017
2018	{*F,*A}, *B,	ACQUIRE, *C, *D,	RELEASE, *E
2019	*A, *B, *C,	ACQUIRE, *D,		RELEASE, *E, *F
2020	*A, *B,		ACQUIRE, *C,		RELEASE, *D, *E, *F
2021	*B,		ACQUIRE, *C, *D,	RELEASE, {*F,*A}, *E
2022
2023
2024
2025INTERRUPT DISABLING FUNCTIONS
2026-----------------------------
2027
2028Functions that disable interrupts (ACQUIRE equivalent) and enable interrupts
2029(RELEASE equivalent) will act as compiler barriers only.  So if memory or I/O
2030barriers are required in such a situation, they must be provided from some
2031other means.
2032
2033
2034SLEEP AND WAKE-UP FUNCTIONS
2035---------------------------
2036
2037Sleeping and waking on an event flagged in global data can be viewed as an
2038interaction between two pieces of data: the task state of the task waiting for
2039the event and the global data used to indicate the event.  To make sure that
2040these appear to happen in the right order, the primitives to begin the process
2041of going to sleep, and the primitives to initiate a wake up imply certain
2042barriers.
2043
2044Firstly, the sleeper normally follows something like this sequence of events:
2045
2046	for (;;) {
2047		set_current_state(TASK_UNINTERRUPTIBLE);
2048		if (event_indicated)
2049			break;
2050		schedule();
2051	}
2052
2053A general memory barrier is interpolated automatically by set_current_state()
2054after it has altered the task state:
2055
2056	CPU 1
2057	===============================
2058	set_current_state();
2059	  smp_store_mb();
2060	    STORE current->state
2061	    <general barrier>
2062	LOAD event_indicated
2063
2064set_current_state() may be wrapped by:
2065
2066	prepare_to_wait();
2067	prepare_to_wait_exclusive();
2068
2069which therefore also imply a general memory barrier after setting the state.
2070The whole sequence above is available in various canned forms, all of which
2071interpolate the memory barrier in the right place:
2072
2073	wait_event();
2074	wait_event_interruptible();
2075	wait_event_interruptible_exclusive();
2076	wait_event_interruptible_timeout();
2077	wait_event_killable();
2078	wait_event_timeout();
2079	wait_on_bit();
2080	wait_on_bit_lock();
2081
2082
2083Secondly, code that performs a wake up normally follows something like this:
2084
2085	event_indicated = 1;
2086	wake_up(&event_wait_queue);
2087
2088or:
2089
2090	event_indicated = 1;
2091	wake_up_process(event_daemon);
2092
2093A write memory barrier is implied by wake_up() and co. if and only if they wake
2094something up.  The barrier occurs before the task state is cleared, and so sits
2095between the STORE to indicate the event and the STORE to set TASK_RUNNING:
 
 
2096
2097	CPU 1				CPU 2
2098	===============================	===============================
2099	set_current_state();		STORE event_indicated
2100	  smp_store_mb();		wake_up();
2101	    STORE current->state	  <write barrier>
2102	    <general barrier>		  STORE current->state
2103	LOAD event_indicated
2104
2105To repeat, this write memory barrier is present if and only if something
2106is actually awakened.  To see this, consider the following sequence of
2107events, where X and Y are both initially zero:
 
 
 
 
2108
2109	CPU 1				CPU 2
2110	===============================	===============================
2111	X = 1;				STORE event_indicated
2112	smp_mb();			wake_up();
2113	Y = 1;				wait_event(wq, Y == 1);
2114	wake_up();			  load from Y sees 1, no memory barrier
2115					load from X might see 0
 
2116
2117In contrast, if a wakeup does occur, CPU 2's load from X would be guaranteed
2118to see 1.
 
 
2119
2120The available waker functions include:
2121
2122	complete();
2123	wake_up();
2124	wake_up_all();
2125	wake_up_bit();
2126	wake_up_interruptible();
2127	wake_up_interruptible_all();
2128	wake_up_interruptible_nr();
2129	wake_up_interruptible_poll();
2130	wake_up_interruptible_sync();
2131	wake_up_interruptible_sync_poll();
2132	wake_up_locked();
2133	wake_up_locked_poll();
2134	wake_up_nr();
2135	wake_up_poll();
2136	wake_up_process();
2137
 
 
2138
2139[!] Note that the memory barriers implied by the sleeper and the waker do _not_
2140order multiple stores before the wake-up with respect to loads of those stored
2141values after the sleeper has called set_current_state().  For instance, if the
2142sleeper does:
2143
2144	set_current_state(TASK_INTERRUPTIBLE);
2145	if (event_indicated)
2146		break;
2147	__set_current_state(TASK_RUNNING);
2148	do_something(my_data);
2149
2150and the waker does:
2151
2152	my_data = value;
2153	event_indicated = 1;
2154	wake_up(&event_wait_queue);
2155
2156there's no guarantee that the change to event_indicated will be perceived by
2157the sleeper as coming after the change to my_data.  In such a circumstance, the
2158code on both sides must interpolate its own memory barriers between the
2159separate data accesses.  Thus the above sleeper ought to do:
2160
2161	set_current_state(TASK_INTERRUPTIBLE);
2162	if (event_indicated) {
2163		smp_rmb();
2164		do_something(my_data);
2165	}
2166
2167and the waker should do:
2168
2169	my_data = value;
2170	smp_wmb();
2171	event_indicated = 1;
2172	wake_up(&event_wait_queue);
2173
2174
2175MISCELLANEOUS FUNCTIONS
2176-----------------------
2177
2178Other functions that imply barriers:
2179
2180 (*) schedule() and similar imply full memory barriers.
