Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1<?xml version="1.0" encoding="UTF-8"?>
   2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
   3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
   4
   5<book id="gpuDevelopersGuide">
   6  <bookinfo>
   7    <title>Linux GPU Driver Developer's Guide</title>
   8
   9    <authorgroup>
  10      <author>
  11	<firstname>Jesse</firstname>
  12	<surname>Barnes</surname>
  13	<contrib>Initial version</contrib>
  14	<affiliation>
  15	  <orgname>Intel Corporation</orgname>
  16	  <address>
  17	    <email>jesse.barnes@intel.com</email>
  18	  </address>
  19	</affiliation>
  20      </author>
  21      <author>
  22	<firstname>Laurent</firstname>
  23	<surname>Pinchart</surname>
  24	<contrib>Driver internals</contrib>
  25	<affiliation>
  26	  <orgname>Ideas on board SPRL</orgname>
  27	  <address>
  28	    <email>laurent.pinchart@ideasonboard.com</email>
  29	  </address>
  30	</affiliation>
  31      </author>
  32      <author>
  33	<firstname>Daniel</firstname>
  34	<surname>Vetter</surname>
  35	<contrib>Contributions all over the place</contrib>
  36	<affiliation>
  37	  <orgname>Intel Corporation</orgname>
  38	  <address>
  39	    <email>daniel.vetter@ffwll.ch</email>
  40	  </address>
  41	</affiliation>
  42      </author>
  43      <author>
  44	<firstname>Lukas</firstname>
  45	<surname>Wunner</surname>
  46	<contrib>vga_switcheroo documentation</contrib>
  47	<affiliation>
  48	  <address>
  49	    <email>lukas@wunner.de</email>
  50	  </address>
  51	</affiliation>
  52      </author>
  53    </authorgroup>
  54
  55    <copyright>
  56      <year>2008-2009</year>
  57      <year>2013-2014</year>
  58      <holder>Intel Corporation</holder>
  59    </copyright>
  60    <copyright>
  61      <year>2012</year>
  62      <holder>Laurent Pinchart</holder>
  63    </copyright>
  64    <copyright>
  65      <year>2015</year>
  66      <holder>Lukas Wunner</holder>
  67    </copyright>
  68
  69    <legalnotice>
  70      <para>
  71	The contents of this file may be used under the terms of the GNU
  72	General Public License version 2 (the "GPL") as distributed in
  73	the kernel source COPYING file.
  74      </para>
  75    </legalnotice>
  76
  77    <revhistory>
  78      <!-- Put document revisions here, newest first. -->
  79      <revision>
  80	<revnumber>1.0</revnumber>
  81	<date>2012-07-13</date>
  82	<authorinitials>LP</authorinitials>
  83	<revremark>Added extensive documentation about driver internals.
  84	</revremark>
  85      </revision>
  86      <revision>
  87	<revnumber>1.1</revnumber>
  88	<date>2015-10-11</date>
  89	<authorinitials>LW</authorinitials>
  90	<revremark>Added vga_switcheroo documentation.
  91	</revremark>
  92      </revision>
  93    </revhistory>
  94  </bookinfo>
  95
  96<toc></toc>
  97
  98<part id="drmCore">
  99  <title>DRM Core</title>
 100  <partintro>
 101    <para>
 102      This first part of the GPU Driver Developer's Guide documents core DRM
 103      code, helper libraries for writing drivers and generic userspace
 104      interfaces exposed by DRM drivers.
 105    </para>
 106  </partintro>
 107
 108  <chapter id="drmIntroduction">
 109    <title>Introduction</title>
 110    <para>
 111      The Linux DRM layer contains code intended to support the needs
 112      of complex graphics devices, usually containing programmable
 113      pipelines well suited to 3D graphics acceleration.  Graphics
 114      drivers in the kernel may make use of DRM functions to make
 115      tasks like memory management, interrupt handling and DMA easier,
 116      and provide a uniform interface to applications.
 117    </para>
 118    <para>
 119      A note on versions: this guide covers features found in the DRM
 120      tree, including the TTM memory manager, output configuration and
 121      mode setting, and the new vblank internals, in addition to all
 122      the regular features found in current kernels.
 123    </para>
 124    <para>
 125      [Insert diagram of typical DRM stack here]
 126    </para>
 127  <sect1>
 128    <title>Style Guidelines</title>
 129    <para>
 130      For consistency this documentation uses American English. Abbreviations
 131      are written as all-uppercase, for example: DRM, KMS, IOCTL, CRTC, and so
 132      on. To aid in reading, documentations make full use of the markup
 133      characters kerneldoc provides: @parameter for function parameters, @member
 134      for structure members, &amp;structure to reference structures and
 135      function() for functions. These all get automatically hyperlinked if
 136      kerneldoc for the referenced objects exists. When referencing entries in
 137      function vtables please use -&gt;vfunc(). Note that kerneldoc does
 138      not support referencing struct members directly, so please add a reference
 139      to the vtable struct somewhere in the same paragraph or at least section.
 140    </para>
 141    <para>
 142      Except in special situations (to separate locked from unlocked variants)
 143      locking requirements for functions aren't documented in the kerneldoc.
 144      Instead locking should be check at runtime using e.g.
 145      <code>WARN_ON(!mutex_is_locked(...));</code>. Since it's much easier to
 146      ignore documentation than runtime noise this provides more value. And on
 147      top of that runtime checks do need to be updated when the locking rules
 148      change, increasing the chances that they're correct. Within the
 149      documentation the locking rules should be explained in the relevant
 150      structures: Either in the comment for the lock explaining what it
 151      protects, or data fields need a note about which lock protects them, or
 152      both.
 153    </para>
 154    <para>
 155      Functions which have a non-<code>void</code> return value should have a
 156      section called "Returns" explaining the expected return values in
 157      different cases and their meanings. Currently there's no consensus whether
 158      that section name should be all upper-case or not, and whether it should
 159      end in a colon or not. Go with the file-local style. Other common section
 160      names are "Notes" with information for dangerous or tricky corner cases,
 161      and "FIXME" where the interface could be cleaned up.
 162    </para>
 163  </sect1>
 164  </chapter>
 165
 166  <!-- Internals -->
 167
 168  <chapter id="drmInternals">
 169    <title>DRM Internals</title>
 170    <para>
 171      This chapter documents DRM internals relevant to driver authors
 172      and developers working to add support for the latest features to
 173      existing drivers.
 174    </para>
 175    <para>
 176      First, we go over some typical driver initialization
 177      requirements, like setting up command buffers, creating an
 178      initial output configuration, and initializing core services.
 179      Subsequent sections cover core internals in more detail,
 180      providing implementation notes and examples.
 181    </para>
 182    <para>
 183      The DRM layer provides several services to graphics drivers,
 184      many of them driven by the application interfaces it provides
 185      through libdrm, the library that wraps most of the DRM ioctls.
 186      These include vblank event handling, memory
 187      management, output management, framebuffer management, command
 188      submission &amp; fencing, suspend/resume support, and DMA
 189      services.
 190    </para>
 191
 192  <!-- Internals: driver init -->
 193
 194  <sect1>
 195    <title>Driver Initialization</title>
 196    <para>
 197      At the core of every DRM driver is a <structname>drm_driver</structname>
 198      structure. Drivers typically statically initialize a drm_driver structure,
 199      and then pass it to <function>drm_dev_alloc()</function> to allocate a
 200      device instance. After the device instance is fully initialized it can be
 201      registered (which makes it accessible from userspace) using
 202      <function>drm_dev_register()</function>.
 203    </para>
 204    <para>
 205      The <structname>drm_driver</structname> structure contains static
 206      information that describes the driver and features it supports, and
 207      pointers to methods that the DRM core will call to implement the DRM API.
 208      We will first go through the <structname>drm_driver</structname> static
 209      information fields, and will then describe individual operations in
 210      details as they get used in later sections.
 211    </para>
 212    <sect2>
 213      <title>Driver Information</title>
 214      <sect3>
 215        <title>Driver Features</title>
 216        <para>
 217          Drivers inform the DRM core about their requirements and supported
 218          features by setting appropriate flags in the
 219          <structfield>driver_features</structfield> field. Since those flags
 220          influence the DRM core behaviour since registration time, most of them
 221          must be set to registering the <structname>drm_driver</structname>
 222          instance.
 223        </para>
 224        <synopsis>u32 driver_features;</synopsis>
 225        <variablelist>
 226          <title>Driver Feature Flags</title>
 227          <varlistentry>
 228            <term>DRIVER_USE_AGP</term>
 229            <listitem><para>
 230              Driver uses AGP interface, the DRM core will manage AGP resources.
 231            </para></listitem>
 232          </varlistentry>
 233          <varlistentry>
 234            <term>DRIVER_REQUIRE_AGP</term>
 235            <listitem><para>
 236              Driver needs AGP interface to function. AGP initialization failure
 237              will become a fatal error.
 238            </para></listitem>
 239          </varlistentry>
 240          <varlistentry>
 241            <term>DRIVER_PCI_DMA</term>
 242            <listitem><para>
 243              Driver is capable of PCI DMA, mapping of PCI DMA buffers to
 244              userspace will be enabled. Deprecated.
 245            </para></listitem>
 246          </varlistentry>
 247          <varlistentry>
 248            <term>DRIVER_SG</term>
 249            <listitem><para>
 250              Driver can perform scatter/gather DMA, allocation and mapping of
 251              scatter/gather buffers will be enabled. Deprecated.
 252            </para></listitem>
 253          </varlistentry>
 254          <varlistentry>
 255            <term>DRIVER_HAVE_DMA</term>
 256            <listitem><para>
 257              Driver supports DMA, the userspace DMA API will be supported.
 258              Deprecated.
 259            </para></listitem>
 260          </varlistentry>
 261          <varlistentry>
 262            <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
 263            <listitem><para>
 264              DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
 265              managed by the DRM Core. The core will support simple IRQ handler
 266              installation when the flag is set. The installation process is
 267              described in <xref linkend="drm-irq-registration"/>.</para>
 268              <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
 269              support shared IRQs (note that this is required of PCI  drivers).
 270            </para></listitem>
 271          </varlistentry>
 272          <varlistentry>
 273            <term>DRIVER_GEM</term>
 274            <listitem><para>
 275              Driver use the GEM memory manager.
 276            </para></listitem>
 277          </varlistentry>
 278          <varlistentry>
 279            <term>DRIVER_MODESET</term>
 280            <listitem><para>
 281              Driver supports mode setting interfaces (KMS).
 282            </para></listitem>
 283          </varlistentry>
 284          <varlistentry>
 285            <term>DRIVER_PRIME</term>
 286            <listitem><para>
 287              Driver implements DRM PRIME buffer sharing.
 288            </para></listitem>
 289          </varlistentry>
 290          <varlistentry>
 291            <term>DRIVER_RENDER</term>
 292            <listitem><para>
 293              Driver supports dedicated render nodes.
 294            </para></listitem>
 295          </varlistentry>
 296          <varlistentry>
 297            <term>DRIVER_ATOMIC</term>
 298            <listitem><para>
 299              Driver supports atomic properties.  In this case the driver
 300              must implement appropriate obj->atomic_get_property() vfuncs
 301              for any modeset objects with driver specific properties.
 302            </para></listitem>
 303          </varlistentry>
 304        </variablelist>
 305      </sect3>
 306      <sect3>
 307        <title>Major, Minor and Patchlevel</title>
 308        <synopsis>int major;
 309int minor;
 310int patchlevel;</synopsis>
 311        <para>
 312          The DRM core identifies driver versions by a major, minor and patch
 313          level triplet. The information is printed to the kernel log at
 314          initialization time and passed to userspace through the
 315          DRM_IOCTL_VERSION ioctl.
 316        </para>
 317        <para>
 318          The major and minor numbers are also used to verify the requested driver
 319          API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
 320          between minor versions, applications can call DRM_IOCTL_SET_VERSION to
 321          select a specific version of the API. If the requested major isn't equal
 322          to the driver major, or the requested minor is larger than the driver
 323          minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
 324          the driver's set_version() method will be called with the requested
 325          version.
 326        </para>
 327      </sect3>
 328      <sect3>
 329        <title>Name, Description and Date</title>
 330        <synopsis>char *name;
 331char *desc;
 332char *date;</synopsis>
 333        <para>
 334          The driver name is printed to the kernel log at initialization time,
 335          used for IRQ registration and passed to userspace through
 336          DRM_IOCTL_VERSION.
 337        </para>
 338        <para>
 339          The driver description is a purely informative string passed to
 340          userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
 341          the kernel.
 342        </para>
 343        <para>
 344          The driver date, formatted as YYYYMMDD, is meant to identify the date of
 345          the latest modification to the driver. However, as most drivers fail to
 346          update it, its value is mostly useless. The DRM core prints it to the
 347          kernel log at initialization time and passes it to userspace through the
 348          DRM_IOCTL_VERSION ioctl.
 349        </para>
 350      </sect3>
 351    </sect2>
 352    <sect2>
 353      <title>Device Instance and Driver Handling</title>
 354!Pdrivers/gpu/drm/drm_drv.c driver instance overview
 355!Edrivers/gpu/drm/drm_drv.c
 356    </sect2>
 357    <sect2>
 358      <title>Driver Load</title>
 359      <sect3 id="drm-irq-registration">
 360        <title>IRQ Registration</title>
 361        <para>
 362          The DRM core tries to facilitate IRQ handler registration and
 363          unregistration by providing <function>drm_irq_install</function> and
 364          <function>drm_irq_uninstall</function> functions. Those functions only
 365          support a single interrupt per device, devices that use more than one
 366          IRQs need to be handled manually.
 367        </para>
 368        <sect4>
 369          <title>Managed IRQ Registration</title>
 370          <para>
 371            <function>drm_irq_install</function> starts by calling the
 372            <methodname>irq_preinstall</methodname> driver operation. The operation
 373            is optional and must make sure that the interrupt will not get fired by
 374            clearing all pending interrupt flags or disabling the interrupt.
 375          </para>
 376          <para>
 377            The passed-in IRQ will then be requested by a call to
 378            <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
 379            feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
 380            requested.
 381          </para>
 382          <para>
 383            The IRQ handler function must be provided as the mandatory irq_handler
 384            driver operation. It will get passed directly to
 385            <function>request_irq</function> and thus has the same prototype as all
 386            IRQ handlers. It will get called with a pointer to the DRM device as the
 387            second argument.
 388          </para>
 389          <para>
 390            Finally the function calls the optional
 391            <methodname>irq_postinstall</methodname> driver operation. The operation
 392            usually enables interrupts (excluding the vblank interrupt, which is
 393            enabled separately), but drivers may choose to enable/disable interrupts
 394            at a different time.
 395          </para>
 396          <para>
 397            <function>drm_irq_uninstall</function> is similarly used to uninstall an
 398            IRQ handler. It starts by waking up all processes waiting on a vblank
 399            interrupt to make sure they don't hang, and then calls the optional
 400            <methodname>irq_uninstall</methodname> driver operation. The operation
 401            must disable all hardware interrupts. Finally the function frees the IRQ
 402            by calling <function>free_irq</function>.
 403          </para>
 404        </sect4>
 405        <sect4>
 406          <title>Manual IRQ Registration</title>
 407          <para>
 408            Drivers that require multiple interrupt handlers can't use the managed
 409            IRQ registration functions. In that case IRQs must be registered and
 410            unregistered manually (usually with the <function>request_irq</function>
 411            and <function>free_irq</function> functions, or their devm_* equivalent).
 412          </para>
 413          <para>
 414            When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
 415            driver feature flag, and must not provide the
 416	    <methodname>irq_handler</methodname> driver operation. They must set the
 417	    <structname>drm_device</structname> <structfield>irq_enabled</structfield>
 418	    field to 1 upon registration of the IRQs, and clear it to 0 after
 419	    unregistering the IRQs.
 420          </para>
 421        </sect4>
 422      </sect3>
 423      <sect3>
 424        <title>Memory Manager Initialization</title>
 425        <para>
 426          Every DRM driver requires a memory manager which must be initialized at
 427          load time. DRM currently contains two memory managers, the Translation
 428          Table Manager (TTM) and the Graphics Execution Manager (GEM).
 429          This document describes the use of the GEM memory manager only. See
 430          <xref linkend="drm-memory-management"/> for details.
 431        </para>
 432      </sect3>
 433      <sect3>
 434        <title>Miscellaneous Device Configuration</title>
 435        <para>
 436          Another task that may be necessary for PCI devices during configuration
 437          is mapping the video BIOS. On many devices, the VBIOS describes device
 438          configuration, LCD panel timings (if any), and contains flags indicating
 439          device state. Mapping the BIOS can be done using the pci_map_rom() call,
 440          a convenience function that takes care of mapping the actual ROM,
 441          whether it has been shadowed into memory (typically at address 0xc0000)
 442          or exists on the PCI device in the ROM BAR. Note that after the ROM has
 443          been mapped and any necessary information has been extracted, it should
 444          be unmapped; on many devices, the ROM address decoder is shared with
 445          other BARs, so leaving it mapped could cause undesired behaviour like
 446          hangs or memory corruption.
 447  <!--!Fdrivers/pci/rom.c pci_map_rom-->
 448        </para>
 449      </sect3>
 450    </sect2>
 451    <sect2>
 452      <title>Bus-specific Device Registration and PCI Support</title>
 453      <para>
 454        A number of functions are provided to help with device registration.
 455	The functions deal with PCI and platform devices respectively and are
 456	only provided for historical reasons. These are all deprecated and
 457	shouldn't be used in new drivers. Besides that there's a few
 458	helpers for pci drivers.
