Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
   4//
   5// Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
 
 
 
 
   6
   7#include <linux/module.h>
   8#include <linux/moduleparam.h>
   9#include <linux/init.h>
  10#include <linux/delay.h>
  11#include <linux/slab.h>
  12#include <linux/pm.h>
  13#include <linux/i2c.h>
  14#include <linux/clk.h>
  15#include <linux/log2.h>
  16#include <linux/of.h>
  17#include <linux/regmap.h>
  18#include <linux/regulator/driver.h>
  19#include <linux/regulator/machine.h>
  20#include <linux/regulator/consumer.h>
 
  21#include <sound/core.h>
  22#include <sound/tlv.h>
  23#include <sound/pcm.h>
  24#include <sound/pcm_params.h>
  25#include <sound/soc.h>
  26#include <sound/soc-dapm.h>
  27#include <sound/initval.h>
  28
  29#include "sgtl5000.h"
  30
  31#define SGTL5000_DAP_REG_OFFSET	0x0100
  32#define SGTL5000_MAX_REG_OFFSET	0x013A
  33
  34/* Delay for the VAG ramp up */
  35#define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
  36/* Delay for the VAG ramp down */
  37#define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
  38
  39#define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
  40
  41/* default value of sgtl5000 registers */
  42static const struct reg_default sgtl5000_reg_defaults[] = {
  43	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
 
  44	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
  45	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
  46	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
  47	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
  48	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
  49	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
  50	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
  51	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
 
  52	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
  53	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
  54	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
  55	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
 
  56	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
  57	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
  58	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
  59	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
  60	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
  61	{ SGTL5000_DAP_CTRL,			0x0000 },
  62	{ SGTL5000_DAP_PEQ,			0x0000 },
  63	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
  64	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
  65	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
  66	{ SGTL5000_DAP_SURROUND,		0x0040 },
  67	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
  68	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
  69	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
  70	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
  71	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
  72	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
  73	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
  74	{ SGTL5000_DAP_AVC_CTRL,		0x5100 },
  75	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
  76	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
  77	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
  78};
  79
  80/* AVC: Threshold dB -> register: pre-calculated values */
  81static const u16 avc_thr_db2reg[97] = {
  82	0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
  83	0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
  84	0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
  85	0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
  86	0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
  87	0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
  88	0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
  89	0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
  90	0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
  91	0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
  92	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
  93
  94/* regulator supplies for sgtl5000, VDDD is an optional external supply */
  95enum sgtl5000_regulator_supplies {
  96	VDDA,
  97	VDDIO,
  98	VDDD,
  99	SGTL5000_SUPPLY_NUM
 100};
 101
 102/* vddd is optional supply */
 103static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
 104	"VDDA",
 105	"VDDIO",
 106	"VDDD"
 107};
 108
 
 109#define LDO_VOLTAGE		1200000
 110#define LINREG_VDDD	((1600 - LDO_VOLTAGE / 1000) / 50)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112enum sgtl5000_micbias_resistor {
 113	SGTL5000_MICBIAS_OFF = 0,
 114	SGTL5000_MICBIAS_2K = 2,
 115	SGTL5000_MICBIAS_4K = 4,
 116	SGTL5000_MICBIAS_8K = 8,
 117};
 118
 119enum  {
 120	I2S_LRCLK_STRENGTH_DISABLE,
 121	I2S_LRCLK_STRENGTH_LOW,
 122	I2S_LRCLK_STRENGTH_MEDIUM,
 123	I2S_LRCLK_STRENGTH_HIGH,
 124};
 125
 126enum  {
 127	I2S_SCLK_STRENGTH_DISABLE,
 128	I2S_SCLK_STRENGTH_LOW,
 129	I2S_SCLK_STRENGTH_MEDIUM,
 130	I2S_SCLK_STRENGTH_HIGH,
 131};
 132
 133enum {
 134	HP_POWER_EVENT,
 135	DAC_POWER_EVENT,
 136	ADC_POWER_EVENT,
 137	LAST_POWER_EVENT = ADC_POWER_EVENT
 138};
 139
 140/* sgtl5000 private structure in codec */
 141struct sgtl5000_priv {
 142	int sysclk;	/* sysclk rate */
 143	int master;	/* i2s master or not */
 144	int fmt;	/* i2s data format */
 145	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
 146	int num_supplies;
 147	struct regmap *regmap;
 148	struct clk *mclk;
 149	int revision;
 150	u8 micbias_resistor;
 151	u8 micbias_voltage;
 152	u8 lrclk_strength;
 153	u8 sclk_strength;
 154	u16 mute_state[LAST_POWER_EVENT + 1];
 155};
 156
 157static inline int hp_sel_input(struct snd_soc_component *component)
 158{
 159	return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
 160		SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
 161}
 162
 163static inline u16 mute_output(struct snd_soc_component *component,
 164			      u16 mute_mask)
 165{
 166	u16 mute_reg = snd_soc_component_read(component,
 167					      SGTL5000_CHIP_ANA_CTRL);
 168
 169	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
 170			    mute_mask, mute_mask);
 171	return mute_reg;
 172}
 173
 174static inline void restore_output(struct snd_soc_component *component,
 175				  u16 mute_mask, u16 mute_reg)
 176{
 177	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
 178		mute_mask, mute_reg);
 179}
 180
 181static void vag_power_on(struct snd_soc_component *component, u32 source)
 182{
 183	if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
 184	    SGTL5000_VAG_POWERUP)
 185		return;
 186
 187	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
 188			    SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
 189
 190	/* When VAG powering on to get local loop from Line-In, the sleep
 191	 * is required to avoid loud pop.
 192	 */
 193	if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
 194	    source == HP_POWER_EVENT)
 195		msleep(SGTL5000_VAG_POWERUP_DELAY);
 196}
 197
 198static int vag_power_consumers(struct snd_soc_component *component,
 199			       u16 ana_pwr_reg, u32 source)
 200{
 201	int consumers = 0;
 202
 203	/* count dac/adc consumers unconditional */
 204	if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
 205		consumers++;
 206	if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
 207		consumers++;
 208
 209	/*
 210	 * If the event comes from HP and Line-In is selected,
 211	 * current action is 'DAC to be powered down'.
 212	 * As HP_POWERUP is not set when HP muxed to line-in,
 213	 * we need to keep VAG power ON.
 214	 */
 215	if (source == HP_POWER_EVENT) {
 216		if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
 217			consumers++;
 218	} else {
 219		if (ana_pwr_reg & SGTL5000_HP_POWERUP)
 220			consumers++;
 221	}
 222
 223	return consumers;
 224}
 225
 226static void vag_power_off(struct snd_soc_component *component, u32 source)
 227{
 228	u16 ana_pwr = snd_soc_component_read(component,
 229					     SGTL5000_CHIP_ANA_POWER);
 230
 231	if (!(ana_pwr & SGTL5000_VAG_POWERUP))
 232		return;
 233
 234	/*
 235	 * This function calls when any of VAG power consumers is disappearing.
 236	 * Thus, if there is more than one consumer at the moment, as minimum
 237	 * one consumer will definitely stay after the end of the current
 238	 * event.
 239	 * Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
 240	 * - LINE_IN (for HP events) / HP (for DAC/ADC events)
 241	 * - DAC
 242	 * - ADC
 243	 * (the current consumer is disappearing right now)
 244	 */
 245	if (vag_power_consumers(component, ana_pwr, source) >= 2)
 246		return;
 247
 248	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
 249		SGTL5000_VAG_POWERUP, 0);
 250	/* In power down case, we need wait 400-1000 ms
 251	 * when VAG fully ramped down.
 252	 * As longer we wait, as smaller pop we've got.
 253	 */
 254	msleep(SGTL5000_VAG_POWERDOWN_DELAY);
 255}
 256
 257/*
 258 * mic_bias power on/off share the same register bits with
 259 * output impedance of mic bias, when power on mic bias, we
 260 * need reclaim it to impedance value.
 261 * 0x0 = Powered off
 262 * 0x1 = 2Kohm
 263 * 0x2 = 4Kohm
 264 * 0x3 = 8Kohm
 265 */
 266static int mic_bias_event(struct snd_soc_dapm_widget *w,
 267	struct snd_kcontrol *kcontrol, int event)
 268{
 269	struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
 270	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
 271
 272	switch (event) {
 273	case SND_SOC_DAPM_POST_PMU:
 274		/* change mic bias resistor */
 275		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
 276			SGTL5000_BIAS_R_MASK,
 277			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
 278		break;
 279
 280	case SND_SOC_DAPM_PRE_PMD:
 281		snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
 282				SGTL5000_BIAS_R_MASK, 0);
 283		break;
 284	}
 285	return 0;
 286}
 287
 288static int vag_and_mute_control(struct snd_soc_component *component,
 289				 int event, int event_source)
 
 
 
 
 
 290{
 291	static const u16 mute_mask[] = {
 292		/*
 293		 * Mask for HP_POWER_EVENT.
 294		 * Muxing Headphones have to be wrapped with mute/unmute
 295		 * headphones only.
 296		 */
 297		SGTL5000_HP_MUTE,
 298		/*
 299		 * Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
 300		 * Muxing DAC or ADC block have to wrapped with mute/unmute
 301		 * both headphones and line-out.
 302		 */
 303		SGTL5000_OUTPUTS_MUTE,
 304		SGTL5000_OUTPUTS_MUTE
 305	};
 306
 307	struct sgtl5000_priv *sgtl5000 =
 308		snd_soc_component_get_drvdata(component);
 309
 310	switch (event) {
 311	case SND_SOC_DAPM_PRE_PMU:
 312		sgtl5000->mute_state[event_source] =
 313			mute_output(component, mute_mask[event_source]);
 314		break;
 315	case SND_SOC_DAPM_POST_PMU:
 316		vag_power_on(component, event_source);
 317		restore_output(component, mute_mask[event_source],
 318			       sgtl5000->mute_state[event_source]);
 319		break;
 
 320	case SND_SOC_DAPM_PRE_PMD:
 321		sgtl5000->mute_state[event_source] =
 322			mute_output(component, mute_mask[event_source]);
 323		vag_power_off(component, event_source);
 324		break;
 325	case SND_SOC_DAPM_POST_PMD:
 326		restore_output(component, mute_mask[event_source],
 327			       sgtl5000->mute_state[event_source]);
 
 
 
