Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * sched_clock() for unstable CPU clocks
  4 *
  5 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  6 *
  7 *  Updates and enhancements:
  8 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  9 *
 10 * Based on code by:
 11 *   Ingo Molnar <mingo@redhat.com>
 12 *   Guillaume Chazarain <guichaz@gmail.com>
 13 *
 14 *
 15 * What this file implements:
 16 *
 17 * cpu_clock(i) provides a fast (execution time) high resolution
 18 * clock with bounded drift between CPUs. The value of cpu_clock(i)
 19 * is monotonic for constant i. The timestamp returned is in nanoseconds.
 20 *
 21 * ######################### BIG FAT WARNING ##########################
 22 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 23 * # go backwards !!                                                  #
 24 * ####################################################################
 25 *
 26 * There is no strict promise about the base, although it tends to start
 27 * at 0 on boot (but people really shouldn't rely on that).
 28 *
 29 * cpu_clock(i)       -- can be used from any context, including NMI.
 30 * local_clock()      -- is cpu_clock() on the current CPU.
 31 *
 32 * sched_clock_cpu(i)
 33 *
 34 * How it is implemented:
 35 *
 36 * The implementation either uses sched_clock() when
 37 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
 38 * sched_clock() is assumed to provide these properties (mostly it means
 39 * the architecture provides a globally synchronized highres time source).
 40 *
 41 * Otherwise it tries to create a semi stable clock from a mixture of other
 42 * clocks, including:
 43 *
 44 *  - GTOD (clock monotonic)
 45 *  - sched_clock()
 46 *  - explicit idle events
 47 *
 48 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
 49 * deltas are filtered to provide monotonicity and keeping it within an
 50 * expected window.
 51 *
 52 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
 53 * that is otherwise invisible (TSC gets stopped).
 54 *
 55 */
 
 
 
 
 
 
 
 
 
 
 56
 57/*
 58 * Scheduler clock - returns current time in nanosec units.
 59 * This is default implementation.
 60 * Architectures and sub-architectures can override this.
 61 */
 62notrace unsigned long long __weak sched_clock(void)
 63{
 64	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
 65					* (NSEC_PER_SEC / HZ);
 66}
 67EXPORT_SYMBOL_GPL(sched_clock);
 68
 69static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
 70
 71#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 72/*
 73 * We must start with !__sched_clock_stable because the unstable -> stable
 74 * transition is accurate, while the stable -> unstable transition is not.
 75 *
 76 * Similarly we start with __sched_clock_stable_early, thereby assuming we
 77 * will become stable, such that there's only a single 1 -> 0 transition.
 78 */
 79static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
 80static int __sched_clock_stable_early = 1;
 81
 82/*
 83 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
 84 */
 85__read_mostly u64 __sched_clock_offset;
 86static __read_mostly u64 __gtod_offset;
 87
 88struct sched_clock_data {
 89	u64			tick_raw;
 90	u64			tick_gtod;
 91	u64			clock;
 92};
 93
 94static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
 95
 96static __always_inline struct sched_clock_data *this_scd(void)
 97{
 98	return this_cpu_ptr(&sched_clock_data);
 99}
100
101notrace static inline struct sched_clock_data *cpu_sdc(int cpu)
102{
103	return &per_cpu(sched_clock_data, cpu);
104}
105
106notrace int sched_clock_stable(void)
107{
108	return static_branch_likely(&__sched_clock_stable);
109}
110
111notrace static void __scd_stamp(struct sched_clock_data *scd)
112{
113	scd->tick_gtod = ktime_get_ns();
114	scd->tick_raw = sched_clock();
115}
116
117notrace static void __set_sched_clock_stable(void)
118{
119	struct sched_clock_data *scd;
120
121	/*
122	 * Since we're still unstable and the tick is already running, we have
123	 * to disable IRQs in order to get a consistent scd->tick* reading.
124	 */
125	local_irq_disable();
126	scd = this_scd();
127	/*
128	 * Attempt to make the (initial) unstable->stable transition continuous.
129	 */
130	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
131	local_irq_enable();
132
133	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
134			scd->tick_gtod, __gtod_offset,
135			scd->tick_raw,  __sched_clock_offset);
136
137	static_branch_enable(&__sched_clock_stable);
138	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
139}
140
141/*
142 * If we ever get here, we're screwed, because we found out -- typically after
143 * the fact -- that TSC wasn't good. This means all our clocksources (including
144 * ktime) could have reported wrong values.
145 *
146 * What we do here is an attempt to fix up and continue sort of where we left
147 * off in a coherent manner.
148 *
149 * The only way to fully avoid random clock jumps is to boot with:
150 * "tsc=unstable".
151 */
152notrace static void __sched_clock_work(struct work_struct *work)
153{
154	struct sched_clock_data *scd;
155	int cpu;
156
157	/* take a current timestamp and set 'now' */
158	preempt_disable();
159	scd = this_scd();
160	__scd_stamp(scd);
161	scd->clock = scd->tick_gtod + __gtod_offset;
162	preempt_enable();
163
164	/* clone to all CPUs */
165	for_each_possible_cpu(cpu)
166		per_cpu(sched_clock_data, cpu) = *scd;
167
168	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
169	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
170			scd->tick_gtod, __gtod_offset,
171			scd->tick_raw,  __sched_clock_offset);
172
173	static_branch_disable(&__sched_clock_stable);
174}
175
176static DECLARE_WORK(sched_clock_work, __sched_clock_work);
177
178notrace static void __clear_sched_clock_stable(void)
179{
180	if (!sched_clock_stable())
 