 459      </para>
 460!Edrivers/gpu/drm/drm_pci.c
 461!Edrivers/gpu/drm/drm_platform.c
 462    </sect2>
 463  </sect1>
 464
 465  <!-- Internals: memory management -->
 466
 467  <sect1 id="drm-memory-management">
 468    <title>Memory management</title>
 469    <para>
 470      Modern Linux systems require large amount of graphics memory to store
 471      frame buffers, textures, vertices and other graphics-related data. Given
 472      the very dynamic nature of many of that data, managing graphics memory
 473      efficiently is thus crucial for the graphics stack and plays a central
 474      role in the DRM infrastructure.
 475    </para>
 476    <para>
 477      The DRM core includes two memory managers, namely Translation Table Maps
 478      (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
 479      manager to be developed and tried to be a one-size-fits-them all
 480      solution. It provides a single userspace API to accommodate the need of
 481      all hardware, supporting both Unified Memory Architecture (UMA) devices
 482      and devices with dedicated video RAM (i.e. most discrete video cards).
 483      This resulted in a large, complex piece of code that turned out to be
 484      hard to use for driver development.
 485    </para>
 486    <para>
 487      GEM started as an Intel-sponsored project in reaction to TTM's
 488      complexity. Its design philosophy is completely different: instead of
 489      providing a solution to every graphics memory-related problems, GEM
 490      identified common code between drivers and created a support library to
 491      share it. GEM has simpler initialization and execution requirements than
 492      TTM, but has no video RAM management capabilities and is thus limited to
 493      UMA devices.
 494    </para>
 495    <sect2>
 496      <title>The Translation Table Manager (TTM)</title>
 497      <para>
 498        TTM design background and information belongs here.
 499      </para>
 500      <sect3>
 501        <title>TTM initialization</title>
 502        <warning><para>This section is outdated.</para></warning>
 503        <para>
 504          Drivers wishing to support TTM must fill out a drm_bo_driver
 505          structure. The structure contains several fields with function
 506          pointers for initializing the TTM, allocating and freeing memory,
 507          waiting for command completion and fence synchronization, and memory
 508          migration. See the radeon_ttm.c file for an example of usage.
 509        </para>
 510        <para>
 511          The ttm_global_reference structure is made up of several fields:
 512        </para>
 513        <programlisting>
 514          struct ttm_global_reference {
 515                  enum ttm_global_types global_type;
 516                  size_t size;
 517                  void *object;
 518                  int (*init) (struct ttm_global_reference *);
 519                  void (*release) (struct ttm_global_reference *);
 520          };
 521        </programlisting>
 522        <para>
 523          There should be one global reference structure for your memory
 524          manager as a whole, and there will be others for each object
 525          created by the memory manager at runtime.  Your global TTM should
 526          have a type of TTM_GLOBAL_TTM_MEM.  The size field for the global
 527          object should be sizeof(struct ttm_mem_global), and the init and
 528          release hooks should point at your driver-specific init and
 529          release routines, which probably eventually call
 530          ttm_mem_global_init and ttm_mem_global_release, respectively.
 531        </para>
 532        <para>
 533          Once your global TTM accounting structure is set up and initialized
 534          by calling ttm_global_item_ref() on it,
 535          you need to create a buffer object TTM to
 536          provide a pool for buffer object allocation by clients and the
 537          kernel itself.  The type of this object should be TTM_GLOBAL_TTM_BO,
 538          and its size should be sizeof(struct ttm_bo_global).  Again,
 539          driver-specific init and release functions may be provided,
 540          likely eventually calling ttm_bo_global_init() and
 541          ttm_bo_global_release(), respectively.  Also, like the previous
 542          object, ttm_global_item_ref() is used to create an initial reference
 543          count for the TTM, which will call your initialization function.
 544        </para>
 545      </sect3>
 546    </sect2>
 547    <sect2 id="drm-gem">
 548      <title>The Graphics Execution Manager (GEM)</title>
 549      <para>
 550        The GEM design approach has resulted in a memory manager that doesn't
 551        provide full coverage of all (or even all common) use cases in its
 552        userspace or kernel API. GEM exposes a set of standard memory-related
 553        operations to userspace and a set of helper functions to drivers, and let
 554        drivers implement hardware-specific operations with their own private API.
 555      </para>
 556      <para>
 557        The GEM userspace API is described in the
 558        <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
 559        Execution Manager</citetitle></ulink> article on LWN. While slightly
 560        outdated, the document provides a good overview of the GEM API principles.
 561        Buffer allocation and read and write operations, described as part of the
 562        common GEM API, are currently implemented using driver-specific ioctls.
 563      </para>
 564      <para>
 565        GEM is data-agnostic. It manages abstract buffer objects without knowing
 566        what individual buffers contain. APIs that require knowledge of buffer
 567        contents or purpose, such as buffer allocation or synchronization
 568        primitives, are thus outside of the scope of GEM and must be implemented
 569        using driver-specific ioctls.
 570      </para>
 571      <para>
 572        On a fundamental level, GEM involves several operations:
 573        <itemizedlist>
 574          <listitem>Memory allocation and freeing</listitem>
 575          <listitem>Command execution</listitem>
 576          <listitem>Aperture management at command execution time</listitem>
 577        </itemizedlist>
 578        Buffer object allocation is relatively straightforward and largely
 579        provided by Linux's shmem layer, which provides memory to back each
 580        object.
 581      </para>
 582      <para>
 583        Device-specific operations, such as command execution, pinning, buffer
 584        read &amp; write, mapping, and domain ownership transfers are left to
 585        driver-specific ioctls.
 586      </para>
 587      <sect3>
 588        <title>GEM Initialization</title>
 589        <para>
 590          Drivers that use GEM must set the DRIVER_GEM bit in the struct
 591          <structname>drm_driver</structname>
 592          <structfield>driver_features</structfield> field. The DRM core will
 593          then automatically initialize the GEM core before calling the
 594          <methodname>load</methodname> operation. Behind the scene, this will
 595          create a DRM Memory Manager object which provides an address space
 596          pool for object allocation.
 597        </para>
 598        <para>
 599          In a KMS configuration, drivers need to allocate and initialize a
 600          command ring buffer following core GEM initialization if required by
 601          the hardware. UMA devices usually have what is called a "stolen"
 602          memory region, which provides space for the initial framebuffer and
 603          large, contiguous memory regions required by the device. This space is
 604          typically not managed by GEM, and must be initialized separately into
 605          its own DRM MM object.
 606        </para>
 607      </sect3>
 608      <sect3>
 609        <title>GEM Objects Creation</title>
 610        <para>
 611          GEM splits creation of GEM objects and allocation of the memory that
 612          backs them in two distinct operations.
 613        </para>
 614        <para>
 615          GEM objects are represented by an instance of struct
 616          <structname>drm_gem_object</structname>. Drivers usually need to extend
 617          GEM objects with private information and thus create a driver-specific
 618          GEM object structure type that embeds an instance of struct
 619          <structname>drm_gem_object</structname>.
 620        </para>
 621        <para>
 622          To create a GEM object, a driver allocates memory for an instance of its
 623          specific GEM object type and initializes the embedded struct
 624          <structname>drm_gem_object</structname> with a call to
 625          <function>drm_gem_object_init</function>. The function takes a pointer to
 626          the DRM device, a pointer to the GEM object and the buffer object size
 627          in bytes.
 628        </para>
 629        <para>
 630          GEM uses shmem to allocate anonymous pageable memory.
 631          <function>drm_gem_object_init</function> will create an shmfs file of
 632          the requested size and store it into the struct
 633          <structname>drm_gem_object</structname> <structfield>filp</structfield>
 634          field. The memory is used as either main storage for the object when the
 635          graphics hardware uses system memory directly or as a backing store
 636          otherwise.
 637        </para>
 638        <para>
 639          Drivers are responsible for the actual physical pages allocation by
 640          calling <function>shmem_read_mapping_page_gfp</function> for each page.
 641          Note that they can decide to allocate pages when initializing the GEM
 642          object, or to delay allocation until the memory is needed (for instance
 643          when a page fault occurs as a result of a userspace memory access or
 644          when the driver needs to start a DMA transfer involving the memory).
 645        </para>
 646        <para>
 647          Anonymous pageable memory allocation is not always desired, for instance
 648          when the hardware requires physically contiguous system memory as is
 649          often the case in embedded devices. Drivers can create GEM objects with
 650          no shmfs backing (called private GEM objects) by initializing them with
 651          a call to <function>drm_gem_private_object_init</function> instead of
 652          <function>drm_gem_object_init</function>. Storage for private GEM
 653          objects must be managed by drivers.
 654        </para>
 655      </sect3>
 656      <sect3>
 657        <title>GEM Objects Lifetime</title>
 658        <para>
 659          All GEM objects are reference-counted by the GEM core. References can be
 660          acquired and release by <function>calling drm_gem_object_reference</function>
 661          and <function>drm_gem_object_unreference</function> respectively. The
 662          caller must hold the <structname>drm_device</structname>
 663	  <structfield>struct_mutex</structfield> lock when calling
 664	  <function>drm_gem_object_reference</function>. As a convenience, GEM
 665	  provides <function>drm_gem_object_unreference_unlocked</function>
 666	  functions that can be called without holding the lock.
 667        </para>
 668        <para>
 669          When the last reference to a GEM object is released the GEM core calls
 670          the <structname>drm_driver</structname>
 671          <methodname>gem_free_object</methodname> operation. That operation is
 672          mandatory for GEM-enabled drivers and must free the GEM object and all
 673          associated resources.
 674        </para>
 675        <para>
 676          <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
 677          Drivers are responsible for freeing all GEM object resources. This includes
 678          the resources created by the GEM core, which need to be released with
 679          <function>drm_gem_object_release</function>.
 680        </para>
 681      </sect3>
 682      <sect3>
 683        <title>GEM Objects Naming</title>
 684        <para>
 685          Communication between userspace and the kernel refers to GEM objects
 686          using local handles, global names or, more recently, file descriptors.
 687          All of those are 32-bit integer values; the usual Linux kernel limits
 688          apply to the file descriptors.
 689        </para>
 690        <para>
 691          GEM handles are local to a DRM file. Applications get a handle to a GEM
 692          object through a driver-specific ioctl, and can use that handle to refer
 693          to the GEM object in other standard or driver-specific ioctls. Closing a
 694          DRM file handle frees all its GEM handles and dereferences the
 695          associated GEM objects.
 696        </para>
 697        <para>
 698          To create a handle for a GEM object drivers call
 699          <function>drm_gem_handle_create</function>. The function takes a pointer
 700          to the DRM file and the GEM object and returns a locally unique handle.
 701          When the handle is no longer needed drivers delete it with a call to
 702          <function>drm_gem_handle_delete</function>. Finally the GEM object
 703          associated with a handle can be retrieved by a call to
 704          <function>drm_gem_object_lookup</function>.
 705        </para>
 706        <para>
 707          Handles don't take ownership of GEM objects, they only take a reference
 708          to the object that will be dropped when the handle is destroyed. To
 709          avoid leaking GEM objects, drivers must make sure they drop the
 710          reference(s) they own (such as the initial reference taken at object
 711          creation time) as appropriate, without any special consideration for the
 712          handle. For example, in the particular case of combined GEM object and
 713          handle creation in the implementation of the
 714          <methodname>dumb_create</methodname> operation, drivers must drop the
 715          initial reference to the GEM object before returning the handle.
 716        </para>
 717        <para>
 718          GEM names are similar in purpose to handles but are not local to DRM
 719          files. They can be passed between processes to reference a GEM object
 720          globally. Names can't be used directly to refer to objects in the DRM
 721          API, applications must convert handles to names and names to handles
 722          using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
 723          respectively. The conversion is handled by the DRM core without any
 724          driver-specific support.
 725        </para>
 726        <para>
 727          GEM also supports buffer sharing with dma-buf file descriptors through
 728          PRIME. GEM-based drivers must use the provided helpers functions to
 729          implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
 730          Since sharing file descriptors is inherently more secure than the
 731          easily guessable and global GEM names it is the preferred buffer
 732          sharing mechanism. Sharing buffers through GEM names is only supported
 733          for legacy userspace. Furthermore PRIME also allows cross-device
 734          buffer sharing since it is based on dma-bufs.
 735        </para>
 736      </sect3>
 737      <sect3 id="drm-gem-objects-mapping">
 738        <title>GEM Objects Mapping</title>
 739        <para>
 740          Because mapping operations are fairly heavyweight GEM favours
 741          read/write-like access to buffers, implemented through driver-specific
 742          ioctls, over mapping buffers to userspace. However, when random access
 743          to the buffer is needed (to perform software rendering for instance),
 744          direct access to the object can be more efficient.
 745        </para>
 746        <para>
 747          The mmap system call can't be used directly to map GEM objects, as they
 748          don't have their own file handle. Two alternative methods currently
 749          co-exist to map GEM objects to userspace. The first method uses a
 750          driver-specific ioctl to perform the mapping operation, calling
 751          <function>do_mmap</function> under the hood. This is often considered
 752          dubious, seems to be discouraged for new GEM-enabled drivers, and will
 753          thus not be described here.
 754        </para>
 755        <para>
 756          The second method uses the mmap system call on the DRM file handle.
 757          <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
 758             off_t offset);</synopsis>
 759          DRM identifies the GEM object to be mapped by a fake offset passed
 760          through the mmap offset argument. Prior to being mapped, a GEM object
 761          must thus be associated with a fake offset. To do so, drivers must call
 762          <function>drm_gem_create_mmap_offset</function> on the object.
 763        </para>
 764        <para>
 765          Once allocated, the fake offset value
 766          must be passed to the application in a driver-specific way and can then
 767          be used as the mmap offset argument.
 768        </para>
 769        <para>
 770          The GEM core provides a helper method <function>drm_gem_mmap</function>
 771          to handle object mapping. The method can be set directly as the mmap
 772          file operation handler. It will look up the GEM object based on the
 773          offset value and set the VMA operations to the
 774          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
 775          field. Note that <function>drm_gem_mmap</function> doesn't map memory to
 776          userspace, but relies on the driver-provided fault handler to map pages
 777          individually.
 778        </para>
 779        <para>
 780          To use <function>drm_gem_mmap</function>, drivers must fill the struct
 781          <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
 782          field with a pointer to VM operations.
 783        </para>
 784        <para>
 785          <synopsis>struct vm_operations_struct *gem_vm_ops
 786
 787  struct vm_operations_struct {
 788          void (*open)(struct vm_area_struct * area);
 789          void (*close)(struct vm_area_struct * area);
 790          int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 791  };</synopsis>
 792        </para>
 793        <para>
 794          The <methodname>open</methodname> and <methodname>close</methodname>
 795          operations must update the GEM object reference count. Drivers can use
 796          the <function>drm_gem_vm_open</function> and
 797          <function>drm_gem_vm_close</function> helper functions directly as open
 798          and close handlers.
 799        </para>
 800        <para>
 801          The fault operation handler is responsible for mapping individual pages
 802          to userspace when a page fault occurs. Depending on the memory
 803          allocation scheme, drivers can allocate pages at fault time, or can
 804          decide to allocate memory for the GEM object at the time the object is
 805          created.
 806        </para>
 807        <para>
 808          Drivers that want to map the GEM object upfront instead of handling page
 809          faults can implement their own mmap file operation handler.
 810        </para>
 811      </sect3>
 812      <sect3>
 813        <title>Memory Coherency</title>
 814        <para>
 815          When mapped to the device or used in a command buffer, backing pages
 816          for an object are flushed to memory and marked write combined so as to
 817          be coherent with the GPU. Likewise, if the CPU accesses an object
 818          after the GPU has finished rendering to the object, then the object
 819          must be made coherent with the CPU's view of memory, usually involving
 820          GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
 821          coherency management is provided by a device-specific ioctl, which
 822          evaluates an object's current domain and performs any necessary
 823          flushing or synchronization to put the object into the desired
 824          coherency domain (note that the object may be busy, i.e. an active
 825          render target; in that case, setting the domain blocks the client and
 826          waits for rendering to complete before performing any necessary
 827          flushing operations).
 828        </para>
 829      </sect3>
 830      <sect3>
 831        <title>Command Execution</title>
 832        <para>
 833          Perhaps the most important GEM function for GPU devices is providing a
 834          command execution interface to clients. Client programs construct
 835          command buffers containing references to previously allocated memory
 836          objects, and then submit them to GEM. At that point, GEM takes care to
 837          bind all the objects into the GTT, execute the buffer, and provide
 838          necessary synchronization between clients accessing the same buffers.
 839          This often involves evicting some objects from the GTT and re-binding
 840          others (a fairly expensive operation), and providing relocation
 841          support which hides fixed GTT offsets from clients. Clients must take
 842          care not to submit command buffers that reference more objects than
 843          can fit in the GTT; otherwise, GEM will reject them and no rendering
 844          will occur. Similarly, if several objects in the buffer require fence
 845          registers to be allocated for correct rendering (e.g. 2D blits on
 846          pre-965 chips), care must be taken not to require more fence registers
 847          than are available to the client. Such resource management should be
 848          abstracted from the client in libdrm.
 849        </para>
 850      </sect3>
 851    </sect2>
 852    <sect2>
 853      <title>GEM Function Reference</title>
 854!Edrivers/gpu/drm/drm_gem.c
 855!Iinclude/drm/drm_gem.h
 856    </sect2>
 857    <sect2>
 858      <title>VMA Offset Manager</title>
 859!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
 860!Edrivers/gpu/drm/drm_vma_manager.c
 861!Iinclude/drm/drm_vma_manager.h
 862    </sect2>
 863    <sect2 id="drm-prime-support">
 864      <title>PRIME Buffer Sharing</title>
 865      <para>
 866        PRIME is the cross device buffer sharing framework in drm, originally
 867        created for the OPTIMUS range of multi-gpu platforms. To userspace
 868        PRIME buffers are dma-buf based file descriptors.
 869      </para>
 870      <sect3>
 871        <title>Overview and Driver Interface</title>
 872        <para>
 873          Similar to GEM global names, PRIME file descriptors are
 874          also used to share buffer objects across processes. They offer
 875          additional security: as file descriptors must be explicitly sent over
 876          UNIX domain sockets to be shared between applications, they can't be
 877          guessed like the globally unique GEM names.
