Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73#include <net/rstreason.h>
  74
  75#include <linux/inet.h>
  76#include <linux/ipv6.h>
  77#include <linux/stddef.h>
  78#include <linux/proc_fs.h>
  79#include <linux/seq_file.h>
  80#include <linux/inetdevice.h>
  81#include <linux/btf_ids.h>
  82#include <linux/skbuff_ref.h>
  83
  84#include <crypto/hash.h>
  85#include <linux/scatterlist.h>
  86
  87#include <trace/events/tcp.h>
 
 
  88
  89#ifdef CONFIG_TCP_MD5SIG
  90static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  91			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  92#endif
  93
  94struct inet_hashinfo tcp_hashinfo;
  95EXPORT_SYMBOL(tcp_hashinfo);
  96
  97static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
  98	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
  99};
 100
 101static DEFINE_MUTEX(tcp_exit_batch_mutex);
 102
 103static u32 tcp_v4_init_seq(const struct sk_buff *skb)
 104{
 105	return secure_tcp_seq(ip_hdr(skb)->daddr,
 106			      ip_hdr(skb)->saddr,
 107			      tcp_hdr(skb)->dest,
 108			      tcp_hdr(skb)->source);
 109}
 110
 111static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 112{
 113	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 
 
 
 114}
 115
 116int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 117{
 118	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 119	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 120	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 121	struct tcp_sock *tp = tcp_sk(sk);
 122	int ts_recent_stamp;
 123
 124	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
 125		reuse = 0;
 126
 127	if (reuse == 2) {
 128		/* Still does not detect *everything* that goes through
 129		 * lo, since we require a loopback src or dst address
 130		 * or direct binding to 'lo' interface.
 131		 */
 132		bool loopback = false;
 133		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 134			loopback = true;
 135#if IS_ENABLED(CONFIG_IPV6)
 136		if (tw->tw_family == AF_INET6) {
 137			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 138			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 139			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 140			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 141				loopback = true;
 142		} else
 143#endif
 144		{
 145			if (ipv4_is_loopback(tw->tw_daddr) ||
 146			    ipv4_is_loopback(tw->tw_rcv_saddr))
 147				loopback = true;
 148		}
 149		if (!loopback)
 150			reuse = 0;
 151	}
 152
 153	/* With PAWS, it is safe from the viewpoint
 154	   of data integrity. Even without PAWS it is safe provided sequence
 155	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 156
 157	   Actually, the idea is close to VJ's one, only timestamp cache is
 158	   held not per host, but per port pair and TW bucket is used as state
 159	   holder.
 160
 161	   If TW bucket has been already destroyed we fall back to VJ's scheme
 162	   and use initial timestamp retrieved from peer table.
 163	 */
 164	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
 165	if (ts_recent_stamp &&
 166	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 167					    ts_recent_stamp)))) {
 168		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
 169		 * and releasing the bucket lock.
 170		 */
 171		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 172			return 0;
 173
 174		/* In case of repair and re-using TIME-WAIT sockets we still
 175		 * want to be sure that it is safe as above but honor the
 176		 * sequence numbers and time stamps set as part of the repair
 177		 * process.
 178		 *
 179		 * Without this check re-using a TIME-WAIT socket with TCP
 180		 * repair would accumulate a -1 on the repair assigned
 181		 * sequence number. The first time it is reused the sequence
 182		 * is -1, the second time -2, etc. This fixes that issue
 183		 * without appearing to create any others.
 184		 */
 185		if (likely(!tp->repair)) {
 186			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 187
 188			if (!seq)
 189				seq = 1;
 190			WRITE_ONCE(tp->write_seq, seq);
 191			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
 192			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
 193		}
 194
 195		return 1;
 196	}
 197
 198	return 0;
 199}
 200EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 201
 202static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 203			      int addr_len)
 204{
 205	/* This check is replicated from tcp_v4_connect() and intended to
 206	 * prevent BPF program called below from accessing bytes that are out
 207	 * of the bound specified by user in addr_len.
 208	 */
 209	if (addr_len < sizeof(struct sockaddr_in))
 210		return -EINVAL;
 211
 212	sock_owned_by_me(sk);
 213
 214	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 215}
 216
 217/* This will initiate an outgoing connection. */
 218int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 219{
 220	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 221	struct inet_timewait_death_row *tcp_death_row;
 222	struct inet_sock *inet = inet_sk(sk);
 223	struct tcp_sock *tp = tcp_sk(sk);
 224	struct ip_options_rcu *inet_opt;
 225	struct net *net = sock_net(sk);
 226	__be16 orig_sport, orig_dport;
 227	__be32 daddr, nexthop;
 228	struct flowi4 *fl4;
 229	struct rtable *rt;
 230	int err;
 
 231
 232	if (addr_len < sizeof(struct sockaddr_in))
 233		return -EINVAL;
 234
 235	if (usin->sin_family != AF_INET)
 236		return -EAFNOSUPPORT;
 237
 238	nexthop = daddr = usin->sin_addr.s_addr;
 239	inet_opt = rcu_dereference_protected(inet->inet_opt,
 240					     lockdep_sock_is_held(sk));
 241	if (inet_opt && inet_opt->opt.srr) {
 242		if (!daddr)
 243			return -EINVAL;
 244		nexthop = inet_opt->opt.faddr;
 245	}
 246
 247	orig_sport = inet->inet_sport;
 248	orig_dport = usin->sin_port;
 249	fl4 = &inet->cork.fl.u.ip4;
 250	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 251			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 252			      orig_dport, sk);
 
 253	if (IS_ERR(rt)) {
 254		err = PTR_ERR(rt);
 255		if (err == -ENETUNREACH)
 256			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 257		return err;
 258	}
 259
 260	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 261		ip_rt_put(rt);
 262		return -ENETUNREACH;
 263	}
 264
 265	if (!inet_opt || !inet_opt->opt.srr)
 266		daddr = fl4->daddr;
 267
 268	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 269
 270	if (!inet->inet_saddr) {
 271		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 272		if (err) {
 273			ip_rt_put(rt);
 274			return err;
 275		}
 276	} else {
 277		sk_rcv_saddr_set(sk, inet->inet_saddr);
 278	}
 279
 280	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 281		/* Reset inherited state */
 282		tp->rx_opt.ts_recent	   = 0;
 283		tp->rx_opt.ts_recent_stamp = 0;
 284		if (likely(!tp->repair))
 285			WRITE_ONCE(tp->write_seq, 0);
 286	}
 287
 
 
 
 
 288	inet->inet_dport = usin->sin_port;
 289	sk_daddr_set(sk, daddr);
 290
 291	inet_csk(sk)->icsk_ext_hdr_len = 0;
 292	if (inet_opt)
 293		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 294
 295	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 296
 297	/* Socket identity is still unknown (sport may be zero).
 298	 * However we set state to SYN-SENT and not releasing socket
 299	 * lock select source port, enter ourselves into the hash tables and
 300	 * complete initialization after this.
 301	 */
 302	tcp_set_state(sk, TCP_SYN_SENT);
 303	err = inet_hash_connect(tcp_death_row, sk);
 304	if (err)
 305		goto failure;
 306
 307	sk_set_txhash(sk);
 308
 309	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 310			       inet->inet_sport, inet->inet_dport, sk);
 311	if (IS_ERR(rt)) {
 312		err = PTR_ERR(rt);
 313		rt = NULL;
 314		goto failure;
 315	}
 316	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 317	/* OK, now commit destination to socket.  */
 318	sk->sk_gso_type = SKB_GSO_TCPV4;
 319	sk_setup_caps(sk, &rt->dst);
 320	rt = NULL;
 321
 322	if (likely(!tp->repair)) {
 323		if (!tp->write_seq)
 324			WRITE_ONCE(tp->write_seq,
 325				   secure_tcp_seq(inet->inet_saddr,
 326						  inet->inet_daddr,
 327						  inet->inet_sport,
 328						  usin->sin_port));
 329		WRITE_ONCE(tp->tsoffset,
 330			   secure_tcp_ts_off(net, inet->inet_saddr,
 331					     inet->inet_daddr));
 332	}
 333
 334	atomic_set(&inet->inet_id, get_random_u16());
 335
 336	if (tcp_fastopen_defer_connect(sk, &err))
 337		return err;
 338	if (err)
 339		goto failure;
 340
 341	err = tcp_connect(sk);
 342
 
 343	if (err)
 344		goto failure;
 345
 346	return 0;
 347
 348failure:
 349	/*
 350	 * This unhashes the socket and releases the local port,
 351	 * if necessary.
 352	 */
 353	tcp_set_state(sk, TCP_CLOSE);
 354	inet_bhash2_reset_saddr(sk);
 355	ip_rt_put(rt);
 356	sk->sk_route_caps = 0;
 357	inet->inet_dport = 0;
 358	return err;
 359}
 360EXPORT_SYMBOL(tcp_v4_connect);
 361
 362/*
 363 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 364 * It can be called through tcp_release_cb() if socket was owned by user
 365 * at the time tcp_v4_err() was called to handle ICMP message.
 366 */
 367void tcp_v4_mtu_reduced(struct sock *sk)
 368{
 369	struct inet_sock *inet = inet_sk(sk);
 370	struct dst_entry *dst;
 371	u32 mtu;
 
 372
 373	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 374		return;
 375	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 376	dst = inet_csk_update_pmtu(sk, mtu);
 377	if (!dst)
 378		return;
 379
 380	/* Something is about to be wrong... Remember soft error
 381	 * for the case, if this connection will not able to recover.
 382	 */
 383	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 384		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 385
 386	mtu = dst_mtu(dst);
 387
 388	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 389	    ip_sk_accept_pmtu(sk) &&
 390	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 391		tcp_sync_mss(sk, mtu);
 392
 393		/* Resend the TCP packet because it's
 394		 * clear that the old packet has been
 395		 * dropped. This is the new "fast" path mtu
 396		 * discovery.
 397		 */
 398		tcp_simple_retransmit(sk);
 399	} /* else let the usual retransmit timer handle it */
 400}
 401EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 402
 403static void do_redirect(struct sk_buff *skb, struct sock *sk)
 404{
 405	struct dst_entry *dst = __sk_dst_check(sk, 0);
 406
 407	if (dst)
 408		dst->ops->redirect(dst, sk, skb);
 409}
 410
 411
 412/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 413void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 414{
 415	struct request_sock *req = inet_reqsk(sk);
 416	struct net *net = sock_net(sk);
 417
 418	/* ICMPs are not backlogged, hence we cannot get
 419	 * an established socket here.
 420	 */
 421	if (seq != tcp_rsk(req)->snt_isn) {
 422		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 423	} else if (abort) {
 424		/*
 425		 * Still in SYN_RECV, just remove it silently.
 426		 * There is no good way to pass the error to the newly
 427		 * created socket, and POSIX does not want network
 428		 * errors returned from accept().
 429		 */
 430		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 431		tcp_listendrop(req->rsk_listener);
 432	}
 433	reqsk_put(req);
 434}
 435EXPORT_SYMBOL(tcp_req_err);
 436
 437/* TCP-LD (RFC 6069) logic */
 438void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 439{
 440	struct inet_connection_sock *icsk = inet_csk(sk);
 441	struct tcp_sock *tp = tcp_sk(sk);
 442	struct sk_buff *skb;
 443	s32 remaining;
 444	u32 delta_us;
 445
 446	if (sock_owned_by_user(sk))
 447		return;
 448
 449	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 450	    !icsk->icsk_backoff)
 451		return;
 452
 453	skb = tcp_rtx_queue_head(sk);
 454	if (WARN_ON_ONCE(!skb))
 455		return;
 456
 457	icsk->icsk_backoff--;
 458	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 459	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 460
 461	tcp_mstamp_refresh(tp);
 462	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 463	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 464
 465	if (remaining > 0) {
 466		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 467					  remaining, TCP_RTO_MAX);
 468	} else {
 469		/* RTO revert clocked out retransmission.
 470		 * Will retransmit now.
 471		 */
 472		tcp_retransmit_timer(sk);
 473	}
 474}
 475EXPORT_SYMBOL(tcp_ld_RTO_revert);
 476
 477/*
 478 * This routine is called by the ICMP module when it gets some
 479 * sort of error condition.  If err < 0 then the socket should
 480 * be closed and the error returned to the user.  If err > 0
 481 * it's just the icmp type << 8 | icmp code.  After adjustment
 482 * header points to the first 8 bytes of the tcp header.  We need
 483 * to find the appropriate port.
 484 *
 485 * The locking strategy used here is very "optimistic". When
 486 * someone else accesses the socket the ICMP is just dropped
 487 * and for some paths there is no check at all.
 488 * A more general error queue to queue errors for later handling
 489 * is probably better.
 490 *
 491 */
 492
 493int tcp_v4_err(struct sk_buff *skb, u32 info)
 494{
 495	const struct iphdr *iph = (const struct iphdr *)skb->data;
 496	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 497	struct tcp_sock *tp;
 498	const int type = icmp_hdr(skb)->type;
 499	const int code = icmp_hdr(skb)->code;
 
 500	struct sock *sk;
 
 501	struct request_sock *fastopen;
 502	u32 seq, snd_una;
 
 503	int err;
 504	struct net *net = dev_net(skb->dev);
 505
 506	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 507				       iph->daddr, th->dest, iph->saddr,
 508				       ntohs(th->source), inet_iif(skb), 0);
 509	if (!sk) {
 510		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 511		return -ENOENT;
 512	}
 513	if (sk->sk_state == TCP_TIME_WAIT) {
 514		/* To increase the counter of ignored icmps for TCP-AO */
 515		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 516		inet_twsk_put(inet_twsk(sk));
 517		return 0;
 518	}
 519	seq = ntohl(th->seq);
 520	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 521		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 522				     type == ICMP_TIME_EXCEEDED ||
 523				     (type == ICMP_DEST_UNREACH &&
 524				      (code == ICMP_NET_UNREACH ||
 525				       code == ICMP_HOST_UNREACH)));
 526		return 0;
 527	}
 528
 529	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 530		sock_put(sk);
 531		return 0;
 532	}
 533
 534	bh_lock_sock(sk);
 535	/* If too many ICMPs get dropped on busy
 536	 * servers this needs to be solved differently.
 537	 * We do take care of PMTU discovery (RFC1191) special case :
 538	 * we can receive locally generated ICMP messages while socket is held.
 539	 */
 540	if (sock_owned_by_user(sk)) {
 541		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 542			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543	}
 544	if (sk->sk_state == TCP_CLOSE)
 545		goto out;
 546
 547	if (static_branch_unlikely(&ip4_min_ttl)) {
 548		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 549		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 550			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 551			goto out;
 552		}
 553	}
 554
 
 555	tp = tcp_sk(sk);
 556	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 557	fastopen = rcu_dereference(tp->fastopen_rsk);
 558	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 559	if (sk->sk_state != TCP_LISTEN &&
 560	    !between(seq, snd_una, tp->snd_nxt)) {
 561		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 562		goto out;
 563	}
 564
 565	switch (type) {
 566	case ICMP_REDIRECT:
 567		if (!sock_owned_by_user(sk))
 568			do_redirect(skb, sk);
 569		goto out;
 570	case ICMP_SOURCE_QUENCH:
 571		/* Just silently ignore these. */
 572		goto out;
 573	case ICMP_PARAMETERPROB:
 574		err = EPROTO;
 575		break;
 576	case ICMP_DEST_UNREACH:
 577		if (code > NR_ICMP_UNREACH)
 578			goto out;
 579
 580		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 581			/* We are not interested in TCP_LISTEN and open_requests
 582			 * (SYN-ACKs send out by Linux are always <576bytes so
 583			 * they should go through unfragmented).
 584			 */
 585			if (sk->sk_state == TCP_LISTEN)
 586				goto out;
 587
 588			WRITE_ONCE(tp->mtu_info, info);
 589			if (!sock_owned_by_user(sk)) {
 590				tcp_v4_mtu_reduced(sk);
 591			} else {
 592				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 593					sock_hold(sk);
 594			}
 595			goto out;
 596		}
 597
 598		err = icmp_err_convert[code].errno;
 599		/* check if this ICMP message allows revert of backoff.
 600		 * (see RFC 6069)
 601		 */
 602		if (!fastopen &&
 603		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 604			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605		break;
 606	case ICMP_TIME_EXCEEDED:
 607		err = EHOSTUNREACH;
 608		break;
 609	default:
 610		goto out;
 611	}
 612
 613	switch (sk->sk_state) {
 614	case TCP_SYN_SENT:
 615	case TCP_SYN_RECV:
 616		/* Only in fast or simultaneous open. If a fast open socket is
 617		 * already accepted it is treated as a connected one below.
 618		 */
 619		if (fastopen && !fastopen->sk)
 620			break;
 621
 622		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 
 623
 624		if (!sock_owned_by_user(sk))
 625			tcp_done_with_error(sk, err);
 626		else
 627			WRITE_ONCE(sk->sk_err_soft, err);
 
 
 628		goto out;
 629	}
 630
 631	/* If we've already connected we will keep trying
 632	 * until we time out, or the user gives up.
 633	 *
 634	 * rfc1122 4.2.3.9 allows to consider as hard errors
 635	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 636	 * but it is obsoleted by pmtu discovery).
 637	 *
 638	 * Note, that in modern internet, where routing is unreliable
 639	 * and in each dark corner broken firewalls sit, sending random
 640	 * errors ordered by their masters even this two messages finally lose
 641	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 642	 *
 643	 * Now we are in compliance with RFCs.
 644	 *							--ANK (980905)
 645	 */
 646
 647	if (!sock_owned_by_user(sk) &&
 648	    inet_test_bit(RECVERR, sk)) {
 649		WRITE_ONCE(sk->sk_err, err);
 650		sk_error_report(sk);
 651	} else	{ /* Only an error on timeout */
 652		WRITE_ONCE(sk->sk_err_soft, err);
 653	}
 654
 655out:
 656	bh_unlock_sock(sk);
 657	sock_put(sk);
 658	return 0;
 659}
 660
 661void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 662{
 663	struct tcphdr *th = tcp_hdr(skb);
 664
 665	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 666	skb->csum_start = skb_transport_header(skb) - skb->head;
 667	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 668}
 669
 670/* This routine computes an IPv4 TCP checksum. */
 671void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 672{
 673	const struct inet_sock *inet = inet_sk(sk);
 674
 675	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 676}
 677EXPORT_SYMBOL(tcp_v4_send_check);
 678
 679#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 680
 681static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 682				 const struct tcp_ao_hdr *aoh,
 683				 struct ip_reply_arg *arg, struct tcphdr *reply,
 684				 __be32 reply_options[REPLY_OPTIONS_LEN])
 685{
 686#ifdef CONFIG_TCP_AO
 687	int sdif = tcp_v4_sdif(skb);
 688	int dif = inet_iif(skb);
 689	int l3index = sdif ? dif : 0;
 690	bool allocated_traffic_key;
 691	struct tcp_ao_key *key;
 692	char *traffic_key;
 693	bool drop = true;
 694	u32 ao_sne = 0;
 695	u8 keyid;
 696
 697	rcu_read_lock();
 698	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 699				 &key, &traffic_key, &allocated_traffic_key,
 700				 &keyid, &ao_sne))
 701		goto out;
 702
 703	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 704				 (aoh->rnext_keyid << 8) | keyid);
 705	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 706	reply->doff = arg->iov[0].iov_len / 4;
 707
 708	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 709			    key, traffic_key,
 710			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 711			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 712			    reply, ao_sne))
 713		goto out;
 714	drop = false;
 715out:
 716	rcu_read_unlock();
 717	if (allocated_traffic_key)
 718		kfree(traffic_key);
 719	return drop;
 720#else
 721	return true;
 722#endif
 723}
 724
 725/*
 726 *	This routine will send an RST to the other tcp.
 727 *
 728 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 729 *		      for reset.
 730 *	Answer: if a packet caused RST, it is not for a socket
 731 *		existing in our system, if it is matched to a socket,
 732 *		it is just duplicate segment or bug in other side's TCP.
 733 *		So that we build reply only basing on parameters
 734 *		arrived with segment.
 735 *	Exception: precedence violation. We do not implement it in any case.
 736 */
 737
 738static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
 739			      enum sk_rst_reason reason)
 740{
 741	const struct tcphdr *th = tcp_hdr(skb);
 742	struct {
 743		struct tcphdr th;
 744		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 745	} rep;
 746	const __u8 *md5_hash_location = NULL;
 747	const struct tcp_ao_hdr *aoh;
 748	struct ip_reply_arg arg;
 749#ifdef CONFIG_TCP_MD5SIG
 750	struct tcp_md5sig_key *key = NULL;
 
 751	unsigned char newhash[16];
 752	struct sock *sk1 = NULL;
 753	int genhash;
 
