Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <linux/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44static int hid_ignore_special_drivers = 0;
45module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48/*
49 * Convert a signed n-bit integer to signed 32-bit integer.
50 */
51
52static s32 snto32(__u32 value, unsigned int n)
53{
54 if (!value || !n)
55 return 0;
56
57 if (n > 32)
58 n = 32;
59
60 return sign_extend32(value, n - 1);
61}
62
63/*
64 * Convert a signed 32-bit integer to a signed n-bit integer.
65 */
66
67static u32 s32ton(__s32 value, unsigned int n)
68{
69 s32 a = value >> (n - 1);
70
71 if (a && a != -1)
72 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
73 return value & ((1 << n) - 1);
74}
75
76/*
77 * Register a new report for a device.
78 */
79
80struct hid_report *hid_register_report(struct hid_device *device,
81 enum hid_report_type type, unsigned int id,
82 unsigned int application)
83{
84 struct hid_report_enum *report_enum = device->report_enum + type;
85 struct hid_report *report;
86
87 if (id >= HID_MAX_IDS)
88 return NULL;
89 if (report_enum->report_id_hash[id])
90 return report_enum->report_id_hash[id];
91
92 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
93 if (!report)
94 return NULL;
95
96 if (id != 0)
97 report_enum->numbered = 1;
98
99 report->id = id;
100 report->type = type;
101 report->size = 0;
102 report->device = device;
103 report->application = application;
104 report_enum->report_id_hash[id] = report;
105
106 list_add_tail(&report->list, &report_enum->report_list);
107 INIT_LIST_HEAD(&report->field_entry_list);
108
109 return report;
110}
111EXPORT_SYMBOL_GPL(hid_register_report);
112
113/*
114 * Register a new field for this report.
115 */
116
117static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
118{
119 struct hid_field *field;
120
121 if (report->maxfield == HID_MAX_FIELDS) {
122 hid_err(report->device, "too many fields in report\n");
123 return NULL;
124 }
125
126 field = kvzalloc((sizeof(struct hid_field) +
127 usages * sizeof(struct hid_usage) +
128 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
129 if (!field)
130 return NULL;
131
132 field->index = report->maxfield++;
133 report->field[field->index] = field;
134 field->usage = (struct hid_usage *)(field + 1);
135 field->value = (s32 *)(field->usage + usages);
136 field->new_value = (s32 *)(field->value + usages);
137 field->usages_priorities = (s32 *)(field->new_value + usages);
138 field->report = report;
139
140 return field;
141}
142
143/*
144 * Open a collection. The type/usage is pushed on the stack.
145 */
146
147static int open_collection(struct hid_parser *parser, unsigned type)
148{
149 struct hid_collection *collection;
150 unsigned usage;
151 int collection_index;
152
153 usage = parser->local.usage[0];
154
155 if (parser->collection_stack_ptr == parser->collection_stack_size) {
156 unsigned int *collection_stack;
157 unsigned int new_size = parser->collection_stack_size +
158 HID_COLLECTION_STACK_SIZE;
159
160 collection_stack = krealloc(parser->collection_stack,
161 new_size * sizeof(unsigned int),
162 GFP_KERNEL);
163 if (!collection_stack)
164 return -ENOMEM;
165
166 parser->collection_stack = collection_stack;
167 parser->collection_stack_size = new_size;
168 }
169
170 if (parser->device->maxcollection == parser->device->collection_size) {
171 collection = kmalloc(
172 array3_size(sizeof(struct hid_collection),
173 parser->device->collection_size,
174 2),
175 GFP_KERNEL);
176 if (collection == NULL) {
177 hid_err(parser->device, "failed to reallocate collection array\n");
178 return -ENOMEM;
179 }
180 memcpy(collection, parser->device->collection,
181 sizeof(struct hid_collection) *
182 parser->device->collection_size);
183 memset(collection + parser->device->collection_size, 0,
184 sizeof(struct hid_collection) *
185 parser->device->collection_size);
186 kfree(parser->device->collection);
187 parser->device->collection = collection;
188 parser->device->collection_size *= 2;
189 }
190
191 parser->collection_stack[parser->collection_stack_ptr++] =
192 parser->device->maxcollection;
193
194 collection_index = parser->device->maxcollection++;
195 collection = parser->device->collection + collection_index;
196 collection->type = type;
197 collection->usage = usage;
198 collection->level = parser->collection_stack_ptr - 1;
199 collection->parent_idx = (collection->level == 0) ? -1 :
200 parser->collection_stack[collection->level - 1];
201
202 if (type == HID_COLLECTION_APPLICATION)
203 parser->device->maxapplication++;
204
205 return 0;
206}
207
208/*
209 * Close a collection.
210 */
211
212static int close_collection(struct hid_parser *parser)
213{
214 if (!parser->collection_stack_ptr) {
215 hid_err(parser->device, "collection stack underflow\n");
216 return -EINVAL;
217 }
218 parser->collection_stack_ptr--;
219 return 0;
220}
221
222/*
223 * Climb up the stack, search for the specified collection type
224 * and return the usage.
225 */
226
227static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
228{
229 struct hid_collection *collection = parser->device->collection;
230 int n;
231
232 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
233 unsigned index = parser->collection_stack[n];
234 if (collection[index].type == type)
235 return collection[index].usage;
236 }
237 return 0; /* we know nothing about this usage type */
238}
239
240/*
241 * Concatenate usage which defines 16 bits or less with the
242 * currently defined usage page to form a 32 bit usage
243 */
244
245static void complete_usage(struct hid_parser *parser, unsigned int index)
246{
247 parser->local.usage[index] &= 0xFFFF;
248 parser->local.usage[index] |=
249 (parser->global.usage_page & 0xFFFF) << 16;
250}
251
252/*
253 * Add a usage to the temporary parser table.
254 */
255
256static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
257{
258 if (parser->local.usage_index >= HID_MAX_USAGES) {
259 hid_err(parser->device, "usage index exceeded\n");
260 return -1;
261 }
262 parser->local.usage[parser->local.usage_index] = usage;
263
264 /*
265 * If Usage item only includes usage id, concatenate it with
266 * currently defined usage page
267 */
268 if (size <= 2)
269 complete_usage(parser, parser->local.usage_index);
270
271 parser->local.usage_size[parser->local.usage_index] = size;
272 parser->local.collection_index[parser->local.usage_index] =
273 parser->collection_stack_ptr ?
274 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
275 parser->local.usage_index++;
276 return 0;
277}
278
279/*
280 * Register a new field for this report.
281 */
282
283static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
284{
285 struct hid_report *report;
286 struct hid_field *field;
287 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
288 unsigned int usages;
289 unsigned int offset;
290 unsigned int i;
291 unsigned int application;
292
293 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
294
295 report = hid_register_report(parser->device, report_type,
296 parser->global.report_id, application);
297 if (!report) {
298 hid_err(parser->device, "hid_register_report failed\n");
299 return -1;
300 }
301
302 /* Handle both signed and unsigned cases properly */
303 if ((parser->global.logical_minimum < 0 &&
304 parser->global.logical_maximum <
305 parser->global.logical_minimum) ||
306 (parser->global.logical_minimum >= 0 &&
307 (__u32)parser->global.logical_maximum <
308 (__u32)parser->global.logical_minimum)) {
309 dbg_hid("logical range invalid 0x%x 0x%x\n",
310 parser->global.logical_minimum,
311 parser->global.logical_maximum);
312 return -1;
313 }
314
315 offset = report->size;
316 report->size += parser->global.report_size * parser->global.report_count;
317
318 if (parser->device->ll_driver->max_buffer_size)
319 max_buffer_size = parser->device->ll_driver->max_buffer_size;
320
321 /* Total size check: Allow for possible report index byte */
322 if (report->size > (max_buffer_size - 1) << 3) {
323 hid_err(parser->device, "report is too long\n");
324 return -1;
325 }
326
327 if (!parser->local.usage_index) /* Ignore padding fields */
328 return 0;
329
330 usages = max_t(unsigned, parser->local.usage_index,
331 parser->global.report_count);
332
333 field = hid_register_field(report, usages);
334 if (!field)
335 return 0;
336
337 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
338 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
339 field->application = application;
340
341 for (i = 0; i < usages; i++) {
342 unsigned j = i;
343 /* Duplicate the last usage we parsed if we have excess values */
344 if (i >= parser->local.usage_index)
345 j = parser->local.usage_index - 1;
346 field->usage[i].hid = parser->local.usage[j];
347 field->usage[i].collection_index =
348 parser->local.collection_index[j];
349 field->usage[i].usage_index = i;
350 field->usage[i].resolution_multiplier = 1;
351 }
352
353 field->maxusage = usages;
354 field->flags = flags;
355 field->report_offset = offset;
356 field->report_type = report_type;
357 field->report_size = parser->global.report_size;
358 field->report_count = parser->global.report_count;
359 field->logical_minimum = parser->global.logical_minimum;
360 field->logical_maximum = parser->global.logical_maximum;
361 field->physical_minimum = parser->global.physical_minimum;
362 field->physical_maximum = parser->global.physical_maximum;
363 field->unit_exponent = parser->global.unit_exponent;
364 field->unit = parser->global.unit;
365
366 return 0;
367}
368
369/*
370 * Read data value from item.
371 */
372
373static u32 item_udata(struct hid_item *item)
374{
375 switch (item->size) {
376 case 1: return item->data.u8;
377 case 2: return item->data.u16;
378 case 4: return item->data.u32;
379 }
380 return 0;
381}
382
383static s32 item_sdata(struct hid_item *item)
384{
385 switch (item->size) {
386 case 1: return item->data.s8;
387 case 2: return item->data.s16;
388 case 4: return item->data.s32;
389 }
390 return 0;
391}
392
393/*
394 * Process a global item.
395 */
396
397static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
398{
399 __s32 raw_value;
400 switch (item->tag) {
401 case HID_GLOBAL_ITEM_TAG_PUSH:
402
403 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
404 hid_err(parser->device, "global environment stack overflow\n");
405 return -1;
406 }
407
408 memcpy(parser->global_stack + parser->global_stack_ptr++,
409 &parser->global, sizeof(struct hid_global));
410 return 0;
411
412 case HID_GLOBAL_ITEM_TAG_POP:
413
414 if (!parser->global_stack_ptr) {
415 hid_err(parser->device, "global environment stack underflow\n");
416 return -1;
417 }
418
419 memcpy(&parser->global, parser->global_stack +
420 --parser->global_stack_ptr, sizeof(struct hid_global));
421 return 0;
422
423 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
424 parser->global.usage_page = item_udata(item);
425 return 0;
426
427 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
428 parser->global.logical_minimum = item_sdata(item);
429 return 0;
430
431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
432 if (parser->global.logical_minimum < 0)
433 parser->global.logical_maximum = item_sdata(item);
434 else
435 parser->global.logical_maximum = item_udata(item);
436 return 0;
437
438 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
439 parser->global.physical_minimum = item_sdata(item);
440 return 0;
441
442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
443 if (parser->global.physical_minimum < 0)
444 parser->global.physical_maximum = item_sdata(item);
445 else
446 parser->global.physical_maximum = item_udata(item);
447 return 0;
448
449 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
450 /* Many devices provide unit exponent as a two's complement
451 * nibble due to the common misunderstanding of HID
452 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
453 * both this and the standard encoding. */
454 raw_value = item_sdata(item);
455 if (!(raw_value & 0xfffffff0))
456 parser->global.unit_exponent = snto32(raw_value, 4);
457 else
458 parser->global.unit_exponent = raw_value;
459 return 0;
460
461 case HID_GLOBAL_ITEM_TAG_UNIT:
462 parser->global.unit = item_udata(item);
463 return 0;
464
465 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
466 parser->global.report_size = item_udata(item);
467 if (parser->global.report_size > 256) {
468 hid_err(parser->device, "invalid report_size %d\n",
469 parser->global.report_size);
470 return -1;
471 }
472 return 0;
473
474 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
475 parser->global.report_count = item_udata(item);
476 if (parser->global.report_count > HID_MAX_USAGES) {
477 hid_err(parser->device, "invalid report_count %d\n",
478 parser->global.report_count);
479 return -1;
480 }
481 return 0;
482
483 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
484 parser->global.report_id = item_udata(item);
485 if (parser->global.report_id == 0 ||
486 parser->global.report_id >= HID_MAX_IDS) {
487 hid_err(parser->device, "report_id %u is invalid\n",
488 parser->global.report_id);
489 return -1;
490 }
491 return 0;
492
493 default:
494 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
495 return -1;
496 }
497}
498
499/*
500 * Process a local item.
501 */
502
503static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
504{
505 __u32 data;
506 unsigned n;
507 __u32 count;
508
509 data = item_udata(item);
510
511 switch (item->tag) {
512 case HID_LOCAL_ITEM_TAG_DELIMITER:
513
514 if (data) {
515 /*
516 * We treat items before the first delimiter
517 * as global to all usage sets (branch 0).
518 * In the moment we process only these global
519 * items and the first delimiter set.
520 */
521 if (parser->local.delimiter_depth != 0) {
522 hid_err(parser->device, "nested delimiters\n");
523 return -1;
524 }
525 parser->local.delimiter_depth++;
526 parser->local.delimiter_branch++;
527 } else {
528 if (parser->local.delimiter_depth < 1) {
529 hid_err(parser->device, "bogus close delimiter\n");
530 return -1;
531 }
532 parser->local.delimiter_depth--;
533 }
534 return 0;
535
536 case HID_LOCAL_ITEM_TAG_USAGE:
537
538 if (parser->local.delimiter_branch > 1) {
539 dbg_hid("alternative usage ignored\n");
540 return 0;
541 }
542
543 return hid_add_usage(parser, data, item->size);
544
545 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
546
547 if (parser->local.delimiter_branch > 1) {
548 dbg_hid("alternative usage ignored\n");
549 return 0;
550 }
551
552 parser->local.usage_minimum = data;
553 return 0;
554
555 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
556
557 if (parser->local.delimiter_branch > 1) {
558 dbg_hid("alternative usage ignored\n");
559 return 0;
560 }
561
562 count = data - parser->local.usage_minimum;
563 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
564 /*
565 * We do not warn if the name is not set, we are
566 * actually pre-scanning the device.
567 */
568 if (dev_name(&parser->device->dev))
569 hid_warn(parser->device,
570 "ignoring exceeding usage max\n");
571 data = HID_MAX_USAGES - parser->local.usage_index +
572 parser->local.usage_minimum - 1;
573 if (data <= 0) {
574 hid_err(parser->device,
575 "no more usage index available\n");
576 return -1;
577 }
578 }
579
580 for (n = parser->local.usage_minimum; n <= data; n++)
581 if (hid_add_usage(parser, n, item->size)) {
582 dbg_hid("hid_add_usage failed\n");
583 return -1;
584 }
585 return 0;
586
587 default:
588
589 dbg_hid("unknown local item tag 0x%x\n", item->tag);
590 return 0;
591 }
592 return 0;
593}
594
595/*
596 * Concatenate Usage Pages into Usages where relevant:
597 * As per specification, 6.2.2.8: "When the parser encounters a main item it
598 * concatenates the last declared Usage Page with a Usage to form a complete
599 * usage value."
600 */
601
602static void hid_concatenate_last_usage_page(struct hid_parser *parser)
603{
604 int i;
605 unsigned int usage_page;
606 unsigned int current_page;
607
608 if (!parser->local.usage_index)
609 return;
610
611 usage_page = parser->global.usage_page;
612
613 /*
614 * Concatenate usage page again only if last declared Usage Page
615 * has not been already used in previous usages concatenation
616 */
617 for (i = parser->local.usage_index - 1; i >= 0; i--) {
618 if (parser->local.usage_size[i] > 2)
619 /* Ignore extended usages */
620 continue;
621
622 current_page = parser->local.usage[i] >> 16;
623 if (current_page == usage_page)
624 break;
625
626 complete_usage(parser, i);
627 }
628}
629
630/*
631 * Process a main item.
632 */
633
634static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
635{
636 __u32 data;
637 int ret;
638
639 hid_concatenate_last_usage_page(parser);
640
641 data = item_udata(item);
642
643 switch (item->tag) {
644 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
645 ret = open_collection(parser, data & 0xff);
646 break;
647 case HID_MAIN_ITEM_TAG_END_COLLECTION:
648 ret = close_collection(parser);
649 break;
650 case HID_MAIN_ITEM_TAG_INPUT:
651 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
652 break;
653 case HID_MAIN_ITEM_TAG_OUTPUT:
654 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
655 break;
656 case HID_MAIN_ITEM_TAG_FEATURE:
657 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
658 break;
659 default:
660 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
661 ret = 0;
662 }
663
664 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
665
666 return ret;
667}
668
669/*
670 * Process a reserved item.
671 */
672
673static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
674{
675 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
676 return 0;
677}
678
679/*
680 * Free a report and all registered fields. The field->usage and
681 * field->value table's are allocated behind the field, so we need
682 * only to free(field) itself.
683 */
684
685static void hid_free_report(struct hid_report *report)
686{
687 unsigned n;
688
689 kfree(report->field_entries);
690
691 for (n = 0; n < report->maxfield; n++)
692 kvfree(report->field[n]);
693 kfree(report);
694}
695
696/*
697 * Close report. This function returns the device
698 * state to the point prior to hid_open_report().