 
 328		break;
 329	default:
 330		break;
 331	}
 332
 333	return 0;
 334}
 335
 336/*
 337 * Mute Headphone when power it up/down.
 338 * Control VAG power on HP power path.
 339 */
 340static int headphone_pga_event(struct snd_soc_dapm_widget *w,
 341	struct snd_kcontrol *kcontrol, int event)
 342{
 343	struct snd_soc_component *component =
 344		snd_soc_dapm_to_component(w->dapm);
 345
 346	return vag_and_mute_control(component, event, HP_POWER_EVENT);
 347}
 348
 349/* As manual describes, ADC/DAC powering up/down requires
 350 * to mute outputs to avoid pops.
 351 * Control VAG power on ADC/DAC power path.
 352 */
 353static int adc_updown_depop(struct snd_soc_dapm_widget *w,
 354	struct snd_kcontrol *kcontrol, int event)
 355{
 356	struct snd_soc_component *component =
 357		snd_soc_dapm_to_component(w->dapm);
 358
 359	return vag_and_mute_control(component, event, ADC_POWER_EVENT);
 360}
 361
 362static int dac_updown_depop(struct snd_soc_dapm_widget *w,
 363	struct snd_kcontrol *kcontrol, int event)
 364{
 365	struct snd_soc_component *component =
 366		snd_soc_dapm_to_component(w->dapm);
 367
 368	return vag_and_mute_control(component, event, DAC_POWER_EVENT);
 369}
 370
 371/* input sources for ADC */
 372static const char *adc_mux_text[] = {
 373	"MIC_IN", "LINE_IN"
 374};
 375
 376static SOC_ENUM_SINGLE_DECL(adc_enum,
 377			    SGTL5000_CHIP_ANA_CTRL, 2,
 378			    adc_mux_text);
 379
 380static const struct snd_kcontrol_new adc_mux =
 381SOC_DAPM_ENUM("Capture Mux", adc_enum);
 382
 383/* input sources for headphone */
 384static const char *hp_mux_text[] = {
 385	"DAC", "LINE_IN"
 386};
 387
 388static SOC_ENUM_SINGLE_DECL(hp_enum,
 389			    SGTL5000_CHIP_ANA_CTRL, 6,
 390			    hp_mux_text);
 391
 392static const struct snd_kcontrol_new hp_mux =
 393SOC_DAPM_ENUM("Headphone Mux", hp_enum);
 394
 395/* input sources for DAC */
 396static const char *dac_mux_text[] = {
 397	"ADC", "I2S", "Rsvrd", "DAP"
 398};
 399
 400static SOC_ENUM_SINGLE_DECL(dac_enum,
 401			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
 402			    dac_mux_text);
 403
 404static const struct snd_kcontrol_new dac_mux =
 405SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
 406
 407/* input sources for DAP */
 408static const char *dap_mux_text[] = {
 409	"ADC", "I2S"
 410};
 411
 412static SOC_ENUM_SINGLE_DECL(dap_enum,
 413			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
 414			    dap_mux_text);
 415
 416static const struct snd_kcontrol_new dap_mux =
 417SOC_DAPM_ENUM("DAP Mux", dap_enum);
 418
 419/* input sources for DAP mix */
 420static const char *dapmix_mux_text[] = {
 421	"ADC", "I2S"
 422};
 423
 424static SOC_ENUM_SINGLE_DECL(dapmix_enum,
 425			    SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
 426			    dapmix_mux_text);
 427
 428static const struct snd_kcontrol_new dapmix_mux =
 429SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
 430
 431
 432static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
 433	SND_SOC_DAPM_INPUT("LINE_IN"),
 434	SND_SOC_DAPM_INPUT("MIC_IN"),
 435
 436	SND_SOC_DAPM_OUTPUT("HP_OUT"),
 437	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
 438
 439	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
 440			    mic_bias_event,
 441			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
 442
 443	SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
 444			   headphone_pga_event,
 445			   SND_SOC_DAPM_PRE_POST_PMU |
 446			   SND_SOC_DAPM_PRE_POST_PMD),
 447	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
 448
 449	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
 450	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
 451	SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
 452	SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
 453	SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
 454	SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
 455
 456
 457	/* aif for i2s input */
 458	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
 459				0, SGTL5000_CHIP_DIG_POWER,
 460				0, 0),
 461
 462	/* aif for i2s output */
 463	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
 464				0, SGTL5000_CHIP_DIG_POWER,
 465				1, 0),
 466
 467	SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
 468			   adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
 469			   SND_SOC_DAPM_PRE_POST_PMD),
 470	SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
 471			   dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
 472			   SND_SOC_DAPM_PRE_POST_PMD),
 473};
 474
 475/* routes for sgtl5000 */
 476static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
 477	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
 478	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
 479
 480	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
 481	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
 482
 483	{"DAP Mux", "ADC", "ADC"},		/* adc --> DAP mux */
 484	{"DAP Mux", NULL, "AIFIN"},		/* i2s --> DAP mux */
 485	{"DAP", NULL, "DAP Mux"},		/* DAP mux --> dap */
 486
 487	{"DAP MIX Mux", "ADC", "ADC"},		/* adc --> DAP MIX mux */
 488	{"DAP MIX Mux", NULL, "AIFIN"},		/* i2s --> DAP MIX mux */
 489	{"DAP", NULL, "DAP MIX Mux"},		/* DAP MIX mux --> dap */
 490
 491	{"Digital Input Mux", "ADC", "ADC"},	/* adc --> audio mux */
 492	{"Digital Input Mux", NULL, "AIFIN"},	/* i2s --> audio mux */
 493	{"Digital Input Mux", NULL, "DAP"},	/* dap --> audio mux */
 494	{"DAC", NULL, "Digital Input Mux"},	/* audio mux --> dac */
 495
 496	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
 497	{"LO", NULL, "DAC"},			/* dac --> line_out */
 498
 499	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
 500	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
 501
 502	{"LINE_OUT", NULL, "LO"},
 503	{"HP_OUT", NULL, "HP"},
 504};
 505
 506/* custom function to fetch info of PCM playback volume */
 507static int dac_info_volsw(struct snd_kcontrol *kcontrol,
 508			  struct snd_ctl_elem_info *uinfo)
 509{
 510	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 511	uinfo->count = 2;
 512	uinfo->value.integer.min = 0;
 513	uinfo->value.integer.max = 0xfc - 0x3c;
 514	return 0;
 515}
 516
 517/*
 518 * custom function to get of PCM playback volume
 519 *
 520 * dac volume register
 521 * 15-------------8-7--------------0
 522 * | R channel vol | L channel vol |
 523 *  -------------------------------
 524 *
 525 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 526 *
 527 * register values map to dB
 528 * 0x3B and less = Reserved
 529 * 0x3C = 0 dB
 530 * 0x3D = -0.5 dB
 531 * 0xF0 = -90 dB
 532 * 0xFC and greater = Muted
 533 *
 534 * register value map to userspace value
 535 *
 536 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
 537 *			------------------------------
 538 * userspace value	0xc0			     0
 539 */
 540static int dac_get_volsw(struct snd_kcontrol *kcontrol,
 541			 struct snd_ctl_elem_value *ucontrol)
 542{
 543	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 544	int reg;
 545	int l;
 546	int r;
 547
 548	reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
 549
 550	/* get left channel volume */
 551	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
 552
 553	/* get right channel volume */
 554	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
 555
 556	/* make sure value fall in (0x3c,0xfc) */
 557	l = clamp(l, 0x3c, 0xfc);
 558	r = clamp(r, 0x3c, 0xfc);
 559
 560	/* invert it and map to userspace value */
 561	l = 0xfc - l;
 562	r = 0xfc - r;
 563
 564	ucontrol->value.integer.value[0] = l;
 565	ucontrol->value.integer.value[1] = r;
 566
 567	return 0;
 568}
 569
 570/*
 571 * custom function to put of PCM playback volume
 572 *
 573 * dac volume register
 574 * 15-------------8-7--------------0
 575 * | R channel vol | L channel vol |
 576 *  -------------------------------
 577 *
 578 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 579 *
 580 * register values map to dB
 581 * 0x3B and less = Reserved
 582 * 0x3C = 0 dB
 583 * 0x3D = -0.5 dB
 584 * 0xF0 = -90 dB
 585 * 0xFC and greater = Muted
 586 *
 587 * userspace value map to register value
 588 *
 589 * userspace value	0xc0			     0
 590 *			------------------------------
 591 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
 592 */
 593static int dac_put_volsw(struct snd_kcontrol *kcontrol,
 594			 struct snd_ctl_elem_value *ucontrol)
 595{
 596	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 597	int reg;
 598	int l;
 599	int r;
 600
 601	l = ucontrol->value.integer.value[0];
 602	r = ucontrol->value.integer.value[1];
 603
 604	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
 605	l = clamp(l, 0, 0xfc - 0x3c);
 606	r = clamp(r, 0, 0xfc - 0x3c);
 607
 608	/* invert it, get the value can be set to register */
 609	l = 0xfc - l;
 610	r = 0xfc - r;
 611
 612	/* shift to get the register value */
 613	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
 614		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
 615
 616	snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
 617
 618	return 0;
 619}
 620
 621/*
 622 * custom function to get AVC threshold
 623 *
 624 * The threshold dB is calculated by rearranging the calculation from the
 625 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
 626 * dB = ( fls(register_value) - 14.347 ) * 6.02
 627 *
 628 * As this calculation is expensive and the threshold dB values may not exceed
 629 * 0 to 96 we use pre-calculated values.
 630 */
 631static int avc_get_threshold(struct snd_kcontrol *kcontrol,
 632			     struct snd_ctl_elem_value *ucontrol)
 633{
 634	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 635	int db, i;
 636	u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
 637
 638	/* register value 0 => -96dB */
 639	if (!reg) {
 640		ucontrol->value.integer.value[0] = 96;
 641		ucontrol->value.integer.value[1] = 96;
 642		return 0;
 643	}
 644
 645	/* get dB from register value (rounded down) */
 646	for (i = 0; avc_thr_db2reg[i] > reg; i++)
 647		;
 648	db = i;
 649
 650	ucontrol->value.integer.value[0] = db;
 651	ucontrol->value.integer.value[1] = db;
 652
 653	return 0;
 654}
 655
 656/*
 657 * custom function to put AVC threshold
 658 *
 659 * The register value is calculated by following formula:
 660 *                                    register_value = 10^(dB/20) * 0.636 * 2^15
 661 * As this calculation is expensive and the threshold dB values may not exceed
 662 * 0 to 96 we use pre-calculated values.
 663 */
 664static int avc_put_threshold(struct snd_kcontrol *kcontrol,
 665			     struct snd_ctl_elem_value *ucontrol)
 666{
 667	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 668	int db;
 669	u16 reg;
 670
 671	db = (int)ucontrol->value.integer.value[0];
 672	if (db < 0 || db > 96)
 673		return -EINVAL;
 674	reg = avc_thr_db2reg[db];
 675	snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
 676
 677	return 0;
 678}
 679
 680static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
 681
 682/* tlv for mic gain, 0db 20db 30db 40db */
 683static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
 684	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
 685	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
 686);
 687
 688/* tlv for DAP channels, 0% - 100% - 200% */
 689static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
 690
 691/* tlv for bass bands, -11.75db to 12.0db, step .25db */
 692static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
 693
 694/* tlv for hp volume, -51.5db to 12.0db, step .5db */
 695static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
 696
 697/* tlv for lineout volume, 31 steps of .5db each */
 698static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
 699
 700/* tlv for dap avc max gain, 0db, 6db, 12db */
 701static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
 702
 703/* tlv for dap avc threshold, */
 704static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
 705
 706static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
 707	/* SOC_DOUBLE_S8_TLV with invert */
 708	{
 709		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 710		.name = "PCM Playback Volume",
 711		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
 712			SNDRV_CTL_ELEM_ACCESS_READWRITE,
 713		.info = dac_info_volsw,
 714		.get = dac_get_volsw,
 715		.put = dac_put_volsw,
 716	},
 717
 718	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
 719	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
 720			SGTL5000_CHIP_ANA_ADC_CTRL,
 721			8, 1, 0, capture_6db_attenuate),
 722	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
 723	SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
 724
 725	SOC_DOUBLE_TLV("Headphone Playback Volume",
 726			SGTL5000_CHIP_ANA_HP_CTRL,
 727			0, 8,
 728			0x7f, 1,
 729			headphone_volume),
 730	SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
 731			4, 1, 1),
 732	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
 733			5, 1, 0),
 734
 735	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
 736			0, 3, 0, mic_gain_tlv),
 737
 738	SOC_DOUBLE_TLV("Lineout Playback Volume",
 739			SGTL5000_CHIP_LINE_OUT_VOL,
 740			SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
 741			SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
 742			0x1f, 1,
 743			lineout_volume),
 744	SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
 745
 746	SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
 747	0, 0xffff, 0, dap_volume),
 748
 749	SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
 750	0, 0xffff, 0, dap_volume),
 751	/* Automatic Volume Control (DAP AVC) */
 752	SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
 753	SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
 754	SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
 755			avc_max_gain),
 756	SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
 757	SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
 758			0, 96, 0, avc_get_threshold, avc_put_threshold,
 759			avc_threshold),
 760
 761	SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
 762	0, 0x5F, 0, bass_band),
 763
 764	SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
 765	0, 0x5F, 0, bass_band),
 766
 767	SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
 768	0, 0x5F, 0, bass_band),
 769
 770	SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
 771	0, 0x5F, 0, bass_band),
 772
 773	SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
 774	0, 0x5F, 0, bass_band),
 775};
 776
 777/* mute the codec used by alsa core */
 778static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
 779{
 780	struct snd_soc_component *component = codec_dai->component;
 781	u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
 782
 783	/*
 784	 * During 'digital mute' do not mute DAC
 785	 * because LINE_IN would be muted aswell. We want to mute
 786	 * only I2S block - this can be done by powering it off
 787	 */
 788	snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
 789			i2s_pwr, mute ? 0 : i2s_pwr);
 790
 791	return 0;
 792}
 793
 794/* set codec format */
 795static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
 796{
 797	struct snd_soc_component *component = codec_dai->component;
 798	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
 799	u16 i2sctl = 0;
 800
 801	sgtl5000->master = 0;
 802	/*
 803	 * i2s clock and frame master setting.
 804	 * ONLY support:
 805	 *  - clock and frame slave,
 806	 *  - clock and frame master
 807	 */
 808	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
 809	case SND_SOC_DAIFMT_CBS_CFS:
 810		break;
 811	case SND_SOC_DAIFMT_CBM_CFM:
 812		i2sctl |= SGTL5000_I2S_MASTER;
 813		sgtl5000->master = 1;
 814		break;
 815	default:
 816		return -EINVAL;
 817	}
 818
 819	/* setting i2s data format */
 820	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 821	case SND_SOC_DAIFMT_DSP_A:
 822		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
 823		break;
 824	case SND_SOC_DAIFMT_DSP_B:
 825		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
 826		i2sctl |= SGTL5000_I2S_LRALIGN;
 827		break;
 828	case SND_SOC_DAIFMT_I2S:
 829		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
 830		break;
 831	case SND_SOC_DAIFMT_RIGHT_J:
 832		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
 833		i2sctl |= SGTL5000_I2S_LRPOL;
 834		break;
 835	case SND_SOC_DAIFMT_LEFT_J:
 836		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
 837		i2sctl |= SGTL5000_I2S_LRALIGN;
 838		break;
 839	default:
 840		return -EINVAL;
 841	}
 842
 843	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 844
 845	/* Clock inversion */
 846	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 847	case SND_SOC_DAIFMT_NB_NF:
 848		break;
 849	case SND_SOC_DAIFMT_IB_NF:
 850		i2sctl |= SGTL5000_I2S_SCLK_INV;
 851		break;
 852	default:
 853		return -EINVAL;
 854	}
 855
 856	snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
 857
 858	return 0;
 859}
 860
 861/* set codec sysclk */
 862static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
 863				   int clk_id, unsigned int freq, int dir)
 864{
 865	struct snd_soc_component *component = codec_dai->component;
 866	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
 867
 868	switch (clk_id) {
 869	case SGTL5000_SYSCLK:
 870		sgtl5000->sysclk = freq;
 871		break;
 872	default:
 873		return -EINVAL;
 874	}
 875
 876	return 0;
 877}
 878
 879/*
 880 * set clock according to i2s frame clock,
 881 * sgtl5000 provides 2 clock sources:
 882 * 1. sys_mclk: sample freq can only be configured to
 883 *	1/256, 1/384, 1/512 of sys_mclk.
 884 * 2. pll: can derive any audio clocks.
 885 *
 886 * clock setting rules:
 887 * 1. in slave mode, only sys_mclk can be used
 888 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
 889 * and above.
 890 * 3. usage of sys_mclk is preferred over pll to save power.
 891 */
 892static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
 893{
 894	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
 895	int clk_ctl = 0;
 896	int sys_fs;	/* sample freq */
 897
 898	/*
 899	 * sample freq should be divided by frame clock,
 900	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
 901	 * 32 kHz or 44.1 kHz.
 902	 */
 903	switch (frame_rate) {
 904	case 8000:
 905	case 16000:
 906		sys_fs = 32000;
 907		break;
 908	case 11025:
 909	case 22050:
 910		sys_fs = 44100;
 911		break;
 912	default:
 913		sys_fs = frame_rate;
 914		break;
 915	}
 916
 917	/* set divided factor of frame clock */
 918	switch (sys_fs / frame_rate) {
 919	case 4:
 920		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
 921		break;
 922	case 2:
 923		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
 924		break;
 925	case 1:
 926		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
 927		break;
 928	default:
 929		return -EINVAL;
 930	}
 931
 932	/* set the sys_fs according to frame rate */
 933	switch (sys_fs) {
 934	case 32000:
 935		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
 936		break;
 937	case 44100:
 938		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
 939		break;
 940	case 48000:
 941		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
 942		break;
 943	case 96000:
 944		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
 945		break;
 946	default:
 947		dev_err(component->dev, "frame rate %d not supported\n",
 948			frame_rate);
 949		return -EINVAL;
 950	}
 951
 952	/*
 953	 * calculate the divider of mclk/sample_freq,
 954	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
 955	 * of 8 MHz - 27 MHz
 956	 */
 957	switch (sgtl5000->sysclk / frame_rate) {
 958	case 256:
 959		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
 960			SGTL5000_MCLK_FREQ_SHIFT;
 961		break;
 962	case 384:
 963		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
 964			SGTL5000_MCLK_FREQ_SHIFT;
 965		break;
 966	case 512:
 967		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
 968			SGTL5000_MCLK_FREQ_SHIFT;
 969		break;
 970	default:
 971		/* if mclk does not satisfy the divider, use pll */
 972		if (sgtl5000->master) {
 973			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
 974				SGTL5000_MCLK_FREQ_SHIFT;
 975		} else {
 976			dev_err(component->dev,
 977				"PLL not supported in slave mode\n");
 978			dev_err(component->dev, "%d ratio is not supported. "
 979				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
 980				sgtl5000->sysclk / frame_rate);
 981			return -EINVAL;
 982		}
 983	}
 984
 985	/* if using pll, please check manual 6.4.2 for detail */
 986	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
 987		u64 out, t;
 988		int div2;
 989		int pll_ctl;
 990		unsigned int in, int_div, frac_div;
 991
 992		if (sgtl5000->sysclk > 17000000) {
 993			div2 = 1;
 994			in = sgtl5000->sysclk / 2;
 995		} else {
 996			div2 = 0;
 997			in = sgtl5000->sysclk;
 998		}
 999		if (sys_fs == 44100)
1000			out = 180633600;
1001		else
1002			out = 196608000;
1003		t = do_div(out, in);
1004		int_div = out;
1005		t *= 2048;
1006		do_div(t, in);
1007		frac_div = t;
1008		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1010
1011		snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1012		if (div2)
1013			snd_soc_component_update_bits(component,
1014				SGTL5000_CHIP_CLK_TOP_CTRL,
1015				SGTL5000_INPUT_FREQ_DIV2,
1016				SGTL5000_INPUT_FREQ_DIV2);
1017		else
1018			snd_soc_component_update_bits(component,
1019				SGTL5000_CHIP_CLK_TOP_CTRL,
1020				SGTL5000_INPUT_FREQ_DIV2,
1021				0);
1022
1023		/* power up pll */
1024		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1027
1028		/* if using pll, clk_ctrl must be set after pll power up */
1029		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1030	} else {
1031		/* otherwise, clk_ctrl must be set before pll power down */
1032		snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1033
1034		/* power down pll */
1035		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1037			0);
1038	}
1039
1040	return 0;
1041}
1042
1043/*
1044 * Set PCM DAI bit size and sample rate.
1045 * input: params_rate, params_fmt
1046 */
1047static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048				  struct snd_pcm_hw_params *params,
1049				  struct snd_soc_dai *dai)
1050{
1051	struct snd_soc_component *component = dai->component;
1052	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053	int channels = params_channels(params);
1054	int i2s_ctl = 0;
1055	int stereo;
1056	int ret;
1057
1058	/* sysclk should already set */
1059	if (!sgtl5000->sysclk) {
1060		dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1061		return -EFAULT;
1062	}
1063
1064	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065		stereo = SGTL5000_DAC_STEREO;
1066	else
1067		stereo = SGTL5000_ADC_STEREO;
1068
1069	/* set mono to save power */
1070	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071			channels == 1 ? 0 : stereo);
1072
1073	/* set codec clock base on lrclk */
1074	ret = sgtl5000_set_clock(component, params_rate(params));
1075	if (ret)
1076		return ret;
1077
1078	/* set i2s data format */
1079	switch (params_width(params)) {
1080	case 16:
1081		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1082			return -EINVAL;
1083		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1086		break;
1087	case 20:
1088		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1091		break;
1092	case 24:
1093		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1096		break;
1097	case 32:
1098		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1099			return -EINVAL;
1100		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102		    SGTL5000_I2S_SCLKFREQ_SHIFT;
1103		break;
1104	default:
1105		return -EINVAL;
1106	}
1107
1108	snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1110			    i2s_ctl);
1111
1112	return 0;
1113}
1114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115/*
1116 * set dac bias
1117 * common state changes:
1118 * startup:
1119 * off --> standby --> prepare --> on
1120 * standby --> prepare --> on
1121 *
1122 * stop:
1123 * on --> prepare --> standby
1124 */
1125static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126				   enum snd_soc_bias_level level)
1127{
1128	struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1129	int ret;
 