 
 
 
181		return;
182
183	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
184	schedule_work(&sched_clock_work);
185}
186
187notrace void clear_sched_clock_stable(void)
188{
189	__sched_clock_stable_early = 0;
 
 
190
191	smp_mb(); /* matches sched_clock_init_late() */
192
193	if (static_key_count(&sched_clock_running.key) == 2)
194		__clear_sched_clock_stable();
 
195}
196
197notrace static void __sched_clock_gtod_offset(void)
198{
199	struct sched_clock_data *scd = this_scd();
200
201	__scd_stamp(scd);
202	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
203}
204
205void __init sched_clock_init(void)
206{
207	/*
208	 * Set __gtod_offset such that once we mark sched_clock_running,
209	 * sched_clock_tick() continues where sched_clock() left off.
210	 *
211	 * Even if TSC is buggered, we're still UP at this point so it
212	 * can't really be out of sync.
213	 */
214	local_irq_disable();
215	__sched_clock_gtod_offset();
216	local_irq_enable();
 
 
217
218	static_branch_inc(&sched_clock_running);
219}
220/*
221 * We run this as late_initcall() such that it runs after all built-in drivers,
222 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
223 */
224static int __init sched_clock_init_late(void)
225{
226	static_branch_inc(&sched_clock_running);
227	/*
228	 * Ensure that it is impossible to not do a static_key update.
229	 *
230	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
231	 * and do the update, or we must see their __sched_clock_stable_early
232	 * and do the update, or both.
233	 */
234	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
235
236	if (__sched_clock_stable_early)
237		__set_sched_clock_stable();
238
239	return 0;
240}
241late_initcall(sched_clock_init_late);
242
243/*
244 * min, max except they take wrapping into account
245 */
246
247static __always_inline u64 wrap_min(u64 x, u64 y)
248{
249	return (s64)(x - y) < 0 ? x : y;
250}
251
252static __always_inline u64 wrap_max(u64 x, u64 y)
253{
254	return (s64)(x - y) > 0 ? x : y;
255}
256
257/*
258 * update the percpu scd from the raw @now value
259 *
260 *  - filter out backward motion
261 *  - use the GTOD tick value to create a window to filter crazy TSC values
262 */
263static __always_inline u64 sched_clock_local(struct sched_clock_data *scd)
264{
265	u64 now, clock, old_clock, min_clock, max_clock, gtod;
266	s64 delta;
267
268again:
269	now = sched_clock_noinstr();
270	delta = now - scd->tick_raw;
271	if (unlikely(delta < 0))
272		delta = 0;
273
274	old_clock = scd->clock;
275
276	/*
277	 * scd->clock = clamp(scd->tick_gtod + delta,
278	 *		      max(scd->tick_gtod, scd->clock),
279	 *		      scd->tick_gtod + TICK_NSEC);
280	 */
281
282	gtod = scd->tick_gtod + __gtod_offset;
283	clock = gtod + delta;
284	min_clock = wrap_max(gtod, old_clock);
285	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
286
287	clock = wrap_max(clock, min_clock);
288	clock = wrap_min(clock, max_clock);
289
290	if (!raw_try_cmpxchg64(&scd->clock, &old_clock, clock))
291		goto again;
292
293	return clock;
294}
295
296noinstr u64 local_clock_noinstr(void)
297{
298	u64 clock;
299
300	if (static_branch_likely(&__sched_clock_stable))
301		return sched_clock_noinstr() + __sched_clock_offset;
302
303	if (!static_branch_likely(&sched_clock_running))
304		return sched_clock_noinstr();
305
306	clock = sched_clock_local(this_scd());
307
308	return clock;
309}
310
311u64 local_clock(void)
312{
313	u64 now;
314	preempt_disable_notrace();
315	now = local_clock_noinstr();
316	preempt_enable_notrace();
317	return now;
318}
319EXPORT_SYMBOL_GPL(local_clock);
320
321static notrace u64 sched_clock_remote(struct sched_clock_data *scd)
322{
323	struct sched_clock_data *my_scd = this_scd();
324	u64 this_clock, remote_clock;
325	u64 *ptr, old_val, val;
326
327#if BITS_PER_LONG != 64
328again:
329	/*
330	 * Careful here: The local and the remote clock values need to
331	 * be read out atomic as we need to compare the values and