 754#endif
 755	u64 transmit_time = 0;
 756	struct sock *ctl_sk;
 757	struct net *net;
 758	u32 txhash = 0;
 759
 760	/* Never send a reset in response to a reset. */
 761	if (th->rst)
 762		return;
 763
 764	/* If sk not NULL, it means we did a successful lookup and incoming
 765	 * route had to be correct. prequeue might have dropped our dst.
 766	 */
 767	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 768		return;
 769
 770	/* Swap the send and the receive. */
 771	memset(&rep, 0, sizeof(rep));
 772	rep.th.dest   = th->source;
 773	rep.th.source = th->dest;
 774	rep.th.doff   = sizeof(struct tcphdr) / 4;
 775	rep.th.rst    = 1;
 776
 777	if (th->ack) {
 778		rep.th.seq = th->ack_seq;
 779	} else {
 780		rep.th.ack = 1;
 781		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 782				       skb->len - (th->doff << 2));
 783	}
 784
 785	memset(&arg, 0, sizeof(arg));
 786	arg.iov[0].iov_base = (unsigned char *)&rep;
 787	arg.iov[0].iov_len  = sizeof(rep.th);
 788
 789	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 790
 791	/* Invalid TCP option size or twice included auth */
 792	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 793		return;
 794
 795	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 796		return;
 797
 798#ifdef CONFIG_TCP_MD5SIG
 799	rcu_read_lock();
 800	if (sk && sk_fullsock(sk)) {
 801		const union tcp_md5_addr *addr;
 802		int l3index;
 803
 804		/* sdif set, means packet ingressed via a device
 805		 * in an L3 domain and inet_iif is set to it.
 806		 */
 807		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 808		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 809		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 810	} else if (md5_hash_location) {
 811		const union tcp_md5_addr *addr;
 812		int sdif = tcp_v4_sdif(skb);
 813		int dif = inet_iif(skb);
 814		int l3index;
 815
 816		/*
 817		 * active side is lost. Try to find listening socket through
 818		 * source port, and then find md5 key through listening socket.
 819		 * we are not loose security here:
 820		 * Incoming packet is checked with md5 hash with finding key,
 821		 * no RST generated if md5 hash doesn't match.
 822		 */
 823		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 824					     NULL, 0, ip_hdr(skb)->saddr,
 825					     th->source, ip_hdr(skb)->daddr,
 826					     ntohs(th->source), dif, sdif);
 827		/* don't send rst if it can't find key */
 828		if (!sk1)
 829			goto out;
 830
 831		/* sdif set, means packet ingressed via a device
 832		 * in an L3 domain and dif is set to it.
 833		 */
 834		l3index = sdif ? dif : 0;
 835		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 836		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 837		if (!key)
 838			goto out;
 839
 840
 841		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 842		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 843			goto out;
 844
 845	}
 846
 847	if (key) {
 848		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 849				   (TCPOPT_NOP << 16) |
 850				   (TCPOPT_MD5SIG << 8) |
 851				   TCPOLEN_MD5SIG);
 852		/* Update length and the length the header thinks exists */
 853		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 854		rep.th.doff = arg.iov[0].iov_len / 4;
 855
 856		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 857				     key, ip_hdr(skb)->saddr,
 858				     ip_hdr(skb)->daddr, &rep.th);
 859	}
 860#endif
 861	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 862	if (rep.opt[0] == 0) {
 863		__be32 mrst = mptcp_reset_option(skb);
 864
 865		if (mrst) {
 866			rep.opt[0] = mrst;
 867			arg.iov[0].iov_len += sizeof(mrst);
 868			rep.th.doff = arg.iov[0].iov_len / 4;
 869		}
 870	}
 871
 872	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 873				      ip_hdr(skb)->saddr, /* XXX */
 874				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 875	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 876	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 877
 878	/* When socket is gone, all binding information is lost.
 879	 * routing might fail in this case. No choice here, if we choose to force
 880	 * input interface, we will misroute in case of asymmetric route.
 881	 */
 882	if (sk)
 883		arg.bound_dev_if = sk->sk_bound_dev_if;
 884
 885	trace_tcp_send_reset(sk, skb, reason);
 886
 887	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 888		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 889
 890	arg.tos = ip_hdr(skb)->tos;
 891	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 892	local_bh_disable();
 893	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
 894	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
 895
 896	sock_net_set(ctl_sk, net);
 897	if (sk) {
 898		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 899				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
 900		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 901				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 902		transmit_time = tcp_transmit_time(sk);
 903		xfrm_sk_clone_policy(ctl_sk, sk);
 904		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 905			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 906	} else {
 907		ctl_sk->sk_mark = 0;
 908		ctl_sk->sk_priority = 0;
 909	}
 910	ip_send_unicast_reply(ctl_sk, sk,
 911			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 912			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 913			      &arg, arg.iov[0].iov_len,
 914			      transmit_time, txhash);
 915
 916	xfrm_sk_free_policy(ctl_sk);
 917	sock_net_set(ctl_sk, &init_net);
 918	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 919	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 920	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
 921	local_bh_enable();
 922
 923#ifdef CONFIG_TCP_MD5SIG
 924out:
 925	rcu_read_unlock();
 
 
 
 926#endif
 927}
 928
 929/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 930   outside socket context is ugly, certainly. What can I do?
 931 */
 932
 933static void tcp_v4_send_ack(const struct sock *sk,
 934			    struct sk_buff *skb, u32 seq, u32 ack,
 935			    u32 win, u32 tsval, u32 tsecr, int oif,
 936			    struct tcp_key *key,
 937			    int reply_flags, u8 tos, u32 txhash)
 938{
 939	const struct tcphdr *th = tcp_hdr(skb);
 940	struct {
 941		struct tcphdr th;
 942		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 943	} rep;
 944	struct net *net = sock_net(sk);
 945	struct ip_reply_arg arg;
 946	struct sock *ctl_sk;
 947	u64 transmit_time;
 948
 949	memset(&rep.th, 0, sizeof(struct tcphdr));
 950	memset(&arg, 0, sizeof(arg));
 951
 952	arg.iov[0].iov_base = (unsigned char *)&rep;
 953	arg.iov[0].iov_len  = sizeof(rep.th);
 954	if (tsecr) {
 955		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 956				   (TCPOPT_TIMESTAMP << 8) |
 957				   TCPOLEN_TIMESTAMP);
 958		rep.opt[1] = htonl(tsval);
 959		rep.opt[2] = htonl(tsecr);
 960		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 961	}
 962
 963	/* Swap the send and the receive. */
 964	rep.th.dest    = th->source;
 965	rep.th.source  = th->dest;
 966	rep.th.doff    = arg.iov[0].iov_len / 4;
 967	rep.th.seq     = htonl(seq);
 968	rep.th.ack_seq = htonl(ack);
 969	rep.th.ack     = 1;
 970	rep.th.window  = htons(win);
 971
 972#ifdef CONFIG_TCP_MD5SIG
 973	if (tcp_key_is_md5(key)) {
 974		int offset = (tsecr) ? 3 : 0;
 975
 976		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 977					  (TCPOPT_NOP << 16) |
 978					  (TCPOPT_MD5SIG << 8) |
 979					  TCPOLEN_MD5SIG);
 980		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 981		rep.th.doff = arg.iov[0].iov_len/4;
 982
 983		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 984				    key->md5_key, ip_hdr(skb)->saddr,
 985				    ip_hdr(skb)->daddr, &rep.th);
 986	}
 987#endif
 988#ifdef CONFIG_TCP_AO
 989	if (tcp_key_is_ao(key)) {
 990		int offset = (tsecr) ? 3 : 0;
 991
 992		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 993					  (tcp_ao_len(key->ao_key) << 16) |
 994					  (key->ao_key->sndid << 8) |
 995					  key->rcv_next);
 996		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 997		rep.th.doff = arg.iov[0].iov_len / 4;
 998
 999		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1000				key->ao_key, key->traffic_key,
1001				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1002				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1003				&rep.th, key->sne);
1004	}
1005#endif
1006	arg.flags = reply_flags;
1007	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1008				      ip_hdr(skb)->saddr, /* XXX */
1009				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1010	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1011	if (oif)
1012		arg.bound_dev_if = oif;
1013	arg.tos = tos;
1014	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1015	local_bh_disable();
1016	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1017	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1018	sock_net_set(ctl_sk, net);
1019	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1020			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1021	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1022			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1023	transmit_time = tcp_transmit_time(sk);
1024	ip_send_unicast_reply(ctl_sk, sk,
1025			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1026			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1027			      &arg, arg.iov[0].iov_len,
1028			      transmit_time, txhash);
1029
1030	sock_net_set(ctl_sk, &init_net);
1031	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1032	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1033	local_bh_enable();
1034}
1035
1036static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1037{
1038	struct inet_timewait_sock *tw = inet_twsk(sk);
1039	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1040	struct tcp_key key = {};
1041#ifdef CONFIG_TCP_AO
1042	struct tcp_ao_info *ao_info;
1043
1044	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1045		/* FIXME: the segment to-be-acked is not verified yet */
1046		ao_info = rcu_dereference(tcptw->ao_info);
1047		if (ao_info) {
1048			const struct tcp_ao_hdr *aoh;
1049
1050			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1051				inet_twsk_put(tw);
1052				return;
1053			}
1054
1055			if (aoh)
1056				key.ao_key = tcp_ao_established_key(sk, ao_info,
1057								    aoh->rnext_keyid, -1);
1058		}
1059	}
1060	if (key.ao_key) {
1061		struct tcp_ao_key *rnext_key;
1062
1063		key.traffic_key = snd_other_key(key.ao_key);
1064		key.sne = READ_ONCE(ao_info->snd_sne);
1065		rnext_key = READ_ONCE(ao_info->rnext_key);
1066		key.rcv_next = rnext_key->rcvid;
1067		key.type = TCP_KEY_AO;
1068#else
1069	if (0) {
1070#endif
1071	} else if (static_branch_tcp_md5()) {
1072		key.md5_key = tcp_twsk_md5_key(tcptw);
1073		if (key.md5_key)
1074			key.type = TCP_KEY_MD5;
1075	}
1076
1077	tcp_v4_send_ack(sk, skb,
1078			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1079			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1080			tcp_tw_tsval(tcptw),
1081			READ_ONCE(tcptw->tw_ts_recent),
1082			tw->tw_bound_dev_if, &key,
 
1083			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1084			tw->tw_tos,
1085			tw->tw_txhash);
1086
1087	inet_twsk_put(tw);
1088}
1089
1090static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1091				  struct request_sock *req)
1092{
1093	struct tcp_key key = {};
1094
1095	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1096	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1097	 */
1098	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1099					     tcp_sk(sk)->snd_nxt;
1100
1101#ifdef CONFIG_TCP_AO
1102	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1103	    tcp_rsk_used_ao(req)) {
1104		const union tcp_md5_addr *addr;
1105		const struct tcp_ao_hdr *aoh;
1106		int l3index;
1107
1108		/* Invalid TCP option size or twice included auth */
1109		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1110			return;
1111		if (!aoh)
1112			return;
1113
1114		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1115		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1116		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1117					      aoh->rnext_keyid, -1);
1118		if (unlikely(!key.ao_key)) {
1119			/* Send ACK with any matching MKT for the peer */
1120			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1121			/* Matching key disappeared (user removed the key?)
1122			 * let the handshake timeout.
1123			 */
1124			if (!key.ao_key) {
1125				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1126						     addr,
1127						     ntohs(tcp_hdr(skb)->source),
1128						     &ip_hdr(skb)->daddr,
1129						     ntohs(tcp_hdr(skb)->dest));
1130				return;
1131			}
1132		}
1133		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1134		if (!key.traffic_key)
1135			return;
1136
1137		key.type = TCP_KEY_AO;
1138		key.rcv_next = aoh->keyid;
1139		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1140#else
1141	if (0) {
1142#endif
1143	} else if (static_branch_tcp_md5()) {
1144		const union tcp_md5_addr *addr;
1145		int l3index;
1146
1147		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1148		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1149		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1150		if (key.md5_key)
1151			key.type = TCP_KEY_MD5;
1152	}
1153
1154	tcp_v4_send_ack(sk, skb, seq,
1155			tcp_rsk(req)->rcv_nxt,
1156			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1157			tcp_rsk_tsval(tcp_rsk(req)),
1158			READ_ONCE(req->ts_recent),
1159			0, &key,
1160			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1161			ip_hdr(skb)->tos,
1162			READ_ONCE(tcp_rsk(req)->txhash));
1163	if (tcp_key_is_ao(&key))
1164		kfree(key.traffic_key);
1165}
1166
1167/*
1168 *	Send a SYN-ACK after having received a SYN.
1169 *	This still operates on a request_sock only, not on a big
1170 *	socket.
1171 */
1172static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1173			      struct flowi *fl,
1174			      struct request_sock *req,
1175			      struct tcp_fastopen_cookie *foc,
1176			      enum tcp_synack_type synack_type,
1177			      struct sk_buff *syn_skb)
1178{
1179	const struct inet_request_sock *ireq = inet_rsk(req);
1180	struct flowi4 fl4;
1181	int err = -1;
1182	struct sk_buff *skb;
1183	u8 tos;
1184
1185	/* First, grab a route. */
1186	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1187		return -1;
1188
1189	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1190
1191	if (skb) {
1192		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1193
1194		tos = READ_ONCE(inet_sk(sk)->tos);
1195
1196		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1197			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1198			      (tos & INET_ECN_MASK);
1199
1200		if (!INET_ECN_is_capable(tos) &&
1201		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1202			tos |= INET_ECN_ECT_0;
1203
1204		rcu_read_lock();
1205		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1206					    ireq->ir_rmt_addr,
1207					    rcu_dereference(ireq->ireq_opt),
1208					    tos);
1209		rcu_read_unlock();
1210		err = net_xmit_eval(err);
1211	}
1212
1213	return err;
1214}
1215
1216/*
1217 *	IPv4 request_sock destructor.
1218 */
1219static void tcp_v4_reqsk_destructor(struct request_sock *req)
1220{
1221	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1222}
1223
1224#ifdef CONFIG_TCP_MD5SIG
1225/*
1226 * RFC2385 MD5 checksumming requires a mapping of
1227 * IP address->MD5 Key.
1228 * We need to maintain these in the sk structure.
1229 */
1230
1231DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1232EXPORT_SYMBOL(tcp_md5_needed);
1233
1234static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1235{
1236	if (!old)
1237		return true;
1238
1239	/* l3index always overrides non-l3index */
1240	if (old->l3index && new->l3index == 0)
1241		return false;
1242	if (old->l3index == 0 && new->l3index)
1243		return true;
1244
1245	return old->prefixlen < new->prefixlen;
1246}
1247
1248/* Find the Key structure for an address.  */
1249struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1250					   const union tcp_md5_addr *addr,
1251					   int family, bool any_l3index)
1252{
1253	const struct tcp_sock *tp = tcp_sk(sk);
1254	struct tcp_md5sig_key *key;
1255	const struct tcp_md5sig_info *md5sig;
1256	__be32 mask;
1257	struct tcp_md5sig_key *best_match = NULL;
1258	bool match;
1259
1260	/* caller either holds rcu_read_lock() or socket lock */
1261	md5sig = rcu_dereference_check(tp->md5sig_info,
1262				       lockdep_sock_is_held(sk));
1263	if (!md5sig)
1264		return NULL;
1265
1266	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1267				 lockdep_sock_is_held(sk)) {
1268		if (key->family != family)
1269			continue;
1270		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1271		    key->l3index != l3index)
1272			continue;
1273		if (family == AF_INET) {
1274			mask = inet_make_mask(key->prefixlen);
1275			match = (key->addr.a4.s_addr & mask) ==
1276				(addr->a4.s_addr & mask);
1277#if IS_ENABLED(CONFIG_IPV6)
1278		} else if (family == AF_INET6) {
1279			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1280						  key->prefixlen);
1281#endif
1282		} else {
1283			match = false;
1284		}
1285
1286		if (match && better_md5_match(best_match, key))
1287			best_match = key;
1288	}
1289	return best_match;
1290}
1291EXPORT_SYMBOL(__tcp_md5_do_lookup);
1292
1293static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1294						      const union tcp_md5_addr *addr,
1295						      int family, u8 prefixlen,
1296						      int l3index, u8 flags)
1297{
1298	const struct tcp_sock *tp = tcp_sk(sk);
1299	struct tcp_md5sig_key *key;
1300	unsigned int size = sizeof(struct in_addr);
1301	const struct tcp_md5sig_info *md5sig;
1302
1303	/* caller either holds rcu_read_lock() or socket lock */
1304	md5sig = rcu_dereference_check(tp->md5sig_info,
1305				       lockdep_sock_is_held(sk));
 
1306	if (!md5sig)
1307		return NULL;
1308#if IS_ENABLED(CONFIG_IPV6)
1309	if (family == AF_INET6)
1310		size = sizeof(struct in6_addr);
1311#endif
1312	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1313				 lockdep_sock_is_held(sk)) {
1314		if (key->family != family)
1315			continue;
1316		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1317			continue;
1318		if (key->l3index != l3index)
1319			continue;
1320		if (!memcmp(&key->addr, addr, size) &&
1321		    key->prefixlen == prefixlen)
1322			return key;
1323	}
1324	return NULL;
1325}
 
1326
1327struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1328					 const struct sock *addr_sk)
1329{
1330	const union tcp_md5_addr *addr;
1331	int l3index;
1332
1333	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1334						 addr_sk->sk_bound_dev_if);
1335	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1336	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1337}
1338EXPORT_SYMBOL(tcp_v4_md5_lookup);
1339
1340static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
1341{
1342	struct tcp_sock *tp = tcp_sk(sk);
1343	struct tcp_md5sig_info *md5sig;
1344
1345	md5sig = kmalloc(sizeof(*md5sig), gfp);
1346	if (!md5sig)
1347		return -ENOMEM;
1348
1349	sk_gso_disable(sk);
1350	INIT_HLIST_HEAD(&md5sig->head);
1351	rcu_assign_pointer(tp->md5sig_info, md5sig);
1352	return 0;
1353}
1354
1355/* This can be called on a newly created socket, from other files */
1356static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1357			    int family, u8 prefixlen, int l3index, u8 flags,
1358			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1359{
1360	/* Add Key to the list */
1361	struct tcp_md5sig_key *key;
1362	struct tcp_sock *tp = tcp_sk(sk);
1363	struct tcp_md5sig_info *md5sig;
1364
1365	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1366	if (key) {
1367		/* Pre-existing entry - just update that one.
1368		 * Note that the key might be used concurrently.
1369		 * data_race() is telling kcsan that we do not care of
1370		 * key mismatches, since changing MD5 key on live flows
1371		 * can lead to packet drops.
1372		 */
1373		data_race(memcpy(key->key, newkey, newkeylen));
1374
1375		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1376		 * Also note that a reader could catch new key->keylen value
1377		 * but old key->key[], this is the reason we use __GFP_ZERO
1378		 * at sock_kmalloc() time below these lines.
1379		 */
1380		WRITE_ONCE(key->keylen, newkeylen);
1381
1382		return 0;
1383	}
1384
1385	md5sig = rcu_dereference_protected(tp->md5sig_info,
1386					   lockdep_sock_is_held(sk));
 
 
 
 
 
1387
1388	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
 
 
 
 
 
1389	if (!key)
1390		return -ENOMEM;
 
 
 
 
1391
1392	memcpy(key->key, newkey, newkeylen);
1393	key->keylen = newkeylen;
1394	key->family = family;
1395	key->prefixlen = prefixlen;
1396	key->l3index = l3index;
1397	key->flags = flags;
1398	memcpy(&key->addr, addr,
1399	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1400								 sizeof(struct in_addr));
1401	hlist_add_head_rcu(&key->node, &md5sig->head);
1402	return 0;
1403}
1404
1405int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1406		   int family, u8 prefixlen, int l3index, u8 flags,
1407		   const u8 *newkey, u8 newkeylen)
1408{
1409	struct tcp_sock *tp = tcp_sk(sk);
1410
1411	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1412		if (tcp_md5_alloc_sigpool())
1413			return -ENOMEM;
1414
1415		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1416			tcp_md5_release_sigpool();
1417			return -ENOMEM;
1418		}
1419
1420		if (!static_branch_inc(&tcp_md5_needed.key)) {
1421			struct tcp_md5sig_info *md5sig;
1422
1423			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1424			rcu_assign_pointer(tp->md5sig_info, NULL);
1425			kfree_rcu(md5sig, rcu);
1426			tcp_md5_release_sigpool();
1427			return -EUSERS;
1428		}
1429	}
1430
1431	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1432				newkey, newkeylen, GFP_KERNEL);
1433}
1434EXPORT_SYMBOL(tcp_md5_do_add);
1435
1436int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1437		     int family, u8 prefixlen, int l3index,
1438		     struct tcp_md5sig_key *key)
1439{
1440	struct tcp_sock *tp = tcp_sk(sk);
1441
1442	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1443		tcp_md5_add_sigpool();
1444
1445		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1446			tcp_md5_release_sigpool();
1447			return -ENOMEM;
1448		}
1449
1450		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1451			struct tcp_md5sig_info *md5sig;
1452
1453			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1454			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1455			rcu_assign_pointer(tp->md5sig_info, NULL);
1456			kfree_rcu(md5sig, rcu);
1457			tcp_md5_release_sigpool();
1458			return -EUSERS;
1459		}
1460	}
1461
1462	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1463				key->flags, key->key, key->keylen,
1464				sk_gfp_mask(sk, GFP_ATOMIC));
1465}
1466EXPORT_SYMBOL(tcp_md5_key_copy);
1467
1468int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1469		   u8 prefixlen, int l3index, u8 flags)
1470{
1471	struct tcp_md5sig_key *key;
1472
1473	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1474	if (!key)
1475		return -ENOENT;
1476	hlist_del_rcu(&key->node);
1477	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1478	kfree_rcu(key, rcu);
1479	return 0;
1480}
1481EXPORT_SYMBOL(tcp_md5_do_del);
1482
1483void tcp_clear_md5_list(struct sock *sk)
1484{
1485	struct tcp_sock *tp = tcp_sk(sk);
1486	struct tcp_md5sig_key *key;
1487	struct hlist_node *n;
1488	struct tcp_md5sig_info *md5sig;
1489
1490	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1491
1492	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1493		hlist_del_rcu(&key->node);
1494		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1495		kfree_rcu(key, rcu);
1496	}
1497}
1498
1499static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1500				 sockptr_t optval, int optlen)
1501{
1502	struct tcp_md5sig cmd;
1503	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1504	const union tcp_md5_addr *addr;
1505	u8 prefixlen = 32;
1506	int l3index = 0;
1507	bool l3flag;
1508	u8 flags;
1509
1510	if (optlen < sizeof(cmd))
1511		return -EINVAL;
1512
1513	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1514		return -EFAULT;
1515
1516	if (sin->sin_family != AF_INET)
1517		return -EINVAL;
1518
1519	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1520	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1521
1522	if (optname == TCP_MD5SIG_EXT &&
1523	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1524		prefixlen = cmd.tcpm_prefixlen;
1525		if (prefixlen > 32)
1526			return -EINVAL;
1527	}
1528
1529	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1530	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1531		struct net_device *dev;
1532
1533		rcu_read_lock();
1534		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1535		if (dev && netif_is_l3_master(dev))
1536			l3index = dev->ifindex;
1537
1538		rcu_read_unlock();
1539
1540		/* ok to reference set/not set outside of rcu;
1541		 * right now device MUST be an L3 master
1542		 */
1543		if (!dev || !l3index)
1544			return -EINVAL;
1545	}
1546
1547	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1548
1549	if (!cmd.tcpm_keylen)
1550		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
 
1551
1552	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1553		return -EINVAL;
1554
1555	/* Don't allow keys for peers that have a matching TCP-AO key.
1556	 * See the comment in tcp_ao_add_cmd()
1557	 */
1558	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1559		return -EKEYREJECTED;
1560
1561	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1562			      cmd.tcpm_key, cmd.tcpm_keylen);
1563}
1564
1565static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1566				   __be32 daddr, __be32 saddr,
1567				   const struct tcphdr *th, int nbytes)
1568{
1569	struct tcp4_pseudohdr *bp;
1570	struct scatterlist sg;
1571	struct tcphdr *_th;
1572
1573	bp = hp->scratch;
 
