Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2#define pr_fmt(fmt) "prime numbers: " fmt
  3
  4#include <linux/module.h>
  5#include <linux/mutex.h>
  6#include <linux/prime_numbers.h>
  7#include <linux/slab.h>
  8
  9struct primes {
 10	struct rcu_head rcu;
 11	unsigned long last, sz;
 12	unsigned long primes[];
 13};
 14
 15#if BITS_PER_LONG == 64
 16static const struct primes small_primes = {
 17	.last = 61,
 18	.sz = 64,
 19	.primes = {
 20		BIT(2) |
 21		BIT(3) |
 22		BIT(5) |
 23		BIT(7) |
 24		BIT(11) |
 25		BIT(13) |
 26		BIT(17) |
 27		BIT(19) |
 28		BIT(23) |
 29		BIT(29) |
 30		BIT(31) |
 31		BIT(37) |
 32		BIT(41) |
 33		BIT(43) |
 34		BIT(47) |
 35		BIT(53) |
 36		BIT(59) |
 37		BIT(61)
 38	}
 39};
 40#elif BITS_PER_LONG == 32
 41static const struct primes small_primes = {
 42	.last = 31,
 43	.sz = 32,
 44	.primes = {
 45		BIT(2) |
 46		BIT(3) |
 47		BIT(5) |
 48		BIT(7) |
 49		BIT(11) |
 50		BIT(13) |
 51		BIT(17) |
 52		BIT(19) |
 53		BIT(23) |
 54		BIT(29) |
 55		BIT(31)
 56	}
 57};
 58#else
 59#error "unhandled BITS_PER_LONG"
 60#endif
 61
 62static DEFINE_MUTEX(lock);
 63static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
 64
 65static unsigned long selftest_max;
 66
 67static bool slow_is_prime_number(unsigned long x)
 68{
 69	unsigned long y = int_sqrt(x);
 70
 71	while (y > 1) {
 72		if ((x % y) == 0)
 73			break;
 74		y--;
 75	}
 76
 77	return y == 1;
 78}
 79
 80static unsigned long slow_next_prime_number(unsigned long x)
 81{
 82	while (x < ULONG_MAX && !slow_is_prime_number(++x))
 83		;
 84
 85	return x;
 86}
 87
 88static unsigned long clear_multiples(unsigned long x,
 89				     unsigned long *p,
 90				     unsigned long start,
 91				     unsigned long end)
 92{
 93	unsigned long m;
 94
 95	m = 2 * x;
 96	if (m < start)
 97		m = roundup(start, x);
 98
 99	while (m < end) {
100		__clear_bit(m, p);
101		m += x;
102	}
103
104	return x;
105}
106
107static bool expand_to_next_prime(unsigned long x)
108{
109	const struct primes *p;
110	struct primes *new;
111	unsigned long sz, y;
112
113	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
114	 * there is always at least one prime p between n and 2n - 2.
115	 * Equivalently, if n > 1, then there is always at least one prime p
116	 * such that n < p < 2n.
117	 *
118	 * http://mathworld.wolfram.com/BertrandsPostulate.html
119	 * https://en.wikipedia.org/wiki/Bertrand's_postulate
120	 */
121	sz = 2 * x;
122	if (sz < x)
123		return false;
124
125	sz = round_up(sz, BITS_PER_LONG);
126	new = kmalloc(sizeof(*new) + bitmap_size(sz),
127		      GFP_KERNEL | __GFP_NOWARN);
128	if (!new)
129		return false;
130
131	mutex_lock(&lock);
132	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
133	if (x < p->last) {
134		kfree(new);
135		goto unlock;
136	}
137
138	/* Where memory permits, track the primes using the
139	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
140	 * primes from the set, what remains in the set is therefore prime.