332	 * then update either the local or the remote side. So the
333	 * cmpxchg64 below only protects one readout.
334	 *
335	 * We must reread via sched_clock_local() in the retry case on
336	 * 32-bit kernels as an NMI could use sched_clock_local() via the
337	 * tracer and hit between the readout of
338	 * the low 32-bit and the high 32-bit portion.
339	 */
340	this_clock = sched_clock_local(my_scd);
341	/*
342	 * We must enforce atomic readout on 32-bit, otherwise the
343	 * update on the remote CPU can hit in between the readout of
344	 * the low 32-bit and the high 32-bit portion.
345	 */
346	remote_clock = cmpxchg64(&scd->clock, 0, 0);
347#else
348	/*
349	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
350	 * update, so we can avoid the above 32-bit dance.
351	 */
352	sched_clock_local(my_scd);
353again:
354	this_clock = my_scd->clock;
355	remote_clock = scd->clock;
356#endif
357
358	/*
359	 * Use the opportunity that we have both locks
360	 * taken to couple the two clocks: we take the
361	 * larger time as the latest time for both
362	 * runqueues. (this creates monotonic movement)
363	 */
364	if (likely((s64)(remote_clock - this_clock) < 0)) {
365		ptr = &scd->clock;
366		old_val = remote_clock;
367		val = this_clock;
368	} else {
369		/*
370		 * Should be rare, but possible:
371		 */
372		ptr = &my_scd->clock;
373		old_val = this_clock;
374		val = remote_clock;
375	}
376
377	if (!try_cmpxchg64(ptr, &old_val, val))
378		goto again;
379
380	return val;
381}
382
383/*
384 * Similar to cpu_clock(), but requires local IRQs to be disabled.
385 *
386 * See cpu_clock().
387 */
388notrace u64 sched_clock_cpu(int cpu)
389{
390	struct sched_clock_data *scd;
391	u64 clock;
392
393	if (sched_clock_stable())
394		return sched_clock() + __sched_clock_offset;
395
396	if (!static_branch_likely(&sched_clock_running))
397		return sched_clock();
398
 
 
 
399	preempt_disable_notrace();
400	scd = cpu_sdc(cpu);
401
402	if (cpu != smp_processor_id())
403		clock = sched_clock_remote(scd);
404	else
405		clock = sched_clock_local(scd);
406	preempt_enable_notrace();
407
408	return clock;
409}
410EXPORT_SYMBOL_GPL(sched_clock_cpu);
411
412notrace void sched_clock_tick(void)
413{
414	struct sched_clock_data *scd;
 
415
416	if (sched_clock_stable())
417		return;
418
419	if (!static_branch_likely(&sched_clock_running))
420		return;
421
422	lockdep_assert_irqs_disabled();
423
424	scd = this_scd();
425	__scd_stamp(scd);
426	sched_clock_local(scd);
427}
428
429notrace void sched_clock_tick_stable(void)
430{
431	if (!sched_clock_stable())
432		return;
433
434	/*
435	 * Called under watchdog_lock.
436	 *
437	 * The watchdog just found this TSC to (still) be stable, so now is a
438	 * good moment to update our __gtod_offset. Because once we find the
439	 * TSC to be unstable, any computation will be computing crap.
440	 */
441	local_irq_disable();
442	__sched_clock_gtod_offset();
443	local_irq_enable();
444}
445
446/*
447 * We are going deep-idle (IRQs are disabled):
448 */
449notrace void sched_clock_idle_sleep_event(void)
450{
451	sched_clock_cpu(smp_processor_id());
452}
453EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
454
455/*
456 * We just idled; resync with ktime.
457 */
458notrace void sched_clock_idle_wakeup_event(void)
459{
460	unsigned long flags;
461
462	if (sched_clock_stable())
463		return;
464
465	if (unlikely(timekeeping_suspended))
466		return;
467
468	local_irq_save(flags);
469	sched_clock_tick();
470	local_irq_restore(flags);
471}
472EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
475
476void __init sched_clock_init(void)
477{
478	static_branch_inc(&sched_clock_running);
479	local_irq_disable();
480	generic_sched_clock_init();
481	local_irq_enable();
482}
483
484notrace u64 sched_clock_cpu(int cpu)
485{
486	if (!static_branch_likely(&sched_clock_running))
487		return 0;
488
489	return sched_clock();
490}
491
 