1130
1131	switch (level) {
1132	case SND_SOC_BIAS_ON:
1133	case SND_SOC_BIAS_PREPARE:
 
1134	case SND_SOC_BIAS_STANDBY:
1135		regcache_cache_only(sgtl->regmap, false);
1136		ret = regcache_sync(sgtl->regmap);
1137		if (ret) {
1138			regcache_cache_only(sgtl->regmap, true);
1139			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140		}
1141
1142		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143				    SGTL5000_REFTOP_POWERUP,
1144				    SGTL5000_REFTOP_POWERUP);
1145		break;
1146	case SND_SOC_BIAS_OFF:
1147		regcache_cache_only(sgtl->regmap, true);
1148		snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149				    SGTL5000_REFTOP_POWERUP, 0);
1150		break;
1151	}
1152
1153	return 0;
1154}
1155
1156#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157			SNDRV_PCM_FMTBIT_S20_3LE |\
1158			SNDRV_PCM_FMTBIT_S24_LE |\
1159			SNDRV_PCM_FMTBIT_S32_LE)
1160
1161static const struct snd_soc_dai_ops sgtl5000_ops = {
1162	.hw_params = sgtl5000_pcm_hw_params,
1163	.mute_stream = sgtl5000_mute_stream,
1164	.set_fmt = sgtl5000_set_dai_fmt,
1165	.set_sysclk = sgtl5000_set_dai_sysclk,
1166	.no_capture_mute = 1,
1167};
1168
1169static struct snd_soc_dai_driver sgtl5000_dai = {
1170	.name = "sgtl5000",
1171	.playback = {
1172		.stream_name = "Playback",
1173		.channels_min = 1,
1174		.channels_max = 2,
1175		/*
1176		 * only support 8~48K + 96K,
1177		 * TODO modify hw_param to support more
1178		 */
1179		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1180		.formats = SGTL5000_FORMATS,
1181	},
1182	.capture = {
1183		.stream_name = "Capture",
1184		.channels_min = 1,
1185		.channels_max = 2,
1186		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1187		.formats = SGTL5000_FORMATS,
1188	},
1189	.ops = &sgtl5000_ops,
1190	.symmetric_rate = 1,
1191};
1192
1193static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1194{
1195	switch (reg) {
1196	case SGTL5000_CHIP_ID:
1197	case SGTL5000_CHIP_ADCDAC_CTRL:
1198	case SGTL5000_CHIP_ANA_STATUS:
1199		return true;
1200	}
1201
1202	return false;
1203}
1204
1205static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1206{
1207	switch (reg) {
1208	case SGTL5000_CHIP_ID:
1209	case SGTL5000_CHIP_DIG_POWER:
1210	case SGTL5000_CHIP_CLK_CTRL:
1211	case SGTL5000_CHIP_I2S_CTRL:
1212	case SGTL5000_CHIP_SSS_CTRL:
1213	case SGTL5000_CHIP_ADCDAC_CTRL:
1214	case SGTL5000_CHIP_DAC_VOL:
1215	case SGTL5000_CHIP_PAD_STRENGTH:
1216	case SGTL5000_CHIP_ANA_ADC_CTRL:
1217	case SGTL5000_CHIP_ANA_HP_CTRL:
1218	case SGTL5000_CHIP_ANA_CTRL:
1219	case SGTL5000_CHIP_LINREG_CTRL:
1220	case SGTL5000_CHIP_REF_CTRL:
1221	case SGTL5000_CHIP_MIC_CTRL:
1222	case SGTL5000_CHIP_LINE_OUT_CTRL:
1223	case SGTL5000_CHIP_LINE_OUT_VOL:
1224	case SGTL5000_CHIP_ANA_POWER:
1225	case SGTL5000_CHIP_PLL_CTRL:
1226	case SGTL5000_CHIP_CLK_TOP_CTRL:
1227	case SGTL5000_CHIP_ANA_STATUS:
1228	case SGTL5000_CHIP_SHORT_CTRL:
1229	case SGTL5000_CHIP_ANA_TEST2:
1230	case SGTL5000_DAP_CTRL:
1231	case SGTL5000_DAP_PEQ:
1232	case SGTL5000_DAP_BASS_ENHANCE:
1233	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1234	case SGTL5000_DAP_AUDIO_EQ:
1235	case SGTL5000_DAP_SURROUND:
1236	case SGTL5000_DAP_FLT_COEF_ACCESS:
1237	case SGTL5000_DAP_COEF_WR_B0_MSB:
1238	case SGTL5000_DAP_COEF_WR_B0_LSB:
1239	case SGTL5000_DAP_EQ_BASS_BAND0:
1240	case SGTL5000_DAP_EQ_BASS_BAND1:
1241	case SGTL5000_DAP_EQ_BASS_BAND2:
1242	case SGTL5000_DAP_EQ_BASS_BAND3:
1243	case SGTL5000_DAP_EQ_BASS_BAND4:
1244	case SGTL5000_DAP_MAIN_CHAN:
1245	case SGTL5000_DAP_MIX_CHAN:
1246	case SGTL5000_DAP_AVC_CTRL:
1247	case SGTL5000_DAP_AVC_THRESHOLD:
1248	case SGTL5000_DAP_AVC_ATTACK:
1249	case SGTL5000_DAP_AVC_DECAY:
1250	case SGTL5000_DAP_COEF_WR_B1_MSB:
1251	case SGTL5000_DAP_COEF_WR_B1_LSB:
1252	case SGTL5000_DAP_COEF_WR_B2_MSB:
1253	case SGTL5000_DAP_COEF_WR_B2_LSB:
1254	case SGTL5000_DAP_COEF_WR_A1_MSB:
1255	case SGTL5000_DAP_COEF_WR_A1_LSB:
1256	case SGTL5000_DAP_COEF_WR_A2_MSB:
1257	case SGTL5000_DAP_COEF_WR_A2_LSB:
1258		return true;
1259
1260	default:
1261		return false;
1262	}
1263}
1264
1265/*
1266 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1267 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1268 * The calculatation was done for all possible register values which
1269 * is the array index and the following formula: 10^((idx−15)/40) * 100
1270 */
1271static const u8 vol_quot_table[] = {
1272	42, 45, 47, 50, 53, 56, 60, 63,
1273	67, 71, 75, 79, 84, 89, 94, 100,
1274	106, 112, 119, 126, 133, 141, 150, 158,
1275	168, 178, 188, 200, 211, 224, 237, 251
1276};
1277
1278/*
1279 * sgtl5000 has 3 internal power supplies:
1280 * 1. VAG, normally set to vdda/2
1281 * 2. charge pump, set to different value
1282 *	according to voltage of vdda and vddio
1283 * 3. line out VAG, normally set to vddio/2
1284 *
1285 * and should be set according to:
1286 * 1. vddd provided by external or not
1287 * 2. vdda and vddio voltage value. > 3.1v or not
 
1288 */
1289static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1290{
1291	int vddd;
1292	int vdda;
1293	int vddio;
1294	u16 ana_pwr;
1295	u16 lreg_ctrl;
1296	int vag;
1297	int lo_vag;
1298	int vol_quot;
1299	int lo_vol;
1300	size_t i;
1301	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1302
1303	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1304	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1305	vddd  = (sgtl5000->num_supplies > VDDD)
1306		? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1307		: LDO_VOLTAGE;
1308
1309	vdda  = vdda / 1000;
1310	vddio = vddio / 1000;
1311	vddd  = vddd / 1000;
1312
1313	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1314		dev_err(component->dev, "regulator voltage not set correctly\n");
1315
1316		return -EINVAL;
1317	}
1318
1319	/* according to datasheet, maximum voltage of supplies */
1320	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1321		dev_err(component->dev,
1322			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1323			vdda, vddio, vddd);
1324
1325		return -EINVAL;
1326	}
1327
1328	/* reset value */
1329	ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
1330	ana_pwr |= SGTL5000_DAC_STEREO |
1331			SGTL5000_ADC_STEREO |
1332			SGTL5000_REFTOP_POWERUP;
1333	lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
1334
1335	if (vddio < 3100 && vdda < 3100) {
1336		/* enable internal oscillator used for charge pump */
1337		snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1338					SGTL5000_INT_OSC_EN,
1339					SGTL5000_INT_OSC_EN);
1340		/* Enable VDDC charge pump */
1341		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1342	} else {
1343		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1344		/*
1345		 * if vddio == vdda the source of charge pump should be
1346		 * assigned manually to VDDIO
1347		 */
1348		if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1349				       sgtl5000->supplies[VDDIO].consumer)) {
1350			lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1351			lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1352				    SGTL5000_VDDC_MAN_ASSN_SHIFT;
1353		}
1354	}
1355
1356	snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
 