 
 
 
 
 
1574	bp->saddr = saddr;
1575	bp->daddr = daddr;
1576	bp->pad = 0;
1577	bp->protocol = IPPROTO_TCP;
1578	bp->len = cpu_to_be16(nbytes);
1579
1580	_th = (struct tcphdr *)(bp + 1);
1581	memcpy(_th, th, sizeof(*th));
1582	_th->check = 0;
1583
1584	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1585	ahash_request_set_crypt(hp->req, &sg, NULL,
1586				sizeof(*bp) + sizeof(*th));
1587	return crypto_ahash_update(hp->req);
1588}
1589
1590static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1591			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1592{
1593	struct tcp_sigpool hp;
 
1594
1595	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1596		goto clear_hash_nostart;
 
 
1597
1598	if (crypto_ahash_init(hp.req))
1599		goto clear_hash;
1600	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1601		goto clear_hash;
1602	if (tcp_md5_hash_key(&hp, key))
1603		goto clear_hash;
1604	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1605	if (crypto_ahash_final(hp.req))
 
 
1606		goto clear_hash;
1607
1608	tcp_sigpool_end(&hp);
1609	return 0;
1610
1611clear_hash:
1612	tcp_sigpool_end(&hp);
1613clear_hash_nostart:
1614	memset(md5_hash, 0, 16);
1615	return 1;
1616}
1617
1618int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1619			const struct sock *sk,
1620			const struct sk_buff *skb)
1621{
 
 
1622	const struct tcphdr *th = tcp_hdr(skb);
1623	struct tcp_sigpool hp;
1624	__be32 saddr, daddr;
1625
1626	if (sk) { /* valid for establish/request sockets */
1627		saddr = sk->sk_rcv_saddr;
1628		daddr = sk->sk_daddr;
1629	} else {
1630		const struct iphdr *iph = ip_hdr(skb);
1631		saddr = iph->saddr;
1632		daddr = iph->daddr;
1633	}
1634
1635	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1636		goto clear_hash_nostart;
 
 
1637
1638	if (crypto_ahash_init(hp.req))
1639		goto clear_hash;
1640
1641	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
 
 
1642		goto clear_hash;
1643	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1644		goto clear_hash;
1645	if (tcp_md5_hash_key(&hp, key))
1646		goto clear_hash;
1647	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1648	if (crypto_ahash_final(hp.req))
1649		goto clear_hash;
1650
1651	tcp_sigpool_end(&hp);
1652	return 0;
1653
1654clear_hash:
1655	tcp_sigpool_end(&hp);
1656clear_hash_nostart:
1657	memset(md5_hash, 0, 16);
1658	return 1;
1659}
1660EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1661
1662#endif
1663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664static void tcp_v4_init_req(struct request_sock *req,
1665			    const struct sock *sk_listener,
1666			    struct sk_buff *skb)
1667{
1668	struct inet_request_sock *ireq = inet_rsk(req);
1669	struct net *net = sock_net(sk_listener);
1670
1671	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1672	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1673	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
 
1674}
1675
1676static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1677					  struct sk_buff *skb,
1678					  struct flowi *fl,
1679					  struct request_sock *req,
1680					  u32 tw_isn)
1681{
1682	tcp_v4_init_req(req, sk, skb);
1683
1684	if (security_inet_conn_request(sk, skb, req))
1685		return NULL;
 
 
 
 
1686
1687	return inet_csk_route_req(sk, &fl->u.ip4, req);
1688}
1689
1690struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1691	.family		=	PF_INET,
1692	.obj_size	=	sizeof(struct tcp_request_sock),
1693	.rtx_syn_ack	=	tcp_rtx_synack,
1694	.send_ack	=	tcp_v4_reqsk_send_ack,
1695	.destructor	=	tcp_v4_reqsk_destructor,
1696	.send_reset	=	tcp_v4_send_reset,
1697	.syn_ack_timeout =	tcp_syn_ack_timeout,
1698};
1699
1700const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1701	.mss_clamp	=	TCP_MSS_DEFAULT,
1702#ifdef CONFIG_TCP_MD5SIG
1703	.req_md5_lookup	=	tcp_v4_md5_lookup,
1704	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1705#endif
1706#ifdef CONFIG_TCP_AO
1707	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1708	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1709	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1710#endif
1711#ifdef CONFIG_SYN_COOKIES
1712	.cookie_init_seq =	cookie_v4_init_sequence,
1713#endif
1714	.route_req	=	tcp_v4_route_req,
1715	.init_seq	=	tcp_v4_init_seq,
1716	.init_ts_off	=	tcp_v4_init_ts_off,
1717	.send_synack	=	tcp_v4_send_synack,
1718};
1719
1720int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1721{
1722	/* Never answer to SYNs send to broadcast or multicast */
1723	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1724		goto drop;
1725
1726	return tcp_conn_request(&tcp_request_sock_ops,
1727				&tcp_request_sock_ipv4_ops, sk, skb);
1728
1729drop:
1730	tcp_listendrop(sk);
1731	return 0;
1732}
1733EXPORT_SYMBOL(tcp_v4_conn_request);
1734
1735
1736/*
1737 * The three way handshake has completed - we got a valid synack -
1738 * now create the new socket.
1739 */
1740struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1741				  struct request_sock *req,
1742				  struct dst_entry *dst,
1743				  struct request_sock *req_unhash,
1744				  bool *own_req)
1745{
1746	struct inet_request_sock *ireq;
1747	bool found_dup_sk = false;
1748	struct inet_sock *newinet;
1749	struct tcp_sock *newtp;
1750	struct sock *newsk;
1751#ifdef CONFIG_TCP_MD5SIG
1752	const union tcp_md5_addr *addr;
1753	struct tcp_md5sig_key *key;
1754	int l3index;
1755#endif
1756	struct ip_options_rcu *inet_opt;
1757
1758	if (sk_acceptq_is_full(sk))
1759		goto exit_overflow;
1760
1761	newsk = tcp_create_openreq_child(sk, req, skb);
1762	if (!newsk)
1763		goto exit_nonewsk;
1764
1765	newsk->sk_gso_type = SKB_GSO_TCPV4;
1766	inet_sk_rx_dst_set(newsk, skb);
1767
1768	newtp		      = tcp_sk(newsk);
1769	newinet		      = inet_sk(newsk);
1770	ireq		      = inet_rsk(req);
1771	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1772	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1773	newsk->sk_bound_dev_if = ireq->ir_iif;
1774	newinet->inet_saddr   = ireq->ir_loc_addr;
1775	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1776	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
 
1777	newinet->mc_index     = inet_iif(skb);
1778	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1779	newinet->rcv_tos      = ip_hdr(skb)->tos;
1780	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1781	if (inet_opt)
1782		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1783	atomic_set(&newinet->inet_id, get_random_u16());
1784
1785	/* Set ToS of the new socket based upon the value of incoming SYN.
1786	 * ECT bits are set later in tcp_init_transfer().
1787	 */
1788	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1789		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1790
1791	if (!dst) {
1792		dst = inet_csk_route_child_sock(sk, newsk, req);
1793		if (!dst)
1794			goto put_and_exit;
1795	} else {
1796		/* syncookie case : see end of cookie_v4_check() */
1797	}
1798	sk_setup_caps(newsk, dst);
1799
1800	tcp_ca_openreq_child(newsk, dst);
1801
1802	tcp_sync_mss(newsk, dst_mtu(dst));
1803	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1804
1805	tcp_initialize_rcv_mss(newsk);
1806
1807#ifdef CONFIG_TCP_MD5SIG
1808	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1809	/* Copy over the MD5 key from the original socket */
1810	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1811	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1812	if (key && !tcp_rsk_used_ao(req)) {
1813		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1814			goto put_and_exit;
1815		sk_gso_disable(newsk);
 
 
 
 
 
 
1816	}
1817#endif
1818#ifdef CONFIG_TCP_AO
1819	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1820		goto put_and_exit; /* OOM, release back memory */
1821#endif
1822
1823	if (__inet_inherit_port(sk, newsk) < 0)
1824		goto put_and_exit;
1825	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1826				       &found_dup_sk);
1827	if (likely(*own_req)) {
1828		tcp_move_syn(newtp, req);
1829		ireq->ireq_opt = NULL;
1830	} else {
1831		newinet->inet_opt = NULL;
1832
1833		if (!req_unhash && found_dup_sk) {
1834			/* This code path should only be executed in the
1835			 * syncookie case only
1836			 */
1837			bh_unlock_sock(newsk);
1838			sock_put(newsk);
1839			newsk = NULL;
1840		}
1841	}
1842	return newsk;
1843
1844exit_overflow:
1845	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1846exit_nonewsk:
1847	dst_release(dst);
1848exit:
1849	tcp_listendrop(sk);
1850	return NULL;
1851put_and_exit:
1852	newinet->inet_opt = NULL;
1853	inet_csk_prepare_forced_close(newsk);
1854	tcp_done(newsk);
1855	goto exit;
1856}
1857EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1858
1859static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1860{
1861#ifdef CONFIG_SYN_COOKIES
1862	const struct tcphdr *th = tcp_hdr(skb);
1863
1864	if (!th->syn)
1865		sk = cookie_v4_check(sk, skb);
1866#endif
1867	return sk;
1868}
1869
1870u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1871			 struct tcphdr *th, u32 *cookie)
1872{
1873	u16 mss = 0;
1874#ifdef CONFIG_SYN_COOKIES
1875	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1876				    &tcp_request_sock_ipv4_ops, sk, th);
1877	if (mss) {
1878		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1879		tcp_synq_overflow(sk);
1880	}
1881#endif
1882	return mss;
1883}
1884
1885INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1886							   u32));
1887/* The socket must have it's spinlock held when we get
1888 * here, unless it is a TCP_LISTEN socket.
1889 *
1890 * We have a potential double-lock case here, so even when
1891 * doing backlog processing we use the BH locking scheme.
1892 * This is because we cannot sleep with the original spinlock
1893 * held.
1894 */
1895int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1896{
1897	enum skb_drop_reason reason;
1898	struct sock *rsk;
1899
1900	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1901		struct dst_entry *dst;
1902
1903		dst = rcu_dereference_protected(sk->sk_rx_dst,
1904						lockdep_sock_is_held(sk));
1905
1906		sock_rps_save_rxhash(sk, skb);
1907		sk_mark_napi_id(sk, skb);
1908		if (dst) {
1909			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1910			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1911					     dst, 0)) {
1912				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1913				dst_release(dst);
 
1914			}
1915		}
1916		tcp_rcv_established(sk, skb);
1917		return 0;
1918	}
1919
1920	if (tcp_checksum_complete(skb))
1921		goto csum_err;
1922
1923	if (sk->sk_state == TCP_LISTEN) {
1924		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1925
1926		if (!nsk)
1927			return 0;
1928		if (nsk != sk) {
1929			reason = tcp_child_process(sk, nsk, skb);
1930			if (reason) {
 
1931				rsk = nsk;
1932				goto reset;
1933			}
1934			return 0;
1935		}
1936	} else
1937		sock_rps_save_rxhash(sk, skb);
1938
1939	reason = tcp_rcv_state_process(sk, skb);
1940	if (reason) {
1941		rsk = sk;
1942		goto reset;
1943	}
1944	return 0;
1945
1946reset:
1947	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1948discard:
1949	sk_skb_reason_drop(sk, skb, reason);
1950	/* Be careful here. If this function gets more complicated and
1951	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1952	 * might be destroyed here. This current version compiles correctly,
1953	 * but you have been warned.
1954	 */
1955	return 0;
1956
1957csum_err:
1958	reason = SKB_DROP_REASON_TCP_CSUM;
1959	trace_tcp_bad_csum(skb);
1960	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1961	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1962	goto discard;
1963}
1964EXPORT_SYMBOL(tcp_v4_do_rcv);
1965
1966int tcp_v4_early_demux(struct sk_buff *skb)
1967{
1968	struct net *net = dev_net(skb->dev);
1969	const struct iphdr *iph;
1970	const struct tcphdr *th;
1971	struct sock *sk;
1972
1973	if (skb->pkt_type != PACKET_HOST)
1974		return 0;
1975
1976	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1977		return 0;
1978
1979	iph = ip_hdr(skb);
1980	th = tcp_hdr(skb);
1981
1982	if (th->doff < sizeof(struct tcphdr) / 4)
1983		return 0;
1984
1985	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1986				       iph->saddr, th->source,
1987				       iph->daddr, ntohs(th->dest),
1988				       skb->skb_iif, inet_sdif(skb));
1989	if (sk) {
1990		skb->sk = sk;
1991		skb->destructor = sock_edemux;
1992		if (sk_fullsock(sk)) {
1993			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1994
1995			if (dst)
1996				dst = dst_check(dst, 0);
1997			if (dst &&
1998			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1999				skb_dst_set_noref(skb, dst);
2000		}
2001	}
2002	return 0;
2003}
2004
2005bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2006		     enum skb_drop_reason *reason)
 
 
 
 
 
 
2007{
2008	u32 tail_gso_size, tail_gso_segs;
2009	struct skb_shared_info *shinfo;
2010	const struct tcphdr *th;
2011	struct tcphdr *thtail;
2012	struct sk_buff *tail;
2013	unsigned int hdrlen;
2014	bool fragstolen;
2015	u32 gso_segs;
2016	u32 gso_size;
2017	u64 limit;
2018	int delta;
2019
2020	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2021	 * we can fix skb->truesize to its real value to avoid future drops.
2022	 * This is valid because skb is not yet charged to the socket.
2023	 * It has been noticed pure SACK packets were sometimes dropped
2024	 * (if cooked by drivers without copybreak feature).
2025	 */
2026	skb_condense(skb);
2027
2028	tcp_cleanup_skb(skb);
2029
2030	if (unlikely(tcp_checksum_complete(skb))) {
2031		bh_unlock_sock(sk);
2032		trace_tcp_bad_csum(skb);
2033		*reason = SKB_DROP_REASON_TCP_CSUM;
2034		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2035		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2036		return true;
2037	}
2038
2039	/* Attempt coalescing to last skb in backlog, even if we are
2040	 * above the limits.
2041	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2042	 */
2043	th = (const struct tcphdr *)skb->data;
2044	hdrlen = th->doff * 4;
2045
2046	tail = sk->sk_backlog.tail;
2047	if (!tail)
2048		goto no_coalesce;
2049	thtail = (struct tcphdr *)tail->data;
2050
2051	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2052	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags |
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2055	    !((TCP_SKB_CB(tail)->tcp_flags &
2056	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2057	    ((TCP_SKB_CB(tail)->tcp_flags ^
2058	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2059	    !tcp_skb_can_collapse_rx(tail, skb) ||
2060	    thtail->doff != th->doff ||
2061	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2062		goto no_coalesce;
2063
2064	__skb_pull(skb, hdrlen);
2065
2066	shinfo = skb_shinfo(skb);
2067	gso_size = shinfo->gso_size ?: skb->len;
2068	gso_segs = shinfo->gso_segs ?: 1;
2069
2070	shinfo = skb_shinfo(tail);
2071	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2072	tail_gso_segs = shinfo->gso_segs ?: 1;
2073
2074	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2075		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2076
2077		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2078			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2079			thtail->window = th->window;
2080		}
2081
2082		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2083		 * thtail->fin, so that the fast path in tcp_rcv_established()
2084		 * is not entered if we append a packet with a FIN.
2085		 * SYN, RST, URG are not present.
2086		 * ACK is set on both packets.
2087		 * PSH : we do not really care in TCP stack,
2088		 *       at least for 'GRO' packets.
2089		 */
2090		thtail->fin |= th->fin;
2091		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2092
2093		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2094			TCP_SKB_CB(tail)->has_rxtstamp = true;
2095			tail->tstamp = skb->tstamp;
2096			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2097		}
2098
2099		/* Not as strict as GRO. We only need to carry mss max value */
2100		shinfo->gso_size = max(gso_size, tail_gso_size);
2101		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2102
2103		sk->sk_backlog.len += delta;
2104		__NET_INC_STATS(sock_net(sk),
2105				LINUX_MIB_TCPBACKLOGCOALESCE);
2106		kfree_skb_partial(skb, fragstolen);
2107		return false;
2108	}
2109	__skb_push(skb, hdrlen);
2110
2111no_coalesce:
2112	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2113	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2114	 * sk_rcvbuf in normal conditions.
2115	 */
2116	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2117
2118	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2119
2120	/* Only socket owner can try to collapse/prune rx queues
2121	 * to reduce memory overhead, so add a little headroom here.
2122	 * Few sockets backlog are possibly concurrently non empty.
 
 
2123	 */
2124	limit += 64 * 1024;
2125
2126	limit = min_t(u64, limit, UINT_MAX);
 
2127
2128	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2129		bh_unlock_sock(sk);
2130		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2131		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2132		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	}
2134	return false;
2135}
2136EXPORT_SYMBOL(tcp_add_backlog);
2137
2138int tcp_filter(struct sock *sk, struct sk_buff *skb)
2139{
2140	struct tcphdr *th = (struct tcphdr *)skb->data;
2141
2142	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2143}
2144EXPORT_SYMBOL(tcp_filter);
2145
2146static void tcp_v4_restore_cb(struct sk_buff *skb)
2147{
2148	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2149		sizeof(struct inet_skb_parm));
2150}
2151
2152static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2153			   const struct tcphdr *th)
2154{
2155	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2156	 * barrier() makes sure compiler wont play fool^Waliasing games.
2157	 */
2158	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2159		sizeof(struct inet_skb_parm));
2160	barrier();
2161
2162	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2163	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2164				    skb->len - th->doff * 4);
2165	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2166	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
 
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	struct sock *sk = NULL;
2186	bool refcounted;
2187	int ret;
2188	u32 isn;
2189
2190	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2191	if (skb->pkt_type != PACKET_HOST)
2192		goto discard_it;
2193
2194	/* Count it even if it's bad */
2195	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2196
2197	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2198		goto discard_it;
2199
2200	th = (const struct tcphdr *)skb->data;
2201
2202	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2203		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2204		goto bad_packet;
2205	}
2206	if (!pskb_may_pull(skb, th->doff * 4))
2207		goto discard_it;
2208
2209	/* An explanation is required here, I think.
2210	 * Packet length and doff are validated by header prediction,
2211	 * provided case of th->doff==0 is eliminated.
2212	 * So, we defer the checks. */
2213
2214	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2215		goto csum_error;
2216
2217	th = (const struct tcphdr *)skb->data;
2218	iph = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219lookup:
2220	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2221			       skb, __tcp_hdrlen(th), th->source,
2222			       th->dest, sdif, &refcounted);
2223	if (!sk)
2224		goto no_tcp_socket;
2225
 
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
 
 
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
 
 
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				enum sk_rst_reason rst_reason;
2298
2299				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2300				tcp_v4_send_reset(nsk, skb, rst_reason);
2301				goto discard_and_relse;
2302			}
2303			sock_put(sk);
2304			return 0;
2305		}
2306	}
2307
2308process:
2309	if (static_branch_unlikely(&ip4_min_ttl)) {
2310		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2311		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2312			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2313			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2314			goto discard_and_relse;
2315		}
2316	}
2317
2318	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2319		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2320		goto discard_and_relse;
2321	}
2322
2323	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2324				       AF_INET, dif, sdif);
2325	if (drop_reason)
2326		goto discard_and_relse;
2327
2328	nf_reset_ct(skb);
2329
2330	if (tcp_filter(sk, skb)) {
2331		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2332		goto discard_and_relse;
2333	}
2334	th = (const struct tcphdr *)skb->data;
2335	iph = ip_hdr(skb);
2336	tcp_v4_fill_cb(skb, iph, th);
2337
2338	skb->dev = NULL;
2339
2340	if (sk->sk_state == TCP_LISTEN) {
2341		ret = tcp_v4_do_rcv(sk, skb);
2342		goto put_and_return;
2343	}
2344
2345	sk_incoming_cpu_update(sk);
2346
2347	bh_lock_sock_nested(sk);
2348	tcp_segs_in(tcp_sk(sk), skb);
2349	ret = 0;
2350	if (!sock_owned_by_user(sk)) {
2351		ret = tcp_v4_do_rcv(sk, skb);
2352	} else {
2353		if (tcp_add_backlog(sk, skb, &drop_reason))
2354			goto discard_and_relse;
 
 
 
2355	}
2356	bh_unlock_sock(sk);
2357
2358put_and_return:
2359	if (refcounted)
2360		sock_put(sk);
2361
2362	return ret;
2363
2364no_tcp_socket:
2365	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2366	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2367		goto discard_it;
2368
2369	tcp_v4_fill_cb(skb, iph, th);
2370
2371	if (tcp_checksum_complete(skb)) {
2372csum_error:
2373		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2374		trace_tcp_bad_csum(skb);
2375		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2376bad_packet:
2377		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2378	} else {
2379		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2380	}
2381
2382discard_it:
2383	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2384	/* Discard frame. */
2385	sk_skb_reason_drop(sk, skb, drop_reason);
2386	return 0;
2387
2388discard_and_relse:
2389	sk_drops_add(sk, skb);
2390	if (refcounted)
2391		sock_put(sk);
2392	goto discard_it;
2393
2394do_time_wait:
2395	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2396		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2397		inet_twsk_put(inet_twsk(sk));
2398		goto discard_it;
2399	}
2400
2401	tcp_v4_fill_cb(skb, iph, th);
2402
2403	if (tcp_checksum_complete(skb)) {
2404		inet_twsk_put(inet_twsk(sk));
2405		goto csum_error;
2406	}
2407	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2408	case TCP_TW_SYN: {
2409		struct sock *sk2 = inet_lookup_listener(net,
2410							net->ipv4.tcp_death_row.hashinfo,
2411							skb, __tcp_hdrlen(th),
2412							iph->saddr, th->source,
2413							iph->daddr, th->dest,
2414							inet_iif(skb),
2415							sdif);
2416		if (sk2) {
2417			inet_twsk_deschedule_put(inet_twsk(sk));
2418			sk = sk2;
2419			tcp_v4_restore_cb(skb);
2420			refcounted = false;
2421			__this_cpu_write(tcp_tw_isn, isn);
2422			goto process;
2423		}
 