699 */
700static void hid_close_report(struct hid_device *device)
701{
702 unsigned i, j;
703
704 for (i = 0; i < HID_REPORT_TYPES; i++) {
705 struct hid_report_enum *report_enum = device->report_enum + i;
706
707 for (j = 0; j < HID_MAX_IDS; j++) {
708 struct hid_report *report = report_enum->report_id_hash[j];
709 if (report)
710 hid_free_report(report);
711 }
712 memset(report_enum, 0, sizeof(*report_enum));
713 INIT_LIST_HEAD(&report_enum->report_list);
714 }
715
716 /*
717 * If the HID driver had a rdesc_fixup() callback, dev->rdesc
718 * will be allocated by hid-core and needs to be freed.
719 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in
720 * which cases it'll be freed later on device removal or destroy.
721 */
722 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc)
723 kfree(device->rdesc);
724 device->rdesc = NULL;
725 device->rsize = 0;
726
727 kfree(device->collection);
728 device->collection = NULL;
729 device->collection_size = 0;
730 device->maxcollection = 0;
731 device->maxapplication = 0;
732
733 device->status &= ~HID_STAT_PARSED;
734}
735
736static inline void hid_free_bpf_rdesc(struct hid_device *hdev)
737{
738 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */
739 if (hdev->bpf_rdesc != hdev->dev_rdesc)
740 kfree(hdev->bpf_rdesc);
741 hdev->bpf_rdesc = NULL;
742}
743
744/*
745 * Free a device structure, all reports, and all fields.
746 */
747
748void hiddev_free(struct kref *ref)
749{
750 struct hid_device *hid = container_of(ref, struct hid_device, ref);
751
752 hid_close_report(hid);
753 hid_free_bpf_rdesc(hid);
754 kfree(hid->dev_rdesc);
755 kfree(hid);
756}
757
758static void hid_device_release(struct device *dev)
759{
760 struct hid_device *hid = to_hid_device(dev);
761
762 kref_put(&hid->ref, hiddev_free);
763}
764
765/*
766 * Fetch a report description item from the data stream. We support long
767 * items, though they are not used yet.
768 */
769
770static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item)
771{
772 u8 b;
773
774 if ((end - start) <= 0)
775 return NULL;
776
777 b = *start++;
778
779 item->type = (b >> 2) & 3;
780 item->tag = (b >> 4) & 15;
781
782 if (item->tag == HID_ITEM_TAG_LONG) {
783
784 item->format = HID_ITEM_FORMAT_LONG;
785
786 if ((end - start) < 2)
787 return NULL;
788
789 item->size = *start++;
790 item->tag = *start++;
791
792 if ((end - start) < item->size)
793 return NULL;
794
795 item->data.longdata = start;
796 start += item->size;
797 return start;
798 }
799
800 item->format = HID_ITEM_FORMAT_SHORT;
801 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */
802
803 if (end - start < item->size)
804 return NULL;
805
806 switch (item->size) {
807 case 0:
808 break;
809
810 case 1:
811 item->data.u8 = *start;
812 break;
813
814 case 2:
815 item->data.u16 = get_unaligned_le16(start);
816 break;
817
818 case 4:
819 item->data.u32 = get_unaligned_le32(start);
820 break;
821 }
822
823 return start + item->size;
824}
825
826static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
827{
828 struct hid_device *hid = parser->device;
829
830 if (usage == HID_DG_CONTACTID)
831 hid->group = HID_GROUP_MULTITOUCH;
832}
833
834static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
835{
836 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
837 parser->global.report_size == 8)
838 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
839
840 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
841 parser->global.report_size == 8)
842 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
843}
844
845static void hid_scan_collection(struct hid_parser *parser, unsigned type)
846{
847 struct hid_device *hid = parser->device;
848 int i;
849
850 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
851 (type == HID_COLLECTION_PHYSICAL ||
852 type == HID_COLLECTION_APPLICATION))
853 hid->group = HID_GROUP_SENSOR_HUB;
854
855 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
856 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
857 hid->group == HID_GROUP_MULTITOUCH)
858 hid->group = HID_GROUP_GENERIC;
859
860 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
861 for (i = 0; i < parser->local.usage_index; i++)
862 if (parser->local.usage[i] == HID_GD_POINTER)
863 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
864
865 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
866 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
867
868 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
869 for (i = 0; i < parser->local.usage_index; i++)
870 if (parser->local.usage[i] ==
871 (HID_UP_GOOGLEVENDOR | 0x0001))
872 parser->device->group =
873 HID_GROUP_VIVALDI;
874}
875
876static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
877{
878 __u32 data;
879 int i;
880
881 hid_concatenate_last_usage_page(parser);
882
883 data = item_udata(item);
884
885 switch (item->tag) {
886 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
887 hid_scan_collection(parser, data & 0xff);
888 break;
889 case HID_MAIN_ITEM_TAG_END_COLLECTION:
890 break;
891 case HID_MAIN_ITEM_TAG_INPUT:
892 /* ignore constant inputs, they will be ignored by hid-input */
893 if (data & HID_MAIN_ITEM_CONSTANT)
894 break;
895 for (i = 0; i < parser->local.usage_index; i++)
896 hid_scan_input_usage(parser, parser->local.usage[i]);
897 break;
898 case HID_MAIN_ITEM_TAG_OUTPUT:
899 break;
900 case HID_MAIN_ITEM_TAG_FEATURE:
901 for (i = 0; i < parser->local.usage_index; i++)
902 hid_scan_feature_usage(parser, parser->local.usage[i]);
903 break;
904 }
905
906 /* Reset the local parser environment */
907 memset(&parser->local, 0, sizeof(parser->local));
908
909 return 0;
910}
911
912/*
913 * Scan a report descriptor before the device is added to the bus.
914 * Sets device groups and other properties that determine what driver
915 * to load.
916 */
917static int hid_scan_report(struct hid_device *hid)
918{
919 struct hid_parser *parser;
920 struct hid_item item;
921 const __u8 *start = hid->dev_rdesc;
922 const __u8 *end = start + hid->dev_rsize;
923 static int (*dispatch_type[])(struct hid_parser *parser,
924 struct hid_item *item) = {
925 hid_scan_main,
926 hid_parser_global,
927 hid_parser_local,
928 hid_parser_reserved
929 };
930
931 parser = vzalloc(sizeof(struct hid_parser));
932 if (!parser)
933 return -ENOMEM;
934
935 parser->device = hid;
936 hid->group = HID_GROUP_GENERIC;
937
938 /*
939 * The parsing is simpler than the one in hid_open_report() as we should
940 * be robust against hid errors. Those errors will be raised by
941 * hid_open_report() anyway.
942 */
943 while ((start = fetch_item(start, end, &item)) != NULL)
944 dispatch_type[item.type](parser, &item);
945
946 /*
947 * Handle special flags set during scanning.
948 */
949 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
950 (hid->group == HID_GROUP_MULTITOUCH))
951 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
952
953 /*
954 * Vendor specific handlings
955 */
956 switch (hid->vendor) {
957 case USB_VENDOR_ID_WACOM:
958 hid->group = HID_GROUP_WACOM;
959 break;
960 case USB_VENDOR_ID_SYNAPTICS:
961 if (hid->group == HID_GROUP_GENERIC)
962 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
963 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
964 /*
965 * hid-rmi should take care of them,
966 * not hid-generic
967 */
968 hid->group = HID_GROUP_RMI;
969 break;
970 }
971
972 kfree(parser->collection_stack);
973 vfree(parser);
974 return 0;
975}
976
977/**
978 * hid_parse_report - parse device report
979 *
980 * @hid: hid device
981 * @start: report start
982 * @size: report size
983 *
984 * Allocate the device report as read by the bus driver. This function should
985 * only be called from parse() in ll drivers.
986 */
987int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size)
988{
989 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
990 if (!hid->dev_rdesc)
991 return -ENOMEM;
992 hid->dev_rsize = size;
993 return 0;
994}
995EXPORT_SYMBOL_GPL(hid_parse_report);
996
997static const char * const hid_report_names[] = {
998 "HID_INPUT_REPORT",
999 "HID_OUTPUT_REPORT",
1000 "HID_FEATURE_REPORT",
1001};
1002/**
1003 * hid_validate_values - validate existing device report's value indexes
1004 *
1005 * @hid: hid device
1006 * @type: which report type to examine
1007 * @id: which report ID to examine (0 for first)
1008 * @field_index: which report field to examine
1009 * @report_counts: expected number of values
1010 *
1011 * Validate the number of values in a given field of a given report, after
1012 * parsing.
1013 */
1014struct hid_report *hid_validate_values(struct hid_device *hid,
1015 enum hid_report_type type, unsigned int id,
1016 unsigned int field_index,
1017 unsigned int report_counts)
1018{
1019 struct hid_report *report;
1020
1021 if (type > HID_FEATURE_REPORT) {
1022 hid_err(hid, "invalid HID report type %u\n", type);
1023 return NULL;
1024 }
1025
1026 if (id >= HID_MAX_IDS) {
1027 hid_err(hid, "invalid HID report id %u\n", id);
1028 return NULL;
1029 }
1030
1031 /*
1032 * Explicitly not using hid_get_report() here since it depends on
1033 * ->numbered being checked, which may not always be the case when
1034 * drivers go to access report values.
1035 */
1036 if (id == 0) {
1037 /*
1038 * Validating on id 0 means we should examine the first
1039 * report in the list.
1040 */
1041 report = list_first_entry_or_null(
1042 &hid->report_enum[type].report_list,
1043 struct hid_report, list);
1044 } else {
1045 report = hid->report_enum[type].report_id_hash[id];
1046 }
1047 if (!report) {
1048 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1049 return NULL;
1050 }
1051 if (report->maxfield <= field_index) {
1052 hid_err(hid, "not enough fields in %s %u\n",
1053 hid_report_names[type], id);
1054 return NULL;
1055 }
1056 if (report->field[field_index]->report_count < report_counts) {
1057 hid_err(hid, "not enough values in %s %u field %u\n",
1058 hid_report_names[type], id, field_index);
1059 return NULL;
1060 }
1061 return report;
1062}
1063EXPORT_SYMBOL_GPL(hid_validate_values);
1064
1065static int hid_calculate_multiplier(struct hid_device *hid,
1066 struct hid_field *multiplier)
1067{
1068 int m;
1069 __s32 v = *multiplier->value;
1070 __s32 lmin = multiplier->logical_minimum;
1071 __s32 lmax = multiplier->logical_maximum;
1072 __s32 pmin = multiplier->physical_minimum;
1073 __s32 pmax = multiplier->physical_maximum;
1074
1075 /*
1076 * "Because OS implementations will generally divide the control's
1077 * reported count by the Effective Resolution Multiplier, designers
1078 * should take care not to establish a potential Effective
1079 * Resolution Multiplier of zero."
1080 * HID Usage Table, v1.12, Section 4.3.1, p31
1081 */
1082 if (lmax - lmin == 0)
1083 return 1;
1084 /*
1085 * Handling the unit exponent is left as an exercise to whoever
1086 * finds a device where that exponent is not 0.
1087 */
1088 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1089 if (unlikely(multiplier->unit_exponent != 0)) {
1090 hid_warn(hid,
1091 "unsupported Resolution Multiplier unit exponent %d\n",
1092 multiplier->unit_exponent);
1093 }
1094
1095 /* There are no devices with an effective multiplier > 255 */
1096 if (unlikely(m == 0 || m > 255 || m < -255)) {
1097 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1098 m = 1;
1099 }
1100
1101 return m;
1102}
1103
1104static void hid_apply_multiplier_to_field(struct hid_device *hid,
1105 struct hid_field *field,
1106 struct hid_collection *multiplier_collection,
1107 int effective_multiplier)
1108{
1109 struct hid_collection *collection;
1110 struct hid_usage *usage;
1111 int i;
1112
1113 /*
1114 * If multiplier_collection is NULL, the multiplier applies
1115 * to all fields in the report.
1116 * Otherwise, it is the Logical Collection the multiplier applies to
1117 * but our field may be in a subcollection of that collection.
1118 */
1119 for (i = 0; i < field->maxusage; i++) {
1120 usage = &field->usage[i];
1121
1122 collection = &hid->collection[usage->collection_index];
1123 while (collection->parent_idx != -1 &&
1124 collection != multiplier_collection)
1125 collection = &hid->collection[collection->parent_idx];
1126
1127 if (collection->parent_idx != -1 ||
1128 multiplier_collection == NULL)
1129 usage->resolution_multiplier = effective_multiplier;
1130
1131 }
1132}
1133
1134static void hid_apply_multiplier(struct hid_device *hid,
1135 struct hid_field *multiplier)
1136{
1137 struct hid_report_enum *rep_enum;
1138 struct hid_report *rep;
1139 struct hid_field *field;
1140 struct hid_collection *multiplier_collection;
1141 int effective_multiplier;
1142 int i;
1143
1144 /*
1145 * "The Resolution Multiplier control must be contained in the same
1146 * Logical Collection as the control(s) to which it is to be applied.
1147 * If no Resolution Multiplier is defined, then the Resolution
1148 * Multiplier defaults to 1. If more than one control exists in a
1149 * Logical Collection, the Resolution Multiplier is associated with
1150 * all controls in the collection. If no Logical Collection is
1151 * defined, the Resolution Multiplier is associated with all
1152 * controls in the report."
1153 * HID Usage Table, v1.12, Section 4.3.1, p30
1154 *
1155 * Thus, search from the current collection upwards until we find a
1156 * logical collection. Then search all fields for that same parent
1157 * collection. Those are the fields the multiplier applies to.
1158 *
1159 * If we have more than one multiplier, it will overwrite the
1160 * applicable fields later.
1161 */
1162 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1163 while (multiplier_collection->parent_idx != -1 &&
1164 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1165 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1166 if (multiplier_collection->type != HID_COLLECTION_LOGICAL)
1167 multiplier_collection = NULL;
1168
1169 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1170
1171 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1172 list_for_each_entry(rep, &rep_enum->report_list, list) {
1173 for (i = 0; i < rep->maxfield; i++) {
1174 field = rep->field[i];
1175 hid_apply_multiplier_to_field(hid, field,
1176 multiplier_collection,
1177 effective_multiplier);
1178 }
1179 }
1180}
1181
1182/*
1183 * hid_setup_resolution_multiplier - set up all resolution multipliers
1184 *
1185 * @device: hid device
1186 *
1187 * Search for all Resolution Multiplier Feature Reports and apply their
1188 * value to all matching Input items. This only updates the internal struct
1189 * fields.
1190 *
1191 * The Resolution Multiplier is applied by the hardware. If the multiplier
1192 * is anything other than 1, the hardware will send pre-multiplied events
1193 * so that the same physical interaction generates an accumulated
1194 * accumulated_value = value * * multiplier
1195 * This may be achieved by sending
1196 * - "value * multiplier" for each event, or
1197 * - "value" but "multiplier" times as frequently, or
1198 * - a combination of the above
1199 * The only guarantee is that the same physical interaction always generates
1200 * an accumulated 'value * multiplier'.
1201 *
1202 * This function must be called before any event processing and after
1203 * any SetRequest to the Resolution Multiplier.
1204 */
1205void hid_setup_resolution_multiplier(struct hid_device *hid)
1206{
1207 struct hid_report_enum *rep_enum;
1208 struct hid_report *rep;
1209 struct hid_usage *usage;
1210 int i, j;
1211
1212 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1213 list_for_each_entry(rep, &rep_enum->report_list, list) {
1214 for (i = 0; i < rep->maxfield; i++) {
1215 /* Ignore if report count is out of bounds. */
1216 if (rep->field[i]->report_count < 1)
1217 continue;
1218
1219 for (j = 0; j < rep->field[i]->maxusage; j++) {
1220 usage = &rep->field[i]->usage[j];
1221 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1222 hid_apply_multiplier(hid,
1223 rep->field[i]);
1224 }
1225 }
1226 }
1227}
1228EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1229
1230/**
1231 * hid_open_report - open a driver-specific device report
1232 *
1233 * @device: hid device
1234 *
1235 * Parse a report description into a hid_device structure. Reports are
1236 * enumerated, fields are attached to these reports.
1237 * 0 returned on success, otherwise nonzero error value.
1238 *
1239 * This function (or the equivalent hid_parse() macro) should only be
1240 * called from probe() in drivers, before starting the device.
1241 */
1242int hid_open_report(struct hid_device *device)
1243{
1244 struct hid_parser *parser;
1245 struct hid_item item;
1246 unsigned int size;
1247 const __u8 *start;
1248 const __u8 *end;
1249 const __u8 *next;
1250 int ret;
1251 int i;
1252 static int (*dispatch_type[])(struct hid_parser *parser,
1253 struct hid_item *item) = {
1254 hid_parser_main,
1255 hid_parser_global,
1256 hid_parser_local,
1257 hid_parser_reserved
1258 };
1259
1260 if (WARN_ON(device->status & HID_STAT_PARSED))
1261 return -EBUSY;
1262
1263 start = device->bpf_rdesc;
1264 if (WARN_ON(!start))
1265 return -ENODEV;
1266 size = device->bpf_rsize;
1267
1268 if (device->driver->report_fixup) {
1269 /*
1270 * device->driver->report_fixup() needs to work
1271 * on a copy of our report descriptor so it can
1272 * change it.