2181
2182
2183===================================
2184INTER-CPU ACQUIRING BARRIER EFFECTS
2185===================================
2186
2187On SMP systems locking primitives give a more substantial form of barrier: one
2188that does affect memory access ordering on other CPUs, within the context of
2189conflict on any particular lock.
2190
2191
2192ACQUIRES VS MEMORY ACCESSES
2193---------------------------
2194
2195Consider the following: the system has a pair of spinlocks (M) and (Q), and
2196three CPUs; then should the following sequence of events occur:
2197
2198	CPU 1				CPU 2
2199	===============================	===============================
2200	WRITE_ONCE(*A, a);		WRITE_ONCE(*E, e);
2201	ACQUIRE M			ACQUIRE Q
2202	WRITE_ONCE(*B, b);		WRITE_ONCE(*F, f);
2203	WRITE_ONCE(*C, c);		WRITE_ONCE(*G, g);
2204	RELEASE M			RELEASE Q
2205	WRITE_ONCE(*D, d);		WRITE_ONCE(*H, h);
2206
2207Then there is no guarantee as to what order CPU 3 will see the accesses to *A
2208through *H occur in, other than the constraints imposed by the separate locks
2209on the separate CPUs. It might, for example, see:
2210
2211	*E, ACQUIRE M, ACQUIRE Q, *G, *C, *F, *A, *B, RELEASE Q, *D, *H, RELEASE M
2212
2213But it won't see any of:
2214
2215	*B, *C or *D preceding ACQUIRE M
2216	*A, *B or *C following RELEASE M
2217	*F, *G or *H preceding ACQUIRE Q
2218	*E, *F or *G following RELEASE Q
2219
2220
2221
2222ACQUIRES VS I/O ACCESSES
2223------------------------
2224
2225Under certain circumstances (especially involving NUMA), I/O accesses within
2226two spinlocked sections on two different CPUs may be seen as interleaved by the
2227PCI bridge, because the PCI bridge does not necessarily participate in the
2228cache-coherence protocol, and is therefore incapable of issuing the required
2229read memory barriers.
2230
2231For example:
2232
2233	CPU 1				CPU 2
2234	===============================	===============================
2235	spin_lock(Q)
2236	writel(0, ADDR)
2237	writel(1, DATA);
2238	spin_unlock(Q);
2239					spin_lock(Q);
2240					writel(4, ADDR);
2241					writel(5, DATA);
2242					spin_unlock(Q);
2243
2244may be seen by the PCI bridge as follows:
2245
2246	STORE *ADDR = 0, STORE *ADDR = 4, STORE *DATA = 1, STORE *DATA = 5
2247
2248which would probably cause the hardware to malfunction.
2249
2250
2251What is necessary here is to intervene with an mmiowb() before dropping the
2252spinlock, for example:
2253
2254	CPU 1				CPU 2
2255	===============================	===============================
2256	spin_lock(Q)
2257	writel(0, ADDR)
2258	writel(1, DATA);
2259	mmiowb();
2260	spin_unlock(Q);
2261					spin_lock(Q);
2262					writel(4, ADDR);
2263					writel(5, DATA);
2264					mmiowb();
2265					spin_unlock(Q);
2266
2267this will ensure that the two stores issued on CPU 1 appear at the PCI bridge
2268before either of the stores issued on CPU 2.
2269
2270
2271Furthermore, following a store by a load from the same device obviates the need
2272for the mmiowb(), because the load forces the store to complete before the load
2273is performed:
2274
2275	CPU 1				CPU 2
2276	===============================	===============================
2277	spin_lock(Q)
2278	writel(0, ADDR)
2279	a = readl(DATA);
2280	spin_unlock(Q);
2281					spin_lock(Q);
2282					writel(4, ADDR);
2283					b = readl(DATA);
2284					spin_unlock(Q);
2285
2286
2287See Documentation/DocBook/deviceiobook.tmpl for more information.
2288
2289
2290=================================
2291WHERE ARE MEMORY BARRIERS NEEDED?
2292=================================
2293
2294Under normal operation, memory operation reordering is generally not going to
2295be a problem as a single-threaded linear piece of code will still appear to
2296work correctly, even if it's in an SMP kernel.  There are, however, four
2297circumstances in which reordering definitely _could_ be a problem:
2298
2299 (*) Interprocessor interaction.
2300
2301 (*) Atomic operations.
2302
2303 (*) Accessing devices.
2304
2305 (*) Interrupts.
2306
2307
2308INTERPROCESSOR INTERACTION
2309--------------------------
2310
2311When there's a system with more than one processor, more than one CPU in the
2312system may be working on the same data set at the same time.  This can cause
2313synchronisation problems, and the usual way of dealing with them is to use
2314locks.  Locks, however, are quite expensive, and so it may be preferable to
2315operate without the use of a lock if at all possible.  In such a case
2316operations that affect both CPUs may have to be carefully ordered to prevent
2317a malfunction.
