Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Queued spinlock
4 *
5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7 * (C) Copyright 2015 Intel Corp.
8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9 *
10 * Authors: Waiman Long <longman@redhat.com>
11 * Peter Zijlstra <peterz@infradead.org>
12 */
13
14#ifndef _GEN_PV_LOCK_SLOWPATH
15
16#include <linux/smp.h>
17#include <linux/bug.h>
18#include <linux/cpumask.h>
19#include <linux/percpu.h>
20#include <linux/hardirq.h>
21#include <linux/mutex.h>
22#include <linux/prefetch.h>
23#include <asm/byteorder.h>
24#include <asm/qspinlock.h>
25#include <trace/events/lock.h>
26
27/*
28 * Include queued spinlock statistics code
29 */
30#include "qspinlock_stat.h"
31
32/*
33 * The basic principle of a queue-based spinlock can best be understood
34 * by studying a classic queue-based spinlock implementation called the
35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
37 * Scott") is available at
38 *
39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
40 *
41 * This queued spinlock implementation is based on the MCS lock, however to
42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
43 * existing API, we must modify it somehow.
44 *
45 * In particular; where the traditional MCS lock consists of a tail pointer
46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
47 * unlock the next pending (next->locked), we compress both these: {tail,
48 * next->locked} into a single u32 value.
49 *
50 * Since a spinlock disables recursion of its own context and there is a limit
51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
53 * we can encode the tail by combining the 2-bit nesting level with the cpu
54 * number. With one byte for the lock value and 3 bytes for the tail, only a
55 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
56 * we extend it to a full byte to achieve better performance for architectures
57 * that support atomic byte write.
58 *
59 * We also change the first spinner to spin on the lock bit instead of its
60 * node; whereby avoiding the need to carry a node from lock to unlock, and
61 * preserving existing lock API. This also makes the unlock code simpler and
62 * faster.
63 *
64 * N.B. The current implementation only supports architectures that allow
65 * atomic operations on smaller 8-bit and 16-bit data types.
66 *
67 */
68
69#include "mcs_spinlock.h"
70#define MAX_NODES 4
71
72/*
73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
74 * size and four of them will fit nicely in one 64-byte cacheline. For
75 * pvqspinlock, however, we need more space for extra data. To accommodate
76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
77 * two of them can fit in a cacheline in this case. That is OK as it is rare
78 * to have more than 2 levels of slowpath nesting in actual use. We don't
79 * want to penalize pvqspinlocks to optimize for a rare case in native
80 * qspinlocks.
81 */
82struct qnode {
83 struct mcs_spinlock mcs;
84#ifdef CONFIG_PARAVIRT_SPINLOCKS
85 long reserved[2];
86#endif
87};
88
89/*
90 * The pending bit spinning loop count.
91 * This heuristic is used to limit the number of lockword accesses
92 * made by atomic_cond_read_relaxed when waiting for the lock to
93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
94 * indefinitely because there's no guarantee that we'll make forward
95 * progress.
96 */
97#ifndef _Q_PENDING_LOOPS
98#define _Q_PENDING_LOOPS 1
99#endif
100
101/*
102 * Per-CPU queue node structures; we can never have more than 4 nested
103 * contexts: task, softirq, hardirq, nmi.
104 *
105 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
106 *
107 * PV doubles the storage and uses the second cacheline for PV state.
108 */
109static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
110
111/*
112 * We must be able to distinguish between no-tail and the tail at 0:0,
113 * therefore increment the cpu number by one.
114 */
115
116static inline __pure u32 encode_tail(int cpu, int idx)
117{
118 u32 tail;
119
120 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
121 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
122
123 return tail;
124}
125
126static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
127{
128 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
129 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
130
131 return per_cpu_ptr(&qnodes[idx].mcs, cpu);
132}
133
134static inline __pure
135struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
136{
137 return &((struct qnode *)base + idx)->mcs;
138}
139
140#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
141
142#if _Q_PENDING_BITS == 8
143/**
144 * clear_pending - clear the pending bit.
145 * @lock: Pointer to queued spinlock structure
146 *
147 * *,1,* -> *,0,*
148 */
149static __always_inline void clear_pending(struct qspinlock *lock)
150{
151 WRITE_ONCE(lock->pending, 0);
152}
153
154/**
155 * clear_pending_set_locked - take ownership and clear the pending bit.