1273 */
1274 __u8 *buf = kmemdup(start, size, GFP_KERNEL);
1275
1276 if (buf == NULL)
1277 return -ENOMEM;
1278
1279 start = device->driver->report_fixup(device, buf, &size);
1280
1281 /*
1282 * The second kmemdup is required in case report_fixup() returns
1283 * a static read-only memory, but we have no idea if that memory
1284 * needs to be cleaned up or not at the end.
1285 */
1286 start = kmemdup(start, size, GFP_KERNEL);
1287 kfree(buf);
1288 if (start == NULL)
1289 return -ENOMEM;
1290 }
1291
1292 device->rdesc = start;
1293 device->rsize = size;
1294
1295 parser = vzalloc(sizeof(struct hid_parser));
1296 if (!parser) {
1297 ret = -ENOMEM;
1298 goto alloc_err;
1299 }
1300
1301 parser->device = device;
1302
1303 end = start + size;
1304
1305 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1306 sizeof(struct hid_collection), GFP_KERNEL);
1307 if (!device->collection) {
1308 ret = -ENOMEM;
1309 goto err;
1310 }
1311 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1312 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1313 device->collection[i].parent_idx = -1;
1314
1315 ret = -EINVAL;
1316 while ((next = fetch_item(start, end, &item)) != NULL) {
1317 start = next;
1318
1319 if (item.format != HID_ITEM_FORMAT_SHORT) {
1320 hid_err(device, "unexpected long global item\n");
1321 goto err;
1322 }
1323
1324 if (dispatch_type[item.type](parser, &item)) {
1325 hid_err(device, "item %u %u %u %u parsing failed\n",
1326 item.format, (unsigned)item.size,
1327 (unsigned)item.type, (unsigned)item.tag);
1328 goto err;
1329 }
1330
1331 if (start == end) {
1332 if (parser->collection_stack_ptr) {
1333 hid_err(device, "unbalanced collection at end of report description\n");
1334 goto err;
1335 }
1336 if (parser->local.delimiter_depth) {
1337 hid_err(device, "unbalanced delimiter at end of report description\n");
1338 goto err;
1339 }
1340
1341 /*
1342 * fetch initial values in case the device's
1343 * default multiplier isn't the recommended 1
1344 */
1345 hid_setup_resolution_multiplier(device);
1346
1347 kfree(parser->collection_stack);
1348 vfree(parser);
1349 device->status |= HID_STAT_PARSED;
1350
1351 return 0;
1352 }
1353 }
1354
1355 hid_err(device, "item fetching failed at offset %u/%u\n",
1356 size - (unsigned int)(end - start), size);
1357err:
1358 kfree(parser->collection_stack);
1359alloc_err:
1360 vfree(parser);
1361 hid_close_report(device);
1362 return ret;
1363}
1364EXPORT_SYMBOL_GPL(hid_open_report);
1365
1366/*
1367 * Extract/implement a data field from/to a little endian report (bit array).
1368 *
1369 * Code sort-of follows HID spec:
1370 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1371 *
1372 * While the USB HID spec allows unlimited length bit fields in "report
1373 * descriptors", most devices never use more than 16 bits.
1374 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1375 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1376 */
1377
1378static u32 __extract(u8 *report, unsigned offset, int n)
1379{
1380 unsigned int idx = offset / 8;
1381 unsigned int bit_nr = 0;
1382 unsigned int bit_shift = offset % 8;
1383 int bits_to_copy = 8 - bit_shift;
1384 u32 value = 0;
1385 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1386
1387 while (n > 0) {
1388 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1389 n -= bits_to_copy;
1390 bit_nr += bits_to_copy;
1391 bits_to_copy = 8;
1392 bit_shift = 0;
1393 idx++;
1394 }
1395
1396 return value & mask;
1397}
1398
1399u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1400 unsigned offset, unsigned n)
1401{
1402 if (n > 32) {
1403 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1404 __func__, n, current->comm);
1405 n = 32;
1406 }
1407
1408 return __extract(report, offset, n);
1409}
1410EXPORT_SYMBOL_GPL(hid_field_extract);
1411
1412/*
1413 * "implement" : set bits in a little endian bit stream.
1414 * Same concepts as "extract" (see comments above).
1415 * The data mangled in the bit stream remains in little endian
1416 * order the whole time. It make more sense to talk about
1417 * endianness of register values by considering a register
1418 * a "cached" copy of the little endian bit stream.
1419 */
1420
1421static void __implement(u8 *report, unsigned offset, int n, u32 value)
1422{
1423 unsigned int idx = offset / 8;
1424 unsigned int bit_shift = offset % 8;
1425 int bits_to_set = 8 - bit_shift;
1426
1427 while (n - bits_to_set >= 0) {
1428 report[idx] &= ~(0xff << bit_shift);
1429 report[idx] |= value << bit_shift;
1430 value >>= bits_to_set;
1431 n -= bits_to_set;
1432 bits_to_set = 8;
1433 bit_shift = 0;
1434 idx++;
1435 }
1436
1437 /* last nibble */
1438 if (n) {
1439 u8 bit_mask = ((1U << n) - 1);
1440 report[idx] &= ~(bit_mask << bit_shift);
1441 report[idx] |= value << bit_shift;
1442 }
1443}
1444
1445static void implement(const struct hid_device *hid, u8 *report,
1446 unsigned offset, unsigned n, u32 value)
1447{
1448 if (unlikely(n > 32)) {
1449 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1450 __func__, n, current->comm);
1451 n = 32;
1452 } else if (n < 32) {
1453 u32 m = (1U << n) - 1;
1454
1455 if (unlikely(value > m)) {
1456 hid_warn(hid,
1457 "%s() called with too large value %d (n: %d)! (%s)\n",
1458 __func__, value, n, current->comm);
1459 value &= m;
1460 }
1461 }
1462
1463 __implement(report, offset, n, value);
1464}
1465
1466/*
1467 * Search an array for a value.
1468 */
1469
1470static int search(__s32 *array, __s32 value, unsigned n)
1471{
1472 while (n--) {
1473 if (*array++ == value)
1474 return 0;
1475 }
1476 return -1;
1477}
1478
1479/**
1480 * hid_match_report - check if driver's raw_event should be called
1481 *
1482 * @hid: hid device
1483 * @report: hid report to match against
1484 *
1485 * compare hid->driver->report_table->report_type to report->type
1486 */
1487static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1488{
1489 const struct hid_report_id *id = hid->driver->report_table;
1490
1491 if (!id) /* NULL means all */
1492 return 1;
1493
1494 for (; id->report_type != HID_TERMINATOR; id++)
1495 if (id->report_type == HID_ANY_ID ||
1496 id->report_type == report->type)
1497 return 1;
1498 return 0;
1499}
1500
1501/**
1502 * hid_match_usage - check if driver's event should be called
1503 *
1504 * @hid: hid device
1505 * @usage: usage to match against
1506 *
1507 * compare hid->driver->usage_table->usage_{type,code} to
1508 * usage->usage_{type,code}
1509 */
1510static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1511{
1512 const struct hid_usage_id *id = hid->driver->usage_table;
1513
1514 if (!id) /* NULL means all */
1515 return 1;
1516
1517 for (; id->usage_type != HID_ANY_ID - 1; id++)
1518 if ((id->usage_hid == HID_ANY_ID ||
1519 id->usage_hid == usage->hid) &&
1520 (id->usage_type == HID_ANY_ID ||
1521 id->usage_type == usage->type) &&
1522 (id->usage_code == HID_ANY_ID ||
1523 id->usage_code == usage->code))
1524 return 1;
1525 return 0;
1526}
1527
1528static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1529 struct hid_usage *usage, __s32 value, int interrupt)
1530{
1531 struct hid_driver *hdrv = hid->driver;
1532 int ret;
1533
1534 if (!list_empty(&hid->debug_list))
1535 hid_dump_input(hid, usage, value);
1536
1537 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1538 ret = hdrv->event(hid, field, usage, value);
1539 if (ret != 0) {
1540 if (ret < 0)
1541 hid_err(hid, "%s's event failed with %d\n",
1542 hdrv->name, ret);
1543 return;
1544 }
1545 }
1546
1547 if (hid->claimed & HID_CLAIMED_INPUT)
1548 hidinput_hid_event(hid, field, usage, value);
1549 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1550 hid->hiddev_hid_event(hid, field, usage, value);
1551}
1552
1553/*
1554 * Checks if the given value is valid within this field
1555 */
1556static inline int hid_array_value_is_valid(struct hid_field *field,
1557 __s32 value)
1558{
1559 __s32 min = field->logical_minimum;
1560
1561 /*
1562 * Value needs to be between logical min and max, and
1563 * (value - min) is used as an index in the usage array.
1564 * This array is of size field->maxusage
1565 */
1566 return value >= min &&
1567 value <= field->logical_maximum &&
1568 value - min < field->maxusage;
1569}
1570
1571/*
1572 * Fetch the field from the data. The field content is stored for next
1573 * report processing (we do differential reporting to the layer).
1574 */
1575static void hid_input_fetch_field(struct hid_device *hid,
1576 struct hid_field *field,
1577 __u8 *data)
1578{
1579 unsigned n;
1580 unsigned count = field->report_count;
1581 unsigned offset = field->report_offset;
1582 unsigned size = field->report_size;
1583 __s32 min = field->logical_minimum;
1584 __s32 *value;
1585
1586 value = field->new_value;
1587 memset(value, 0, count * sizeof(__s32));
1588 field->ignored = false;
1589
1590 for (n = 0; n < count; n++) {
1591
1592 value[n] = min < 0 ?
1593 snto32(hid_field_extract(hid, data, offset + n * size,
1594 size), size) :
1595 hid_field_extract(hid, data, offset + n * size, size);
1596
1597 /* Ignore report if ErrorRollOver */
1598 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1599 hid_array_value_is_valid(field, value[n]) &&
1600 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1601 field->ignored = true;
1602 return;
1603 }
1604 }
1605}
1606
1607/*
1608 * Process a received variable field.
1609 */
1610
1611static void hid_input_var_field(struct hid_device *hid,
1612 struct hid_field *field,
1613 int interrupt)
1614{
1615 unsigned int count = field->report_count;
1616 __s32 *value = field->new_value;
1617 unsigned int n;
1618
1619 for (n = 0; n < count; n++)
1620 hid_process_event(hid,
1621 field,
1622 &field->usage[n],
1623 value[n],
1624 interrupt);
1625
1626 memcpy(field->value, value, count * sizeof(__s32));
1627}
1628
1629/*
1630 * Process a received array field. The field content is stored for
1631 * next report processing (we do differential reporting to the layer).
1632 */
1633
1634static void hid_input_array_field(struct hid_device *hid,
1635 struct hid_field *field,
1636 int interrupt)
1637{
1638 unsigned int n;
1639 unsigned int count = field->report_count;
1640 __s32 min = field->logical_minimum;
1641 __s32 *value;
1642
1643 value = field->new_value;
1644
1645 /* ErrorRollOver */
1646 if (field->ignored)
1647 return;
1648
1649 for (n = 0; n < count; n++) {
1650 if (hid_array_value_is_valid(field, field->value[n]) &&
1651 search(value, field->value[n], count))
1652 hid_process_event(hid,
1653 field,
1654 &field->usage[field->value[n] - min],
1655 0,
1656 interrupt);
1657
1658 if (hid_array_value_is_valid(field, value[n]) &&
1659 search(field->value, value[n], count))
1660 hid_process_event(hid,
1661 field,
1662 &field->usage[value[n] - min],
1663 1,
1664 interrupt);
1665 }
1666
1667 memcpy(field->value, value, count * sizeof(__s32));
1668}
1669
1670/*
1671 * Analyse a received report, and fetch the data from it. The field
1672 * content is stored for next report processing (we do differential
1673 * reporting to the layer).
1674 */
1675static void hid_process_report(struct hid_device *hid,
1676 struct hid_report *report,
1677 __u8 *data,
1678 int interrupt)
1679{
1680 unsigned int a;
1681 struct hid_field_entry *entry;
1682 struct hid_field *field;
1683
1684 /* first retrieve all incoming values in data */
1685 for (a = 0; a < report->maxfield; a++)
1686 hid_input_fetch_field(hid, report->field[a], data);
1687
1688 if (!list_empty(&report->field_entry_list)) {
1689 /* INPUT_REPORT, we have a priority list of fields */
1690 list_for_each_entry(entry,
1691 &report->field_entry_list,
1692 list) {
1693 field = entry->field;
1694
1695 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696 hid_process_event(hid,
1697 field,
1698 &field->usage[entry->index],
1699 field->new_value[entry->index],
1700 interrupt);
1701 else
1702 hid_input_array_field(hid, field, interrupt);
1703 }
1704
1705 /* we need to do the memcpy at the end for var items */
1706 for (a = 0; a < report->maxfield; a++) {
1707 field = report->field[a];
1708
1709 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1710 memcpy(field->value, field->new_value,
1711 field->report_count * sizeof(__s32));
1712 }
1713 } else {
1714 /* FEATURE_REPORT, regular processing */
1715 for (a = 0; a < report->maxfield; a++) {
1716 field = report->field[a];
1717
1718 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1719 hid_input_var_field(hid, field, interrupt);
1720 else
1721 hid_input_array_field(hid, field, interrupt);
1722 }
1723 }
1724}
1725
1726/*
1727 * Insert a given usage_index in a field in the list
1728 * of processed usages in the report.
1729 *
1730 * The elements of lower priority score are processed
1731 * first.
1732 */
1733static void __hid_insert_field_entry(struct hid_device *hid,
1734 struct hid_report *report,
1735 struct hid_field_entry *entry,
1736 struct hid_field *field,
1737 unsigned int usage_index)
1738{
1739 struct hid_field_entry *next;
1740
1741 entry->field = field;
1742 entry->index = usage_index;
1743 entry->priority = field->usages_priorities[usage_index];
1744
1745 /* insert the element at the correct position */
1746 list_for_each_entry(next,
1747 &report->field_entry_list,
1748 list) {
1749 /*
1750 * the priority of our element is strictly higher
1751 * than the next one, insert it before
1752 */
1753 if (entry->priority > next->priority) {
1754 list_add_tail(&entry->list, &next->list);
1755 return;
1756 }
1757 }
1758
1759 /* lowest priority score: insert at the end */
1760 list_add_tail(&entry->list, &report->field_entry_list);
1761}
1762
1763static void hid_report_process_ordering(struct hid_device *hid,
1764 struct hid_report *report)
1765{
1766 struct hid_field *field;
1767 struct hid_field_entry *entries;
1768 unsigned int a, u, usages;
1769 unsigned int count = 0;
1770
1771 /* count the number of individual fields in the report */
1772 for (a = 0; a < report->maxfield; a++) {
1773 field = report->field[a];
1774
1775 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1776 count += field->report_count;
1777 else
1778 count++;
1779 }
1780
1781 /* allocate the memory to process the fields */
1782 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1783 if (!entries)
1784 return;
1785
1786 report->field_entries = entries;
1787
1788 /*
1789 * walk through all fields in the report and
1790 * store them by priority order in report->field_entry_list
1791 *
1792 * - Var elements are individualized (field + usage_index)
1793 * - Arrays are taken as one, we can not chose an order for them
1794 */
1795 usages = 0;
1796 for (a = 0; a < report->maxfield; a++) {
1797 field = report->field[a];
1798
1799 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1800 for (u = 0; u < field->report_count; u++) {
1801 __hid_insert_field_entry(hid, report,
1802 &entries[usages],
1803 field, u);
1804 usages++;
1805 }
1806 } else {
1807 __hid_insert_field_entry(hid, report, &entries[usages],
1808 field, 0);
1809 usages++;
1810 }
1811 }
1812}
1813
1814static void hid_process_ordering(struct hid_device *hid)
1815{
1816 struct hid_report *report;
1817 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1818
1819 list_for_each_entry(report, &report_enum->report_list, list)
1820 hid_report_process_ordering(hid, report);
1821}
1822
1823/*
1824 * Output the field into the report.
1825 */
1826
1827static void hid_output_field(const struct hid_device *hid,
1828 struct hid_field *field, __u8 *data)
1829{
1830 unsigned count = field->report_count;
1831 unsigned offset = field->report_offset;
1832 unsigned size = field->report_size;
1833 unsigned n;
1834
1835 for (n = 0; n < count; n++) {
1836 if (field->logical_minimum < 0) /* signed values */
1837 implement(hid, data, offset + n * size, size,
1838 s32ton(field->value[n], size));
1839 else /* unsigned values */
1840 implement(hid, data, offset + n * size, size,
1841 field->value[n]);
1842 }
1843}
1844
1845/*
1846 * Compute the size of a report.
1847 */
1848static size_t hid_compute_report_size(struct hid_report *report)
1849{
1850 if (report->size)
1851 return ((report->size - 1) >> 3) + 1;
1852
1853 return 0;
1854}
1855
1856/*
1857 * Create a report. 'data' has to be allocated using
1858 * hid_alloc_report_buf() so that it has proper size.
1859 */
1860
1861void hid_output_report(struct hid_report *report, __u8 *data)
1862{
1863 unsigned n;
1864
1865 if (report->id > 0)
1866 *data++ = report->id;
1867
1868 memset(data, 0, hid_compute_report_size(report));
1869 for (n = 0; n < report->maxfield; n++)
1870 hid_output_field(report->device, report->field[n], data);
1871}
1872EXPORT_SYMBOL_GPL(hid_output_report);
1873
1874/*
1875 * Allocator for buffer that is going to be passed to hid_output_report()
1876 */
1877u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1878{
1879 /*
1880 * 7 extra bytes are necessary to achieve proper functionality
1881 * of implement() working on 8 byte chunks
1882 */
1883
1884 u32 len = hid_report_len(report) + 7;
1885
1886 return kzalloc(len, flags);
1887}
1888EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1889
1890/*
1891 * Set a field value. The report this field belongs to has to be
1892 * created and transferred to the device, to set this value in the
1893 * device.