 
1357
1358	snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359
1360	/*
1361	 * set ADC/DAC VAG to vdda / 2,
1362	 * should stay in range (0.8v, 1.575v)
1363	 */
1364	vag = vdda / 2;
1365	if (vag <= SGTL5000_ANA_GND_BASE)
1366		vag = 0;
1367	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1368		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1369		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1370	else
1371		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1372
1373	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1374			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1375
1376	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1377	lo_vag = vddio / 2;
1378	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1379		lo_vag = 0;
1380	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1381		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1382		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1383	else
1384		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1385		    SGTL5000_LINE_OUT_GND_STP;
1386
1387	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1388			SGTL5000_LINE_OUT_CURRENT_MASK |
1389			SGTL5000_LINE_OUT_GND_MASK,
1390			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1391			SGTL5000_LINE_OUT_CURRENT_360u <<
1392				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1393
1394	/*
1395	 * Set lineout output level in range (0..31)
1396	 * the same value is used for right and left channel
1397	 *
1398	 * Searching for a suitable index solving this formula:
1399	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1400	 */
1401	vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1402	lo_vol = 0;
1403	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1404		if (vol_quot >= vol_quot_table[i])
1405			lo_vol = i;
1406		else
1407			break;
1408	}
1409
1410	snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1411		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1412		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1413		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1414		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1415
1416	return 0;
1417}
1418
1419static int sgtl5000_enable_regulators(struct i2c_client *client)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1420{
1421	int ret;
1422	int i;
1423	int external_vddd = 0;
 
1424	struct regulator *vddd;
1425	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1426
1427	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1428		sgtl5000->supplies[i].supply = supply_names[i];
1429
1430	vddd = regulator_get_optional(&client->dev, "VDDD");
1431	if (IS_ERR(vddd)) {
1432		/* See if it's just not registered yet */
1433		if (PTR_ERR(vddd) == -EPROBE_DEFER)
1434			return -EPROBE_DEFER;
1435	} else {
1436		external_vddd = 1;
1437		regulator_put(vddd);
 
 
 
 
 
 
 
 
 
1438	}
1439
1440	sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1441				 - 1 + external_vddd;
1442	ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1443				 sgtl5000->supplies);
1444	if (ret)
1445		return ret;
1446
1447	ret = regulator_bulk_enable(sgtl5000->num_supplies,
1448				    sgtl5000->supplies);
1449	if (!ret)
1450		usleep_range(10, 20);
1451	else
1452		regulator_bulk_free(sgtl5000->num_supplies,
1453				    sgtl5000->supplies);
 
 
1454
 
 
 
 
 
 
1455	return ret;
 
1456}
1457
1458static int sgtl5000_probe(struct snd_soc_component *component)
1459{
1460	int ret;
1461	u16 reg;
1462	struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1463	unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
 
 
1464
1465	/* power up sgtl5000 */
1466	ret = sgtl5000_set_power_regs(component);
1467	if (ret)
1468		goto err;
1469
1470	/* enable small pop, introduce 400ms delay in turning off */
1471	snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1472				SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1473
1474	/* disable short cut detector */
1475	snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1476
1477	snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
 
 
 
 
 
 
1478			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1479
1480	/* enable dac volume ramp by default */
1481	snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1482			SGTL5000_DAC_VOL_RAMP_EN |
1483			SGTL5000_DAC_MUTE_RIGHT |
1484			SGTL5000_DAC_MUTE_LEFT);
1485
1486	reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1487	       (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1488	       0x1f);
1489	snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1490
1491	snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1492		zcd_mask, zcd_mask);
 
1493
1494	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1495			SGTL5000_BIAS_R_MASK,
1496			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1497
1498	snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1499			SGTL5000_BIAS_VOLT_MASK,
1500			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1501	/*
1502	 * enable DAP Graphic EQ
1503	 * TODO:
1504	 * Add control for changing between PEQ/Tone Control/GEQ
1505	 */
1506	snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1507
1508	/* Unmute DAC after start */
1509	snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1510		SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1511
1512	return 0;
1513
1514err:
 
 
 
 
 
 
1515	return ret;
1516}
1517
1518static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
1519				    struct device_node *endpoint)
1520{
1521	/* return dai id 0, whatever the endpoint index */
 
 
 
 
 
 
 
1522	return 0;
1523}
1524
1525static const struct snd_soc_component_driver sgtl5000_driver = {
1526	.probe			= sgtl5000_probe,
1527	.set_bias_level		= sgtl5000_set_bias_level,
1528	.controls		= sgtl5000_snd_controls,
1529	.num_controls		= ARRAY_SIZE(sgtl5000_snd_controls),
1530	.dapm_widgets		= sgtl5000_dapm_widgets,
1531	.num_dapm_widgets	= ARRAY_SIZE(sgtl5000_dapm_widgets),
1532	.dapm_routes		= sgtl5000_dapm_routes,
1533	.num_dapm_routes	= ARRAY_SIZE(sgtl5000_dapm_routes),
1534	.of_xlate_dai_id	= sgtl5000_of_xlate_dai_id,
1535	.suspend_bias_off	= 1,
1536	.idle_bias_on		= 1,
1537	.use_pmdown_time	= 1,
1538	.endianness		= 1,
1539};
1540
1541static const struct regmap_config sgtl5000_regmap = {
1542	.reg_bits = 16,
1543	.val_bits = 16,
1544	.reg_stride = 2,
1545
1546	.max_register = SGTL5000_MAX_REG_OFFSET,
1547	.volatile_reg = sgtl5000_volatile,
1548	.readable_reg = sgtl5000_readable,
1549
1550	.cache_type = REGCACHE_RBTREE,
1551	.reg_defaults = sgtl5000_reg_defaults,
1552	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1553};
1554
1555/*
1556 * Write all the default values from sgtl5000_reg_defaults[] array into the
1557 * sgtl5000 registers, to make sure we always start with the sane registers
1558 * values as stated in the datasheet.
1559 *
1560 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1561 * we follow this approach to guarantee we always start from the default values
1562 * and avoid problems like, not being able to probe after an audio playback
1563 * followed by a system reset or a 'reboot' command in Linux
1564 */
1565static void sgtl5000_fill_defaults(struct i2c_client *client)
1566{
1567	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568	int i, ret, val, index;
1569
1570	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1571		val = sgtl5000_reg_defaults[i].def;
1572		index = sgtl5000_reg_defaults[i].reg;
1573		ret = regmap_write(sgtl5000->regmap, index, val);
1574		if (ret)
1575			dev_err(&client->dev,
1576				"%s: error %d setting reg 0x%02x to 0x%04x\n",
1577				__func__, ret, index, val);
1578	}
 
 
1579}
1580
1581static int sgtl5000_i2c_probe(struct i2c_client *client)
 
1582{
1583	struct sgtl5000_priv *sgtl5000;
1584	int ret, reg, rev;
1585	struct device_node *np = client->dev.of_node;
1586	u32 value;
1587	u16 ana_pwr;
1588
1589	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1590	if (!sgtl5000)
1591		return -ENOMEM;
1592
1593	i2c_set_clientdata(client, sgtl5000);
1594
1595	ret = sgtl5000_enable_regulators(client);
1596	if (ret)
1597		return ret;
1598
1599	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1600	if (IS_ERR(sgtl5000->regmap)) {
1601		ret = PTR_ERR(sgtl5000->regmap);
1602		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1603		goto disable_regs;
1604	}
1605
1606	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1607	if (IS_ERR(sgtl5000->mclk)) {
1608		ret = PTR_ERR(sgtl5000->mclk);
 
1609		/* Defer the probe to see if the clk will be provided later */
1610		if (ret == -ENOENT)
1611			ret = -EPROBE_DEFER;
1612
1613		dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
1614
1615		goto disable_regs;
1616	}
1617
1618	ret = clk_prepare_enable(sgtl5000->mclk);
1619	if (ret) {
1620		dev_err(&client->dev, "Error enabling clock %d\n", ret);
1621		goto disable_regs;
1622	}
1623
1624	/* Need 8 clocks before I2C accesses */
1625	udelay(1);
1626
1627	/* read chip information */
1628	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1629	if (ret) {
1630		dev_err(&client->dev, "Error reading chip id %d\n", ret);
1631		goto disable_clk;
1632	}
1633
1634	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1635	    SGTL5000_PARTID_PART_ID) {
1636		dev_err(&client->dev,
1637			"Device with ID register %x is not a sgtl5000\n", reg);
1638		ret = -ENODEV;
1639		goto disable_clk;
1640	}
1641
1642	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1643	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1644	sgtl5000->revision = rev;
1645
1646	/* reconfigure the clocks in case we're using the PLL */
1647	ret = regmap_write(sgtl5000->regmap,
1648			   SGTL5000_CHIP_CLK_CTRL,
1649			   SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1650	if (ret)
1651		dev_err(&client->dev,
1652			"Error %d initializing CHIP_CLK_CTRL\n", ret);
1653
1654	/* Mute everything to avoid pop from the following power-up */
1655	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1656			   SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1657	if (ret) {
1658		dev_err(&client->dev,
1659			"Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1660		goto disable_clk;
1661	}
1662
1663	/*
1664	 * If VAG is powered-on (e.g. from previous boot), it would be disabled
1665	 * by the write to ANA_POWER in later steps of the probe code. This
1666	 * may create a loud pop even with all outputs muted. The proper way
1667	 * to circumvent this is disabling the bit first and waiting the proper
1668	 * cool-down time.
1669	 */
1670	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1671	if (ret) {
1672		dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1673		goto disable_clk;
1674	}
1675	if (value & SGTL5000_VAG_POWERUP) {
1676		ret = regmap_update_bits(sgtl5000->regmap,
1677					 SGTL5000_CHIP_ANA_POWER,
1678					 SGTL5000_VAG_POWERUP,
1679					 0);
1680		if (ret) {
1681			dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1682			goto disable_clk;
1683		}
1684
1685		msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1686	}
1687
1688	/* Follow section 2.2.1.1 of AN3663 */
1689	ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1690	if (sgtl5000->num_supplies <= VDDD) {
1691		/* internal VDDD at 1.2V */
1692		ret = regmap_update_bits(sgtl5000->regmap,
1693					 SGTL5000_CHIP_LINREG_CTRL,
1694					 SGTL5000_LINREG_VDDD_MASK,
1695					 LINREG_VDDD);
1696		if (ret)
1697			dev_err(&client->dev,
1698				"Error %d setting LINREG_VDDD\n", ret);
1699
1700		ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1701		dev_info(&client->dev,
1702			 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1703	} else {
1704		/* using external LDO for VDDD
1705		 * Clear startup powerup and simple powerup
1706		 * bits to save power
1707		 */
1708		ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1709			     | SGTL5000_LINREG_SIMPLE_POWERUP);
1710		dev_dbg(&client->dev, "Using external VDDD\n");
1711	}
1712	ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1713	if (ret)
1714		dev_err(&client->dev,
1715			"Error %d setting CHIP_ANA_POWER to %04x\n",
1716			ret, ana_pwr);
1717
1718	if (np) {
1719		if (!of_property_read_u32(np,
1720			"micbias-resistor-k-ohms", &value)) {
1721			switch (value) {
1722			case SGTL5000_MICBIAS_OFF:
1723				sgtl5000->micbias_resistor = 0;
1724				break;
1725			case SGTL5000_MICBIAS_2K:
1726				sgtl5000->micbias_resistor = 1;
1727				break;
1728			case SGTL5000_MICBIAS_4K:
1729				sgtl5000->micbias_resistor = 2;
1730				break;
1731			case SGTL5000_MICBIAS_8K:
1732				sgtl5000->micbias_resistor = 3;
1733				break;
1734			default:
1735				sgtl5000->micbias_resistor = 2;
1736				dev_err(&client->dev,
1737					"Unsuitable MicBias resistor\n");
1738			}
1739		} else {
1740			/* default is 4Kohms */
1741			sgtl5000->micbias_resistor = 2;
1742		}
1743		if (!of_property_read_u32(np,
1744			"micbias-voltage-m-volts", &value)) {
1745			/* 1250mV => 0 */
1746			/* steps of 250mV */
1747			if ((value >= 1250) && (value <= 3000))
1748				sgtl5000->micbias_voltage = (value / 250) - 5;
1749			else {
1750				sgtl5000->micbias_voltage = 0;
1751				dev_err(&client->dev,
1752					"Unsuitable MicBias voltage\n");
1753			}
1754		} else {
1755			sgtl5000->micbias_voltage = 0;
1756		}
1757	}
1758
1759	sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1760	if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1761		if (value > I2S_LRCLK_STRENGTH_HIGH)
1762			value = I2S_LRCLK_STRENGTH_LOW;
1763		sgtl5000->lrclk_strength = value;
1764	}
1765
1766	sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1767	if (!of_property_read_u32(np, "sclk-strength", &value)) {
1768		if (value > I2S_SCLK_STRENGTH_HIGH)
1769			value = I2S_SCLK_STRENGTH_LOW;
1770		sgtl5000->sclk_strength = value;
1771	}
1772
1773	/* Ensure sgtl5000 will start with sane register values */
1774	sgtl5000_fill_defaults(client);
 
 
1775
1776	ret = devm_snd_soc_register_component(&client->dev,
1777			&sgtl5000_driver, &sgtl5000_dai, 1);
1778	if (ret)
1779		goto disable_clk;
1780
1781	return 0;
1782
1783disable_clk:
1784	clk_disable_unprepare(sgtl5000->mclk);
1785
1786disable_regs:
1787	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1788	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1789
1790	return ret;
1791}
1792
1793static void sgtl5000_i2c_remove(struct i2c_client *client)
1794{
1795	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1796
1797	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_CLK_CTRL, SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1798	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_DIG_POWER, SGTL5000_DIG_POWER_DEFAULT);
1799	regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, SGTL5000_ANA_POWER_DEFAULT);
1800
1801	clk_disable_unprepare(sgtl5000->mclk);
1802	regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1803	regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1804}
1805
1806static void sgtl5000_i2c_shutdown(struct i2c_client *client)
1807{
1808	sgtl5000_i2c_remove(client);
1809}
1810
1811static const struct i2c_device_id sgtl5000_id[] = {
1812	{"sgtl5000"},
1813	{},
1814};
1815
1816MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1817
1818static const struct of_device_id sgtl5000_dt_ids[] = {
1819	{ .compatible = "fsl,sgtl5000", },
1820	{ /* sentinel */ }
1821};
1822MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1823
1824static struct i2c_driver sgtl5000_i2c_driver = {
1825	.driver = {
1826		.name = "sgtl5000",
1827		.of_match_table = sgtl5000_dt_ids,
1828	},
1829	.probe = sgtl5000_i2c_probe,
1830	.remove = sgtl5000_i2c_remove,
1831	.shutdown = sgtl5000_i2c_shutdown,
1832	.id_table = sgtl5000_id,
1833};
1834
1835module_i2c_driver(sgtl5000_i2c_driver);
1836
1837MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1838MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1839MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * sgtl5000.c  --  SGTL5000 ALSA SoC Audio driver
   3 *
   4 * Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/delay.h>
  15#include <linux/slab.h>
  16#include <linux/pm.h>
  17#include <linux/i2c.h>
  18#include <linux/clk.h>
  19#include <linux/log2.h>
 