 878        </para>
 879        <para>
 880          Drivers that support the PRIME
 881          API must set the DRIVER_PRIME bit in the struct
 882          <structname>drm_driver</structname>
 883          <structfield>driver_features</structfield> field, and implement the
 884          <methodname>prime_handle_to_fd</methodname> and
 885          <methodname>prime_fd_to_handle</methodname> operations.
 886        </para>
 887        <para>
 888          <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
 889                          struct drm_file *file_priv, uint32_t handle,
 890                          uint32_t flags, int *prime_fd);
 891int (*prime_fd_to_handle)(struct drm_device *dev,
 892                          struct drm_file *file_priv, int prime_fd,
 893                          uint32_t *handle);</synopsis>
 894            Those two operations convert a handle to a PRIME file descriptor and
 895            vice versa. Drivers must use the kernel dma-buf buffer sharing framework
 896            to manage the PRIME file descriptors. Similar to the mode setting
 897            API PRIME is agnostic to the underlying buffer object manager, as
 898            long as handles are 32bit unsigned integers.
 899          </para>
 900          <para>
 901            While non-GEM drivers must implement the operations themselves, GEM
 902            drivers must use the <function>drm_gem_prime_handle_to_fd</function>
 903            and <function>drm_gem_prime_fd_to_handle</function> helper functions.
 904            Those helpers rely on the driver
 905            <methodname>gem_prime_export</methodname> and
 906            <methodname>gem_prime_import</methodname> operations to create a dma-buf
 907            instance from a GEM object (dma-buf exporter role) and to create a GEM
 908            object from a dma-buf instance (dma-buf importer role).
 909          </para>
 910          <para>
 911            <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
 912                             struct drm_gem_object *obj,
 913                             int flags);
 914struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
 915                                            struct dma_buf *dma_buf);</synopsis>
 916            These two operations are mandatory for GEM drivers that support
 917            PRIME.
 918          </para>
 919        </sect3>
 920      <sect3>
 921        <title>PRIME Helper Functions</title>
 922!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
 923      </sect3>
 924    </sect2>
 925    <sect2>
 926      <title>PRIME Function References</title>
 927!Edrivers/gpu/drm/drm_prime.c
 928    </sect2>
 929    <sect2>
 930      <title>DRM MM Range Allocator</title>
 931      <sect3>
 932        <title>Overview</title>
 933!Pdrivers/gpu/drm/drm_mm.c Overview
 934      </sect3>
 935      <sect3>
 936        <title>LRU Scan/Eviction Support</title>
 937!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
 938      </sect3>
 939      </sect2>
 940    <sect2>
 941      <title>DRM MM Range Allocator Function References</title>
 942!Edrivers/gpu/drm/drm_mm.c
 943!Iinclude/drm/drm_mm.h
 944    </sect2>
 945    <sect2>
 946      <title>CMA Helper Functions Reference</title>
 947!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
 948!Edrivers/gpu/drm/drm_gem_cma_helper.c
 949!Iinclude/drm/drm_gem_cma_helper.h
 950    </sect2>
 951  </sect1>
 952
 953  <!-- Internals: mode setting -->
 954
 955  <sect1 id="drm-mode-setting">
 956    <title>Mode Setting</title>
 957    <para>
 958      Drivers must initialize the mode setting core by calling
 959      <function>drm_mode_config_init</function> on the DRM device. The function
 960      initializes the <structname>drm_device</structname>
 961      <structfield>mode_config</structfield> field and never fails. Once done,
 962      mode configuration must be setup by initializing the following fields.
 963    </para>
 964    <itemizedlist>
 965      <listitem>
 966        <synopsis>int min_width, min_height;
 967int max_width, max_height;</synopsis>
 968        <para>
 969	  Minimum and maximum width and height of the frame buffers in pixel
 970	  units.
 971	</para>
 972      </listitem>
 973      <listitem>
 974        <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
 975	<para>Mode setting functions.</para>
 976      </listitem>
 977    </itemizedlist>
 978    <sect2>
 979      <title>Display Modes Function Reference</title>
 980!Iinclude/drm/drm_modes.h
 981!Edrivers/gpu/drm/drm_modes.c
 982    </sect2>
 983    <sect2>
 984      <title>Atomic Mode Setting Function Reference</title>
 985!Edrivers/gpu/drm/drm_atomic.c
 986!Idrivers/gpu/drm/drm_atomic.c
 987    </sect2>
 988    <sect2>
 989      <title>Frame Buffer Abstraction</title>
 990      <para>
 991        Frame buffers are abstract memory objects that provide a source of
 992        pixels to scanout to a CRTC. Applications explicitly request the
 993        creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
 994        receive an opaque handle that can be passed to the KMS CRTC control,
 995        plane configuration and page flip functions.
 996      </para>
 997      <para>
 998        Frame buffers rely on the underneath memory manager for low-level memory
 999        operations. When creating a frame buffer applications pass a memory
1000        handle (or a list of memory handles for multi-planar formats) through
1001	the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
1002	GEM as their userspace buffer management interface this would be a GEM
1003	handle.  Drivers are however free to use their own backing storage object
1004	handles, e.g. vmwgfx directly exposes special TTM handles to userspace
1005	and so expects TTM handles in the create ioctl and not GEM handles.
1006      </para>
1007      <para>
1008	The lifetime of a drm framebuffer is controlled with a reference count,
1009	drivers can grab additional references with
1010	<function>drm_framebuffer_reference</function>and drop them
1011	again with <function>drm_framebuffer_unreference</function>. For
1012	driver-private framebuffers for which the last reference is never
1013	dropped (e.g. for the fbdev framebuffer when the struct
1014	<structname>drm_framebuffer</structname> is embedded into the fbdev
1015	helper struct) drivers can manually clean up a framebuffer at module
1016	unload time with
1017	<function>drm_framebuffer_unregister_private</function>.
1018      </para>
1019    </sect2>
1020    <sect2>
1021      <title>Dumb Buffer Objects</title>
1022      <para>
1023	The KMS API doesn't standardize backing storage object creation and
1024	leaves it to driver-specific ioctls. Furthermore actually creating a
1025	buffer object even for GEM-based drivers is done through a
1026	driver-specific ioctl - GEM only has a common userspace interface for
1027	sharing and destroying objects. While not an issue for full-fledged
1028	graphics stacks that include device-specific userspace components (in
1029	libdrm for instance), this limit makes DRM-based early boot graphics
1030	unnecessarily complex.
1031      </para>
1032      <para>
1033        Dumb objects partly alleviate the problem by providing a standard
1034        API to create dumb buffers suitable for scanout, which can then be used
1035        to create KMS frame buffers.
1036      </para>
1037      <para>
1038        To support dumb objects drivers must implement the
1039        <methodname>dumb_create</methodname>,
1040        <methodname>dumb_destroy</methodname> and
1041        <methodname>dumb_map_offset</methodname> operations.
1042      </para>
1043      <itemizedlist>
1044        <listitem>
1045          <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
1046                   struct drm_mode_create_dumb *args);</synopsis>
1047          <para>
1048            The <methodname>dumb_create</methodname> operation creates a driver
1049	    object (GEM or TTM handle) suitable for scanout based on the
1050	    width, height and depth from the struct
1051	    <structname>drm_mode_create_dumb</structname> argument. It fills the
1052	    argument's <structfield>handle</structfield>,
1053	    <structfield>pitch</structfield> and <structfield>size</structfield>
1054	    fields with a handle for the newly created object and its line
1055            pitch and size in bytes.
1056          </para>
1057        </listitem>
1058        <listitem>
1059          <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
1060                    uint32_t handle);</synopsis>
1061          <para>
1062            The <methodname>dumb_destroy</methodname> operation destroys a dumb
1063            object created by <methodname>dumb_create</methodname>.
1064          </para>
1065        </listitem>
1066        <listitem>
1067          <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
1068                       uint32_t handle, uint64_t *offset);</synopsis>
1069          <para>
1070            The <methodname>dumb_map_offset</methodname> operation associates an
1071            mmap fake offset with the object given by the handle and returns
1072            it. Drivers must use the
1073            <function>drm_gem_create_mmap_offset</function> function to
1074            associate the fake offset as described in
1075            <xref linkend="drm-gem-objects-mapping"/>.
1076          </para>
1077        </listitem>
1078      </itemizedlist>
1079      <para>
1080        Note that dumb objects may not be used for gpu acceleration, as has been
1081	attempted on some ARM embedded platforms. Such drivers really must have
1082	a hardware-specific ioctl to allocate suitable buffer objects.
1083      </para>
1084    </sect2>
1085    <sect2>
1086      <title>Output Polling</title>
1087      <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1088      <para>
1089        This operation notifies the driver that the status of one or more
1090        connectors has changed. Drivers that use the fb helper can just call the
1091        <function>drm_fb_helper_hotplug_event</function> function to handle this
1092        operation.
1093      </para>
1094    </sect2>
1095    <sect2>
1096      <title>Locking</title>
1097      <para>
1098        Beside some lookup structures with their own locking (which is hidden
1099	behind the interface functions) most of the modeset state is protected
1100	by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1101	per-crtc locks to allow cursor updates, pageflips and similar operations
1102	to occur concurrently with background tasks like output detection.
1103	Operations which cross domains like a full modeset always grab all
1104	locks. Drivers there need to protect resources shared between crtcs with
1105	additional locking. They also need to be careful to always grab the
1106	relevant crtc locks if a modset functions touches crtc state, e.g. for
1107	load detection (which does only grab the <code>mode_config.lock</code>
1108	to allow concurrent screen updates on live crtcs).
1109      </para>
1110    </sect2>
1111  </sect1>
1112
1113  <!-- Internals: kms initialization and cleanup -->
1114
1115  <sect1 id="drm-kms-init">
1116    <title>KMS Initialization and Cleanup</title>
1117    <para>
1118      A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1119      and connectors. KMS drivers must thus create and initialize all those
1120      objects at load time after initializing mode setting.
1121    </para>
1122    <sect2>
1123      <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1124      <para>
1125        A CRTC is an abstraction representing a part of the chip that contains a
1126	pointer to a scanout buffer. Therefore, the number of CRTCs available
1127	determines how many independent scanout buffers can be active at any
1128	given time. The CRTC structure contains several fields to support this:
1129	a pointer to some video memory (abstracted as a frame buffer object), a
1130	display mode, and an (x, y) offset into the video memory to support
1131	panning or configurations where one piece of video memory spans multiple
1132	CRTCs.
1133      </para>
1134      <sect3>
1135        <title>CRTC Initialization</title>
1136        <para>
1137          A KMS device must create and register at least one struct
1138          <structname>drm_crtc</structname> instance. The instance is allocated
1139          and zeroed by the driver, possibly as part of a larger structure, and
1140          registered with a call to <function>drm_crtc_init</function> with a
1141          pointer to CRTC functions.
1142        </para>
1143      </sect3>
1144    </sect2>
1145    <sect2>
1146      <title>Planes (struct <structname>drm_plane</structname>)</title>
1147      <para>
1148        A plane represents an image source that can be blended with or overlayed
1149	on top of a CRTC during the scanout process. Planes are associated with
1150	a frame buffer to crop a portion of the image memory (source) and
1151	optionally scale it to a destination size. The result is then blended
1152	with or overlayed on top of a CRTC.
1153      </para>
1154      <para>
1155      The DRM core recognizes three types of planes:
1156      <itemizedlist>
1157        <listitem>
1158        DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC.  Primary
1159        planes are the planes operated upon by CRTC modesetting and flipping
1160	operations described in the page_flip hook in <structname>drm_crtc_funcs</structname>.
1161        </listitem>
1162        <listitem>
1163        DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC.  Cursor
1164        planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
1165        DRM_IOCTL_MODE_CURSOR2 ioctls.
1166        </listitem>
1167        <listitem>
1168        DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
1169        Some drivers refer to these types of planes as "sprites" internally.
1170        </listitem>
1171      </itemizedlist>
1172      For compatibility with legacy userspace, only overlay planes are made
1173      available to userspace by default.  Userspace clients may set the
1174      DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
1175      they wish to receive a universal plane list containing all plane types.
1176      </para>
1177      <sect3>
1178        <title>Plane Initialization</title>
1179        <para>
1180          To create a plane, a KMS drivers allocates and
1181          zeroes an instances of struct <structname>drm_plane</structname>
1182          (possibly as part of a larger structure) and registers it with a call
1183          to <function>drm_universal_plane_init</function>. The function takes a bitmask
1184          of the CRTCs that can be associated with the plane, a pointer to the
1185          plane functions, a list of format supported formats, and the type of
1186          plane (primary, cursor, or overlay) being initialized.
1187        </para>
1188        <para>
1189          Cursor and overlay planes are optional.  All drivers should provide
1190          one primary plane per CRTC (although this requirement may change in
1191          the future); drivers that do not wish to provide special handling for
1192          primary planes may make use of the helper functions described in
1193          <xref linkend="drm-kms-planehelpers"/> to create and register a
1194          primary plane with standard capabilities.
1195        </para>
1196      </sect3>
1197    </sect2>
1198    <sect2>
1199      <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1200      <para>
1201        An encoder takes pixel data from a CRTC and converts it to a format
1202	suitable for any attached connectors. On some devices, it may be
1203	possible to have a CRTC send data to more than one encoder. In that
1204	case, both encoders would receive data from the same scanout buffer,
1205	resulting in a "cloned" display configuration across the connectors
1206	attached to each encoder.
1207      </para>
1208      <sect3>
1209        <title>Encoder Initialization</title>
1210        <para>
1211          As for CRTCs, a KMS driver must create, initialize and register at
1212          least one struct <structname>drm_encoder</structname> instance. The
1213          instance is allocated and zeroed by the driver, possibly as part of a
1214          larger structure.
1215        </para>
1216        <para>
1217          Drivers must initialize the struct <structname>drm_encoder</structname>
1218          <structfield>possible_crtcs</structfield> and
1219          <structfield>possible_clones</structfield> fields before registering the
1220          encoder. Both fields are bitmasks of respectively the CRTCs that the
1221          encoder can be connected to, and sibling encoders candidate for cloning.
1222        </para>
1223        <para>
1224          After being initialized, the encoder must be registered with a call to
1225          <function>drm_encoder_init</function>. The function takes a pointer to
1226          the encoder functions and an encoder type. Supported types are
1227          <itemizedlist>
1228            <listitem>
1229              DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1230              </listitem>
1231            <listitem>
1232              DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1233            </listitem>
1234            <listitem>
1235              DRM_MODE_ENCODER_LVDS for display panels
1236            </listitem>
1237            <listitem>
1238              DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1239              SCART)
1240            </listitem>
1241            <listitem>
1242              DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1243            </listitem>
1244          </itemizedlist>
1245        </para>
1246        <para>
1247          Encoders must be attached to a CRTC to be used. DRM drivers leave
1248          encoders unattached at initialization time. Applications (or the fbdev
1249          compatibility layer when implemented) are responsible for attaching the
1250          encoders they want to use to a CRTC.
1251        </para>
1252      </sect3>
1253    </sect2>
1254    <sect2>
1255      <title>Connectors (struct <structname>drm_connector</structname>)</title>
1256      <para>
1257        A connector is the final destination for pixel data on a device, and
1258	usually connects directly to an external display device like a monitor
1259	or laptop panel. A connector can only be attached to one encoder at a
1260	time. The connector is also the structure where information about the
1261	attached display is kept, so it contains fields for display data, EDID
1262	data, DPMS &amp; connection status, and information about modes
1263	supported on the attached displays.
1264      </para>
1265      <sect3>
1266        <title>Connector Initialization</title>
1267        <para>
1268          Finally a KMS driver must create, initialize, register and attach at
1269          least one struct <structname>drm_connector</structname> instance. The
1270          instance is created as other KMS objects and initialized by setting the
1271          following fields.
1272        </para>
1273        <variablelist>
1274          <varlistentry>
1275            <term><structfield>interlace_allowed</structfield></term>
1276            <listitem><para>
1277              Whether the connector can handle interlaced modes.
1278            </para></listitem>
1279          </varlistentry>
1280          <varlistentry>
1281            <term><structfield>doublescan_allowed</structfield></term>
1282            <listitem><para>
1283              Whether the connector can handle doublescan.
1284            </para></listitem>
1285          </varlistentry>
1286          <varlistentry>
1287            <term><structfield>display_info
1288            </structfield></term>
1289            <listitem><para>
1290              Display information is filled from EDID information when a display
1291              is detected. For non hot-pluggable displays such as flat panels in
1292              embedded systems, the driver should initialize the
1293              <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1294              and
1295              <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1296              fields with the physical size of the display.
1297            </para></listitem>
1298          </varlistentry>
1299          <varlistentry>
1300            <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1301            <listitem><para>
1302              Connector polling mode, a combination of
1303              <variablelist>
1304                <varlistentry>
1305                  <term>DRM_CONNECTOR_POLL_HPD</term>
1306                  <listitem><para>
1307                    The connector generates hotplug events and doesn't need to be
1308                    periodically polled. The CONNECT and DISCONNECT flags must not
1309                    be set together with the HPD flag.
1310                  </para></listitem>
1311                </varlistentry>
1312                <varlistentry>
1313                  <term>DRM_CONNECTOR_POLL_CONNECT</term>
1314                  <listitem><para>
1315                    Periodically poll the connector for connection.
1316                  </para></listitem>
1317                </varlistentry>
1318                <varlistentry>
1319                  <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1320                  <listitem><para>
1321                    Periodically poll the connector for disconnection.
1322                  </para></listitem>
1323                </varlistentry>
1324              </variablelist>
1325              Set to 0 for connectors that don't support connection status
1326              discovery.