1894 */
1895
1896int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1897{
1898 unsigned size;
1899
1900 if (!field)
1901 return -1;
1902
1903 size = field->report_size;
1904
1905 hid_dump_input(field->report->device, field->usage + offset, value);
1906
1907 if (offset >= field->report_count) {
1908 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1909 offset, field->report_count);
1910 return -1;
1911 }
1912 if (field->logical_minimum < 0) {
1913 if (value != snto32(s32ton(value, size), size)) {
1914 hid_err(field->report->device, "value %d is out of range\n", value);
1915 return -1;
1916 }
1917 }
1918 field->value[offset] = value;
1919 return 0;
1920}
1921EXPORT_SYMBOL_GPL(hid_set_field);
1922
1923struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type,
1924 unsigned int application, unsigned int usage)
1925{
1926 struct list_head *report_list = &hdev->report_enum[report_type].report_list;
1927 struct hid_report *report;
1928 int i, j;
1929
1930 list_for_each_entry(report, report_list, list) {
1931 if (report->application != application)
1932 continue;
1933
1934 for (i = 0; i < report->maxfield; i++) {
1935 struct hid_field *field = report->field[i];
1936
1937 for (j = 0; j < field->maxusage; j++) {
1938 if (field->usage[j].hid == usage)
1939 return field;
1940 }
1941 }
1942 }
1943
1944 return NULL;
1945}
1946EXPORT_SYMBOL_GPL(hid_find_field);
1947
1948static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1949 const u8 *data)
1950{
1951 struct hid_report *report;
1952 unsigned int n = 0; /* Normally report number is 0 */
1953
1954 /* Device uses numbered reports, data[0] is report number */
1955 if (report_enum->numbered)
1956 n = *data;
1957
1958 report = report_enum->report_id_hash[n];
1959 if (report == NULL)
1960 dbg_hid("undefined report_id %u received\n", n);
1961
1962 return report;
1963}
1964
1965/*
1966 * Implement a generic .request() callback, using .raw_request()
1967 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1968 */
1969int __hid_request(struct hid_device *hid, struct hid_report *report,
1970 enum hid_class_request reqtype)
1971{
1972 char *buf;
1973 int ret;
1974 u32 len;
1975
1976 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1977 if (!buf)
1978 return -ENOMEM;
1979
1980 len = hid_report_len(report);
1981
1982 if (reqtype == HID_REQ_SET_REPORT)
1983 hid_output_report(report, buf);
1984
1985 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1986 report->type, reqtype);
1987 if (ret < 0) {
1988 dbg_hid("unable to complete request: %d\n", ret);
1989 goto out;
1990 }
1991
1992 if (reqtype == HID_REQ_GET_REPORT)
1993 hid_input_report(hid, report->type, buf, ret, 0);
1994
1995 ret = 0;
1996
1997out:
1998 kfree(buf);
1999 return ret;
2000}
2001EXPORT_SYMBOL_GPL(__hid_request);
2002
2003int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2004 int interrupt)
2005{
2006 struct hid_report_enum *report_enum = hid->report_enum + type;
2007 struct hid_report *report;
2008 struct hid_driver *hdrv;
2009 int max_buffer_size = HID_MAX_BUFFER_SIZE;
2010 u32 rsize, csize = size;
2011 u8 *cdata = data;
2012 int ret = 0;
2013
2014 report = hid_get_report(report_enum, data);
2015 if (!report)
2016 goto out;
2017
2018 if (report_enum->numbered) {
2019 cdata++;
2020 csize--;
2021 }
2022
2023 rsize = hid_compute_report_size(report);
2024
2025 if (hid->ll_driver->max_buffer_size)
2026 max_buffer_size = hid->ll_driver->max_buffer_size;
2027
2028 if (report_enum->numbered && rsize >= max_buffer_size)
2029 rsize = max_buffer_size - 1;
2030 else if (rsize > max_buffer_size)
2031 rsize = max_buffer_size;
2032
2033 if (csize < rsize) {
2034 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2035 csize, rsize);
2036 memset(cdata + csize, 0, rsize - csize);
2037 }
2038
2039 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2040 hid->hiddev_report_event(hid, report);
2041 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2042 ret = hidraw_report_event(hid, data, size);
2043 if (ret)
2044 goto out;
2045 }
2046
2047 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2048 hid_process_report(hid, report, cdata, interrupt);
2049 hdrv = hid->driver;
2050 if (hdrv && hdrv->report)
2051 hdrv->report(hid, report);
2052 }
2053
2054 if (hid->claimed & HID_CLAIMED_INPUT)
2055 hidinput_report_event(hid, report);
2056out:
2057 return ret;
2058}
2059EXPORT_SYMBOL_GPL(hid_report_raw_event);
2060
2061
2062static int __hid_input_report(struct hid_device *hid, enum hid_report_type type,
2063 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf,
2064 bool lock_already_taken)
2065{
2066 struct hid_report_enum *report_enum;
2067 struct hid_driver *hdrv;
2068 struct hid_report *report;
2069 int ret = 0;
2070
2071 if (!hid)
2072 return -ENODEV;
2073
2074 ret = down_trylock(&hid->driver_input_lock);
2075 if (lock_already_taken && !ret) {
2076 up(&hid->driver_input_lock);
2077 return -EINVAL;
2078 } else if (!lock_already_taken && ret) {
2079 return -EBUSY;
2080 }
2081
2082 if (!hid->driver) {
2083 ret = -ENODEV;
2084 goto unlock;
2085 }
2086 report_enum = hid->report_enum + type;
2087 hdrv = hid->driver;
2088
2089 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf);
2090 if (IS_ERR(data)) {
2091 ret = PTR_ERR(data);
2092 goto unlock;
2093 }
2094
2095 if (!size) {
2096 dbg_hid("empty report\n");
2097 ret = -1;
2098 goto unlock;
2099 }
2100
2101 /* Avoid unnecessary overhead if debugfs is disabled */
2102 if (!list_empty(&hid->debug_list))
2103 hid_dump_report(hid, type, data, size);
2104
2105 report = hid_get_report(report_enum, data);
2106
2107 if (!report) {
2108 ret = -1;
2109 goto unlock;
2110 }
2111
2112 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2113 ret = hdrv->raw_event(hid, report, data, size);
2114 if (ret < 0)
2115 goto unlock;
2116 }
2117
2118 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2119
2120unlock:
2121 if (!lock_already_taken)
2122 up(&hid->driver_input_lock);
2123 return ret;
2124}
2125
2126/**
2127 * hid_input_report - report data from lower layer (usb, bt...)
2128 *
2129 * @hid: hid device
2130 * @type: HID report type (HID_*_REPORT)
2131 * @data: report contents
2132 * @size: size of data parameter
2133 * @interrupt: distinguish between interrupt and control transfers
2134 *
2135 * This is data entry for lower layers.
2136 */
2137int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2138 int interrupt)
2139{
2140 return __hid_input_report(hid, type, data, size, interrupt, 0,
2141 false, /* from_bpf */
2142 false /* lock_already_taken */);
2143}
2144EXPORT_SYMBOL_GPL(hid_input_report);
2145
2146bool hid_match_one_id(const struct hid_device *hdev,
2147 const struct hid_device_id *id)
2148{
2149 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2150 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2151 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2152 (id->product == HID_ANY_ID || id->product == hdev->product);
2153}
2154
2155const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2156 const struct hid_device_id *id)
2157{
2158 for (; id->bus; id++)
2159 if (hid_match_one_id(hdev, id))
2160 return id;
2161
2162 return NULL;
2163}
2164EXPORT_SYMBOL_GPL(hid_match_id);
2165
2166static const struct hid_device_id hid_hiddev_list[] = {
2167 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2168 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2169 { }
2170};
2171
2172static bool hid_hiddev(struct hid_device *hdev)
2173{
2174 return !!hid_match_id(hdev, hid_hiddev_list);
2175}
2176
2177
2178static ssize_t
2179read_report_descriptor(struct file *filp, struct kobject *kobj,
2180 struct bin_attribute *attr,
2181 char *buf, loff_t off, size_t count)
2182{
2183 struct device *dev = kobj_to_dev(kobj);
2184 struct hid_device *hdev = to_hid_device(dev);
2185
2186 if (off >= hdev->rsize)
2187 return 0;
2188
2189 if (off + count > hdev->rsize)
2190 count = hdev->rsize - off;
2191
2192 memcpy(buf, hdev->rdesc + off, count);
2193
2194 return count;
2195}
2196
2197static ssize_t
2198show_country(struct device *dev, struct device_attribute *attr,
2199 char *buf)
2200{
2201 struct hid_device *hdev = to_hid_device(dev);
2202
2203 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2204}
2205
2206static struct bin_attribute dev_bin_attr_report_desc = {
2207 .attr = { .name = "report_descriptor", .mode = 0444 },
2208 .read = read_report_descriptor,
2209 .size = HID_MAX_DESCRIPTOR_SIZE,
2210};
2211
2212static const struct device_attribute dev_attr_country = {
2213 .attr = { .name = "country", .mode = 0444 },
2214 .show = show_country,
2215};
2216
2217int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2218{
2219 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2220 "Joystick", "Gamepad", "Keyboard", "Keypad",
2221 "Multi-Axis Controller"
2222 };
2223 const char *type, *bus;
2224 char buf[64] = "";
2225 unsigned int i;
2226 int len;
2227 int ret;
2228
2229 ret = hid_bpf_connect_device(hdev);
2230 if (ret)
2231 return ret;
2232
2233 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2234 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2235 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2236 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2237 if (hdev->bus != BUS_USB)
2238 connect_mask &= ~HID_CONNECT_HIDDEV;
2239 if (hid_hiddev(hdev))
2240 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2241
2242 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2243 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2244 hdev->claimed |= HID_CLAIMED_INPUT;
2245
2246 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2247 !hdev->hiddev_connect(hdev,
2248 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2249 hdev->claimed |= HID_CLAIMED_HIDDEV;
2250 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2251 hdev->claimed |= HID_CLAIMED_HIDRAW;
2252
2253 if (connect_mask & HID_CONNECT_DRIVER)
2254 hdev->claimed |= HID_CLAIMED_DRIVER;
2255
2256 /* Drivers with the ->raw_event callback set are not required to connect
2257 * to any other listener. */
2258 if (!hdev->claimed && !hdev->driver->raw_event) {
2259 hid_err(hdev, "device has no listeners, quitting\n");
2260 return -ENODEV;
2261 }
2262
2263 hid_process_ordering(hdev);
2264
2265 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2266 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2267 hdev->ff_init(hdev);
2268
2269 len = 0;
2270 if (hdev->claimed & HID_CLAIMED_INPUT)
2271 len += sprintf(buf + len, "input");
2272 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2273 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2274 ((struct hiddev *)hdev->hiddev)->minor);
2275 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2276 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2277 ((struct hidraw *)hdev->hidraw)->minor);
2278
2279 type = "Device";
2280 for (i = 0; i < hdev->maxcollection; i++) {
2281 struct hid_collection *col = &hdev->collection[i];
2282 if (col->type == HID_COLLECTION_APPLICATION &&
2283 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2284 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2285 type = types[col->usage & 0xffff];
2286 break;
2287 }
2288 }
2289
2290 switch (hdev->bus) {
2291 case BUS_USB:
2292 bus = "USB";
2293 break;
2294 case BUS_BLUETOOTH:
2295 bus = "BLUETOOTH";
2296 break;
2297 case BUS_I2C:
2298 bus = "I2C";
2299 break;
2300 case BUS_VIRTUAL:
2301 bus = "VIRTUAL";
2302 break;
2303 case BUS_INTEL_ISHTP:
2304 case BUS_AMD_SFH:
2305 bus = "SENSOR HUB";
2306 break;
2307 default:
2308 bus = "<UNKNOWN>";
2309 }
2310
2311 ret = device_create_file(&hdev->dev, &dev_attr_country);
2312 if (ret)
2313 hid_warn(hdev,
2314 "can't create sysfs country code attribute err: %d\n", ret);
2315
2316 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2317 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2318 type, hdev->name, hdev->phys);
2319
2320 return 0;
2321}
2322EXPORT_SYMBOL_GPL(hid_connect);
2323
2324void hid_disconnect(struct hid_device *hdev)
2325{
2326 device_remove_file(&hdev->dev, &dev_attr_country);
2327 if (hdev->claimed & HID_CLAIMED_INPUT)
2328 hidinput_disconnect(hdev);
2329 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2330 hdev->hiddev_disconnect(hdev);
2331 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2332 hidraw_disconnect(hdev);
2333 hdev->claimed = 0;
2334
2335 hid_bpf_disconnect_device(hdev);
2336}
2337EXPORT_SYMBOL_GPL(hid_disconnect);
2338
2339/**
2340 * hid_hw_start - start underlying HW
2341 * @hdev: hid device
2342 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2343 *
2344 * Call this in probe function *after* hid_parse. This will setup HW
2345 * buffers and start the device (if not defeirred to device open).
2346 * hid_hw_stop must be called if this was successful.
2347 */
2348int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2349{
2350 int error;
2351
2352 error = hdev->ll_driver->start(hdev);
2353 if (error)
2354 return error;
2355
2356 if (connect_mask) {
2357 error = hid_connect(hdev, connect_mask);
2358 if (error) {
2359 hdev->ll_driver->stop(hdev);
2360 return error;
2361 }
2362 }
2363
2364 return 0;
2365}
2366EXPORT_SYMBOL_GPL(hid_hw_start);
2367
2368/**
2369 * hid_hw_stop - stop underlying HW
2370 * @hdev: hid device
2371 *
2372 * This is usually called from remove function or from probe when something
2373 * failed and hid_hw_start was called already.
2374 */
2375void hid_hw_stop(struct hid_device *hdev)
2376{
2377 hid_disconnect(hdev);
2378 hdev->ll_driver->stop(hdev);
2379}
2380EXPORT_SYMBOL_GPL(hid_hw_stop);
2381
2382/**
2383 * hid_hw_open - signal underlying HW to start delivering events
2384 * @hdev: hid device
2385 *
2386 * Tell underlying HW to start delivering events from the device.
2387 * This function should be called sometime after successful call
2388 * to hid_hw_start().
2389 */
2390int hid_hw_open(struct hid_device *hdev)
2391{
2392 int ret;
2393
2394 ret = mutex_lock_killable(&hdev->ll_open_lock);
2395 if (ret)
2396 return ret;
2397
2398 if (!hdev->ll_open_count++) {
2399 ret = hdev->ll_driver->open(hdev);
2400 if (ret)
2401 hdev->ll_open_count--;
2402 }
2403
2404 mutex_unlock(&hdev->ll_open_lock);
2405 return ret;
2406}
2407EXPORT_SYMBOL_GPL(hid_hw_open);
2408
2409/**
2410 * hid_hw_close - signal underlaying HW to stop delivering events
2411 *
2412 * @hdev: hid device
2413 *
2414 * This function indicates that we are not interested in the events
2415 * from this device anymore. Delivery of events may or may not stop,
2416 * depending on the number of users still outstanding.
2417 */
2418void hid_hw_close(struct hid_device *hdev)
2419{
2420 mutex_lock(&hdev->ll_open_lock);
2421 if (!--hdev->ll_open_count)
2422 hdev->ll_driver->close(hdev);
2423 mutex_unlock(&hdev->ll_open_lock);
2424}
2425EXPORT_SYMBOL_GPL(hid_hw_close);
2426
2427/**
2428 * hid_hw_request - send report request to device
2429 *
2430 * @hdev: hid device
2431 * @report: report to send
2432 * @reqtype: hid request type
2433 */
2434void hid_hw_request(struct hid_device *hdev,
2435 struct hid_report *report, enum hid_class_request reqtype)
2436{
2437 if (hdev->ll_driver->request)
2438 return hdev->ll_driver->request(hdev, report, reqtype);
2439
2440 __hid_request(hdev, report, reqtype);
2441}
2442EXPORT_SYMBOL_GPL(hid_hw_request);
2443
2444int __hid_hw_raw_request(struct hid_device *hdev,
2445 unsigned char reportnum, __u8 *buf,
2446 size_t len, enum hid_report_type rtype,
2447 enum hid_class_request reqtype,
2448 u64 source, bool from_bpf)
2449{
2450 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2451 int ret;
2452
2453 if (hdev->ll_driver->max_buffer_size)
2454 max_buffer_size = hdev->ll_driver->max_buffer_size;
2455
2456 if (len < 1 || len > max_buffer_size || !buf)
2457 return -EINVAL;
2458
2459 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype,
2460 reqtype, source, from_bpf);
2461 if (ret)
2462 return ret;
2463
2464 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2465 rtype, reqtype);
2466}
2467
2468/**
2469 * hid_hw_raw_request - send report request to device
2470 *
2471 * @hdev: hid device
2472 * @reportnum: report ID
2473 * @buf: in/out data to transfer
2474 * @len: length of buf
2475 * @rtype: HID report type
2476 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2477 *
2478 * Return: count of data transferred, negative if error
2479 *
2480 * Same behavior as hid_hw_request, but with raw buffers instead.