2424	}
2425		/* to ACK */
2426		fallthrough;
2427	case TCP_TW_ACK:
2428		tcp_v4_timewait_ack(sk, skb);
2429		break;
2430	case TCP_TW_RST:
2431		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2432		inet_twsk_deschedule_put(inet_twsk(sk));
2433		goto discard_it;
2434	case TCP_TW_SUCCESS:;
2435	}
2436	goto discard_it;
2437}
2438
2439static struct timewait_sock_ops tcp_timewait_sock_ops = {
2440	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
 
2441	.twsk_destructor= tcp_twsk_destructor,
2442};
2443
2444void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2445{
2446	struct dst_entry *dst = skb_dst(skb);
2447
2448	if (dst && dst_hold_safe(dst)) {
2449		rcu_assign_pointer(sk->sk_rx_dst, dst);
2450		sk->sk_rx_dst_ifindex = skb->skb_iif;
2451	}
2452}
2453EXPORT_SYMBOL(inet_sk_rx_dst_set);
2454
2455const struct inet_connection_sock_af_ops ipv4_specific = {
2456	.queue_xmit	   = ip_queue_xmit,
2457	.send_check	   = tcp_v4_send_check,
2458	.rebuild_header	   = inet_sk_rebuild_header,
2459	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2460	.conn_request	   = tcp_v4_conn_request,
2461	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2462	.net_header_len	   = sizeof(struct iphdr),
2463	.setsockopt	   = ip_setsockopt,
2464	.getsockopt	   = ip_getsockopt,
2465	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2466	.sockaddr_len	   = sizeof(struct sockaddr_in),
 
 
 
 
 
2467	.mtu_reduced	   = tcp_v4_mtu_reduced,
2468};
2469EXPORT_SYMBOL(ipv4_specific);
2470
2471#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2472static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2473#ifdef CONFIG_TCP_MD5SIG
 
2474	.md5_lookup		= tcp_v4_md5_lookup,
2475	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2476	.md5_parse		= tcp_v4_parse_md5_keys,
2477#endif
2478#ifdef CONFIG_TCP_AO
2479	.ao_lookup		= tcp_v4_ao_lookup,
2480	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2481	.ao_parse		= tcp_v4_parse_ao,
2482	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2483#endif
2484};
2485#endif
2486
2487/* NOTE: A lot of things set to zero explicitly by call to
2488 *       sk_alloc() so need not be done here.
2489 */
2490static int tcp_v4_init_sock(struct sock *sk)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
2493
2494	tcp_init_sock(sk);
2495
2496	icsk->icsk_af_ops = &ipv4_specific;
2497
2498#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2499	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2500#endif
2501
2502	return 0;
2503}
2504
2505#ifdef CONFIG_TCP_MD5SIG
2506static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2507{
2508	struct tcp_md5sig_info *md5sig;
2509
2510	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2511	kfree(md5sig);
2512	static_branch_slow_dec_deferred(&tcp_md5_needed);
2513	tcp_md5_release_sigpool();
2514}
2515#endif
2516
2517static void tcp_release_user_frags(struct sock *sk)
2518{
2519#ifdef CONFIG_PAGE_POOL
2520	unsigned long index;
2521	void *netmem;
2522
2523	xa_for_each(&sk->sk_user_frags, index, netmem)
2524		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2525#endif
2526}
2527
2528void tcp_v4_destroy_sock(struct sock *sk)
2529{
2530	struct tcp_sock *tp = tcp_sk(sk);
2531
2532	tcp_release_user_frags(sk);
2533
2534	xa_destroy(&sk->sk_user_frags);
2535
2536	trace_tcp_destroy_sock(sk);
2537
2538	tcp_clear_xmit_timers(sk);
2539
2540	tcp_cleanup_congestion_control(sk);
2541
2542	tcp_cleanup_ulp(sk);
2543
2544	/* Cleanup up the write buffer. */
2545	tcp_write_queue_purge(sk);
2546
2547	/* Check if we want to disable active TFO */
2548	tcp_fastopen_active_disable_ofo_check(sk);
2549
2550	/* Cleans up our, hopefully empty, out_of_order_queue. */
2551	skb_rbtree_purge(&tp->out_of_order_queue);
2552
2553#ifdef CONFIG_TCP_MD5SIG
2554	/* Clean up the MD5 key list, if any */
2555	if (tp->md5sig_info) {
2556		struct tcp_md5sig_info *md5sig;
2557
2558		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2559		tcp_clear_md5_list(sk);
2560		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2561		rcu_assign_pointer(tp->md5sig_info, NULL);
2562	}
2563#endif
2564	tcp_ao_destroy_sock(sk, false);
 
 
2565
2566	/* Clean up a referenced TCP bind bucket. */
2567	if (inet_csk(sk)->icsk_bind_hash)
2568		inet_put_port(sk);
2569
2570	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
2571
2572	/* If socket is aborted during connect operation */
2573	tcp_free_fastopen_req(tp);
2574	tcp_fastopen_destroy_cipher(sk);
2575	tcp_saved_syn_free(tp);
2576
2577	sk_sockets_allocated_dec(sk);
 
 
 
2578}
2579EXPORT_SYMBOL(tcp_v4_destroy_sock);
2580
2581#ifdef CONFIG_PROC_FS
2582/* Proc filesystem TCP sock list dumping. */
2583
2584static unsigned short seq_file_family(const struct seq_file *seq);
2585
2586static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2587{
2588	unsigned short family = seq_file_family(seq);
2589
2590	/* AF_UNSPEC is used as a match all */
2591	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2592		net_eq(sock_net(sk), seq_file_net(seq)));
2593}
2594
2595/* Find a non empty bucket (starting from st->bucket)
2596 * and return the first sk from it.
2597 */
2598static void *listening_get_first(struct seq_file *seq)
2599{
2600	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2601	struct tcp_iter_state *st = seq->private;
2602
2603	st->offset = 0;
2604	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2605		struct inet_listen_hashbucket *ilb2;
2606		struct hlist_nulls_node *node;
2607		struct sock *sk;
2608
2609		ilb2 = &hinfo->lhash2[st->bucket];
2610		if (hlist_nulls_empty(&ilb2->nulls_head))
2611			continue;
2612
2613		spin_lock(&ilb2->lock);
2614		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2615			if (seq_sk_match(seq, sk))
2616				return sk;
2617		}
2618		spin_unlock(&ilb2->lock);
2619	}
2620
2621	return NULL;
2622}
2623
2624/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2625 * If "cur" is the last one in the st->bucket,
2626 * call listening_get_first() to return the first sk of the next
2627 * non empty bucket.
2628 */
2629static void *listening_get_next(struct seq_file *seq, void *cur)
2630{
2631	struct tcp_iter_state *st = seq->private;
2632	struct inet_listen_hashbucket *ilb2;
2633	struct hlist_nulls_node *node;
2634	struct inet_hashinfo *hinfo;
2635	struct sock *sk = cur;
 
 
 
2636
 
 
 
 
 
 
 
 
2637	++st->num;
2638	++st->offset;
2639
2640	sk = sk_nulls_next(sk);
 
2641	sk_nulls_for_each_from(sk, node) {
2642		if (seq_sk_match(seq, sk))
2643			return sk;
 
 
 
 
 
2644	}
2645
2646	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2647	ilb2 = &hinfo->lhash2[st->bucket];
2648	spin_unlock(&ilb2->lock);
2649	++st->bucket;
2650	return listening_get_first(seq);
 
 
 
 
 
2651}
2652
2653static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2654{
2655	struct tcp_iter_state *st = seq->private;
2656	void *rc;
2657
2658	st->bucket = 0;
2659	st->offset = 0;
2660	rc = listening_get_first(seq);
2661
2662	while (rc && *pos) {
2663		rc = listening_get_next(seq, rc);
2664		--*pos;
2665	}
2666	return rc;
2667}
2668
2669static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2670				const struct tcp_iter_state *st)
2671{
2672	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
2673}
2674
2675/*
2676 * Get first established socket starting from bucket given in st->bucket.
2677 * If st->bucket is zero, the very first socket in the hash is returned.
2678 */
2679static void *established_get_first(struct seq_file *seq)
2680{
2681	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2682	struct tcp_iter_state *st = seq->private;
 
 
2683
2684	st->offset = 0;
2685	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2686		struct sock *sk;
2687		struct hlist_nulls_node *node;
2688		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2689
2690		cond_resched();
2691
2692		/* Lockless fast path for the common case of empty buckets */
2693		if (empty_bucket(hinfo, st))
2694			continue;
2695
2696		spin_lock_bh(lock);
2697		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2698			if (seq_sk_match(seq, sk))
2699				return sk;
 
 
 
 
2700		}
2701		spin_unlock_bh(lock);
2702	}
2703
2704	return NULL;
2705}
2706
2707static void *established_get_next(struct seq_file *seq, void *cur)
2708{
2709	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2710	struct tcp_iter_state *st = seq->private;
2711	struct hlist_nulls_node *node;
2712	struct sock *sk = cur;
 
 
 
2713
2714	++st->num;
2715	++st->offset;
2716
2717	sk = sk_nulls_next(sk);
2718
2719	sk_nulls_for_each_from(sk, node) {
2720		if (seq_sk_match(seq, sk))
2721			return sk;
2722	}
2723
2724	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2725	++st->bucket;
2726	return established_get_first(seq);
2727}
2728
2729static void *established_get_idx(struct seq_file *seq, loff_t pos)
2730{
2731	struct tcp_iter_state *st = seq->private;
2732	void *rc;
2733
2734	st->bucket = 0;
2735	rc = established_get_first(seq);
2736
2737	while (rc && pos) {
2738		rc = established_get_next(seq, rc);
2739		--pos;
2740	}
2741	return rc;
2742}
2743
2744static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2745{
2746	void *rc;
2747	struct tcp_iter_state *st = seq->private;
2748
2749	st->state = TCP_SEQ_STATE_LISTENING;
2750	rc	  = listening_get_idx(seq, &pos);
2751
2752	if (!rc) {
2753		st->state = TCP_SEQ_STATE_ESTABLISHED;
2754		rc	  = established_get_idx(seq, pos);
2755	}
2756
2757	return rc;
2758}
2759
2760static void *tcp_seek_last_pos(struct seq_file *seq)
2761{
2762	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2763	struct tcp_iter_state *st = seq->private;
2764	int bucket = st->bucket;
2765	int offset = st->offset;
2766	int orig_num = st->num;
2767	void *rc = NULL;
2768
2769	switch (st->state) {
2770	case TCP_SEQ_STATE_LISTENING:
2771		if (st->bucket > hinfo->lhash2_mask)
2772			break;
2773		rc = listening_get_first(seq);
2774		while (offset-- && rc && bucket == st->bucket)
 
2775			rc = listening_get_next(seq, rc);
2776		if (rc)
2777			break;
2778		st->bucket = 0;
2779		st->state = TCP_SEQ_STATE_ESTABLISHED;
2780		fallthrough;
2781	case TCP_SEQ_STATE_ESTABLISHED:
2782		if (st->bucket > hinfo->ehash_mask)
2783			break;
2784		rc = established_get_first(seq);
2785		while (offset-- && rc && bucket == st->bucket)
2786			rc = established_get_next(seq, rc);
2787	}
2788
2789	st->num = orig_num;
2790
2791	return rc;
2792}
2793
2794void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2795{
2796	struct tcp_iter_state *st = seq->private;
2797	void *rc;
2798
2799	if (*pos && *pos == st->last_pos) {
2800		rc = tcp_seek_last_pos(seq);
2801		if (rc)
2802			goto out;
2803	}
2804
2805	st->state = TCP_SEQ_STATE_LISTENING;
2806	st->num = 0;
2807	st->bucket = 0;
2808	st->offset = 0;
2809	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2810
2811out:
2812	st->last_pos = *pos;
2813	return rc;
2814}
2815EXPORT_SYMBOL(tcp_seq_start);
2816
2817void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2818{
2819	struct tcp_iter_state *st = seq->private;
2820	void *rc = NULL;
2821
2822	if (v == SEQ_START_TOKEN) {
2823		rc = tcp_get_idx(seq, 0);
2824		goto out;
2825	}
2826
2827	switch (st->state) {
2828	case TCP_SEQ_STATE_LISTENING:
2829		rc = listening_get_next(seq, v);
2830		if (!rc) {
2831			st->state = TCP_SEQ_STATE_ESTABLISHED;
2832			st->bucket = 0;
2833			st->offset = 0;
2834			rc	  = established_get_first(seq);
2835		}
2836		break;
2837	case TCP_SEQ_STATE_ESTABLISHED:
2838		rc = established_get_next(seq, v);
2839		break;
2840	}
2841out:
2842	++*pos;
2843	st->last_pos = *pos;
2844	return rc;
2845}
2846EXPORT_SYMBOL(tcp_seq_next);
2847
2848void tcp_seq_stop(struct seq_file *seq, void *v)
2849{
2850	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2851	struct tcp_iter_state *st = seq->private;
2852
2853	switch (st->state) {
2854	case TCP_SEQ_STATE_LISTENING:
2855		if (v != SEQ_START_TOKEN)
2856			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2857		break;
2858	case TCP_SEQ_STATE_ESTABLISHED:
2859		if (v)
2860			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2861		break;
2862	}
2863}
2864EXPORT_SYMBOL(tcp_seq_stop);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865
2866static void get_openreq4(const struct request_sock *req,
2867			 struct seq_file *f, int i)
2868{
2869	const struct inet_request_sock *ireq = inet_rsk(req);
2870	long delta = req->rsk_timer.expires - jiffies;
2871
2872	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2873		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2874		i,
2875		ireq->ir_loc_addr,
2876		ireq->ir_num,
2877		ireq->ir_rmt_addr,
2878		ntohs(ireq->ir_rmt_port),
2879		TCP_SYN_RECV,
2880		0, 0, /* could print option size, but that is af dependent. */
2881		1,    /* timers active (only the expire timer) */
2882		jiffies_delta_to_clock_t(delta),
2883		req->num_timeout,
2884		from_kuid_munged(seq_user_ns(f),
2885				 sock_i_uid(req->rsk_listener)),
2886		0,  /* non standard timer */
2887		0, /* open_requests have no inode */
2888		0,
2889		req);
2890}
2891
2892static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2893{
2894	int timer_active;
2895	unsigned long timer_expires;
2896	const struct tcp_sock *tp = tcp_sk(sk);
2897	const struct inet_connection_sock *icsk = inet_csk(sk);
2898	const struct inet_sock *inet = inet_sk(sk);
2899	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2900	__be32 dest = inet->inet_daddr;
2901	__be32 src = inet->inet_rcv_saddr;
2902	__u16 destp = ntohs(inet->inet_dport);
2903	__u16 srcp = ntohs(inet->inet_sport);
2904	u8 icsk_pending;
2905	int rx_queue;
2906	int state;
2907
2908	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2909	if (icsk_pending == ICSK_TIME_RETRANS ||
2910	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2911	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912		timer_active	= 1;
2913		timer_expires	= icsk->icsk_timeout;
2914	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2915		timer_active	= 4;
2916		timer_expires	= icsk->icsk_timeout;
2917	} else if (timer_pending(&sk->sk_timer)) {
2918		timer_active	= 2;
2919		timer_expires	= sk->sk_timer.expires;
2920	} else {
2921		timer_active	= 0;
2922		timer_expires = jiffies;
2923	}
2924
2925	state = inet_sk_state_load(sk);
2926	if (state == TCP_LISTEN)
2927		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2928	else
2929		/* Because we don't lock the socket,
2930		 * we might find a transient negative value.
2931		 */
2932		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2933				      READ_ONCE(tp->copied_seq), 0);
2934
2935	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2936			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2937		i, src, srcp, dest, destp, state,
2938		READ_ONCE(tp->write_seq) - tp->snd_una,
2939		rx_queue,
2940		timer_active,
2941		jiffies_delta_to_clock_t(timer_expires - jiffies),
2942		icsk->icsk_retransmits,
2943		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2944		icsk->icsk_probes_out,
2945		sock_i_ino(sk),
2946		refcount_read(&sk->sk_refcnt), sk,
2947		jiffies_to_clock_t(icsk->icsk_rto),
2948		jiffies_to_clock_t(icsk->icsk_ack.ato),
2949		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2950		tcp_snd_cwnd(tp),
2951		state == TCP_LISTEN ?
2952		    fastopenq->max_qlen :
2953		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2954}
2955
2956static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2957			       struct seq_file *f, int i)
2958{
2959	long delta = tw->tw_timer.expires - jiffies;
2960	__be32 dest, src;
2961	__u16 destp, srcp;
2962
2963	dest  = tw->tw_daddr;
2964	src   = tw->tw_rcv_saddr;
2965	destp = ntohs(tw->tw_dport);
2966	srcp  = ntohs(tw->tw_sport);
2967
2968	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2969		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2970		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2971		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2972		refcount_read(&tw->tw_refcnt), tw);
2973}
2974
2975#define TMPSZ 150
2976
2977static int tcp4_seq_show(struct seq_file *seq, void *v)
2978{
2979	struct tcp_iter_state *st;
2980	struct sock *sk = v;
2981
2982	seq_setwidth(seq, TMPSZ - 1);
2983	if (v == SEQ_START_TOKEN) {
2984		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2985			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2986			   "inode");
2987		goto out;
2988	}
2989	st = seq->private;
2990
2991	if (sk->sk_state == TCP_TIME_WAIT)
2992		get_timewait4_sock(v, seq, st->num);
2993	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2994		get_openreq4(v, seq, st->num);
2995	else
2996		get_tcp4_sock(v, seq, st->num);
2997out:
2998	seq_pad(seq, '\n');
2999	return 0;
3000}
3001
3002#ifdef CONFIG_BPF_SYSCALL
3003struct bpf_tcp_iter_state {
3004	struct tcp_iter_state state;
3005	unsigned int cur_sk;
3006	unsigned int end_sk;
3007	unsigned int max_sk;
3008	struct sock **batch;
3009	bool st_bucket_done;
3010};
3011
3012struct bpf_iter__tcp {
3013	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3014	__bpf_md_ptr(struct sock_common *, sk_common);
3015	uid_t uid __aligned(8);
3016};
3017
3018static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3019			     struct sock_common *sk_common, uid_t uid)
3020{
3021	struct bpf_iter__tcp ctx;
3022
3023	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3024	ctx.meta = meta;
3025	ctx.sk_common = sk_common;
3026	ctx.uid = uid;
3027	return bpf_iter_run_prog(prog, &ctx);
3028}
3029
3030static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3031{
3032	while (iter->cur_sk < iter->end_sk)
3033		sock_gen_put(iter->batch[iter->cur_sk++]);
3034}
3035
3036static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3037				      unsigned int new_batch_sz)
3038{
3039	struct sock **new_batch;
3040
3041	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3042			     GFP_USER | __GFP_NOWARN);
3043	if (!new_batch)
3044		return -ENOMEM;
3045
3046	bpf_iter_tcp_put_batch(iter);
3047	kvfree(iter->batch);
3048	iter->batch = new_batch;
3049	iter->max_sk = new_batch_sz;
3050
3051	return 0;
3052}
3053
3054static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3055						 struct sock *start_sk)
3056{
3057	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3058	struct bpf_tcp_iter_state *iter = seq->private;
3059	struct tcp_iter_state *st = &iter->state;
3060	struct hlist_nulls_node *node;
3061	unsigned int expected = 1;
3062	struct sock *sk;
3063
3064	sock_hold(start_sk);
3065	iter->batch[iter->end_sk++] = start_sk;
3066
3067	sk = sk_nulls_next(start_sk);
3068	sk_nulls_for_each_from(sk, node) {
3069		if (seq_sk_match(seq, sk)) {
3070			if (iter->end_sk < iter->max_sk) {
3071				sock_hold(sk);
3072				iter->batch[iter->end_sk++] = sk;
3073			}
3074			expected++;
3075		}
3076	}
3077	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3078
3079	return expected;
3080}
3081
3082static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3083						   struct sock *start_sk)
3084{
3085	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3086	struct bpf_tcp_iter_state *iter = seq->private;
3087	struct tcp_iter_state *st = &iter->state;
3088	struct hlist_nulls_node *node;
3089	unsigned int expected = 1;
3090	struct sock *sk;
3091
3092	sock_hold(start_sk);
3093	iter->batch[iter->end_sk++] = start_sk;
3094
3095	sk = sk_nulls_next(start_sk);
3096	sk_nulls_for_each_from(sk, node) {
3097		if (seq_sk_match(seq, sk)) {
3098			if (iter->end_sk < iter->max_sk) {
3099				sock_hold(sk);
3100				iter->batch[iter->end_sk++] = sk;
3101			}
3102			expected++;
3103		}
3104	}
3105	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3106
3107	return expected;
3108}
3109
3110static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3111{
3112	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3113	struct bpf_tcp_iter_state *iter = seq->private;
3114	struct tcp_iter_state *st = &iter->state;
3115	unsigned int expected;
3116	bool resized = false;
3117	struct sock *sk;
3118
3119	/* The st->bucket is done.  Directly advance to the next
3120	 * bucket instead of having the tcp_seek_last_pos() to skip
3121	 * one by one in the current bucket and eventually find out
3122	 * it has to advance to the next bucket.
3123	 */
3124	if (iter->st_bucket_done) {
3125		st->offset = 0;
3126		st->bucket++;
3127		if (st->state == TCP_SEQ_STATE_LISTENING &&
3128		    st->bucket > hinfo->lhash2_mask) {
3129			st->state = TCP_SEQ_STATE_ESTABLISHED;
3130			st->bucket = 0;
3131		}
3132	}
3133
3134again:
3135	/* Get a new batch */
3136	iter->cur_sk = 0;
3137	iter->end_sk = 0;
3138	iter->st_bucket_done = false;
3139
3140	sk = tcp_seek_last_pos(seq);
3141	if (!sk)
3142		return NULL; /* Done */
3143
3144	if (st->state == TCP_SEQ_STATE_LISTENING)
3145		expected = bpf_iter_tcp_listening_batch(seq, sk);
3146	else
3147		expected = bpf_iter_tcp_established_batch(seq, sk);
3148
3149	if (iter->end_sk == expected) {
3150		iter->st_bucket_done = true;
3151		return sk;
3152	}
3153
3154	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3155		resized = true;
3156		goto again;
3157	}
3158
3159	return sk;
3160}
3161
3162static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3163{
3164	/* bpf iter does not support lseek, so it always
3165	 * continue from where it was stop()-ped.
3166	 */
3167	if (*pos)
3168		return bpf_iter_tcp_batch(seq);
3169
3170	return SEQ_START_TOKEN;
3171}
3172
3173static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3174{
3175	struct bpf_tcp_iter_state *iter = seq->private;
3176	struct tcp_iter_state *st = &iter->state;
3177	struct sock *sk;
3178
3179	/* Whenever seq_next() is called, the iter->cur_sk is
3180	 * done with seq_show(), so advance to the next sk in
3181	 * the batch.
3182	 */
3183	if (iter->cur_sk < iter->end_sk) {
3184		/* Keeping st->num consistent in tcp_iter_state.
3185		 * bpf_iter_tcp does not use st->num.
3186		 * meta.seq_num is used instead.
3187		 */
3188		st->num++;
3189		/* Move st->offset to the next sk in the bucket such that
3190		 * the future start() will resume at st->offset in
3191		 * st->bucket.  See tcp_seek_last_pos().
3192		 */
3193		st->offset++;
3194		sock_gen_put(iter->batch[iter->cur_sk++]);
3195	}
3196
3197	if (iter->cur_sk < iter->end_sk)
3198		sk = iter->batch[iter->cur_sk];
3199	else
3200		sk = bpf_iter_tcp_batch(seq);
3201
3202	++*pos;
3203	/* Keeping st->last_pos consistent in tcp_iter_state.
3204	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3205	 */
3206	st->last_pos = *pos;
3207	return sk;
3208}
3209
3210static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3211{
3212	struct bpf_iter_meta meta;
3213	struct bpf_prog *prog;
3214	struct sock *sk = v;
3215	uid_t uid;
3216	int ret;
3217
3218	if (v == SEQ_START_TOKEN)
3219		return 0;
3220
3221	if (sk_fullsock(sk))
3222		lock_sock(sk);
3223
3224	if (unlikely(sk_unhashed(sk))) {
3225		ret = SEQ_SKIP;
3226		goto unlock;
3227	}
3228
3229	if (sk->sk_state == TCP_TIME_WAIT) {
3230		uid = 0;
3231	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3232		const struct request_sock *req = v;
3233
3234		uid = from_kuid_munged(seq_user_ns(seq),
3235				       sock_i_uid(req->rsk_listener));
3236	} else {
3237		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3238	}
3239
3240	meta.seq = seq;
3241	prog = bpf_iter_get_info(&meta, false);
3242	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3243
3244unlock:
3245	if (sk_fullsock(sk))
3246		release_sock(sk);
3247	return ret;
3248
3249}
3250
3251static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3252{
3253	struct bpf_tcp_iter_state *iter = seq->private;
3254	struct bpf_iter_meta meta;
3255	struct bpf_prog *prog;
3256
3257	if (!v) {
3258		meta.seq = seq;
3259		prog = bpf_iter_get_info(&meta, true);
3260		if (prog)
3261			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3262	}
3263
3264	if (iter->cur_sk < iter->end_sk) {
3265		bpf_iter_tcp_put_batch(iter);
3266		iter->st_bucket_done = false;
3267	}
3268}
3269
3270static const struct seq_operations bpf_iter_tcp_seq_ops = {
3271	.show		= bpf_iter_tcp_seq_show,
3272	.start		= bpf_iter_tcp_seq_start,
3273	.next		= bpf_iter_tcp_seq_next,
3274	.stop		= bpf_iter_tcp_seq_stop,
3275};
3276#endif
3277static unsigned short seq_file_family(const struct seq_file *seq)
3278{
3279	const struct tcp_seq_afinfo *afinfo;
3280
3281#ifdef CONFIG_BPF_SYSCALL
3282	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3283	if (seq->op == &bpf_iter_tcp_seq_ops)
3284		return AF_UNSPEC;
3285#endif
3286
3287	/* Iterated from proc fs */
3288	afinfo = pde_data(file_inode(seq->file));
3289	return afinfo->family;
3290}
3291
3292static const struct seq_operations tcp4_seq_ops = {
3293	.show		= tcp4_seq_show,
3294	.start		= tcp_seq_start,
3295	.next		= tcp_seq_next,
3296	.stop		= tcp_seq_stop,
3297};
3298
3299static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3300	.family		= AF_INET,
 