2318
2319Consider, for example, the R/W semaphore slow path.  Here a waiting process is
2320queued on the semaphore, by virtue of it having a piece of its stack linked to
2321the semaphore's list of waiting processes:
2322
2323	struct rw_semaphore {
2324		...
2325		spinlock_t lock;
2326		struct list_head waiters;
2327	};
2328
2329	struct rwsem_waiter {
2330		struct list_head list;
2331		struct task_struct *task;
2332	};
2333
2334To wake up a particular waiter, the up_read() or up_write() functions have to:
2335
2336 (1) read the next pointer from this waiter's record to know as to where the
2337     next waiter record is;
2338
2339 (2) read the pointer to the waiter's task structure;
2340
2341 (3) clear the task pointer to tell the waiter it has been given the semaphore;
2342
2343 (4) call wake_up_process() on the task; and
2344
2345 (5) release the reference held on the waiter's task struct.
2346
2347In other words, it has to perform this sequence of events:
2348
2349	LOAD waiter->list.next;
2350	LOAD waiter->task;
2351	STORE waiter->task;
2352	CALL wakeup
2353	RELEASE task
2354
2355and if any of these steps occur out of order, then the whole thing may
2356malfunction.
2357
2358Once it has queued itself and dropped the semaphore lock, the waiter does not
2359get the lock again; it instead just waits for its task pointer to be cleared
2360before proceeding.  Since the record is on the waiter's stack, this means that
2361if the task pointer is cleared _before_ the next pointer in the list is read,
2362another CPU might start processing the waiter and might clobber the waiter's
2363stack before the up*() function has a chance to read the next pointer.
2364
2365Consider then what might happen to the above sequence of events:
2366
2367	CPU 1				CPU 2
2368	===============================	===============================
2369					down_xxx()
2370					Queue waiter
2371					Sleep
2372	up_yyy()
2373	LOAD waiter->task;
2374	STORE waiter->task;
2375					Woken up by other event
2376	<preempt>
2377					Resume processing
2378					down_xxx() returns
2379					call foo()
2380					foo() clobbers *waiter
2381	</preempt>
2382	LOAD waiter->list.next;
2383	--- OOPS ---
2384
2385This could be dealt with using the semaphore lock, but then the down_xxx()
2386function has to needlessly get the spinlock again after being woken up.
2387
2388The way to deal with this is to insert a general SMP memory barrier:
2389
2390	LOAD waiter->list.next;
2391	LOAD waiter->task;
2392	smp_mb();
2393	STORE waiter->task;
2394	CALL wakeup
2395	RELEASE task
2396
2397In this case, the barrier makes a guarantee that all memory accesses before the
2398barrier will appear to happen before all the memory accesses after the barrier
2399with respect to the other CPUs on the system.  It does _not_ guarantee that all
2400the memory accesses before the barrier will be complete by the time the barrier
2401instruction itself is complete.
2402
2403On a UP system - where this wouldn't be a problem - the smp_mb() is just a
2404compiler barrier, thus making sure the compiler emits the instructions in the
2405right order without actually intervening in the CPU.  Since there's only one
2406CPU, that CPU's dependency ordering logic will take care of everything else.
2407
2408
2409ATOMIC OPERATIONS
2410-----------------
2411
2412Whilst they are technically interprocessor interaction considerations, atomic
2413operations are noted specially as some of them imply full memory barriers and
2414some don't, but they're very heavily relied on as a group throughout the
2415kernel.
2416
2417Any atomic operation that modifies some state in memory and returns information
2418about the state (old or new) implies an SMP-conditional general memory barrier
2419(smp_mb()) on each side of the actual operation (with the exception of
2420explicit lock operations, described later).  These include:
2421
2422	xchg();
2423	atomic_xchg();			atomic_long_xchg();
2424	atomic_inc_return();		atomic_long_inc_return();
2425	atomic_dec_return();		atomic_long_dec_return();
2426	atomic_add_return();		atomic_long_add_return();
2427	atomic_sub_return();		atomic_long_sub_return();
2428	atomic_inc_and_test();		atomic_long_inc_and_test();
2429	atomic_dec_and_test();		atomic_long_dec_and_test();
2430	atomic_sub_and_test();		atomic_long_sub_and_test();
2431	atomic_add_negative();		atomic_long_add_negative();
2432	test_and_set_bit();
2433	test_and_clear_bit();
2434	test_and_change_bit();
2435
2436	/* when succeeds */
2437	cmpxchg();
2438	atomic_cmpxchg();		atomic_long_cmpxchg();
2439	atomic_add_unless();		atomic_long_add_unless();
2440
2441These are used for such things as implementing ACQUIRE-class and RELEASE-class
2442operations and adjusting reference counters towards object destruction, and as
2443such the implicit memory barrier effects are necessary.
2444
2445
2446The following operations are potential problems as they do _not_ imply memory
2447barriers, but might be used for implementing such things as RELEASE-class
2448operations:
2449
2450	atomic_set();
2451	set_bit();
2452	clear_bit();
2453	change_bit();
2454
2455With these the appropriate explicit memory barrier should be used if necessary
2456(smp_mb__before_atomic() for instance).
