Loading...
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2/*
3 Written/copyright 1993-1998 by Donald Becker.
4
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
9
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
34
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
37
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
40
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
43*/
44
45static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
46
47#include <linux/module.h>
48#include <linux/kernel.h>
49#include <linux/string.h>
50#include <linux/delay.h>
51#include <linux/errno.h>
52#include <linux/ioport.h>
53#include <linux/slab.h>
54#include <linux/interrupt.h>
55#include <linux/pci.h>
56#include <linux/init.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/mm.h>
61#include <linux/bitops.h>
62#include <net/Space.h>
63
64#include <asm/io.h>
65#include <asm/dma.h>
66
67static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
68static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
69static int __init do_lance_probe(struct net_device *dev);
70
71
72static struct card {
73 char id_offset14;
74 char id_offset15;
75} cards[] = {
76 { //"normal"
77 .id_offset14 = 0x57,
78 .id_offset15 = 0x57,
79 },
80 { //NI6510EB
81 .id_offset14 = 0x52,
82 .id_offset15 = 0x44,
83 },
84 { //Racal InterLan EtherBlaster
85 .id_offset14 = 0x52,
86 .id_offset15 = 0x49,
87 },
88};
89#define NUM_CARDS 3
90
91#ifdef LANCE_DEBUG
92static int lance_debug = LANCE_DEBUG;
93#else
94static int lance_debug = 1;
95#endif
96
97/*
98 Theory of Operation
99
100I. Board Compatibility
101
102This device driver is designed for the AMD 79C960, the "PCnet-ISA
103single-chip ethernet controller for ISA". This chip is used in a wide
104variety of boards from vendors such as Allied Telesis, HP, Kingston,
105and Boca. This driver is also intended to work with older AMD 7990
106designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
107I use the name LANCE to refer to all of the AMD chips, even though it properly
108refers only to the original 7990.
109
110II. Board-specific settings
111
112The driver is designed to work the boards that use the faster
113bus-master mode, rather than in shared memory mode. (Only older designs
114have on-board buffer memory needed to support the slower shared memory mode.)
115
116Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
117channel. This driver probes the likely base addresses:
118{0x300, 0x320, 0x340, 0x360}.
119After the board is found it generates a DMA-timeout interrupt and uses
120autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
121of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
122probed for by enabling each free DMA channel in turn and checking if
123initialization succeeds.
124
125The HP-J2405A board is an exception: with this board it is easy to read the
126EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
127_know_ the base address -- that field is for writing the EEPROM.)
128
129III. Driver operation
130
131IIIa. Ring buffers
132The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
133the base and length of the data buffer, along with status bits. The length
134of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
135the buffer length (rather than being directly the buffer length) for
136implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
137ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
138needlessly uses extra space and reduces the chance that an upper layer will
139be able to reorder queued Tx packets based on priority. Decreasing the number
140of entries makes it more difficult to achieve back-to-back packet transmission
141and increases the chance that Rx ring will overflow. (Consider the worst case
142of receiving back-to-back minimum-sized packets.)
143
144The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
145statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
146avoid the administrative overhead. For the Rx side this avoids dynamically
147allocating full-sized buffers "just in case", at the expense of a
148memory-to-memory data copy for each packet received. For most systems this
149is a good tradeoff: the Rx buffer will always be in low memory, the copy
150is inexpensive, and it primes the cache for later packet processing. For Tx
151the buffers are only used when needed as low-memory bounce buffers.
152
153IIIB. 16M memory limitations.
154For the ISA bus master mode all structures used directly by the LANCE,
155the initialization block, Rx and Tx rings, and data buffers, must be
156accessible from the ISA bus, i.e. in the lower 16M of real memory.
157This is a problem for current Linux kernels on >16M machines. The network
158devices are initialized after memory initialization, and the kernel doles out
159memory from the top of memory downward. The current solution is to have a
160special network initialization routine that's called before memory
161initialization; this will eventually be generalized for all network devices.
162As mentioned before, low-memory "bounce-buffers" are used when needed.
163
164IIIC. Synchronization
165The driver runs as two independent, single-threaded flows of control. One
166is the send-packet routine, which enforces single-threaded use by the
167dev->tbusy flag. The other thread is the interrupt handler, which is single
168threaded by the hardware and other software.
169
170The send packet thread has partial control over the Tx ring and 'dev->tbusy'
171flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
172queue slot is empty, it clears the tbusy flag when finished otherwise it sets
173the 'lp->tx_full' flag.
174
175The interrupt handler has exclusive control over the Rx ring and records stats
176from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
177we can't avoid the interrupt overhead by having the Tx routine reap the Tx
178stats.) After reaping the stats, it marks the queue entry as empty by setting
179the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
180tx_full and tbusy flags.
181
182*/
183
184/* Set the number of Tx and Rx buffers, using Log_2(# buffers).
185 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
186 That translates to 4 and 4 (16 == 2^^4).
187 This is a compile-time option for efficiency.
188 */
189#ifndef LANCE_LOG_TX_BUFFERS
190#define LANCE_LOG_TX_BUFFERS 4
191#define LANCE_LOG_RX_BUFFERS 4
192#endif
193
194#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
195#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
196#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
197
198#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
199#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
200#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
201
202#define PKT_BUF_SZ 1544
203
204/* Offsets from base I/O address. */
205#define LANCE_DATA 0x10
206#define LANCE_ADDR 0x12
207#define LANCE_RESET 0x14
208#define LANCE_BUS_IF 0x16
209#define LANCE_TOTAL_SIZE 0x18
210
211#define TX_TIMEOUT (HZ/5)
212
213/* The LANCE Rx and Tx ring descriptors. */
214struct lance_rx_head {
215 s32 base;
216 s16 buf_length; /* This length is 2s complement (negative)! */
217 s16 msg_length; /* This length is "normal". */
218};
219
220struct lance_tx_head {
221 s32 base;
222 s16 length; /* Length is 2s complement (negative)! */
223 s16 misc;
224};
225
226/* The LANCE initialization block, described in databook. */
227struct lance_init_block {
228 u16 mode; /* Pre-set mode (reg. 15) */
229 u8 phys_addr[6]; /* Physical ethernet address */
230 u32 filter[2]; /* Multicast filter (unused). */
231 /* Receive and transmit ring base, along with extra bits. */
232 u32 rx_ring; /* Tx and Rx ring base pointers */
233 u32 tx_ring;
234};
235
236struct lance_private {
237 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
238 struct lance_rx_head rx_ring[RX_RING_SIZE];
239 struct lance_tx_head tx_ring[TX_RING_SIZE];
240 struct lance_init_block init_block;
241 const char *name;
242 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
243 struct sk_buff* tx_skbuff[TX_RING_SIZE];
244 /* The addresses of receive-in-place skbuffs. */
245 struct sk_buff* rx_skbuff[RX_RING_SIZE];
246 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
247 /* Tx low-memory "bounce buffer" address. */
248 char (*tx_bounce_buffs)[PKT_BUF_SZ];
249 int cur_rx, cur_tx; /* The next free ring entry */
250 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
251 int dma;
252 unsigned char chip_version; /* See lance_chip_type. */
253 spinlock_t devlock;
254};
255
256#define LANCE_MUST_PAD 0x00000001
257#define LANCE_ENABLE_AUTOSELECT 0x00000002
258#define LANCE_MUST_REINIT_RING 0x00000004
259#define LANCE_MUST_UNRESET 0x00000008
260#define LANCE_HAS_MISSED_FRAME 0x00000010
261
262/* A mapping from the chip ID number to the part number and features.
263 These are from the datasheets -- in real life the '970 version
264 reportedly has the same ID as the '965. */
265static struct lance_chip_type {
266 int id_number;
267 const char *name;
268 int flags;
269} chip_table[] = {
270 {0x0000, "LANCE 7990", /* Ancient lance chip. */
271 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
272 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
273 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
274 LANCE_HAS_MISSED_FRAME},
275 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
276 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
277 LANCE_HAS_MISSED_FRAME},
278 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
279 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
280 LANCE_HAS_MISSED_FRAME},
281 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
282 it the PCnet32. */
283 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
284 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
285 LANCE_HAS_MISSED_FRAME},
286 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
287 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
288 LANCE_HAS_MISSED_FRAME},
289 {0x0, "PCnet (unknown)",
290 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
291 LANCE_HAS_MISSED_FRAME},
292};
293
294enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
295
296
297/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
298 Assume yes until we know the memory size. */
299static unsigned char lance_need_isa_bounce_buffers = 1;
300
301static int lance_open(struct net_device *dev);
302static void lance_init_ring(struct net_device *dev, gfp_t mode);
303static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
304 struct net_device *dev);
305static int lance_rx(struct net_device *dev);
306static irqreturn_t lance_interrupt(int irq, void *dev_id);
307static int lance_close(struct net_device *dev);
308static struct net_device_stats *lance_get_stats(struct net_device *dev);
309static void set_multicast_list(struct net_device *dev);
310static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue);
311
312
313
314#ifdef MODULE
315#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
316
317static struct net_device *dev_lance[MAX_CARDS];
318static int io[MAX_CARDS];
319static int dma[MAX_CARDS];
320static int irq[MAX_CARDS];
321
322module_param_hw_array(io, int, ioport, NULL, 0);
323module_param_hw_array(dma, int, dma, NULL, 0);
324module_param_hw_array(irq, int, irq, NULL, 0);
325module_param(lance_debug, int, 0);
326MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
327MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
328MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
329MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
330
331static int __init lance_init_module(void)
332{
333 struct net_device *dev;
334 int this_dev, found = 0;
335
336 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
337 if (io[this_dev] == 0) {
338 if (this_dev != 0) /* only complain once */
339 break;
340 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
341 return -EPERM;
342 }
343 dev = alloc_etherdev(0);
344 if (!dev)
345 break;
346 dev->irq = irq[this_dev];
347 dev->base_addr = io[this_dev];
348 dev->dma = dma[this_dev];
349 if (do_lance_probe(dev) == 0) {
350 dev_lance[found++] = dev;
351 continue;
352 }
353 free_netdev(dev);
354 break;
355 }
356 if (found != 0)
357 return 0;
358 return -ENXIO;
359}
360module_init(lance_init_module);
361
362static void cleanup_card(struct net_device *dev)
363{
364 struct lance_private *lp = dev->ml_priv;
365 if (dev->dma != 4)
366 free_dma(dev->dma);
367 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
368 kfree(lp->tx_bounce_buffs);
369 kfree((void*)lp->rx_buffs);
370 kfree(lp);
371}
372
373static void __exit lance_cleanup_module(void)
374{
375 int this_dev;
376
377 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
378 struct net_device *dev = dev_lance[this_dev];
379 if (dev) {
380 unregister_netdev(dev);
381 cleanup_card(dev);
382 free_netdev(dev);
383 }
384 }
385}
386module_exit(lance_cleanup_module);
387#endif /* MODULE */
388MODULE_DESCRIPTION("AMD LANCE/PCnet Ethernet driver");
389MODULE_LICENSE("GPL");
390
391
392/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
393 board probes now that kmalloc() can allocate ISA DMA-able regions.