 
 
 
3301};
3302
3303static int __net_init tcp4_proc_init_net(struct net *net)
3304{
3305	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3306			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3307		return -ENOMEM;
3308	return 0;
3309}
3310
3311static void __net_exit tcp4_proc_exit_net(struct net *net)
3312{
3313	remove_proc_entry("tcp", net->proc_net);
3314}
3315
3316static struct pernet_operations tcp4_net_ops = {
3317	.init = tcp4_proc_init_net,
3318	.exit = tcp4_proc_exit_net,
3319};
3320
3321int __init tcp4_proc_init(void)
3322{
3323	return register_pernet_subsys(&tcp4_net_ops);
3324}
3325
3326void tcp4_proc_exit(void)
3327{
3328	unregister_pernet_subsys(&tcp4_net_ops);
3329}
3330#endif /* CONFIG_PROC_FS */
3331
3332/* @wake is one when sk_stream_write_space() calls us.
3333 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3334 * This mimics the strategy used in sock_def_write_space().
3335 */
3336bool tcp_stream_memory_free(const struct sock *sk, int wake)
3337{
3338	const struct tcp_sock *tp = tcp_sk(sk);
3339	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3340			    READ_ONCE(tp->snd_nxt);
3341
3342	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3343}
3344EXPORT_SYMBOL(tcp_stream_memory_free);
3345
3346struct proto tcp_prot = {
3347	.name			= "TCP",
3348	.owner			= THIS_MODULE,
3349	.close			= tcp_close,
3350	.pre_connect		= tcp_v4_pre_connect,
3351	.connect		= tcp_v4_connect,
3352	.disconnect		= tcp_disconnect,
3353	.accept			= inet_csk_accept,
3354	.ioctl			= tcp_ioctl,
3355	.init			= tcp_v4_init_sock,
3356	.destroy		= tcp_v4_destroy_sock,
3357	.shutdown		= tcp_shutdown,
3358	.setsockopt		= tcp_setsockopt,
3359	.getsockopt		= tcp_getsockopt,
3360	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3361	.keepalive		= tcp_set_keepalive,
3362	.recvmsg		= tcp_recvmsg,
3363	.sendmsg		= tcp_sendmsg,
3364	.splice_eof		= tcp_splice_eof,
3365	.backlog_rcv		= tcp_v4_do_rcv,
3366	.release_cb		= tcp_release_cb,
3367	.hash			= inet_hash,
3368	.unhash			= inet_unhash,
3369	.get_port		= inet_csk_get_port,
3370	.put_port		= inet_put_port,
3371#ifdef CONFIG_BPF_SYSCALL
3372	.psock_update_sk_prot	= tcp_bpf_update_proto,
3373#endif
3374	.enter_memory_pressure	= tcp_enter_memory_pressure,
3375	.leave_memory_pressure	= tcp_leave_memory_pressure,
3376	.stream_memory_free	= tcp_stream_memory_free,
3377	.sockets_allocated	= &tcp_sockets_allocated,
3378	.orphan_count		= &tcp_orphan_count,
3379
3380	.memory_allocated	= &tcp_memory_allocated,
3381	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3382
3383	.memory_pressure	= &tcp_memory_pressure,
3384	.sysctl_mem		= sysctl_tcp_mem,
3385	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3386	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3387	.max_header		= MAX_TCP_HEADER,
3388	.obj_size		= sizeof(struct tcp_sock),
3389	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3390	.twsk_prot		= &tcp_timewait_sock_ops,
3391	.rsk_prot		= &tcp_request_sock_ops,
3392	.h.hashinfo		= NULL,
3393	.no_autobind		= true,
 
 
 
 
3394	.diag_destroy		= tcp_abort,
3395};
3396EXPORT_SYMBOL(tcp_prot);
3397
3398static void __net_exit tcp_sk_exit(struct net *net)
3399{
3400	if (net->ipv4.tcp_congestion_control)
3401		bpf_module_put(net->ipv4.tcp_congestion_control,
3402			       net->ipv4.tcp_congestion_control->owner);
3403}
3404
3405static void __net_init tcp_set_hashinfo(struct net *net)
3406{
3407	struct inet_hashinfo *hinfo;
3408	unsigned int ehash_entries;
3409	struct net *old_net;
3410
3411	if (net_eq(net, &init_net))
3412		goto fallback;
3413
3414	old_net = current->nsproxy->net_ns;
3415	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3416	if (!ehash_entries)
3417		goto fallback;
3418
3419	ehash_entries = roundup_pow_of_two(ehash_entries);
3420	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3421	if (!hinfo) {
3422		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3423			"for a netns, fallback to the global one\n",
3424			ehash_entries);
3425fallback:
3426		hinfo = &tcp_hashinfo;
3427		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3428	}
3429
3430	net->ipv4.tcp_death_row.hashinfo = hinfo;
3431	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3432	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3433}
3434
3435static int __net_init tcp_sk_init(struct net *net)
3436{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437	net->ipv4.sysctl_tcp_ecn = 2;
3438	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3439
3440	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3441	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3442	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3443	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3444	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3445
3446	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3447	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3448	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3449
3450	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3451	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3452	net->ipv4.sysctl_tcp_syncookies = 1;
3453	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3454	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3455	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3456	net->ipv4.sysctl_tcp_orphan_retries = 0;
3457	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3458	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3459	net->ipv4.sysctl_tcp_tw_reuse = 2;
3460	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3461
3462	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3463	tcp_set_hashinfo(net);
3464
3465	net->ipv4.sysctl_tcp_sack = 1;
3466	net->ipv4.sysctl_tcp_window_scaling = 1;
3467	net->ipv4.sysctl_tcp_timestamps = 1;
3468	net->ipv4.sysctl_tcp_early_retrans = 3;
3469	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3470	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3471	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3472	net->ipv4.sysctl_tcp_max_reordering = 300;
3473	net->ipv4.sysctl_tcp_dsack = 1;
3474	net->ipv4.sysctl_tcp_app_win = 31;
3475	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3476	net->ipv4.sysctl_tcp_frto = 2;
3477	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3478	/* This limits the percentage of the congestion window which we
3479	 * will allow a single TSO frame to consume.  Building TSO frames
3480	 * which are too large can cause TCP streams to be bursty.
3481	 */
3482	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3483	/* Default TSQ limit of 16 TSO segments */
3484	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3485
3486	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3487	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3488
3489	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3490	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3491	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3492	net->ipv4.sysctl_tcp_autocorking = 1;
3493	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3494	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3495	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3496	if (net != &init_net) {
3497		memcpy(net->ipv4.sysctl_tcp_rmem,
3498		       init_net.ipv4.sysctl_tcp_rmem,
3499		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3500		memcpy(net->ipv4.sysctl_tcp_wmem,
3501		       init_net.ipv4.sysctl_tcp_wmem,
3502		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3503	}
3504	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3505	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3506	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3507	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3508	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3509	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3510	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3511
3512	/* Set default values for PLB */
3513	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3514	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3515	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3516	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3517	/* Default congestion threshold for PLB to mark a round is 50% */
3518	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3519
3520	/* Reno is always built in */
3521	if (!net_eq(net, &init_net) &&
3522	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3523			       init_net.ipv4.tcp_congestion_control->owner))
3524		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3525	else
3526		net->ipv4.tcp_congestion_control = &tcp_reno;
3527
3528	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3529	net->ipv4.sysctl_tcp_shrink_window = 0;
3530
3531	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3532	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3533
3534	return 0;
 
 
 
 
3535}
3536
3537static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3538{
3539	struct net *net;
3540
3541	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3542	 * and failed setup_net error unwinding path are serialized.
3543	 *
3544	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3545	 * net_exit_list, the thread that dismantles a particular twsk must
3546	 * do so without other thread progressing to refcount_dec_and_test() of
3547	 * tcp_death_row.tw_refcount.
3548	 */
3549	mutex_lock(&tcp_exit_batch_mutex);
3550
3551	tcp_twsk_purge(net_exit_list);
3552
3553	list_for_each_entry(net, net_exit_list, exit_list) {
3554		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3555		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3556		tcp_fastopen_ctx_destroy(net);
3557	}
3558
3559	mutex_unlock(&tcp_exit_batch_mutex);
3560}
3561
3562static struct pernet_operations __net_initdata tcp_sk_ops = {
3563       .init	   = tcp_sk_init,
3564       .exit	   = tcp_sk_exit,
3565       .exit_batch = tcp_sk_exit_batch,
3566};
3567
3568#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3569DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3570		     struct sock_common *sk_common, uid_t uid)
3571
3572#define INIT_BATCH_SZ 16
3573
3574static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3575{
3576	struct bpf_tcp_iter_state *iter = priv_data;
3577	int err;
3578
3579	err = bpf_iter_init_seq_net(priv_data, aux);
3580	if (err)
3581		return err;
3582
3583	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3584	if (err) {
3585		bpf_iter_fini_seq_net(priv_data);
3586		return err;
3587	}
3588
3589	return 0;
3590}
3591
3592static void bpf_iter_fini_tcp(void *priv_data)
3593{
3594	struct bpf_tcp_iter_state *iter = priv_data;
3595
3596	bpf_iter_fini_seq_net(priv_data);
3597	kvfree(iter->batch);
3598}
3599
3600static const struct bpf_iter_seq_info tcp_seq_info = {
3601	.seq_ops		= &bpf_iter_tcp_seq_ops,
3602	.init_seq_private	= bpf_iter_init_tcp,
3603	.fini_seq_private	= bpf_iter_fini_tcp,
3604	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3605};
3606
3607static const struct bpf_func_proto *
3608bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3609			    const struct bpf_prog *prog)
3610{
3611	switch (func_id) {
3612	case BPF_FUNC_setsockopt:
3613		return &bpf_sk_setsockopt_proto;
3614	case BPF_FUNC_getsockopt:
3615		return &bpf_sk_getsockopt_proto;
3616	default:
3617		return NULL;
3618	}
3619}
3620
3621static struct bpf_iter_reg tcp_reg_info = {
3622	.target			= "tcp",
3623	.ctx_arg_info_size	= 1,
3624	.ctx_arg_info		= {
3625		{ offsetof(struct bpf_iter__tcp, sk_common),
3626		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3627	},
3628	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3629	.seq_info		= &tcp_seq_info,
3630};
3631
3632static void __init bpf_iter_register(void)
3633{
3634	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3635	if (bpf_iter_reg_target(&tcp_reg_info))
3636		pr_warn("Warning: could not register bpf iterator tcp\n");
3637}
3638
3639#endif
3640
3641void __init tcp_v4_init(void)
3642{
3643	int cpu, res;
3644
3645	for_each_possible_cpu(cpu) {
3646		struct sock *sk;
3647
3648		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3649					   IPPROTO_TCP, &init_net);
3650		if (res)
3651			panic("Failed to create the TCP control socket.\n");
3652		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3653
3654		/* Please enforce IP_DF and IPID==0 for RST and
3655		 * ACK sent in SYN-RECV and TIME-WAIT state.
3656		 */
3657		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3658
3659		sk->sk_clockid = CLOCK_MONOTONIC;
3660
3661		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3662	}
3663	if (register_pernet_subsys(&tcp_sk_ops))
3664		panic("Failed to create the TCP control socket.\n");
3665
3666#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667	bpf_iter_register();
3668#endif
3669}
v4.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
 
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/secure_seq.h>
  76#include <net/busy_poll.h>
 
  77
  78#include <linux/inet.h>
  79#include <linux/ipv6.h>
  80#include <linux/stddef.h>
  81#include <linux/proc_fs.h>
  82#include <linux/seq_file.h>
 
 
 
  83
  84#include <crypto/hash.h>
  85#include <linux/scatterlist.h>
  86
  87int sysctl_tcp_tw_reuse __read_mostly;
  88int sysctl_tcp_low_latency __read_mostly;
  89EXPORT_SYMBOL(sysctl_tcp_low_latency);
  90
  91#ifdef CONFIG_TCP_MD5SIG
  92static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  93			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
  94#endif
  95
  96struct inet_hashinfo tcp_hashinfo;
  97EXPORT_SYMBOL(tcp_hashinfo);
  98
  99static  __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100{
 101	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 102					  ip_hdr(skb)->saddr,
 103					  tcp_hdr(skb)->dest,
 104					  tcp_hdr(skb)->source);
 105}
 106
 107int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 108{
 
 
 109	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 110	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112	/* With PAWS, it is safe from the viewpoint
 113	   of data integrity. Even without PAWS it is safe provided sequence
 114	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 115
 116	   Actually, the idea is close to VJ's one, only timestamp cache is
 117	   held not per host, but per port pair and TW bucket is used as state
 118	   holder.
 119
 120	   If TW bucket has been already destroyed we fall back to VJ's scheme
 121	   and use initial timestamp retrieved from peer table.
 122	 */
 123	if (tcptw->tw_ts_recent_stamp &&
 124	    (!twp || (sysctl_tcp_tw_reuse &&
 125			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 126		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 127		if (tp->write_seq == 0)
 128			tp->write_seq = 1;
 129		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 130		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 131		sock_hold(sktw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132		return 1;
 133	}
 134
 135	return 0;
 136}
 137EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139/* This will initiate an outgoing connection. */
 140int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 141{
 142	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 143	struct inet_sock *inet = inet_sk(sk);
 144	struct tcp_sock *tp = tcp_sk(sk);
 
 
 145	__be16 orig_sport, orig_dport;
 146	__be32 daddr, nexthop;
 147	struct flowi4 *fl4;
 148	struct rtable *rt;
 149	int err;
 150	struct ip_options_rcu *inet_opt;
 151
 152	if (addr_len < sizeof(struct sockaddr_in))
 153		return -EINVAL;
 154
 155	if (usin->sin_family != AF_INET)
 156		return -EAFNOSUPPORT;
 157
 158	nexthop = daddr = usin->sin_addr.s_addr;
 159	inet_opt = rcu_dereference_protected(inet->inet_opt,
 160					     sock_owned_by_user(sk));
 161	if (inet_opt && inet_opt->opt.srr) {
 162		if (!daddr)
 163			return -EINVAL;
 164		nexthop = inet_opt->opt.faddr;
 165	}
 166
 167	orig_sport = inet->inet_sport;
 168	orig_dport = usin->sin_port;
 169	fl4 = &inet->cork.fl.u.ip4;
 170	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 171			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 172			      IPPROTO_TCP,
 173			      orig_sport, orig_dport, sk);
 174	if (IS_ERR(rt)) {
 175		err = PTR_ERR(rt);
 176		if (err == -ENETUNREACH)
 177			IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 178		return err;
 179	}
 180
 181	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 182		ip_rt_put(rt);
 183		return -ENETUNREACH;
 184	}
 185
 186	if (!inet_opt || !inet_opt->opt.srr)
 187		daddr = fl4->daddr;
 188
 189	if (!inet->inet_saddr)
 190		inet->inet_saddr = fl4->saddr;
 191	sk_rcv_saddr_set(sk, inet->inet_saddr);
 
 
 
 
 
 
 
 
 192
 193	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 194		/* Reset inherited state */
 195		tp->rx_opt.ts_recent	   = 0;
 196		tp->rx_opt.ts_recent_stamp = 0;
 197		if (likely(!tp->repair))
 198			tp->write_seq	   = 0;
 199	}
 200
 201	if (tcp_death_row.sysctl_tw_recycle &&
 202	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
 203		tcp_fetch_timewait_stamp(sk, &rt->dst);
 204
 205	inet->inet_dport = usin->sin_port;
 206	sk_daddr_set(sk, daddr);
 207
 208	inet_csk(sk)->icsk_ext_hdr_len = 0;
 209	if (inet_opt)
 210		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 211
 212	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 213
 214	/* Socket identity is still unknown (sport may be zero).
 215	 * However we set state to SYN-SENT and not releasing socket
 216	 * lock select source port, enter ourselves into the hash tables and
 217	 * complete initialization after this.
 218	 */
 219	tcp_set_state(sk, TCP_SYN_SENT);
 220	err = inet_hash_connect(&tcp_death_row, sk);
 221	if (err)
 222		goto failure;
 223
 224	sk_set_txhash(sk);
 225
 226	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 227			       inet->inet_sport, inet->inet_dport, sk);
 228	if (IS_ERR(rt)) {
 229		err = PTR_ERR(rt);
 230		rt = NULL;
 231		goto failure;
 232	}
 
 233	/* OK, now commit destination to socket.  */
 234	sk->sk_gso_type = SKB_GSO_TCPV4;
 235	sk_setup_caps(sk, &rt->dst);
 
 236
 237	if (!tp->write_seq && likely(!tp->repair))
 238		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 239							   inet->inet_daddr,
 240							   inet->inet_sport,
 241							   usin->sin_port);
 
 
 
 
 
 
 242
 243	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 
 
 244
 245	err = tcp_connect(sk);
 246
 247	rt = NULL;
 248	if (err)
 249		goto failure;
 250
 251	return 0;
 252
 253failure:
 254	/*
 255	 * This unhashes the socket and releases the local port,
 256	 * if necessary.
 257	 */
 258	tcp_set_state(sk, TCP_CLOSE);
 
 259	ip_rt_put(rt);
 260	sk->sk_route_caps = 0;
 261	inet->inet_dport = 0;
 262	return err;
 263}
 264EXPORT_SYMBOL(tcp_v4_connect);
 265
 266/*
 267 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 268 * It can be called through tcp_release_cb() if socket was owned by user
 269 * at the time tcp_v4_err() was called to handle ICMP message.
 270 */
 271void tcp_v4_mtu_reduced(struct sock *sk)
 272{
 
 273	struct dst_entry *dst;
 274	struct inet_sock *inet = inet_sk(sk);
 275	u32 mtu = tcp_sk(sk)->mtu_info;
 276
 
 
 
