Loading...
1/* SPDX-License-Identifier: MIT */
2/******************************************************************************
3 * vcpu.h
4 *
5 * VCPU initialisation, query, and hotplug.
6 *
7 * Copyright (c) 2005, Keir Fraser <keir@xensource.com>
8 */
9
10#ifndef __XEN_PUBLIC_VCPU_H__
11#define __XEN_PUBLIC_VCPU_H__
12
13/*
14 * Prototype for this hypercall is:
15 * int vcpu_op(int cmd, int vcpuid, void *extra_args)
16 * @cmd == VCPUOP_??? (VCPU operation).
17 * @vcpuid == VCPU to operate on.
18 * @extra_args == Operation-specific extra arguments (NULL if none).
19 */
20
21/*
22 * Initialise a VCPU. Each VCPU can be initialised only once. A
23 * newly-initialised VCPU will not run until it is brought up by VCPUOP_up.
24 *
25 * @extra_arg == pointer to vcpu_guest_context structure containing initial
26 * state for the VCPU.
27 */
28#define VCPUOP_initialise 0
29
30/*
31 * Bring up a VCPU. This makes the VCPU runnable. This operation will fail
32 * if the VCPU has not been initialised (VCPUOP_initialise).
33 */
34#define VCPUOP_up 1
35
36/*
37 * Bring down a VCPU (i.e., make it non-runnable).
38 * There are a few caveats that callers should observe:
39 * 1. This operation may return, and VCPU_is_up may return false, before the
40 * VCPU stops running (i.e., the command is asynchronous). It is a good
41 * idea to ensure that the VCPU has entered a non-critical loop before
42 * bringing it down. Alternatively, this operation is guaranteed
43 * synchronous if invoked by the VCPU itself.
44 * 2. After a VCPU is initialised, there is currently no way to drop all its
45 * references to domain memory. Even a VCPU that is down still holds
46 * memory references via its pagetable base pointer and GDT. It is good
47 * practise to move a VCPU onto an 'idle' or default page table, LDT and
48 * GDT before bringing it down.
49 */
50#define VCPUOP_down 2
51
52/* Returns 1 if the given VCPU is up. */
53#define VCPUOP_is_up 3
54
55/*
56 * Return information about the state and running time of a VCPU.
57 * @extra_arg == pointer to vcpu_runstate_info structure.
58 */
59#define VCPUOP_get_runstate_info 4
60struct vcpu_runstate_info {
61 /* VCPU's current state (RUNSTATE_*). */
62 int state;
63 /* When was current state entered (system time, ns)? */
64 uint64_t state_entry_time;
65 /*
66 * Update indicator set in state_entry_time:
67 * When activated via VMASST_TYPE_runstate_update_flag, set during
68 * updates in guest memory mapped copy of vcpu_runstate_info.
69 */
70#define XEN_RUNSTATE_UPDATE (1ULL << 63)
71 /*
72 * Time spent in each RUNSTATE_* (ns). The sum of these times is
73 * guaranteed not to drift from system time.
74 */
75 uint64_t time[4];
76};
77DEFINE_GUEST_HANDLE_STRUCT(vcpu_runstate_info);
78
79/* VCPU is currently running on a physical CPU. */
80#define RUNSTATE_running 0
81
82/* VCPU is runnable, but not currently scheduled on any physical CPU. */
83#define RUNSTATE_runnable 1
84
85/* VCPU is blocked (a.k.a. idle). It is therefore not runnable. */
86#define RUNSTATE_blocked 2
87
88/*
89 * VCPU is not runnable, but it is not blocked.
90 * This is a 'catch all' state for things like hotplug and pauses by the
91 * system administrator (or for critical sections in the hypervisor).
92 * RUNSTATE_blocked dominates this state (it is the preferred state).
93 */
94#define RUNSTATE_offline 3
95
96/*
97 * Register a shared memory area from which the guest may obtain its own
98 * runstate information without needing to execute a hypercall.