1327            </para></listitem>
1328          </varlistentry>
1329        </variablelist>
1330        <para>
1331          The connector is then registered with a call to
1332          <function>drm_connector_init</function> with a pointer to the connector
1333          functions and a connector type, and exposed through sysfs with a call to
1334          <function>drm_connector_register</function>.
1335        </para>
1336        <para>
1337          Supported connector types are
1338          <itemizedlist>
1339            <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1340            <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1341            <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1342            <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1343            <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1344            <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1345            <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1346            <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1347            <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1348            <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1349            <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1350            <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1351            <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1352            <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1353            <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1354          </itemizedlist>
1355        </para>
1356        <para>
1357          Connectors must be attached to an encoder to be used. For devices that
1358          map connectors to encoders 1:1, the connector should be attached at
1359          initialization time with a call to
1360          <function>drm_mode_connector_attach_encoder</function>. The driver must
1361          also set the <structname>drm_connector</structname>
1362          <structfield>encoder</structfield> field to point to the attached
1363          encoder.
1364        </para>
1365        <para>
1366          Finally, drivers must initialize the connectors state change detection
1367          with a call to <function>drm_kms_helper_poll_init</function>. If at
1368          least one connector is pollable but can't generate hotplug interrupts
1369          (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1370          DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1371          automatically be queued to periodically poll for changes. Connectors
1372          that can generate hotplug interrupts must be marked with the
1373          DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1374          call <function>drm_helper_hpd_irq_event</function>. The function will
1375          queue a delayed work to check the state of all connectors, but no
1376          periodic polling will be done.
1377        </para>
1378      </sect3>
1379      <sect3>
1380        <title>Connector Operations</title>
1381        <note><para>
1382          Unless otherwise state, all operations are mandatory.
1383        </para></note>
1384        <sect4>
1385          <title>DPMS</title>
1386          <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1387          <para>
1388            The DPMS operation sets the power state of a connector. The mode
1389            argument is one of
1390            <itemizedlist>
1391              <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1392              <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1393              <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1394              <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1395            </itemizedlist>
1396          </para>
1397          <para>
1398            In all but DPMS_ON mode the encoder to which the connector is attached
1399            should put the display in low-power mode by driving its signals
1400            appropriately. If more than one connector is attached to the encoder
1401            care should be taken not to change the power state of other displays as
1402            a side effect. Low-power mode should be propagated to the encoders and
1403            CRTCs when all related connectors are put in low-power mode.
1404          </para>
1405        </sect4>
1406        <sect4>
1407          <title>Modes</title>
1408          <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1409                      uint32_t max_height);</synopsis>
1410          <para>
1411            Fill the mode list with all supported modes for the connector. If the
1412            <parameter>max_width</parameter> and <parameter>max_height</parameter>
1413            arguments are non-zero, the implementation must ignore all modes wider
1414            than <parameter>max_width</parameter> or higher than
1415            <parameter>max_height</parameter>.
1416          </para>
1417          <para>
1418            The connector must also fill in this operation its
1419            <structfield>display_info</structfield>
1420            <structfield>width_mm</structfield> and
1421            <structfield>height_mm</structfield> fields with the connected display
1422            physical size in millimeters. The fields should be set to 0 if the value
1423            isn't known or is not applicable (for instance for projector devices).
1424          </para>
1425        </sect4>
1426        <sect4>
1427          <title>Connection Status</title>
1428          <para>
1429            The connection status is updated through polling or hotplug events when
1430            supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1431            value is reported to userspace through ioctls and must not be used
1432            inside the driver, as it only gets initialized by a call to
1433            <function>drm_mode_getconnector</function> from userspace.
1434          </para>
1435          <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1436                                        bool force);</synopsis>
1437          <para>
1438            Check to see if anything is attached to the connector. The
1439            <parameter>force</parameter> parameter is set to false whilst polling or
1440            to true when checking the connector due to user request.
1441            <parameter>force</parameter> can be used by the driver to avoid
1442            expensive, destructive operations during automated probing.
1443          </para>
1444          <para>
1445            Return connector_status_connected if something is connected to the
1446            connector, connector_status_disconnected if nothing is connected and
1447            connector_status_unknown if the connection state isn't known.
1448          </para>
1449          <para>
1450            Drivers should only return connector_status_connected if the connection
1451            status has really been probed as connected. Connectors that can't detect
1452            the connection status, or failed connection status probes, should return
1453            connector_status_unknown.
1454          </para>
1455        </sect4>
1456      </sect3>
1457    </sect2>
1458    <sect2>
1459      <title>Cleanup</title>
1460      <para>
1461        The DRM core manages its objects' lifetime. When an object is not needed
1462	anymore the core calls its destroy function, which must clean up and
1463	free every resource allocated for the object. Every
1464	<function>drm_*_init</function> call must be matched with a
1465	corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1466	(<function>drm_crtc_cleanup</function>), planes
1467	(<function>drm_plane_cleanup</function>), encoders
1468	(<function>drm_encoder_cleanup</function>) and connectors
1469	(<function>drm_connector_cleanup</function>). Furthermore, connectors
1470	that have been added to sysfs must be removed by a call to
1471	<function>drm_connector_unregister</function> before calling
1472	<function>drm_connector_cleanup</function>.
1473      </para>
1474      <para>
1475        Connectors state change detection must be cleanup up with a call to
1476	<function>drm_kms_helper_poll_fini</function>.
1477      </para>
1478    </sect2>
1479    <sect2>
1480      <title>Output discovery and initialization example</title>
1481      <programlisting><![CDATA[
1482void intel_crt_init(struct drm_device *dev)
1483{
1484	struct drm_connector *connector;
1485	struct intel_output *intel_output;
1486
1487	intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1488	if (!intel_output)
1489		return;
1490
1491	connector = &intel_output->base;
1492	drm_connector_init(dev, &intel_output->base,
1493			   &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1494
1495	drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1496			 DRM_MODE_ENCODER_DAC);
1497
1498	drm_mode_connector_attach_encoder(&intel_output->base,
1499					  &intel_output->enc);
1500
1501	/* Set up the DDC bus. */
1502	intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1503	if (!intel_output->ddc_bus) {
1504		dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1505			   "failed.\n");
1506		return;
1507	}
1508
1509	intel_output->type = INTEL_OUTPUT_ANALOG;
1510	connector->interlace_allowed = 0;
1511	connector->doublescan_allowed = 0;
1512
1513	drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1514	drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1515
1516	drm_connector_register(connector);
1517}]]></programlisting>
1518      <para>
1519        In the example above (taken from the i915 driver), a CRTC, connector and
1520        encoder combination is created. A device-specific i2c bus is also
1521        created for fetching EDID data and performing monitor detection. Once
1522        the process is complete, the new connector is registered with sysfs to
1523        make its properties available to applications.
1524      </para>
1525    </sect2>
1526    <sect2>
1527      <title>KMS API Functions</title>
1528!Edrivers/gpu/drm/drm_crtc.c
1529    </sect2>
1530    <sect2>
1531      <title>KMS Data Structures</title>
1532!Iinclude/drm/drm_crtc.h
1533    </sect2>
1534    <sect2>
1535      <title>KMS Locking</title>
1536!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
1537!Iinclude/drm/drm_modeset_lock.h
1538!Edrivers/gpu/drm/drm_modeset_lock.c
1539    </sect2>
1540  </sect1>
1541
1542  <!-- Internals: kms helper functions -->
1543
1544  <sect1>
1545    <title>Mode Setting Helper Functions</title>
1546    <para>
1547      The plane, CRTC, encoder and connector functions provided by the drivers
1548      implement the DRM API. They're called by the DRM core and ioctl handlers
1549      to handle device state changes and configuration request. As implementing
1550      those functions often requires logic not specific to drivers, mid-layer
1551      helper functions are available to avoid duplicating boilerplate code.
1552    </para>
1553    <para>
1554      The DRM core contains one mid-layer implementation. The mid-layer provides
1555      implementations of several plane, CRTC, encoder and connector functions
1556      (called from the top of the mid-layer) that pre-process requests and call
1557      lower-level functions provided by the driver (at the bottom of the
1558      mid-layer). For instance, the
1559      <function>drm_crtc_helper_set_config</function> function can be used to
1560      fill the struct <structname>drm_crtc_funcs</structname>
1561      <structfield>set_config</structfield> field. When called, it will split
1562      the <methodname>set_config</methodname> operation in smaller, simpler
1563      operations and call the driver to handle them.
1564    </para>
1565    <para>
1566      To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1567      <function>drm_encoder_helper_add</function> and
1568      <function>drm_connector_helper_add</function> functions to install their
1569      mid-layer bottom operations handlers, and fill the
1570      <structname>drm_crtc_funcs</structname>,
1571      <structname>drm_encoder_funcs</structname> and
1572      <structname>drm_connector_funcs</structname> structures with pointers to
1573      the mid-layer top API functions. Installing the mid-layer bottom operation
1574      handlers is best done right after registering the corresponding KMS object.
1575    </para>
1576    <para>
1577      The mid-layer is not split between CRTC, encoder and connector operations.
1578      To use it, a driver must provide bottom functions for all of the three KMS
1579      entities.
1580    </para>
1581    <sect2>
1582      <title>Atomic Modeset Helper Functions Reference</title>
1583      <sect3>
1584	<title>Overview</title>
1585!Pdrivers/gpu/drm/drm_atomic_helper.c overview
1586      </sect3>
1587      <sect3>
1588	<title>Implementing Asynchronous Atomic Commit</title>
1589!Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit
1590      </sect3>
1591      <sect3>
1592	<title>Atomic State Reset and Initialization</title>
1593!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
1594      </sect3>
1595!Iinclude/drm/drm_atomic_helper.h
1596!Edrivers/gpu/drm/drm_atomic_helper.c
1597    </sect2>
1598    <sect2>
1599      <title>Modeset Helper Reference for Common Vtables</title>
1600!Iinclude/drm/drm_modeset_helper_vtables.h
1601!Pinclude/drm/drm_modeset_helper_vtables.h overview
1602    </sect2>
1603    <sect2>
1604      <title>Legacy CRTC/Modeset Helper Functions Reference</title>
1605!Edrivers/gpu/drm/drm_crtc_helper.c
1606!Pdrivers/gpu/drm/drm_crtc_helper.c overview
1607    </sect2>
1608    <sect2>
1609      <title>Output Probing Helper Functions Reference</title>
1610!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
1611!Edrivers/gpu/drm/drm_probe_helper.c
1612    </sect2>
1613    <sect2>
1614      <title>fbdev Helper Functions Reference</title>
1615!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
1616!Edrivers/gpu/drm/drm_fb_helper.c
1617!Iinclude/drm/drm_fb_helper.h
1618    </sect2>
1619    <sect2>
1620      <title>Display Port Helper Functions Reference</title>
1621!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
1622!Iinclude/drm/drm_dp_helper.h
1623!Edrivers/gpu/drm/drm_dp_helper.c
1624    </sect2>
1625    <sect2>
1626      <title>Display Port MST Helper Functions Reference</title>
1627!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
1628!Iinclude/drm/drm_dp_mst_helper.h
1629!Edrivers/gpu/drm/drm_dp_mst_topology.c
1630    </sect2>
1631    <sect2>
1632      <title>MIPI DSI Helper Functions Reference</title>
1633!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers
1634!Iinclude/drm/drm_mipi_dsi.h
1635!Edrivers/gpu/drm/drm_mipi_dsi.c
1636    </sect2>
1637    <sect2>
1638      <title>EDID Helper Functions Reference</title>
1639!Edrivers/gpu/drm/drm_edid.c
1640    </sect2>
1641    <sect2>
1642      <title>Rectangle Utilities Reference</title>
1643!Pinclude/drm/drm_rect.h rect utils
1644!Iinclude/drm/drm_rect.h
1645!Edrivers/gpu/drm/drm_rect.c
1646    </sect2>
1647    <sect2>
1648      <title>Flip-work Helper Reference</title>
1649!Pinclude/drm/drm_flip_work.h flip utils
1650!Iinclude/drm/drm_flip_work.h
1651!Edrivers/gpu/drm/drm_flip_work.c
1652    </sect2>
1653    <sect2>
1654      <title>HDMI Infoframes Helper Reference</title>
1655      <para>
1656	Strictly speaking this is not a DRM helper library but generally useable
1657	by any driver interfacing with HDMI outputs like v4l or alsa drivers.
1658	But it nicely fits into the overall topic of mode setting helper
1659	libraries and hence is also included here.
1660      </para>
1661!Iinclude/linux/hdmi.h
1662!Edrivers/video/hdmi.c
1663    </sect2>
1664    <sect2>
1665      <title id="drm-kms-planehelpers">Plane Helper Reference</title>
1666!Edrivers/gpu/drm/drm_plane_helper.c
1667!Pdrivers/gpu/drm/drm_plane_helper.c overview
1668    </sect2>
1669    <sect2>
1670	  <title>Tile group</title>
1671!Pdrivers/gpu/drm/drm_crtc.c Tile group
1672    </sect2>
1673    <sect2>
1674	<title>Bridges</title>
1675      <sect3>
1676	 <title>Overview</title>
1677!Pdrivers/gpu/drm/drm_bridge.c overview
1678      </sect3>
1679      <sect3>
1680	 <title>Default bridge callback sequence</title>
1681!Pdrivers/gpu/drm/drm_bridge.c bridge callbacks
1682      </sect3>
1683!Edrivers/gpu/drm/drm_bridge.c
1684    </sect2>
1685  </sect1>
1686
1687  <!-- Internals: kms properties -->
1688
1689  <sect1 id="drm-kms-properties">
1690    <title>KMS Properties</title>
1691    <para>
1692      Drivers may need to expose additional parameters to applications than
1693      those described in the previous sections. KMS supports attaching
1694      properties to CRTCs, connectors and planes and offers a userspace API to
1695      list, get and set the property values.
1696    </para>
1697    <para>
1698      Properties are identified by a name that uniquely defines the property
1699      purpose, and store an associated value. For all property types except blob
1700      properties the value is a 64-bit unsigned integer.
1701    </para>
1702    <para>
1703      KMS differentiates between properties and property instances. Drivers
1704      first create properties and then create and associate individual instances
1705      of those properties to objects. A property can be instantiated multiple
1706      times and associated with different objects. Values are stored in property
1707      instances, and all other property information are stored in the property
1708      and shared between all instances of the property.
1709    </para>
1710    <para>
1711      Every property is created with a type that influences how the KMS core
1712      handles the property. Supported property types are
1713      <variablelist>
1714        <varlistentry>
1715          <term>DRM_MODE_PROP_RANGE</term>
1716          <listitem><para>Range properties report their minimum and maximum
1717            admissible values. The KMS core verifies that values set by
1718            application fit in that range.</para></listitem>
1719        </varlistentry>
1720        <varlistentry>
1721          <term>DRM_MODE_PROP_ENUM</term>
1722          <listitem><para>Enumerated properties take a numerical value that
1723            ranges from 0 to the number of enumerated values defined by the
1724            property minus one, and associate a free-formed string name to each
1725            value. Applications can retrieve the list of defined value-name pairs
1726            and use the numerical value to get and set property instance values.
1727            </para></listitem>
1728        </varlistentry>
1729        <varlistentry>
1730          <term>DRM_MODE_PROP_BITMASK</term>
1731          <listitem><para>Bitmask properties are enumeration properties that
1732            additionally restrict all enumerated values to the 0..63 range.
1733            Bitmask property instance values combine one or more of the
1734            enumerated bits defined by the property.</para></listitem>
1735        </varlistentry>
1736        <varlistentry>
1737          <term>DRM_MODE_PROP_BLOB</term>
1738          <listitem><para>Blob properties store a binary blob without any format
1739            restriction. The binary blobs are created as KMS standalone objects,
1740            and blob property instance values store the ID of their associated
1741            blob object.</para>
1742	    <para>Blob properties are only used for the connector EDID property
1743	    and cannot be created by drivers.</para></listitem>
1744        </varlistentry>
1745      </variablelist>
1746    </para>
1747    <para>
1748      To create a property drivers call one of the following functions depending
1749      on the property type. All property creation functions take property flags
1750      and name, as well as type-specific arguments.
1751      <itemizedlist>
1752        <listitem>
1753          <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
1754                                               const char *name,
1755                                               uint64_t min, uint64_t max);</synopsis>
1756          <para>Create a range property with the given minimum and maximum
1757            values.</para>
1758        </listitem>
1759        <listitem>
1760          <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
1761                                              const char *name,
1762                                              const struct drm_prop_enum_list *props,
1763                                              int num_values);</synopsis>
1764          <para>Create an enumerated property. The <parameter>props</parameter>
1765            argument points to an array of <parameter>num_values</parameter>
1766            value-name pairs.</para>
1767        </listitem>
1768        <listitem>
1769          <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
1770                                                 int flags, const char *name,
1771                                                 const struct drm_prop_enum_list *props,
1772                                                 int num_values);</synopsis>
1773          <para>Create a bitmask property. The <parameter>props</parameter>
1774            argument points to an array of <parameter>num_values</parameter>
1775            value-name pairs.</para>
1776        </listitem>
1777      </itemizedlist>
1778    </para>
1779    <para>
1780      Properties can additionally be created as immutable, in which case they
1781      will be read-only for applications but can be modified by the driver. To
1782      create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
1783      flag at property creation time.