 277	dst = inet_csk_update_pmtu(sk, mtu);
 278	if (!dst)
 279		return;
 280
 281	/* Something is about to be wrong... Remember soft error
 282	 * for the case, if this connection will not able to recover.
 283	 */
 284	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 285		sk->sk_err_soft = EMSGSIZE;
 286
 287	mtu = dst_mtu(dst);
 288
 289	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 290	    ip_sk_accept_pmtu(sk) &&
 291	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 292		tcp_sync_mss(sk, mtu);
 293
 294		/* Resend the TCP packet because it's
 295		 * clear that the old packet has been
 296		 * dropped. This is the new "fast" path mtu
 297		 * discovery.
 298		 */
 299		tcp_simple_retransmit(sk);
 300	} /* else let the usual retransmit timer handle it */
 301}
 302EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 303
 304static void do_redirect(struct sk_buff *skb, struct sock *sk)
 305{
 306	struct dst_entry *dst = __sk_dst_check(sk, 0);
 307
 308	if (dst)
 309		dst->ops->redirect(dst, sk, skb);
 310}
 311
 312
 313/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 314void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 315{
 316	struct request_sock *req = inet_reqsk(sk);
 317	struct net *net = sock_net(sk);
 318
 319	/* ICMPs are not backlogged, hence we cannot get
 320	 * an established socket here.
 321	 */
 322	if (seq != tcp_rsk(req)->snt_isn) {
 323		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 324	} else if (abort) {
 325		/*
 326		 * Still in SYN_RECV, just remove it silently.
 327		 * There is no good way to pass the error to the newly
 328		 * created socket, and POSIX does not want network
 329		 * errors returned from accept().
 330		 */
 331		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 332		NET_INC_STATS_BH(net, LINUX_MIB_LISTENDROPS);
 333	}
 334	reqsk_put(req);
 335}
 336EXPORT_SYMBOL(tcp_req_err);
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338/*
 339 * This routine is called by the ICMP module when it gets some
 340 * sort of error condition.  If err < 0 then the socket should
 341 * be closed and the error returned to the user.  If err > 0
 342 * it's just the icmp type << 8 | icmp code.  After adjustment
 343 * header points to the first 8 bytes of the tcp header.  We need
 344 * to find the appropriate port.
 345 *
 346 * The locking strategy used here is very "optimistic". When
 347 * someone else accesses the socket the ICMP is just dropped
 348 * and for some paths there is no check at all.
 349 * A more general error queue to queue errors for later handling
 350 * is probably better.
 351 *
 352 */
 353
 354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 355{
 356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 358	struct inet_connection_sock *icsk;
 359	struct tcp_sock *tp;
 360	struct inet_sock *inet;
 361	const int type = icmp_hdr(icmp_skb)->type;
 362	const int code = icmp_hdr(icmp_skb)->code;
 363	struct sock *sk;
 364	struct sk_buff *skb;
 365	struct request_sock *fastopen;
 366	__u32 seq, snd_una;
 367	__u32 remaining;
 368	int err;
 369	struct net *net = dev_net(icmp_skb->dev);
 370
 371	sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr,
 372				       th->dest, iph->saddr, ntohs(th->source),
 373				       inet_iif(icmp_skb));
 374	if (!sk) {
 375		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 376		return;
 377	}
 378	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 379		inet_twsk_put(inet_twsk(sk));
 380		return;
 381	}
 382	seq = ntohl(th->seq);
 383	if (sk->sk_state == TCP_NEW_SYN_RECV)
 384		return tcp_req_err(sk, seq,
 385				  type == ICMP_PARAMETERPROB ||
 386				  type == ICMP_TIME_EXCEEDED ||
 387				  (type == ICMP_DEST_UNREACH &&
 388				   (code == ICMP_NET_UNREACH ||
 389				    code == ICMP_HOST_UNREACH)));
 
 
 
 
 
 
 390
 391	bh_lock_sock(sk);
 392	/* If too many ICMPs get dropped on busy
 393	 * servers this needs to be solved differently.
 394	 * We do take care of PMTU discovery (RFC1191) special case :
 395	 * we can receive locally generated ICMP messages while socket is held.
 396	 */
 397	if (sock_owned_by_user(sk)) {
 398		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 399			NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 400	}
 401	if (sk->sk_state == TCP_CLOSE)
 402		goto out;
 403
 404	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 405		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 406		goto out;
 
 
 
 407	}
 408
 409	icsk = inet_csk(sk);
 410	tp = tcp_sk(sk);
 411	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 412	fastopen = tp->fastopen_rsk;
 413	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 414	if (sk->sk_state != TCP_LISTEN &&
 415	    !between(seq, snd_una, tp->snd_nxt)) {
 416		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 417		goto out;
 418	}
 419
 420	switch (type) {
 421	case ICMP_REDIRECT:
 422		do_redirect(icmp_skb, sk);
 
 423		goto out;
 424	case ICMP_SOURCE_QUENCH:
 425		/* Just silently ignore these. */
 426		goto out;
 427	case ICMP_PARAMETERPROB:
 428		err = EPROTO;
 429		break;
 430	case ICMP_DEST_UNREACH:
 431		if (code > NR_ICMP_UNREACH)
 432			goto out;
 433
 434		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 435			/* We are not interested in TCP_LISTEN and open_requests
 436			 * (SYN-ACKs send out by Linux are always <576bytes so
 437			 * they should go through unfragmented).
 438			 */
 439			if (sk->sk_state == TCP_LISTEN)
 440				goto out;
 441
 442			tp->mtu_info = info;
 443			if (!sock_owned_by_user(sk)) {
 444				tcp_v4_mtu_reduced(sk);
 445			} else {
 446				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
 447					sock_hold(sk);
 448			}
 449			goto out;
 450		}
 451
 452		err = icmp_err_convert[code].errno;
 453		/* check if icmp_skb allows revert of backoff
 454		 * (see draft-zimmermann-tcp-lcd) */
 455		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 456			break;
 457		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 458		    !icsk->icsk_backoff || fastopen)
 459			break;
 460
 461		if (sock_owned_by_user(sk))
 462			break;
 463
 464		icsk->icsk_backoff--;
 465		icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) :
 466					       TCP_TIMEOUT_INIT;
 467		icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 468
 469		skb = tcp_write_queue_head(sk);
 470		BUG_ON(!skb);
 471
 472		remaining = icsk->icsk_rto -
 473			    min(icsk->icsk_rto,
 474				tcp_time_stamp - tcp_skb_timestamp(skb));
 475
 476		if (remaining) {
 477			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 478						  remaining, TCP_RTO_MAX);
 479		} else {
 480			/* RTO revert clocked out retransmission.
 481			 * Will retransmit now */
 482			tcp_retransmit_timer(sk);
 483		}
 484
 485		break;
 486	case ICMP_TIME_EXCEEDED:
 487		err = EHOSTUNREACH;
 488		break;
 489	default:
 490		goto out;
 491	}
 492
 493	switch (sk->sk_state) {
 494	case TCP_SYN_SENT:
 495	case TCP_SYN_RECV:
 496		/* Only in fast or simultaneous open. If a fast open socket is
 497		 * is already accepted it is treated as a connected one below.
 498		 */
 499		if (fastopen && !fastopen->sk)
 500			break;
 501
 502		if (!sock_owned_by_user(sk)) {
 503			sk->sk_err = err;
 504
 505			sk->sk_error_report(sk);
 506
 507			tcp_done(sk);
 508		} else {
 509			sk->sk_err_soft = err;
 510		}
 511		goto out;
 512	}
 513
 514	/* If we've already connected we will keep trying
 515	 * until we time out, or the user gives up.
 516	 *
 517	 * rfc1122 4.2.3.9 allows to consider as hard errors
 518	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 519	 * but it is obsoleted by pmtu discovery).
 520	 *
 521	 * Note, that in modern internet, where routing is unreliable
 522	 * and in each dark corner broken firewalls sit, sending random
 523	 * errors ordered by their masters even this two messages finally lose
 524	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 525	 *
 526	 * Now we are in compliance with RFCs.
 527	 *							--ANK (980905)
 528	 */
 529
 530	inet = inet_sk(sk);
 531	if (!sock_owned_by_user(sk) && inet->recverr) {
 532		sk->sk_err = err;
 533		sk->sk_error_report(sk);
 534	} else	{ /* Only an error on timeout */
 535		sk->sk_err_soft = err;
 536	}
 537
 538out:
 539	bh_unlock_sock(sk);
 540	sock_put(sk);
 
 541}
 542
 543void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 544{
 545	struct tcphdr *th = tcp_hdr(skb);
 546
 547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 549		skb->csum_start = skb_transport_header(skb) - skb->head;
 550		skb->csum_offset = offsetof(struct tcphdr, check);
 551	} else {
 552		th->check = tcp_v4_check(skb->len, saddr, daddr,
 553					 csum_partial(th,
 554						      th->doff << 2,
 555						      skb->csum));
 556	}
 557}
 558
 559/* This routine computes an IPv4 TCP checksum. */
 560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 561{
 562	const struct inet_sock *inet = inet_sk(sk);
 563
 564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 565}
 566EXPORT_SYMBOL(tcp_v4_send_check);
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/*
 569 *	This routine will send an RST to the other tcp.
 570 *
 571 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 572 *		      for reset.
 573 *	Answer: if a packet caused RST, it is not for a socket
 574 *		existing in our system, if it is matched to a socket,
 575 *		it is just duplicate segment or bug in other side's TCP.
 576 *		So that we build reply only basing on parameters
 577 *		arrived with segment.
 578 *	Exception: precedence violation. We do not implement it in any case.
 579 */
 580
 581static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 
 582{
 583	const struct tcphdr *th = tcp_hdr(skb);
 584	struct {
 585		struct tcphdr th;
 586#ifdef CONFIG_TCP_MD5SIG
 587		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 588#endif
 589	} rep;
 
 
 590	struct ip_reply_arg arg;
 591#ifdef CONFIG_TCP_MD5SIG
 592	struct tcp_md5sig_key *key = NULL;
 593	const __u8 *hash_location = NULL;
 594	unsigned char newhash[16];
 
 595	int genhash;
 596	struct sock *sk1 = NULL;
 597#endif
 
 
 598	struct net *net;
 
 599
 600	/* Never send a reset in response to a reset. */
 601	if (th->rst)
 602		return;
 603
 604	/* If sk not NULL, it means we did a successful lookup and incoming
 605	 * route had to be correct. prequeue might have dropped our dst.
 606	 */
 607	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 608		return;
 609
 610	/* Swap the send and the receive. */
 611	memset(&rep, 0, sizeof(rep));
 612	rep.th.dest   = th->source;
 613	rep.th.source = th->dest;
 614	rep.th.doff   = sizeof(struct tcphdr) / 4;
 615	rep.th.rst    = 1;
 616
 617	if (th->ack) {
 618		rep.th.seq = th->ack_seq;
 619	} else {
 620		rep.th.ack = 1;
 621		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 622				       skb->len - (th->doff << 2));
 623	}
 624
 625	memset(&arg, 0, sizeof(arg));
 626	arg.iov[0].iov_base = (unsigned char *)&rep;
 627	arg.iov[0].iov_len  = sizeof(rep.th);
 628
 629	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 
 
 
 
 
 
 
 
 630#ifdef CONFIG_TCP_MD5SIG
 631	hash_location = tcp_parse_md5sig_option(th);
 632	if (sk && sk_fullsock(sk)) {
 633		key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 634					&ip_hdr(skb)->saddr, AF_INET);
 635	} else if (hash_location) {
 
 
 
 
 
 
 
 
 
 
 
 
 636		/*
 637		 * active side is lost. Try to find listening socket through
 638		 * source port, and then find md5 key through listening socket.
 639		 * we are not loose security here:
 640		 * Incoming packet is checked with md5 hash with finding key,
 641		 * no RST generated if md5 hash doesn't match.
 642		 */
 643		sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0,
 644					     ip_hdr(skb)->saddr,
 645					     th->source, ip_hdr(skb)->daddr,
 646					     ntohs(th->source), inet_iif(skb));
 647		/* don't send rst if it can't find key */
 648		if (!sk1)
 649			return;
 650		rcu_read_lock();
 651		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 652					&ip_hdr(skb)->saddr, AF_INET);
 
 
 
 
 653		if (!key)
 654			goto release_sk1;
 
 655
 656		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 657		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 658			goto release_sk1;
 
 659	}
 660
 661	if (key) {
 662		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 663				   (TCPOPT_NOP << 16) |
 664				   (TCPOPT_MD5SIG << 8) |
 665				   TCPOLEN_MD5SIG);
 666		/* Update length and the length the header thinks exists */
 667		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 668		rep.th.doff = arg.iov[0].iov_len / 4;
 669
 670		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 671				     key, ip_hdr(skb)->saddr,
 672				     ip_hdr(skb)->daddr, &rep.th);
 673	}
 674#endif
 
 
 
 
 
 
 
 
 
 
 
 675	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 676				      ip_hdr(skb)->saddr, /* XXX */
 677				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 678	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 679	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 680
 681	/* When socket is gone, all binding information is lost.
 682	 * routing might fail in this case. No choice here, if we choose to force
 683	 * input interface, we will misroute in case of asymmetric route.
 684	 */
 685	if (sk)
 686		arg.bound_dev_if = sk->sk_bound_dev_if;
 687
 
 
 688	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 689		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 690
 691	arg.tos = ip_hdr(skb)->tos;
 692	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 694			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 695			      &arg, arg.iov[0].iov_len);
 
 696
 697	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 698	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 699
 700#ifdef CONFIG_TCP_MD5SIG
 701release_sk1:
 702	if (sk1) {
 703		rcu_read_unlock();
 704		sock_put(sk1);
 705	}
 706#endif
 707}
 708
 709/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 710   outside socket context is ugly, certainly. What can I do?
 711 */
 712
 713static void tcp_v4_send_ack(struct net *net,
 714			    struct sk_buff *skb, u32 seq, u32 ack,
 715			    u32 win, u32 tsval, u32 tsecr, int oif,
 716			    struct tcp_md5sig_key *key,
 717			    int reply_flags, u8 tos)
 718{
 719	const struct tcphdr *th = tcp_hdr(skb);
 720	struct {
 721		struct tcphdr th;
 722		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 723#ifdef CONFIG_TCP_MD5SIG
 724			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 725#endif
 726			];
 727	} rep;
 
 728	struct ip_reply_arg arg;
 
 
 729
 730	memset(&rep.th, 0, sizeof(struct tcphdr));
 731	memset(&arg, 0, sizeof(arg));
 732
 733	arg.iov[0].iov_base = (unsigned char *)&rep;
 734	arg.iov[0].iov_len  = sizeof(rep.th);
 735	if (tsecr) {
 736		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 737				   (TCPOPT_TIMESTAMP << 8) |
 738				   TCPOLEN_TIMESTAMP);
 739		rep.opt[1] = htonl(tsval);
 740		rep.opt[2] = htonl(tsecr);
 741		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 742	}
 743
 744	/* Swap the send and the receive. */
 745	rep.th.dest    = th->source;
 746	rep.th.source  = th->dest;
 747	rep.th.doff    = arg.iov[0].iov_len / 4;
 748	rep.th.seq     = htonl(seq);
 749	rep.th.ack_seq = htonl(ack);
 750	rep.th.ack     = 1;
 751	rep.th.window  = htons(win);
 752
 753#ifdef CONFIG_TCP_MD5SIG
 754	if (key) {
 755		int offset = (tsecr) ? 3 : 0;
 756
 757		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 758					  (TCPOPT_NOP << 16) |
 759					  (TCPOPT_MD5SIG << 8) |
 760					  TCPOLEN_MD5SIG);
 761		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 762		rep.th.doff = arg.iov[0].iov_len/4;
 763
 764		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 765				    key, ip_hdr(skb)->saddr,
 766				    ip_hdr(skb)->daddr, &rep.th);
 767	}
 768#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769	arg.flags = reply_flags;
 770	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 771				      ip_hdr(skb)->saddr, /* XXX */
 772				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 773	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 774	if (oif)
 775		arg.bound_dev_if = oif;
 776	arg.tos = tos;
 777	ip_send_unicast_reply(*this_cpu_ptr(net->ipv4.tcp_sk),
 
 
 
 
 
 
 
 
 
 
 778			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 779			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 780			      &arg, arg.iov[0].iov_len);
 
 781
 782	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 
 
 
 783}
 784
 785static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 786{
 787	struct inet_timewait_sock *tw = inet_twsk(sk);
 788	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790	tcp_v4_send_ack(sock_net(sk), skb,
 791			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 793			tcp_time_stamp + tcptw->tw_ts_offset,
 794			tcptw->tw_ts_recent,
 795			tw->tw_bound_dev_if,
 796			tcp_twsk_md5_key(tcptw),
 797			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 798			tw->tw_tos
 799			);
 800
 801	inet_twsk_put(tw);
 802}
 803
 804static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
 805				  struct request_sock *req)
 806{
 
 
 807	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
 808	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
 809	 */
 810	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
 811					     tcp_sk(sk)->snd_nxt;
 812
 813	tcp_v4_send_ack(sock_net(sk), skb, seq,
 814			tcp_rsk(req)->rcv_nxt, req->rsk_rcv_wnd,
 815			tcp_time_stamp,
 816			req->ts_recent,
 817			0,
 818			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 819					  AF_INET),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 821			ip_hdr(skb)->tos);
 
 
 
 822}
 823
 824/*
 825 *	Send a SYN-ACK after having received a SYN.
 826 *	This still operates on a request_sock only, not on a big
 827 *	socket.
 828 */
 829static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
 830			      struct flowi *fl,
 831			      struct request_sock *req,
 832			      struct tcp_fastopen_cookie *foc,
 833				  bool attach_req)
 
 834{
 835	const struct inet_request_sock *ireq = inet_rsk(req);
 836	struct flowi4 fl4;
 837	int err = -1;
 838	struct sk_buff *skb;
 
 839
 840	/* First, grab a route. */
 841	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 842		return -1;
 843
 844	skb = tcp_make_synack(sk, dst, req, foc, attach_req);
 845
 846	if (skb) {
 847		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
 848
 
 
 
 
 
 
 
 
 
 
 
 849		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
 850					    ireq->ir_rmt_addr,
 851					    ireq->opt);
 
 
 852		err = net_xmit_eval(err);
 853	}
 854
 855	return err;
 856}
 857
 858/*
 859 *	IPv4 request_sock destructor.
 860 */
 861static void tcp_v4_reqsk_destructor(struct request_sock *req)
 862{
 863	kfree(inet_rsk(req)->opt);
 864}
 865
 866#ifdef CONFIG_TCP_MD5SIG
 867/*
 868 * RFC2385 MD5 checksumming requires a mapping of
 869 * IP address->MD5 Key.
 870 * We need to maintain these in the sk structure.
 871 */
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873/* Find the Key structure for an address.  */
 874struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
 875					 const union tcp_md5_addr *addr,
 876					 int family)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877{
 878	const struct tcp_sock *tp = tcp_sk(sk);
 879	struct tcp_md5sig_key *key;
 880	unsigned int size = sizeof(struct in_addr);
 881	const struct tcp_md5sig_info *md5sig;
 882
 883	/* caller either holds rcu_read_lock() or socket lock */
 884	md5sig = rcu_dereference_check(tp->md5sig_info,
 885				       sock_owned_by_user(sk) ||
 886				       lockdep_is_held((spinlock_t *)&sk->sk_lock.slock));
 887	if (!md5sig)
 888		return NULL;
 889#if IS_ENABLED(CONFIG_IPV6)
 890	if (family == AF_INET6)
 891		size = sizeof(struct in6_addr);
 892#endif
 893	hlist_for_each_entry_rcu(key, &md5sig->head, node) {
 
 894		if (key->family != family)
 895			continue;
 896		if (!memcmp(&key->addr, addr, size))
 
 
 
 
 
 897			return key;
 898	}
 899	return NULL;
 900}
 901EXPORT_SYMBOL(tcp_md5_do_lookup);
 902
 903struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
 904					 const struct sock *addr_sk)
 905{
 906	const union tcp_md5_addr *addr;
 
 907
 
 
 908	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
 909	return tcp_md5_do_lookup(sk, addr, AF_INET);
 910}
 911EXPORT_SYMBOL(tcp_v4_md5_lookup);
 912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913/* This can be called on a newly created socket, from other files */
 914int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 915		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 
 916{
 917	/* Add Key to the list */
 918	struct tcp_md5sig_key *key;
 919	struct tcp_sock *tp = tcp_sk(sk);
 920	struct tcp_md5sig_info *md5sig;
 921
 922	key = tcp_md5_do_lookup(sk, addr, family);
 923	if (key) {
 924		/* Pre-existing entry - just update that one. */
 925		memcpy(key->key, newkey, newkeylen);
 926		key->keylen = newkeylen;
 
 
 
 
 
 
 
 
 
 
 
 
 927		return 0;
 928	}
 929
 930	md5sig = rcu_dereference_protected(tp->md5sig_info,
 931					   sock_owned_by_user(sk) ||
 932					   lockdep_is_held(&sk->sk_lock.slock));
 933	if (!md5sig) {
 934		md5sig = kmalloc(sizeof(*md5sig), gfp);
 935		if (!md5sig)
 936			return -ENOMEM;
 937
 938		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 939		INIT_HLIST_HEAD(&md5sig->head);
 940		rcu_assign_pointer(tp->md5sig_info, md5sig);
 941	}
 942
 943	key = sock_kmalloc(sk, sizeof(*key), gfp);
 944	if (!key)
 945		return -ENOMEM;
 946	if (!tcp_alloc_md5sig_pool()) {
 947		sock_kfree_s(sk, key, sizeof(*key));
 948		return -ENOMEM;
 949	}
 950
 951	memcpy(key->key, newkey, newkeylen);
 952	key->keylen = newkeylen;
 953	key->family = family;
 
 
 
 954	memcpy(&key->addr, addr,
 955	       (family == AF_INET6) ? sizeof(struct in6_addr) :
 956				      sizeof(struct in_addr));
 957	hlist_add_head_rcu(&key->node, &md5sig->head);
 958	return 0;
 959}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960EXPORT_SYMBOL(tcp_md5_do_add);
 961
 962int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963{
 964	struct tcp_md5sig_key *key;
 965
 966	key = tcp_md5_do_lookup(sk, addr, family);
 967	if (!key)
 968		return -ENOENT;
 969	hlist_del_rcu(&key->node);
 970	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
 971	kfree_rcu(key, rcu);
 972	return 0;
 973}
 974EXPORT_SYMBOL(tcp_md5_do_del);
 975
 976static void tcp_clear_md5_list(struct sock *sk)
 977{
 978	struct tcp_sock *tp = tcp_sk(sk);
 979	struct tcp_md5sig_key *key;
 980	struct hlist_node *n;
 981	struct tcp_md5sig_info *md5sig;
 982
 983	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
 984
 985	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
 986		hlist_del_rcu(&key->node);
 987		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
 988		kfree_rcu(key, rcu);
 989	}
 990}
 991
 992static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
 993				 int optlen)
 994{
 995	struct tcp_md5sig cmd;
 996	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
 