394 This also allows the LANCE driver to be used as a module.
395 */
396static int __init do_lance_probe(struct net_device *dev)
397{
398 unsigned int *port;
399 int result;
400
401 if (high_memory <= phys_to_virt(16*1024*1024))
402 lance_need_isa_bounce_buffers = 0;
403
404 for (port = lance_portlist; *port; port++) {
405 int ioaddr = *port;
406 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
407 "lance-probe");
408
409 if (r) {
410 /* Detect the card with minimal I/O reads */
411 char offset14 = inb(ioaddr + 14);
412 int card;
413 for (card = 0; card < NUM_CARDS; ++card)
414 if (cards[card].id_offset14 == offset14)
415 break;
416 if (card < NUM_CARDS) {/*yes, the first byte matches*/
417 char offset15 = inb(ioaddr + 15);
418 for (card = 0; card < NUM_CARDS; ++card)
419 if ((cards[card].id_offset14 == offset14) &&
420 (cards[card].id_offset15 == offset15))
421 break;
422 }
423 if (card < NUM_CARDS) { /*Signature OK*/
424 result = lance_probe1(dev, ioaddr, 0, 0);
425 if (!result) {
426 struct lance_private *lp = dev->ml_priv;
427 int ver = lp->chip_version;
428
429 r->name = chip_table[ver].name;
430 return 0;
431 }
432 }
433 release_region(ioaddr, LANCE_TOTAL_SIZE);
434 }
435 }
436 return -ENODEV;
437}
438
439#ifndef MODULE
440struct net_device * __init lance_probe(int unit)
441{
442 struct net_device *dev = alloc_etherdev(0);
443 int err;
444
445 if (!dev)
446 return ERR_PTR(-ENODEV);
447
448 sprintf(dev->name, "eth%d", unit);
449 netdev_boot_setup_check(dev);
450
451 err = do_lance_probe(dev);
452 if (err)
453 goto out;
454 return dev;
455out:
456 free_netdev(dev);
457 return ERR_PTR(err);
458}
459#endif
460
461static const struct net_device_ops lance_netdev_ops = {
462 .ndo_open = lance_open,
463 .ndo_start_xmit = lance_start_xmit,
464 .ndo_stop = lance_close,
465 .ndo_get_stats = lance_get_stats,
466 .ndo_set_rx_mode = set_multicast_list,
467 .ndo_tx_timeout = lance_tx_timeout,
468 .ndo_set_mac_address = eth_mac_addr,
469 .ndo_validate_addr = eth_validate_addr,
470};
471
472static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
473{
474 struct lance_private *lp;
475 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
476 int i, reset_val, lance_version;
477 const char *chipname;
478 /* Flags for specific chips or boards. */
479 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
480 int hp_builtin = 0; /* HP on-board ethernet. */
481 static int did_version; /* Already printed version info. */
482 unsigned long flags;
483 int err = -ENOMEM;
484 void __iomem *bios;
485 u8 addr[ETH_ALEN];
486
487 /* First we look for special cases.
488 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
489 There are two HP versions, check the BIOS for the configuration port.
490 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
491 */
492 bios = ioremap(0xf00f0, 0x14);
493 if (!bios)
494 return -ENOMEM;
495 if (readw(bios + 0x12) == 0x5048) {
496 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
497 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
498 /* We can have boards other than the built-in! Verify this is on-board. */
499 if ((inb(hp_port) & 0xc0) == 0x80 &&
500 ioaddr_table[inb(hp_port) & 3] == ioaddr)
501 hp_builtin = hp_port;
502 }
503 iounmap(bios);
504 /* We also recognize the HP Vectra on-board here, but check below. */
505 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
506 inb(ioaddr+2) == 0x09);
507
508 /* Reset the LANCE. */
509 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
510
511 /* The Un-Reset needed is only needed for the real NE2100, and will
512 confuse the HP board. */
513 if (!hpJ2405A)
514 outw(reset_val, ioaddr+LANCE_RESET);
515
516 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
517 if (inw(ioaddr+LANCE_DATA) != 0x0004)
518 return -ENODEV;
519
520 /* Get the version of the chip. */
521 outw(88, ioaddr+LANCE_ADDR);
522 if (inw(ioaddr+LANCE_ADDR) != 88) {
523 lance_version = 0;
524 } else { /* Good, it's a newer chip. */
525 int chip_version = inw(ioaddr+LANCE_DATA);
526 outw(89, ioaddr+LANCE_ADDR);
527 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
528 if (lance_debug > 2)
529 printk(" LANCE chip version is %#x.\n", chip_version);
530 if ((chip_version & 0xfff) != 0x003)
531 return -ENODEV;
532 chip_version = (chip_version >> 12) & 0xffff;
533 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
534 if (chip_table[lance_version].id_number == chip_version)
535 break;
536 }
537 }
538
539 /* We can't allocate private data from alloc_etherdev() because it must
540 a ISA DMA-able region. */
541 chipname = chip_table[lance_version].name;
542 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
543
544 /* There is a 16 byte station address PROM at the base address.
545 The first six bytes are the station address. */
546 for (i = 0; i < 6; i++)
547 addr[i] = inb(ioaddr + i);
548 eth_hw_addr_set(dev, addr);
549 printk("%pM", dev->dev_addr);
550
551 dev->base_addr = ioaddr;
552 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
553
554 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
555 if (!lp)
556 return -ENOMEM;
557 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
558 dev->ml_priv = lp;
559 lp->name = chipname;
560 lp->rx_buffs = (unsigned long)kmalloc_array(RX_RING_SIZE, PKT_BUF_SZ,
561 GFP_DMA | GFP_KERNEL);
562 if (!lp->rx_buffs)
563 goto out_lp;
564 if (lance_need_isa_bounce_buffers) {
565 lp->tx_bounce_buffs = kmalloc_array(TX_RING_SIZE, PKT_BUF_SZ,
566 GFP_DMA | GFP_KERNEL);
567 if (!lp->tx_bounce_buffs)
568 goto out_rx;
569 } else
570 lp->tx_bounce_buffs = NULL;
571
572 lp->chip_version = lance_version;
573 spin_lock_init(&lp->devlock);
574
575 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
576 for (i = 0; i < 6; i++)
577 lp->init_block.phys_addr[i] = dev->dev_addr[i];
578 lp->init_block.filter[0] = 0x00000000;
579 lp->init_block.filter[1] = 0x00000000;
580 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
581 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
582
583 outw(0x0001, ioaddr+LANCE_ADDR);
584 inw(ioaddr+LANCE_ADDR);
585 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
586 outw(0x0002, ioaddr+LANCE_ADDR);
587 inw(ioaddr+LANCE_ADDR);
588 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
589 outw(0x0000, ioaddr+LANCE_ADDR);
590 inw(ioaddr+LANCE_ADDR);
591
592 if (irq) { /* Set iff PCI card. */
593 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
594 dev->irq = irq;
595 } else if (hp_builtin) {
596 static const char dma_tbl[4] = {3, 5, 6, 0};
597 static const char irq_tbl[4] = {3, 4, 5, 9};
598 unsigned char port_val = inb(hp_builtin);
599 dev->dma = dma_tbl[(port_val >> 4) & 3];
600 dev->irq = irq_tbl[(port_val >> 2) & 3];
601 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
602 } else if (hpJ2405A) {
603 static const char dma_tbl[4] = {3, 5, 6, 7};
604 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
605 short reset_val = inw(ioaddr+LANCE_RESET);
606 dev->dma = dma_tbl[(reset_val >> 2) & 3];
607 dev->irq = irq_tbl[(reset_val >> 4) & 7];
608 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
609 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
610 short bus_info;
611 outw(8, ioaddr+LANCE_ADDR);
612 bus_info = inw(ioaddr+LANCE_BUS_IF);
613 dev->dma = bus_info & 0x07;
614 dev->irq = (bus_info >> 4) & 0x0F;
615 } else {
616 /* The DMA channel may be passed in PARAM1. */
617 if (dev->mem_start & 0x07)
618 dev->dma = dev->mem_start & 0x07;
619 }
620
621 if (dev->dma == 0) {
622 /* Read the DMA channel status register, so that we can avoid
623 stuck DMA channels in the DMA detection below. */
624 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
625 (inb(DMA2_STAT_REG) & 0xf0);
626 }
627 err = -ENODEV;
628 if (dev->irq >= 2)
629 printk(" assigned IRQ %d", dev->irq);
630 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
631 unsigned long irq_mask;
632
633 /* To auto-IRQ we enable the initialization-done and DMA error
634 interrupts. For ISA boards we get a DMA error, but VLB and PCI
635 boards will work. */
636 irq_mask = probe_irq_on();
637
638 /* Trigger an initialization just for the interrupt. */
639 outw(0x0041, ioaddr+LANCE_DATA);
640
641 mdelay(20);
642 dev->irq = probe_irq_off(irq_mask);
643 if (dev->irq)
644 printk(", probed IRQ %d", dev->irq);
645 else {
646 printk(", failed to detect IRQ line.\n");
647 goto out_tx;
648 }
649
650 /* Check for the initialization done bit, 0x0100, which means
651 that we don't need a DMA channel. */
652 if (inw(ioaddr+LANCE_DATA) & 0x0100)
653 dev->dma = 4;
654 }
655
656 if (dev->dma == 4) {
657 printk(", no DMA needed.\n");
658 } else if (dev->dma) {
659 if (request_dma(dev->dma, chipname)) {
660 printk("DMA %d allocation failed.\n", dev->dma);
661 goto out_tx;
662 } else
663 printk(", assigned DMA %d.\n", dev->dma);
664 } else { /* OK, we have to auto-DMA. */
665 for (i = 0; i < 4; i++) {
666 static const char dmas[] = { 5, 6, 7, 3 };
667 int dma = dmas[i];
668 int boguscnt;
669
670 /* Don't enable a permanently busy DMA channel, or the machine
671 will hang. */
672 if (test_bit(dma, &dma_channels))
673 continue;
674 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
675 if (request_dma(dma, chipname))
676 continue;
677
678 flags=claim_dma_lock();
679 set_dma_mode(dma, DMA_MODE_CASCADE);
680 enable_dma(dma);
681 release_dma_lock(flags);
682
683 /* Trigger an initialization. */
684 outw(0x0001, ioaddr+LANCE_DATA);
685 for (boguscnt = 100; boguscnt > 0; --boguscnt)
686 if (inw(ioaddr+LANCE_DATA) & 0x0900)
687 break;
688 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
689 dev->dma = dma;
690 printk(", DMA %d.\n", dev->dma);
691 break;
692 } else {
693 flags=claim_dma_lock();
694 disable_dma(dma);
695 release_dma_lock(flags);
696 free_dma(dma);
697 }
698 }
699 if (i == 4) { /* Failure: bail. */
700 printk("DMA detection failed.\n");
701 goto out_tx;
702 }
703 }
704
705 if (lance_version == 0 && dev->irq == 0) {
706 /* We may auto-IRQ now that we have a DMA channel. */
707 /* Trigger an initialization just for the interrupt. */
708 unsigned long irq_mask;
709
710 irq_mask = probe_irq_on();
711 outw(0x0041, ioaddr+LANCE_DATA);
712
713 mdelay(40);
714 dev->irq = probe_irq_off(irq_mask);
715 if (dev->irq == 0) {
716 printk(" Failed to detect the 7990 IRQ line.\n");
717 goto out_dma;
718 }
719 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
720 }
721
722 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
723 /* Turn on auto-select of media (10baseT or BNC) so that the user
724 can watch the LEDs even if the board isn't opened. */
725 outw(0x0002, ioaddr+LANCE_ADDR);
726 /* Don't touch 10base2 power bit. */
727 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
728 }
729
730 if (lance_debug > 0 && did_version++ == 0)
731 printk(version);
732
733 /* The LANCE-specific entries in the device structure. */
734 dev->netdev_ops = &lance_netdev_ops;
735 dev->watchdog_timeo = TX_TIMEOUT;
736
737 err = register_netdev(dev);
738 if (err)
739 goto out_dma;
740 return 0;
741out_dma:
742 if (dev->dma != 4)
743 free_dma(dev->dma);
744out_tx:
745 kfree(lp->tx_bounce_buffs);
746out_rx:
747 kfree((void*)lp->rx_buffs);
748out_lp:
749 kfree(lp);
750 return err;
751}
752
753
754static int
755lance_open(struct net_device *dev)
756{
757 struct lance_private *lp = dev->ml_priv;
758 int ioaddr = dev->base_addr;
759 int i;
760
761 if (dev->irq == 0 ||
762 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) {
763 return -EAGAIN;
764 }
765
766 /* We used to allocate DMA here, but that was silly.