  20#include <linux/regmap.h>
  21#include <linux/regulator/driver.h>
  22#include <linux/regulator/machine.h>
  23#include <linux/regulator/consumer.h>
  24#include <linux/of_device.h>
  25#include <sound/core.h>
  26#include <sound/tlv.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/soc.h>
  30#include <sound/soc-dapm.h>
  31#include <sound/initval.h>
  32
  33#include "sgtl5000.h"
  34
  35#define SGTL5000_DAP_REG_OFFSET	0x0100
  36#define SGTL5000_MAX_REG_OFFSET	0x013A
  37
 
 
 
 
 
 
 
  38/* default value of sgtl5000 registers */
  39static const struct reg_default sgtl5000_reg_defaults[] = {
  40	{ SGTL5000_CHIP_DIG_POWER,		0x0000 },
  41	{ SGTL5000_CHIP_CLK_CTRL,		0x0008 },
  42	{ SGTL5000_CHIP_I2S_CTRL,		0x0010 },
  43	{ SGTL5000_CHIP_SSS_CTRL,		0x0010 },
  44	{ SGTL5000_CHIP_ADCDAC_CTRL,		0x020c },
  45	{ SGTL5000_CHIP_DAC_VOL,		0x3c3c },
  46	{ SGTL5000_CHIP_PAD_STRENGTH,		0x015f },
  47	{ SGTL5000_CHIP_ANA_ADC_CTRL,		0x0000 },
  48	{ SGTL5000_CHIP_ANA_HP_CTRL,		0x1818 },
  49	{ SGTL5000_CHIP_ANA_CTRL,		0x0111 },
  50	{ SGTL5000_CHIP_LINREG_CTRL,		0x0000 },
  51	{ SGTL5000_CHIP_REF_CTRL,		0x0000 },
  52	{ SGTL5000_CHIP_MIC_CTRL,		0x0000 },
  53	{ SGTL5000_CHIP_LINE_OUT_CTRL,		0x0000 },
  54	{ SGTL5000_CHIP_LINE_OUT_VOL,		0x0404 },
  55	{ SGTL5000_CHIP_ANA_POWER,		0x7060 },
  56	{ SGTL5000_CHIP_PLL_CTRL,		0x5000 },
  57	{ SGTL5000_CHIP_CLK_TOP_CTRL,		0x0000 },
  58	{ SGTL5000_CHIP_ANA_STATUS,		0x0000 },
  59	{ SGTL5000_CHIP_SHORT_CTRL,		0x0000 },
  60	{ SGTL5000_CHIP_ANA_TEST2,		0x0000 },
  61	{ SGTL5000_DAP_CTRL,			0x0000 },
  62	{ SGTL5000_DAP_PEQ,			0x0000 },
  63	{ SGTL5000_DAP_BASS_ENHANCE,		0x0040 },
  64	{ SGTL5000_DAP_BASS_ENHANCE_CTRL,	0x051f },
  65	{ SGTL5000_DAP_AUDIO_EQ,		0x0000 },
  66	{ SGTL5000_DAP_SURROUND,		0x0040 },
  67	{ SGTL5000_DAP_EQ_BASS_BAND0,		0x002f },
  68	{ SGTL5000_DAP_EQ_BASS_BAND1,		0x002f },
  69	{ SGTL5000_DAP_EQ_BASS_BAND2,		0x002f },
  70	{ SGTL5000_DAP_EQ_BASS_BAND3,		0x002f },
  71	{ SGTL5000_DAP_EQ_BASS_BAND4,		0x002f },
  72	{ SGTL5000_DAP_MAIN_CHAN,		0x8000 },
  73	{ SGTL5000_DAP_MIX_CHAN,		0x0000 },
  74	{ SGTL5000_DAP_AVC_CTRL,		0x0510 },
  75	{ SGTL5000_DAP_AVC_THRESHOLD,		0x1473 },
  76	{ SGTL5000_DAP_AVC_ATTACK,		0x0028 },
  77	{ SGTL5000_DAP_AVC_DECAY,		0x0050 },
  78};
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80/* regulator supplies for sgtl5000, VDDD is an optional external supply */
  81enum sgtl5000_regulator_supplies {
  82	VDDA,
  83	VDDIO,
  84	VDDD,
  85	SGTL5000_SUPPLY_NUM
  86};
  87
  88/* vddd is optional supply */
  89static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
  90	"VDDA",
  91	"VDDIO",
  92	"VDDD"
  93};
  94
  95#define LDO_CONSUMER_NAME	"VDDD_LDO"
  96#define LDO_VOLTAGE		1200000
  97
  98static struct regulator_consumer_supply ldo_consumer[] = {
  99	REGULATOR_SUPPLY(LDO_CONSUMER_NAME, NULL),
 100};
 101
 102static struct regulator_init_data ldo_init_data = {
 103	.constraints = {
 104		.min_uV                 = 1200000,
 105		.max_uV                 = 1200000,
 106		.valid_modes_mask       = REGULATOR_MODE_NORMAL,
 107		.valid_ops_mask         = REGULATOR_CHANGE_STATUS,
 108	},
 109	.num_consumer_supplies = 1,
 110	.consumer_supplies = &ldo_consumer[0],
 111};
 112
 113/*
 114 * sgtl5000 internal ldo regulator,
 115 * enabled when VDDD not provided
 116 */
 117struct ldo_regulator {
 118	struct regulator_desc desc;
 119	struct regulator_dev *dev;
 120	int voltage;
 121	void *codec_data;
 122	bool enabled;
 123};
 124
 125enum sgtl5000_micbias_resistor {
 126	SGTL5000_MICBIAS_OFF = 0,
 127	SGTL5000_MICBIAS_2K = 2,
 128	SGTL5000_MICBIAS_4K = 4,
 129	SGTL5000_MICBIAS_8K = 8,
 130};
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132/* sgtl5000 private structure in codec */
 133struct sgtl5000_priv {
 134	int sysclk;	/* sysclk rate */
 135	int master;	/* i2s master or not */
 136	int fmt;	/* i2s data format */
 137	struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
 138	struct ldo_regulator *ldo;
 139	struct regmap *regmap;
 140	struct clk *mclk;
 141	int revision;
 142	u8 micbias_resistor;
 143	u8 micbias_voltage;
 
 
 
 144};
 145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146/*
 147 * mic_bias power on/off share the same register bits with
 148 * output impedance of mic bias, when power on mic bias, we
 149 * need reclaim it to impedance value.
 150 * 0x0 = Powered off
 151 * 0x1 = 2Kohm
 152 * 0x2 = 4Kohm
 153 * 0x3 = 8Kohm
 154 */
 155static int mic_bias_event(struct snd_soc_dapm_widget *w,
 156	struct snd_kcontrol *kcontrol, int event)
 157{
 158	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
 159	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 160
 161	switch (event) {
 162	case SND_SOC_DAPM_POST_PMU:
 163		/* change mic bias resistor */
 164		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
 165			SGTL5000_BIAS_R_MASK,
 166			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
 167		break;
 168
 169	case SND_SOC_DAPM_PRE_PMD:
 170		snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
 171				SGTL5000_BIAS_R_MASK, 0);
 172		break;
 173	}
 174	return 0;
 175}
 176
 177/*
 178 * As manual described, ADC/DAC only works when VAG powerup,
 179 * So enabled VAG before ADC/DAC up.
 180 * In power down case, we need wait 400ms when vag fully ramped down.
 181 */
 182static int power_vag_event(struct snd_soc_dapm_widget *w,
 183	struct snd_kcontrol *kcontrol, int event)
 184{
 185	struct snd_soc_codec *codec = snd_soc_dapm_to_codec(w->dapm);
 186	const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	switch (event) {
 
 
 
 
 189	case SND_SOC_DAPM_POST_PMU:
 190		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 191			SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
 192		msleep(400);
 193		break;
 194
 195	case SND_SOC_DAPM_PRE_PMD:
 196		/*
 197		 * Don't clear VAG_POWERUP, when both DAC and ADC are
 198		 * operational to prevent inadvertently starving the
 199		 * other one of them.
 200		 */
 201		if ((snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER) &
 202				mask) != mask) {
 203			snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 204				SGTL5000_VAG_POWERUP, 0);
 205			msleep(400);
 206		}
 207		break;
 208	default:
 209		break;
 210	}
 211
 212	return 0;
 213}
 214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215/* input sources for ADC */
 216static const char *adc_mux_text[] = {
 217	"MIC_IN", "LINE_IN"
 218};
 219
 220static SOC_ENUM_SINGLE_DECL(adc_enum,
 221			    SGTL5000_CHIP_ANA_CTRL, 2,
 222			    adc_mux_text);
 223
 224static const struct snd_kcontrol_new adc_mux =
 225SOC_DAPM_ENUM("Capture Mux", adc_enum);
 226
 
 
 
 
 
 
 
 
 
 
 
 
 227/* input sources for DAC */
 228static const char *dac_mux_text[] = {
 229	"DAC", "LINE_IN"
 230};
 231
 232static SOC_ENUM_SINGLE_DECL(dac_enum,
 233			    SGTL5000_CHIP_ANA_CTRL, 6,
 234			    dac_mux_text);
 235
 236static const struct snd_kcontrol_new dac_mux =
 237SOC_DAPM_ENUM("Headphone Mux", dac_enum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
 240	SND_SOC_DAPM_INPUT("LINE_IN"),
 241	SND_SOC_DAPM_INPUT("MIC_IN"),
 242
 243	SND_SOC_DAPM_OUTPUT("HP_OUT"),
 244	SND_SOC_DAPM_OUTPUT("LINE_OUT"),
 245
 246	SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
 247			    mic_bias_event,
 248			    SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
 249
 250	SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
 
 
 
 251	SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
 252
 253	SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
 254	SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
 
 
 
 
 
 255
 256	/* aif for i2s input */
 257	SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
 258				0, SGTL5000_CHIP_DIG_POWER,
 259				0, 0),
 260
 261	/* aif for i2s output */
 262	SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
 263				0, SGTL5000_CHIP_DIG_POWER,
 264				1, 0),
 265
 266	SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
 267	SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
 268
 269	SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
 270	SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
 
 271};
 272
 273/* routes for sgtl5000 */
 274static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
 275	{"Capture Mux", "LINE_IN", "LINE_IN"},	/* line_in --> adc_mux */
 276	{"Capture Mux", "MIC_IN", "MIC_IN"},	/* mic_in --> adc_mux */
 277
 278	{"ADC", NULL, "Capture Mux"},		/* adc_mux --> adc */
 279	{"AIFOUT", NULL, "ADC"},		/* adc --> i2s_out */
 280
 281	{"DAC", NULL, "AIFIN"},			/* i2s-->dac,skip audio mux */
 
 
 
 
 
 
 
 
 
 
 
 
 282	{"Headphone Mux", "DAC", "DAC"},	/* dac --> hp_mux */
 283	{"LO", NULL, "DAC"},			/* dac --> line_out */
 284
 285	{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
 286	{"HP", NULL, "Headphone Mux"},		/* hp_mux --> hp */
 287
 288	{"LINE_OUT", NULL, "LO"},
 289	{"HP_OUT", NULL, "HP"},
 290};
 291
 292/* custom function to fetch info of PCM playback volume */
 293static int dac_info_volsw(struct snd_kcontrol *kcontrol,
 294			  struct snd_ctl_elem_info *uinfo)
 295{
 296	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 297	uinfo->count = 2;
 298	uinfo->value.integer.min = 0;
 299	uinfo->value.integer.max = 0xfc - 0x3c;
 300	return 0;
 301}
 302
 303/*
 304 * custom function to get of PCM playback volume
 305 *
 306 * dac volume register
 307 * 15-------------8-7--------------0
 308 * | R channel vol | L channel vol |
 309 *  -------------------------------
 310 *
 311 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 312 *
 313 * register values map to dB
 314 * 0x3B and less = Reserved
 315 * 0x3C = 0 dB
 316 * 0x3D = -0.5 dB
 317 * 0xF0 = -90 dB
 318 * 0xFC and greater = Muted
 319 *
 320 * register value map to userspace value
 321 *
 322 * register value	0x3c(0dB)	  0xf0(-90dB)0xfc
 323 *			------------------------------
 324 * userspace value	0xc0			     0
 325 */
 326static int dac_get_volsw(struct snd_kcontrol *kcontrol,
 327			 struct snd_ctl_elem_value *ucontrol)
 328{
 329	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
 330	int reg;
 331	int l;
 332	int r;
 333
 334	reg = snd_soc_read(codec, SGTL5000_CHIP_DAC_VOL);
 335
 336	/* get left channel volume */
 337	l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
 338
 339	/* get right channel volume */
 340	r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
 341
 342	/* make sure value fall in (0x3c,0xfc) */
 343	l = clamp(l, 0x3c, 0xfc);
 344	r = clamp(r, 0x3c, 0xfc);
 345
 346	/* invert it and map to userspace value */
 347	l = 0xfc - l;
 348	r = 0xfc - r;
 349
 350	ucontrol->value.integer.value[0] = l;
 351	ucontrol->value.integer.value[1] = r;
 352
 353	return 0;
 354}
 355
 356/*
 357 * custom function to put of PCM playback volume
 358 *
 359 * dac volume register
 360 * 15-------------8-7--------------0
 361 * | R channel vol | L channel vol |
 362 *  -------------------------------
 363 *
 364 * PCM volume with 0.5017 dB steps from 0 to -90 dB
 365 *
 366 * register values map to dB
 367 * 0x3B and less = Reserved
 368 * 0x3C = 0 dB
 369 * 0x3D = -0.5 dB
 370 * 0xF0 = -90 dB
 371 * 0xFC and greater = Muted
 372 *
 373 * userspace value map to register value
 374 *
 375 * userspace value	0xc0			     0
 376 *			------------------------------
 377 * register value	0x3c(0dB)	0xf0(-90dB)0xfc
 378 */
 379static int dac_put_volsw(struct snd_kcontrol *kcontrol,
 380			 struct snd_ctl_elem_value *ucontrol)
 381{
 382	struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
 383	int reg;
 384	int l;
 385	int r;
 386
 387	l = ucontrol->value.integer.value[0];
 388	r = ucontrol->value.integer.value[1];
 389
 390	/* make sure userspace volume fall in (0, 0xfc-0x3c) */
 391	l = clamp(l, 0, 0xfc - 0x3c);
 392	r = clamp(r, 0, 0xfc - 0x3c);
 393
 394	/* invert it, get the value can be set to register */
 395	l = 0xfc - l;
 396	r = 0xfc - r;
 397
 398	/* shift to get the register value */
 399	reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
 400		r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
 401
 402	snd_soc_write(codec, SGTL5000_CHIP_DAC_VOL, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403
 404	return 0;
 405}
 406
 407static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
 408
 409/* tlv for mic gain, 0db 20db 30db 40db */
 410static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
 411	0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
 412	1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
 413);
 414
 