2457
2458
2459The following also do _not_ imply memory barriers, and so may require explicit
2460memory barriers under some circumstances (smp_mb__before_atomic() for
2461instance):
2462
2463	atomic_add();
2464	atomic_sub();
2465	atomic_inc();
2466	atomic_dec();
2467
2468If they're used for statistics generation, then they probably don't need memory
2469barriers, unless there's a coupling between statistical data.
2470
2471If they're used for reference counting on an object to control its lifetime,
2472they probably don't need memory barriers because either the reference count
2473will be adjusted inside a locked section, or the caller will already hold
2474sufficient references to make the lock, and thus a memory barrier unnecessary.
2475
2476If they're used for constructing a lock of some description, then they probably
2477do need memory barriers as a lock primitive generally has to do things in a
2478specific order.
2479
2480Basically, each usage case has to be carefully considered as to whether memory
2481barriers are needed or not.
2482
2483The following operations are special locking primitives:
2484
2485	test_and_set_bit_lock();
2486	clear_bit_unlock();
2487	__clear_bit_unlock();
2488
2489These implement ACQUIRE-class and RELEASE-class operations. These should be used in
2490preference to other operations when implementing locking primitives, because
2491their implementations can be optimised on many architectures.
2492
2493[!] Note that special memory barrier primitives are available for these
2494situations because on some CPUs the atomic instructions used imply full memory
2495barriers, and so barrier instructions are superfluous in conjunction with them,
2496and in such cases the special barrier primitives will be no-ops.
2497
2498See Documentation/atomic_ops.txt for more information.
2499
2500
2501ACCESSING DEVICES
2502-----------------
2503
2504Many devices can be memory mapped, and so appear to the CPU as if they're just
2505a set of memory locations.  To control such a device, the driver usually has to
2506make the right memory accesses in exactly the right order.
2507
2508However, having a clever CPU or a clever compiler creates a potential problem
2509in that the carefully sequenced accesses in the driver code won't reach the
2510device in the requisite order if the CPU or the compiler thinks it is more
2511efficient to reorder, combine or merge accesses - something that would cause
2512the device to malfunction.
2513
2514Inside of the Linux kernel, I/O should be done through the appropriate accessor
2515routines - such as inb() or writel() - which know how to make such accesses
2516appropriately sequential.  Whilst this, for the most part, renders the explicit
2517use of memory barriers unnecessary, there are a couple of situations where they
2518might be needed:
2519
2520 (1) On some systems, I/O stores are not strongly ordered across all CPUs, and
2521     so for _all_ general drivers locks should be used and mmiowb() must be
2522     issued prior to unlocking the critical section.
2523
2524 (2) If the accessor functions are used to refer to an I/O memory window with
2525     relaxed memory access properties, then _mandatory_ memory barriers are
2526     required to enforce ordering.
2527
2528See Documentation/DocBook/deviceiobook.tmpl for more information.
2529
2530
2531INTERRUPTS
2532----------
2533
2534A driver may be interrupted by its own interrupt service routine, and thus the
2535two parts of the driver may interfere with each other's attempts to control or
2536access the device.
2537
2538This may be alleviated - at least in part - by disabling local interrupts (a
2539form of locking), such that the critical operations are all contained within
2540the interrupt-disabled section in the driver.  Whilst the driver's interrupt
2541routine is executing, the driver's core may not run on the same CPU, and its
2542interrupt is not permitted to happen again until the current interrupt has been
2543handled, thus the interrupt handler does not need to lock against that.
2544
2545However, consider a driver that was talking to an ethernet card that sports an
2546address register and a data register.  If that driver's core talks to the card
2547under interrupt-disablement and then the driver's interrupt handler is invoked:
2548
2549	LOCAL IRQ DISABLE
2550	writew(ADDR, 3);
2551	writew(DATA, y);
2552	LOCAL IRQ ENABLE
2553	<interrupt>
2554	writew(ADDR, 4);
2555	q = readw(DATA);
2556	</interrupt>
2557
2558The store to the data register might happen after the second store to the
2559address register if ordering rules are sufficiently relaxed:
2560
2561	STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
2562
2563
2564If ordering rules are relaxed, it must be assumed that accesses done inside an
2565interrupt disabled section may leak outside of it and may interleave with
2566accesses performed in an interrupt - and vice versa - unless implicit or
2567explicit barriers are used.
2568
2569Normally this won't be a problem because the I/O accesses done inside such
2570sections will include synchronous load operations on strictly ordered I/O
2571registers that form implicit I/O barriers. If this isn't sufficient then an
2572mmiowb() may need to be used explicitly.
2573
2574
2575A similar situation may occur between an interrupt routine and two routines
2576running on separate CPUs that communicate with each other. If such a case is
2577likely, then interrupt-disabling locks should be used to guarantee ordering.
2578
2579
2580==========================
2581KERNEL I/O BARRIER EFFECTS
2582==========================
2583
2584When accessing I/O memory, drivers should use the appropriate accessor
2585functions:
2586
2587 (*) inX(), outX():
2588
2589     These are intended to talk to I/O space rather than memory space, but
2590     that's primarily a CPU-specific concept. The i386 and x86_64 processors do
2591     indeed have special I/O space access cycles and instructions, but many
2592     CPUs don't have such a concept.
2593
2594     The PCI bus, amongst others, defines an I/O space concept which - on such
2595     CPUs as i386 and x86_64 - readily maps to the CPU's concept of I/O
2596     space.  However, it may also be mapped as a virtual I/O space in the CPU's
2597     memory map, particularly on those CPUs that don't support alternate I/O
2598     spaces.