767 DMA lines can't be shared! We now permanently allocate them. */
768
769 /* Reset the LANCE */
770 inw(ioaddr+LANCE_RESET);
771
772 /* The DMA controller is used as a no-operation slave, "cascade mode". */
773 if (dev->dma != 4) {
774 unsigned long flags=claim_dma_lock();
775 enable_dma(dev->dma);
776 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
777 release_dma_lock(flags);
778 }
779
780 /* Un-Reset the LANCE, needed only for the NE2100. */
781 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
782 outw(0, ioaddr+LANCE_RESET);
783
784 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
785 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
786 outw(0x0002, ioaddr+LANCE_ADDR);
787 /* Only touch autoselect bit. */
788 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
789 }
790
791 if (lance_debug > 1)
792 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
793 dev->name, dev->irq, dev->dma,
794 (u32) isa_virt_to_bus(lp->tx_ring),
795 (u32) isa_virt_to_bus(lp->rx_ring),
796 (u32) isa_virt_to_bus(&lp->init_block));
797
798 lance_init_ring(dev, GFP_KERNEL);
799 /* Re-initialize the LANCE, and start it when done. */
800 outw(0x0001, ioaddr+LANCE_ADDR);
801 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
802 outw(0x0002, ioaddr+LANCE_ADDR);
803 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
804
805 outw(0x0004, ioaddr+LANCE_ADDR);
806 outw(0x0915, ioaddr+LANCE_DATA);
807
808 outw(0x0000, ioaddr+LANCE_ADDR);
809 outw(0x0001, ioaddr+LANCE_DATA);
810
811 netif_start_queue (dev);
812
813 i = 0;
814 while (i++ < 100)
815 if (inw(ioaddr+LANCE_DATA) & 0x0100)
816 break;
817 /*
818 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
819 * reports that doing so triggers a bug in the '974.
820 */
821 outw(0x0042, ioaddr+LANCE_DATA);
822
823 if (lance_debug > 2)
824 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
825 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
826
827 return 0; /* Always succeed */
828}
829
830/* The LANCE has been halted for one reason or another (busmaster memory
831 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
832 etc.). Modern LANCE variants always reload their ring-buffer
833 configuration when restarted, so we must reinitialize our ring
834 context before restarting. As part of this reinitialization,
835 find all packets still on the Tx ring and pretend that they had been
836 sent (in effect, drop the packets on the floor) - the higher-level
837 protocols will time out and retransmit. It'd be better to shuffle
838 these skbs to a temp list and then actually re-Tx them after
839 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
840*/
841
842static void
843lance_purge_ring(struct net_device *dev)
844{
845 struct lance_private *lp = dev->ml_priv;
846 int i;
847
848 /* Free all the skbuffs in the Rx and Tx queues. */
849 for (i = 0; i < RX_RING_SIZE; i++) {
850 struct sk_buff *skb = lp->rx_skbuff[i];
851 lp->rx_skbuff[i] = NULL;
852 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
853 if (skb)
854 dev_kfree_skb_any(skb);
855 }
856 for (i = 0; i < TX_RING_SIZE; i++) {
857 if (lp->tx_skbuff[i]) {
858 dev_kfree_skb_any(lp->tx_skbuff[i]);
859 lp->tx_skbuff[i] = NULL;
860 }
861 }
862}
863
864
865/* Initialize the LANCE Rx and Tx rings. */
866static void
867lance_init_ring(struct net_device *dev, gfp_t gfp)
868{
869 struct lance_private *lp = dev->ml_priv;
870 int i;
871
872 lp->cur_rx = lp->cur_tx = 0;
873 lp->dirty_rx = lp->dirty_tx = 0;
874
875 for (i = 0; i < RX_RING_SIZE; i++) {
876 struct sk_buff *skb;
877 void *rx_buff;
878
879 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
880 lp->rx_skbuff[i] = skb;
881 if (skb)
882 rx_buff = skb->data;
883 else
884 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
885 if (!rx_buff)
886 lp->rx_ring[i].base = 0;
887 else
888 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
889 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
890 }
891 /* The Tx buffer address is filled in as needed, but we do need to clear
892 the upper ownership bit. */
893 for (i = 0; i < TX_RING_SIZE; i++) {
894 lp->tx_skbuff[i] = NULL;
895 lp->tx_ring[i].base = 0;
896 }
897
898 lp->init_block.mode = 0x0000;
899 for (i = 0; i < 6; i++)
900 lp->init_block.phys_addr[i] = dev->dev_addr[i];
901 lp->init_block.filter[0] = 0x00000000;
902 lp->init_block.filter[1] = 0x00000000;
903 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
904 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
905}
906
907static void
908lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
909{
910 struct lance_private *lp = dev->ml_priv;
911
912 if (must_reinit ||
913 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
914 lance_purge_ring(dev);
915 lance_init_ring(dev, GFP_ATOMIC);
916 }
917 outw(0x0000, dev->base_addr + LANCE_ADDR);
918 outw(csr0_bits, dev->base_addr + LANCE_DATA);
919}
920
921
922static void lance_tx_timeout (struct net_device *dev, unsigned int txqueue)
923{
924 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
925 int ioaddr = dev->base_addr;
926
927 outw (0, ioaddr + LANCE_ADDR);
928 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
929 dev->name, inw (ioaddr + LANCE_DATA));
930 outw (0x0004, ioaddr + LANCE_DATA);
931 dev->stats.tx_errors++;
932#ifndef final_version
933 if (lance_debug > 3) {
934 int i;
935 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
936 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
937 lp->cur_rx);
938 for (i = 0; i < RX_RING_SIZE; i++)
939 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
940 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
941 lp->rx_ring[i].msg_length);
942 for (i = 0; i < TX_RING_SIZE; i++)
943 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
944 lp->tx_ring[i].base, -lp->tx_ring[i].length,
945 lp->tx_ring[i].misc);
946 printk ("\n");
947 }
948#endif
949 lance_restart (dev, 0x0043, 1);
950
951 netif_trans_update(dev); /* prevent tx timeout */
952 netif_wake_queue (dev);
953}
954
955
956static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
957 struct net_device *dev)
958{
959 struct lance_private *lp = dev->ml_priv;
960 int ioaddr = dev->base_addr;
961 int entry;
962 unsigned long flags;
963
964 spin_lock_irqsave(&lp->devlock, flags);
965
966 if (lance_debug > 3) {
967 outw(0x0000, ioaddr+LANCE_ADDR);
968 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
969 inw(ioaddr+LANCE_DATA));
970 outw(0x0000, ioaddr+LANCE_DATA);
971 }
972
973 /* Fill in a Tx ring entry */
974
975 /* Mask to ring buffer boundary. */
976 entry = lp->cur_tx & TX_RING_MOD_MASK;
977
978 /* Caution: the write order is important here, set the base address
979 with the "ownership" bits last. */
980
981 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
982 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
983 if (skb->len < ETH_ZLEN) {
984 if (skb_padto(skb, ETH_ZLEN))
985 goto out;
986 lp->tx_ring[entry].length = -ETH_ZLEN;
987 }
988 else
989 lp->tx_ring[entry].length = -skb->len;
990 } else
991 lp->tx_ring[entry].length = -skb->len;
992
993 lp->tx_ring[entry].misc = 0x0000;
994
995 dev->stats.tx_bytes += skb->len;
996
997 /* If any part of this buffer is >16M we must copy it to a low-memory
998 buffer. */
999 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
1000 if (lance_debug > 5)
1001 printk("%s: bouncing a high-memory packet (%#x).\n",
1002 dev->name, (u32)isa_virt_to_bus(skb->data));
1003 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
1004 lp->tx_ring[entry].base =
1005 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1006 dev_consume_skb_irq(skb);
1007 } else {
1008 lp->tx_skbuff[entry] = skb;
1009 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1010 }
1011 lp->cur_tx++;
1012
1013 /* Trigger an immediate send poll. */
1014 outw(0x0000, ioaddr+LANCE_ADDR);
1015 outw(0x0048, ioaddr+LANCE_DATA);
1016
1017 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1018 netif_stop_queue(dev);
1019
1020out:
1021 spin_unlock_irqrestore(&lp->devlock, flags);
1022 return NETDEV_TX_OK;
1023}
1024
1025/* The LANCE interrupt handler. */
1026static irqreturn_t lance_interrupt(int irq, void *dev_id)
1027{
1028 struct net_device *dev = dev_id;
1029 struct lance_private *lp;
1030 int csr0, ioaddr, boguscnt=10;
1031 int must_restart;
1032
1033 ioaddr = dev->base_addr;
1034 lp = dev->ml_priv;
1035
1036 spin_lock (&lp->devlock);
1037
1038 outw(0x00, dev->base_addr + LANCE_ADDR);
1039 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1040 --boguscnt >= 0) {
1041 /* Acknowledge all of the current interrupt sources ASAP. */
1042 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1043
1044 must_restart = 0;
1045
1046 if (lance_debug > 5)
1047 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1048 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1049
1050 if (csr0 & 0x0400) /* Rx interrupt */
1051 lance_rx(dev);
1052
1053 if (csr0 & 0x0200) { /* Tx-done interrupt */
1054 int dirty_tx = lp->dirty_tx;
1055
1056 while (dirty_tx < lp->cur_tx) {
1057 int entry = dirty_tx & TX_RING_MOD_MASK;
1058 int status = lp->tx_ring[entry].base;
1059
1060 if (status < 0)
1061 break; /* It still hasn't been Txed */
1062
1063 lp->tx_ring[entry].base = 0;
1064
1065 if (status & 0x40000000) {
1066 /* There was an major error, log it. */
1067 int err_status = lp->tx_ring[entry].misc;
1068 dev->stats.tx_errors++;
1069 if (err_status & 0x0400)
1070 dev->stats.tx_aborted_errors++;
1071 if (err_status & 0x0800)
1072 dev->stats.tx_carrier_errors++;
1073 if (err_status & 0x1000)
1074 dev->stats.tx_window_errors++;
1075 if (err_status & 0x4000) {
1076 /* Ackk! On FIFO errors the Tx unit is turned off! */
1077 dev->stats.tx_fifo_errors++;
1078 /* Remove this verbosity later! */
1079 printk("%s: Tx FIFO error! Status %4.4x.\n",
1080 dev->name, csr0);
1081 /* Restart the chip. */
1082 must_restart = 1;
1083 }
1084 } else {
1085 if (status & 0x18000000)
1086 dev->stats.collisions++;
1087 dev->stats.tx_packets++;
1088 }
1089
1090 /* We must free the original skb if it's not a data-only copy
1091 in the bounce buffer. */
1092 if (lp->tx_skbuff[entry]) {
1093 dev_consume_skb_irq(lp->tx_skbuff[entry]);
1094 lp->tx_skbuff[entry] = NULL;
1095 }
1096 dirty_tx++;
1097 }
1098
1099#ifndef final_version
1100 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1101 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1102 dirty_tx, lp->cur_tx,
1103 netif_queue_stopped(dev) ? "yes" : "no");
1104 dirty_tx += TX_RING_SIZE;
1105 }
1106#endif
1107
1108 /* if the ring is no longer full, accept more packets */
1109 if (netif_queue_stopped(dev) &&
1110 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1111 netif_wake_queue (dev);
1112
1113 lp->dirty_tx = dirty_tx;
1114 }
1115
1116 /* Log misc errors. */
1117 if (csr0 & 0x4000)
1118 dev->stats.tx_errors++; /* Tx babble. */
1119 if (csr0 & 0x1000)
1120 dev->stats.rx_errors++; /* Missed a Rx frame. */
1121 if (csr0 & 0x0800) {
1122 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1123 dev->name, csr0);
1124 /* Restart the chip. */
1125 must_restart = 1;
1126 }
1127
1128 if (must_restart) {
1129 /* stop the chip to clear the error condition, then restart */
1130 outw(0x0000, dev->base_addr + LANCE_ADDR);
1131 outw(0x0004, dev->base_addr + LANCE_DATA);
1132 lance_restart(dev, 0x0002, 0);
1133 }
1134 }
1135
1136 /* Clear any other interrupt, and set interrupt enable. */
1137 outw(0x0000, dev->base_addr + LANCE_ADDR);