141	 */
142	bitmap_fill(new->primes, sz);
143	bitmap_copy(new->primes, p->primes, p->sz);
144	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
145		new->last = clear_multiples(y, new->primes, p->sz, sz);
146	new->sz = sz;
147
148	BUG_ON(new->last <= x);
149
150	rcu_assign_pointer(primes, new);
151	if (p != &small_primes)
152		kfree_rcu((struct primes *)p, rcu);
153
154unlock:
155	mutex_unlock(&lock);
156	return true;
157}
158
159static void free_primes(void)
160{
161	const struct primes *p;
162
163	mutex_lock(&lock);
164	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
165	if (p != &small_primes) {
166		rcu_assign_pointer(primes, &small_primes);
167		kfree_rcu((struct primes *)p, rcu);
168	}
169	mutex_unlock(&lock);
170}
171
172/**
173 * next_prime_number - return the next prime number
174 * @x: the starting point for searching to test
175 *
176 * A prime number is an integer greater than 1 that is only divisible by
177 * itself and 1.  The set of prime numbers is computed using the Sieve of
178 * Eratoshenes (on finding a prime, all multiples of that prime are removed
179 * from the set) enabling a fast lookup of the next prime number larger than
180 * @x. If the sieve fails (memory limitation), the search falls back to using
181 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
182 * final prime as a sentinel).
183 *
184 * Returns: the next prime number larger than @x
185 */
186unsigned long next_prime_number(unsigned long x)
187{
188	const struct primes *p;
189
190	rcu_read_lock();
191	p = rcu_dereference(primes);
192	while (x >= p->last) {
193		rcu_read_unlock();
194
195		if (!expand_to_next_prime(x))
196			return slow_next_prime_number(x);
197
198		rcu_read_lock();
199		p = rcu_dereference(primes);
200	}
201	x = find_next_bit(p->primes, p->last, x + 1);
202	rcu_read_unlock();
203
204	return x;
205}
206EXPORT_SYMBOL(next_prime_number);
207
208/**
209 * is_prime_number - test whether the given number is prime
210 * @x: the number to test
211 *
212 * A prime number is an integer greater than 1 that is only divisible by
213 * itself and 1. Internally a cache of prime numbers is kept (to speed up
214 * searching for sequential primes, see next_prime_number()), but if the number
215 * falls outside of that cache, its primality is tested using trial-divison.
216 *
217 * Returns: true if @x is prime, false for composite numbers.
218 */
219bool is_prime_number(unsigned long x)
220{
221	const struct primes *p;
222	bool result;
223
224	rcu_read_lock();
225	p = rcu_dereference(primes);
226	while (x >= p->sz) {
227		rcu_read_unlock();
228
229		if (!expand_to_next_prime(x))
230			return slow_is_prime_number(x);
231
232		rcu_read_lock();
233		p = rcu_dereference(primes);
234	}
235	result = test_bit(x, p->primes);
236	rcu_read_unlock();
237
238	return result;
239}
240EXPORT_SYMBOL(is_prime_number);
241
242static void dump_primes(void)
243{
244	const struct primes *p;
245	char *buf;
246
247	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
248
249	rcu_read_lock();
250	p = rcu_dereference(primes);
251
252	if (buf)
253		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
254	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
255		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
256
257	rcu_read_unlock();
258
259	kfree(buf);
260}
261
262static int selftest(unsigned long max)
263{
264	unsigned long x, last;
265
266	if (!max)
267		return 0;
268
269	for (last = 0, x = 2; x < max; x++) {
270		bool slow = slow_is_prime_number(x);
271		bool fast = is_prime_number(x);
272
273		if (slow != fast) {
274			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
275			       x, slow ? "yes" : "no", fast ? "yes" : "no");
276			goto err;
277		}
278
279		if (!slow)
280			continue;
281
282		if (next_prime_number(last) != x) {
283			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
284			       last, x, next_prime_number(last));
285			goto err;
286		}
287		last = x;
288	}
289
290	pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
291	return 0;
292
293err:
294	dump_primes();
295	return -EINVAL;
296}
297
298static int __init primes_init(void)
299{
300	return selftest(selftest_max);
301}
302
303static void __exit primes_exit(void)
304{
305	free_primes();
306}
307
308module_init(primes_init);
309module_exit(primes_exit);
310
311module_param_named(selftest, selftest_max, ulong, 0400);
312
313MODULE_AUTHOR("Intel Corporation");
314MODULE_DESCRIPTION("Prime number library");
315MODULE_LICENSE("GPL");