2481 */
2482int hid_hw_raw_request(struct hid_device *hdev,
2483 unsigned char reportnum, __u8 *buf,
2484 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2485{
2486 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false);
2487}
2488EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2489
2490int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source,
2491 bool from_bpf)
2492{
2493 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2494 int ret;
2495
2496 if (hdev->ll_driver->max_buffer_size)
2497 max_buffer_size = hdev->ll_driver->max_buffer_size;
2498
2499 if (len < 1 || len > max_buffer_size || !buf)
2500 return -EINVAL;
2501
2502 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf);
2503 if (ret)
2504 return ret;
2505
2506 if (hdev->ll_driver->output_report)
2507 return hdev->ll_driver->output_report(hdev, buf, len);
2508
2509 return -ENOSYS;
2510}
2511
2512/**
2513 * hid_hw_output_report - send output report to device
2514 *
2515 * @hdev: hid device
2516 * @buf: raw data to transfer
2517 * @len: length of buf
2518 *
2519 * Return: count of data transferred, negative if error
2520 */
2521int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2522{
2523 return __hid_hw_output_report(hdev, buf, len, 0, false);
2524}
2525EXPORT_SYMBOL_GPL(hid_hw_output_report);
2526
2527#ifdef CONFIG_PM
2528int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2529{
2530 if (hdev->driver && hdev->driver->suspend)
2531 return hdev->driver->suspend(hdev, state);
2532
2533 return 0;
2534}
2535EXPORT_SYMBOL_GPL(hid_driver_suspend);
2536
2537int hid_driver_reset_resume(struct hid_device *hdev)
2538{
2539 if (hdev->driver && hdev->driver->reset_resume)
2540 return hdev->driver->reset_resume(hdev);
2541
2542 return 0;
2543}
2544EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2545
2546int hid_driver_resume(struct hid_device *hdev)
2547{
2548 if (hdev->driver && hdev->driver->resume)
2549 return hdev->driver->resume(hdev);
2550
2551 return 0;
2552}
2553EXPORT_SYMBOL_GPL(hid_driver_resume);
2554#endif /* CONFIG_PM */
2555
2556struct hid_dynid {
2557 struct list_head list;
2558 struct hid_device_id id;
2559};
2560
2561/**
2562 * new_id_store - add a new HID device ID to this driver and re-probe devices
2563 * @drv: target device driver
2564 * @buf: buffer for scanning device ID data
2565 * @count: input size
2566 *
2567 * Adds a new dynamic hid device ID to this driver,
2568 * and causes the driver to probe for all devices again.
2569 */
2570static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2571 size_t count)
2572{
2573 struct hid_driver *hdrv = to_hid_driver(drv);
2574 struct hid_dynid *dynid;
2575 __u32 bus, vendor, product;
2576 unsigned long driver_data = 0;
2577 int ret;
2578
2579 ret = sscanf(buf, "%x %x %x %lx",
2580 &bus, &vendor, &product, &driver_data);
2581 if (ret < 3)
2582 return -EINVAL;
2583
2584 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2585 if (!dynid)
2586 return -ENOMEM;
2587
2588 dynid->id.bus = bus;
2589 dynid->id.group = HID_GROUP_ANY;
2590 dynid->id.vendor = vendor;
2591 dynid->id.product = product;
2592 dynid->id.driver_data = driver_data;
2593
2594 spin_lock(&hdrv->dyn_lock);
2595 list_add_tail(&dynid->list, &hdrv->dyn_list);
2596 spin_unlock(&hdrv->dyn_lock);
2597
2598 ret = driver_attach(&hdrv->driver);
2599
2600 return ret ? : count;
2601}
2602static DRIVER_ATTR_WO(new_id);
2603
2604static struct attribute *hid_drv_attrs[] = {
2605 &driver_attr_new_id.attr,
2606 NULL,
2607};
2608ATTRIBUTE_GROUPS(hid_drv);
2609
2610static void hid_free_dynids(struct hid_driver *hdrv)
2611{
2612 struct hid_dynid *dynid, *n;
2613
2614 spin_lock(&hdrv->dyn_lock);
2615 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2616 list_del(&dynid->list);
2617 kfree(dynid);
2618 }
2619 spin_unlock(&hdrv->dyn_lock);
2620}
2621
2622const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2623 struct hid_driver *hdrv)
2624{
2625 struct hid_dynid *dynid;
2626
2627 spin_lock(&hdrv->dyn_lock);
2628 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2629 if (hid_match_one_id(hdev, &dynid->id)) {
2630 spin_unlock(&hdrv->dyn_lock);
2631 return &dynid->id;
2632 }
2633 }
2634 spin_unlock(&hdrv->dyn_lock);
2635
2636 return hid_match_id(hdev, hdrv->id_table);
2637}
2638EXPORT_SYMBOL_GPL(hid_match_device);
2639
2640static int hid_bus_match(struct device *dev, const struct device_driver *drv)
2641{
2642 struct hid_driver *hdrv = to_hid_driver(drv);
2643 struct hid_device *hdev = to_hid_device(dev);
2644
2645 return hid_match_device(hdev, hdrv) != NULL;
2646}
2647
2648/**
2649 * hid_compare_device_paths - check if both devices share the same path
2650 * @hdev_a: hid device
2651 * @hdev_b: hid device
2652 * @separator: char to use as separator
2653 *
2654 * Check if two devices share the same path up to the last occurrence of
2655 * the separator char. Both paths must exist (i.e., zero-length paths
2656 * don't match).
2657 */
2658bool hid_compare_device_paths(struct hid_device *hdev_a,
2659 struct hid_device *hdev_b, char separator)
2660{
2661 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2662 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2663
2664 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2665 return false;
2666
2667 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2668}
2669EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2670
2671static bool hid_check_device_match(struct hid_device *hdev,
2672 struct hid_driver *hdrv,
2673 const struct hid_device_id **id)
2674{
2675 *id = hid_match_device(hdev, hdrv);
2676 if (!*id)
2677 return false;
2678
2679 if (hdrv->match)
2680 return hdrv->match(hdev, hid_ignore_special_drivers);
2681
2682 /*
2683 * hid-generic implements .match(), so we must be dealing with a
2684 * different HID driver here, and can simply check if
2685 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER
2686 * are set or not.
2687 */
2688 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER);
2689}
2690
2691static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2692{
2693 const struct hid_device_id *id;
2694 int ret;
2695
2696 if (!hdev->bpf_rsize) {
2697 /* in case a bpf program gets detached, we need to free the old one */
2698 hid_free_bpf_rdesc(hdev);
2699
2700 /* keep this around so we know we called it once */
2701 hdev->bpf_rsize = hdev->dev_rsize;
2702
2703 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */
2704 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc,
2705 &hdev->bpf_rsize);
2706 }
2707
2708 if (!hid_check_device_match(hdev, hdrv, &id))
2709 return -ENODEV;
2710
2711 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2712 if (!hdev->devres_group_id)
2713 return -ENOMEM;
2714
2715 /* reset the quirks that has been previously set */
2716 hdev->quirks = hid_lookup_quirk(hdev);
2717 hdev->driver = hdrv;
2718
2719 if (hdrv->probe) {
2720 ret = hdrv->probe(hdev, id);
2721 } else { /* default probe */
2722 ret = hid_open_report(hdev);
2723 if (!ret)
2724 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2725 }
2726
2727 /*
2728 * Note that we are not closing the devres group opened above so
2729 * even resources that were attached to the device after probe is
2730 * run are released when hid_device_remove() is executed. This is
2731 * needed as some drivers would allocate additional resources,
2732 * for example when updating firmware.
2733 */
2734
2735 if (ret) {
2736 devres_release_group(&hdev->dev, hdev->devres_group_id);
2737 hid_close_report(hdev);
2738 hdev->driver = NULL;
2739 }
2740
2741 return ret;
2742}
2743
2744static int hid_device_probe(struct device *dev)
2745{
2746 struct hid_device *hdev = to_hid_device(dev);
2747 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2748 int ret = 0;
2749
2750 if (down_interruptible(&hdev->driver_input_lock))
2751 return -EINTR;
2752
2753 hdev->io_started = false;
2754 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2755
2756 if (!hdev->driver)
2757 ret = __hid_device_probe(hdev, hdrv);
2758
2759 if (!hdev->io_started)
2760 up(&hdev->driver_input_lock);
2761
2762 return ret;
2763}
2764
2765static void hid_device_remove(struct device *dev)
2766{
2767 struct hid_device *hdev = to_hid_device(dev);
2768 struct hid_driver *hdrv;
2769
2770 down(&hdev->driver_input_lock);
2771 hdev->io_started = false;
2772
2773 hdrv = hdev->driver;
2774 if (hdrv) {
2775 if (hdrv->remove)
2776 hdrv->remove(hdev);
2777 else /* default remove */
2778 hid_hw_stop(hdev);
2779
2780 /* Release all devres resources allocated by the driver */
2781 devres_release_group(&hdev->dev, hdev->devres_group_id);
2782
2783 hid_close_report(hdev);
2784 hdev->driver = NULL;
2785 }
2786
2787 if (!hdev->io_started)
2788 up(&hdev->driver_input_lock);
2789}
2790
2791static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2792 char *buf)
2793{
2794 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2795
2796 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2797 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2798}
2799static DEVICE_ATTR_RO(modalias);
2800
2801static struct attribute *hid_dev_attrs[] = {
2802 &dev_attr_modalias.attr,
2803 NULL,
2804};
2805static struct bin_attribute *hid_dev_bin_attrs[] = {
2806 &dev_bin_attr_report_desc,
2807 NULL
2808};
2809static const struct attribute_group hid_dev_group = {
2810 .attrs = hid_dev_attrs,
2811 .bin_attrs = hid_dev_bin_attrs,
2812};
2813__ATTRIBUTE_GROUPS(hid_dev);
2814
2815static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2816{
2817 const struct hid_device *hdev = to_hid_device(dev);
2818
2819 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2820 hdev->bus, hdev->vendor, hdev->product))
2821 return -ENOMEM;
2822
2823 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2824 return -ENOMEM;
2825
2826 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2827 return -ENOMEM;
2828
2829 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2830 return -ENOMEM;
2831
2832 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2833 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2834 return -ENOMEM;
2835
2836 return 0;
2837}
2838
2839const struct bus_type hid_bus_type = {
2840 .name = "hid",
2841 .dev_groups = hid_dev_groups,
2842 .drv_groups = hid_drv_groups,
2843 .match = hid_bus_match,
2844 .probe = hid_device_probe,
2845 .remove = hid_device_remove,
2846 .uevent = hid_uevent,
2847};
2848EXPORT_SYMBOL(hid_bus_type);
2849
2850int hid_add_device(struct hid_device *hdev)
2851{
2852 static atomic_t id = ATOMIC_INIT(0);
2853 int ret;
2854
2855 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2856 return -EBUSY;
2857
2858 hdev->quirks = hid_lookup_quirk(hdev);
2859
2860 /* we need to kill them here, otherwise they will stay allocated to
2861 * wait for coming driver */
2862 if (hid_ignore(hdev))
2863 return -ENODEV;
2864
2865 /*
2866 * Check for the mandatory transport channel.
2867 */
2868 if (!hdev->ll_driver->raw_request) {
2869 hid_err(hdev, "transport driver missing .raw_request()\n");
2870 return -EINVAL;
2871 }
2872
2873 /*
2874 * Read the device report descriptor once and use as template
2875 * for the driver-specific modifications.
2876 */
2877 ret = hdev->ll_driver->parse(hdev);
2878 if (ret)
2879 return ret;
2880 if (!hdev->dev_rdesc)
2881 return -ENODEV;
2882
2883 /*
2884 * Scan generic devices for group information
2885 */
2886 if (hid_ignore_special_drivers) {
2887 hdev->group = HID_GROUP_GENERIC;
2888 } else if (!hdev->group &&
2889 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2890 ret = hid_scan_report(hdev);
2891 if (ret)
2892 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2893 }
2894
2895 hdev->id = atomic_inc_return(&id);
2896
2897 /* XXX hack, any other cleaner solution after the driver core
2898 * is converted to allow more than 20 bytes as the device name? */
2899 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2900 hdev->vendor, hdev->product, hdev->id);
2901
2902 hid_debug_register(hdev, dev_name(&hdev->dev));
2903 ret = device_add(&hdev->dev);
2904 if (!ret)
2905 hdev->status |= HID_STAT_ADDED;
2906 else
2907 hid_debug_unregister(hdev);
2908
2909 return ret;
2910}
2911EXPORT_SYMBOL_GPL(hid_add_device);
2912
2913/**
2914 * hid_allocate_device - allocate new hid device descriptor
2915 *
2916 * Allocate and initialize hid device, so that hid_destroy_device might be
2917 * used to free it.
2918 *
2919 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2920 * error value.
2921 */
2922struct hid_device *hid_allocate_device(void)
2923{
2924 struct hid_device *hdev;
2925 int ret = -ENOMEM;
2926
2927 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2928 if (hdev == NULL)
2929 return ERR_PTR(ret);
2930
2931 device_initialize(&hdev->dev);
2932 hdev->dev.release = hid_device_release;
2933 hdev->dev.bus = &hid_bus_type;
2934 device_enable_async_suspend(&hdev->dev);
2935
2936 hid_close_report(hdev);
2937
2938 init_waitqueue_head(&hdev->debug_wait);
2939 INIT_LIST_HEAD(&hdev->debug_list);
2940 spin_lock_init(&hdev->debug_list_lock);
2941 sema_init(&hdev->driver_input_lock, 1);
2942 mutex_init(&hdev->ll_open_lock);
2943 kref_init(&hdev->ref);
2944
2945 ret = hid_bpf_device_init(hdev);
2946 if (ret)
2947 goto out_err;
2948
2949 return hdev;
2950
2951out_err:
2952 hid_destroy_device(hdev);
2953 return ERR_PTR(ret);
2954}
2955EXPORT_SYMBOL_GPL(hid_allocate_device);
2956
2957static void hid_remove_device(struct hid_device *hdev)
2958{
2959 if (hdev->status & HID_STAT_ADDED) {
2960 device_del(&hdev->dev);
2961 hid_debug_unregister(hdev);
2962 hdev->status &= ~HID_STAT_ADDED;
2963 }
2964 hid_free_bpf_rdesc(hdev);
2965 kfree(hdev->dev_rdesc);
2966 hdev->dev_rdesc = NULL;
2967 hdev->dev_rsize = 0;
2968 hdev->bpf_rsize = 0;
2969}
2970
2971/**
2972 * hid_destroy_device - free previously allocated device
2973 *
2974 * @hdev: hid device
2975 *
2976 * If you allocate hid_device through hid_allocate_device, you should ever
2977 * free by this function.
2978 */
2979void hid_destroy_device(struct hid_device *hdev)
2980{
2981 hid_bpf_destroy_device(hdev);
2982 hid_remove_device(hdev);
2983 put_device(&hdev->dev);
2984}
2985EXPORT_SYMBOL_GPL(hid_destroy_device);
2986
2987
2988static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2989{
2990 struct hid_driver *hdrv = data;
2991 struct hid_device *hdev = to_hid_device(dev);
2992
2993 if (hdev->driver == hdrv &&
2994 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2995 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2996 return device_reprobe(dev);
2997
2998 return 0;
2999}
3000
3001static int __hid_bus_driver_added(struct device_driver *drv, void *data)
3002{
3003 struct hid_driver *hdrv = to_hid_driver(drv);
3004
3005 if (hdrv->match) {
3006 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
3007 __hid_bus_reprobe_drivers);
3008 }
3009
3010 return 0;
3011}
3012
3013static int __bus_removed_driver(struct device_driver *drv, void *data)
3014{
3015 return bus_rescan_devices(&hid_bus_type);
3016}
3017
3018int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
3019 const char *mod_name)
3020{
3021 int ret;
3022
3023 hdrv->driver.name = hdrv->name;
3024 hdrv->driver.bus = &hid_bus_type;
3025 hdrv->driver.owner = owner;
3026 hdrv->driver.mod_name = mod_name;
3027
3028 INIT_LIST_HEAD(&hdrv->dyn_list);
3029 spin_lock_init(&hdrv->dyn_lock);
3030
3031 ret = driver_register(&hdrv->driver);
3032
3033 if (ret == 0)
3034 bus_for_each_drv(&hid_bus_type, NULL, NULL,
3035 __hid_bus_driver_added);
3036
3037 return ret;
3038}
3039EXPORT_SYMBOL_GPL(__hid_register_driver);
3040
3041void hid_unregister_driver(struct hid_driver *hdrv)
3042{
3043 driver_unregister(&hdrv->driver);
3044 hid_free_dynids(hdrv);
3045
3046 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
3047}
3048EXPORT_SYMBOL_GPL(hid_unregister_driver);
3049
3050int hid_check_keys_pressed(struct hid_device *hid)
3051{
3052 struct hid_input *hidinput;
3053 int i;
3054
3055 if (!(hid->claimed & HID_CLAIMED_INPUT))
3056 return 0;
3057
3058 list_for_each_entry(hidinput, &hid->inputs, list) {
3059 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
3060 if (hidinput->input->key[i])
3061 return 1;
3062 }
3063
3064 return 0;
3065}
3066EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
3067
3068#ifdef CONFIG_HID_BPF
3069static const struct hid_ops __hid_ops = {
3070 .hid_get_report = hid_get_report,
3071 .hid_hw_raw_request = __hid_hw_raw_request,
3072 .hid_hw_output_report = __hid_hw_output_report,
3073 .hid_input_report = __hid_input_report,
3074 .owner = THIS_MODULE,
3075 .bus_type = &hid_bus_type,
3076};
3077#endif
3078
3079static int __init hid_init(void)
3080{
3081 int ret;
3082
3083 ret = bus_register(&hid_bus_type);
3084 if (ret) {
3085 pr_err("can't register hid bus\n");
3086 goto err;
3087 }
3088
3089#ifdef CONFIG_HID_BPF
3090 hid_ops = &__hid_ops;
3091#endif
3092
3093 ret = hidraw_init();
3094 if (ret)
3095 goto err_bus;
3096
3097 hid_debug_init();
3098
3099 return 0;
3100err_bus:
3101 bus_unregister(&hid_bus_type);
3102err:
3103 return ret;
3104}
3105
3106static void __exit hid_exit(void)
3107{
3108#ifdef CONFIG_HID_BPF
3109 hid_ops = NULL;
3110#endif
3111 hid_debug_exit();
3112 hidraw_exit();
3113 bus_unregister(&hid_bus_type);
3114 hid_quirks_exit(HID_BUS_ANY);
3115}
3116
3117module_init(hid_init);
3118module_exit(hid_exit);
3119
3120MODULE_AUTHOR("Andreas Gal");
3121MODULE_AUTHOR("Vojtech Pavlik");
3122MODULE_AUTHOR("Jiri Kosina");
3123MODULE_DESCRIPTION("HID support for Linux");
3124MODULE_LICENSE("GPL");
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2012 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32#include <linux/semaphore.h>
33
34#include <linux/hid.h>
35#include <linux/hiddev.h>
36#include <linux/hid-debug.h>
37#include <linux/hidraw.h>
38
39#include "hid-ids.h"
40
41/*
42 * Version Information
43 */
44
45#define DRIVER_DESC "HID core driver"
46#define DRIVER_LICENSE "GPL"
47
48int hid_debug = 0;
49module_param_named(debug, hid_debug, int, 0600);
50MODULE_PARM_DESC(debug, "toggle HID debugging messages");
51EXPORT_SYMBOL_GPL(hid_debug);
52
53static int hid_ignore_special_drivers = 0;
54module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
55MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
56
57/*
58 * Register a new report for a device.