2599
2600     Accesses to this space may be fully synchronous (as on i386), but
2601     intermediary bridges (such as the PCI host bridge) may not fully honour
2602     that.
2603
2604     They are guaranteed to be fully ordered with respect to each other.
2605
2606     They are not guaranteed to be fully ordered with respect to other types of
2607     memory and I/O operation.
2608
2609 (*) readX(), writeX():
2610
2611     Whether these are guaranteed to be fully ordered and uncombined with
2612     respect to each other on the issuing CPU depends on the characteristics
2613     defined for the memory window through which they're accessing. On later
2614     i386 architecture machines, for example, this is controlled by way of the
2615     MTRR registers.
2616
2617     Ordinarily, these will be guaranteed to be fully ordered and uncombined,
2618     provided they're not accessing a prefetchable device.
2619
2620     However, intermediary hardware (such as a PCI bridge) may indulge in
2621     deferral if it so wishes; to flush a store, a load from the same location
2622     is preferred[*], but a load from the same device or from configuration
2623     space should suffice for PCI.
2624
2625     [*] NOTE! attempting to load from the same location as was written to may
2626	 cause a malfunction - consider the 16550 Rx/Tx serial registers for
2627	 example.
2628
2629     Used with prefetchable I/O memory, an mmiowb() barrier may be required to
2630     force stores to be ordered.
2631
2632     Please refer to the PCI specification for more information on interactions
2633     between PCI transactions.
2634
2635 (*) readX_relaxed(), writeX_relaxed()
2636
2637     These are similar to readX() and writeX(), but provide weaker memory
2638     ordering guarantees. Specifically, they do not guarantee ordering with
2639     respect to normal memory accesses (e.g. DMA buffers) nor do they guarantee
2640     ordering with respect to LOCK or UNLOCK operations. If the latter is
2641     required, an mmiowb() barrier can be used. Note that relaxed accesses to
2642     the same peripheral are guaranteed to be ordered with respect to each
2643     other.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644
2645 (*) ioreadX(), iowriteX()
2646
2647     These will perform appropriately for the type of access they're actually
2648     doing, be it inX()/outX() or readX()/writeX().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649
2650
2651========================================
2652ASSUMED MINIMUM EXECUTION ORDERING MODEL
2653========================================
2654
2655It has to be assumed that the conceptual CPU is weakly-ordered but that it will
2656maintain the appearance of program causality with respect to itself.  Some CPUs
2657(such as i386 or x86_64) are more constrained than others (such as powerpc or
2658frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
2659of arch-specific code.
2660
2661This means that it must be considered that the CPU will execute its instruction
2662stream in any order it feels like - or even in parallel - provided that if an
2663instruction in the stream depends on an earlier instruction, then that
2664earlier instruction must be sufficiently complete[*] before the later
2665instruction may proceed; in other words: provided that the appearance of
2666causality is maintained.
2667
2668 [*] Some instructions have more than one effect - such as changing the
2669     condition codes, changing registers or changing memory - and different
2670     instructions may depend on different effects.
2671
2672A CPU may also discard any instruction sequence that winds up having no
2673ultimate effect.  For example, if two adjacent instructions both load an
2674immediate value into the same register, the first may be discarded.
2675
2676
2677Similarly, it has to be assumed that compiler might reorder the instruction
2678stream in any way it sees fit, again provided the appearance of causality is
2679maintained.
2680
2681
2682============================
2683THE EFFECTS OF THE CPU CACHE
2684============================
2685
2686The way cached memory operations are perceived across the system is affected to
2687a certain extent by the caches that lie between CPUs and memory, and by the
2688memory coherence system that maintains the consistency of state in the system.
2689
2690As far as the way a CPU interacts with another part of the system through the
2691caches goes, the memory system has to include the CPU's caches, and memory
2692barriers for the most part act at the interface between the CPU and its cache
2693(memory barriers logically act on the dotted line in the following diagram):
2694
2695	    <--- CPU --->         :       <----------- Memory ----------->
2696	                          :
2697	+--------+    +--------+  :   +--------+    +-----------+
2698	|        |    |        |  :   |        |    |           |    +--------+
2699	|  CPU   |    | Memory |  :   | CPU    |    |           |    |        |
2700	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2701	|        |    | Queue  |  :   |        |    |           |--->| Memory |
2702	|        |    |        |  :   |        |    |           |    |        |
2703	+--------+    +--------+  :   +--------+    |           |    |        |
2704	                          :                 | Cache     |    +--------+
2705	                          :                 | Coherency |
2706	                          :                 | Mechanism |    +--------+
2707	+--------+    +--------+  :   +--------+    |           |    |	      |
2708	|        |    |        |  :   |        |    |           |    |        |
2709	|  CPU   |    | Memory |  :   | CPU    |    |           |--->| Device |
2710	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
2711	|        |    | Queue  |  :   |        |    |           |    |        |
2712	|        |    |        |  :   |        |    |           |    +--------+
2713	+--------+    +--------+  :   +--------+    +-----------+
2714	                          :
2715	                          :
2716
2717Although any particular load or store may not actually appear outside of the
2718CPU that issued it since it may have been satisfied within the CPU's own cache,
2719it will still appear as if the full memory access had taken place as far as the
2720other CPUs are concerned since the cache coherency mechanisms will migrate the
2721cacheline over to the accessing CPU and propagate the effects upon conflict.