1138 outw(0x7940, dev->base_addr + LANCE_DATA);
1139
1140 if (lance_debug > 4)
1141 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1142 dev->name, inw(ioaddr + LANCE_ADDR),
1143 inw(dev->base_addr + LANCE_DATA));
1144
1145 spin_unlock (&lp->devlock);
1146 return IRQ_HANDLED;
1147}
1148
1149static int
1150lance_rx(struct net_device *dev)
1151{
1152 struct lance_private *lp = dev->ml_priv;
1153 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1154 int i;
1155
1156 /* If we own the next entry, it's a new packet. Send it up. */
1157 while (lp->rx_ring[entry].base >= 0) {
1158 int status = lp->rx_ring[entry].base >> 24;
1159
1160 if (status != 0x03) { /* There was an error. */
1161 /* There is a tricky error noted by John Murphy,
1162 <murf@perftech.com> to Russ Nelson: Even with full-sized
1163 buffers it's possible for a jabber packet to use two
1164 buffers, with only the last correctly noting the error. */
1165 if (status & 0x01) /* Only count a general error at the */
1166 dev->stats.rx_errors++; /* end of a packet.*/
1167 if (status & 0x20)
1168 dev->stats.rx_frame_errors++;
1169 if (status & 0x10)
1170 dev->stats.rx_over_errors++;
1171 if (status & 0x08)
1172 dev->stats.rx_crc_errors++;
1173 if (status & 0x04)
1174 dev->stats.rx_fifo_errors++;
1175 lp->rx_ring[entry].base &= 0x03ffffff;
1176 }
1177 else
1178 {
1179 /* Malloc up new buffer, compatible with net3. */
1180 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1181 struct sk_buff *skb;
1182
1183 if(pkt_len<60)
1184 {
1185 printk("%s: Runt packet!\n",dev->name);
1186 dev->stats.rx_errors++;
1187 }
1188 else
1189 {
1190 skb = dev_alloc_skb(pkt_len+2);
1191 if (!skb)
1192 {
1193 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1194 for (i=0; i < RX_RING_SIZE; i++)
1195 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1196 break;
1197
1198 if (i > RX_RING_SIZE -2)
1199 {
1200 dev->stats.rx_dropped++;
1201 lp->rx_ring[entry].base |= 0x80000000;
1202 lp->cur_rx++;
1203 }
1204 break;
1205 }
1206 skb_reserve(skb,2); /* 16 byte align */
1207 skb_put(skb,pkt_len); /* Make room */
1208 skb_copy_to_linear_data(skb,
1209 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1210 pkt_len);
1211 skb->protocol=eth_type_trans(skb,dev);
1212 netif_rx(skb);
1213 dev->stats.rx_packets++;
1214 dev->stats.rx_bytes += pkt_len;
1215 }
1216 }
1217 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1218 of QNX reports that some revs of the 79C965 clear it. */
1219 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1220 lp->rx_ring[entry].base |= 0x80000000;
1221 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1222 }
1223
1224 /* We should check that at least two ring entries are free. If not,
1225 we should free one and mark stats->rx_dropped++. */
1226
1227 return 0;
1228}
1229
1230static int
1231lance_close(struct net_device *dev)
1232{
1233 int ioaddr = dev->base_addr;
1234 struct lance_private *lp = dev->ml_priv;
1235
1236 netif_stop_queue (dev);
1237
1238 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1239 outw(112, ioaddr+LANCE_ADDR);
1240 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1241 }
1242 outw(0, ioaddr+LANCE_ADDR);
1243
1244 if (lance_debug > 1)
1245 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1246 dev->name, inw(ioaddr+LANCE_DATA));
1247
1248 /* We stop the LANCE here -- it occasionally polls
1249 memory if we don't. */
1250 outw(0x0004, ioaddr+LANCE_DATA);
1251
1252 if (dev->dma != 4)
1253 {
1254 unsigned long flags=claim_dma_lock();
1255 disable_dma(dev->dma);
1256 release_dma_lock(flags);
1257 }
1258 free_irq(dev->irq, dev);
1259
1260 lance_purge_ring(dev);
1261
1262 return 0;
1263}
1264
1265static struct net_device_stats *lance_get_stats(struct net_device *dev)
1266{
1267 struct lance_private *lp = dev->ml_priv;
1268
1269 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1270 short ioaddr = dev->base_addr;
1271 short saved_addr;
1272 unsigned long flags;
1273
1274 spin_lock_irqsave(&lp->devlock, flags);
1275 saved_addr = inw(ioaddr+LANCE_ADDR);
1276 outw(112, ioaddr+LANCE_ADDR);
1277 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1278 outw(saved_addr, ioaddr+LANCE_ADDR);
1279 spin_unlock_irqrestore(&lp->devlock, flags);
1280 }
1281
1282 return &dev->stats;
1283}
1284
1285/* Set or clear the multicast filter for this adaptor.
1286 */
1287
1288static void set_multicast_list(struct net_device *dev)
1289{
1290 short ioaddr = dev->base_addr;
1291
1292 outw(0, ioaddr+LANCE_ADDR);
1293 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1294
1295 if (dev->flags&IFF_PROMISC) {
1296 outw(15, ioaddr+LANCE_ADDR);
1297 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1298 } else {
1299 short multicast_table[4];
1300 int i;
1301 int num_addrs=netdev_mc_count(dev);
1302 if(dev->flags&IFF_ALLMULTI)
1303 num_addrs=1;
1304 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1305 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1306 for (i = 0; i < 4; i++) {
1307 outw(8 + i, ioaddr+LANCE_ADDR);
1308 outw(multicast_table[i], ioaddr+LANCE_DATA);
1309 }
1310 outw(15, ioaddr+LANCE_ADDR);
1311 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1312 }
1313
1314 lance_restart(dev, 0x0142, 0); /* Resume normal operation */
1315
1316}
1317
1/* lance.c: An AMD LANCE/PCnet ethernet driver for Linux. */
2/*
3 Written/copyright 1993-1998 by Donald Becker.
4
5 Copyright 1993 United States Government as represented by the
6 Director, National Security Agency.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License, incorporated herein by reference.
9
10 This driver is for the Allied Telesis AT1500 and HP J2405A, and should work
11 with most other LANCE-based bus-master (NE2100/NE2500) ethercards.
12
13 The author may be reached as becker@scyld.com, or C/O
14 Scyld Computing Corporation
15 410 Severn Ave., Suite 210
16 Annapolis MD 21403
17
18 Andrey V. Savochkin:
19 - alignment problem with 1.3.* kernel and some minor changes.
20 Thomas Bogendoerfer (tsbogend@bigbug.franken.de):
21 - added support for Linux/Alpha, but removed most of it, because
22 it worked only for the PCI chip.
23 - added hook for the 32bit lance driver
24 - added PCnetPCI II (79C970A) to chip table
25 Paul Gortmaker (gpg109@rsphy1.anu.edu.au):
26 - hopefully fix above so Linux/Alpha can use ISA cards too.
27 8/20/96 Fixed 7990 autoIRQ failure and reversed unneeded alignment -djb
28 v1.12 10/27/97 Module support -djb
29 v1.14 2/3/98 Module support modified, made PCI support optional -djb
30 v1.15 5/27/99 Fixed bug in the cleanup_module(). dev->priv was freed
31 before unregister_netdev() which caused NULL pointer
32 reference later in the chain (in rtnetlink_fill_ifinfo())
33 -- Mika Kuoppala <miku@iki.fi>
34
35 Forward ported v1.14 to 2.1.129, merged the PCI and misc changes from
36 the 2.1 version of the old driver - Alan Cox
37
38 Get rid of check_region, check kmalloc return in lance_probe1
39 Arnaldo Carvalho de Melo <acme@conectiva.com.br> - 11/01/2001
40
41 Reworked detection, added support for Racal InterLan EtherBlaster cards
42 Vesselin Kostadinov <vesok at yahoo dot com > - 22/4/2004
43*/
44
45static const char version[] = "lance.c:v1.16 2006/11/09 dplatt@3do.com, becker@cesdis.gsfc.nasa.gov\n";
46
47#include <linux/module.h>
48#include <linux/kernel.h>
49#include <linux/string.h>
50#include <linux/delay.h>
51#include <linux/errno.h>
52#include <linux/ioport.h>
53#include <linux/slab.h>
54#include <linux/interrupt.h>
55#include <linux/pci.h>
56#include <linux/init.h>
57#include <linux/netdevice.h>
58#include <linux/etherdevice.h>
59#include <linux/skbuff.h>
60#include <linux/mm.h>
61#include <linux/bitops.h>
62
63#include <asm/io.h>
64#include <asm/dma.h>
65
66static unsigned int lance_portlist[] __initdata = { 0x300, 0x320, 0x340, 0x360, 0};
67static int lance_probe1(struct net_device *dev, int ioaddr, int irq, int options);
68static int __init do_lance_probe(struct net_device *dev);
69
70
71static struct card {
72 char id_offset14;
73 char id_offset15;
74} cards[] = {
75 { //"normal"
76 .id_offset14 = 0x57,
77 .id_offset15 = 0x57,
78 },
79 { //NI6510EB
80 .id_offset14 = 0x52,
81 .id_offset15 = 0x44,
82 },
83 { //Racal InterLan EtherBlaster
84 .id_offset14 = 0x52,
85 .id_offset15 = 0x49,
86 },
87};
88#define NUM_CARDS 3
89
90#ifdef LANCE_DEBUG
91static int lance_debug = LANCE_DEBUG;
92#else
93static int lance_debug = 1;
94#endif
95
96/*
97 Theory of Operation
98
99I. Board Compatibility
100
101This device driver is designed for the AMD 79C960, the "PCnet-ISA
102single-chip ethernet controller for ISA". This chip is used in a wide
103variety of boards from vendors such as Allied Telesis, HP, Kingston,
104and Boca. This driver is also intended to work with older AMD 7990
105designs, such as the NE1500 and NE2100, and newer 79C961. For convenience,
106I use the name LANCE to refer to all of the AMD chips, even though it properly
107refers only to the original 7990.
108
109II. Board-specific settings
110
111The driver is designed to work the boards that use the faster
112bus-master mode, rather than in shared memory mode. (Only older designs
113have on-board buffer memory needed to support the slower shared memory mode.)
114
115Most ISA boards have jumpered settings for the I/O base, IRQ line, and DMA
116channel. This driver probes the likely base addresses:
117{0x300, 0x320, 0x340, 0x360}.
118After the board is found it generates a DMA-timeout interrupt and uses
119autoIRQ to find the IRQ line. The DMA channel can be set with the low bits
120of the otherwise-unused dev->mem_start value (aka PARAM1). If unset it is
121probed for by enabling each free DMA channel in turn and checking if
122initialization succeeds.
123
124The HP-J2405A board is an exception: with this board it is easy to read the
125EEPROM-set values for the base, IRQ, and DMA. (Of course you must already
126_know_ the base address -- that field is for writing the EEPROM.)
127
128III. Driver operation
129
130IIIa. Ring buffers
131The LANCE uses ring buffers of Tx and Rx descriptors. Each entry describes
132the base and length of the data buffer, along with status bits. The length
133of these buffers is set by LANCE_LOG_{RX,TX}_BUFFERS, which is log_2() of
134the buffer length (rather than being directly the buffer length) for
135implementation ease. The current values are 2 (Tx) and 4 (Rx), which leads to
136ring sizes of 4 (Tx) and 16 (Rx). Increasing the number of ring entries
137needlessly uses extra space and reduces the chance that an upper layer will
138be able to reorder queued Tx packets based on priority. Decreasing the number
139of entries makes it more difficult to achieve back-to-back packet transmission
140and increases the chance that Rx ring will overflow. (Consider the worst case
141of receiving back-to-back minimum-sized packets.)
142
143The LANCE has the capability to "chain" both Rx and Tx buffers, but this driver
144statically allocates full-sized (slightly oversized -- PKT_BUF_SZ) buffers to
145avoid the administrative overhead. For the Rx side this avoids dynamically
146allocating full-sized buffers "just in case", at the expense of a
147memory-to-memory data copy for each packet received. For most systems this
148is a good tradeoff: the Rx buffer will always be in low memory, the copy
149is inexpensive, and it primes the cache for later packet processing. For Tx
150the buffers are only used when needed as low-memory bounce buffers.