 
 
 
 
 997
 998	if (optlen < sizeof(cmd))
 999		return -EINVAL;
1000
1001	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1002		return -EFAULT;
1003
1004	if (sin->sin_family != AF_INET)
1005		return -EINVAL;
1006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1007	if (!cmd.tcpm_keylen)
1008		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1009				      AF_INET);
1010
1011	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1012		return -EINVAL;
1013
1014	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1015			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1016			      GFP_KERNEL);
 
 
 
 
 
1017}
1018
1019static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1020					__be32 daddr, __be32 saddr, int nbytes)
 
1021{
1022	struct tcp4_pseudohdr *bp;
1023	struct scatterlist sg;
 
1024
1025	bp = &hp->md5_blk.ip4;
1026
1027	/*
1028	 * 1. the TCP pseudo-header (in the order: source IP address,
1029	 * destination IP address, zero-padded protocol number, and
1030	 * segment length)
1031	 */
1032	bp->saddr = saddr;
1033	bp->daddr = daddr;
1034	bp->pad = 0;
1035	bp->protocol = IPPROTO_TCP;
1036	bp->len = cpu_to_be16(nbytes);
1037
1038	sg_init_one(&sg, bp, sizeof(*bp));
1039	ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(*bp));
1040	return crypto_ahash_update(hp->md5_req);
 
 
 
 
 
1041}
1042
1043static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1044			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1045{
1046	struct tcp_md5sig_pool *hp;
1047	struct ahash_request *req;
1048
1049	hp = tcp_get_md5sig_pool();
1050	if (!hp)
1051		goto clear_hash_noput;
1052	req = hp->md5_req;
1053
1054	if (crypto_ahash_init(req))
1055		goto clear_hash;
1056	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1057		goto clear_hash;
1058	if (tcp_md5_hash_header(hp, th))
1059		goto clear_hash;
1060	if (tcp_md5_hash_key(hp, key))
1061		goto clear_hash;
1062	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1063	if (crypto_ahash_final(req))
1064		goto clear_hash;
1065
1066	tcp_put_md5sig_pool();
1067	return 0;
1068
1069clear_hash:
1070	tcp_put_md5sig_pool();
1071clear_hash_noput:
1072	memset(md5_hash, 0, 16);
1073	return 1;
1074}
1075
1076int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1077			const struct sock *sk,
1078			const struct sk_buff *skb)
1079{
1080	struct tcp_md5sig_pool *hp;
1081	struct ahash_request *req;
1082	const struct tcphdr *th = tcp_hdr(skb);
 
1083	__be32 saddr, daddr;
1084
1085	if (sk) { /* valid for establish/request sockets */
1086		saddr = sk->sk_rcv_saddr;
1087		daddr = sk->sk_daddr;
1088	} else {
1089		const struct iphdr *iph = ip_hdr(skb);
1090		saddr = iph->saddr;
1091		daddr = iph->daddr;
1092	}
1093
1094	hp = tcp_get_md5sig_pool();
1095	if (!hp)
1096		goto clear_hash_noput;
1097	req = hp->md5_req;
1098
1099	if (crypto_ahash_init(req))
1100		goto clear_hash;
1101
1102	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1103		goto clear_hash;
1104	if (tcp_md5_hash_header(hp, th))
1105		goto clear_hash;
1106	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1107		goto clear_hash;
1108	if (tcp_md5_hash_key(hp, key))
1109		goto clear_hash;
1110	ahash_request_set_crypt(req, NULL, md5_hash, 0);
1111	if (crypto_ahash_final(req))
1112		goto clear_hash;
1113
1114	tcp_put_md5sig_pool();
1115	return 0;
1116
1117clear_hash:
1118	tcp_put_md5sig_pool();
1119clear_hash_noput:
1120	memset(md5_hash, 0, 16);
1121	return 1;
1122}
1123EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1124
1125#endif
1126
1127/* Called with rcu_read_lock() */
1128static bool tcp_v4_inbound_md5_hash(const struct sock *sk,
1129				    const struct sk_buff *skb)
1130{
1131#ifdef CONFIG_TCP_MD5SIG
1132	/*
1133	 * This gets called for each TCP segment that arrives
1134	 * so we want to be efficient.
1135	 * We have 3 drop cases:
1136	 * o No MD5 hash and one expected.
1137	 * o MD5 hash and we're not expecting one.
1138	 * o MD5 hash and its wrong.
1139	 */
1140	const __u8 *hash_location = NULL;
1141	struct tcp_md5sig_key *hash_expected;
1142	const struct iphdr *iph = ip_hdr(skb);
1143	const struct tcphdr *th = tcp_hdr(skb);
1144	int genhash;
1145	unsigned char newhash[16];
1146
1147	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1148					  AF_INET);
1149	hash_location = tcp_parse_md5sig_option(th);
1150
1151	/* We've parsed the options - do we have a hash? */
1152	if (!hash_expected && !hash_location)
1153		return false;
1154
1155	if (hash_expected && !hash_location) {
1156		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1157		return true;
1158	}
1159
1160	if (!hash_expected && hash_location) {
1161		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1162		return true;
1163	}
1164
1165	/* Okay, so this is hash_expected and hash_location -
1166	 * so we need to calculate the checksum.
1167	 */
1168	genhash = tcp_v4_md5_hash_skb(newhash,
1169				      hash_expected,
1170				      NULL, skb);
1171
1172	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1173		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1174				     &iph->saddr, ntohs(th->source),
1175				     &iph->daddr, ntohs(th->dest),
1176				     genhash ? " tcp_v4_calc_md5_hash failed"
1177				     : "");
1178		return true;
1179	}
1180	return false;
1181#endif
1182	return false;
1183}
1184
1185static void tcp_v4_init_req(struct request_sock *req,
1186			    const struct sock *sk_listener,
1187			    struct sk_buff *skb)
1188{
1189	struct inet_request_sock *ireq = inet_rsk(req);
 
1190
1191	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1192	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1193	ireq->no_srccheck = inet_sk(sk_listener)->transparent;
1194	ireq->opt = tcp_v4_save_options(skb);
1195}
1196
1197static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
 
1198					  struct flowi *fl,
1199					  const struct request_sock *req,
1200					  bool *strict)
1201{
1202	struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1203
1204	if (strict) {
1205		if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1206			*strict = true;
1207		else
1208			*strict = false;
1209	}
1210
1211	return dst;
1212}
1213
1214struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1215	.family		=	PF_INET,
1216	.obj_size	=	sizeof(struct tcp_request_sock),
1217	.rtx_syn_ack	=	tcp_rtx_synack,
1218	.send_ack	=	tcp_v4_reqsk_send_ack,
1219	.destructor	=	tcp_v4_reqsk_destructor,
1220	.send_reset	=	tcp_v4_send_reset,
1221	.syn_ack_timeout =	tcp_syn_ack_timeout,
1222};
1223
1224static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1225	.mss_clamp	=	TCP_MSS_DEFAULT,
1226#ifdef CONFIG_TCP_MD5SIG
1227	.req_md5_lookup	=	tcp_v4_md5_lookup,
1228	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1229#endif
1230	.init_req	=	tcp_v4_init_req,
 
 
 
 
1231#ifdef CONFIG_SYN_COOKIES
1232	.cookie_init_seq =	cookie_v4_init_sequence,
1233#endif
1234	.route_req	=	tcp_v4_route_req,
1235	.init_seq	=	tcp_v4_init_sequence,
 
1236	.send_synack	=	tcp_v4_send_synack,
1237};
1238
1239int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1240{
1241	/* Never answer to SYNs send to broadcast or multicast */
1242	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1243		goto drop;
1244
1245	return tcp_conn_request(&tcp_request_sock_ops,
1246				&tcp_request_sock_ipv4_ops, sk, skb);
1247
1248drop:
1249	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1250	return 0;
1251}
1252EXPORT_SYMBOL(tcp_v4_conn_request);
1253
1254
1255/*
1256 * The three way handshake has completed - we got a valid synack -
1257 * now create the new socket.
1258 */
1259struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1260				  struct request_sock *req,
1261				  struct dst_entry *dst,
1262				  struct request_sock *req_unhash,
1263				  bool *own_req)
1264{
1265	struct inet_request_sock *ireq;
 
1266	struct inet_sock *newinet;
1267	struct tcp_sock *newtp;
1268	struct sock *newsk;
1269#ifdef CONFIG_TCP_MD5SIG
 
1270	struct tcp_md5sig_key *key;
 
1271#endif
1272	struct ip_options_rcu *inet_opt;
1273
1274	if (sk_acceptq_is_full(sk))
1275		goto exit_overflow;
1276
1277	newsk = tcp_create_openreq_child(sk, req, skb);
1278	if (!newsk)
1279		goto exit_nonewsk;
1280
1281	newsk->sk_gso_type = SKB_GSO_TCPV4;
1282	inet_sk_rx_dst_set(newsk, skb);
1283
1284	newtp		      = tcp_sk(newsk);
1285	newinet		      = inet_sk(newsk);
1286	ireq		      = inet_rsk(req);
1287	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1288	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1289	newsk->sk_bound_dev_if = ireq->ir_iif;
1290	newinet->inet_saddr	      = ireq->ir_loc_addr;
1291	inet_opt	      = ireq->opt;
1292	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1293	ireq->opt	      = NULL;
1294	newinet->mc_index     = inet_iif(skb);
1295	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1296	newinet->rcv_tos      = ip_hdr(skb)->tos;
1297	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1298	if (inet_opt)
1299		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1300	newinet->inet_id = newtp->write_seq ^ jiffies;
 
 
 
 
 
 
1301
1302	if (!dst) {
1303		dst = inet_csk_route_child_sock(sk, newsk, req);
1304		if (!dst)
1305			goto put_and_exit;
1306	} else {
1307		/* syncookie case : see end of cookie_v4_check() */
1308	}
1309	sk_setup_caps(newsk, dst);
1310
1311	tcp_ca_openreq_child(newsk, dst);
1312
1313	tcp_sync_mss(newsk, dst_mtu(dst));
1314	newtp->advmss = dst_metric_advmss(dst);
1315	if (tcp_sk(sk)->rx_opt.user_mss &&
1316	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1317		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1318
1319	tcp_initialize_rcv_mss(newsk);
1320
1321#ifdef CONFIG_TCP_MD5SIG
 
1322	/* Copy over the MD5 key from the original socket */
1323	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1324				AF_INET);
1325	if (key) {
1326		/*
1327		 * We're using one, so create a matching key
1328		 * on the newsk structure. If we fail to get
1329		 * memory, then we end up not copying the key
1330		 * across. Shucks.
1331		 */
1332		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1333			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1334		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1335	}
1336#endif
 
 
 
 
1337
1338	if (__inet_inherit_port(sk, newsk) < 0)
1339		goto put_and_exit;
1340	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash));
1341	if (*own_req)
 
1342		tcp_move_syn(newtp, req);
 
 
 
1343
 
 
 
 
 
 
 
 
 
1344	return newsk;
1345
1346exit_overflow:
1347	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1348exit_nonewsk:
1349	dst_release(dst);
1350exit:
1351	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1352	return NULL;
1353put_and_exit:
 
1354	inet_csk_prepare_forced_close(newsk);
1355	tcp_done(newsk);
1356	goto exit;
1357}
1358EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1359
1360static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1361{
1362#ifdef CONFIG_SYN_COOKIES
1363	const struct tcphdr *th = tcp_hdr(skb);
1364
1365	if (!th->syn)
1366		sk = cookie_v4_check(sk, skb);
1367#endif
1368	return sk;
1369}
1370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371/* The socket must have it's spinlock held when we get
1372 * here, unless it is a TCP_LISTEN socket.
1373 *
1374 * We have a potential double-lock case here, so even when
1375 * doing backlog processing we use the BH locking scheme.
1376 * This is because we cannot sleep with the original spinlock
1377 * held.
1378 */
1379int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1380{
 
1381	struct sock *rsk;
1382
1383	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1384		struct dst_entry *dst = sk->sk_rx_dst;
 
 
 
1385
1386		sock_rps_save_rxhash(sk, skb);
1387		sk_mark_napi_id(sk, skb);
1388		if (dst) {
1389			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1390			    !dst->ops->check(dst, 0)) {
 
 
1391				dst_release(dst);
1392				sk->sk_rx_dst = NULL;
1393			}
1394		}
1395		tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1396		return 0;
1397	}
1398
1399	if (tcp_checksum_complete(skb))
1400		goto csum_err;
1401
1402	if (sk->sk_state == TCP_LISTEN) {
1403		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1404
1405		if (!nsk)
1406			goto discard;
1407		if (nsk != sk) {
1408			sock_rps_save_rxhash(nsk, skb);
1409			sk_mark_napi_id(nsk, skb);
1410			if (tcp_child_process(sk, nsk, skb)) {
1411				rsk = nsk;
1412				goto reset;
1413			}
1414			return 0;
1415		}
1416	} else
1417		sock_rps_save_rxhash(sk, skb);
1418
1419	if (tcp_rcv_state_process(sk, skb)) {
 
1420		rsk = sk;
1421		goto reset;
1422	}
1423	return 0;
1424
1425reset:
1426	tcp_v4_send_reset(rsk, skb);
1427discard:
1428	kfree_skb(skb);
1429	/* Be careful here. If this function gets more complicated and
1430	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1431	 * might be destroyed here. This current version compiles correctly,
1432	 * but you have been warned.
1433	 */
1434	return 0;
1435
1436csum_err:
1437	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1438	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
1439	goto discard;
1440}
1441EXPORT_SYMBOL(tcp_v4_do_rcv);
1442
1443void tcp_v4_early_demux(struct sk_buff *skb)
1444{
 
1445	const struct iphdr *iph;
1446	const struct tcphdr *th;
1447	struct sock *sk;
1448
1449	if (skb->pkt_type != PACKET_HOST)
1450		return;
1451
1452	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1453		return;
1454
1455	iph = ip_hdr(skb);
1456	th = tcp_hdr(skb);
1457
1458	if (th->doff < sizeof(struct tcphdr) / 4)
1459		return;
1460
1461	sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1462				       iph->saddr, th->source,
1463				       iph->daddr, ntohs(th->dest),
1464				       skb->skb_iif);
1465	if (sk) {
1466		skb->sk = sk;
1467		skb->destructor = sock_edemux;
1468		if (sk_fullsock(sk)) {
1469			struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst);
1470
1471			if (dst)
1472				dst = dst_check(dst, 0);
1473			if (dst &&
1474			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1475				skb_dst_set_noref(skb, dst);
1476		}
1477	}
 
1478}
1479
1480/* Packet is added to VJ-style prequeue for processing in process
1481 * context, if a reader task is waiting. Apparently, this exciting
1482 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1483 * failed somewhere. Latency? Burstiness? Well, at least now we will
1484 * see, why it failed. 8)8)				  --ANK
1485 *
1486 */
1487bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1488{
1489	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490
1491	if (sysctl_tcp_low_latency || !tp->ucopy.task)
 
 
 
 
 
 
 
1492		return false;
 
 
1493
1494	if (skb->len <= tcp_hdrlen(skb) &&
1495	    skb_queue_len(&tp->ucopy.prequeue) == 0)
1496		return false;
 
 
 
 
 
1497
1498	/* Before escaping RCU protected region, we need to take care of skb
1499	 * dst. Prequeue is only enabled for established sockets.
1500	 * For such sockets, we might need the skb dst only to set sk->sk_rx_dst
1501	 * Instead of doing full sk_rx_dst validity here, let's perform
1502	 * an optimistic check.
1503	 */
1504	if (likely(sk->sk_rx_dst))
1505		skb_dst_drop(skb);
1506	else
1507		skb_dst_force_safe(skb);
1508
1509	__skb_queue_tail(&tp->ucopy.prequeue, skb);
1510	tp->ucopy.memory += skb->truesize;
1511	if (tp->ucopy.memory > sk->sk_rcvbuf) {
1512		struct sk_buff *skb1;
1513
1514		BUG_ON(sock_owned_by_user(sk));
1515
1516		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1517			sk_backlog_rcv(sk, skb1);
1518			NET_INC_STATS_BH(sock_net(sk),
1519					 LINUX_MIB_TCPPREQUEUEDROPPED);
1520		}
1521
1522		tp->ucopy.memory = 0;
1523	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1524		wake_up_interruptible_sync_poll(sk_sleep(sk),
1525					   POLLIN | POLLRDNORM | POLLRDBAND);
1526		if (!inet_csk_ack_scheduled(sk))
1527			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1528						  (3 * tcp_rto_min(sk)) / 4,
1529						  TCP_RTO_MAX);
1530	}
1531	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532}
1533EXPORT_SYMBOL(tcp_prequeue);
1534
1535/*
1536 *	From tcp_input.c
1537 */
1538
1539int tcp_v4_rcv(struct sk_buff *skb)
1540{
 
 
 
 
1541	const struct iphdr *iph;
1542	const struct tcphdr *th;
1543	struct sock *sk;
 
1544	int ret;
1545	struct net *net = dev_net(skb->dev);
1546
 
1547	if (skb->pkt_type != PACKET_HOST)
1548		goto discard_it;
1549
1550	/* Count it even if it's bad */
1551	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1552
1553	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1554		goto discard_it;
1555
1556	th = tcp_hdr(skb);
1557
1558	if (th->doff < sizeof(struct tcphdr) / 4)
 
1559		goto bad_packet;
 
1560	if (!pskb_may_pull(skb, th->doff * 4))
1561		goto discard_it;
1562
1563	/* An explanation is required here, I think.
1564	 * Packet length and doff are validated by header prediction,
1565	 * provided case of th->doff==0 is eliminated.
1566	 * So, we defer the checks. */
1567
1568	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1569		goto csum_error;
1570
1571	th = tcp_hdr(skb);
1572	iph = ip_hdr(skb);
1573	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
1574	 * barrier() makes sure compiler wont play fool^Waliasing games.
1575	 */
1576	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
1577		sizeof(struct inet_skb_parm));
1578	barrier();
1579
1580	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1581	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1582				    skb->len - th->doff * 4);
1583	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1584	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
1585	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
1586	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1587	TCP_SKB_CB(skb)->sacked	 = 0;
1588
1589lookup:
1590	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
1591			       th->dest);
 
1592	if (!sk)
1593		goto no_tcp_socket;
1594
1595process:
1596	if (sk->sk_state == TCP_TIME_WAIT)
1597		goto do_time_wait;
1598
1599	if (sk->sk_state == TCP_NEW_SYN_RECV) {
1600		struct request_sock *req = inet_reqsk(sk);
 
1601		struct sock *nsk;
1602
1603		sk = req->rsk_listener;
1604		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
 
 
 
 
 
 
 
1605			reqsk_put(req);
1606			goto discard_it;
1607		}
 
 
 
 
1608		if (unlikely(sk->sk_state != TCP_LISTEN)) {
1609			inet_csk_reqsk_queue_drop_and_put(sk, req);
1610			goto lookup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611		}
1612		sock_hold(sk);
1613		nsk = tcp_check_req(sk, skb, req, false);
1614		if (!nsk) {
1615			reqsk_put(req);
 
 
 
 
 
 
 
 
 
 
1616			goto discard_and_relse;
1617		}
 
1618		if (nsk == sk) {
1619			reqsk_put(req);
1620		} else if (tcp_child_process(sk, nsk, skb)) {
1621			tcp_v4_send_reset(nsk, skb);
1622			goto discard_and_relse;
1623		} else {
 
 
 
 
 
 
 
 
1624			sock_put(sk);
1625			return 0;
1626		}
1627	}
1628	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1629		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1630		goto discard_and_relse;
 
 
 
 
 
 
1631	}
1632
1633	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
1634		goto discard_and_relse;
 
1635
1636	if (tcp_v4_inbound_md5_hash(sk, skb))
 
 
1637		goto discard_and_relse;
1638
1639	nf_reset(skb);
1640
1641	if (sk_filter(sk, skb))
 
1642		goto discard_and_relse;
 
 
 
 
1643
1644	skb->dev = NULL;
1645
1646	if (sk->sk_state == TCP_LISTEN) {
1647		ret = tcp_v4_do_rcv(sk, skb);
1648		goto put_and_return;
1649	}
1650
1651	sk_incoming_cpu_update(sk);
1652
1653	bh_lock_sock_nested(sk);
1654	tcp_segs_in(tcp_sk(sk), skb);
1655	ret = 0;
1656	if (!sock_owned_by_user(sk)) {
1657		if (!tcp_prequeue(sk, skb))
1658			ret = tcp_v4_do_rcv(sk, skb);
1659	} else if (unlikely(sk_add_backlog(sk, skb,
1660					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1661		bh_unlock_sock(sk);
1662		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1663		goto discard_and_relse;
1664	}
1665	bh_unlock_sock(sk);
1666
1667put_and_return:
1668	sock_put(sk);
 
1669
1670	return ret;
1671
1672no_tcp_socket:
 
1673	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1674		goto discard_it;
1675
 
 
1676	if (tcp_checksum_complete(skb)) {
1677csum_error:
1678		TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
 
 
1679bad_packet:
1680		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1681	} else {
1682		tcp_v4_send_reset(NULL, skb);
1683	}
1684
1685discard_it:
 
1686	/* Discard frame. */
1687	kfree_skb(skb);
1688	return 0;
1689
1690discard_and_relse:
1691	sock_put(sk);
 
 
1692	goto discard_it;
1693
1694do_time_wait:
1695	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1696		inet_twsk_put(inet_twsk(sk));
1697		goto discard_it;
1698	}
1699
 
 
1700	if (tcp_checksum_complete(skb)) {
1701		inet_twsk_put(inet_twsk(sk));
1702		goto csum_error;
1703	}
1704	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1705	case TCP_TW_SYN: {
1706		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1707							&tcp_hashinfo, skb,
1708							__tcp_hdrlen(th),
1709							iph->saddr, th->source,
1710							iph->daddr, th->dest,
1711							inet_iif(skb));
 
1712		if (sk2) {
1713			inet_twsk_deschedule_put(inet_twsk(sk));
1714			sk = sk2;
 
 
 