2722
2723The CPU core may execute instructions in any order it deems fit, provided the
2724expected program causality appears to be maintained.  Some of the instructions
2725generate load and store operations which then go into the queue of memory
2726accesses to be performed.  The core may place these in the queue in any order
2727it wishes, and continue execution until it is forced to wait for an instruction
2728to complete.
2729
2730What memory barriers are concerned with is controlling the order in which
2731accesses cross from the CPU side of things to the memory side of things, and
2732the order in which the effects are perceived to happen by the other observers
2733in the system.
2734
2735[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
2736their own loads and stores as if they had happened in program order.
2737
2738[!] MMIO or other device accesses may bypass the cache system.  This depends on
2739the properties of the memory window through which devices are accessed and/or
2740the use of any special device communication instructions the CPU may have.
2741
2742
2743CACHE COHERENCY
2744---------------
2745
2746Life isn't quite as simple as it may appear above, however: for while the
2747caches are expected to be coherent, there's no guarantee that that coherency
2748will be ordered.  This means that whilst changes made on one CPU will
2749eventually become visible on all CPUs, there's no guarantee that they will
2750become apparent in the same order on those other CPUs.
2751
2752
2753Consider dealing with a system that has a pair of CPUs (1 & 2), each of which
2754has a pair of parallel data caches (CPU 1 has A/B, and CPU 2 has C/D):
2755
2756	            :
2757	            :                          +--------+
2758	            :      +---------+         |        |
2759	+--------+  : +--->| Cache A |<------->|        |
2760	|        |  : |    +---------+         |        |
2761	|  CPU 1 |<---+                        |        |
2762	|        |  : |    +---------+         |        |
2763	+--------+  : +--->| Cache B |<------->|        |
2764	            :      +---------+         |        |
2765	            :                          | Memory |
2766	            :      +---------+         | System |
2767	+--------+  : +--->| Cache C |<------->|        |
2768	|        |  : |    +---------+         |        |
2769	|  CPU 2 |<---+                        |        |
2770	|        |  : |    +---------+         |        |
2771	+--------+  : +--->| Cache D |<------->|        |
2772	            :      +---------+         |        |
2773	            :                          +--------+
2774	            :
2775
2776Imagine the system has the following properties:
2777
2778 (*) an odd-numbered cache line may be in cache A, cache C or it may still be
2779     resident in memory;
2780
2781 (*) an even-numbered cache line may be in cache B, cache D or it may still be
2782     resident in memory;
2783
2784 (*) whilst the CPU core is interrogating one cache, the other cache may be
2785     making use of the bus to access the rest of the system - perhaps to
2786     displace a dirty cacheline or to do a speculative load;
2787
2788 (*) each cache has a queue of operations that need to be applied to that cache
2789     to maintain coherency with the rest of the system;
2790
2791 (*) the coherency queue is not flushed by normal loads to lines already
2792     present in the cache, even though the contents of the queue may
2793     potentially affect those loads.
2794
2795Imagine, then, that two writes are made on the first CPU, with a write barrier
2796between them to guarantee that they will appear to reach that CPU's caches in
2797the requisite order:
2798
2799	CPU 1		CPU 2		COMMENT
2800	===============	===============	=======================================
2801					u == 0, v == 1 and p == &u, q == &u
2802	v = 2;
2803	smp_wmb();			Make sure change to v is visible before
2804					 change to p
2805	<A:modify v=2>			v is now in cache A exclusively
2806	p = &v;
2807	<B:modify p=&v>			p is now in cache B exclusively
2808
2809The write memory barrier forces the other CPUs in the system to perceive that
2810the local CPU's caches have apparently been updated in the correct order.  But
2811now imagine that the second CPU wants to read those values:
2812
2813	CPU 1		CPU 2		COMMENT
2814	===============	===============	=======================================
2815	...
2816			q = p;
2817			x = *q;
2818
2819The above pair of reads may then fail to happen in the expected order, as the
2820cacheline holding p may get updated in one of the second CPU's caches whilst
2821the update to the cacheline holding v is delayed in the other of the second
2822CPU's caches by some other cache event:
2823
2824	CPU 1		CPU 2		COMMENT
2825	===============	===============	=======================================
2826					u == 0, v == 1 and p == &u, q == &u
2827	v = 2;
2828	smp_wmb();
2829	<A:modify v=2>	<C:busy>
2830			<C:queue v=2>
2831	p = &v;		q = p;
2832			<D:request p>
2833	<B:modify p=&v>	<D:commit p=&v>
2834			<D:read p>
2835			x = *q;
2836			<C:read *q>	Reads from v before v updated in cache
2837			<C:unbusy>
2838			<C:commit v=2>
2839
2840Basically, whilst both cachelines will be updated on CPU 2 eventually, there's
2841no guarantee that, without intervention, the order of update will be the same
2842as that committed on CPU 1.