151
152IIIB. 16M memory limitations.
153For the ISA bus master mode all structures used directly by the LANCE,
154the initialization block, Rx and Tx rings, and data buffers, must be
155accessible from the ISA bus, i.e. in the lower 16M of real memory.
156This is a problem for current Linux kernels on >16M machines. The network
157devices are initialized after memory initialization, and the kernel doles out
158memory from the top of memory downward. The current solution is to have a
159special network initialization routine that's called before memory
160initialization; this will eventually be generalized for all network devices.
161As mentioned before, low-memory "bounce-buffers" are used when needed.
162
163IIIC. Synchronization
164The driver runs as two independent, single-threaded flows of control. One
165is the send-packet routine, which enforces single-threaded use by the
166dev->tbusy flag. The other thread is the interrupt handler, which is single
167threaded by the hardware and other software.
168
169The send packet thread has partial control over the Tx ring and 'dev->tbusy'
170flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
171queue slot is empty, it clears the tbusy flag when finished otherwise it sets
172the 'lp->tx_full' flag.
173
174The interrupt handler has exclusive control over the Rx ring and records stats
175from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so
176we can't avoid the interrupt overhead by having the Tx routine reap the Tx
177stats.) After reaping the stats, it marks the queue entry as empty by setting
178the 'base' to zero. Iff the 'lp->tx_full' flag is set, it clears both the
179tx_full and tbusy flags.
180
181*/
182
183/* Set the number of Tx and Rx buffers, using Log_2(# buffers).
184 Reasonable default values are 16 Tx buffers, and 16 Rx buffers.
185 That translates to 4 and 4 (16 == 2^^4).
186 This is a compile-time option for efficiency.
187 */
188#ifndef LANCE_LOG_TX_BUFFERS
189#define LANCE_LOG_TX_BUFFERS 4
190#define LANCE_LOG_RX_BUFFERS 4
191#endif
192
193#define TX_RING_SIZE (1 << (LANCE_LOG_TX_BUFFERS))
194#define TX_RING_MOD_MASK (TX_RING_SIZE - 1)
195#define TX_RING_LEN_BITS ((LANCE_LOG_TX_BUFFERS) << 29)
196
197#define RX_RING_SIZE (1 << (LANCE_LOG_RX_BUFFERS))
198#define RX_RING_MOD_MASK (RX_RING_SIZE - 1)
199#define RX_RING_LEN_BITS ((LANCE_LOG_RX_BUFFERS) << 29)
200
201#define PKT_BUF_SZ 1544
202
203/* Offsets from base I/O address. */
204#define LANCE_DATA 0x10
205#define LANCE_ADDR 0x12
206#define LANCE_RESET 0x14
207#define LANCE_BUS_IF 0x16
208#define LANCE_TOTAL_SIZE 0x18
209
210#define TX_TIMEOUT (HZ/5)
211
212/* The LANCE Rx and Tx ring descriptors. */
213struct lance_rx_head {
214 s32 base;
215 s16 buf_length; /* This length is 2s complement (negative)! */
216 s16 msg_length; /* This length is "normal". */
217};
218
219struct lance_tx_head {
220 s32 base;
221 s16 length; /* Length is 2s complement (negative)! */
222 s16 misc;
223};
224
225/* The LANCE initialization block, described in databook. */
226struct lance_init_block {
227 u16 mode; /* Pre-set mode (reg. 15) */
228 u8 phys_addr[6]; /* Physical ethernet address */
229 u32 filter[2]; /* Multicast filter (unused). */
230 /* Receive and transmit ring base, along with extra bits. */
231 u32 rx_ring; /* Tx and Rx ring base pointers */
232 u32 tx_ring;
233};
234
235struct lance_private {
236 /* The Tx and Rx ring entries must be aligned on 8-byte boundaries. */
237 struct lance_rx_head rx_ring[RX_RING_SIZE];
238 struct lance_tx_head tx_ring[TX_RING_SIZE];
239 struct lance_init_block init_block;
240 const char *name;
241 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
242 struct sk_buff* tx_skbuff[TX_RING_SIZE];
243 /* The addresses of receive-in-place skbuffs. */
244 struct sk_buff* rx_skbuff[RX_RING_SIZE];
245 unsigned long rx_buffs; /* Address of Rx and Tx buffers. */
246 /* Tx low-memory "bounce buffer" address. */
247 char (*tx_bounce_buffs)[PKT_BUF_SZ];
248 int cur_rx, cur_tx; /* The next free ring entry */
249 int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
250 int dma;
251 unsigned char chip_version; /* See lance_chip_type. */
252 spinlock_t devlock;
253};
254
255#define LANCE_MUST_PAD 0x00000001
256#define LANCE_ENABLE_AUTOSELECT 0x00000002
257#define LANCE_MUST_REINIT_RING 0x00000004
258#define LANCE_MUST_UNRESET 0x00000008
259#define LANCE_HAS_MISSED_FRAME 0x00000010
260
261/* A mapping from the chip ID number to the part number and features.
262 These are from the datasheets -- in real life the '970 version
263 reportedly has the same ID as the '965. */
264static struct lance_chip_type {
265 int id_number;
266 const char *name;
267 int flags;
268} chip_table[] = {
269 {0x0000, "LANCE 7990", /* Ancient lance chip. */
270 LANCE_MUST_PAD + LANCE_MUST_UNRESET},
271 {0x0003, "PCnet/ISA 79C960", /* 79C960 PCnet/ISA. */
272 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
273 LANCE_HAS_MISSED_FRAME},
274 {0x2260, "PCnet/ISA+ 79C961", /* 79C961 PCnet/ISA+, Plug-n-Play. */
275 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
276 LANCE_HAS_MISSED_FRAME},
277 {0x2420, "PCnet/PCI 79C970", /* 79C970 or 79C974 PCnet-SCSI, PCI. */
278 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
279 LANCE_HAS_MISSED_FRAME},
280 /* Bug: the PCnet/PCI actually uses the PCnet/VLB ID number, so just call
281 it the PCnet32. */
282 {0x2430, "PCnet32", /* 79C965 PCnet for VL bus. */
283 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
284 LANCE_HAS_MISSED_FRAME},
285 {0x2621, "PCnet/PCI-II 79C970A", /* 79C970A PCInetPCI II. */
286 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
287 LANCE_HAS_MISSED_FRAME},
288 {0x0, "PCnet (unknown)",
289 LANCE_ENABLE_AUTOSELECT + LANCE_MUST_REINIT_RING +
290 LANCE_HAS_MISSED_FRAME},
291};
292
293enum {OLD_LANCE = 0, PCNET_ISA=1, PCNET_ISAP=2, PCNET_PCI=3, PCNET_VLB=4, PCNET_PCI_II=5, LANCE_UNKNOWN=6};
294
295
296/* Non-zero if lance_probe1() needs to allocate low-memory bounce buffers.
297 Assume yes until we know the memory size. */
298static unsigned char lance_need_isa_bounce_buffers = 1;
299
300static int lance_open(struct net_device *dev);
301static void lance_init_ring(struct net_device *dev, gfp_t mode);
302static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
303 struct net_device *dev);
304static int lance_rx(struct net_device *dev);
305static irqreturn_t lance_interrupt(int irq, void *dev_id);
306static int lance_close(struct net_device *dev);
307static struct net_device_stats *lance_get_stats(struct net_device *dev);
308static void set_multicast_list(struct net_device *dev);
309static void lance_tx_timeout (struct net_device *dev);
310
311
312
313#ifdef MODULE
314#define MAX_CARDS 8 /* Max number of interfaces (cards) per module */
315
316static struct net_device *dev_lance[MAX_CARDS];
317static int io[MAX_CARDS];
318static int dma[MAX_CARDS];
319static int irq[MAX_CARDS];
320
321module_param_array(io, int, NULL, 0);
322module_param_array(dma, int, NULL, 0);
323module_param_array(irq, int, NULL, 0);
324module_param(lance_debug, int, 0);
325MODULE_PARM_DESC(io, "LANCE/PCnet I/O base address(es),required");
326MODULE_PARM_DESC(dma, "LANCE/PCnet ISA DMA channel (ignored for some devices)");
327MODULE_PARM_DESC(irq, "LANCE/PCnet IRQ number (ignored for some devices)");
328MODULE_PARM_DESC(lance_debug, "LANCE/PCnet debug level (0-7)");
329
330int __init init_module(void)
331{
332 struct net_device *dev;
333 int this_dev, found = 0;
334
335 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
336 if (io[this_dev] == 0) {
337 if (this_dev != 0) /* only complain once */
338 break;
339 printk(KERN_NOTICE "lance.c: Module autoprobing not allowed. Append \"io=0xNNN\" value(s).\n");
340 return -EPERM;
341 }
342 dev = alloc_etherdev(0);
343 if (!dev)
344 break;
345 dev->irq = irq[this_dev];
346 dev->base_addr = io[this_dev];
347 dev->dma = dma[this_dev];
348 if (do_lance_probe(dev) == 0) {
349 dev_lance[found++] = dev;
350 continue;
351 }
352 free_netdev(dev);
353 break;
354 }
355 if (found != 0)
356 return 0;
357 return -ENXIO;
358}
359
360static void cleanup_card(struct net_device *dev)
361{
362 struct lance_private *lp = dev->ml_priv;
363 if (dev->dma != 4)
364 free_dma(dev->dma);
365 release_region(dev->base_addr, LANCE_TOTAL_SIZE);
366 kfree(lp->tx_bounce_buffs);
367 kfree((void*)lp->rx_buffs);
368 kfree(lp);
369}
370
371void __exit cleanup_module(void)
372{
373 int this_dev;
374
375 for (this_dev = 0; this_dev < MAX_CARDS; this_dev++) {
376 struct net_device *dev = dev_lance[this_dev];
377 if (dev) {
378 unregister_netdev(dev);
379 cleanup_card(dev);
380 free_netdev(dev);
381 }
382 }
383}
384#endif /* MODULE */
385MODULE_LICENSE("GPL");
386
387
388/* Starting in v2.1.*, the LANCE/PCnet probe is now similar to the other
389 board probes now that kmalloc() can allocate ISA DMA-able regions.
390 This also allows the LANCE driver to be used as a module.
391 */
392static int __init do_lance_probe(struct net_device *dev)
393{
394 unsigned int *port;
395 int result;
396
397 if (high_memory <= phys_to_virt(16*1024*1024))
398 lance_need_isa_bounce_buffers = 0;
399
400 for (port = lance_portlist; *port; port++) {
401 int ioaddr = *port;
402 struct resource *r = request_region(ioaddr, LANCE_TOTAL_SIZE,
403 "lance-probe");
404
405 if (r) {
406 /* Detect the card with minimal I/O reads */
407 char offset14 = inb(ioaddr + 14);
408 int card;
409 for (card = 0; card < NUM_CARDS; ++card)
410 if (cards[card].id_offset14 == offset14)
411 break;
412 if (card < NUM_CARDS) {/*yes, the first byte matches*/
413 char offset15 = inb(ioaddr + 15);
414 for (card = 0; card < NUM_CARDS; ++card)
415 if ((cards[card].id_offset14 == offset14) &&
416 (cards[card].id_offset15 == offset15))
417 break;
418 }
419 if (card < NUM_CARDS) { /*Signature OK*/
420 result = lance_probe1(dev, ioaddr, 0, 0);
421 if (!result) {
422 struct lance_private *lp = dev->ml_priv;
423 int ver = lp->chip_version;
424
425 r->name = chip_table[ver].name;
426 return 0;
427 }
428 }
429 release_region(ioaddr, LANCE_TOTAL_SIZE);
430 }
431 }
432 return -ENODEV;
433}
434
435#ifndef MODULE
436struct net_device * __init lance_probe(int unit)
437{
438 struct net_device *dev = alloc_etherdev(0);
439 int err;
440
441 if (!dev)
442 return ERR_PTR(-ENODEV);
443
444 sprintf(dev->name, "eth%d", unit);
445 netdev_boot_setup_check(dev);
446
447 err = do_lance_probe(dev);
448 if (err)
449 goto out;
450 return dev;
451out:
452 free_netdev(dev);
453 return ERR_PTR(err);
454}
455#endif
456
457static const struct net_device_ops lance_netdev_ops = {
458 .ndo_open = lance_open,
459 .ndo_start_xmit = lance_start_xmit,
460 .ndo_stop = lance_close,
461 .ndo_get_stats = lance_get_stats,
462 .ndo_set_rx_mode = set_multicast_list,
463 .ndo_tx_timeout = lance_tx_timeout,
464 .ndo_change_mtu = eth_change_mtu,
465 .ndo_set_mac_address = eth_mac_addr,
466 .ndo_validate_addr = eth_validate_addr,
467};
468
469static int __init lance_probe1(struct net_device *dev, int ioaddr, int irq, int options)
470{
471 struct lance_private *lp;
472 unsigned long dma_channels; /* Mark spuriously-busy DMA channels */
473 int i, reset_val, lance_version;
474 const char *chipname;
475 /* Flags for specific chips or boards. */
476 unsigned char hpJ2405A = 0; /* HP ISA adaptor */
477 int hp_builtin = 0; /* HP on-board ethernet. */
478 static int did_version; /* Already printed version info. */
479 unsigned long flags;
480 int err = -ENOMEM;
481 void __iomem *bios;
482
483 /* First we look for special cases.