1784    </para>
1785    <para>
1786      When no array of value-name pairs is readily available at property
1787      creation time for enumerated or range properties, drivers can create
1788      the property using the <function>drm_property_create</function> function
1789      and manually add enumeration value-name pairs by calling the
1790      <function>drm_property_add_enum</function> function. Care must be taken to
1791      properly specify the property type through the <parameter>flags</parameter>
1792      argument.
1793    </para>
1794    <para>
1795      After creating properties drivers can attach property instances to CRTC,
1796      connector and plane objects by calling the
1797      <function>drm_object_attach_property</function>. The function takes a
1798      pointer to the target object, a pointer to the previously created property
1799      and an initial instance value.
1800    </para>
1801    <sect2>
1802	<title>Existing KMS Properties</title>
1803	<para>
1804	The following table gives description of drm properties exposed by various
1805	modules/drivers.
1806	</para>
1807	<table border="1" cellpadding="0" cellspacing="0">
1808	<tbody>
1809	<tr style="font-weight: bold;">
1810	<td valign="top" >Owner Module/Drivers</td>
1811	<td valign="top" >Group</td>
1812	<td valign="top" >Property Name</td>
1813	<td valign="top" >Type</td>
1814	<td valign="top" >Property Values</td>
1815	<td valign="top" >Object attached</td>
1816	<td valign="top" >Description/Restrictions</td>
1817	</tr>
1818	<tr>
1819	<td rowspan="42" valign="top" >DRM</td>
1820	<td valign="top" >Generic</td>
1821	<td valign="top" >“rotation”</td>
1822	<td valign="top" >BITMASK</td>
1823	<td valign="top" >{ 0, "rotate-0" },
1824	{ 1, "rotate-90" },
1825	{ 2, "rotate-180" },
1826	{ 3, "rotate-270" },
1827	{ 4, "reflect-x" },
1828	{ 5, "reflect-y" }</td>
1829	<td valign="top" >CRTC, Plane</td>
1830	<td valign="top" >rotate-(degrees) rotates the image by the specified amount in degrees
1831	in counter clockwise direction. reflect-x and reflect-y reflects the
1832	image along the specified axis prior to rotation</td>
1833	</tr>
1834	<tr>
1835	<td rowspan="5" valign="top" >Connector</td>
1836	<td valign="top" >“EDID”</td>
1837	<td valign="top" >BLOB | IMMUTABLE</td>
1838	<td valign="top" >0</td>
1839	<td valign="top" >Connector</td>
1840	<td valign="top" >Contains id of edid blob ptr object.</td>
1841	</tr>
1842	<tr>
1843	<td valign="top" >“DPMS”</td>
1844	<td valign="top" >ENUM</td>
1845	<td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
1846	<td valign="top" >Connector</td>
1847	<td valign="top" >Contains DPMS operation mode value.</td>
1848	</tr>
1849	<tr>
1850	<td valign="top" >“PATH”</td>
1851	<td valign="top" >BLOB | IMMUTABLE</td>
1852	<td valign="top" >0</td>
1853	<td valign="top" >Connector</td>
1854	<td valign="top" >Contains topology path to a connector.</td>
1855	</tr>
1856	<tr>
1857	<td valign="top" >“TILE”</td>
1858	<td valign="top" >BLOB | IMMUTABLE</td>
1859	<td valign="top" >0</td>
1860	<td valign="top" >Connector</td>
1861	<td valign="top" >Contains tiling information for a connector.</td>
1862	</tr>
1863	<tr>
1864	<td valign="top" >“CRTC_ID”</td>
1865	<td valign="top" >OBJECT</td>
1866	<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
1867	<td valign="top" >Connector</td>
1868	<td valign="top" >CRTC that connector is attached to (atomic)</td>
1869	</tr>
1870	<tr>
1871	<td rowspan="11" valign="top" >Plane</td>
1872	<td valign="top" >“type”</td>
1873	<td valign="top" >ENUM | IMMUTABLE</td>
1874	<td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
1875	<td valign="top" >Plane</td>
1876	<td valign="top" >Plane type</td>
1877	</tr>
1878	<tr>
1879	<td valign="top" >“SRC_X”</td>
1880	<td valign="top" >RANGE</td>
1881	<td valign="top" >Min=0, Max=UINT_MAX</td>
1882	<td valign="top" >Plane</td>
1883	<td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
1884	</tr>
1885	<tr>
1886	<td valign="top" >“SRC_Y”</td>
1887	<td valign="top" >RANGE</td>
1888	<td valign="top" >Min=0, Max=UINT_MAX</td>
1889	<td valign="top" >Plane</td>
1890	<td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
1891	</tr>
1892	<tr>
1893	<td valign="top" >“SRC_W”</td>
1894	<td valign="top" >RANGE</td>
1895	<td valign="top" >Min=0, Max=UINT_MAX</td>
1896	<td valign="top" >Plane</td>
1897	<td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
1898	</tr>
1899	<tr>
1900	<td valign="top" >“SRC_H”</td>
1901	<td valign="top" >RANGE</td>
1902	<td valign="top" >Min=0, Max=UINT_MAX</td>
1903	<td valign="top" >Plane</td>
1904	<td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
1905	</tr>
1906	<tr>
1907	<td valign="top" >“CRTC_X”</td>
1908	<td valign="top" >SIGNED_RANGE</td>
1909	<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
1910	<td valign="top" >Plane</td>
1911	<td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
1912	</tr>
1913	<tr>
1914	<td valign="top" >“CRTC_Y”</td>
1915	<td valign="top" >SIGNED_RANGE</td>
1916	<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
1917	<td valign="top" >Plane</td>
1918	<td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
1919	</tr>
1920	<tr>
1921	<td valign="top" >“CRTC_W”</td>
1922	<td valign="top" >RANGE</td>
1923	<td valign="top" >Min=0, Max=UINT_MAX</td>
1924	<td valign="top" >Plane</td>
1925	<td valign="top" >Scanout CRTC (destination) width (atomic)</td>
1926	</tr>
1927	<tr>
1928	<td valign="top" >“CRTC_H”</td>
1929	<td valign="top" >RANGE</td>
1930	<td valign="top" >Min=0, Max=UINT_MAX</td>
1931	<td valign="top" >Plane</td>
1932	<td valign="top" >Scanout CRTC (destination) height (atomic)</td>
1933	</tr>
1934	<tr>
1935	<td valign="top" >“FB_ID”</td>
1936	<td valign="top" >OBJECT</td>
1937	<td valign="top" >DRM_MODE_OBJECT_FB</td>
1938	<td valign="top" >Plane</td>
1939	<td valign="top" >Scanout framebuffer (atomic)</td>
1940	</tr>
1941	<tr>
1942	<td valign="top" >“CRTC_ID”</td>
1943	<td valign="top" >OBJECT</td>
1944	<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
1945	<td valign="top" >Plane</td>
1946	<td valign="top" >CRTC that plane is attached to (atomic)</td>
1947	</tr>
1948	<tr>
1949	<td rowspan="2" valign="top" >DVI-I</td>
1950	<td valign="top" >“subconnector”</td>
1951	<td valign="top" >ENUM</td>
1952	<td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
1953	<td valign="top" >Connector</td>
1954	<td valign="top" >TBD</td>
1955	</tr>
1956	<tr>
1957	<td valign="top" >“select subconnector”</td>
1958	<td valign="top" >ENUM</td>
1959	<td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
1960	<td valign="top" >Connector</td>
1961	<td valign="top" >TBD</td>
1962	</tr>
1963	<tr>
1964	<td rowspan="13" valign="top" >TV</td>
1965	<td valign="top" >“subconnector”</td>
1966	<td valign="top" >ENUM</td>
1967	<td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
1968	<td valign="top" >Connector</td>
1969	<td valign="top" >TBD</td>
1970	</tr>
1971	<tr>
1972	<td valign="top" >“select subconnector”</td>
1973	<td valign="top" >ENUM</td>
1974	<td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
1975	<td valign="top" >Connector</td>
1976	<td valign="top" >TBD</td>
1977	</tr>
1978	<tr>
1979	<td valign="top" >“mode”</td>
1980	<td valign="top" >ENUM</td>
1981	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
1982	<td valign="top" >Connector</td>
1983	<td valign="top" >TBD</td>
1984	</tr>
1985	<tr>
1986	<td valign="top" >“left margin”</td>
1987	<td valign="top" >RANGE</td>
1988	<td valign="top" >Min=0, Max=100</td>
1989	<td valign="top" >Connector</td>
1990	<td valign="top" >TBD</td>
1991	</tr>
1992	<tr>
1993	<td valign="top" >“right margin”</td>
1994	<td valign="top" >RANGE</td>
1995	<td valign="top" >Min=0, Max=100</td>
1996	<td valign="top" >Connector</td>
1997	<td valign="top" >TBD</td>
1998	</tr>
1999	<tr>
2000	<td valign="top" >“top margin”</td>
2001	<td valign="top" >RANGE</td>
2002	<td valign="top" >Min=0, Max=100</td>
2003	<td valign="top" >Connector</td>
2004	<td valign="top" >TBD</td>
2005	</tr>
2006	<tr>
2007	<td valign="top" >“bottom margin”</td>
2008	<td valign="top" >RANGE</td>
2009	<td valign="top" >Min=0, Max=100</td>
2010	<td valign="top" >Connector</td>
2011	<td valign="top" >TBD</td>
2012	</tr>
2013	<tr>
2014	<td valign="top" >“brightness”</td>
2015	<td valign="top" >RANGE</td>
2016	<td valign="top" >Min=0, Max=100</td>
2017	<td valign="top" >Connector</td>
2018	<td valign="top" >TBD</td>
2019	</tr>
2020	<tr>
2021	<td valign="top" >“contrast”</td>
2022	<td valign="top" >RANGE</td>
2023	<td valign="top" >Min=0, Max=100</td>
2024	<td valign="top" >Connector</td>
2025	<td valign="top" >TBD</td>
2026	</tr>
2027	<tr>
2028	<td valign="top" >“flicker reduction”</td>
2029	<td valign="top" >RANGE</td>
2030	<td valign="top" >Min=0, Max=100</td>
2031	<td valign="top" >Connector</td>
2032	<td valign="top" >TBD</td>
2033	</tr>
2034	<tr>
2035	<td valign="top" >“overscan”</td>
2036	<td valign="top" >RANGE</td>
2037	<td valign="top" >Min=0, Max=100</td>
2038	<td valign="top" >Connector</td>
2039	<td valign="top" >TBD</td>
2040	</tr>
2041	<tr>
2042	<td valign="top" >“saturation”</td>
2043	<td valign="top" >RANGE</td>
2044	<td valign="top" >Min=0, Max=100</td>
2045	<td valign="top" >Connector</td>
2046	<td valign="top" >TBD</td>
2047	</tr>
2048	<tr>
2049	<td valign="top" >“hue”</td>
2050	<td valign="top" >RANGE</td>
2051	<td valign="top" >Min=0, Max=100</td>
2052	<td valign="top" >Connector</td>
2053	<td valign="top" >TBD</td>
2054	</tr>
2055	<tr>
2056	<td rowspan="2" valign="top" >Virtual GPU</td>
2057	<td valign="top" >“suggested X”</td>
2058	<td valign="top" >RANGE</td>
2059	<td valign="top" >Min=0, Max=0xffffffff</td>
2060	<td valign="top" >Connector</td>
2061	<td valign="top" >property to suggest an X offset for a connector</td>
2062	</tr>
2063	<tr>
2064	<td valign="top" >“suggested Y”</td>
2065	<td valign="top" >RANGE</td>
2066	<td valign="top" >Min=0, Max=0xffffffff</td>
2067	<td valign="top" >Connector</td>
2068	<td valign="top" >property to suggest an Y offset for a connector</td>
2069	</tr>
2070	<tr>
2071	<td rowspan="8" valign="top" >Optional</td>
2072	<td valign="top" >“scaling mode”</td>
2073	<td valign="top" >ENUM</td>
2074	<td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
2075	<td valign="top" >Connector</td>
2076	<td valign="top" >TBD</td>
2077	</tr>
2078	<tr>
2079	<td valign="top" >"aspect ratio"</td>
2080	<td valign="top" >ENUM</td>
2081	<td valign="top" >{ "None", "4:3", "16:9" }</td>
2082	<td valign="top" >Connector</td>
2083	<td valign="top" >DRM property to set aspect ratio from user space app.
2084		This enum is made generic to allow addition of custom aspect
2085		ratios.</td>
2086	</tr>
2087	<tr>
2088	<td valign="top" >“dirty”</td>
2089	<td valign="top" >ENUM | IMMUTABLE</td>
2090	<td valign="top" >{ "Off", "On", "Annotate" }</td>
2091	<td valign="top" >Connector</td>
2092	<td valign="top" >TBD</td>
2093	</tr>
2094	<tr>
2095	<td valign="top" >“DEGAMMA_LUT”</td>
2096	<td valign="top" >BLOB</td>
2097	<td valign="top" >0</td>
2098	<td valign="top" >CRTC</td>
2099	<td valign="top" >DRM property to set the degamma lookup table
2100		(LUT) mapping pixel data from the framebuffer before it is
2101		given to the transformation matrix. The data is an interpreted
2102		as an array of struct drm_color_lut elements. Hardware might
2103		choose not to use the full precision of the LUT elements nor
2104		use all the elements of the LUT (for example the hardware
2105		might choose to interpolate between LUT[0] and LUT[4]). </td>
2106	</tr>
2107	<tr>
2108	<td valign="top" >“DEGAMMA_LUT_SIZE”</td>
2109	<td valign="top" >RANGE | IMMUTABLE</td>
2110	<td valign="top" >Min=0, Max=UINT_MAX</td>
2111	<td valign="top" >CRTC</td>
2112	<td valign="top" >DRM property to gives the size of the lookup
2113		table to be set on the DEGAMMA_LUT property (the size depends
2114		on the underlying hardware).</td>
2115	</tr>
2116	<tr>
2117	<td valign="top" >“CTM”</td>
2118	<td valign="top" >BLOB</td>
2119	<td valign="top" >0</td>
2120	<td valign="top" >CRTC</td>
2121	<td valign="top" >DRM property to set the current
2122		transformation matrix (CTM) apply to pixel data after the
2123		lookup through the degamma LUT and before the lookup through
2124		the gamma LUT. The data is an interpreted as a struct
2125		drm_color_ctm.</td>
2126	</tr>
2127	<tr>
2128	<td valign="top" >“GAMMA_LUT”</td>
2129	<td valign="top" >BLOB</td>
2130	<td valign="top" >0</td>
2131	<td valign="top" >CRTC</td>
2132	<td valign="top" >DRM property to set the gamma lookup table
2133		(LUT) mapping pixel data after to the transformation matrix to
2134		data sent to the connector. The data is an interpreted as an
2135		array of struct drm_color_lut elements. Hardware might choose
2136		not to use the full precision of the LUT elements nor use all
2137		the elements of the LUT (for example the hardware might choose
2138		to interpolate between LUT[0] and LUT[4]).</td>
2139	</tr>
2140	<tr>
2141	<td valign="top" >“GAMMA_LUT_SIZE”</td>
2142	<td valign="top" >RANGE | IMMUTABLE</td>
2143	<td valign="top" >Min=0, Max=UINT_MAX</td>
2144	<td valign="top" >CRTC</td>
2145	<td valign="top" >DRM property to gives the size of the lookup
2146		table to be set on the GAMMA_LUT property (the size depends on
2147		the underlying hardware).</td>
2148	</tr>
2149	<tr>
2150	<td rowspan="20" valign="top" >i915</td>
2151	<td rowspan="2" valign="top" >Generic</td>
2152	<td valign="top" >"Broadcast RGB"</td>
2153	<td valign="top" >ENUM</td>
2154	<td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
2155	<td valign="top" >Connector</td>
2156	<td valign="top" >TBD</td>
2157	</tr>
2158	<tr>
2159	<td valign="top" >“audio”</td>
2160	<td valign="top" >ENUM</td>
2161	<td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
2162	<td valign="top" >Connector</td>
2163	<td valign="top" >TBD</td>
2164	</tr>
2165	<tr>
2166	<td rowspan="17" valign="top" >SDVO-TV</td>
2167	<td valign="top" >“mode”</td>
2168	<td valign="top" >ENUM</td>
2169	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2170	<td valign="top" >Connector</td>
2171	<td valign="top" >TBD</td>
2172	</tr>
2173	<tr>
2174	<td valign="top" >"left_margin"</td>
2175	<td valign="top" >RANGE</td>
2176	<td valign="top" >Min=0, Max= SDVO dependent</td>
2177	<td valign="top" >Connector</td>
2178	<td valign="top" >TBD</td>
2179	</tr>
2180	<tr>
2181	<td valign="top" >"right_margin"</td>
2182	<td valign="top" >RANGE</td>
2183	<td valign="top" >Min=0, Max= SDVO dependent</td>
2184	<td valign="top" >Connector</td>
2185	<td valign="top" >TBD</td>
2186	</tr>
2187	<tr>
2188	<td valign="top" >"top_margin"</td>
2189	<td valign="top" >RANGE</td>
2190	<td valign="top" >Min=0, Max= SDVO dependent</td>
2191	<td valign="top" >Connector</td>
2192	<td valign="top" >TBD</td>
2193	</tr>
2194	<tr>
2195	<td valign="top" >"bottom_margin"</td>
2196	<td valign="top" >RANGE</td>
2197	<td valign="top" >Min=0, Max= SDVO dependent</td>
2198	<td valign="top" >Connector</td>
2199	<td valign="top" >TBD</td>
2200	</tr>
2201	<tr>
2202	<td valign="top" >“hpos”</td>
2203	<td valign="top" >RANGE</td>
2204	<td valign="top" >Min=0, Max= SDVO dependent</td>
2205	<td valign="top" >Connector</td>
2206	<td valign="top" >TBD</td>
2207	</tr>
2208	<tr>
2209	<td valign="top" >“vpos”</td>
2210	<td valign="top" >RANGE</td>
2211	<td valign="top" >Min=0, Max= SDVO dependent</td>
2212	<td valign="top" >Connector</td>