2843
2844
2845To intervene, we need to interpolate a data dependency barrier or a read
2846barrier between the loads.  This will force the cache to commit its coherency
2847queue before processing any further requests:
2848
2849	CPU 1		CPU 2		COMMENT
2850	===============	===============	=======================================
2851					u == 0, v == 1 and p == &u, q == &u
2852	v = 2;
2853	smp_wmb();
2854	<A:modify v=2>	<C:busy>
2855			<C:queue v=2>
2856	p = &v;		q = p;
2857			<D:request p>
2858	<B:modify p=&v>	<D:commit p=&v>
2859			<D:read p>
2860			smp_read_barrier_depends()
2861			<C:unbusy>
2862			<C:commit v=2>
2863			x = *q;
2864			<C:read *q>	Reads from v after v updated in cache
2865
2866
2867This sort of problem can be encountered on DEC Alpha processors as they have a
2868split cache that improves performance by making better use of the data bus.
2869Whilst most CPUs do imply a data dependency barrier on the read when a memory
2870access depends on a read, not all do, so it may not be relied on.
2871
2872Other CPUs may also have split caches, but must coordinate between the various
2873cachelets for normal memory accesses.  The semantics of the Alpha removes the
2874need for coordination in the absence of memory barriers.
2875
2876
2877CACHE COHERENCY VS DMA
2878----------------------
2879
2880Not all systems maintain cache coherency with respect to devices doing DMA.  In
2881such cases, a device attempting DMA may obtain stale data from RAM because
2882dirty cache lines may be resident in the caches of various CPUs, and may not
2883have been written back to RAM yet.  To deal with this, the appropriate part of
2884the kernel must flush the overlapping bits of cache on each CPU (and maybe
2885invalidate them as well).
2886
2887In addition, the data DMA'd to RAM by a device may be overwritten by dirty
2888cache lines being written back to RAM from a CPU's cache after the device has
2889installed its own data, or cache lines present in the CPU's cache may simply
2890obscure the fact that RAM has been updated, until at such time as the cacheline
2891is discarded from the CPU's cache and reloaded.  To deal with this, the
2892appropriate part of the kernel must invalidate the overlapping bits of the
2893cache on each CPU.
2894
2895See Documentation/cachetlb.txt for more information on cache management.
 
2896
2897
2898CACHE COHERENCY VS MMIO
2899-----------------------
2900
2901Memory mapped I/O usually takes place through memory locations that are part of
2902a window in the CPU's memory space that has different properties assigned than
2903the usual RAM directed window.
2904
2905Amongst these properties is usually the fact that such accesses bypass the
2906caching entirely and go directly to the device buses.  This means MMIO accesses
2907may, in effect, overtake accesses to cached memory that were emitted earlier.
2908A memory barrier isn't sufficient in such a case, but rather the cache must be
2909flushed between the cached memory write and the MMIO access if the two are in
2910any way dependent.
2911
2912
2913=========================
2914THE THINGS CPUS GET UP TO
2915=========================
2916
2917A programmer might take it for granted that the CPU will perform memory
2918operations in exactly the order specified, so that if the CPU is, for example,
2919given the following piece of code to execute:
2920
2921	a = READ_ONCE(*A);
2922	WRITE_ONCE(*B, b);
2923	c = READ_ONCE(*C);
2924	d = READ_ONCE(*D);
2925	WRITE_ONCE(*E, e);
2926
2927they would then expect that the CPU will complete the memory operation for each
2928instruction before moving on to the next one, leading to a definite sequence of
2929operations as seen by external observers in the system:
2930
2931	LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
2932
2933
2934Reality is, of course, much messier.  With many CPUs and compilers, the above
2935assumption doesn't hold because:
2936
2937 (*) loads are more likely to need to be completed immediately to permit
2938     execution progress, whereas stores can often be deferred without a
2939     problem;
2940
2941 (*) loads may be done speculatively, and the result discarded should it prove
2942     to have been unnecessary;
2943
2944 (*) loads may be done speculatively, leading to the result having been fetched
2945     at the wrong time in the expected sequence of events;
2946
2947 (*) the order of the memory accesses may be rearranged to promote better use
2948     of the CPU buses and caches;
2949
2950 (*) loads and stores may be combined to improve performance when talking to
2951     memory or I/O hardware that can do batched accesses of adjacent locations,
2952     thus cutting down on transaction setup costs (memory and PCI devices may
2953     both be able to do this); and
2954
2955 (*) the CPU's data cache may affect the ordering, and whilst cache-coherency
2956     mechanisms may alleviate this - once the store has actually hit the cache
2957     - there's no guarantee that the coherency management will be propagated in
2958     order to other CPUs.
2959
2960So what another CPU, say, might actually observe from the above piece of code
2961is:
2962
2963	LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
2964
2965	(Where "LOAD {*C,*D}" is a combined load)
2966
2967
2968However, it is guaranteed that a CPU will be self-consistent: it will see its
2969_own_ accesses appear to be correctly ordered, without the need for a memory
2970barrier.  For instance with the following code:
2971
2972	U = READ_ONCE(*A);
2973	WRITE_ONCE(*A, V);
2974	WRITE_ONCE(*A, W);
2975	X = READ_ONCE(*A);
2976	WRITE_ONCE(*A, Y);
2977	Z = READ_ONCE(*A);
2978
2979and assuming no intervention by an external influence, it can be assumed that
2980the final result will appear to be:
2981
2982	U == the original value of *A
2983	X == W
2984	Z == Y
2985	*A == Y
2986
2987The code above may cause the CPU to generate the full sequence of memory
2988accesses:
2989
2990	U=LOAD *A, STORE *A=V, STORE *A=W, X=LOAD *A, STORE *A=Y, Z=LOAD *A
2991
2992in that order, but, without intervention, the sequence may have almost any
2993combination of elements combined or discarded, provided the program's view
2994of the world remains consistent.  Note that READ_ONCE() and WRITE_ONCE()
2995are -not- optional in the above example, as there are architectures
2996where a given CPU might reorder successive loads to the same location.