484 Check for HP's on-board ethernet by looking for 'HP' in the BIOS.
485 There are two HP versions, check the BIOS for the configuration port.
486 This method provided by L. Julliard, Laurent_Julliard@grenoble.hp.com.
487 */
488 bios = ioremap(0xf00f0, 0x14);
489 if (!bios)
490 return -ENOMEM;
491 if (readw(bios + 0x12) == 0x5048) {
492 static const short ioaddr_table[] = { 0x300, 0x320, 0x340, 0x360};
493 int hp_port = (readl(bios + 1) & 1) ? 0x499 : 0x99;
494 /* We can have boards other than the built-in! Verify this is on-board. */
495 if ((inb(hp_port) & 0xc0) == 0x80 &&
496 ioaddr_table[inb(hp_port) & 3] == ioaddr)
497 hp_builtin = hp_port;
498 }
499 iounmap(bios);
500 /* We also recognize the HP Vectra on-board here, but check below. */
501 hpJ2405A = (inb(ioaddr) == 0x08 && inb(ioaddr+1) == 0x00 &&
502 inb(ioaddr+2) == 0x09);
503
504 /* Reset the LANCE. */
505 reset_val = inw(ioaddr+LANCE_RESET); /* Reset the LANCE */
506
507 /* The Un-Reset needed is only needed for the real NE2100, and will
508 confuse the HP board. */
509 if (!hpJ2405A)
510 outw(reset_val, ioaddr+LANCE_RESET);
511
512 outw(0x0000, ioaddr+LANCE_ADDR); /* Switch to window 0 */
513 if (inw(ioaddr+LANCE_DATA) != 0x0004)
514 return -ENODEV;
515
516 /* Get the version of the chip. */
517 outw(88, ioaddr+LANCE_ADDR);
518 if (inw(ioaddr+LANCE_ADDR) != 88) {
519 lance_version = 0;
520 } else { /* Good, it's a newer chip. */
521 int chip_version = inw(ioaddr+LANCE_DATA);
522 outw(89, ioaddr+LANCE_ADDR);
523 chip_version |= inw(ioaddr+LANCE_DATA) << 16;
524 if (lance_debug > 2)
525 printk(" LANCE chip version is %#x.\n", chip_version);
526 if ((chip_version & 0xfff) != 0x003)
527 return -ENODEV;
528 chip_version = (chip_version >> 12) & 0xffff;
529 for (lance_version = 1; chip_table[lance_version].id_number; lance_version++) {
530 if (chip_table[lance_version].id_number == chip_version)
531 break;
532 }
533 }
534
535 /* We can't allocate private data from alloc_etherdev() because it must
536 a ISA DMA-able region. */
537 chipname = chip_table[lance_version].name;
538 printk("%s: %s at %#3x, ", dev->name, chipname, ioaddr);
539
540 /* There is a 16 byte station address PROM at the base address.
541 The first six bytes are the station address. */
542 for (i = 0; i < 6; i++)
543 dev->dev_addr[i] = inb(ioaddr + i);
544 printk("%pM", dev->dev_addr);
545
546 dev->base_addr = ioaddr;
547 /* Make certain the data structures used by the LANCE are aligned and DMAble. */
548
549 lp = kzalloc(sizeof(*lp), GFP_DMA | GFP_KERNEL);
550 if (!lp)
551 return -ENOMEM;
552 if (lance_debug > 6) printk(" (#0x%05lx)", (unsigned long)lp);
553 dev->ml_priv = lp;
554 lp->name = chipname;
555 lp->rx_buffs = (unsigned long)kmalloc(PKT_BUF_SZ*RX_RING_SIZE,
556 GFP_DMA | GFP_KERNEL);
557 if (!lp->rx_buffs)
558 goto out_lp;
559 if (lance_need_isa_bounce_buffers) {
560 lp->tx_bounce_buffs = kmalloc(PKT_BUF_SZ*TX_RING_SIZE,
561 GFP_DMA | GFP_KERNEL);
562 if (!lp->tx_bounce_buffs)
563 goto out_rx;
564 } else
565 lp->tx_bounce_buffs = NULL;
566
567 lp->chip_version = lance_version;
568 spin_lock_init(&lp->devlock);
569
570 lp->init_block.mode = 0x0003; /* Disable Rx and Tx. */
571 for (i = 0; i < 6; i++)
572 lp->init_block.phys_addr[i] = dev->dev_addr[i];
573 lp->init_block.filter[0] = 0x00000000;
574 lp->init_block.filter[1] = 0x00000000;
575 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
576 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
577
578 outw(0x0001, ioaddr+LANCE_ADDR);
579 inw(ioaddr+LANCE_ADDR);
580 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
581 outw(0x0002, ioaddr+LANCE_ADDR);
582 inw(ioaddr+LANCE_ADDR);
583 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
584 outw(0x0000, ioaddr+LANCE_ADDR);
585 inw(ioaddr+LANCE_ADDR);
586
587 if (irq) { /* Set iff PCI card. */
588 dev->dma = 4; /* Native bus-master, no DMA channel needed. */
589 dev->irq = irq;
590 } else if (hp_builtin) {
591 static const char dma_tbl[4] = {3, 5, 6, 0};
592 static const char irq_tbl[4] = {3, 4, 5, 9};
593 unsigned char port_val = inb(hp_builtin);
594 dev->dma = dma_tbl[(port_val >> 4) & 3];
595 dev->irq = irq_tbl[(port_val >> 2) & 3];
596 printk(" HP Vectra IRQ %d DMA %d.\n", dev->irq, dev->dma);
597 } else if (hpJ2405A) {
598 static const char dma_tbl[4] = {3, 5, 6, 7};
599 static const char irq_tbl[8] = {3, 4, 5, 9, 10, 11, 12, 15};
600 short reset_val = inw(ioaddr+LANCE_RESET);
601 dev->dma = dma_tbl[(reset_val >> 2) & 3];
602 dev->irq = irq_tbl[(reset_val >> 4) & 7];
603 printk(" HP J2405A IRQ %d DMA %d.\n", dev->irq, dev->dma);
604 } else if (lance_version == PCNET_ISAP) { /* The plug-n-play version. */
605 short bus_info;
606 outw(8, ioaddr+LANCE_ADDR);
607 bus_info = inw(ioaddr+LANCE_BUS_IF);
608 dev->dma = bus_info & 0x07;
609 dev->irq = (bus_info >> 4) & 0x0F;
610 } else {
611 /* The DMA channel may be passed in PARAM1. */
612 if (dev->mem_start & 0x07)
613 dev->dma = dev->mem_start & 0x07;
614 }
615
616 if (dev->dma == 0) {
617 /* Read the DMA channel status register, so that we can avoid
618 stuck DMA channels in the DMA detection below. */
619 dma_channels = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
620 (inb(DMA2_STAT_REG) & 0xf0);
621 }
622 err = -ENODEV;
623 if (dev->irq >= 2)
624 printk(" assigned IRQ %d", dev->irq);
625 else if (lance_version != 0) { /* 7990 boards need DMA detection first. */
626 unsigned long irq_mask;
627
628 /* To auto-IRQ we enable the initialization-done and DMA error
629 interrupts. For ISA boards we get a DMA error, but VLB and PCI
630 boards will work. */
631 irq_mask = probe_irq_on();
632
633 /* Trigger an initialization just for the interrupt. */
634 outw(0x0041, ioaddr+LANCE_DATA);
635
636 mdelay(20);
637 dev->irq = probe_irq_off(irq_mask);
638 if (dev->irq)
639 printk(", probed IRQ %d", dev->irq);
640 else {
641 printk(", failed to detect IRQ line.\n");
642 goto out_tx;
643 }
644
645 /* Check for the initialization done bit, 0x0100, which means
646 that we don't need a DMA channel. */
647 if (inw(ioaddr+LANCE_DATA) & 0x0100)
648 dev->dma = 4;
649 }
650
651 if (dev->dma == 4) {
652 printk(", no DMA needed.\n");
653 } else if (dev->dma) {
654 if (request_dma(dev->dma, chipname)) {
655 printk("DMA %d allocation failed.\n", dev->dma);
656 goto out_tx;
657 } else
658 printk(", assigned DMA %d.\n", dev->dma);
659 } else { /* OK, we have to auto-DMA. */
660 for (i = 0; i < 4; i++) {
661 static const char dmas[] = { 5, 6, 7, 3 };
662 int dma = dmas[i];
663 int boguscnt;
664
665 /* Don't enable a permanently busy DMA channel, or the machine
666 will hang. */
667 if (test_bit(dma, &dma_channels))
668 continue;
669 outw(0x7f04, ioaddr+LANCE_DATA); /* Clear the memory error bits. */
670 if (request_dma(dma, chipname))
671 continue;
672
673 flags=claim_dma_lock();
674 set_dma_mode(dma, DMA_MODE_CASCADE);
675 enable_dma(dma);
676 release_dma_lock(flags);
677
678 /* Trigger an initialization. */
679 outw(0x0001, ioaddr+LANCE_DATA);
680 for (boguscnt = 100; boguscnt > 0; --boguscnt)
681 if (inw(ioaddr+LANCE_DATA) & 0x0900)
682 break;
683 if (inw(ioaddr+LANCE_DATA) & 0x0100) {
684 dev->dma = dma;
685 printk(", DMA %d.\n", dev->dma);
686 break;
687 } else {
688 flags=claim_dma_lock();
689 disable_dma(dma);
690 release_dma_lock(flags);
691 free_dma(dma);
692 }
693 }
694 if (i == 4) { /* Failure: bail. */
695 printk("DMA detection failed.\n");
696 goto out_tx;
697 }
698 }
699
700 if (lance_version == 0 && dev->irq == 0) {
701 /* We may auto-IRQ now that we have a DMA channel. */
702 /* Trigger an initialization just for the interrupt. */
703 unsigned long irq_mask;
704
705 irq_mask = probe_irq_on();
706 outw(0x0041, ioaddr+LANCE_DATA);
707
708 mdelay(40);
709 dev->irq = probe_irq_off(irq_mask);
710 if (dev->irq == 0) {
711 printk(" Failed to detect the 7990 IRQ line.\n");
712 goto out_dma;
713 }
714 printk(" Auto-IRQ detected IRQ%d.\n", dev->irq);
715 }
716
717 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
718 /* Turn on auto-select of media (10baseT or BNC) so that the user
719 can watch the LEDs even if the board isn't opened. */
720 outw(0x0002, ioaddr+LANCE_ADDR);
721 /* Don't touch 10base2 power bit. */
722 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
723 }
724
725 if (lance_debug > 0 && did_version++ == 0)
726 printk(version);
727
728 /* The LANCE-specific entries in the device structure. */
729 dev->netdev_ops = &lance_netdev_ops;
730 dev->watchdog_timeo = TX_TIMEOUT;
731
732 err = register_netdev(dev);
733 if (err)
734 goto out_dma;
735 return 0;
736out_dma:
737 if (dev->dma != 4)
738 free_dma(dev->dma);
739out_tx:
740 kfree(lp->tx_bounce_buffs);
741out_rx:
742 kfree((void*)lp->rx_buffs);
743out_lp:
744 kfree(lp);
745 return err;
746}
747
748
749static int
750lance_open(struct net_device *dev)
751{
752 struct lance_private *lp = dev->ml_priv;
753 int ioaddr = dev->base_addr;
754 int i;
755
756 if (dev->irq == 0 ||
757 request_irq(dev->irq, lance_interrupt, 0, dev->name, dev)) {
758 return -EAGAIN;
759 }
760
761 /* We used to allocate DMA here, but that was silly.