99 * Notes:
100 * 1. The registered address may be virtual or physical, depending on the
101 * platform. The virtual address should be registered on x86 systems.
102 * 2. Only one shared area may be registered per VCPU. The shared area is
103 * updated by the hypervisor each time the VCPU is scheduled. Thus
104 * runstate.state will always be RUNSTATE_running and
105 * runstate.state_entry_time will indicate the system time at which the
106 * VCPU was last scheduled to run.
107 * @extra_arg == pointer to vcpu_register_runstate_memory_area structure.
108 */
109#define VCPUOP_register_runstate_memory_area 5
110struct vcpu_register_runstate_memory_area {
111 union {
112 GUEST_HANDLE(vcpu_runstate_info) h;
113 struct vcpu_runstate_info *v;
114 uint64_t p;
115 } addr;
116};
117
118/*
119 * Set or stop a VCPU's periodic timer. Every VCPU has one periodic timer
120 * which can be set via these commands. Periods smaller than one millisecond
121 * may not be supported.
122 */
123#define VCPUOP_set_periodic_timer 6 /* arg == vcpu_set_periodic_timer_t */
124#define VCPUOP_stop_periodic_timer 7 /* arg == NULL */
125struct vcpu_set_periodic_timer {
126 uint64_t period_ns;
127};
128DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_periodic_timer);
129
130/*
131 * Set or stop a VCPU's single-shot timer. Every VCPU has one single-shot
132 * timer which can be set via these commands.
133 */
134#define VCPUOP_set_singleshot_timer 8 /* arg == vcpu_set_singleshot_timer_t */
135#define VCPUOP_stop_singleshot_timer 9 /* arg == NULL */
136struct vcpu_set_singleshot_timer {
137 uint64_t timeout_abs_ns;
138 uint32_t flags; /* VCPU_SSHOTTMR_??? */
139};
140DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_singleshot_timer);
141
142/* Flags to VCPUOP_set_singleshot_timer. */
143 /* Require the timeout to be in the future (return -ETIME if it's passed). */
144#define _VCPU_SSHOTTMR_future (0)
145#define VCPU_SSHOTTMR_future (1U << _VCPU_SSHOTTMR_future)
146
147/*
148 * Register a memory location in the guest address space for the
149 * vcpu_info structure. This allows the guest to place the vcpu_info
150 * structure in a convenient place, such as in a per-cpu data area.
151 * The pointer need not be page aligned, but the structure must not
152 * cross a page boundary.
153 */
154#define VCPUOP_register_vcpu_info 10 /* arg == struct vcpu_info */
155struct vcpu_register_vcpu_info {
156 uint64_t mfn; /* mfn of page to place vcpu_info */
157 uint32_t offset; /* offset within page */
158 uint32_t rsvd; /* unused */
159};
160DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_vcpu_info);
161
162/* Send an NMI to the specified VCPU. @extra_arg == NULL. */
163#define VCPUOP_send_nmi 11
164
165/*
166 * Get the physical ID information for a pinned vcpu's underlying physical
167 * processor. The physical ID informmation is architecture-specific.
168 * On x86: id[31:0]=apic_id, id[63:32]=acpi_id.
169 * This command returns -EINVAL if it is not a valid operation for this VCPU.
170 */
171#define VCPUOP_get_physid 12 /* arg == vcpu_get_physid_t */
172struct vcpu_get_physid {
173 uint64_t phys_id;
174};
175DEFINE_GUEST_HANDLE_STRUCT(vcpu_get_physid);
176#define xen_vcpu_physid_to_x86_apicid(physid) ((uint32_t)(physid))
177#define xen_vcpu_physid_to_x86_acpiid(physid) ((uint32_t)((physid) >> 32))
178
179/*
180 * Register a memory location to get a secondary copy of the vcpu time
181 * parameters. The master copy still exists as part of the vcpu shared
182 * memory area, and this secondary copy is updated whenever the master copy
183 * is updated (and using the same versioning scheme for synchronisation).