156 * @lock: Pointer to queued spinlock structure
157 *
158 * *,1,0 -> *,0,1
159 *
160 * Lock stealing is not allowed if this function is used.
161 */
162static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
163{
164 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
165}
166
167/*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail), which heads an address dependency
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178{
179 /*
180 * We can use relaxed semantics since the caller ensures that the
181 * MCS node is properly initialized before updating the tail.
182 */
183 return (u32)xchg_relaxed(&lock->tail,
184 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
185}
186
187#else /* _Q_PENDING_BITS == 8 */
188
189/**
190 * clear_pending - clear the pending bit.
191 * @lock: Pointer to queued spinlock structure
192 *
193 * *,1,* -> *,0,*
194 */
195static __always_inline void clear_pending(struct qspinlock *lock)
196{
197 atomic_andnot(_Q_PENDING_VAL, &lock->val);
198}
199
200/**
201 * clear_pending_set_locked - take ownership and clear the pending bit.
202 * @lock: Pointer to queued spinlock structure
203 *
204 * *,1,0 -> *,0,1
205 */
206static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
207{
208 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
209}
210
211/**
212 * xchg_tail - Put in the new queue tail code word & retrieve previous one
213 * @lock : Pointer to queued spinlock structure
214 * @tail : The new queue tail code word
215 * Return: The previous queue tail code word
216 *
217 * xchg(lock, tail)
218 *
219 * p,*,* -> n,*,* ; prev = xchg(lock, node)
220 */
221static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
222{
223 u32 old, new;
224
225 old = atomic_read(&lock->val);
226 do {
227 new = (old & _Q_LOCKED_PENDING_MASK) | tail;
228 /*
229 * We can use relaxed semantics since the caller ensures that
230 * the MCS node is properly initialized before updating the
231 * tail.
232 */
233 } while (!atomic_try_cmpxchg_relaxed(&lock->val, &old, new));
234
235 return old;
236}
237#endif /* _Q_PENDING_BITS == 8 */
238
239/**
240 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
241 * @lock : Pointer to queued spinlock structure
242 * Return: The previous lock value
243 *
244 * *,*,* -> *,1,*
245 */
246#ifndef queued_fetch_set_pending_acquire
247static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
248{
249 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
250}
251#endif
252
253/**
254 * set_locked - Set the lock bit and own the lock
255 * @lock: Pointer to queued spinlock structure
256 *
257 * *,*,0 -> *,0,1
258 */
259static __always_inline void set_locked(struct qspinlock *lock)
260{
261 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
262}
263
264
265/*
266 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
267 * all the PV callbacks.
268 */
269
270static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
271static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
272 struct mcs_spinlock *prev) { }
273static __always_inline void __pv_kick_node(struct qspinlock *lock,
274 struct mcs_spinlock *node) { }
275static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
276 struct mcs_spinlock *node)
277 { return 0; }
278
279#define pv_enabled() false
280
281#define pv_init_node __pv_init_node
282#define pv_wait_node __pv_wait_node
283#define pv_kick_node __pv_kick_node
284#define pv_wait_head_or_lock __pv_wait_head_or_lock
285
286#ifdef CONFIG_PARAVIRT_SPINLOCKS
287#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
288#endif
289
290#endif /* _GEN_PV_LOCK_SLOWPATH */
291
292/**
293 * queued_spin_lock_slowpath - acquire the queued spinlock
294 * @lock: Pointer to queued spinlock structure
295 * @val: Current value of the queued spinlock 32-bit word
296 *
297 * (queue tail, pending bit, lock value)
298 *
299 * fast : slow : unlock
300 * : :
301 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
302 * : | ^--------.------. / :
303 * : v \ \ | :
304 * pending : (0,1,1) +--> (0,1,0) \ | :
305 * : | ^--' | | :
306 * : v | | :
307 * uncontended : (n,x,y) +--> (n,0,0) --' | :
308 * queue : | ^--' | :
309 * : v | :
310 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
311 * queue : ^--' :
312 */
313void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
314{
315 struct mcs_spinlock *prev, *next, *node;
316 u32 old, tail;
317 int idx;
318
319 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
320
321 if (pv_enabled())
322 goto pv_queue;
323
324 if (virt_spin_lock(lock))
325 return;
326
327 /*
328 * Wait for in-progress pending->locked hand-overs with a bounded
329 * number of spins so that we guarantee forward progress.