 
 
 
 
 
 
 
 
 
492#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
493
 
 
 
494/*
495 * Running clock - returns the time that has elapsed while a guest has been
496 * running.
497 * On a guest this value should be local_clock minus the time the guest was
498 * suspended by the hypervisor (for any reason).
499 * On bare metal this function should return the same as local_clock.
500 * Architectures and sub-architectures can override this.
501 */
502notrace u64 __weak running_clock(void)
503{
504	return local_clock();
505}
v4.6
 
  1/*
  2 * sched_clock for unstable cpu clocks
  3 *
  4 *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5 *
  6 *  Updates and enhancements:
  7 *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8 *
  9 * Based on code by:
 10 *   Ingo Molnar <mingo@redhat.com>
 11 *   Guillaume Chazarain <guichaz@gmail.com>
 12 *
 13 *
 14 * What:
 15 *
 16 * cpu_clock(i) provides a fast (execution time) high resolution
 17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
 18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
 19 *
 20 * ######################### BIG FAT WARNING ##########################
 21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
 22 * # go backwards !!                                                  #
 23 * ####################################################################
 24 *
 25 * There is no strict promise about the base, although it tends to start
 26 * at 0 on boot (but people really shouldn't rely on that).
 27 *
 28 * cpu_clock(i)       -- can be used from any context, including NMI.
 29 * local_clock()      -- is cpu_clock() on the current cpu.
 30 *
 31 * sched_clock_cpu(i)
 32 *
 33 * How:
 34 *
 35 * The implementation either uses sched_clock() when
 36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
 37 * sched_clock() is assumed to provide these properties (mostly it means
 38 * the architecture provides a globally synchronized highres time source).
 39 *
 40 * Otherwise it tries to create a semi stable clock from a mixture of other
 41 * clocks, including:
 42 *
 43 *  - GTOD (clock monotomic)
 44 *  - sched_clock()
 45 *  - explicit idle events
 46 *
 47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
 48 * deltas are filtered to provide monotonicity and keeping it within an
 49 * expected window.
 50 *
 51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
 52 * that is otherwise invisible (TSC gets stopped).
 53 *
 54 */
 55#include <linux/spinlock.h>
 56#include <linux/hardirq.h>
 57#include <linux/export.h>
 58#include <linux/percpu.h>
 59#include <linux/ktime.h>
 60#include <linux/sched.h>
 61#include <linux/static_key.h>
 62#include <linux/workqueue.h>
 63#include <linux/compiler.h>
 64#include <linux/tick.h>
 65
 66/*
 67 * Scheduler clock - returns current time in nanosec units.
 68 * This is default implementation.
 69 * Architectures and sub-architectures can override this.
 70 */
 71unsigned long long __weak sched_clock(void)
 72{
 73	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
 74					* (NSEC_PER_SEC / HZ);
 75}
 76EXPORT_SYMBOL_GPL(sched_clock);
 77
 78__read_mostly int sched_clock_running;
 79
 80#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 81static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
 82static int __sched_clock_stable_early;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83
 84int sched_clock_stable(void)
 85{
 86	return static_key_false(&__sched_clock_stable);
 87}
 88
 89static void __set_sched_clock_stable(void)
 90{
 91	if (!sched_clock_stable())
 92		static_key_slow_inc(&__sched_clock_stable);
 93
 94	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 
 
 
 95}
 96
 97void set_sched_clock_stable(void)
 98{
 99	__sched_clock_stable_early = 1;
100
101	smp_mb(); /* matches sched_clock_init() */
 
 
 
 
 
 
 
 
 
 
102
103	if (!sched_clock_running)
104		return;
 
105
106	__set_sched_clock_stable();
 