59 */
60
61struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
62{
63 struct hid_report_enum *report_enum = device->report_enum + type;
64 struct hid_report *report;
65
66 if (id >= HID_MAX_IDS)
67 return NULL;
68 if (report_enum->report_id_hash[id])
69 return report_enum->report_id_hash[id];
70
71 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
72 if (!report)
73 return NULL;
74
75 if (id != 0)
76 report_enum->numbered = 1;
77
78 report->id = id;
79 report->type = type;
80 report->size = 0;
81 report->device = device;
82 report_enum->report_id_hash[id] = report;
83
84 list_add_tail(&report->list, &report_enum->report_list);
85
86 return report;
87}
88EXPORT_SYMBOL_GPL(hid_register_report);
89
90/*
91 * Register a new field for this report.
92 */
93
94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
95{
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 values * sizeof(unsigned)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->report = report;
114
115 return field;
116}
117
118/*
119 * Open a collection. The type/usage is pushed on the stack.
120 */
121
122static int open_collection(struct hid_parser *parser, unsigned type)
123{
124 struct hid_collection *collection;
125 unsigned usage;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
130 hid_err(parser->device, "collection stack overflow\n");
131 return -EINVAL;
132 }
133
134 if (parser->device->maxcollection == parser->device->collection_size) {
135 collection = kmalloc(sizeof(struct hid_collection) *
136 parser->device->collection_size * 2, GFP_KERNEL);
137 if (collection == NULL) {
138 hid_err(parser->device, "failed to reallocate collection array\n");
139 return -ENOMEM;
140 }
141 memcpy(collection, parser->device->collection,
142 sizeof(struct hid_collection) *
143 parser->device->collection_size);
144 memset(collection + parser->device->collection_size, 0,
145 sizeof(struct hid_collection) *
146 parser->device->collection_size);
147 kfree(parser->device->collection);
148 parser->device->collection = collection;
149 parser->device->collection_size *= 2;
150 }
151
152 parser->collection_stack[parser->collection_stack_ptr++] =
153 parser->device->maxcollection;
154
155 collection = parser->device->collection +
156 parser->device->maxcollection++;
157 collection->type = type;
158 collection->usage = usage;
159 collection->level = parser->collection_stack_ptr - 1;
160
161 if (type == HID_COLLECTION_APPLICATION)
162 parser->device->maxapplication++;
163
164 return 0;
165}
166
167/*
168 * Close a collection.
169 */
170
171static int close_collection(struct hid_parser *parser)
172{
173 if (!parser->collection_stack_ptr) {
174 hid_err(parser->device, "collection stack underflow\n");
175 return -EINVAL;
176 }
177 parser->collection_stack_ptr--;
178 return 0;
179}
180
181/*
182 * Climb up the stack, search for the specified collection type
183 * and return the usage.
184 */
185
186static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
187{
188 struct hid_collection *collection = parser->device->collection;
189 int n;
190
191 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
192 unsigned index = parser->collection_stack[n];
193 if (collection[index].type == type)
194 return collection[index].usage;
195 }
196 return 0; /* we know nothing about this usage type */
197}
198
199/*
200 * Add a usage to the temporary parser table.
201 */
202
203static int hid_add_usage(struct hid_parser *parser, unsigned usage)
204{
205 if (parser->local.usage_index >= HID_MAX_USAGES) {
206 hid_err(parser->device, "usage index exceeded\n");
207 return -1;
208 }
209 parser->local.usage[parser->local.usage_index] = usage;
210 parser->local.collection_index[parser->local.usage_index] =
211 parser->collection_stack_ptr ?
212 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
213 parser->local.usage_index++;
214 return 0;
215}
216
217/*
218 * Register a new field for this report.
219 */
220
221static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
222{
223 struct hid_report *report;
224 struct hid_field *field;
225 unsigned usages;
226 unsigned offset;
227 unsigned i;
228
229 report = hid_register_report(parser->device, report_type, parser->global.report_id);
230 if (!report) {
231 hid_err(parser->device, "hid_register_report failed\n");
232 return -1;
233 }
234
235 /* Handle both signed and unsigned cases properly */
236 if ((parser->global.logical_minimum < 0 &&
237 parser->global.logical_maximum <
238 parser->global.logical_minimum) ||
239 (parser->global.logical_minimum >= 0 &&
240 (__u32)parser->global.logical_maximum <
241 (__u32)parser->global.logical_minimum)) {
242 dbg_hid("logical range invalid 0x%x 0x%x\n",
243 parser->global.logical_minimum,
244 parser->global.logical_maximum);
245 return -1;
246 }
247
248 offset = report->size;
249 report->size += parser->global.report_size * parser->global.report_count;
250
251 if (!parser->local.usage_index) /* Ignore padding fields */
252 return 0;
253
254 usages = max_t(unsigned, parser->local.usage_index,
255 parser->global.report_count);
256
257 field = hid_register_field(report, usages, parser->global.report_count);
258 if (!field)
259 return 0;
260
261 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
262 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
263 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
264
265 for (i = 0; i < usages; i++) {
266 unsigned j = i;
267 /* Duplicate the last usage we parsed if we have excess values */
268 if (i >= parser->local.usage_index)
269 j = parser->local.usage_index - 1;
270 field->usage[i].hid = parser->local.usage[j];
271 field->usage[i].collection_index =
272 parser->local.collection_index[j];
273 field->usage[i].usage_index = i;
274 }
275
276 field->maxusage = usages;
277 field->flags = flags;
278 field->report_offset = offset;
279 field->report_type = report_type;
280 field->report_size = parser->global.report_size;
281 field->report_count = parser->global.report_count;
282 field->logical_minimum = parser->global.logical_minimum;
283 field->logical_maximum = parser->global.logical_maximum;
284 field->physical_minimum = parser->global.physical_minimum;
285 field->physical_maximum = parser->global.physical_maximum;
286 field->unit_exponent = parser->global.unit_exponent;
287 field->unit = parser->global.unit;
288
289 return 0;
290}
291
292/*
293 * Read data value from item.
294 */
295
296static u32 item_udata(struct hid_item *item)
297{
298 switch (item->size) {
299 case 1: return item->data.u8;
300 case 2: return item->data.u16;
301 case 4: return item->data.u32;
302 }
303 return 0;
304}
305
306static s32 item_sdata(struct hid_item *item)
307{
308 switch (item->size) {
309 case 1: return item->data.s8;
310 case 2: return item->data.s16;
311 case 4: return item->data.s32;
312 }
313 return 0;
314}
315
316/*
317 * Process a global item.
318 */
319
320static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
321{
322 __s32 raw_value;
323 switch (item->tag) {
324 case HID_GLOBAL_ITEM_TAG_PUSH:
325
326 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
327 hid_err(parser->device, "global environment stack overflow\n");
328 return -1;
329 }
330
331 memcpy(parser->global_stack + parser->global_stack_ptr++,
332 &parser->global, sizeof(struct hid_global));
333 return 0;
334
335 case HID_GLOBAL_ITEM_TAG_POP:
336
337 if (!parser->global_stack_ptr) {
338 hid_err(parser->device, "global environment stack underflow\n");
339 return -1;
340 }
341
342 memcpy(&parser->global, parser->global_stack +
343 --parser->global_stack_ptr, sizeof(struct hid_global));
344 return 0;
345
346 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
347 parser->global.usage_page = item_udata(item);
348 return 0;
349
350 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
351 parser->global.logical_minimum = item_sdata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
355 if (parser->global.logical_minimum < 0)
356 parser->global.logical_maximum = item_sdata(item);
357 else
358 parser->global.logical_maximum = item_udata(item);
359 return 0;
360
361 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
362 parser->global.physical_minimum = item_sdata(item);
363 return 0;
364
365 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
366 if (parser->global.physical_minimum < 0)
367 parser->global.physical_maximum = item_sdata(item);
368 else
369 parser->global.physical_maximum = item_udata(item);
370 return 0;
371
372 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
373 /* Many devices provide unit exponent as a two's complement
374 * nibble due to the common misunderstanding of HID
375 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
376 * both this and the standard encoding. */
377 raw_value = item_sdata(item);
378 if (!(raw_value & 0xfffffff0))
379 parser->global.unit_exponent = hid_snto32(raw_value, 4);
380 else
381 parser->global.unit_exponent = raw_value;
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_UNIT:
385 parser->global.unit = item_udata(item);
386 return 0;
387
388 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
389 parser->global.report_size = item_udata(item);
390 if (parser->global.report_size > 128) {
391 hid_err(parser->device, "invalid report_size %d\n",
392 parser->global.report_size);
393 return -1;
394 }
395 return 0;
396
397 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
398 parser->global.report_count = item_udata(item);
399 if (parser->global.report_count > HID_MAX_USAGES) {
400 hid_err(parser->device, "invalid report_count %d\n",
401 parser->global.report_count);
402 return -1;
403 }
404 return 0;
405
406 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
407 parser->global.report_id = item_udata(item);
408 if (parser->global.report_id == 0 ||
409 parser->global.report_id >= HID_MAX_IDS) {
410 hid_err(parser->device, "report_id %u is invalid\n",
411 parser->global.report_id);
412 return -1;
413 }
414 return 0;
415
416 default:
417 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
418 return -1;
419 }
420}
421
422/*
423 * Process a local item.
424 */
425
426static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
427{
428 __u32 data;
429 unsigned n;
430 __u32 count;
431
432 data = item_udata(item);
433
434 switch (item->tag) {
435 case HID_LOCAL_ITEM_TAG_DELIMITER:
436
437 if (data) {
438 /*
439 * We treat items before the first delimiter
440 * as global to all usage sets (branch 0).
441 * In the moment we process only these global
442 * items and the first delimiter set.
443 */
444 if (parser->local.delimiter_depth != 0) {
445 hid_err(parser->device, "nested delimiters\n");
446 return -1;
447 }
448 parser->local.delimiter_depth++;
449 parser->local.delimiter_branch++;
450 } else {
451 if (parser->local.delimiter_depth < 1) {
452 hid_err(parser->device, "bogus close delimiter\n");
453 return -1;
454 }
455 parser->local.delimiter_depth--;
456 }
457 return 0;
458
459 case HID_LOCAL_ITEM_TAG_USAGE:
460
461 if (parser->local.delimiter_branch > 1) {
462 dbg_hid("alternative usage ignored\n");
463 return 0;
464 }
465
466 if (item->size <= 2)
467 data = (parser->global.usage_page << 16) + data;
468
469 return hid_add_usage(parser, data);
470
471 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
472
473 if (parser->local.delimiter_branch > 1) {
474 dbg_hid("alternative usage ignored\n");
475 return 0;
476 }
477
478 if (item->size <= 2)
479 data = (parser->global.usage_page << 16) + data;
480
481 parser->local.usage_minimum = data;
482 return 0;
483
484 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
485
486 if (parser->local.delimiter_branch > 1) {
487 dbg_hid("alternative usage ignored\n");
488 return 0;
489 }
490
491 if (item->size <= 2)
492 data = (parser->global.usage_page << 16) + data;
493
494 count = data - parser->local.usage_minimum;
495 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
496 /*
497 * We do not warn if the name is not set, we are
498 * actually pre-scanning the device.
499 */
500 if (dev_name(&parser->device->dev))
501 hid_warn(parser->device,
502 "ignoring exceeding usage max\n");
503 data = HID_MAX_USAGES - parser->local.usage_index +
504 parser->local.usage_minimum - 1;
505 if (data <= 0) {
506 hid_err(parser->device,
507 "no more usage index available\n");
508 return -1;
509 }
510 }
511
512 for (n = parser->local.usage_minimum; n <= data; n++)
513 if (hid_add_usage(parser, n)) {
514 dbg_hid("hid_add_usage failed\n");
515 return -1;
516 }
517 return 0;
518
519 default:
520
521 dbg_hid("unknown local item tag 0x%x\n", item->tag);
522 return 0;
523 }
524 return 0;
525}
526
527/*
528 * Process a main item.
529 */
530
531static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
532{
533 __u32 data;
534 int ret;
535
536 data = item_udata(item);
537
538 switch (item->tag) {
539 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
540 ret = open_collection(parser, data & 0xff);
541 break;
542 case HID_MAIN_ITEM_TAG_END_COLLECTION:
543 ret = close_collection(parser);
544 break;
545 case HID_MAIN_ITEM_TAG_INPUT:
546 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
547 break;
548 case HID_MAIN_ITEM_TAG_OUTPUT:
549 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
550 break;
551 case HID_MAIN_ITEM_TAG_FEATURE:
552 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
553 break;
554 default:
555 hid_err(parser->device, "unknown main item tag 0x%x\n", item->tag);
556 ret = 0;
557 }
558
559 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
560
561 return ret;
562}
563
564/*
565 * Process a reserved item.
566 */
567
568static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
569{
570 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
571 return 0;
572}
573
574/*
575 * Free a report and all registered fields. The field->usage and
576 * field->value table's are allocated behind the field, so we need
577 * only to free(field) itself.
578 */
579
580static void hid_free_report(struct hid_report *report)
581{
582 unsigned n;
583
584 for (n = 0; n < report->maxfield; n++)
585 kfree(report->field[n]);
586 kfree(report);
587}
588
589/*
590 * Close report. This function returns the device
591 * state to the point prior to hid_open_report().
592 */
593static void hid_close_report(struct hid_device *device)
594{
595 unsigned i, j;
596
597 for (i = 0; i < HID_REPORT_TYPES; i++) {
598 struct hid_report_enum *report_enum = device->report_enum + i;
599
600 for (j = 0; j < HID_MAX_IDS; j++) {
601 struct hid_report *report = report_enum->report_id_hash[j];
602 if (report)
603 hid_free_report(report);
604 }
605 memset(report_enum, 0, sizeof(*report_enum));
606 INIT_LIST_HEAD(&report_enum->report_list);
607 }
608
609 kfree(device->rdesc);
610 device->rdesc = NULL;
611 device->rsize = 0;
612
613 kfree(device->collection);
614 device->collection = NULL;
615 device->collection_size = 0;
616 device->maxcollection = 0;
617 device->maxapplication = 0;
618
619 device->status &= ~HID_STAT_PARSED;
620}
621
622/*
623 * Free a device structure, all reports, and all fields.
624 */
625
626static void hid_device_release(struct device *dev)
627{
628 struct hid_device *hid = to_hid_device(dev);
629
630 hid_close_report(hid);
631 kfree(hid->dev_rdesc);
632 kfree(hid);
633}
634
635/*
636 * Fetch a report description item from the data stream. We support long
637 * items, though they are not used yet.