330 *
331 * 0,1,0 -> 0,0,1
332 */
333 if (val == _Q_PENDING_VAL) {
334 int cnt = _Q_PENDING_LOOPS;
335 val = atomic_cond_read_relaxed(&lock->val,
336 (VAL != _Q_PENDING_VAL) || !cnt--);
337 }
338
339 /*
340 * If we observe any contention; queue.
341 */
342 if (val & ~_Q_LOCKED_MASK)
343 goto queue;
344
345 /*
346 * trylock || pending
347 *
348 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
349 */
350 val = queued_fetch_set_pending_acquire(lock);
351
352 /*
353 * If we observe contention, there is a concurrent locker.
354 *
355 * Undo and queue; our setting of PENDING might have made the
356 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
357 * on @next to become !NULL.
358 */
359 if (unlikely(val & ~_Q_LOCKED_MASK)) {
360
361 /* Undo PENDING if we set it. */
362 if (!(val & _Q_PENDING_MASK))
363 clear_pending(lock);
364
365 goto queue;
366 }
367
368 /*
369 * We're pending, wait for the owner to go away.
370 *
371 * 0,1,1 -> *,1,0
372 *
373 * this wait loop must be a load-acquire such that we match the
374 * store-release that clears the locked bit and create lock
375 * sequentiality; this is because not all
376 * clear_pending_set_locked() implementations imply full
377 * barriers.
378 */
379 if (val & _Q_LOCKED_MASK)
380 smp_cond_load_acquire(&lock->locked, !VAL);
381
382 /*
383 * take ownership and clear the pending bit.
384 *
385 * 0,1,0 -> 0,0,1
386 */
387 clear_pending_set_locked(lock);
388 lockevent_inc(lock_pending);
389 return;
390
391 /*
392 * End of pending bit optimistic spinning and beginning of MCS
393 * queuing.
394 */
395queue:
396 lockevent_inc(lock_slowpath);
397pv_queue:
398 node = this_cpu_ptr(&qnodes[0].mcs);
399 idx = node->count++;
400 tail = encode_tail(smp_processor_id(), idx);
401
402 trace_contention_begin(lock, LCB_F_SPIN);
403
404 /*
405 * 4 nodes are allocated based on the assumption that there will
406 * not be nested NMIs taking spinlocks. That may not be true in
407 * some architectures even though the chance of needing more than
408 * 4 nodes will still be extremely unlikely. When that happens,
409 * we fall back to spinning on the lock directly without using
410 * any MCS node. This is not the most elegant solution, but is
411 * simple enough.
412 */
413 if (unlikely(idx >= MAX_NODES)) {
414 lockevent_inc(lock_no_node);
415 while (!queued_spin_trylock(lock))
416 cpu_relax();
417 goto release;
418 }
419
420 node = grab_mcs_node(node, idx);
421
422 /*
423 * Keep counts of non-zero index values:
424 */
425 lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
426
427 /*
428 * Ensure that we increment the head node->count before initialising
429 * the actual node. If the compiler is kind enough to reorder these
430 * stores, then an IRQ could overwrite our assignments.
431 */
432 barrier();
433
434 node->locked = 0;
435 node->next = NULL;
436 pv_init_node(node);
437
438 /*
439 * We touched a (possibly) cold cacheline in the per-cpu queue node;
440 * attempt the trylock once more in the hope someone let go while we
441 * weren't watching.
442 */
443 if (queued_spin_trylock(lock))
444 goto release;
445
446 /*
447 * Ensure that the initialisation of @node is complete before we
448 * publish the updated tail via xchg_tail() and potentially link
449 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
450 */
451 smp_wmb();
452
453 /*
454 * Publish the updated tail.
455 * We have already touched the queueing cacheline; don't bother with
456 * pending stuff.
457 *
458 * p,*,* -> n,*,*
459 */
460 old = xchg_tail(lock, tail);
461 next = NULL;
462
463 /*
464 * if there was a previous node; link it and wait until reaching the
465 * head of the waitqueue.
466 */
467 if (old & _Q_TAIL_MASK) {
468 prev = decode_tail(old);
469
470 /* Link @node into the waitqueue. */
471 WRITE_ONCE(prev->next, node);
472
473 pv_wait_node(node, prev);
474 arch_mcs_spin_lock_contended(&node->locked);
475
476 /*
477 * While waiting for the MCS lock, the next pointer may have
478 * been set by another lock waiter. We optimistically load
479 * the next pointer & prefetch the cacheline for writing
480 * to reduce latency in the upcoming MCS unlock operation.