2213	<td valign="top" >TBD</td>
2214	</tr>
2215	<tr>
2216	<td valign="top" >“contrast”</td>
2217	<td valign="top" >RANGE</td>
2218	<td valign="top" >Min=0, Max= SDVO dependent</td>
2219	<td valign="top" >Connector</td>
2220	<td valign="top" >TBD</td>
2221	</tr>
2222	<tr>
2223	<td valign="top" >“saturation”</td>
2224	<td valign="top" >RANGE</td>
2225	<td valign="top" >Min=0, Max= SDVO dependent</td>
2226	<td valign="top" >Connector</td>
2227	<td valign="top" >TBD</td>
2228	</tr>
2229	<tr>
2230	<td valign="top" >“hue”</td>
2231	<td valign="top" >RANGE</td>
2232	<td valign="top" >Min=0, Max= SDVO dependent</td>
2233	<td valign="top" >Connector</td>
2234	<td valign="top" >TBD</td>
2235	</tr>
2236	<tr>
2237	<td valign="top" >“sharpness”</td>
2238	<td valign="top" >RANGE</td>
2239	<td valign="top" >Min=0, Max= SDVO dependent</td>
2240	<td valign="top" >Connector</td>
2241	<td valign="top" >TBD</td>
2242	</tr>
2243	<tr>
2244	<td valign="top" >“flicker_filter”</td>
2245	<td valign="top" >RANGE</td>
2246	<td valign="top" >Min=0, Max= SDVO dependent</td>
2247	<td valign="top" >Connector</td>
2248	<td valign="top" >TBD</td>
2249	</tr>
2250	<tr>
2251	<td valign="top" >“flicker_filter_adaptive”</td>
2252	<td valign="top" >RANGE</td>
2253	<td valign="top" >Min=0, Max= SDVO dependent</td>
2254	<td valign="top" >Connector</td>
2255	<td valign="top" >TBD</td>
2256	</tr>
2257	<tr>
2258	<td valign="top" >“flicker_filter_2d”</td>
2259	<td valign="top" >RANGE</td>
2260	<td valign="top" >Min=0, Max= SDVO dependent</td>
2261	<td valign="top" >Connector</td>
2262	<td valign="top" >TBD</td>
2263	</tr>
2264	<tr>
2265	<td valign="top" >“tv_chroma_filter”</td>
2266	<td valign="top" >RANGE</td>
2267	<td valign="top" >Min=0, Max= SDVO dependent</td>
2268	<td valign="top" >Connector</td>
2269	<td valign="top" >TBD</td>
2270	</tr>
2271	<tr>
2272	<td valign="top" >“tv_luma_filter”</td>
2273	<td valign="top" >RANGE</td>
2274	<td valign="top" >Min=0, Max= SDVO dependent</td>
2275	<td valign="top" >Connector</td>
2276	<td valign="top" >TBD</td>
2277	</tr>
2278	<tr>
2279	<td valign="top" >“dot_crawl”</td>
2280	<td valign="top" >RANGE</td>
2281	<td valign="top" >Min=0, Max=1</td>
2282	<td valign="top" >Connector</td>
2283	<td valign="top" >TBD</td>
2284	</tr>
2285	<tr>
2286	<td valign="top" >SDVO-TV/LVDS</td>
2287	<td valign="top" >“brightness”</td>
2288	<td valign="top" >RANGE</td>
2289	<td valign="top" >Min=0, Max= SDVO dependent</td>
2290	<td valign="top" >Connector</td>
2291	<td valign="top" >TBD</td>
2292	</tr>
2293	<tr>
2294	<td rowspan="2" valign="top" >CDV gma-500</td>
2295	<td rowspan="2" valign="top" >Generic</td>
2296	<td valign="top" >"Broadcast RGB"</td>
2297	<td valign="top" >ENUM</td>
2298	<td valign="top" >{ “Full”, “Limited 16:235” }</td>
2299	<td valign="top" >Connector</td>
2300	<td valign="top" >TBD</td>
2301	</tr>
2302	<tr>
2303	<td valign="top" >"Broadcast RGB"</td>
2304	<td valign="top" >ENUM</td>
2305	<td valign="top" >{ “off”, “auto”, “on” }</td>
2306	<td valign="top" >Connector</td>
2307	<td valign="top" >TBD</td>
2308	</tr>
2309	<tr>
2310	<td rowspan="19" valign="top" >Poulsbo</td>
2311	<td rowspan="1" valign="top" >Generic</td>
2312	<td valign="top" >“backlight”</td>
2313	<td valign="top" >RANGE</td>
2314	<td valign="top" >Min=0, Max=100</td>
2315	<td valign="top" >Connector</td>
2316	<td valign="top" >TBD</td>
2317	</tr>
2318	<tr>
2319	<td rowspan="17" valign="top" >SDVO-TV</td>
2320	<td valign="top" >“mode”</td>
2321	<td valign="top" >ENUM</td>
2322	<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
2323	<td valign="top" >Connector</td>
2324	<td valign="top" >TBD</td>
2325	</tr>
2326	<tr>
2327	<td valign="top" >"left_margin"</td>
2328	<td valign="top" >RANGE</td>
2329	<td valign="top" >Min=0, Max= SDVO dependent</td>
2330	<td valign="top" >Connector</td>
2331	<td valign="top" >TBD</td>
2332	</tr>
2333	<tr>
2334	<td valign="top" >"right_margin"</td>
2335	<td valign="top" >RANGE</td>
2336	<td valign="top" >Min=0, Max= SDVO dependent</td>
2337	<td valign="top" >Connector</td>
2338	<td valign="top" >TBD</td>
2339	</tr>
2340	<tr>
2341	<td valign="top" >"top_margin"</td>
2342	<td valign="top" >RANGE</td>
2343	<td valign="top" >Min=0, Max= SDVO dependent</td>
2344	<td valign="top" >Connector</td>
2345	<td valign="top" >TBD</td>
2346	</tr>
2347	<tr>
2348	<td valign="top" >"bottom_margin"</td>
2349	<td valign="top" >RANGE</td>
2350	<td valign="top" >Min=0, Max= SDVO dependent</td>
2351	<td valign="top" >Connector</td>
2352	<td valign="top" >TBD</td>
2353	</tr>
2354	<tr>
2355	<td valign="top" >“hpos”</td>
2356	<td valign="top" >RANGE</td>
2357	<td valign="top" >Min=0, Max= SDVO dependent</td>
2358	<td valign="top" >Connector</td>
2359	<td valign="top" >TBD</td>
2360	</tr>
2361	<tr>
2362	<td valign="top" >“vpos”</td>
2363	<td valign="top" >RANGE</td>
2364	<td valign="top" >Min=0, Max= SDVO dependent</td>
2365	<td valign="top" >Connector</td>
2366	<td valign="top" >TBD</td>
2367	</tr>
2368	<tr>
2369	<td valign="top" >“contrast”</td>
2370	<td valign="top" >RANGE</td>
2371	<td valign="top" >Min=0, Max= SDVO dependent</td>
2372	<td valign="top" >Connector</td>
2373	<td valign="top" >TBD</td>
2374	</tr>
2375	<tr>
2376	<td valign="top" >“saturation”</td>
2377	<td valign="top" >RANGE</td>
2378	<td valign="top" >Min=0, Max= SDVO dependent</td>
2379	<td valign="top" >Connector</td>
2380	<td valign="top" >TBD</td>
2381	</tr>
2382	<tr>
2383	<td valign="top" >“hue”</td>
2384	<td valign="top" >RANGE</td>
2385	<td valign="top" >Min=0, Max= SDVO dependent</td>
2386	<td valign="top" >Connector</td>
2387	<td valign="top" >TBD</td>
2388	</tr>
2389	<tr>
2390	<td valign="top" >“sharpness”</td>
2391	<td valign="top" >RANGE</td>
2392	<td valign="top" >Min=0, Max= SDVO dependent</td>
2393	<td valign="top" >Connector</td>
2394	<td valign="top" >TBD</td>
2395	</tr>
2396	<tr>
2397	<td valign="top" >“flicker_filter”</td>
2398	<td valign="top" >RANGE</td>
2399	<td valign="top" >Min=0, Max= SDVO dependent</td>
2400	<td valign="top" >Connector</td>
2401	<td valign="top" >TBD</td>
2402	</tr>
2403	<tr>
2404	<td valign="top" >“flicker_filter_adaptive”</td>
2405	<td valign="top" >RANGE</td>
2406	<td valign="top" >Min=0, Max= SDVO dependent</td>
2407	<td valign="top" >Connector</td>
2408	<td valign="top" >TBD</td>
2409	</tr>
2410	<tr>
2411	<td valign="top" >“flicker_filter_2d”</td>
2412	<td valign="top" >RANGE</td>
2413	<td valign="top" >Min=0, Max= SDVO dependent</td>
2414	<td valign="top" >Connector</td>
2415	<td valign="top" >TBD</td>
2416	</tr>
2417	<tr>
2418	<td valign="top" >“tv_chroma_filter”</td>
2419	<td valign="top" >RANGE</td>
2420	<td valign="top" >Min=0, Max= SDVO dependent</td>
2421	<td valign="top" >Connector</td>
2422	<td valign="top" >TBD</td>
2423	</tr>
2424	<tr>
2425	<td valign="top" >“tv_luma_filter”</td>
2426	<td valign="top" >RANGE</td>
2427	<td valign="top" >Min=0, Max= SDVO dependent</td>
2428	<td valign="top" >Connector</td>
2429	<td valign="top" >TBD</td>
2430	</tr>
2431	<tr>
2432	<td valign="top" >“dot_crawl”</td>
2433	<td valign="top" >RANGE</td>
2434	<td valign="top" >Min=0, Max=1</td>
2435	<td valign="top" >Connector</td>
2436	<td valign="top" >TBD</td>
2437	</tr>
2438	<tr>
2439	<td valign="top" >SDVO-TV/LVDS</td>
2440	<td valign="top" >“brightness”</td>
2441	<td valign="top" >RANGE</td>
2442	<td valign="top" >Min=0, Max= SDVO dependent</td>
2443	<td valign="top" >Connector</td>
2444	<td valign="top" >TBD</td>
2445	</tr>
2446	<tr>
2447	<td rowspan="11" valign="top" >armada</td>
2448	<td rowspan="2" valign="top" >CRTC</td>
2449	<td valign="top" >"CSC_YUV"</td>
2450	<td valign="top" >ENUM</td>
2451	<td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
2452	<td valign="top" >CRTC</td>
2453	<td valign="top" >TBD</td>
2454	</tr>
2455	<tr>
2456	<td valign="top" >"CSC_RGB"</td>
2457	<td valign="top" >ENUM</td>
2458	<td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
2459	<td valign="top" >CRTC</td>
2460	<td valign="top" >TBD</td>
2461	</tr>
2462	<tr>
2463	<td rowspan="9" valign="top" >Overlay</td>
2464	<td valign="top" >"colorkey"</td>
2465	<td valign="top" >RANGE</td>
2466	<td valign="top" >Min=0, Max=0xffffff</td>
2467	<td valign="top" >Plane</td>
2468	<td valign="top" >TBD</td>
2469	</tr>
2470	<tr>
2471	<td valign="top" >"colorkey_min"</td>
2472	<td valign="top" >RANGE</td>
2473	<td valign="top" >Min=0, Max=0xffffff</td>
2474	<td valign="top" >Plane</td>
2475	<td valign="top" >TBD</td>
2476	</tr>
2477	<tr>
2478	<td valign="top" >"colorkey_max"</td>
2479	<td valign="top" >RANGE</td>
2480	<td valign="top" >Min=0, Max=0xffffff</td>
2481	<td valign="top" >Plane</td>
2482	<td valign="top" >TBD</td>
2483	</tr>
2484	<tr>
2485	<td valign="top" >"colorkey_val"</td>
2486	<td valign="top" >RANGE</td>
2487	<td valign="top" >Min=0, Max=0xffffff</td>
2488	<td valign="top" >Plane</td>
2489	<td valign="top" >TBD</td>
2490	</tr>
2491	<tr>
2492	<td valign="top" >"colorkey_alpha"</td>
2493	<td valign="top" >RANGE</td>
2494	<td valign="top" >Min=0, Max=0xffffff</td>
2495	<td valign="top" >Plane</td>
2496	<td valign="top" >TBD</td>
2497	</tr>
2498	<tr>
2499	<td valign="top" >"colorkey_mode"</td>
2500	<td valign="top" >ENUM</td>
2501	<td valign="top" >{ "disabled", "Y component", "U component"
2502	, "V component", "RGB", “R component", "G component", "B component" }</td>
2503	<td valign="top" >Plane</td>
2504	<td valign="top" >TBD</td>
2505	</tr>
2506	<tr>
2507	<td valign="top" >"brightness"</td>
2508	<td valign="top" >RANGE</td>
2509	<td valign="top" >Min=0, Max=256 + 255</td>
2510	<td valign="top" >Plane</td>
2511	<td valign="top" >TBD</td>
2512	</tr>
2513	<tr>
2514	<td valign="top" >"contrast"</td>
2515	<td valign="top" >RANGE</td>
2516	<td valign="top" >Min=0, Max=0x7fff</td>
2517	<td valign="top" >Plane</td>
2518	<td valign="top" >TBD</td>
2519	</tr>
2520	<tr>
2521	<td valign="top" >"saturation"</td>
2522	<td valign="top" >RANGE</td>
2523	<td valign="top" >Min=0, Max=0x7fff</td>
2524	<td valign="top" >Plane</td>
2525	<td valign="top" >TBD</td>
2526	</tr>
2527	<tr>
2528	<td rowspan="2" valign="top" >exynos</td>
2529	<td valign="top" >CRTC</td>
2530	<td valign="top" >“mode”</td>
2531	<td valign="top" >ENUM</td>
2532	<td valign="top" >{ "normal", "blank" }</td>
2533	<td valign="top" >CRTC</td>
2534	<td valign="top" >TBD</td>
2535	</tr>
2536	<tr>
2537	<td valign="top" >Overlay</td>
2538	<td valign="top" >“zpos”</td>
2539	<td valign="top" >RANGE</td>
2540	<td valign="top" >Min=0, Max=MAX_PLANE-1</td>
2541	<td valign="top" >Plane</td>
2542	<td valign="top" >TBD</td>
2543	</tr>
2544	<tr>
2545	<td rowspan="2" valign="top" >i2c/ch7006_drv</td>
2546	<td valign="top" >Generic</td>
2547	<td valign="top" >“scale”</td>
2548	<td valign="top" >RANGE</td>
2549	<td valign="top" >Min=0, Max=2</td>
2550	<td valign="top" >Connector</td>
2551	<td valign="top" >TBD</td>
2552	</tr>
2553	<tr>
2554	<td rowspan="1" valign="top" >TV</td>
2555	<td valign="top" >“mode”</td>
2556	<td valign="top" >ENUM</td>
2557	<td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
2558	, "PAL-60", "NTSC-M", "NTSC-J" }</td>
2559	<td valign="top" >Connector</td>
2560	<td valign="top" >TBD</td>
2561	</tr>
2562	<tr>
2563	<td rowspan="15" valign="top" >nouveau</td>
2564	<td rowspan="6" valign="top" >NV10 Overlay</td>
2565	<td valign="top" >"colorkey"</td>
2566	<td valign="top" >RANGE</td>
2567	<td valign="top" >Min=0, Max=0x01ffffff</td>
2568	<td valign="top" >Plane</td>
2569	<td valign="top" >TBD</td>
2570	</tr>
2571	<tr>
2572	<td valign="top" >“contrast”</td>
2573	<td valign="top" >RANGE</td>
2574	<td valign="top" >Min=0, Max=8192-1</td>
2575	<td valign="top" >Plane</td>
2576	<td valign="top" >TBD</td>
2577	</tr>
2578	<tr>
2579	<td valign="top" >“brightness”</td>
2580	<td valign="top" >RANGE</td>
2581	<td valign="top" >Min=0, Max=1024</td>
2582	<td valign="top" >Plane</td>
2583	<td valign="top" >TBD</td>
2584	</tr>
2585	<tr>
2586	<td valign="top" >“hue”</td>
2587	<td valign="top" >RANGE</td>
2588	<td valign="top" >Min=0, Max=359</td>
2589	<td valign="top" >Plane</td>
2590	<td valign="top" >TBD</td>
2591	</tr>
2592	<tr>
2593	<td valign="top" >“saturation”</td>
2594	<td valign="top" >RANGE</td>
2595	<td valign="top" >Min=0, Max=8192-1</td>
2596	<td valign="top" >Plane</td>
2597	<td valign="top" >TBD</td>
2598	</tr>
2599	<tr>
2600	<td valign="top" >“iturbt_709”</td>
2601	<td valign="top" >RANGE</td>
2602	<td valign="top" >Min=0, Max=1</td>
2603	<td valign="top" >Plane</td>
2604	<td valign="top" >TBD</td>
2605	</tr>
2606	<tr>
2607	<td rowspan="2" valign="top" >Nv04 Overlay</td>
2608	<td valign="top" >“colorkey”</td>
2609	<td valign="top" >RANGE</td>
2610	<td valign="top" >Min=0, Max=0x01ffffff</td>
2611	<td valign="top" >Plane</td>
2612	<td valign="top" >TBD</td>
2613	</tr>
2614	<tr>
2615	<td valign="top" >“brightness”</td>
2616	<td valign="top" >RANGE</td>
2617	<td valign="top" >Min=0, Max=1024</td>
2618	<td valign="top" >Plane</td>
2619	<td valign="top" >TBD</td>
2620	</tr>
2621	<tr>
2622	<td rowspan="7" valign="top" >Display</td>
2623	<td valign="top" >“dithering mode”</td>
2624	<td valign="top" >ENUM</td>
2625	<td valign="top" >{ "auto", "off", "on" }</td>
2626	<td valign="top" >Connector</td>
2627	<td valign="top" >TBD</td>
2628	</tr>
2629	<tr>
2630	<td valign="top" >“dithering depth”</td>
2631	<td valign="top" >ENUM</td>
2632	<td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
2633	<td valign="top" >Connector</td>
2634	<td valign="top" >TBD</td>
2635	</tr>
2636	<tr>
2637	<td valign="top" >“underscan”</td>
2638	<td valign="top" >ENUM</td>
2639	<td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
2640	<td valign="top" >Connector</td>
2641	<td valign="top" >TBD</td>
2642	</tr>
2643	<tr>
2644	<td valign="top" >“underscan hborder”</td>
2645	<td valign="top" >RANGE</td>
2646	<td valign="top" >Min=0, Max=128</td>
2647	<td valign="top" >Connector</td>
2648	<td valign="top" >TBD</td>
2649	</tr>
2650	<tr>
2651	<td valign="top" >“underscan vborder”</td>
2652	<td valign="top" >RANGE</td>
2653	<td valign="top" >Min=0, Max=128</td>
2654	<td valign="top" >Connector</td>
2655	<td valign="top" >TBD</td>
2656	</tr>
2657	<tr>
2658	<td valign="top" >“vibrant hue”</td>
2659	<td valign="top" >RANGE</td>
2660	<td valign="top" >Min=0, Max=180</td>
2661	<td valign="top" >Connector</td>
2662	<td valign="top" >TBD</td>
2663	</tr>
2664	<tr>
2665	<td valign="top" >“color vibrance”</td>
2666	<td valign="top" >RANGE</td>
2667	<td valign="top" >Min=0, Max=200</td>
2668	<td valign="top" >Connector</td>
2669	<td valign="top" >TBD</td>
2670	</tr>
2671	<tr>
2672	<td valign="top" >omap</td>
2673	<td valign="top" >Generic</td>
2674	<td valign="top" >“zorder”</td>
2675	<td valign="top" >RANGE</td>
2676	<td valign="top" >Min=0, Max=3</td>
2677	<td valign="top" >CRTC, Plane</td>
2678	<td valign="top" >TBD</td>
2679	</tr>
2680	<tr>
2681	<td valign="top" >qxl</td>
2682	<td valign="top" >Generic</td>
2683	<td valign="top" >“hotplug_mode_update"</td>
2684	<td valign="top" >RANGE</td>
2685	<td valign="top" >Min=0, Max=1</td>
2686	<td valign="top" >Connector</td>
2687	<td valign="top" >TBD</td>
2688	</tr>
2689	<tr>
2690	<td rowspan="9" valign="top" >radeon</td>
2691	<td valign="top" >DVI-I</td>
2692	<td valign="top" >“coherent”</td>
2693	<td valign="top" >RANGE</td>
2694	<td valign="top" >Min=0, Max=1</td>
2695	<td valign="top" >Connector</td>
2696	<td valign="top" >TBD</td>
2697	</tr>
2698	<tr>