107}
108
109static void __clear_sched_clock_stable(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
110{
111	/* XXX worry about clock continuity */
112	if (sched_clock_stable())
113		static_key_slow_dec(&__sched_clock_stable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
115	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
116}
117
118static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
119
120void clear_sched_clock_stable(void)
121{
122	__sched_clock_stable_early = 0;
123
124	smp_mb(); /* matches sched_clock_init() */
125
126	if (!sched_clock_running)
127		return;
128
 
129	schedule_work(&sched_clock_work);
130}
131
132struct sched_clock_data {
133	u64			tick_raw;
134	u64			tick_gtod;
135	u64			clock;
136};
137
138static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
139
140static inline struct sched_clock_data *this_scd(void)
141{
142	return this_cpu_ptr(&sched_clock_data);
143}
144
145static inline struct sched_clock_data *cpu_sdc(int cpu)
146{
147	return &per_cpu(sched_clock_data, cpu);
 
 
 
148}
149
150void sched_clock_init(void)
151{
152	u64 ktime_now = ktime_to_ns(ktime_get());
153	int cpu;
154
155	for_each_possible_cpu(cpu) {
156		struct sched_clock_data *scd = cpu_sdc(cpu);
157
158		scd->tick_raw = 0;
159		scd->tick_gtod = ktime_now;
160		scd->clock = ktime_now;
161	}
162
163	sched_clock_running = 1;
164
 
 
 
 
 
 
 
 
 
165	/*
166	 * Ensure that it is impossible to not do a static_key update.
167	 *
168	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
169	 * and do the update, or we must see their __sched_clock_stable_early
170	 * and do the update, or both.
171	 */
172	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
173
174	if (__sched_clock_stable_early)
175		__set_sched_clock_stable();
176	else
177		__clear_sched_clock_stable(NULL);
178}
 
179
180/*
181 * min, max except they take wrapping into account
182 */
183
184static inline u64 wrap_min(u64 x, u64 y)
185{
186	return (s64)(x - y) < 0 ? x : y;
187}
188
189static inline u64 wrap_max(u64 x, u64 y)
190{
191	return (s64)(x - y) > 0 ? x : y;
192}
193
194/*
195 * update the percpu scd from the raw @now value
196 *
197 *  - filter out backward motion
198 *  - use the GTOD tick value to create a window to filter crazy TSC values
199 */
200static u64 sched_clock_local(struct sched_clock_data *scd)
201{
202	u64 now, clock, old_clock, min_clock, max_clock;
203	s64 delta;
204
205again:
206	now = sched_clock();
207	delta = now - scd->tick_raw;
208	if (unlikely(delta < 0))
209		delta = 0;
210
211	old_clock = scd->clock;
212
213	/*
214	 * scd->clock = clamp(scd->tick_gtod + delta,
215	 *		      max(scd->tick_gtod, scd->clock),
216	 *		      scd->tick_gtod + TICK_NSEC);
217	 */
218
219	clock = scd->tick_gtod + delta;
220	min_clock = wrap_max(scd->tick_gtod, old_clock);
221	max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
 
222
223	clock = wrap_max(clock, min_clock);
224	clock = wrap_min(clock, max_clock);
225
226	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
227		goto again;
228
229	return clock;
230}
231
232static u64 sched_clock_remote(struct sched_clock_data *scd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233{
234	struct sched_clock_data *my_scd = this_scd();
235	u64 this_clock, remote_clock;
236	u64 *ptr, old_val, val;
237
238#if BITS_PER_LONG != 64
239again:
240	/*
241	 * Careful here: The local and the remote clock values need to
242	 * be read out atomic as we need to compare the values and
243	 * then update either the local or the remote side. So the
244	 * cmpxchg64 below only protects one readout.
245	 *
246	 * We must reread via sched_clock_local() in the retry case on
247	 * 32bit as an NMI could use sched_clock_local() via the
248	 * tracer and hit between the readout of
249	 * the low32bit and the high 32bit portion.
250	 */
251	this_clock = sched_clock_local(my_scd);
252	/*
253	 * We must enforce atomic readout on 32bit, otherwise the
254	 * update on the remote cpu can hit inbetween the readout of
255	 * the low32bit and the high 32bit portion.
256	 */
257	remote_clock = cmpxchg64(&scd->clock, 0, 0);
258#else
259	/*
260	 * On 64bit the read of [my]scd->clock is atomic versus the
261	 * update, so we can avoid the above 32bit dance.
262	 */
263	sched_clock_local(my_scd);
264again:
265	this_clock = my_scd->clock;
266	remote_clock = scd->clock;
267#endif
268
269	/*
270	 * Use the opportunity that we have both locks
271	 * taken to couple the two clocks: we take the
272	 * larger time as the latest time for both
273	 * runqueues. (this creates monotonic movement)
274	 */
275	if (likely((s64)(remote_clock - this_clock) < 0)) {
276		ptr = &scd->clock;
277		old_val = remote_clock;
278		val = this_clock;
279	} else {
280		/*
281		 * Should be rare, but possible:
282		 */
283		ptr = &my_scd->clock;
284		old_val = this_clock;
285		val = remote_clock;
286	}
287
288	if (cmpxchg64(ptr, old_val, val) != old_val)
289		goto again;
290
291	return val;
292}
293
294/*
295 * Similar to cpu_clock(), but requires local IRQs to be disabled.
296 *
297 * See cpu_clock().
298 */
299u64 sched_clock_cpu(int cpu)
300{
301	struct sched_clock_data *scd;
302	u64 clock;
303
304	if (sched_clock_stable())
 