 
 
 
 
 
 415/* tlv for hp volume, -51.5db to 12.0db, step .5db */
 416static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
 417
 
 
 
 
 
 
 
 
 
 418static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
 419	/* SOC_DOUBLE_S8_TLV with invert */
 420	{
 421		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
 422		.name = "PCM Playback Volume",
 423		.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
 424			SNDRV_CTL_ELEM_ACCESS_READWRITE,
 425		.info = dac_info_volsw,
 426		.get = dac_get_volsw,
 427		.put = dac_put_volsw,
 428	},
 429
 430	SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
 431	SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
 432			SGTL5000_CHIP_ANA_ADC_CTRL,
 433			8, 1, 0, capture_6db_attenuate),
 434	SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
 
 435
 436	SOC_DOUBLE_TLV("Headphone Playback Volume",
 437			SGTL5000_CHIP_ANA_HP_CTRL,
 438			0, 8,
 439			0x7f, 1,
 440			headphone_volume),
 
 
 441	SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
 442			5, 1, 0),
 443
 444	SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
 445			0, 3, 0, mic_gain_tlv),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446};
 447
 448/* mute the codec used by alsa core */
 449static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
 450{
 451	struct snd_soc_codec *codec = codec_dai->codec;
 452	u16 adcdac_ctrl = SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT;
 453
 454	snd_soc_update_bits(codec, SGTL5000_CHIP_ADCDAC_CTRL,
 455			adcdac_ctrl, mute ? adcdac_ctrl : 0);
 
 
 
 
 
 456
 457	return 0;
 458}
 459
 460/* set codec format */
 461static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
 462{
 463	struct snd_soc_codec *codec = codec_dai->codec;
 464	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 465	u16 i2sctl = 0;
 466
 467	sgtl5000->master = 0;
 468	/*
 469	 * i2s clock and frame master setting.
 470	 * ONLY support:
 471	 *  - clock and frame slave,
 472	 *  - clock and frame master
 473	 */
 474	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
 475	case SND_SOC_DAIFMT_CBS_CFS:
 476		break;
 477	case SND_SOC_DAIFMT_CBM_CFM:
 478		i2sctl |= SGTL5000_I2S_MASTER;
 479		sgtl5000->master = 1;
 480		break;
 481	default:
 482		return -EINVAL;
 483	}
 484
 485	/* setting i2s data format */
 486	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 487	case SND_SOC_DAIFMT_DSP_A:
 488		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
 489		break;
 490	case SND_SOC_DAIFMT_DSP_B:
 491		i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
 492		i2sctl |= SGTL5000_I2S_LRALIGN;
 493		break;
 494	case SND_SOC_DAIFMT_I2S:
 495		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
 496		break;
 497	case SND_SOC_DAIFMT_RIGHT_J:
 498		i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
 499		i2sctl |= SGTL5000_I2S_LRPOL;
 500		break;
 501	case SND_SOC_DAIFMT_LEFT_J:
 502		i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
 503		i2sctl |= SGTL5000_I2S_LRALIGN;
 504		break;
 505	default:
 506		return -EINVAL;
 507	}
 508
 509	sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 510
 511	/* Clock inversion */
 512	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 513	case SND_SOC_DAIFMT_NB_NF:
 514		break;
 515	case SND_SOC_DAIFMT_IB_NF:
 516		i2sctl |= SGTL5000_I2S_SCLK_INV;
 517		break;
 518	default:
 519		return -EINVAL;
 520	}
 521
 522	snd_soc_write(codec, SGTL5000_CHIP_I2S_CTRL, i2sctl);
 523
 524	return 0;
 525}
 526
 527/* set codec sysclk */
 528static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
 529				   int clk_id, unsigned int freq, int dir)
 530{
 531	struct snd_soc_codec *codec = codec_dai->codec;
 532	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 533
 534	switch (clk_id) {
 535	case SGTL5000_SYSCLK:
 536		sgtl5000->sysclk = freq;
 537		break;
 538	default:
 539		return -EINVAL;
 540	}
 541
 542	return 0;
 543}
 544
 545/*
 546 * set clock according to i2s frame clock,
 547 * sgtl5000 provides 2 clock sources:
 548 * 1. sys_mclk: sample freq can only be configured to
 549 *	1/256, 1/384, 1/512 of sys_mclk.
 550 * 2. pll: can derive any audio clocks.
 551 *
 552 * clock setting rules:
 553 * 1. in slave mode, only sys_mclk can be used
 554 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
 555 * and above.
 556 * 3. usage of sys_mclk is preferred over pll to save power.
 557 */
 558static int sgtl5000_set_clock(struct snd_soc_codec *codec, int frame_rate)
 559{
 560	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 561	int clk_ctl = 0;
 562	int sys_fs;	/* sample freq */
 563
 564	/*
 565	 * sample freq should be divided by frame clock,
 566	 * if frame clock is lower than 44.1 kHz, sample freq should be set to
 567	 * 32 kHz or 44.1 kHz.
 568	 */
 569	switch (frame_rate) {
 570	case 8000:
 571	case 16000:
 572		sys_fs = 32000;
 573		break;
 574	case 11025:
 575	case 22050:
 576		sys_fs = 44100;
 577		break;
 578	default:
 579		sys_fs = frame_rate;
 580		break;
 581	}
 582
 583	/* set divided factor of frame clock */
 584	switch (sys_fs / frame_rate) {
 585	case 4:
 586		clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
 587		break;
 588	case 2:
 589		clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
 590		break;
 591	case 1:
 592		clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
 593		break;
 594	default:
 595		return -EINVAL;
 596	}
 597
 598	/* set the sys_fs according to frame rate */
 599	switch (sys_fs) {
 600	case 32000:
 601		clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
 602		break;
 603	case 44100:
 604		clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
 605		break;
 606	case 48000:
 607		clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
 608		break;
 609	case 96000:
 610		clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
 611		break;
 612	default:
 613		dev_err(codec->dev, "frame rate %d not supported\n",
 614			frame_rate);
 615		return -EINVAL;
 616	}
 617
 618	/*
 619	 * calculate the divider of mclk/sample_freq,
 620	 * factor of freq = 96 kHz can only be 256, since mclk is in the range
 621	 * of 8 MHz - 27 MHz
 622	 */
 623	switch (sgtl5000->sysclk / frame_rate) {
 624	case 256:
 625		clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
 626			SGTL5000_MCLK_FREQ_SHIFT;
 627		break;
 628	case 384:
 629		clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
 630			SGTL5000_MCLK_FREQ_SHIFT;
 631		break;
 632	case 512:
 633		clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
 634			SGTL5000_MCLK_FREQ_SHIFT;
 635		break;
 636	default:
 637		/* if mclk does not satisfy the divider, use pll */
 638		if (sgtl5000->master) {
 639			clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
 640				SGTL5000_MCLK_FREQ_SHIFT;
 641		} else {
 642			dev_err(codec->dev,
 643				"PLL not supported in slave mode\n");
 644			dev_err(codec->dev, "%d ratio is not supported. "
 645				"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
 646				sgtl5000->sysclk / frame_rate);
 647			return -EINVAL;
 648		}
 649	}
 650
 651	/* if using pll, please check manual 6.4.2 for detail */
 652	if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
 653		u64 out, t;
 654		int div2;
 655		int pll_ctl;
 656		unsigned int in, int_div, frac_div;
 657
 658		if (sgtl5000->sysclk > 17000000) {
 659			div2 = 1;
 660			in = sgtl5000->sysclk / 2;
 661		} else {
 662			div2 = 0;
 663			in = sgtl5000->sysclk;
 664		}
 665		if (sys_fs == 44100)
 666			out = 180633600;
 667		else
 668			out = 196608000;
 669		t = do_div(out, in);
 670		int_div = out;
 671		t *= 2048;
 672		do_div(t, in);
 673		frac_div = t;
 674		pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
 675		    frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
 676
 677		snd_soc_write(codec, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
 678		if (div2)
 679			snd_soc_update_bits(codec,
 680				SGTL5000_CHIP_CLK_TOP_CTRL,
 681				SGTL5000_INPUT_FREQ_DIV2,
 682				SGTL5000_INPUT_FREQ_DIV2);
 683		else
 684			snd_soc_update_bits(codec,
 685				SGTL5000_CHIP_CLK_TOP_CTRL,
 686				SGTL5000_INPUT_FREQ_DIV2,
 687				0);
 688
 689		/* power up pll */
 690		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 691			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
 692			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
 693
 694		/* if using pll, clk_ctrl must be set after pll power up */
 695		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
 696	} else {
 697		/* otherwise, clk_ctrl must be set before pll power down */
 698		snd_soc_write(codec, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
 699
 700		/* power down pll */
 701		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 702			SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
 703			0);
 704	}
 705
 706	return 0;
 707}
 708
 709/*
 710 * Set PCM DAI bit size and sample rate.
 711 * input: params_rate, params_fmt
 712 */
 713static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
 714				  struct snd_pcm_hw_params *params,
 715				  struct snd_soc_dai *dai)
 716{
 717	struct snd_soc_codec *codec = dai->codec;
 718	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 719	int channels = params_channels(params);
 720	int i2s_ctl = 0;
 721	int stereo;
 722	int ret;
 723
 724	/* sysclk should already set */
 725	if (!sgtl5000->sysclk) {
 726		dev_err(codec->dev, "%s: set sysclk first!\n", __func__);
 727		return -EFAULT;
 728	}
 729
 730	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 731		stereo = SGTL5000_DAC_STEREO;
 732	else
 733		stereo = SGTL5000_ADC_STEREO;
 734
 735	/* set mono to save power */
 736	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER, stereo,
 737			channels == 1 ? 0 : stereo);
 738
 739	/* set codec clock base on lrclk */
 740	ret = sgtl5000_set_clock(codec, params_rate(params));
 741	if (ret)
 742		return ret;
 743
 744	/* set i2s data format */
 745	switch (params_width(params)) {
 746	case 16:
 747		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
 748			return -EINVAL;
 749		i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
 750		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
 751		    SGTL5000_I2S_SCLKFREQ_SHIFT;
 752		break;
 753	case 20:
 754		i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
 755		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
 756		    SGTL5000_I2S_SCLKFREQ_SHIFT;
 757		break;
 758	case 24:
 759		i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
 760		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
 761		    SGTL5000_I2S_SCLKFREQ_SHIFT;
 762		break;
 763	case 32:
 764		if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
 765			return -EINVAL;
 766		i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
 767		i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
 768		    SGTL5000_I2S_SCLKFREQ_SHIFT;
 769		break;
 770	default:
 771		return -EINVAL;
 772	}
 773
 774	snd_soc_update_bits(codec, SGTL5000_CHIP_I2S_CTRL,
 775			    SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
 776			    i2s_ctl);
 777
 778	return 0;
 779}
 780
 781#ifdef CONFIG_REGULATOR
 782static int ldo_regulator_is_enabled(struct regulator_dev *dev)
 783{
 784	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
 785
 786	return ldo->enabled;
 787}
 788
 789static int ldo_regulator_enable(struct regulator_dev *dev)
 790{
 791	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
 792	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
 793	int reg;
 794
 795	if (ldo_regulator_is_enabled(dev))
 796		return 0;
 797
 798	/* set regulator value firstly */
 799	reg = (1600 - ldo->voltage / 1000) / 50;
 800	reg = clamp(reg, 0x0, 0xf);
 801
 802	/* amend the voltage value, unit: uV */
 803	ldo->voltage = (1600 - reg * 50) * 1000;
 804
 805	/* set voltage to register */
 806	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
 807				SGTL5000_LINREG_VDDD_MASK, reg);
 808
 809	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 810				SGTL5000_LINEREG_D_POWERUP,
 811				SGTL5000_LINEREG_D_POWERUP);
 812
 813	/* when internal ldo is enabled, simple digital power can be disabled */
 814	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 815				SGTL5000_LINREG_SIMPLE_POWERUP,
 816				0);
 817
 818	ldo->enabled = 1;
 819	return 0;
 820}
 821
 822static int ldo_regulator_disable(struct regulator_dev *dev)
 823{
 824	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
 825	struct snd_soc_codec *codec = (struct snd_soc_codec *)ldo->codec_data;
 826
 827	snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
 828				SGTL5000_LINEREG_D_POWERUP,
 829				0);
 830
 831	/* clear voltage info */
 832	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
 833				SGTL5000_LINREG_VDDD_MASK, 0);
 834
 835	ldo->enabled = 0;
 836
 837	return 0;
 838}
 839
 840static int ldo_regulator_get_voltage(struct regulator_dev *dev)
 841{
 842	struct ldo_regulator *ldo = rdev_get_drvdata(dev);
 843
 844	return ldo->voltage;
 845}
 846
 847static struct regulator_ops ldo_regulator_ops = {
 848	.is_enabled = ldo_regulator_is_enabled,
 849	.enable = ldo_regulator_enable,
 850	.disable = ldo_regulator_disable,
 851	.get_voltage = ldo_regulator_get_voltage,
 852};
 853
 854static int ldo_regulator_register(struct snd_soc_codec *codec,
 855				struct regulator_init_data *init_data,
 856				int voltage)
 857{
 858	struct ldo_regulator *ldo;
 859	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 860	struct regulator_config config = { };
 861
 862	ldo = kzalloc(sizeof(struct ldo_regulator), GFP_KERNEL);
 863
 864	if (!ldo)
 865		return -ENOMEM;
 866
 867	ldo->desc.name = kstrdup(dev_name(codec->dev), GFP_KERNEL);
 868	if (!ldo->desc.name) {
 869		kfree(ldo);
 870		dev_err(codec->dev, "failed to allocate decs name memory\n");
 871		return -ENOMEM;
 872	}
 873
 874	ldo->desc.type  = REGULATOR_VOLTAGE;
 875	ldo->desc.owner = THIS_MODULE;
 876	ldo->desc.ops   = &ldo_regulator_ops;
 877	ldo->desc.n_voltages = 1;
 878
 879	ldo->codec_data = codec;
 880	ldo->voltage = voltage;
 881
 882	config.dev = codec->dev;
 883	config.driver_data = ldo;
 884	config.init_data = init_data;
 885
 886	ldo->dev = regulator_register(&ldo->desc, &config);
 887	if (IS_ERR(ldo->dev)) {
 888		int ret = PTR_ERR(ldo->dev);
 889
 890		dev_err(codec->dev, "failed to register regulator\n");
 891		kfree(ldo->desc.name);
 892		kfree(ldo);
 893
 894		return ret;
 895	}
 896	sgtl5000->ldo = ldo;
 897
 898	return 0;
 899}
 900
 901static int ldo_regulator_remove(struct snd_soc_codec *codec)
 902{
 903	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 904	struct ldo_regulator *ldo = sgtl5000->ldo;
 905
 906	if (!ldo)
 907		return 0;
 908
 909	regulator_unregister(ldo->dev);
 910	kfree(ldo->desc.name);
 911	kfree(ldo);
 912
 913	return 0;
 914}
 915#else
 916static int ldo_regulator_register(struct snd_soc_codec *codec,
 917				struct regulator_init_data *init_data,
 918				int voltage)
 919{
 920	dev_err(codec->dev, "this setup needs regulator support in the kernel\n");
 921	return -EINVAL;
 922}
 923
 924static int ldo_regulator_remove(struct snd_soc_codec *codec)
 925{
 926	return 0;
 927}
 928#endif
 929
 930/*
 931 * set dac bias
 932 * common state changes:
 933 * startup:
 934 * off --> standby --> prepare --> on
 935 * standby --> prepare --> on
 936 *
 937 * stop:
 938 * on --> prepare --> standby
 939 */
 940static int sgtl5000_set_bias_level(struct snd_soc_codec *codec,
 941				   enum snd_soc_bias_level level)
 942{
 