2699	<td valign="top" >DAC enable load detect</td>
2700	<td valign="top" >“load detection”</td>
2701	<td valign="top" >RANGE</td>
2702	<td valign="top" >Min=0, Max=1</td>
2703	<td valign="top" >Connector</td>
2704	<td valign="top" >TBD</td>
2705	</tr>
2706	<tr>
2707	<td valign="top" >TV Standard</td>
2708	<td valign="top" >"tv standard"</td>
2709	<td valign="top" >ENUM</td>
2710	<td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
2711	, "scart-pal", "pal-cn", "secam" }</td>
2712	<td valign="top" >Connector</td>
2713	<td valign="top" >TBD</td>
2714	</tr>
2715	<tr>
2716	<td valign="top" >legacy TMDS PLL detect</td>
2717	<td valign="top" >"tmds_pll"</td>
2718	<td valign="top" >ENUM</td>
2719	<td valign="top" >{ "driver", "bios" }</td>
2720	<td valign="top" >-</td>
2721	<td valign="top" >TBD</td>
2722	</tr>
2723	<tr>
2724	<td rowspan="3" valign="top" >Underscan</td>
2725	<td valign="top" >"underscan"</td>
2726	<td valign="top" >ENUM</td>
2727	<td valign="top" >{ "off", "on", "auto" }</td>
2728	<td valign="top" >Connector</td>
2729	<td valign="top" >TBD</td>
2730	</tr>
2731	<tr>
2732	<td valign="top" >"underscan hborder"</td>
2733	<td valign="top" >RANGE</td>
2734	<td valign="top" >Min=0, Max=128</td>
2735	<td valign="top" >Connector</td>
2736	<td valign="top" >TBD</td>
2737	</tr>
2738	<tr>
2739	<td valign="top" >"underscan vborder"</td>
2740	<td valign="top" >RANGE</td>
2741	<td valign="top" >Min=0, Max=128</td>
2742	<td valign="top" >Connector</td>
2743	<td valign="top" >TBD</td>
2744	</tr>
2745	<tr>
2746	<td valign="top" >Audio</td>
2747	<td valign="top" >“audio”</td>
2748	<td valign="top" >ENUM</td>
2749	<td valign="top" >{ "off", "on", "auto" }</td>
2750	<td valign="top" >Connector</td>
2751	<td valign="top" >TBD</td>
2752	</tr>
2753	<tr>
2754	<td valign="top" >FMT Dithering</td>
2755	<td valign="top" >“dither”</td>
2756	<td valign="top" >ENUM</td>
2757	<td valign="top" >{ "off", "on" }</td>
2758	<td valign="top" >Connector</td>
2759	<td valign="top" >TBD</td>
2760	</tr>
2761	<tr>
2762	<td rowspan="3" valign="top" >rcar-du</td>
2763	<td rowspan="3" valign="top" >Generic</td>
2764	<td valign="top" >"alpha"</td>
2765	<td valign="top" >RANGE</td>
2766	<td valign="top" >Min=0, Max=255</td>
2767	<td valign="top" >Plane</td>
2768	<td valign="top" >TBD</td>
2769	</tr>
2770	<tr>
2771	<td valign="top" >"colorkey"</td>
2772	<td valign="top" >RANGE</td>
2773	<td valign="top" >Min=0, Max=0x01ffffff</td>
2774	<td valign="top" >Plane</td>
2775	<td valign="top" >TBD</td>
2776	</tr>
2777	<tr>
2778	<td valign="top" >"zpos"</td>
2779	<td valign="top" >RANGE</td>
2780	<td valign="top" >Min=1, Max=7</td>
2781	<td valign="top" >Plane</td>
2782	<td valign="top" >TBD</td>
2783	</tr>
2784	</tbody>
2785	</table>
2786    </sect2>
2787  </sect1>
2788
2789  <!-- Internals: vertical blanking -->
2790
2791  <sect1 id="drm-vertical-blank">
2792    <title>Vertical Blanking</title>
2793    <para>
2794      Vertical blanking plays a major role in graphics rendering. To achieve
2795      tear-free display, users must synchronize page flips and/or rendering to
2796      vertical blanking. The DRM API offers ioctls to perform page flips
2797      synchronized to vertical blanking and wait for vertical blanking.
2798    </para>
2799    <para>
2800      The DRM core handles most of the vertical blanking management logic, which
2801      involves filtering out spurious interrupts, keeping race-free blanking
2802      counters, coping with counter wrap-around and resets and keeping use
2803      counts. It relies on the driver to generate vertical blanking interrupts
2804      and optionally provide a hardware vertical blanking counter. Drivers must
2805      implement the following operations.
2806    </para>
2807    <itemizedlist>
2808      <listitem>
2809        <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
2810void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
2811        <para>
2812	  Enable or disable vertical blanking interrupts for the given CRTC.
2813	</para>
2814      </listitem>
2815      <listitem>
2816        <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
2817        <para>
2818	  Retrieve the value of the vertical blanking counter for the given
2819	  CRTC. If the hardware maintains a vertical blanking counter its value
2820	  should be returned. Otherwise drivers can use the
2821	  <function>drm_vblank_count</function> helper function to handle this
2822	  operation.
2823	</para>
2824      </listitem>
2825    </itemizedlist>
2826    <para>
2827      Drivers must initialize the vertical blanking handling core with a call to
2828      <function>drm_vblank_init</function> in their
2829      <methodname>load</methodname> operation. The function will set the struct
2830      <structname>drm_device</structname>
2831      <structfield>vblank_disable_allowed</structfield> field to 0. This will
2832      keep vertical blanking interrupts enabled permanently until the first mode
2833      set operation, where <structfield>vblank_disable_allowed</structfield> is
2834      set to 1. The reason behind this is not clear. Drivers can set the field
2835      to 1 after <function>calling drm_vblank_init</function> to make vertical
2836      blanking interrupts dynamically managed from the beginning.
2837    </para>
2838    <para>
2839      Vertical blanking interrupts can be enabled by the DRM core or by drivers
2840      themselves (for instance to handle page flipping operations). The DRM core
2841      maintains a vertical blanking use count to ensure that the interrupts are
2842      not disabled while a user still needs them. To increment the use count,
2843      drivers call <function>drm_vblank_get</function>. Upon return vertical
2844      blanking interrupts are guaranteed to be enabled.
2845    </para>
2846    <para>
2847      To decrement the use count drivers call
2848      <function>drm_vblank_put</function>. Only when the use count drops to zero
2849      will the DRM core disable the vertical blanking interrupts after a delay
2850      by scheduling a timer. The delay is accessible through the vblankoffdelay
2851      module parameter or the <varname>drm_vblank_offdelay</varname> global
2852      variable and expressed in milliseconds. Its default value is 5000 ms.
2853      Zero means never disable, and a negative value means disable immediately.
2854      Drivers may override the behaviour by setting the
2855      <structname>drm_device</structname>
2856      <structfield>vblank_disable_immediate</structfield> flag, which when set
2857      causes vblank interrupts to be disabled immediately regardless of the
2858      drm_vblank_offdelay value. The flag should only be set if there's a
2859      properly working hardware vblank counter present.
2860    </para>
2861    <para>
2862      When a vertical blanking interrupt occurs drivers only need to call the
2863      <function>drm_handle_vblank</function> function to account for the
2864      interrupt.
2865    </para>
2866    <para>
2867      Resources allocated by <function>drm_vblank_init</function> must be freed
2868      with a call to <function>drm_vblank_cleanup</function> in the driver
2869      <methodname>unload</methodname> operation handler.
2870    </para>
2871    <sect2>
2872      <title>Vertical Blanking and Interrupt Handling Functions Reference</title>
2873!Edrivers/gpu/drm/drm_irq.c
2874!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
2875    </sect2>
2876  </sect1>
2877
2878  <!-- Internals: open/close, file operations and ioctls -->
2879
2880  <sect1>
2881    <title>Open/Close, File Operations and IOCTLs</title>
2882    <sect2>
2883      <title>Open and Close</title>
2884      <synopsis>int (*firstopen) (struct drm_device *);
2885void (*lastclose) (struct drm_device *);
2886int (*open) (struct drm_device *, struct drm_file *);
2887void (*preclose) (struct drm_device *, struct drm_file *);
2888void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
2889      <abstract>Open and close handlers. None of those methods are mandatory.
2890      </abstract>
2891      <para>
2892        The <methodname>firstopen</methodname> method is called by the DRM core
2893	for legacy UMS (User Mode Setting) drivers only when an application
2894	opens a device that has no other opened file handle. UMS drivers can
2895	implement it to acquire device resources. KMS drivers can't use the
2896	method and must acquire resources in the <methodname>load</methodname>
2897	method instead.
2898      </para>
2899      <para>
2900	Similarly the <methodname>lastclose</methodname> method is called when
2901	the last application holding a file handle opened on the device closes
2902	it, for both UMS and KMS drivers. Additionally, the method is also
2903	called at module unload time or, for hot-pluggable devices, when the
2904	device is unplugged. The <methodname>firstopen</methodname> and
2905	<methodname>lastclose</methodname> calls can thus be unbalanced.
2906      </para>
2907      <para>
2908        The <methodname>open</methodname> method is called every time the device
2909	is opened by an application. Drivers can allocate per-file private data
2910	in this method and store them in the struct
2911	<structname>drm_file</structname> <structfield>driver_priv</structfield>
2912	field. Note that the <methodname>open</methodname> method is called
2913	before <methodname>firstopen</methodname>.
2914      </para>
2915      <para>
2916        The close operation is split into <methodname>preclose</methodname> and
2917	<methodname>postclose</methodname> methods. Drivers must stop and
2918	cleanup all per-file operations in the <methodname>preclose</methodname>
2919	method. For instance pending vertical blanking and page flip events must
2920	be cancelled. No per-file operation is allowed on the file handle after
2921	returning from the <methodname>preclose</methodname> method.
2922      </para>
2923      <para>
2924        Finally the <methodname>postclose</methodname> method is called as the
2925	last step of the close operation, right before calling the
2926	<methodname>lastclose</methodname> method if no other open file handle
2927	exists for the device. Drivers that have allocated per-file private data
2928	in the <methodname>open</methodname> method should free it here.
2929      </para>
2930      <para>
2931        The <methodname>lastclose</methodname> method should restore CRTC and
2932	plane properties to default value, so that a subsequent open of the
2933	device will not inherit state from the previous user. It can also be
2934	used to execute delayed power switching state changes, e.g. in
2935	conjunction with the vga_switcheroo infrastructure (see
2936	<xref linkend="vga_switcheroo"/>). Beyond that KMS drivers should not
2937	do any further cleanup. Only legacy UMS drivers might need to clean up
2938	device state so that the vga console or an independent fbdev driver
2939	could take over.
2940      </para>
2941    </sect2>
2942    <sect2>
2943      <title>File Operations</title>
2944!Pdrivers/gpu/drm/drm_fops.c file operations
2945!Edrivers/gpu/drm/drm_fops.c
2946    </sect2>
2947    <sect2>
2948      <title>IOCTLs</title>
2949      <synopsis>struct drm_ioctl_desc *ioctls;
2950int num_ioctls;</synopsis>
2951      <abstract>Driver-specific ioctls descriptors table.</abstract>
2952      <para>
2953        Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
2954	descriptors table is indexed by the ioctl number offset from the base
2955	value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
2956	table entries.
2957      </para>
2958      <para>
2959        <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
2960	<para>
2961	  <parameter>ioctl</parameter> is the ioctl name. Drivers must define
2962	  the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
2963	  offset from DRM_COMMAND_BASE and the ioctl number respectively. The
2964	  first macro is private to the device while the second must be exposed
2965	  to userspace in a public header.
2966	</para>
2967	<para>
2968	  <parameter>func</parameter> is a pointer to the ioctl handler function
2969	  compatible with the <type>drm_ioctl_t</type> type.
2970	  <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
2971		struct drm_file *file_priv);</programlisting>
2972	</para>
2973	<para>
2974	  <parameter>flags</parameter> is a bitmask combination of the following
2975	  values. It restricts how the ioctl is allowed to be called.
2976	  <itemizedlist>
2977	    <listitem><para>
2978	      DRM_AUTH - Only authenticated callers allowed
2979	    </para></listitem>
2980	    <listitem><para>
2981	      DRM_MASTER - The ioctl can only be called on the master file
2982	      handle
2983	    </para></listitem>
2984            <listitem><para>
2985	      DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
2986	    </para></listitem>
2987            <listitem><para>
2988	      DRM_CONTROL_ALLOW - The ioctl can only be called on a control
2989	      device
2990	    </para></listitem>
2991            <listitem><para>
2992	      DRM_UNLOCKED - The ioctl handler will be called without locking
2993	      the DRM global mutex. This is the enforced default for kms drivers
2994	      (i.e. using the DRIVER_MODESET flag) and hence shouldn't be used
2995	      any more for new drivers.
2996	    </para></listitem>
2997	  </itemizedlist>
2998	</para>
2999      </para>
3000!Edrivers/gpu/drm/drm_ioctl.c
3001    </sect2>
3002  </sect1>
3003  <sect1>
3004    <title>Legacy Support Code</title>
3005    <para>
3006      The section very briefly covers some of the old legacy support code which
3007      is only used by old DRM drivers which have done a so-called shadow-attach
3008      to the underlying device instead of registering as a real driver. This
3009      also includes some of the old generic buffer management and command
3010      submission code. Do not use any of this in new and modern drivers.
3011    </para>
3012
3013    <sect2>
3014      <title>Legacy Suspend/Resume</title>
3015      <para>
3016	The DRM core provides some suspend/resume code, but drivers wanting full
3017	suspend/resume support should provide save() and restore() functions.
3018	These are called at suspend, hibernate, or resume time, and should perform
3019	any state save or restore required by your device across suspend or
3020	hibernate states.
3021      </para>
3022      <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
3023  int (*resume) (struct drm_device *);</synopsis>
3024      <para>
3025	Those are legacy suspend and resume methods which
3026	<emphasis>only</emphasis> work with the legacy shadow-attach driver
3027	registration functions. New driver should use the power management
3028	interface provided by their bus type (usually through
3029	the struct <structname>device_driver</structname> dev_pm_ops) and set
3030	these methods to NULL.
3031      </para>
3032    </sect2>
3033
3034    <sect2>
3035      <title>Legacy DMA Services</title>
3036      <para>
3037	This should cover how DMA mapping etc. is supported by the core.
3038	These functions are deprecated and should not be used.
3039      </para>
3040    </sect2>
3041  </sect1>
3042  </chapter>
3043
3044<!-- TODO
3045
3046- Add a glossary
3047- Document the struct_mutex catch-all lock
3048- Document connector properties
3049
3050- Why is the load method optional?