 
 
305		return sched_clock();
306
307	if (unlikely(!sched_clock_running))
308		return 0ull;
309
310	preempt_disable_notrace();
311	scd = cpu_sdc(cpu);
312
313	if (cpu != smp_processor_id())
314		clock = sched_clock_remote(scd);
315	else
316		clock = sched_clock_local(scd);
317	preempt_enable_notrace();
318
319	return clock;
320}
 
321
322void sched_clock_tick(void)
323{
324	struct sched_clock_data *scd;
325	u64 now, now_gtod;
326
327	if (sched_clock_stable())
328		return;
329
330	if (unlikely(!sched_clock_running))
331		return;
332
333	WARN_ON_ONCE(!irqs_disabled());
334
335	scd = this_scd();
336	now_gtod = ktime_to_ns(ktime_get());
337	now = sched_clock();
 
 
 
 
 
 
338
339	scd->tick_raw = now;
340	scd->tick_gtod = now_gtod;
341	sched_clock_local(scd);
 
 
 
 
 
 
 
342}
343
344/*
345 * We are going deep-idle (irqs are disabled):
346 */
347void sched_clock_idle_sleep_event(void)
348{
349	sched_clock_cpu(smp_processor_id());
350}
351EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
352
353/*
354 * We just idled delta nanoseconds (called with irqs disabled):
355 */
356void sched_clock_idle_wakeup_event(u64 delta_ns)
357{
358	if (timekeeping_suspended)
 
 
 
 
 
359		return;
360
 
361	sched_clock_tick();
362	touch_softlockup_watchdog_sched();
363}
364EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
365
366/*
367 * As outlined at the top, provides a fast, high resolution, nanosecond
368 * time source that is monotonic per cpu argument and has bounded drift
369 * between cpus.
370 *
371 * ######################### BIG FAT WARNING ##########################
372 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
373 * # go backwards !!                                                  #
374 * ####################################################################
375 */
376u64 cpu_clock(int cpu)
377{
378	if (!sched_clock_stable())
379		return sched_clock_cpu(cpu);
380
381	return sched_clock();
382}
383
384/*
385 * Similar to cpu_clock() for the current cpu. Time will only be observed
386 * to be monotonic if care is taken to only compare timestampt taken on the
387 * same CPU.
388 *
389 * See cpu_clock().
390 */
391u64 local_clock(void)
392{
393	if (!sched_clock_stable())
394		return sched_clock_cpu(raw_smp_processor_id());
395
396	return sched_clock();
397}
398
399#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
400
401void sched_clock_init(void)
402{
403	sched_clock_running = 1;
 
 
 
404}
405
406u64 sched_clock_cpu(int cpu)
407{
408	if (unlikely(!sched_clock_running))
409		return 0;
410
411	return sched_clock();
412}
413
414u64 cpu_clock(int cpu)
415{
416	return sched_clock();
417}
418
419u64 local_clock(void)
420{
421	return sched_clock();
422}
423
424#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
425
426EXPORT_SYMBOL_GPL(cpu_clock);
427EXPORT_SYMBOL_GPL(local_clock);
428
429/*
430 * Running clock - returns the time that has elapsed while a guest has been
431 * running.
432 * On a guest this value should be local_clock minus the time the guest was
433 * suspended by the hypervisor (for any reason).
434 * On bare metal this function should return the same as local_clock.
435 * Architectures and sub-architectures can override this.
436 */
437u64 __weak running_clock(void)
438{
439	return local_clock();
440}