184 *
185 * The intent is that this copy may be mapped (RO) into userspace so
186 * that usermode can compute system time using the time info and the
187 * tsc. Usermode will see an array of vcpu_time_info structures, one
188 * for each vcpu, and choose the right one by an existing mechanism
189 * which allows it to get the current vcpu number (such as via a
190 * segment limit). It can then apply the normal algorithm to compute
191 * system time from the tsc.
192 *
193 * @extra_arg == pointer to vcpu_register_time_info_memory_area structure.
194 */
195#define VCPUOP_register_vcpu_time_memory_area 13
196DEFINE_GUEST_HANDLE_STRUCT(vcpu_time_info);
197struct vcpu_register_time_memory_area {
198 union {
199 GUEST_HANDLE(vcpu_time_info) h;
200 struct pvclock_vcpu_time_info *v;
201 uint64_t p;
202 } addr;
203};
204DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_time_memory_area);
205
206#endif /* __XEN_PUBLIC_VCPU_H__ */
1/******************************************************************************
2 * vcpu.h
3 *
4 * VCPU initialisation, query, and hotplug.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Copyright (c) 2005, Keir Fraser <keir@xensource.com>
25 */
26
27#ifndef __XEN_PUBLIC_VCPU_H__
28#define __XEN_PUBLIC_VCPU_H__
29
30/*
31 * Prototype for this hypercall is:
32 * int vcpu_op(int cmd, int vcpuid, void *extra_args)
33 * @cmd == VCPUOP_??? (VCPU operation).
34 * @vcpuid == VCPU to operate on.
35 * @extra_args == Operation-specific extra arguments (NULL if none).
36 */
37
38/*
39 * Initialise a VCPU. Each VCPU can be initialised only once. A
40 * newly-initialised VCPU will not run until it is brought up by VCPUOP_up.
41 *
42 * @extra_arg == pointer to vcpu_guest_context structure containing initial
43 * state for the VCPU.
44 */
45#define VCPUOP_initialise 0
46
47/*
48 * Bring up a VCPU. This makes the VCPU runnable. This operation will fail
49 * if the VCPU has not been initialised (VCPUOP_initialise).
50 */
51#define VCPUOP_up 1
52
53/*
54 * Bring down a VCPU (i.e., make it non-runnable).
55 * There are a few caveats that callers should observe:
56 * 1. This operation may return, and VCPU_is_up may return false, before the
57 * VCPU stops running (i.e., the command is asynchronous). It is a good
58 * idea to ensure that the VCPU has entered a non-critical loop before
59 * bringing it down. Alternatively, this operation is guaranteed
60 * synchronous if invoked by the VCPU itself.
61 * 2. After a VCPU is initialised, there is currently no way to drop all its
62 * references to domain memory. Even a VCPU that is down still holds
63 * memory references via its pagetable base pointer and GDT. It is good
64 * practise to move a VCPU onto an 'idle' or default page table, LDT and
65 * GDT before bringing it down.
66 */
67#define VCPUOP_down 2
68
69/* Returns 1 if the given VCPU is up. */
70#define VCPUOP_is_up 3
71
72/*
73 * Return information about the state and running time of a VCPU.
74 * @extra_arg == pointer to vcpu_runstate_info structure.
75 */
76#define VCPUOP_get_runstate_info 4
77struct vcpu_runstate_info {
78 /* VCPU's current state (RUNSTATE_*). */
79 int state;
80 /* When was current state entered (system time, ns)? */
81 uint64_t state_entry_time;
82 /*
83 * Time spent in each RUNSTATE_* (ns). The sum of these times is
84 * guaranteed not to drift from system time.