762 DMA lines can't be shared! We now permanently allocate them. */
763
764 /* Reset the LANCE */
765 inw(ioaddr+LANCE_RESET);
766
767 /* The DMA controller is used as a no-operation slave, "cascade mode". */
768 if (dev->dma != 4) {
769 unsigned long flags=claim_dma_lock();
770 enable_dma(dev->dma);
771 set_dma_mode(dev->dma, DMA_MODE_CASCADE);
772 release_dma_lock(flags);
773 }
774
775 /* Un-Reset the LANCE, needed only for the NE2100. */
776 if (chip_table[lp->chip_version].flags & LANCE_MUST_UNRESET)
777 outw(0, ioaddr+LANCE_RESET);
778
779 if (chip_table[lp->chip_version].flags & LANCE_ENABLE_AUTOSELECT) {
780 /* This is 79C960-specific: Turn on auto-select of media (AUI, BNC). */
781 outw(0x0002, ioaddr+LANCE_ADDR);
782 /* Only touch autoselect bit. */
783 outw(inw(ioaddr+LANCE_BUS_IF) | 0x0002, ioaddr+LANCE_BUS_IF);
784 }
785
786 if (lance_debug > 1)
787 printk("%s: lance_open() irq %d dma %d tx/rx rings %#x/%#x init %#x.\n",
788 dev->name, dev->irq, dev->dma,
789 (u32) isa_virt_to_bus(lp->tx_ring),
790 (u32) isa_virt_to_bus(lp->rx_ring),
791 (u32) isa_virt_to_bus(&lp->init_block));
792
793 lance_init_ring(dev, GFP_KERNEL);
794 /* Re-initialize the LANCE, and start it when done. */
795 outw(0x0001, ioaddr+LANCE_ADDR);
796 outw((short) (u32) isa_virt_to_bus(&lp->init_block), ioaddr+LANCE_DATA);
797 outw(0x0002, ioaddr+LANCE_ADDR);
798 outw(((u32)isa_virt_to_bus(&lp->init_block)) >> 16, ioaddr+LANCE_DATA);
799
800 outw(0x0004, ioaddr+LANCE_ADDR);
801 outw(0x0915, ioaddr+LANCE_DATA);
802
803 outw(0x0000, ioaddr+LANCE_ADDR);
804 outw(0x0001, ioaddr+LANCE_DATA);
805
806 netif_start_queue (dev);
807
808 i = 0;
809 while (i++ < 100)
810 if (inw(ioaddr+LANCE_DATA) & 0x0100)
811 break;
812 /*
813 * We used to clear the InitDone bit, 0x0100, here but Mark Stockton
814 * reports that doing so triggers a bug in the '974.
815 */
816 outw(0x0042, ioaddr+LANCE_DATA);
817
818 if (lance_debug > 2)
819 printk("%s: LANCE open after %d ticks, init block %#x csr0 %4.4x.\n",
820 dev->name, i, (u32) isa_virt_to_bus(&lp->init_block), inw(ioaddr+LANCE_DATA));
821
822 return 0; /* Always succeed */
823}
824
825/* The LANCE has been halted for one reason or another (busmaster memory
826 arbitration error, Tx FIFO underflow, driver stopped it to reconfigure,
827 etc.). Modern LANCE variants always reload their ring-buffer
828 configuration when restarted, so we must reinitialize our ring
829 context before restarting. As part of this reinitialization,
830 find all packets still on the Tx ring and pretend that they had been
831 sent (in effect, drop the packets on the floor) - the higher-level
832 protocols will time out and retransmit. It'd be better to shuffle
833 these skbs to a temp list and then actually re-Tx them after
834 restarting the chip, but I'm too lazy to do so right now. dplatt@3do.com
835*/
836
837static void
838lance_purge_ring(struct net_device *dev)
839{
840 struct lance_private *lp = dev->ml_priv;
841 int i;
842
843 /* Free all the skbuffs in the Rx and Tx queues. */
844 for (i = 0; i < RX_RING_SIZE; i++) {
845 struct sk_buff *skb = lp->rx_skbuff[i];
846 lp->rx_skbuff[i] = NULL;
847 lp->rx_ring[i].base = 0; /* Not owned by LANCE chip. */
848 if (skb)
849 dev_kfree_skb_any(skb);
850 }
851 for (i = 0; i < TX_RING_SIZE; i++) {
852 if (lp->tx_skbuff[i]) {
853 dev_kfree_skb_any(lp->tx_skbuff[i]);
854 lp->tx_skbuff[i] = NULL;
855 }
856 }
857}
858
859
860/* Initialize the LANCE Rx and Tx rings. */
861static void
862lance_init_ring(struct net_device *dev, gfp_t gfp)
863{
864 struct lance_private *lp = dev->ml_priv;
865 int i;
866
867 lp->cur_rx = lp->cur_tx = 0;
868 lp->dirty_rx = lp->dirty_tx = 0;
869
870 for (i = 0; i < RX_RING_SIZE; i++) {
871 struct sk_buff *skb;
872 void *rx_buff;
873
874 skb = alloc_skb(PKT_BUF_SZ, GFP_DMA | gfp);
875 lp->rx_skbuff[i] = skb;
876 if (skb)
877 rx_buff = skb->data;
878 else
879 rx_buff = kmalloc(PKT_BUF_SZ, GFP_DMA | gfp);
880 if (rx_buff == NULL)
881 lp->rx_ring[i].base = 0;
882 else
883 lp->rx_ring[i].base = (u32)isa_virt_to_bus(rx_buff) | 0x80000000;
884 lp->rx_ring[i].buf_length = -PKT_BUF_SZ;
885 }
886 /* The Tx buffer address is filled in as needed, but we do need to clear
887 the upper ownership bit. */
888 for (i = 0; i < TX_RING_SIZE; i++) {
889 lp->tx_skbuff[i] = NULL;
890 lp->tx_ring[i].base = 0;
891 }
892
893 lp->init_block.mode = 0x0000;
894 for (i = 0; i < 6; i++)
895 lp->init_block.phys_addr[i] = dev->dev_addr[i];
896 lp->init_block.filter[0] = 0x00000000;
897 lp->init_block.filter[1] = 0x00000000;
898 lp->init_block.rx_ring = ((u32)isa_virt_to_bus(lp->rx_ring) & 0xffffff) | RX_RING_LEN_BITS;
899 lp->init_block.tx_ring = ((u32)isa_virt_to_bus(lp->tx_ring) & 0xffffff) | TX_RING_LEN_BITS;
900}
901
902static void
903lance_restart(struct net_device *dev, unsigned int csr0_bits, int must_reinit)
904{
905 struct lance_private *lp = dev->ml_priv;
906
907 if (must_reinit ||
908 (chip_table[lp->chip_version].flags & LANCE_MUST_REINIT_RING)) {
909 lance_purge_ring(dev);
910 lance_init_ring(dev, GFP_ATOMIC);
911 }
912 outw(0x0000, dev->base_addr + LANCE_ADDR);
913 outw(csr0_bits, dev->base_addr + LANCE_DATA);
914}
915
916
917static void lance_tx_timeout (struct net_device *dev)
918{
919 struct lance_private *lp = (struct lance_private *) dev->ml_priv;
920 int ioaddr = dev->base_addr;
921
922 outw (0, ioaddr + LANCE_ADDR);
923 printk ("%s: transmit timed out, status %4.4x, resetting.\n",
924 dev->name, inw (ioaddr + LANCE_DATA));
925 outw (0x0004, ioaddr + LANCE_DATA);
926 dev->stats.tx_errors++;
927#ifndef final_version
928 if (lance_debug > 3) {
929 int i;
930 printk (" Ring data dump: dirty_tx %d cur_tx %d%s cur_rx %d.",
931 lp->dirty_tx, lp->cur_tx, netif_queue_stopped(dev) ? " (full)" : "",
932 lp->cur_rx);
933 for (i = 0; i < RX_RING_SIZE; i++)
934 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
935 lp->rx_ring[i].base, -lp->rx_ring[i].buf_length,
936 lp->rx_ring[i].msg_length);
937 for (i = 0; i < TX_RING_SIZE; i++)
938 printk ("%s %08x %04x %04x", i & 0x3 ? "" : "\n ",
939 lp->tx_ring[i].base, -lp->tx_ring[i].length,
940 lp->tx_ring[i].misc);
941 printk ("\n");
942 }
943#endif
944 lance_restart (dev, 0x0043, 1);
945
946 dev->trans_start = jiffies; /* prevent tx timeout */
947 netif_wake_queue (dev);
948}
949
950
951static netdev_tx_t lance_start_xmit(struct sk_buff *skb,
952 struct net_device *dev)
953{
954 struct lance_private *lp = dev->ml_priv;
955 int ioaddr = dev->base_addr;
956 int entry;
957 unsigned long flags;
958
959 spin_lock_irqsave(&lp->devlock, flags);
960
961 if (lance_debug > 3) {
962 outw(0x0000, ioaddr+LANCE_ADDR);
963 printk("%s: lance_start_xmit() called, csr0 %4.4x.\n", dev->name,
964 inw(ioaddr+LANCE_DATA));
965 outw(0x0000, ioaddr+LANCE_DATA);
966 }
967
968 /* Fill in a Tx ring entry */
969
970 /* Mask to ring buffer boundary. */
971 entry = lp->cur_tx & TX_RING_MOD_MASK;
972
973 /* Caution: the write order is important here, set the base address
974 with the "ownership" bits last. */
975
976 /* The old LANCE chips doesn't automatically pad buffers to min. size. */
977 if (chip_table[lp->chip_version].flags & LANCE_MUST_PAD) {
978 if (skb->len < ETH_ZLEN) {
979 if (skb_padto(skb, ETH_ZLEN))
980 goto out;
981 lp->tx_ring[entry].length = -ETH_ZLEN;
982 }
983 else
984 lp->tx_ring[entry].length = -skb->len;
985 } else
986 lp->tx_ring[entry].length = -skb->len;
987
988 lp->tx_ring[entry].misc = 0x0000;
989
990 dev->stats.tx_bytes += skb->len;
991
992 /* If any part of this buffer is >16M we must copy it to a low-memory
993 buffer. */
994 if ((u32)isa_virt_to_bus(skb->data) + skb->len > 0x01000000) {
995 if (lance_debug > 5)
996 printk("%s: bouncing a high-memory packet (%#x).\n",
997 dev->name, (u32)isa_virt_to_bus(skb->data));
998 skb_copy_from_linear_data(skb, &lp->tx_bounce_buffs[entry], skb->len);
999 lp->tx_ring[entry].base =
1000 ((u32)isa_virt_to_bus((lp->tx_bounce_buffs + entry)) & 0xffffff) | 0x83000000;
1001 dev_kfree_skb(skb);
1002 } else {
1003 lp->tx_skbuff[entry] = skb;
1004 lp->tx_ring[entry].base = ((u32)isa_virt_to_bus(skb->data) & 0xffffff) | 0x83000000;
1005 }
1006 lp->cur_tx++;
1007
1008 /* Trigger an immediate send poll. */
1009 outw(0x0000, ioaddr+LANCE_ADDR);
1010 outw(0x0048, ioaddr+LANCE_DATA);
1011
1012 if ((lp->cur_tx - lp->dirty_tx) >= TX_RING_SIZE)
1013 netif_stop_queue(dev);
1014
1015out:
1016 spin_unlock_irqrestore(&lp->devlock, flags);
1017 return NETDEV_TX_OK;
1018}
1019
1020/* The LANCE interrupt handler. */
1021static irqreturn_t lance_interrupt(int irq, void *dev_id)
1022{
1023 struct net_device *dev = dev_id;
1024 struct lance_private *lp;