 943	int ret;
 944	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
 945
 946	switch (level) {
 947	case SND_SOC_BIAS_ON:
 948	case SND_SOC_BIAS_PREPARE:
 949		break;
 950	case SND_SOC_BIAS_STANDBY:
 951		if (snd_soc_codec_get_bias_level(codec) == SND_SOC_BIAS_OFF) {
 952			ret = regulator_bulk_enable(
 953						ARRAY_SIZE(sgtl5000->supplies),
 954						sgtl5000->supplies);
 955			if (ret)
 956				return ret;
 957			udelay(10);
 958
 959			regcache_cache_only(sgtl5000->regmap, false);
 960
 961			ret = regcache_sync(sgtl5000->regmap);
 962			if (ret != 0) {
 963				dev_err(codec->dev,
 964					"Failed to restore cache: %d\n", ret);
 965
 966				regcache_cache_only(sgtl5000->regmap, true);
 967				regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
 968						       sgtl5000->supplies);
 969
 970				return ret;
 971			}
 972		}
 973
 
 
 
 974		break;
 975	case SND_SOC_BIAS_OFF:
 976		regcache_cache_only(sgtl5000->regmap, true);
 977		regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
 978					sgtl5000->supplies);
 979		break;
 980	}
 981
 982	return 0;
 983}
 984
 985#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
 986			SNDRV_PCM_FMTBIT_S20_3LE |\
 987			SNDRV_PCM_FMTBIT_S24_LE |\
 988			SNDRV_PCM_FMTBIT_S32_LE)
 989
 990static const struct snd_soc_dai_ops sgtl5000_ops = {
 991	.hw_params = sgtl5000_pcm_hw_params,
 992	.digital_mute = sgtl5000_digital_mute,
 993	.set_fmt = sgtl5000_set_dai_fmt,
 994	.set_sysclk = sgtl5000_set_dai_sysclk,
 
 995};
 996
 997static struct snd_soc_dai_driver sgtl5000_dai = {
 998	.name = "sgtl5000",
 999	.playback = {
1000		.stream_name = "Playback",
1001		.channels_min = 1,
1002		.channels_max = 2,
1003		/*
1004		 * only support 8~48K + 96K,
1005		 * TODO modify hw_param to support more
1006		 */
1007		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1008		.formats = SGTL5000_FORMATS,
1009	},
1010	.capture = {
1011		.stream_name = "Capture",
1012		.channels_min = 1,
1013		.channels_max = 2,
1014		.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1015		.formats = SGTL5000_FORMATS,
1016	},
1017	.ops = &sgtl5000_ops,
1018	.symmetric_rates = 1,
1019};
1020
1021static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1022{
1023	switch (reg) {
1024	case SGTL5000_CHIP_ID:
1025	case SGTL5000_CHIP_ADCDAC_CTRL:
1026	case SGTL5000_CHIP_ANA_STATUS:
1027		return true;
1028	}
1029
1030	return false;
1031}
1032
1033static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1034{
1035	switch (reg) {
1036	case SGTL5000_CHIP_ID:
1037	case SGTL5000_CHIP_DIG_POWER:
1038	case SGTL5000_CHIP_CLK_CTRL:
1039	case SGTL5000_CHIP_I2S_CTRL:
1040	case SGTL5000_CHIP_SSS_CTRL:
1041	case SGTL5000_CHIP_ADCDAC_CTRL:
1042	case SGTL5000_CHIP_DAC_VOL:
1043	case SGTL5000_CHIP_PAD_STRENGTH:
1044	case SGTL5000_CHIP_ANA_ADC_CTRL:
1045	case SGTL5000_CHIP_ANA_HP_CTRL:
1046	case SGTL5000_CHIP_ANA_CTRL:
1047	case SGTL5000_CHIP_LINREG_CTRL:
1048	case SGTL5000_CHIP_REF_CTRL:
1049	case SGTL5000_CHIP_MIC_CTRL:
1050	case SGTL5000_CHIP_LINE_OUT_CTRL:
1051	case SGTL5000_CHIP_LINE_OUT_VOL:
1052	case SGTL5000_CHIP_ANA_POWER:
1053	case SGTL5000_CHIP_PLL_CTRL:
1054	case SGTL5000_CHIP_CLK_TOP_CTRL:
1055	case SGTL5000_CHIP_ANA_STATUS:
1056	case SGTL5000_CHIP_SHORT_CTRL:
1057	case SGTL5000_CHIP_ANA_TEST2:
1058	case SGTL5000_DAP_CTRL:
1059	case SGTL5000_DAP_PEQ:
1060	case SGTL5000_DAP_BASS_ENHANCE:
1061	case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1062	case SGTL5000_DAP_AUDIO_EQ:
1063	case SGTL5000_DAP_SURROUND:
1064	case SGTL5000_DAP_FLT_COEF_ACCESS:
1065	case SGTL5000_DAP_COEF_WR_B0_MSB:
1066	case SGTL5000_DAP_COEF_WR_B0_LSB:
1067	case SGTL5000_DAP_EQ_BASS_BAND0:
1068	case SGTL5000_DAP_EQ_BASS_BAND1:
1069	case SGTL5000_DAP_EQ_BASS_BAND2:
1070	case SGTL5000_DAP_EQ_BASS_BAND3:
1071	case SGTL5000_DAP_EQ_BASS_BAND4:
1072	case SGTL5000_DAP_MAIN_CHAN:
1073	case SGTL5000_DAP_MIX_CHAN:
1074	case SGTL5000_DAP_AVC_CTRL:
1075	case SGTL5000_DAP_AVC_THRESHOLD:
1076	case SGTL5000_DAP_AVC_ATTACK:
1077	case SGTL5000_DAP_AVC_DECAY:
1078	case SGTL5000_DAP_COEF_WR_B1_MSB:
1079	case SGTL5000_DAP_COEF_WR_B1_LSB:
1080	case SGTL5000_DAP_COEF_WR_B2_MSB:
1081	case SGTL5000_DAP_COEF_WR_B2_LSB:
1082	case SGTL5000_DAP_COEF_WR_A1_MSB:
1083	case SGTL5000_DAP_COEF_WR_A1_LSB:
1084	case SGTL5000_DAP_COEF_WR_A2_MSB:
1085	case SGTL5000_DAP_COEF_WR_A2_LSB:
1086		return true;
1087
1088	default:
1089		return false;
1090	}
1091}
1092
1093/*
1094 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1095 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1096 * The calculatation was done for all possible register values which
1097 * is the array index and the following formula: 10^((idx−15)/40) * 100
1098 */
1099static const u8 vol_quot_table[] = {
1100	42, 45, 47, 50, 53, 56, 60, 63,
1101	67, 71, 75, 79, 84, 89, 94, 100,
1102	106, 112, 119, 126, 133, 141, 150, 158,
1103	168, 178, 188, 200, 211, 224, 237, 251
1104};
1105
1106/*
1107 * sgtl5000 has 3 internal power supplies:
1108 * 1. VAG, normally set to vdda/2
1109 * 2. charge pump, set to different value
1110 *	according to voltage of vdda and vddio
1111 * 3. line out VAG, normally set to vddio/2
1112 *
1113 * and should be set according to:
1114 * 1. vddd provided by external or not
1115 * 2. vdda and vddio voltage value. > 3.1v or not
1116 * 3. chip revision >=0x11 or not. If >=0x11, not use external vddd.
1117 */
1118static int sgtl5000_set_power_regs(struct snd_soc_codec *codec)
1119{
1120	int vddd;
1121	int vdda;
1122	int vddio;
1123	u16 ana_pwr;
1124	u16 lreg_ctrl;
1125	int vag;
1126	int lo_vag;
1127	int vol_quot;
1128	int lo_vol;
1129	size_t i;
1130	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1131
1132	vdda  = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1133	vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1134	vddd  = regulator_get_voltage(sgtl5000->supplies[VDDD].consumer);
 
 
1135
1136	vdda  = vdda / 1000;
1137	vddio = vddio / 1000;
1138	vddd  = vddd / 1000;
1139
1140	if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1141		dev_err(codec->dev, "regulator voltage not set correctly\n");
1142
1143		return -EINVAL;
1144	}
1145
1146	/* according to datasheet, maximum voltage of supplies */
1147	if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1148		dev_err(codec->dev,
1149			"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1150			vdda, vddio, vddd);
1151
1152		return -EINVAL;
1153	}
1154
1155	/* reset value */
1156	ana_pwr = snd_soc_read(codec, SGTL5000_CHIP_ANA_POWER);
1157	ana_pwr |= SGTL5000_DAC_STEREO |
1158			SGTL5000_ADC_STEREO |
1159			SGTL5000_REFTOP_POWERUP;
1160	lreg_ctrl = snd_soc_read(codec, SGTL5000_CHIP_LINREG_CTRL);
1161
1162	if (vddio < 3100 && vdda < 3100) {
1163		/* enable internal oscillator used for charge pump */
1164		snd_soc_update_bits(codec, SGTL5000_CHIP_CLK_TOP_CTRL,
1165					SGTL5000_INT_OSC_EN,
1166					SGTL5000_INT_OSC_EN);
1167		/* Enable VDDC charge pump */
1168		ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1169	} else if (vddio >= 3100 && vdda >= 3100) {
1170		ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1171		/* VDDC use VDDIO rail */
1172		lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1173		lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1174			    SGTL5000_VDDC_MAN_ASSN_SHIFT;
 
 
 
 
 