3051- What are drivers supposed to set the initial display state to, and how?
3052  Connector's DPMS states are not initialized and are thus equal to
3053  DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
3054  drm_helper_disable_unused_functions(), which disables unused encoders and
3055  CRTCs, but doesn't touch the connectors' DPMS state, and
3056  drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
3057  that don't implement (or just don't use) fbcon compatibility need to call
3058  those functions themselves?
3059- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
3060  around mode setting. Should this be done in the DRM core?
3061- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
3062  call and never set back to 0. It seems to be safe to permanently set it to 1
3063  in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
3064  well. This should be investigated.
3065- crtc and connector .save and .restore operations are only used internally in
3066  drivers, should they be removed from the core?
3067- encoder mid-layer .save and .restore operations are only used internally in
3068  drivers, should they be removed from the core?
3069- encoder mid-layer .detect operation is only used internally in drivers,
3070  should it be removed from the core?
3071-->
3072
3073  <!-- External interfaces -->
3074
3075  <chapter id="drmExternals">
3076    <title>Userland interfaces</title>
3077    <para>
3078      The DRM core exports several interfaces to applications,
3079      generally intended to be used through corresponding libdrm
3080      wrapper functions.  In addition, drivers export device-specific
3081      interfaces for use by userspace drivers &amp; device-aware
3082      applications through ioctls and sysfs files.
3083    </para>
3084    <para>
3085      External interfaces include: memory mapping, context management,
3086      DMA operations, AGP management, vblank control, fence
3087      management, memory management, and output management.
3088    </para>
3089    <para>
3090      Cover generic ioctls and sysfs layout here.  We only need high-level
3091      info, since man pages should cover the rest.
3092    </para>
3093
3094  <!-- External: render nodes -->
3095
3096    <sect1>
3097      <title>Render nodes</title>
3098      <para>
3099        DRM core provides multiple character-devices for user-space to use.
3100        Depending on which device is opened, user-space can perform a different
3101        set of operations (mainly ioctls). The primary node is always created
3102        and called card&lt;num&gt;. Additionally, a currently
3103        unused control node, called controlD&lt;num&gt; is also
3104        created. The primary node provides all legacy operations and
3105        historically was the only interface used by userspace. With KMS, the
3106        control node was introduced. However, the planned KMS control interface
3107        has never been written and so the control node stays unused to date.
3108      </para>
3109      <para>
3110        With the increased use of offscreen renderers and GPGPU applications,
3111        clients no longer require running compositors or graphics servers to
3112        make use of a GPU. But the DRM API required unprivileged clients to
3113        authenticate to a DRM-Master prior to getting GPU access. To avoid this
3114        step and to grant clients GPU access without authenticating, render
3115        nodes were introduced. Render nodes solely serve render clients, that
3116        is, no modesetting or privileged ioctls can be issued on render nodes.
3117        Only non-global rendering commands are allowed. If a driver supports
3118        render nodes, it must advertise it via the DRIVER_RENDER
3119        DRM driver capability. If not supported, the primary node must be used
3120        for render clients together with the legacy drmAuth authentication
3121        procedure.
3122      </para>
3123      <para>
3124        If a driver advertises render node support, DRM core will create a
3125        separate render node called renderD&lt;num&gt;. There will
3126        be one render node per device. No ioctls except  PRIME-related ioctls
3127        will be allowed on this node. Especially GEM_OPEN will be
3128        explicitly prohibited. Render nodes are designed to avoid the
3129        buffer-leaks, which occur if clients guess the flink names or mmap
3130        offsets on the legacy interface. Additionally to this basic interface,
3131        drivers must mark their driver-dependent render-only ioctls as
3132        DRM_RENDER_ALLOW so render clients can use them. Driver
3133        authors must be careful not to allow any privileged ioctls on render
3134        nodes.
3135      </para>
3136      <para>
3137        With render nodes, user-space can now control access to the render node
3138        via basic file-system access-modes. A running graphics server which
3139        authenticates clients on the privileged primary/legacy node is no longer
3140        required. Instead, a client can open the render node and is immediately
3141        granted GPU access. Communication between clients (or servers) is done
3142        via PRIME. FLINK from render node to legacy node is not supported. New
3143        clients must not use the insecure FLINK interface.
3144      </para>
3145      <para>
3146        Besides dropping all modeset/global ioctls, render nodes also drop the
3147        DRM-Master concept. There is no reason to associate render clients with
3148        a DRM-Master as they are independent of any graphics server. Besides,
3149        they must work without any running master, anyway.
3150        Drivers must be able to run without a master object if they support
3151        render nodes. If, on the other hand, a driver requires shared state
3152        between clients which is visible to user-space and accessible beyond
3153        open-file boundaries, they cannot support render nodes.
3154      </para>
3155    </sect1>
3156
3157  <!-- External: vblank handling -->
3158
3159    <sect1>
3160      <title>VBlank event handling</title>
3161      <para>
3162        The DRM core exposes two vertical blank related ioctls:
3163        <variablelist>
3164          <varlistentry>
3165            <term>DRM_IOCTL_WAIT_VBLANK</term>
3166            <listitem>
3167              <para>
3168                This takes a struct drm_wait_vblank structure as its argument,
3169                and it is used to block or request a signal when a specified
3170                vblank event occurs.
3171              </para>
3172            </listitem>
3173          </varlistentry>
3174          <varlistentry>
3175            <term>DRM_IOCTL_MODESET_CTL</term>
3176            <listitem>
3177              <para>
3178		This was only used for user-mode-settind drivers around
3179		modesetting changes to allow the kernel to update the vblank
3180		interrupt after mode setting, since on many devices the vertical
3181		blank counter is reset to 0 at some point during modeset. Modern
3182		drivers should not call this any more since with kernel mode
3183		setting it is a no-op.
3184              </para>
3185            </listitem>
3186          </varlistentry>
3187        </variablelist>
3188      </para>
3189    </sect1>
3190
3191  </chapter>
3192</part>
3193<part id="drmDrivers">
3194  <title>DRM Drivers</title>
3195
3196  <partintro>
3197    <para>
3198      This second part of the GPU Driver Developer's Guide documents driver
3199      code, implementation details and also all the driver-specific userspace
3200      interfaces. Especially since all hardware-acceleration interfaces to
3201      userspace are driver specific for efficiency and other reasons these
3202      interfaces can be rather substantial. Hence every driver has its own
3203      chapter.
3204    </para>
3205  </partintro>
3206
3207  <chapter id="drmI915">
3208    <title>drm/i915 Intel GFX Driver</title>
3209    <para>
3210      The drm/i915 driver supports all (with the exception of some very early
3211      models) integrated GFX chipsets with both Intel display and rendering
3212      blocks. This excludes a set of SoC platforms with an SGX rendering unit,
3213      those have basic support through the gma500 drm driver.
3214    </para>
3215    <sect1>
3216      <title>Core Driver Infrastructure</title>
3217      <para>
3218	This section covers core driver infrastructure used by both the display
3219	and the GEM parts of the driver.
3220      </para>
3221      <sect2>
3222        <title>Runtime Power Management</title>
3223!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
3224!Idrivers/gpu/drm/i915/intel_runtime_pm.c
3225!Idrivers/gpu/drm/i915/intel_uncore.c
3226      </sect2>
3227      <sect2>
3228        <title>Interrupt Handling</title>
3229!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
3230!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
3231!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
3232!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
3233      </sect2>
3234      <sect2>
3235        <title>Intel GVT-g Guest Support(vGPU)</title>
3236!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support
3237!Idrivers/gpu/drm/i915/i915_vgpu.c
3238      </sect2>
3239    </sect1>
3240    <sect1>
3241      <title>Display Hardware Handling</title>
3242      <para>
3243        This section covers everything related to the display hardware including
3244        the mode setting infrastructure, plane, sprite and cursor handling and
3245        display, output probing and related topics.
3246      </para>
3247      <sect2>
3248        <title>Mode Setting Infrastructure</title>
3249        <para>
3250          The i915 driver is thus far the only DRM driver which doesn't use the
3251          common DRM helper code to implement mode setting sequences. Thus it
3252          has its own tailor-made infrastructure for executing a display
3253          configuration change.
3254        </para>
3255      </sect2>
3256      <sect2>
3257        <title>Frontbuffer Tracking</title>
3258!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
3259!Idrivers/gpu/drm/i915/intel_frontbuffer.c
3260!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
3261      </sect2>
3262      <sect2>
3263        <title>Display FIFO Underrun Reporting</title>
3264!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
3265!Idrivers/gpu/drm/i915/intel_fifo_underrun.c
3266      </sect2>
3267      <sect2>
3268        <title>Plane Configuration</title>
3269        <para>
3270	  This section covers plane configuration and composition with the
3271	  primary plane, sprites, cursors and overlays. This includes the
3272	  infrastructure to do atomic vsync'ed updates of all this state and
3273	  also tightly coupled topics like watermark setup and computation,
3274	  framebuffer compression and panel self refresh.
3275        </para>
3276      </sect2>
3277      <sect2>
3278        <title>Atomic Plane Helpers</title>
3279!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
3280!Idrivers/gpu/drm/i915/intel_atomic_plane.c
3281      </sect2>
3282      <sect2>
3283        <title>Output Probing</title>
3284        <para>
3285	  This section covers output probing and related infrastructure like the
3286	  hotplug interrupt storm detection and mitigation code. Note that the
3287	  i915 driver still uses most of the common DRM helper code for output
3288	  probing, so those sections fully apply.
3289        </para>
3290      </sect2>
3291      <sect2>
3292        <title>Hotplug</title>
3293!Pdrivers/gpu/drm/i915/intel_hotplug.c Hotplug
3294!Idrivers/gpu/drm/i915/intel_hotplug.c
3295      </sect2>
3296      <sect2>
3297	<title>High Definition Audio</title>
3298!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port
3299!Idrivers/gpu/drm/i915/intel_audio.c
3300!Iinclude/drm/i915_component.h
3301      </sect2>
3302      <sect2>
3303	<title>Panel Self Refresh PSR (PSR/SRD)</title>
3304!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
3305!Idrivers/gpu/drm/i915/intel_psr.c
3306      </sect2>
3307      <sect2>
3308	<title>Frame Buffer Compression (FBC)</title>
3309!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
3310!Idrivers/gpu/drm/i915/intel_fbc.c
3311      </sect2>
3312      <sect2>
3313        <title>Display Refresh Rate Switching (DRRS)</title>
3314!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS)
3315!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state
3316!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable
3317!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable
3318!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate
3319!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush
3320!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init
3321
3322      </sect2>
3323      <sect2>
3324        <title>DPIO</title>
3325!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
3326      </sect2>
3327
3328      <sect2>
3329       <title>CSR firmware support for DMC</title>
3330!Pdrivers/gpu/drm/i915/intel_csr.c csr support for dmc
3331!Idrivers/gpu/drm/i915/intel_csr.c
3332      </sect2>
3333      <sect2>
3334	<title>Video BIOS Table (VBT)</title>
3335!Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
3336!Idrivers/gpu/drm/i915/intel_bios.c
3337!Idrivers/gpu/drm/i915/intel_bios.h
3338      </sect2>
3339    </sect1>
3340
3341    <sect1>
3342      <title>Memory Management and Command Submission</title>
3343      <para>
3344	This sections covers all things related to the GEM implementation in the
3345	i915 driver.
3346      </para>
3347      <sect2>
3348        <title>Batchbuffer Parsing</title>
3349!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
3350!Idrivers/gpu/drm/i915/i915_cmd_parser.c
3351      </sect2>
3352      <sect2>
3353        <title>Batchbuffer Pools</title>
3354!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
3355!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
3356      </sect2>
3357      <sect2>
3358        <title>Logical Rings, Logical Ring Contexts and Execlists</title>
3359!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
3360!Idrivers/gpu/drm/i915/intel_lrc.c
3361      </sect2>
3362      <sect2>
3363        <title>Global GTT views</title>
3364!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
3365!Idrivers/gpu/drm/i915/i915_gem_gtt.c
3366      </sect2>
3367      <sect2>
3368        <title>GTT Fences and Swizzling</title>
3369!Idrivers/gpu/drm/i915/i915_gem_fence.c
3370        <sect3>
3371          <title>Global GTT Fence Handling</title>
3372!Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
3373        </sect3>
3374        <sect3>
3375          <title>Hardware Tiling and Swizzling Details</title>
3376!Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
3377        </sect3>
3378      </sect2>
3379      <sect2>
3380        <title>Object Tiling IOCTLs</title>
3381!Idrivers/gpu/drm/i915/i915_gem_tiling.c
3382!Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
3383      </sect2>
3384      <sect2>
3385        <title>Buffer Object Eviction</title>
3386	<para>
3387	  This section documents the interface functions for evicting buffer
3388	  objects to make space available in the virtual gpu address spaces.
3389	  Note that this is mostly orthogonal to shrinking buffer objects
3390	  caches, which has the goal to make main memory (shared with the gpu
3391	  through the unified memory architecture) available.
3392	</para>
3393!Idrivers/gpu/drm/i915/i915_gem_evict.c
3394      </sect2>
3395      <sect2>
3396        <title>Buffer Object Memory Shrinking</title>
3397	<para>
3398	  This section documents the interface function for shrinking memory
3399	  usage of buffer object caches. Shrinking is used to make main memory
3400	  available.  Note that this is mostly orthogonal to evicting buffer
3401	  objects, which has the goal to make space in gpu virtual address
3402	  spaces.
3403	</para>
3404!Idrivers/gpu/drm/i915/i915_gem_shrinker.c
3405      </sect2>
3406    </sect1>
3407    <sect1>
3408      <title>GuC</title>
3409      <sect2>
3410        <title>GuC-specific firmware loader</title>
3411!Pdrivers/gpu/drm/i915/intel_guc_loader.c GuC-specific firmware loader
3412!Idrivers/gpu/drm/i915/intel_guc_loader.c
3413      </sect2>
3414      <sect2>
3415        <title>GuC-based command submission</title>
3416!Pdrivers/gpu/drm/i915/i915_guc_submission.c GuC-based command submission
3417!Idrivers/gpu/drm/i915/i915_guc_submission.c
3418      </sect2>
3419      <sect2>
3420        <title>GuC Firmware Layout</title>
3421!Pdrivers/gpu/drm/i915/intel_guc_fwif.h GuC Firmware Layout
3422      </sect2>
3423    </sect1>
3424
3425    <sect1>
3426      <title> Tracing </title>
3427      <para>
3428    This sections covers all things related to the tracepoints implemented in
3429    the i915 driver.
3430      </para>
3431      <sect2>
3432        <title> i915_ppgtt_create and i915_ppgtt_release </title>
3433!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints
3434      </sect2>
3435      <sect2>
3436        <title> i915_context_create and i915_context_free </title>
3437!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints
3438      </sect2>
3439      <sect2>
3440        <title> switch_mm </title>
3441!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint
3442      </sect2>
3443    </sect1>
3444
3445  </chapter>
3446!Cdrivers/gpu/drm/i915/i915_irq.c
3447</part>
3448
3449<part id="vga_switcheroo">
3450  <title>vga_switcheroo</title>
3451  <partintro>
3452!Pdrivers/gpu/vga/vga_switcheroo.c Overview
3453  </partintro>
3454
3455  <chapter id="modes_of_use">
3456    <title>Modes of Use</title>
3457    <sect1>
3458      <title>Manual switching and manual power control</title>
3459!Pdrivers/gpu/vga/vga_switcheroo.c Manual switching and manual power control
3460    </sect1>
3461    <sect1>
3462      <title>Driver power control</title>
3463!Pdrivers/gpu/vga/vga_switcheroo.c Driver power control
3464    </sect1>
3465  </chapter>
3466
3467  <chapter id="api">
3468    <title>API</title>
3469    <sect1>
3470      <title>Public functions</title>
3471!Edrivers/gpu/vga/vga_switcheroo.c
3472    </sect1>
3473    <sect1>
3474      <title>Public structures</title>
3475!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler
3476!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_ops
3477    </sect1>
3478    <sect1>
3479      <title>Public constants</title>
3480!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler_flags_t
3481!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_id
3482!Finclude/linux/vga_switcheroo.h vga_switcheroo_state
3483    </sect1>
3484    <sect1>
3485      <title>Private structures</title>
3486!Fdrivers/gpu/vga/vga_switcheroo.c vgasr_priv
3487!Fdrivers/gpu/vga/vga_switcheroo.c vga_switcheroo_client
3488    </sect1>
3489  </chapter>
3490
3491  <chapter id="handlers">
3492    <title>Handlers</title>
3493    <sect1>
3494      <title>apple-gmux Handler</title>
3495!Pdrivers/platform/x86/apple-gmux.c Overview
3496!Pdrivers/platform/x86/apple-gmux.c Interrupt
3497      <sect2>
3498        <title>Graphics mux</title>
3499!Pdrivers/platform/x86/apple-gmux.c Graphics mux
3500      </sect2>
3501      <sect2>
3502        <title>Power control</title>
3503!Pdrivers/platform/x86/apple-gmux.c Power control
3504      </sect2>
3505      <sect2>
3506        <title>Backlight control</title>
3507!Pdrivers/platform/x86/apple-gmux.c Backlight control
3508      </sect2>
3509      <sect2>
3510        <title>Public functions</title>
3511!Iinclude/linux/apple-gmux.h
3512      </sect2>
3513    </sect1>
3514  </chapter>
3515
3516!Cdrivers/gpu/vga/vga_switcheroo.c
3517!Cinclude/linux/vga_switcheroo.h
3518!Cdrivers/platform/x86/apple-gmux.c
3519</part>
3520
3521</book>