1025 int csr0, ioaddr, boguscnt=10;
1026 int must_restart;
1027
1028 ioaddr = dev->base_addr;
1029 lp = dev->ml_priv;
1030
1031 spin_lock (&lp->devlock);
1032
1033 outw(0x00, dev->base_addr + LANCE_ADDR);
1034 while ((csr0 = inw(dev->base_addr + LANCE_DATA)) & 0x8600 &&
1035 --boguscnt >= 0) {
1036 /* Acknowledge all of the current interrupt sources ASAP. */
1037 outw(csr0 & ~0x004f, dev->base_addr + LANCE_DATA);
1038
1039 must_restart = 0;
1040
1041 if (lance_debug > 5)
1042 printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.\n",
1043 dev->name, csr0, inw(dev->base_addr + LANCE_DATA));
1044
1045 if (csr0 & 0x0400) /* Rx interrupt */
1046 lance_rx(dev);
1047
1048 if (csr0 & 0x0200) { /* Tx-done interrupt */
1049 int dirty_tx = lp->dirty_tx;
1050
1051 while (dirty_tx < lp->cur_tx) {
1052 int entry = dirty_tx & TX_RING_MOD_MASK;
1053 int status = lp->tx_ring[entry].base;
1054
1055 if (status < 0)
1056 break; /* It still hasn't been Txed */
1057
1058 lp->tx_ring[entry].base = 0;
1059
1060 if (status & 0x40000000) {
1061 /* There was an major error, log it. */
1062 int err_status = lp->tx_ring[entry].misc;
1063 dev->stats.tx_errors++;
1064 if (err_status & 0x0400)
1065 dev->stats.tx_aborted_errors++;
1066 if (err_status & 0x0800)
1067 dev->stats.tx_carrier_errors++;
1068 if (err_status & 0x1000)
1069 dev->stats.tx_window_errors++;
1070 if (err_status & 0x4000) {
1071 /* Ackk! On FIFO errors the Tx unit is turned off! */
1072 dev->stats.tx_fifo_errors++;
1073 /* Remove this verbosity later! */
1074 printk("%s: Tx FIFO error! Status %4.4x.\n",
1075 dev->name, csr0);
1076 /* Restart the chip. */
1077 must_restart = 1;
1078 }
1079 } else {
1080 if (status & 0x18000000)
1081 dev->stats.collisions++;
1082 dev->stats.tx_packets++;
1083 }
1084
1085 /* We must free the original skb if it's not a data-only copy
1086 in the bounce buffer. */
1087 if (lp->tx_skbuff[entry]) {
1088 dev_kfree_skb_irq(lp->tx_skbuff[entry]);
1089 lp->tx_skbuff[entry] = NULL;
1090 }
1091 dirty_tx++;
1092 }
1093
1094#ifndef final_version
1095 if (lp->cur_tx - dirty_tx >= TX_RING_SIZE) {
1096 printk("out-of-sync dirty pointer, %d vs. %d, full=%s.\n",
1097 dirty_tx, lp->cur_tx,
1098 netif_queue_stopped(dev) ? "yes" : "no");
1099 dirty_tx += TX_RING_SIZE;
1100 }
1101#endif
1102
1103 /* if the ring is no longer full, accept more packets */
1104 if (netif_queue_stopped(dev) &&
1105 dirty_tx > lp->cur_tx - TX_RING_SIZE + 2)
1106 netif_wake_queue (dev);
1107
1108 lp->dirty_tx = dirty_tx;
1109 }
1110
1111 /* Log misc errors. */
1112 if (csr0 & 0x4000)
1113 dev->stats.tx_errors++; /* Tx babble. */
1114 if (csr0 & 0x1000)
1115 dev->stats.rx_errors++; /* Missed a Rx frame. */
1116 if (csr0 & 0x0800) {
1117 printk("%s: Bus master arbitration failure, status %4.4x.\n",
1118 dev->name, csr0);
1119 /* Restart the chip. */
1120 must_restart = 1;
1121 }
1122
1123 if (must_restart) {
1124 /* stop the chip to clear the error condition, then restart */
1125 outw(0x0000, dev->base_addr + LANCE_ADDR);
1126 outw(0x0004, dev->base_addr + LANCE_DATA);
1127 lance_restart(dev, 0x0002, 0);
1128 }
1129 }
1130
1131 /* Clear any other interrupt, and set interrupt enable. */
1132 outw(0x0000, dev->base_addr + LANCE_ADDR);
1133 outw(0x7940, dev->base_addr + LANCE_DATA);
1134
1135 if (lance_debug > 4)
1136 printk("%s: exiting interrupt, csr%d=%#4.4x.\n",
1137 dev->name, inw(ioaddr + LANCE_ADDR),
1138 inw(dev->base_addr + LANCE_DATA));
1139
1140 spin_unlock (&lp->devlock);
1141 return IRQ_HANDLED;
1142}
1143
1144static int
1145lance_rx(struct net_device *dev)
1146{
1147 struct lance_private *lp = dev->ml_priv;
1148 int entry = lp->cur_rx & RX_RING_MOD_MASK;
1149 int i;
1150
1151 /* If we own the next entry, it's a new packet. Send it up. */
1152 while (lp->rx_ring[entry].base >= 0) {
1153 int status = lp->rx_ring[entry].base >> 24;
1154
1155 if (status != 0x03) { /* There was an error. */
1156 /* There is a tricky error noted by John Murphy,
1157 <murf@perftech.com> to Russ Nelson: Even with full-sized
1158 buffers it's possible for a jabber packet to use two
1159 buffers, with only the last correctly noting the error. */
1160 if (status & 0x01) /* Only count a general error at the */
1161 dev->stats.rx_errors++; /* end of a packet.*/
1162 if (status & 0x20)
1163 dev->stats.rx_frame_errors++;
1164 if (status & 0x10)
1165 dev->stats.rx_over_errors++;
1166 if (status & 0x08)
1167 dev->stats.rx_crc_errors++;
1168 if (status & 0x04)
1169 dev->stats.rx_fifo_errors++;
1170 lp->rx_ring[entry].base &= 0x03ffffff;
1171 }
1172 else
1173 {
1174 /* Malloc up new buffer, compatible with net3. */
1175 short pkt_len = (lp->rx_ring[entry].msg_length & 0xfff)-4;
1176 struct sk_buff *skb;
1177
1178 if(pkt_len<60)
1179 {
1180 printk("%s: Runt packet!\n",dev->name);
1181 dev->stats.rx_errors++;
1182 }
1183 else
1184 {
1185 skb = dev_alloc_skb(pkt_len+2);
1186 if (skb == NULL)
1187 {
1188 printk("%s: Memory squeeze, deferring packet.\n", dev->name);
1189 for (i=0; i < RX_RING_SIZE; i++)
1190 if (lp->rx_ring[(entry+i) & RX_RING_MOD_MASK].base < 0)
1191 break;
1192
1193 if (i > RX_RING_SIZE -2)
1194 {
1195 dev->stats.rx_dropped++;
1196 lp->rx_ring[entry].base |= 0x80000000;
1197 lp->cur_rx++;
1198 }
1199 break;
1200 }
1201 skb_reserve(skb,2); /* 16 byte align */
1202 skb_put(skb,pkt_len); /* Make room */
1203 skb_copy_to_linear_data(skb,
1204 (unsigned char *)isa_bus_to_virt((lp->rx_ring[entry].base & 0x00ffffff)),
1205 pkt_len);
1206 skb->protocol=eth_type_trans(skb,dev);
1207 netif_rx(skb);
1208 dev->stats.rx_packets++;
1209 dev->stats.rx_bytes += pkt_len;
1210 }
1211 }
1212 /* The docs say that the buffer length isn't touched, but Andrew Boyd
1213 of QNX reports that some revs of the 79C965 clear it. */
1214 lp->rx_ring[entry].buf_length = -PKT_BUF_SZ;
1215 lp->rx_ring[entry].base |= 0x80000000;
1216 entry = (++lp->cur_rx) & RX_RING_MOD_MASK;
1217 }
1218
1219 /* We should check that at least two ring entries are free. If not,
1220 we should free one and mark stats->rx_dropped++. */
1221
1222 return 0;
1223}
1224
1225static int
1226lance_close(struct net_device *dev)
1227{
1228 int ioaddr = dev->base_addr;
1229 struct lance_private *lp = dev->ml_priv;
1230
1231 netif_stop_queue (dev);
1232
1233 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1234 outw(112, ioaddr+LANCE_ADDR);
1235 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1236 }
1237 outw(0, ioaddr+LANCE_ADDR);
1238
1239 if (lance_debug > 1)
1240 printk("%s: Shutting down ethercard, status was %2.2x.\n",
1241 dev->name, inw(ioaddr+LANCE_DATA));
1242
1243 /* We stop the LANCE here -- it occasionally polls
1244 memory if we don't. */
1245 outw(0x0004, ioaddr+LANCE_DATA);
1246
1247 if (dev->dma != 4)
1248 {
1249 unsigned long flags=claim_dma_lock();
1250 disable_dma(dev->dma);
1251 release_dma_lock(flags);
1252 }
1253 free_irq(dev->irq, dev);
1254
1255 lance_purge_ring(dev);
1256
1257 return 0;
1258}
1259
1260static struct net_device_stats *lance_get_stats(struct net_device *dev)
1261{
1262 struct lance_private *lp = dev->ml_priv;
1263
1264 if (chip_table[lp->chip_version].flags & LANCE_HAS_MISSED_FRAME) {
1265 short ioaddr = dev->base_addr;
1266 short saved_addr;
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&lp->devlock, flags);
1270 saved_addr = inw(ioaddr+LANCE_ADDR);
1271 outw(112, ioaddr+LANCE_ADDR);
1272 dev->stats.rx_missed_errors = inw(ioaddr+LANCE_DATA);
1273 outw(saved_addr, ioaddr+LANCE_ADDR);
1274 spin_unlock_irqrestore(&lp->devlock, flags);
1275 }
1276
1277 return &dev->stats;
1278}
1279
1280/* Set or clear the multicast filter for this adaptor.
1281 */
1282
1283static void set_multicast_list(struct net_device *dev)
1284{
1285 short ioaddr = dev->base_addr;
1286
1287 outw(0, ioaddr+LANCE_ADDR);
1288 outw(0x0004, ioaddr+LANCE_DATA); /* Temporarily stop the lance. */
1289
1290 if (dev->flags&IFF_PROMISC) {
1291 outw(15, ioaddr+LANCE_ADDR);
1292 outw(0x8000, ioaddr+LANCE_DATA); /* Set promiscuous mode */
1293 } else {
1294 short multicast_table[4];
1295 int i;
1296 int num_addrs=netdev_mc_count(dev);
1297 if(dev->flags&IFF_ALLMULTI)
1298 num_addrs=1;
1299 /* FIXIT: We don't use the multicast table, but rely on upper-layer filtering. */
1300 memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table));
1301 for (i = 0; i < 4; i++) {
1302 outw(8 + i, ioaddr+LANCE_ADDR);
1303 outw(multicast_table[i], ioaddr+LANCE_DATA);
1304 }
1305 outw(15, ioaddr+LANCE_ADDR);
1306 outw(0x0000, ioaddr+LANCE_DATA); /* Unset promiscuous mode */
1307 }
1308
1309 lance_restart(dev, 0x0142, 0); /* Resume normal operation */
1310
1311}
1312