481 */
482 next = READ_ONCE(node->next);
483 if (next)
484 prefetchw(next);
485 }
486
487 /*
488 * we're at the head of the waitqueue, wait for the owner & pending to
489 * go away.
490 *
491 * *,x,y -> *,0,0
492 *
493 * this wait loop must use a load-acquire such that we match the
494 * store-release that clears the locked bit and create lock
495 * sequentiality; this is because the set_locked() function below
496 * does not imply a full barrier.
497 *
498 * The PV pv_wait_head_or_lock function, if active, will acquire
499 * the lock and return a non-zero value. So we have to skip the
500 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
501 * been designated yet, there is no way for the locked value to become
502 * _Q_SLOW_VAL. So both the set_locked() and the
503 * atomic_cmpxchg_relaxed() calls will be safe.
504 *
505 * If PV isn't active, 0 will be returned instead.
506 *
507 */
508 if ((val = pv_wait_head_or_lock(lock, node)))
509 goto locked;
510
511 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
512
513locked:
514 /*
515 * claim the lock:
516 *
517 * n,0,0 -> 0,0,1 : lock, uncontended
518 * *,*,0 -> *,*,1 : lock, contended
519 *
520 * If the queue head is the only one in the queue (lock value == tail)
521 * and nobody is pending, clear the tail code and grab the lock.
522 * Otherwise, we only need to grab the lock.
523 */
524
525 /*
526 * In the PV case we might already have _Q_LOCKED_VAL set, because
527 * of lock stealing; therefore we must also allow:
528 *
529 * n,0,1 -> 0,0,1
530 *
531 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
532 * above wait condition, therefore any concurrent setting of
533 * PENDING will make the uncontended transition fail.
534 */
535 if ((val & _Q_TAIL_MASK) == tail) {
536 if (atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
537 goto release; /* No contention */
538 }
539
540 /*
541 * Either somebody is queued behind us or _Q_PENDING_VAL got set
542 * which will then detect the remaining tail and queue behind us
543 * ensuring we'll see a @next.
544 */
545 set_locked(lock);
546
547 /*
548 * contended path; wait for next if not observed yet, release.
549 */
550 if (!next)
551 next = smp_cond_load_relaxed(&node->next, (VAL));
552
553 arch_mcs_spin_unlock_contended(&next->locked);
554 pv_kick_node(lock, next);
555
556release:
557 trace_contention_end(lock, 0);
558
559 /*
560 * release the node
561 */
562 __this_cpu_dec(qnodes[0].mcs.count);
563}
564EXPORT_SYMBOL(queued_spin_lock_slowpath);
565
566/*
567 * Generate the paravirt code for queued_spin_unlock_slowpath().
568 */
569#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
570#define _GEN_PV_LOCK_SLOWPATH
571
572#undef pv_enabled
573#define pv_enabled() true
574
575#undef pv_init_node
576#undef pv_wait_node
577#undef pv_kick_node
578#undef pv_wait_head_or_lock
579
580#undef queued_spin_lock_slowpath
581#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
582
583#include "qspinlock_paravirt.h"
584#include "qspinlock.c"
585
586bool nopvspin;
587static __init int parse_nopvspin(char *arg)
588{
589 nopvspin = true;
590 return 0;
591}
592early_param("nopvspin", parse_nopvspin);
593#endif
1/*
2 * Queued spinlock
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
15 * (C) Copyright 2013-2014 Red Hat, Inc.
16 * (C) Copyright 2015 Intel Corp.
17 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
18 *
19 * Authors: Waiman Long <waiman.long@hpe.com>
20 * Peter Zijlstra <peterz@infradead.org>
21 */
22
23#ifndef _GEN_PV_LOCK_SLOWPATH
24
25#include <linux/smp.h>
26#include <linux/bug.h>
27#include <linux/cpumask.h>
28#include <linux/percpu.h>
29#include <linux/hardirq.h>
30#include <linux/mutex.h>
31#include <asm/byteorder.h>
32#include <asm/qspinlock.h>
33
34/*
35 * The basic principle of a queue-based spinlock can best be understood
36 * by studying a classic queue-based spinlock implementation called the
37 * MCS lock. The paper below provides a good description for this kind
38 * of lock.
39 *
40 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
41 *
42 * This queued spinlock implementation is based on the MCS lock, however to make
43 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
44 * API, we must modify it somehow.