1715			goto process;
1716		}
1717		/* Fall through to ACK */
1718	}
 
 
1719	case TCP_TW_ACK:
1720		tcp_v4_timewait_ack(sk, skb);
1721		break;
1722	case TCP_TW_RST:
1723		tcp_v4_send_reset(sk, skb);
1724		inet_twsk_deschedule_put(inet_twsk(sk));
1725		goto discard_it;
1726	case TCP_TW_SUCCESS:;
1727	}
1728	goto discard_it;
1729}
1730
1731static struct timewait_sock_ops tcp_timewait_sock_ops = {
1732	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1733	.twsk_unique	= tcp_twsk_unique,
1734	.twsk_destructor= tcp_twsk_destructor,
1735};
1736
1737void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1738{
1739	struct dst_entry *dst = skb_dst(skb);
1740
1741	if (dst && dst_hold_safe(dst)) {
1742		sk->sk_rx_dst = dst;
1743		inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1744	}
1745}
1746EXPORT_SYMBOL(inet_sk_rx_dst_set);
1747
1748const struct inet_connection_sock_af_ops ipv4_specific = {
1749	.queue_xmit	   = ip_queue_xmit,
1750	.send_check	   = tcp_v4_send_check,
1751	.rebuild_header	   = inet_sk_rebuild_header,
1752	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
1753	.conn_request	   = tcp_v4_conn_request,
1754	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1755	.net_header_len	   = sizeof(struct iphdr),
1756	.setsockopt	   = ip_setsockopt,
1757	.getsockopt	   = ip_getsockopt,
1758	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1759	.sockaddr_len	   = sizeof(struct sockaddr_in),
1760	.bind_conflict	   = inet_csk_bind_conflict,
1761#ifdef CONFIG_COMPAT
1762	.compat_setsockopt = compat_ip_setsockopt,
1763	.compat_getsockopt = compat_ip_getsockopt,
1764#endif
1765	.mtu_reduced	   = tcp_v4_mtu_reduced,
1766};
1767EXPORT_SYMBOL(ipv4_specific);
1768
 
 
1769#ifdef CONFIG_TCP_MD5SIG
1770static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1771	.md5_lookup		= tcp_v4_md5_lookup,
1772	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1773	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
1774};
1775#endif
1776
1777/* NOTE: A lot of things set to zero explicitly by call to
1778 *       sk_alloc() so need not be done here.
1779 */
1780static int tcp_v4_init_sock(struct sock *sk)
1781{
1782	struct inet_connection_sock *icsk = inet_csk(sk);
1783
1784	tcp_init_sock(sk);
1785
1786	icsk->icsk_af_ops = &ipv4_specific;
1787
1788#ifdef CONFIG_TCP_MD5SIG
1789	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1790#endif
1791
1792	return 0;
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795void tcp_v4_destroy_sock(struct sock *sk)
1796{
1797	struct tcp_sock *tp = tcp_sk(sk);
1798
 
 
 
 
 
 
1799	tcp_clear_xmit_timers(sk);
1800
1801	tcp_cleanup_congestion_control(sk);
1802
 
 
1803	/* Cleanup up the write buffer. */
1804	tcp_write_queue_purge(sk);
1805
 
 
 
1806	/* Cleans up our, hopefully empty, out_of_order_queue. */
1807	__skb_queue_purge(&tp->out_of_order_queue);
1808
1809#ifdef CONFIG_TCP_MD5SIG
1810	/* Clean up the MD5 key list, if any */
1811	if (tp->md5sig_info) {
 
 
 
1812		tcp_clear_md5_list(sk);
1813		kfree_rcu(tp->md5sig_info, rcu);
1814		tp->md5sig_info = NULL;
1815	}
1816#endif
1817
1818	/* Clean prequeue, it must be empty really */
1819	__skb_queue_purge(&tp->ucopy.prequeue);
1820
1821	/* Clean up a referenced TCP bind bucket. */
1822	if (inet_csk(sk)->icsk_bind_hash)
1823		inet_put_port(sk);
1824
1825	BUG_ON(tp->fastopen_rsk);
1826
1827	/* If socket is aborted during connect operation */
1828	tcp_free_fastopen_req(tp);
 
1829	tcp_saved_syn_free(tp);
1830
1831	sk_sockets_allocated_dec(sk);
1832
1833	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1834		sock_release_memcg(sk);
1835}
1836EXPORT_SYMBOL(tcp_v4_destroy_sock);
1837
1838#ifdef CONFIG_PROC_FS
1839/* Proc filesystem TCP sock list dumping. */
1840
1841/*
1842 * Get next listener socket follow cur.  If cur is NULL, get first socket
1843 * starting from bucket given in st->bucket; when st->bucket is zero the
1844 * very first socket in the hash table is returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845 */
1846static void *listening_get_next(struct seq_file *seq, void *cur)
1847{
1848	struct inet_connection_sock *icsk;
 
1849	struct hlist_nulls_node *node;
 
1850	struct sock *sk = cur;
1851	struct inet_listen_hashbucket *ilb;
1852	struct tcp_iter_state *st = seq->private;
1853	struct net *net = seq_file_net(seq);
1854
1855	if (!sk) {
1856		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1857		spin_lock_bh(&ilb->lock);
1858		sk = sk_nulls_head(&ilb->head);
1859		st->offset = 0;
1860		goto get_sk;
1861	}
1862	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1863	++st->num;
1864	++st->offset;
1865
1866	sk = sk_nulls_next(sk);
1867get_sk:
1868	sk_nulls_for_each_from(sk, node) {
1869		if (!net_eq(sock_net(sk), net))
1870			continue;
1871		if (sk->sk_family == st->family) {
1872			cur = sk;
1873			goto out;
1874		}
1875		icsk = inet_csk(sk);
1876	}
1877	spin_unlock_bh(&ilb->lock);
1878	st->offset = 0;
1879	if (++st->bucket < INET_LHTABLE_SIZE) {
1880		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1881		spin_lock_bh(&ilb->lock);
1882		sk = sk_nulls_head(&ilb->head);
1883		goto get_sk;
1884	}
1885	cur = NULL;
1886out:
1887	return cur;
1888}
1889
1890static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1891{
1892	struct tcp_iter_state *st = seq->private;
1893	void *rc;
1894
1895	st->bucket = 0;
1896	st->offset = 0;
1897	rc = listening_get_next(seq, NULL);
1898
1899	while (rc && *pos) {
1900		rc = listening_get_next(seq, rc);
1901		--*pos;
1902	}
1903	return rc;
1904}
1905
1906static inline bool empty_bucket(const struct tcp_iter_state *st)
 
1907{
1908	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1909}
1910
1911/*
1912 * Get first established socket starting from bucket given in st->bucket.
1913 * If st->bucket is zero, the very first socket in the hash is returned.
1914 */
1915static void *established_get_first(struct seq_file *seq)
1916{
 
1917	struct tcp_iter_state *st = seq->private;
1918	struct net *net = seq_file_net(seq);
1919	void *rc = NULL;
1920
1921	st->offset = 0;
1922	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1923		struct sock *sk;
1924		struct hlist_nulls_node *node;
1925		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
 
1926
1927		/* Lockless fast path for the common case of empty buckets */
1928		if (empty_bucket(st))
1929			continue;
1930
1931		spin_lock_bh(lock);
1932		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1933			if (sk->sk_family != st->family ||
1934			    !net_eq(sock_net(sk), net)) {
1935				continue;
1936			}
1937			rc = sk;
1938			goto out;
1939		}
1940		spin_unlock_bh(lock);
1941	}
1942out:
1943	return rc;
1944}
1945
1946static void *established_get_next(struct seq_file *seq, void *cur)
1947{
 
 
 
1948	struct sock *sk = cur;
1949	struct hlist_nulls_node *node;
1950	struct tcp_iter_state *st = seq->private;
1951	struct net *net = seq_file_net(seq);
1952
1953	++st->num;
1954	++st->offset;
1955
1956	sk = sk_nulls_next(sk);
1957
1958	sk_nulls_for_each_from(sk, node) {
1959		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1960			return sk;
1961	}
1962
1963	spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1964	++st->bucket;
1965	return established_get_first(seq);
1966}
1967
1968static void *established_get_idx(struct seq_file *seq, loff_t pos)
1969{
1970	struct tcp_iter_state *st = seq->private;
1971	void *rc;
1972
1973	st->bucket = 0;
1974	rc = established_get_first(seq);
1975
1976	while (rc && pos) {
1977		rc = established_get_next(seq, rc);
1978		--pos;
1979	}
1980	return rc;
1981}
1982
1983static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1984{
1985	void *rc;
1986	struct tcp_iter_state *st = seq->private;
1987
1988	st->state = TCP_SEQ_STATE_LISTENING;
1989	rc	  = listening_get_idx(seq, &pos);
1990
1991	if (!rc) {
1992		st->state = TCP_SEQ_STATE_ESTABLISHED;
1993		rc	  = established_get_idx(seq, pos);
1994	}
1995
1996	return rc;
1997}
1998
1999static void *tcp_seek_last_pos(struct seq_file *seq)
2000{
 
2001	struct tcp_iter_state *st = seq->private;
 
2002	int offset = st->offset;
2003	int orig_num = st->num;
2004	void *rc = NULL;
2005
2006	switch (st->state) {
2007	case TCP_SEQ_STATE_LISTENING:
2008		if (st->bucket >= INET_LHTABLE_SIZE)
2009			break;
2010		st->state = TCP_SEQ_STATE_LISTENING;
2011		rc = listening_get_next(seq, NULL);
2012		while (offset-- && rc)
2013			rc = listening_get_next(seq, rc);
2014		if (rc)
2015			break;
2016		st->bucket = 0;
2017		st->state = TCP_SEQ_STATE_ESTABLISHED;
2018		/* Fallthrough */
2019	case TCP_SEQ_STATE_ESTABLISHED:
2020		if (st->bucket > tcp_hashinfo.ehash_mask)
2021			break;
2022		rc = established_get_first(seq);
2023		while (offset-- && rc)
2024			rc = established_get_next(seq, rc);
2025	}
2026
2027	st->num = orig_num;
2028
2029	return rc;
2030}
2031
2032static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2033{
2034	struct tcp_iter_state *st = seq->private;
2035	void *rc;
2036
2037	if (*pos && *pos == st->last_pos) {
2038		rc = tcp_seek_last_pos(seq);
2039		if (rc)
2040			goto out;
2041	}
2042
2043	st->state = TCP_SEQ_STATE_LISTENING;
2044	st->num = 0;
2045	st->bucket = 0;
2046	st->offset = 0;
2047	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2048
2049out:
2050	st->last_pos = *pos;
2051	return rc;
2052}
 
2053
2054static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055{
2056	struct tcp_iter_state *st = seq->private;
2057	void *rc = NULL;
2058
2059	if (v == SEQ_START_TOKEN) {
2060		rc = tcp_get_idx(seq, 0);
2061		goto out;
2062	}
2063
2064	switch (st->state) {
2065	case TCP_SEQ_STATE_LISTENING:
2066		rc = listening_get_next(seq, v);
2067		if (!rc) {
2068			st->state = TCP_SEQ_STATE_ESTABLISHED;
2069			st->bucket = 0;
2070			st->offset = 0;
2071			rc	  = established_get_first(seq);
2072		}
2073		break;
2074	case TCP_SEQ_STATE_ESTABLISHED:
2075		rc = established_get_next(seq, v);
2076		break;
2077	}
2078out:
2079	++*pos;
2080	st->last_pos = *pos;
2081	return rc;
2082}
 
2083
2084static void tcp_seq_stop(struct seq_file *seq, void *v)
2085{
 
2086	struct tcp_iter_state *st = seq->private;
2087
2088	switch (st->state) {
2089	case TCP_SEQ_STATE_LISTENING:
2090		if (v != SEQ_START_TOKEN)
2091			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2092		break;
2093	case TCP_SEQ_STATE_ESTABLISHED:
2094		if (v)
2095			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2096		break;
2097	}
2098}
2099
2100int tcp_seq_open(struct inode *inode, struct file *file)
2101{
2102	struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2103	struct tcp_iter_state *s;
2104	int err;
2105
2106	err = seq_open_net(inode, file, &afinfo->seq_ops,
2107			  sizeof(struct tcp_iter_state));
2108	if (err < 0)
2109		return err;
2110
2111	s = ((struct seq_file *)file->private_data)->private;
2112	s->family		= afinfo->family;
2113	s->last_pos		= 0;
2114	return 0;
2115}
2116EXPORT_SYMBOL(tcp_seq_open);
2117
2118int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2119{
2120	int rc = 0;
2121	struct proc_dir_entry *p;
2122
2123	afinfo->seq_ops.start		= tcp_seq_start;
2124	afinfo->seq_ops.next		= tcp_seq_next;
2125	afinfo->seq_ops.stop		= tcp_seq_stop;
2126
2127	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2128			     afinfo->seq_fops, afinfo);
2129	if (!p)
2130		rc = -ENOMEM;
2131	return rc;
2132}
2133EXPORT_SYMBOL(tcp_proc_register);
2134
2135void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2136{
2137	remove_proc_entry(afinfo->name, net->proc_net);
2138}
2139EXPORT_SYMBOL(tcp_proc_unregister);
2140
2141static void get_openreq4(const struct request_sock *req,
2142			 struct seq_file *f, int i)
2143{
2144	const struct inet_request_sock *ireq = inet_rsk(req);
2145	long delta = req->rsk_timer.expires - jiffies;
2146
2147	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2148		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2149		i,
2150		ireq->ir_loc_addr,
2151		ireq->ir_num,
2152		ireq->ir_rmt_addr,
2153		ntohs(ireq->ir_rmt_port),
2154		TCP_SYN_RECV,
2155		0, 0, /* could print option size, but that is af dependent. */
2156		1,    /* timers active (only the expire timer) */
2157		jiffies_delta_to_clock_t(delta),
2158		req->num_timeout,
2159		from_kuid_munged(seq_user_ns(f),
2160				 sock_i_uid(req->rsk_listener)),
2161		0,  /* non standard timer */
2162		0, /* open_requests have no inode */
2163		0,
2164		req);
2165}
2166
2167static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2168{
2169	int timer_active;
2170	unsigned long timer_expires;
2171	const struct tcp_sock *tp = tcp_sk(sk);
2172	const struct inet_connection_sock *icsk = inet_csk(sk);
2173	const struct inet_sock *inet = inet_sk(sk);
2174	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2175	__be32 dest = inet->inet_daddr;
2176	__be32 src = inet->inet_rcv_saddr;
2177	__u16 destp = ntohs(inet->inet_dport);
2178	__u16 srcp = ntohs(inet->inet_sport);
 
2179	int rx_queue;
2180	int state;
2181
2182	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2183	    icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2184	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
 
2185		timer_active	= 1;
2186		timer_expires	= icsk->icsk_timeout;
2187	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2188		timer_active	= 4;
2189		timer_expires	= icsk->icsk_timeout;
2190	} else if (timer_pending(&sk->sk_timer)) {
2191		timer_active	= 2;
2192		timer_expires	= sk->sk_timer.expires;
2193	} else {
2194		timer_active	= 0;
2195		timer_expires = jiffies;
2196	}
2197
2198	state = sk_state_load(sk);
2199	if (state == TCP_LISTEN)
2200		rx_queue = sk->sk_ack_backlog;
2201	else
2202		/* Because we don't lock the socket,
2203		 * we might find a transient negative value.
2204		 */
2205		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2206
2207	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2208			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2209		i, src, srcp, dest, destp, state,
2210		tp->write_seq - tp->snd_una,
2211		rx_queue,
2212		timer_active,
2213		jiffies_delta_to_clock_t(timer_expires - jiffies),
2214		icsk->icsk_retransmits,
2215		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2216		icsk->icsk_probes_out,
2217		sock_i_ino(sk),
2218		atomic_read(&sk->sk_refcnt), sk,
2219		jiffies_to_clock_t(icsk->icsk_rto),
2220		jiffies_to_clock_t(icsk->icsk_ack.ato),
2221		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2222		tp->snd_cwnd,
2223		state == TCP_LISTEN ?
2224		    fastopenq->max_qlen :
2225		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2226}
2227
2228static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2229			       struct seq_file *f, int i)
2230{
2231	long delta = tw->tw_timer.expires - jiffies;
2232	__be32 dest, src;
2233	__u16 destp, srcp;
2234
2235	dest  = tw->tw_daddr;
2236	src   = tw->tw_rcv_saddr;
2237	destp = ntohs(tw->tw_dport);
2238	srcp  = ntohs(tw->tw_sport);
2239
2240	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2241		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2242		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2243		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2244		atomic_read(&tw->tw_refcnt), tw);
2245}
2246
2247#define TMPSZ 150
2248
2249static int tcp4_seq_show(struct seq_file *seq, void *v)
2250{
2251	struct tcp_iter_state *st;
2252	struct sock *sk = v;
2253
2254	seq_setwidth(seq, TMPSZ - 1);
2255	if (v == SEQ_START_TOKEN) {
2256		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2257			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2258			   "inode");
2259		goto out;
2260	}
2261	st = seq->private;
2262
2263	if (sk->sk_state == TCP_TIME_WAIT)
2264		get_timewait4_sock(v, seq, st->num);
2265	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2266		get_openreq4(v, seq, st->num);
2267	else
2268		get_tcp4_sock(v, seq, st->num);
2269out:
2270	seq_pad(seq, '\n');
2271	return 0;
2272}
2273
2274static const struct file_operations tcp_afinfo_seq_fops = {
2275	.owner   = THIS_MODULE,
2276	.open    = tcp_seq_open,
2277	.read    = seq_read,
2278	.llseek  = seq_lseek,
2279	.release = seq_release_net
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280};
2281
2282static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2283	.name		= "tcp",
2284	.family		= AF_INET,
2285	.seq_fops	= &tcp_afinfo_seq_fops,
2286	.seq_ops	= {
2287		.show		= tcp4_seq_show,
2288	},
2289};
2290
2291static int __net_init tcp4_proc_init_net(struct net *net)
2292{
2293	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2294}
2295
2296static void __net_exit tcp4_proc_exit_net(struct net *net)
2297{
2298	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2299}
2300
2301static struct pernet_operations tcp4_net_ops = {
2302	.init = tcp4_proc_init_net,
2303	.exit = tcp4_proc_exit_net,
2304};
2305
2306int __init tcp4_proc_init(void)
2307{
2308	return register_pernet_subsys(&tcp4_net_ops);
2309}
2310
2311void tcp4_proc_exit(void)
2312{
2313	unregister_pernet_subsys(&tcp4_net_ops);
2314}
2315#endif /* CONFIG_PROC_FS */
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317struct proto tcp_prot = {
2318	.name			= "TCP",
2319	.owner			= THIS_MODULE,
2320	.close			= tcp_close,
 
2321	.connect		= tcp_v4_connect,
2322	.disconnect		= tcp_disconnect,
2323	.accept			= inet_csk_accept,
2324	.ioctl			= tcp_ioctl,
2325	.init			= tcp_v4_init_sock,
2326	.destroy		= tcp_v4_destroy_sock,
2327	.shutdown		= tcp_shutdown,
2328	.setsockopt		= tcp_setsockopt,
2329	.getsockopt		= tcp_getsockopt,
 
 
2330	.recvmsg		= tcp_recvmsg,
2331	.sendmsg		= tcp_sendmsg,
2332	.sendpage		= tcp_sendpage,
2333	.backlog_rcv		= tcp_v4_do_rcv,
2334	.release_cb		= tcp_release_cb,
2335	.hash			= inet_hash,
2336	.unhash			= inet_unhash,
2337	.get_port		= inet_csk_get_port,
 
 
 
 
2338	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
2339	.stream_memory_free	= tcp_stream_memory_free,
2340	.sockets_allocated	= &tcp_sockets_allocated,
2341	.orphan_count		= &tcp_orphan_count,
 
2342	.memory_allocated	= &tcp_memory_allocated,
 
 
2343	.memory_pressure	= &tcp_memory_pressure,
2344	.sysctl_mem		= sysctl_tcp_mem,
2345	.sysctl_wmem		= sysctl_tcp_wmem,
2346	.sysctl_rmem		= sysctl_tcp_rmem,
2347	.max_header		= MAX_TCP_HEADER,
2348	.obj_size		= sizeof(struct tcp_sock),
2349	.slab_flags		= SLAB_DESTROY_BY_RCU,
2350	.twsk_prot		= &tcp_timewait_sock_ops,
2351	.rsk_prot		= &tcp_request_sock_ops,
2352	.h.hashinfo		= &tcp_hashinfo,
2353	.no_autobind		= true,
2354#ifdef CONFIG_COMPAT
2355	.compat_setsockopt	= compat_tcp_setsockopt,
2356	.compat_getsockopt	= compat_tcp_getsockopt,
2357#endif
2358	.diag_destroy		= tcp_abort,
2359};
2360EXPORT_SYMBOL(tcp_prot);
2361
2362static void __net_exit tcp_sk_exit(struct net *net)
2363{
2364	int cpu;
2365
2366	for_each_possible_cpu(cpu)
2367		inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu));
2368	free_percpu(net->ipv4.tcp_sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369}
2370
2371static int __net_init tcp_sk_init(struct net *net)
2372{
2373	int res, cpu;
2374
2375	net->ipv4.tcp_sk = alloc_percpu(struct sock *);
2376	if (!net->ipv4.tcp_sk)
2377		return -ENOMEM;
2378
2379	for_each_possible_cpu(cpu) {
2380		struct sock *sk;
2381
2382		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
2383					   IPPROTO_TCP, net);
2384		if (res)
2385			goto fail;
2386		*per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk;
2387	}
2388
2389	net->ipv4.sysctl_tcp_ecn = 2;
2390	net->ipv4.sysctl_tcp_ecn_fallback = 1;
2391
2392	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
 
2393	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
2394	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
 
2395
2396	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
2397	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
2398	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
2399
2400	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
2401	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
2402	net->ipv4.sysctl_tcp_syncookies = 1;
2403	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
2404	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
2405	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
2406	net->ipv4.sysctl_tcp_orphan_retries = 0;
2407	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
2408	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2409
2410	return 0;
2411fail:
2412	tcp_sk_exit(net);
2413
2414	return res;
2415}
2416
2417static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2418{
2419	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420}
2421
2422static struct pernet_operations __net_initdata tcp_sk_ops = {
2423       .init	   = tcp_sk_init,
2424       .exit	   = tcp_sk_exit,
2425       .exit_batch = tcp_sk_exit_batch,
2426};
2427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428void __init tcp_v4_init(void)
2429{
2430	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431	if (register_pernet_subsys(&tcp_sk_ops))
2432		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2433}