85 */
86 uint64_t time[4];
87};
88DEFINE_GUEST_HANDLE_STRUCT(vcpu_runstate_info);
89
90/* VCPU is currently running on a physical CPU. */
91#define RUNSTATE_running 0
92
93/* VCPU is runnable, but not currently scheduled on any physical CPU. */
94#define RUNSTATE_runnable 1
95
96/* VCPU is blocked (a.k.a. idle). It is therefore not runnable. */
97#define RUNSTATE_blocked 2
98
99/*
100 * VCPU is not runnable, but it is not blocked.
101 * This is a 'catch all' state for things like hotplug and pauses by the
102 * system administrator (or for critical sections in the hypervisor).
103 * RUNSTATE_blocked dominates this state (it is the preferred state).
104 */
105#define RUNSTATE_offline 3
106
107/*
108 * Register a shared memory area from which the guest may obtain its own
109 * runstate information without needing to execute a hypercall.
110 * Notes:
111 * 1. The registered address may be virtual or physical, depending on the
112 * platform. The virtual address should be registered on x86 systems.
113 * 2. Only one shared area may be registered per VCPU. The shared area is
114 * updated by the hypervisor each time the VCPU is scheduled. Thus
115 * runstate.state will always be RUNSTATE_running and
116 * runstate.state_entry_time will indicate the system time at which the
117 * VCPU was last scheduled to run.
118 * @extra_arg == pointer to vcpu_register_runstate_memory_area structure.
119 */
120#define VCPUOP_register_runstate_memory_area 5
121struct vcpu_register_runstate_memory_area {
122 union {
123 GUEST_HANDLE(vcpu_runstate_info) h;
124 struct vcpu_runstate_info *v;
125 uint64_t p;
126 } addr;
127};
128
129/*
130 * Set or stop a VCPU's periodic timer. Every VCPU has one periodic timer
131 * which can be set via these commands. Periods smaller than one millisecond
132 * may not be supported.
133 */
134#define VCPUOP_set_periodic_timer 6 /* arg == vcpu_set_periodic_timer_t */
135#define VCPUOP_stop_periodic_timer 7 /* arg == NULL */
136struct vcpu_set_periodic_timer {
137 uint64_t period_ns;
138};
139DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_periodic_timer);
140
141/*
142 * Set or stop a VCPU's single-shot timer. Every VCPU has one single-shot
143 * timer which can be set via these commands.
144 */
145#define VCPUOP_set_singleshot_timer 8 /* arg == vcpu_set_singleshot_timer_t */
146#define VCPUOP_stop_singleshot_timer 9 /* arg == NULL */
147struct vcpu_set_singleshot_timer {
148 uint64_t timeout_abs_ns;
149 uint32_t flags; /* VCPU_SSHOTTMR_??? */
150};
151DEFINE_GUEST_HANDLE_STRUCT(vcpu_set_singleshot_timer);
152
153/* Flags to VCPUOP_set_singleshot_timer. */
154 /* Require the timeout to be in the future (return -ETIME if it's passed). */
155#define _VCPU_SSHOTTMR_future (0)
156#define VCPU_SSHOTTMR_future (1U << _VCPU_SSHOTTMR_future)
157
158/*
159 * Register a memory location in the guest address space for the
160 * vcpu_info structure. This allows the guest to place the vcpu_info
161 * structure in a convenient place, such as in a per-cpu data area.
162 * The pointer need not be page aligned, but the structure must not
163 * cross a page boundary.
164 */
165#define VCPUOP_register_vcpu_info 10 /* arg == struct vcpu_info */
166struct vcpu_register_vcpu_info {
167 uint64_t mfn; /* mfn of page to place vcpu_info */
168 uint32_t offset; /* offset within page */
169 uint32_t rsvd; /* unused */
170};
171DEFINE_GUEST_HANDLE_STRUCT(vcpu_register_vcpu_info);
172
173/* Send an NMI to the specified VCPU. @extra_arg == NULL. */
174#define VCPUOP_send_nmi 11
175#endif /* __XEN_PUBLIC_VCPU_H__ */