638 */
639
640static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
641{
642 u8 b;
643
644 if ((end - start) <= 0)
645 return NULL;
646
647 b = *start++;
648
649 item->type = (b >> 2) & 3;
650 item->tag = (b >> 4) & 15;
651
652 if (item->tag == HID_ITEM_TAG_LONG) {
653
654 item->format = HID_ITEM_FORMAT_LONG;
655
656 if ((end - start) < 2)
657 return NULL;
658
659 item->size = *start++;
660 item->tag = *start++;
661
662 if ((end - start) < item->size)
663 return NULL;
664
665 item->data.longdata = start;
666 start += item->size;
667 return start;
668 }
669
670 item->format = HID_ITEM_FORMAT_SHORT;
671 item->size = b & 3;
672
673 switch (item->size) {
674 case 0:
675 return start;
676
677 case 1:
678 if ((end - start) < 1)
679 return NULL;
680 item->data.u8 = *start++;
681 return start;
682
683 case 2:
684 if ((end - start) < 2)
685 return NULL;
686 item->data.u16 = get_unaligned_le16(start);
687 start = (__u8 *)((__le16 *)start + 1);
688 return start;
689
690 case 3:
691 item->size++;
692 if ((end - start) < 4)
693 return NULL;
694 item->data.u32 = get_unaligned_le32(start);
695 start = (__u8 *)((__le32 *)start + 1);
696 return start;
697 }
698
699 return NULL;
700}
701
702static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
703{
704 struct hid_device *hid = parser->device;
705
706 if (usage == HID_DG_CONTACTID)
707 hid->group = HID_GROUP_MULTITOUCH;
708}
709
710static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
711{
712 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
713 parser->global.report_size == 8)
714 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
715}
716
717static void hid_scan_collection(struct hid_parser *parser, unsigned type)
718{
719 struct hid_device *hid = parser->device;
720 int i;
721
722 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
723 type == HID_COLLECTION_PHYSICAL)
724 hid->group = HID_GROUP_SENSOR_HUB;
725
726 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
727 (hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3 ||
728 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_2 ||
729 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_JP ||
730 hid->product == USB_DEVICE_ID_MS_TYPE_COVER_3 ||
731 hid->product == USB_DEVICE_ID_MS_POWER_COVER) &&
732 hid->group == HID_GROUP_MULTITOUCH)
733 hid->group = HID_GROUP_GENERIC;
734
735 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
736 for (i = 0; i < parser->local.usage_index; i++)
737 if (parser->local.usage[i] == HID_GD_POINTER)
738 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
739
740 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
741 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
742}
743
744static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
745{
746 __u32 data;
747 int i;
748
749 data = item_udata(item);
750
751 switch (item->tag) {
752 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
753 hid_scan_collection(parser, data & 0xff);
754 break;
755 case HID_MAIN_ITEM_TAG_END_COLLECTION:
756 break;
757 case HID_MAIN_ITEM_TAG_INPUT:
758 /* ignore constant inputs, they will be ignored by hid-input */
759 if (data & HID_MAIN_ITEM_CONSTANT)
760 break;
761 for (i = 0; i < parser->local.usage_index; i++)
762 hid_scan_input_usage(parser, parser->local.usage[i]);
763 break;
764 case HID_MAIN_ITEM_TAG_OUTPUT:
765 break;
766 case HID_MAIN_ITEM_TAG_FEATURE:
767 for (i = 0; i < parser->local.usage_index; i++)
768 hid_scan_feature_usage(parser, parser->local.usage[i]);
769 break;
770 }
771
772 /* Reset the local parser environment */
773 memset(&parser->local, 0, sizeof(parser->local));
774
775 return 0;
776}
777
778/*
779 * Scan a report descriptor before the device is added to the bus.
780 * Sets device groups and other properties that determine what driver
781 * to load.
782 */
783static int hid_scan_report(struct hid_device *hid)
784{
785 struct hid_parser *parser;
786 struct hid_item item;
787 __u8 *start = hid->dev_rdesc;
788 __u8 *end = start + hid->dev_rsize;
789 static int (*dispatch_type[])(struct hid_parser *parser,
790 struct hid_item *item) = {
791 hid_scan_main,
792 hid_parser_global,
793 hid_parser_local,
794 hid_parser_reserved
795 };
796
797 parser = vzalloc(sizeof(struct hid_parser));
798 if (!parser)
799 return -ENOMEM;
800
801 parser->device = hid;
802 hid->group = HID_GROUP_GENERIC;
803
804 /*
805 * The parsing is simpler than the one in hid_open_report() as we should
806 * be robust against hid errors. Those errors will be raised by
807 * hid_open_report() anyway.
808 */
809 while ((start = fetch_item(start, end, &item)) != NULL)
810 dispatch_type[item.type](parser, &item);
811
812 /*
813 * Handle special flags set during scanning.
814 */
815 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
816 (hid->group == HID_GROUP_MULTITOUCH))
817 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
818
819 /*
820 * Vendor specific handlings
821 */
822 switch (hid->vendor) {
823 case USB_VENDOR_ID_WACOM:
824 hid->group = HID_GROUP_WACOM;
825 break;
826 case USB_VENDOR_ID_SYNAPTICS:
827 if (hid->group == HID_GROUP_GENERIC)
828 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
829 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
830 /*
831 * hid-rmi should take care of them,
832 * not hid-generic
833 */
834 hid->group = HID_GROUP_RMI;
835 break;
836 }
837
838 vfree(parser);
839 return 0;
840}
841
842/**
843 * hid_parse_report - parse device report
844 *
845 * @device: hid device
846 * @start: report start
847 * @size: report size
848 *
849 * Allocate the device report as read by the bus driver. This function should
850 * only be called from parse() in ll drivers.
851 */
852int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
853{
854 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
855 if (!hid->dev_rdesc)
856 return -ENOMEM;
857 hid->dev_rsize = size;
858 return 0;
859}
860EXPORT_SYMBOL_GPL(hid_parse_report);
861
862static const char * const hid_report_names[] = {
863 "HID_INPUT_REPORT",
864 "HID_OUTPUT_REPORT",
865 "HID_FEATURE_REPORT",
866};
867/**
868 * hid_validate_values - validate existing device report's value indexes
869 *
870 * @device: hid device
871 * @type: which report type to examine
872 * @id: which report ID to examine (0 for first)
873 * @field_index: which report field to examine
874 * @report_counts: expected number of values
875 *
876 * Validate the number of values in a given field of a given report, after
877 * parsing.
878 */
879struct hid_report *hid_validate_values(struct hid_device *hid,
880 unsigned int type, unsigned int id,
881 unsigned int field_index,
882 unsigned int report_counts)
883{
884 struct hid_report *report;
885
886 if (type > HID_FEATURE_REPORT) {
887 hid_err(hid, "invalid HID report type %u\n", type);
888 return NULL;
889 }
890
891 if (id >= HID_MAX_IDS) {
892 hid_err(hid, "invalid HID report id %u\n", id);
893 return NULL;
894 }
895
896 /*
897 * Explicitly not using hid_get_report() here since it depends on
898 * ->numbered being checked, which may not always be the case when
899 * drivers go to access report values.
900 */
901 if (id == 0) {
902 /*
903 * Validating on id 0 means we should examine the first
904 * report in the list.
905 */
906 report = list_entry(
907 hid->report_enum[type].report_list.next,
908 struct hid_report, list);
909 } else {
910 report = hid->report_enum[type].report_id_hash[id];
911 }
912 if (!report) {
913 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
914 return NULL;
915 }
916 if (report->maxfield <= field_index) {
917 hid_err(hid, "not enough fields in %s %u\n",
918 hid_report_names[type], id);
919 return NULL;
920 }
921 if (report->field[field_index]->report_count < report_counts) {
922 hid_err(hid, "not enough values in %s %u field %u\n",
923 hid_report_names[type], id, field_index);
924 return NULL;
925 }
926 return report;
927}
928EXPORT_SYMBOL_GPL(hid_validate_values);
929
930/**
931 * hid_open_report - open a driver-specific device report
932 *
933 * @device: hid device
934 *
935 * Parse a report description into a hid_device structure. Reports are
936 * enumerated, fields are attached to these reports.
937 * 0 returned on success, otherwise nonzero error value.
938 *
939 * This function (or the equivalent hid_parse() macro) should only be
940 * called from probe() in drivers, before starting the device.
941 */
942int hid_open_report(struct hid_device *device)
943{
944 struct hid_parser *parser;
945 struct hid_item item;
946 unsigned int size;
947 __u8 *start;
948 __u8 *buf;
949 __u8 *end;
950 int ret;
951 static int (*dispatch_type[])(struct hid_parser *parser,
952 struct hid_item *item) = {
953 hid_parser_main,
954 hid_parser_global,
955 hid_parser_local,
956 hid_parser_reserved
957 };
958
959 if (WARN_ON(device->status & HID_STAT_PARSED))
960 return -EBUSY;
961
962 start = device->dev_rdesc;
963 if (WARN_ON(!start))
964 return -ENODEV;
965 size = device->dev_rsize;
966
967 buf = kmemdup(start, size, GFP_KERNEL);
968 if (buf == NULL)
969 return -ENOMEM;
970
971 if (device->driver->report_fixup)
972 start = device->driver->report_fixup(device, buf, &size);
973 else
974 start = buf;
975
976 start = kmemdup(start, size, GFP_KERNEL);
977 kfree(buf);
978 if (start == NULL)
979 return -ENOMEM;
980
981 device->rdesc = start;
982 device->rsize = size;
983
984 parser = vzalloc(sizeof(struct hid_parser));
985 if (!parser) {
986 ret = -ENOMEM;
987 goto err;
988 }
989
990 parser->device = device;
991
992 end = start + size;
993
994 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
995 sizeof(struct hid_collection), GFP_KERNEL);
996 if (!device->collection) {
997 ret = -ENOMEM;
998 goto err;
999 }
1000 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1001
1002 ret = -EINVAL;
1003 while ((start = fetch_item(start, end, &item)) != NULL) {
1004
1005 if (item.format != HID_ITEM_FORMAT_SHORT) {
1006 hid_err(device, "unexpected long global item\n");
1007 goto err;
1008 }
1009
1010 if (dispatch_type[item.type](parser, &item)) {
1011 hid_err(device, "item %u %u %u %u parsing failed\n",
1012 item.format, (unsigned)item.size,
1013 (unsigned)item.type, (unsigned)item.tag);
1014 goto err;
1015 }
1016
1017 if (start == end) {
1018 if (parser->collection_stack_ptr) {
1019 hid_err(device, "unbalanced collection at end of report description\n");
1020 goto err;
1021 }
1022 if (parser->local.delimiter_depth) {
1023 hid_err(device, "unbalanced delimiter at end of report description\n");
1024 goto err;
1025 }
1026 vfree(parser);
1027 device->status |= HID_STAT_PARSED;
1028 return 0;
1029 }
1030 }
1031
1032 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
1033err:
1034 vfree(parser);
1035 hid_close_report(device);
1036 return ret;
1037}
1038EXPORT_SYMBOL_GPL(hid_open_report);
1039
1040/*
1041 * Convert a signed n-bit integer to signed 32-bit integer. Common
1042 * cases are done through the compiler, the screwed things has to be
1043 * done by hand.
1044 */
1045
1046static s32 snto32(__u32 value, unsigned n)
1047{
1048 switch (n) {
1049 case 8: return ((__s8)value);
1050 case 16: return ((__s16)value);
1051 case 32: return ((__s32)value);
1052 }
1053 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
1054}
1055
1056s32 hid_snto32(__u32 value, unsigned n)
1057{
1058 return snto32(value, n);
1059}
1060EXPORT_SYMBOL_GPL(hid_snto32);
1061
1062/*
1063 * Convert a signed 32-bit integer to a signed n-bit integer.
1064 */
1065
1066static u32 s32ton(__s32 value, unsigned n)
1067{
1068 s32 a = value >> (n - 1);
1069 if (a && a != -1)
1070 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1071 return value & ((1 << n) - 1);
1072}
1073
1074/*
1075 * Extract/implement a data field from/to a little endian report (bit array).
1076 *
1077 * Code sort-of follows HID spec:
1078 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1079 *
1080 * While the USB HID spec allows unlimited length bit fields in "report
1081 * descriptors", most devices never use more than 16 bits.
1082 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1083 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1084 */
1085
1086static u32 __extract(u8 *report, unsigned offset, int n)
1087{
1088 unsigned int idx = offset / 8;
1089 unsigned int bit_nr = 0;
1090 unsigned int bit_shift = offset % 8;
1091 int bits_to_copy = 8 - bit_shift;
1092 u32 value = 0;
1093 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1094
1095 while (n > 0) {
1096 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1097 n -= bits_to_copy;
1098 bit_nr += bits_to_copy;
1099 bits_to_copy = 8;
1100 bit_shift = 0;
1101 idx++;
1102 }
1103
1104 return value & mask;
1105}
1106
1107u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1108 unsigned offset, unsigned n)
1109{
1110 if (n > 32) {
1111 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1112 n, current->comm);
1113 n = 32;
1114 }
1115
1116 return __extract(report, offset, n);
1117}
1118EXPORT_SYMBOL_GPL(hid_field_extract);
1119
1120/*
1121 * "implement" : set bits in a little endian bit stream.
1122 * Same concepts as "extract" (see comments above).
1123 * The data mangled in the bit stream remains in little endian
1124 * order the whole time. It make more sense to talk about
1125 * endianness of register values by considering a register
1126 * a "cached" copy of the little endian bit stream.
1127 */
1128
1129static void __implement(u8 *report, unsigned offset, int n, u32 value)
1130{
1131 unsigned int idx = offset / 8;
1132 unsigned int size = offset + n;
1133 unsigned int bit_shift = offset % 8;
1134 int bits_to_set = 8 - bit_shift;
1135 u8 bit_mask = 0xff << bit_shift;
1136
1137 while (n - bits_to_set >= 0) {
1138 report[idx] &= ~bit_mask;
1139 report[idx] |= value << bit_shift;
1140 value >>= bits_to_set;
1141 n -= bits_to_set;
1142 bits_to_set = 8;
1143 bit_mask = 0xff;
1144 bit_shift = 0;
1145 idx++;
1146 }
1147
1148 /* last nibble */
1149 if (n) {
1150 if (size % 8)
1151 bit_mask &= (1U << (size % 8)) - 1;
1152 report[idx] &= ~bit_mask;
1153 report[idx] |= (value << bit_shift) & bit_mask;
1154 }
1155}
1156
1157static void implement(const struct hid_device *hid, u8 *report,
1158 unsigned offset, unsigned n, u32 value)
1159{
1160 u64 m;
1161
1162 if (n > 32) {
1163 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1164 __func__, n, current->comm);
1165 n = 32;
1166 }
1167
1168 m = (1ULL << n) - 1;
1169 if (value > m)
1170 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
1171 __func__, value, current->comm);
1172 WARN_ON(value > m);
1173 value &= m;
1174
1175 __implement(report, offset, n, value);
1176}
1177
1178/*
1179 * Search an array for a value.
1180 */
1181
1182static int search(__s32 *array, __s32 value, unsigned n)
1183{
1184 while (n--) {
1185 if (*array++ == value)
1186 return 0;
1187 }
1188 return -1;
1189}
1190
1191/**
1192 * hid_match_report - check if driver's raw_event should be called
1193 *
1194 * @hid: hid device
1195 * @report_type: type to match against
1196 *
1197 * compare hid->driver->report_table->report_type to report->type
1198 */
1199static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1200{
1201 const struct hid_report_id *id = hid->driver->report_table;
1202
1203 if (!id) /* NULL means all */
1204 return 1;
1205
1206 for (; id->report_type != HID_TERMINATOR; id++)
1207 if (id->report_type == HID_ANY_ID ||
1208 id->report_type == report->type)
1209 return 1;
1210 return 0;
1211}
1212
1213/**
1214 * hid_match_usage - check if driver's event should be called
1215 *
1216 * @hid: hid device
1217 * @usage: usage to match against
1218 *
1219 * compare hid->driver->usage_table->usage_{type,code} to
1220 * usage->usage_{type,code}
1221 */
1222static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1223{
1224 const struct hid_usage_id *id = hid->driver->usage_table;
1225
1226 if (!id) /* NULL means all */
1227 return 1;
1228
1229 for (; id->usage_type != HID_ANY_ID - 1; id++)
1230 if ((id->usage_hid == HID_ANY_ID ||
1231 id->usage_hid == usage->hid) &&
1232 (id->usage_type == HID_ANY_ID ||
1233 id->usage_type == usage->type) &&
1234 (id->usage_code == HID_ANY_ID ||
1235 id->usage_code == usage->code))
1236 return 1;
1237 return 0;
1238}
1239
1240static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1241 struct hid_usage *usage, __s32 value, int interrupt)
1242{
1243 struct hid_driver *hdrv = hid->driver;
1244 int ret;
1245
1246 if (!list_empty(&hid->debug_list))
1247 hid_dump_input(hid, usage, value);
1248
1249 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1250 ret = hdrv->event(hid, field, usage, value);
1251 if (ret != 0) {
1252 if (ret < 0)
1253 hid_err(hid, "%s's event failed with %d\n",
1254 hdrv->name, ret);
1255 return;
1256 }
1257 }
1258
1259 if (hid->claimed & HID_CLAIMED_INPUT)
1260 hidinput_hid_event(hid, field, usage, value);
1261 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1262 hid->hiddev_hid_event(hid, field, usage, value);
1263}
1264
1265/*
1266 * Analyse a received field, and fetch the data from it. The field
1267 * content is stored for next report processing (we do differential
1268 * reporting to the layer).