2997On such architectures, READ_ONCE() and WRITE_ONCE() do whatever is
2998necessary to prevent this, for example, on Itanium the volatile casts
2999used by READ_ONCE() and WRITE_ONCE() cause GCC to emit the special ld.acq
3000and st.rel instructions (respectively) that prevent such reordering.
3001
3002The compiler may also combine, discard or defer elements of the sequence before
3003the CPU even sees them.
3004
3005For instance:
3006
3007	*A = V;
3008	*A = W;
3009
3010may be reduced to:
3011
3012	*A = W;
3013
3014since, without either a write barrier or an WRITE_ONCE(), it can be
3015assumed that the effect of the storage of V to *A is lost.  Similarly:
3016
3017	*A = Y;
3018	Z = *A;
3019
3020may, without a memory barrier or an READ_ONCE() and WRITE_ONCE(), be
3021reduced to:
3022
3023	*A = Y;
3024	Z = Y;
3025
3026and the LOAD operation never appear outside of the CPU.
3027
3028
3029AND THEN THERE'S THE ALPHA
3030--------------------------
3031
3032The DEC Alpha CPU is one of the most relaxed CPUs there is.  Not only that,
3033some versions of the Alpha CPU have a split data cache, permitting them to have
3034two semantically-related cache lines updated at separate times.  This is where
3035the data dependency barrier really becomes necessary as this synchronises both
3036caches with the memory coherence system, thus making it seem like pointer
3037changes vs new data occur in the right order.
3038
3039The Alpha defines the Linux kernel's memory barrier model.
 
 
3040
3041See the subsection on "Cache Coherency" above.
3042
3043VIRTUAL MACHINE GUESTS
3044-------------------
3045
3046Guests running within virtual machines might be affected by SMP effects even if
3047the guest itself is compiled without SMP support.  This is an artifact of
3048interfacing with an SMP host while running an UP kernel.  Using mandatory
3049barriers for this use-case would be possible but is often suboptimal.
3050
3051To handle this case optimally, low-level virt_mb() etc macros are available.
3052These have the same effect as smp_mb() etc when SMP is enabled, but generate
3053identical code for SMP and non-SMP systems. For example, virtual machine guests
3054should use virt_mb() rather than smp_mb() when synchronizing against a
3055(possibly SMP) host.
3056
3057These are equivalent to smp_mb() etc counterparts in all other respects,
3058in particular, they do not control MMIO effects: to control
3059MMIO effects, use mandatory barriers.
3060
 
3061============
3062EXAMPLE USES
3063============
3064
3065CIRCULAR BUFFERS
3066----------------
3067
3068Memory barriers can be used to implement circular buffering without the need
3069of a lock to serialise the producer with the consumer.  See:
3070
3071	Documentation/circular-buffers.txt
3072
3073for details.
3074
3075
3076==========
3077REFERENCES
3078==========
3079
3080Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
3081Digital Press)
3082	Chapter 5.2: Physical Address Space Characteristics
3083	Chapter 5.4: Caches and Write Buffers
3084	Chapter 5.5: Data Sharing
3085	Chapter 5.6: Read/Write Ordering
3086
3087AMD64 Architecture Programmer's Manual Volume 2: System Programming
3088	Chapter 7.1: Memory-Access Ordering
3089	Chapter 7.4: Buffering and Combining Memory Writes
3090
 
 
 
3091IA-32 Intel Architecture Software Developer's Manual, Volume 3:
3092System Programming Guide
3093	Chapter 7.1: Locked Atomic Operations
3094	Chapter 7.2: Memory Ordering
3095	Chapter 7.4: Serializing Instructions
3096
3097The SPARC Architecture Manual, Version 9
3098	Chapter 8: Memory Models
3099	Appendix D: Formal Specification of the Memory Models
3100	Appendix J: Programming with the Memory Models
 
 
3101
3102UltraSPARC Programmer Reference Manual
3103	Chapter 5: Memory Accesses and Cacheability
3104	Chapter 15: Sparc-V9 Memory Models
3105
3106UltraSPARC III Cu User's Manual
3107	Chapter 9: Memory Models
3108
3109UltraSPARC IIIi Processor User's Manual
3110	Chapter 8: Memory Models
3111
3112UltraSPARC Architecture 2005
3113	Chapter 9: Memory
3114	Appendix D: Formal Specifications of the Memory Models
3115
3116UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
3117	Chapter 8: Memory Models
3118	Appendix F: Caches and Cache Coherency
3119
3120Solaris Internals, Core Kernel Architecture, p63-68:
3121	Chapter 3.3: Hardware Considerations for Locks and
3122			Synchronization
3123
3124Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
3125for Kernel Programmers:
3126	Chapter 13: Other Memory Models
3127
3128Intel Itanium Architecture Software Developer's Manual: Volume 1:
3129	Section 2.6: Speculation
3130	Section 4.4: Memory Access