45 *
46 * In particular; where the traditional MCS lock consists of a tail pointer
47 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
48 * unlock the next pending (next->locked), we compress both these: {tail,
49 * next->locked} into a single u32 value.
50 *
51 * Since a spinlock disables recursion of its own context and there is a limit
52 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
53 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
54 * we can encode the tail by combining the 2-bit nesting level with the cpu
55 * number. With one byte for the lock value and 3 bytes for the tail, only a
56 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
57 * we extend it to a full byte to achieve better performance for architectures
58 * that support atomic byte write.
59 *
60 * We also change the first spinner to spin on the lock bit instead of its
61 * node; whereby avoiding the need to carry a node from lock to unlock, and
62 * preserving existing lock API. This also makes the unlock code simpler and
63 * faster.
64 *
65 * N.B. The current implementation only supports architectures that allow
66 * atomic operations on smaller 8-bit and 16-bit data types.
67 *
68 */
69
70#include "mcs_spinlock.h"
71
72#ifdef CONFIG_PARAVIRT_SPINLOCKS
73#define MAX_NODES 8
74#else
75#define MAX_NODES 4
76#endif
77
78/*
79 * Per-CPU queue node structures; we can never have more than 4 nested
80 * contexts: task, softirq, hardirq, nmi.
81 *
82 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
83 *
84 * PV doubles the storage and uses the second cacheline for PV state.
85 */
86static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);
87
88/*
89 * We must be able to distinguish between no-tail and the tail at 0:0,
90 * therefore increment the cpu number by one.
91 */
92
93static inline u32 encode_tail(int cpu, int idx)
94{
95 u32 tail;
96
97#ifdef CONFIG_DEBUG_SPINLOCK
98 BUG_ON(idx > 3);
99#endif
100 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
101 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
102
103 return tail;
104}
105
106static inline struct mcs_spinlock *decode_tail(u32 tail)
107{
108 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
109 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
110
111 return per_cpu_ptr(&mcs_nodes[idx], cpu);
112}
113
114#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
115
116/*
117 * By using the whole 2nd least significant byte for the pending bit, we
118 * can allow better optimization of the lock acquisition for the pending
119 * bit holder.
120 *
121 * This internal structure is also used by the set_locked function which
122 * is not restricted to _Q_PENDING_BITS == 8.
123 */
124struct __qspinlock {
125 union {
126 atomic_t val;
127#ifdef __LITTLE_ENDIAN
128 struct {
129 u8 locked;
130 u8 pending;
131 };
132 struct {
133 u16 locked_pending;
134 u16 tail;
135 };
136#else
137 struct {
138 u16 tail;
139 u16 locked_pending;
140 };
141 struct {
142 u8 reserved[2];
143 u8 pending;
144 u8 locked;
145 };
146#endif
147 };
148};
149
150#if _Q_PENDING_BITS == 8
151/**
152 * clear_pending_set_locked - take ownership and clear the pending bit.
153 * @lock: Pointer to queued spinlock structure
154 *
155 * *,1,0 -> *,0,1
156 *
157 * Lock stealing is not allowed if this function is used.
158 */
159static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
160{
161 struct __qspinlock *l = (void *)lock;
162
163 WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
164}
165
166/*
167 * xchg_tail - Put in the new queue tail code word & retrieve previous one
168 * @lock : Pointer to queued spinlock structure
169 * @tail : The new queue tail code word
170 * Return: The previous queue tail code word
171 *
172 * xchg(lock, tail)
173 *
174 * p,*,* -> n,*,* ; prev = xchg(lock, node)
175 */
176static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
177{
178 struct __qspinlock *l = (void *)lock;
179
180 /*
181 * Use release semantics to make sure that the MCS node is properly
182 * initialized before changing the tail code.
183 */
184 return (u32)xchg_release(&l->tail,
185 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
186}
187
188#else /* _Q_PENDING_BITS == 8 */
189
190/**
191 * clear_pending_set_locked - take ownership and clear the pending bit.
192 * @lock: Pointer to queued spinlock structure
193 *
194 * *,1,0 -> *,0,1
195 */
196static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
197{
198 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
199}
200
201/**
202 * xchg_tail - Put in the new queue tail code word & retrieve previous one
203 * @lock : Pointer to queued spinlock structure
204 * @tail : The new queue tail code word
205 * Return: The previous queue tail code word
206 *
207 * xchg(lock, tail)
208 *
209 * p,*,* -> n,*,* ; prev = xchg(lock, node)
210 */
211static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
212{
213 u32 old, new, val = atomic_read(&lock->val);
214
215 for (;;) {
216 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
217 /*
218 * Use release semantics to make sure that the MCS node is
219 * properly initialized before changing the tail code.