 
1175	}
1176
1177	snd_soc_write(codec, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1178
1179	snd_soc_write(codec, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1180
1181	/* set voltage to register */
1182	snd_soc_update_bits(codec, SGTL5000_CHIP_LINREG_CTRL,
1183				SGTL5000_LINREG_VDDD_MASK, 0x8);
1184
1185	/*
1186	 * if vddd linear reg has been enabled,
1187	 * simple digital supply should be clear to get
1188	 * proper VDDD voltage.
1189	 */
1190	if (ana_pwr & SGTL5000_LINEREG_D_POWERUP)
1191		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1192				SGTL5000_LINREG_SIMPLE_POWERUP,
1193				0);
1194	else
1195		snd_soc_update_bits(codec, SGTL5000_CHIP_ANA_POWER,
1196				SGTL5000_LINREG_SIMPLE_POWERUP |
1197				SGTL5000_STARTUP_POWERUP,
1198				0);
1199
1200	/*
1201	 * set ADC/DAC VAG to vdda / 2,
1202	 * should stay in range (0.8v, 1.575v)
1203	 */
1204	vag = vdda / 2;
1205	if (vag <= SGTL5000_ANA_GND_BASE)
1206		vag = 0;
1207	else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1208		 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1209		vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1210	else
1211		vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1212
1213	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1214			SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1215
1216	/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1217	lo_vag = vddio / 2;
1218	if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1219		lo_vag = 0;
1220	else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1221		SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1222		lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1223	else
1224		lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1225		    SGTL5000_LINE_OUT_GND_STP;
1226
1227	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_CTRL,
1228			SGTL5000_LINE_OUT_CURRENT_MASK |
1229			SGTL5000_LINE_OUT_GND_MASK,
1230			lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1231			SGTL5000_LINE_OUT_CURRENT_360u <<
1232				SGTL5000_LINE_OUT_CURRENT_SHIFT);
1233
1234	/*
1235	 * Set lineout output level in range (0..31)
1236	 * the same value is used for right and left channel
1237	 *
1238	 * Searching for a suitable index solving this formula:
1239	 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1240	 */
1241	vol_quot = (vag * 100) / lo_vag;
1242	lo_vol = 0;
1243	for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1244		if (vol_quot >= vol_quot_table[i])
1245			lo_vol = i;
1246		else
1247			break;
1248	}
1249
1250	snd_soc_update_bits(codec, SGTL5000_CHIP_LINE_OUT_VOL,
1251		SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1252		SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1253		lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1254		lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1255
1256	return 0;
1257}
1258
1259static int sgtl5000_replace_vddd_with_ldo(struct snd_soc_codec *codec)
1260{
1261	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1262	int ret;
1263
1264	/* set internal ldo to 1.2v */
1265	ret = ldo_regulator_register(codec, &ldo_init_data, LDO_VOLTAGE);
1266	if (ret) {
1267		dev_err(codec->dev,
1268			"Failed to register vddd internal supplies: %d\n", ret);
1269		return ret;
1270	}
1271
1272	sgtl5000->supplies[VDDD].supply = LDO_CONSUMER_NAME;
1273
1274	dev_info(codec->dev, "Using internal LDO instead of VDDD\n");
1275	return 0;
1276}
1277
1278static int sgtl5000_enable_regulators(struct snd_soc_codec *codec)
1279{
1280	int ret;
1281	int i;
1282	int external_vddd = 0;
1283	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1284	struct regulator *vddd;
 
1285
1286	for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1287		sgtl5000->supplies[i].supply = supply_names[i];
1288
1289	/* External VDDD only works before revision 0x11 */
1290	if (sgtl5000->revision < 0x11) {
1291		vddd = regulator_get_optional(codec->dev, "VDDD");
1292		if (IS_ERR(vddd)) {
1293			/* See if it's just not registered yet */
1294			if (PTR_ERR(vddd) == -EPROBE_DEFER)
1295				return -EPROBE_DEFER;
1296		} else {
1297			external_vddd = 1;
1298			regulator_put(vddd);
1299		}
1300	}
1301
1302	if (!external_vddd) {
1303		ret = sgtl5000_replace_vddd_with_ldo(codec);
1304		if (ret)
1305			return ret;
1306	}
1307
1308	ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(sgtl5000->supplies),
 
 
1309				 sgtl5000->supplies);
1310	if (ret)
1311		goto err_ldo_remove;
1312
1313	ret = regulator_bulk_enable(ARRAY_SIZE(sgtl5000->supplies),
1314					sgtl5000->supplies);
1315	if (ret)
1316		goto err_regulator_free;
1317
1318	/* wait for all power rails bring up */
1319	udelay(10);
1320
1321	return 0;
1322
1323err_regulator_free:
1324	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1325				sgtl5000->supplies);
1326err_ldo_remove:
1327	if (!external_vddd)
1328		ldo_regulator_remove(codec);
1329	return ret;
1330
1331}
1332
1333static int sgtl5000_probe(struct snd_soc_codec *codec)
1334{
1335	int ret;
1336	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1337
1338	ret = sgtl5000_enable_regulators(codec);
1339	if (ret)
1340		return ret;
1341
1342	/* power up sgtl5000 */
1343	ret = sgtl5000_set_power_regs(codec);
1344	if (ret)
1345		goto err;
1346
1347	/* enable small pop, introduce 400ms delay in turning off */
1348	snd_soc_update_bits(codec, SGTL5000_CHIP_REF_CTRL,
1349				SGTL5000_SMALL_POP, 1);
1350
1351	/* disable short cut detector */
1352	snd_soc_write(codec, SGTL5000_CHIP_SHORT_CTRL, 0);
1353
1354	/*
1355	 * set i2s as default input of sound switch
1356	 * TODO: add sound switch to control and dapm widge.
1357	 */
1358	snd_soc_write(codec, SGTL5000_CHIP_SSS_CTRL,
1359			SGTL5000_DAC_SEL_I2S_IN << SGTL5000_DAC_SEL_SHIFT);
1360	snd_soc_write(codec, SGTL5000_CHIP_DIG_POWER,
1361			SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1362
1363	/* enable dac volume ramp by default */
1364	snd_soc_write(codec, SGTL5000_CHIP_ADCDAC_CTRL,
1365			SGTL5000_DAC_VOL_RAMP_EN |
1366			SGTL5000_DAC_MUTE_RIGHT |
1367			SGTL5000_DAC_MUTE_LEFT);
1368
1369	snd_soc_write(codec, SGTL5000_CHIP_PAD_STRENGTH, 0x015f);
 
 
 
1370
1371	snd_soc_write(codec, SGTL5000_CHIP_ANA_CTRL,
1372			SGTL5000_HP_ZCD_EN |
1373			SGTL5000_ADC_ZCD_EN);
1374
1375	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1376			SGTL5000_BIAS_R_MASK,
1377			sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1378
1379	snd_soc_update_bits(codec, SGTL5000_CHIP_MIC_CTRL,
1380			SGTL5000_BIAS_VOLT_MASK,
1381			sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1382	/*
1383	 * disable DAP
1384	 * TODO:
1385	 * Enable DAP in kcontrol and dapm.
1386	 */
1387	snd_soc_write(codec, SGTL5000_DAP_CTRL, 0);
 
 
 
 
1388
1389	return 0;
1390
1391err:
1392	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1393						sgtl5000->supplies);
1394	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1395				sgtl5000->supplies);
1396	ldo_regulator_remove(codec);
1397
1398	return ret;
1399}
1400
1401static int sgtl5000_remove(struct snd_soc_codec *codec)
 
1402{
1403	struct sgtl5000_priv *sgtl5000 = snd_soc_codec_get_drvdata(codec);
1404
1405	regulator_bulk_disable(ARRAY_SIZE(sgtl5000->supplies),
1406						sgtl5000->supplies);
1407	regulator_bulk_free(ARRAY_SIZE(sgtl5000->supplies),
1408				sgtl5000->supplies);
1409	ldo_regulator_remove(codec);
1410
1411	return 0;
1412}
1413
1414static struct snd_soc_codec_driver sgtl5000_driver = {
1415	.probe = sgtl5000_probe,
1416	.remove = sgtl5000_remove,
1417	.set_bias_level = sgtl5000_set_bias_level,
1418	.suspend_bias_off = true,
1419	.controls = sgtl5000_snd_controls,
1420	.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1421	.dapm_widgets = sgtl5000_dapm_widgets,
1422	.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1423	.dapm_routes = sgtl5000_dapm_routes,
1424	.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
 
 
 
1425};
1426
1427static const struct regmap_config sgtl5000_regmap = {
1428	.reg_bits = 16,
1429	.val_bits = 16,
1430	.reg_stride = 2,
1431
1432	.max_register = SGTL5000_MAX_REG_OFFSET,
1433	.volatile_reg = sgtl5000_volatile,
1434	.readable_reg = sgtl5000_readable,
1435
1436	.cache_type = REGCACHE_RBTREE,
1437	.reg_defaults = sgtl5000_reg_defaults,
1438	.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1439};
1440
1441/*
1442 * Write all the default values from sgtl5000_reg_defaults[] array into the
1443 * sgtl5000 registers, to make sure we always start with the sane registers
1444 * values as stated in the datasheet.
1445 *
1446 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1447 * we follow this approach to guarantee we always start from the default values
1448 * and avoid problems like, not being able to probe after an audio playback
1449 * followed by a system reset or a 'reboot' command in Linux
1450 */
1451static int sgtl5000_fill_defaults(struct sgtl5000_priv *sgtl5000)
1452{
 
1453	int i, ret, val, index;
1454
1455	for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1456		val = sgtl5000_reg_defaults[i].def;
1457		index = sgtl5000_reg_defaults[i].reg;
1458		ret = regmap_write(sgtl5000->regmap, index, val);
1459		if (ret)
1460			return ret;
 
 
1461	}
1462
1463	return 0;
1464}
1465
1466static int sgtl5000_i2c_probe(struct i2c_client *client,
1467			      const struct i2c_device_id *id)
1468{
1469	struct sgtl5000_priv *sgtl5000;
1470	int ret, reg, rev;
1471	struct device_node *np = client->dev.of_node;
1472	u32 value;
 
1473
1474	sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1475	if (!sgtl5000)
1476		return -ENOMEM;
1477
 
 
 
 
 
 
1478	sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1479	if (IS_ERR(sgtl5000->regmap)) {
1480		ret = PTR_ERR(sgtl5000->regmap);
1481		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1482		return ret;
1483	}
1484
1485	sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1486	if (IS_ERR(sgtl5000->mclk)) {
1487		ret = PTR_ERR(sgtl5000->mclk);
1488		dev_err(&client->dev, "Failed to get mclock: %d\n", ret);
1489		/* Defer the probe to see if the clk will be provided later */
1490		if (ret == -ENOENT)
1491			return -EPROBE_DEFER;
1492		return ret;
 
 
 
1493	}
1494
1495	ret = clk_prepare_enable(sgtl5000->mclk);
1496	if (ret)
1497		return ret;
 
 
1498
1499	/* Need 8 clocks before I2C accesses */
1500	udelay(1);
1501
1502	/* read chip information */
1503	ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
1504	if (ret)
 
1505		goto disable_clk;
 
1506
1507	if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1508	    SGTL5000_PARTID_PART_ID) {
1509		dev_err(&client->dev,
1510			"Device with ID register %x is not a sgtl5000\n", reg);
1511		ret = -ENODEV;
1512		goto disable_clk;
1513	}
1514
1515	rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1516	dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1517	sgtl5000->revision = rev;
1518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519	if (np) {
1520		if (!of_property_read_u32(np,
1521			"micbias-resistor-k-ohms", &value)) {
1522			switch (value) {
1523			case SGTL5000_MICBIAS_OFF:
1524				sgtl5000->micbias_resistor = 0;
1525				break;
1526			case SGTL5000_MICBIAS_2K:
1527				sgtl5000->micbias_resistor = 1;
1528				break;
1529			case SGTL5000_MICBIAS_4K:
1530				sgtl5000->micbias_resistor = 2;
1531				break;
1532			case SGTL5000_MICBIAS_8K:
1533				sgtl5000->micbias_resistor = 3;
1534				break;
1535			default:
1536				sgtl5000->micbias_resistor = 2;
1537				dev_err(&client->dev,
1538					"Unsuitable MicBias resistor\n");
1539			}
1540		} else {
1541			/* default is 4Kohms */
1542			sgtl5000->micbias_resistor = 2;
1543		}
1544		if (!of_property_read_u32(np,
1545			"micbias-voltage-m-volts", &value)) {
1546			/* 1250mV => 0 */
1547			/* steps of 250mV */
1548			if ((value >= 1250) && (value <= 3000))
1549				sgtl5000->micbias_voltage = (value / 250) - 5;
1550			else {
1551				sgtl5000->micbias_voltage = 0;
1552				dev_err(&client->dev,
1553					"Unsuitable MicBias voltage\n");
1554			}
1555		} else {
1556			sgtl5000->micbias_voltage = 0;
1557		}
1558	}
1559
1560	i2c_set_clientdata(client, sgtl5000);
 
 
 
 
 
 
 
 
 
 
 
 
1561
1562	/* Ensure sgtl5000 will start with sane register values */
1563	ret = sgtl5000_fill_defaults(sgtl5000);
1564	if (ret)
1565		goto disable_clk;
1566
1567	ret = snd_soc_register_codec(&client->dev,
1568			&sgtl5000_driver, &sgtl5000_dai, 1);
1569	if (ret)
1570		goto disable_clk;
1571
1572	return 0;
1573
1574disable_clk:
1575	clk_disable_unprepare(sgtl5000->mclk);
 
 
 
 
 
1576	return ret;
1577}
1578
1579static int sgtl5000_i2c_remove(struct i2c_client *client)
1580{
1581	struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1582
1583	snd_soc_unregister_codec(&client->dev);
 
 
 
1584	clk_disable_unprepare(sgtl5000->mclk);
1585	return 0;
 
 
 
 
 
 
1586}
1587
1588static const struct i2c_device_id sgtl5000_id[] = {
1589	{"sgtl5000", 0},
1590	{},
1591};
1592
1593MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1594
1595static const struct of_device_id sgtl5000_dt_ids[] = {
1596	{ .compatible = "fsl,sgtl5000", },
1597	{ /* sentinel */ }
1598};
1599MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1600
1601static struct i2c_driver sgtl5000_i2c_driver = {
1602	.driver = {
1603		   .name = "sgtl5000",
1604		   .of_match_table = sgtl5000_dt_ids,
1605		   },
1606	.probe = sgtl5000_i2c_probe,
1607	.remove = sgtl5000_i2c_remove,
 
1608	.id_table = sgtl5000_id,
1609};
1610
1611module_i2c_driver(sgtl5000_i2c_driver);
1612
1613MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1614MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1615MODULE_LICENSE("GPL");