220 */
221 old = atomic_cmpxchg_release(&lock->val, val, new);
222 if (old == val)
223 break;
224
225 val = old;
226 }
227 return old;
228}
229#endif /* _Q_PENDING_BITS == 8 */
230
231/**
232 * set_locked - Set the lock bit and own the lock
233 * @lock: Pointer to queued spinlock structure
234 *
235 * *,*,0 -> *,0,1
236 */
237static __always_inline void set_locked(struct qspinlock *lock)
238{
239 struct __qspinlock *l = (void *)lock;
240
241 WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
242}
243
244
245/*
246 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
247 * all the PV callbacks.
248 */
249
250static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
251static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
252 struct mcs_spinlock *prev) { }
253static __always_inline void __pv_kick_node(struct qspinlock *lock,
254 struct mcs_spinlock *node) { }
255static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
256 struct mcs_spinlock *node)
257 { return 0; }
258
259#define pv_enabled() false
260
261#define pv_init_node __pv_init_node
262#define pv_wait_node __pv_wait_node
263#define pv_kick_node __pv_kick_node
264#define pv_wait_head_or_lock __pv_wait_head_or_lock
265
266#ifdef CONFIG_PARAVIRT_SPINLOCKS
267#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
268#endif
269
270#endif /* _GEN_PV_LOCK_SLOWPATH */
271
272/**
273 * queued_spin_lock_slowpath - acquire the queued spinlock
274 * @lock: Pointer to queued spinlock structure
275 * @val: Current value of the queued spinlock 32-bit word
276 *
277 * (queue tail, pending bit, lock value)
278 *
279 * fast : slow : unlock
280 * : :
281 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
282 * : | ^--------.------. / :
283 * : v \ \ | :
284 * pending : (0,1,1) +--> (0,1,0) \ | :
285 * : | ^--' | | :
286 * : v | | :
287 * uncontended : (n,x,y) +--> (n,0,0) --' | :
288 * queue : | ^--' | :
289 * : v | :
290 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
291 * queue : ^--' :
292 */
293void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
294{
295 struct mcs_spinlock *prev, *next, *node;
296 u32 new, old, tail;
297 int idx;
298
299 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
300
301 if (pv_enabled())
302 goto queue;
303
304 if (virt_spin_lock(lock))
305 return;
306
307 /*
308 * wait for in-progress pending->locked hand-overs
309 *
310 * 0,1,0 -> 0,0,1
311 */
312 if (val == _Q_PENDING_VAL) {
313 while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
314 cpu_relax();
315 }
316
317 /*
318 * trylock || pending
319 *
320 * 0,0,0 -> 0,0,1 ; trylock
321 * 0,0,1 -> 0,1,1 ; pending
322 */
323 for (;;) {
324 /*
325 * If we observe any contention; queue.
326 */
327 if (val & ~_Q_LOCKED_MASK)
328 goto queue;
329
330 new = _Q_LOCKED_VAL;
331 if (val == new)
332 new |= _Q_PENDING_VAL;
333
334 /*
335 * Acquire semantic is required here as the function may
336 * return immediately if the lock was free.
337 */
338 old = atomic_cmpxchg_acquire(&lock->val, val, new);
339 if (old == val)
340 break;
341
342 val = old;
343 }
344
345 /*
346 * we won the trylock
347 */
348 if (new == _Q_LOCKED_VAL)
349 return;
350
351 /*
352 * we're pending, wait for the owner to go away.
353 *
354 * *,1,1 -> *,1,0
355 *
356 * this wait loop must be a load-acquire such that we match the
357 * store-release that clears the locked bit and create lock
358 * sequentiality; this is because not all clear_pending_set_locked()
359 * implementations imply full barriers.
360 */
361 smp_cond_acquire(!(atomic_read(&lock->val) & _Q_LOCKED_MASK));
362
363 /*
364 * take ownership and clear the pending bit.
365 *
366 * *,1,0 -> *,0,1
367 */
368 clear_pending_set_locked(lock);
369 return;
370
371 /*
372 * End of pending bit optimistic spinning and beginning of MCS
373 * queuing.
374 */
375queue:
376 node = this_cpu_ptr(&mcs_nodes[0]);
377 idx = node->count++;
378 tail = encode_tail(smp_processor_id(), idx);
379
380 node += idx;
381 node->locked = 0;
382 node->next = NULL;
383 pv_init_node(node);
384
385 /*
386 * We touched a (possibly) cold cacheline in the per-cpu queue node;
387 * attempt the trylock once more in the hope someone let go while we
388 * weren't watching.
389 */
390 if (queued_spin_trylock(lock))
391 goto release;
392
393 /*
394 * We have already touched the queueing cacheline; don't bother with
395 * pending stuff.
396 *
397 * p,*,* -> n,*,*
398 */
399 old = xchg_tail(lock, tail);
400 next = NULL;
401
402 /*
403 * if there was a previous node; link it and wait until reaching the
404 * head of the waitqueue.
405 */
406 if (old & _Q_TAIL_MASK) {
407 prev = decode_tail(old);
408 WRITE_ONCE(prev->next, node);
409
410 pv_wait_node(node, prev);
411 arch_mcs_spin_lock_contended(&node->locked);
412
413 /*
414 * While waiting for the MCS lock, the next pointer may have
415 * been set by another lock waiter. We optimistically load
416 * the next pointer & prefetch the cacheline for writing
417 * to reduce latency in the upcoming MCS unlock operation.
418 */
419 next = READ_ONCE(node->next);
420 if (next)
421 prefetchw(next);
422 }
423
424 /*
425 * we're at the head of the waitqueue, wait for the owner & pending to
426 * go away.
427 *
428 * *,x,y -> *,0,0
429 *
430 * this wait loop must use a load-acquire such that we match the
431 * store-release that clears the locked bit and create lock
432 * sequentiality; this is because the set_locked() function below
433 * does not imply a full barrier.
434 *
435 * The PV pv_wait_head_or_lock function, if active, will acquire
436 * the lock and return a non-zero value. So we have to skip the
437 * smp_cond_acquire() call. As the next PV queue head hasn't been
438 * designated yet, there is no way for the locked value to become
439 * _Q_SLOW_VAL. So both the set_locked() and the
440 * atomic_cmpxchg_relaxed() calls will be safe.
441 *
442 * If PV isn't active, 0 will be returned instead.
443 *
444 */
445 if ((val = pv_wait_head_or_lock(lock, node)))
446 goto locked;
447
448 smp_cond_acquire(!((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK));
449
450locked:
451 /*
452 * claim the lock:
453 *
454 * n,0,0 -> 0,0,1 : lock, uncontended
455 * *,0,0 -> *,0,1 : lock, contended
456 *
457 * If the queue head is the only one in the queue (lock value == tail),
458 * clear the tail code and grab the lock. Otherwise, we only need
459 * to grab the lock.
460 */
461 for (;;) {
462 /* In the PV case we might already have _Q_LOCKED_VAL set */
463 if ((val & _Q_TAIL_MASK) != tail) {
464 set_locked(lock);
465 break;
466 }
467 /*
468 * The smp_cond_acquire() call above has provided the necessary
469 * acquire semantics required for locking. At most two
470 * iterations of this loop may be ran.
471 */
472 old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
473 if (old == val)
474 goto release; /* No contention */
475
476 val = old;
477 }
478
479 /*
480 * contended path; wait for next if not observed yet, release.
481 */
482 if (!next) {
483 while (!(next = READ_ONCE(node->next)))
484 cpu_relax();
485 }
486
487 arch_mcs_spin_unlock_contended(&next->locked);
488 pv_kick_node(lock, next);
489
490release:
491 /*
492 * release the node
493 */
494 this_cpu_dec(mcs_nodes[0].count);
495}
496EXPORT_SYMBOL(queued_spin_lock_slowpath);
497
498/*
499 * Generate the paravirt code for queued_spin_unlock_slowpath().
500 */
501#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
502#define _GEN_PV_LOCK_SLOWPATH
503
504#undef pv_enabled
505#define pv_enabled() true
506
507#undef pv_init_node
508#undef pv_wait_node
509#undef pv_kick_node
510#undef pv_wait_head_or_lock
511
512#undef queued_spin_lock_slowpath
513#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
514
515#include "qspinlock_paravirt.h"
516#include "qspinlock.c"
517
518#endif