1269 */
1270
1271static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1272 __u8 *data, int interrupt)
1273{
1274 unsigned n;
1275 unsigned count = field->report_count;
1276 unsigned offset = field->report_offset;
1277 unsigned size = field->report_size;
1278 __s32 min = field->logical_minimum;
1279 __s32 max = field->logical_maximum;
1280 __s32 *value;
1281
1282 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1283 if (!value)
1284 return;
1285
1286 for (n = 0; n < count; n++) {
1287
1288 value[n] = min < 0 ?
1289 snto32(hid_field_extract(hid, data, offset + n * size,
1290 size), size) :
1291 hid_field_extract(hid, data, offset + n * size, size);
1292
1293 /* Ignore report if ErrorRollOver */
1294 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1295 value[n] >= min && value[n] <= max &&
1296 value[n] - min < field->maxusage &&
1297 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1298 goto exit;
1299 }
1300
1301 for (n = 0; n < count; n++) {
1302
1303 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1304 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1305 continue;
1306 }
1307
1308 if (field->value[n] >= min && field->value[n] <= max
1309 && field->value[n] - min < field->maxusage
1310 && field->usage[field->value[n] - min].hid
1311 && search(value, field->value[n], count))
1312 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1313
1314 if (value[n] >= min && value[n] <= max
1315 && value[n] - min < field->maxusage
1316 && field->usage[value[n] - min].hid
1317 && search(field->value, value[n], count))
1318 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1319 }
1320
1321 memcpy(field->value, value, count * sizeof(__s32));
1322exit:
1323 kfree(value);
1324}
1325
1326/*
1327 * Output the field into the report.
1328 */
1329
1330static void hid_output_field(const struct hid_device *hid,
1331 struct hid_field *field, __u8 *data)
1332{
1333 unsigned count = field->report_count;
1334 unsigned offset = field->report_offset;
1335 unsigned size = field->report_size;
1336 unsigned n;
1337
1338 for (n = 0; n < count; n++) {
1339 if (field->logical_minimum < 0) /* signed values */
1340 implement(hid, data, offset + n * size, size,
1341 s32ton(field->value[n], size));
1342 else /* unsigned values */
1343 implement(hid, data, offset + n * size, size,
1344 field->value[n]);
1345 }
1346}
1347
1348/*
1349 * Create a report. 'data' has to be allocated using
1350 * hid_alloc_report_buf() so that it has proper size.
1351 */
1352
1353void hid_output_report(struct hid_report *report, __u8 *data)
1354{
1355 unsigned n;
1356
1357 if (report->id > 0)
1358 *data++ = report->id;
1359
1360 memset(data, 0, ((report->size - 1) >> 3) + 1);
1361 for (n = 0; n < report->maxfield; n++)
1362 hid_output_field(report->device, report->field[n], data);
1363}
1364EXPORT_SYMBOL_GPL(hid_output_report);
1365
1366/*
1367 * Allocator for buffer that is going to be passed to hid_output_report()
1368 */
1369u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1370{
1371 /*
1372 * 7 extra bytes are necessary to achieve proper functionality
1373 * of implement() working on 8 byte chunks
1374 */
1375
1376 int len = hid_report_len(report) + 7;
1377
1378 return kmalloc(len, flags);
1379}
1380EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1381
1382/*
1383 * Set a field value. The report this field belongs to has to be
1384 * created and transferred to the device, to set this value in the
1385 * device.
1386 */
1387
1388int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1389{
1390 unsigned size;
1391
1392 if (!field)
1393 return -1;
1394
1395 size = field->report_size;
1396
1397 hid_dump_input(field->report->device, field->usage + offset, value);
1398
1399 if (offset >= field->report_count) {
1400 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1401 offset, field->report_count);
1402 return -1;
1403 }
1404 if (field->logical_minimum < 0) {
1405 if (value != snto32(s32ton(value, size), size)) {
1406 hid_err(field->report->device, "value %d is out of range\n", value);
1407 return -1;
1408 }
1409 }
1410 field->value[offset] = value;
1411 return 0;
1412}
1413EXPORT_SYMBOL_GPL(hid_set_field);
1414
1415static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1416 const u8 *data)
1417{
1418 struct hid_report *report;
1419 unsigned int n = 0; /* Normally report number is 0 */
1420
1421 /* Device uses numbered reports, data[0] is report number */
1422 if (report_enum->numbered)
1423 n = *data;
1424
1425 report = report_enum->report_id_hash[n];
1426 if (report == NULL)
1427 dbg_hid("undefined report_id %u received\n", n);
1428
1429 return report;
1430}
1431
1432/*
1433 * Implement a generic .request() callback, using .raw_request()
1434 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1435 */
1436void __hid_request(struct hid_device *hid, struct hid_report *report,
1437 int reqtype)
1438{
1439 char *buf;
1440 int ret;
1441 int len;
1442
1443 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1444 if (!buf)
1445 return;
1446
1447 len = hid_report_len(report);
1448
1449 if (reqtype == HID_REQ_SET_REPORT)
1450 hid_output_report(report, buf);
1451
1452 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1453 report->type, reqtype);
1454 if (ret < 0) {
1455 dbg_hid("unable to complete request: %d\n", ret);
1456 goto out;
1457 }
1458
1459 if (reqtype == HID_REQ_GET_REPORT)
1460 hid_input_report(hid, report->type, buf, ret, 0);
1461
1462out:
1463 kfree(buf);
1464}
1465EXPORT_SYMBOL_GPL(__hid_request);
1466
1467int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1468 int interrupt)
1469{
1470 struct hid_report_enum *report_enum = hid->report_enum + type;
1471 struct hid_report *report;
1472 struct hid_driver *hdrv;
1473 unsigned int a;
1474 int rsize, csize = size;
1475 u8 *cdata = data;
1476 int ret = 0;
1477
1478 report = hid_get_report(report_enum, data);
1479 if (!report)
1480 goto out;
1481
1482 if (report_enum->numbered) {
1483 cdata++;
1484 csize--;
1485 }
1486
1487 rsize = ((report->size - 1) >> 3) + 1;
1488
1489 if (rsize > HID_MAX_BUFFER_SIZE)
1490 rsize = HID_MAX_BUFFER_SIZE;
1491
1492 if (csize < rsize) {
1493 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1494 csize, rsize);
1495 memset(cdata + csize, 0, rsize - csize);
1496 }
1497
1498 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1499 hid->hiddev_report_event(hid, report);
1500 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1501 ret = hidraw_report_event(hid, data, size);
1502 if (ret)
1503 goto out;
1504 }
1505
1506 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1507 for (a = 0; a < report->maxfield; a++)
1508 hid_input_field(hid, report->field[a], cdata, interrupt);
1509 hdrv = hid->driver;
1510 if (hdrv && hdrv->report)
1511 hdrv->report(hid, report);
1512 }
1513
1514 if (hid->claimed & HID_CLAIMED_INPUT)
1515 hidinput_report_event(hid, report);
1516out:
1517 return ret;
1518}
1519EXPORT_SYMBOL_GPL(hid_report_raw_event);
1520
1521/**
1522 * hid_input_report - report data from lower layer (usb, bt...)
1523 *
1524 * @hid: hid device
1525 * @type: HID report type (HID_*_REPORT)
1526 * @data: report contents
1527 * @size: size of data parameter
1528 * @interrupt: distinguish between interrupt and control transfers
1529 *
1530 * This is data entry for lower layers.
1531 */
1532int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1533{
1534 struct hid_report_enum *report_enum;
1535 struct hid_driver *hdrv;
1536 struct hid_report *report;
1537 int ret = 0;
1538
1539 if (!hid)
1540 return -ENODEV;
1541
1542 if (down_trylock(&hid->driver_input_lock))
1543 return -EBUSY;
1544
1545 if (!hid->driver) {
1546 ret = -ENODEV;
1547 goto unlock;
1548 }
1549 report_enum = hid->report_enum + type;
1550 hdrv = hid->driver;
1551
1552 if (!size) {
1553 dbg_hid("empty report\n");
1554 ret = -1;
1555 goto unlock;
1556 }
1557
1558 /* Avoid unnecessary overhead if debugfs is disabled */
1559 if (!list_empty(&hid->debug_list))
1560 hid_dump_report(hid, type, data, size);
1561
1562 report = hid_get_report(report_enum, data);
1563
1564 if (!report) {
1565 ret = -1;
1566 goto unlock;
1567 }
1568
1569 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1570 ret = hdrv->raw_event(hid, report, data, size);
1571 if (ret < 0)
1572 goto unlock;
1573 }
1574
1575 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1576
1577unlock:
1578 up(&hid->driver_input_lock);
1579 return ret;
1580}
1581EXPORT_SYMBOL_GPL(hid_input_report);
1582
1583static bool hid_match_one_id(struct hid_device *hdev,
1584 const struct hid_device_id *id)
1585{
1586 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1587 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1588 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1589 (id->product == HID_ANY_ID || id->product == hdev->product);
1590}
1591
1592const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1593 const struct hid_device_id *id)
1594{
1595 for (; id->bus; id++)
1596 if (hid_match_one_id(hdev, id))
1597 return id;
1598
1599 return NULL;
1600}
1601
1602static const struct hid_device_id hid_hiddev_list[] = {
1603 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1604 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1605 { }
1606};
1607
1608static bool hid_hiddev(struct hid_device *hdev)
1609{
1610 return !!hid_match_id(hdev, hid_hiddev_list);
1611}
1612
1613
1614static ssize_t
1615read_report_descriptor(struct file *filp, struct kobject *kobj,
1616 struct bin_attribute *attr,
1617 char *buf, loff_t off, size_t count)
1618{
1619 struct device *dev = kobj_to_dev(kobj);
1620 struct hid_device *hdev = to_hid_device(dev);
1621
1622 if (off >= hdev->rsize)
1623 return 0;
1624
1625 if (off + count > hdev->rsize)
1626 count = hdev->rsize - off;
1627
1628 memcpy(buf, hdev->rdesc + off, count);
1629
1630 return count;
1631}
1632
1633static ssize_t
1634show_country(struct device *dev, struct device_attribute *attr,
1635 char *buf)
1636{
1637 struct hid_device *hdev = to_hid_device(dev);
1638
1639 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1640}
1641
1642static struct bin_attribute dev_bin_attr_report_desc = {
1643 .attr = { .name = "report_descriptor", .mode = 0444 },
1644 .read = read_report_descriptor,
1645 .size = HID_MAX_DESCRIPTOR_SIZE,
1646};
1647
1648static struct device_attribute dev_attr_country = {
1649 .attr = { .name = "country", .mode = 0444 },
1650 .show = show_country,
1651};
1652
1653int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1654{
1655 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1656 "Joystick", "Gamepad", "Keyboard", "Keypad",
1657 "Multi-Axis Controller"
1658 };
1659 const char *type, *bus;
1660 char buf[64] = "";
1661 unsigned int i;
1662 int len;
1663 int ret;
1664
1665 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1666 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1667 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1668 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1669 if (hdev->bus != BUS_USB)
1670 connect_mask &= ~HID_CONNECT_HIDDEV;
1671 if (hid_hiddev(hdev))
1672 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1673
1674 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1675 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1676 hdev->claimed |= HID_CLAIMED_INPUT;
1677
1678 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1679 !hdev->hiddev_connect(hdev,
1680 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1681 hdev->claimed |= HID_CLAIMED_HIDDEV;
1682 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1683 hdev->claimed |= HID_CLAIMED_HIDRAW;
1684
1685 if (connect_mask & HID_CONNECT_DRIVER)
1686 hdev->claimed |= HID_CLAIMED_DRIVER;
1687
1688 /* Drivers with the ->raw_event callback set are not required to connect
1689 * to any other listener. */
1690 if (!hdev->claimed && !hdev->driver->raw_event) {
1691 hid_err(hdev, "device has no listeners, quitting\n");
1692 return -ENODEV;
1693 }
1694
1695 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1696 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1697 hdev->ff_init(hdev);
1698
1699 len = 0;
1700 if (hdev->claimed & HID_CLAIMED_INPUT)
1701 len += sprintf(buf + len, "input");
1702 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1703 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1704 hdev->minor);
1705 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1706 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1707 ((struct hidraw *)hdev->hidraw)->minor);
1708
1709 type = "Device";
1710 for (i = 0; i < hdev->maxcollection; i++) {
1711 struct hid_collection *col = &hdev->collection[i];
1712 if (col->type == HID_COLLECTION_APPLICATION &&
1713 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1714 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1715 type = types[col->usage & 0xffff];
1716 break;
1717 }
1718 }
1719
1720 switch (hdev->bus) {
1721 case BUS_USB:
1722 bus = "USB";
1723 break;
1724 case BUS_BLUETOOTH:
1725 bus = "BLUETOOTH";
1726 break;
1727 case BUS_I2C:
1728 bus = "I2C";
1729 break;
1730 default:
1731 bus = "<UNKNOWN>";
1732 }
1733
1734 ret = device_create_file(&hdev->dev, &dev_attr_country);
1735 if (ret)
1736 hid_warn(hdev,
1737 "can't create sysfs country code attribute err: %d\n", ret);
1738
1739 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1740 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1741 type, hdev->name, hdev->phys);
1742
1743 return 0;
1744}
1745EXPORT_SYMBOL_GPL(hid_connect);
1746
1747void hid_disconnect(struct hid_device *hdev)
1748{
1749 device_remove_file(&hdev->dev, &dev_attr_country);
1750 if (hdev->claimed & HID_CLAIMED_INPUT)
1751 hidinput_disconnect(hdev);
1752 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1753 hdev->hiddev_disconnect(hdev);
1754 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1755 hidraw_disconnect(hdev);
1756 hdev->claimed = 0;
1757}
1758EXPORT_SYMBOL_GPL(hid_disconnect);
1759
1760/*
1761 * A list of devices for which there is a specialized driver on HID bus.
1762 *
1763 * Please note that for multitouch devices (driven by hid-multitouch driver),
1764 * there is a proper autodetection and autoloading in place (based on presence
1765 * of HID_DG_CONTACTID), so those devices don't need to be added to this list,
1766 * as we are doing the right thing in hid_scan_usage().
1767 *
1768 * Autodetection for (USB) HID sensor hubs exists too. If a collection of type
1769 * physical is found inside a usage page of type sensor, hid-sensor-hub will be
1770 * used as a driver. See hid_scan_report().
1771 */
1772static const struct hid_device_id hid_have_special_driver[] = {
1773 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0xf705) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1779 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1780 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1781 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1782 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1783 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1784 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1787 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1788 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL2) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL3) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL5) },
1806 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1807 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1808 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1813 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1814 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ANSI) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ISO) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_JIS) },
1851 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1852 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1853 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1854 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ANSI) },
1855 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_ISO) },
1856 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2011_JIS) },
1857 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1858 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1859 { HID_USB_DEVICE(USB_VENDOR_ID_AUREAL, USB_DEVICE_ID_AUREAL_W01RN) },
1860 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1861 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185BFM, 0x2208) },
1862 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185PC, 0x5506) },
1863 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185V2PC, 0x1850) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_BETOP_2185V2BFM, 0x5500) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1870 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1871 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS2) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_AK1D) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_ACER_SWITCH12) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_CORSAIR, USB_DEVICE_ID_CORSAIR_K90) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_CP2112) },
1877 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1880 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_4) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1884 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0009) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, 0x0030) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_GEMBIRD, USB_DEVICE_ID_GEMBIRD_JPD_DUALFORCE2) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1897 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1898 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_KEYBOARD) },
1899 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A04A) },
1900 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A067) },
1901 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A070) },
1902 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A072) },
1903 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A081) },
1904 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK_ALT, USB_DEVICE_ID_HOLTEK_ALT_MOUSE_A0C2) },
1905 { HID_USB_DEVICE(USB_VENDOR_ID_HUION, USB_DEVICE_ID_HUION_TABLET) },
1906 { HID_USB_DEVICE(USB_VENDOR_ID_JESS2, USB_DEVICE_ID_JESS2_COLOR_RUMBLE_PAD) },
1907 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ION, USB_DEVICE_ID_ICADE) },
1908 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1909 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1910 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GILA_GAMING_MOUSE) },
1911 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_MANTICORE) },
1912 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_GENIUS_GX_IMPERATOR) },
1913 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1914 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_I405X) },
1915 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X) },
1916 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_MOUSEPEN_I608X_2) },
1917 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_EASYPEN_M610X) },
1918 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_PENSKETCH_M912) },
1919 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1920 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1921#if IS_ENABLED(CONFIG_HID_LENOVO)
1922 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPKBD) },
1923 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_CUSBKBD) },
1924 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_CBTKBD) },
1925 { HID_USB_DEVICE(USB_VENDOR_ID_LENOVO, USB_DEVICE_ID_LENOVO_TPPRODOCK) },
1926#endif
1927 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1928 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1929 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1930 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1931 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_HARMONY_PS3) },
1932 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_T651) },
1933 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1934 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1935 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1936 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1937 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1938 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1939 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DUAL_ACTION) },
1940 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1941 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1942 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1943 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1944 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29_WHEEL) },
1945 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL) },
1946 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1947 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1948 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1949 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1950 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1951 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1952 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_VIBRATION_WHEEL) },
1953 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1954 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFGT_WHEEL) },
1955 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1956 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1957#if IS_ENABLED(CONFIG_HID_LOGITECH_DJ)
1958 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER) },
1959 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_UNIFYING_RECEIVER_2) },
1960#endif
1961 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1962 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1963 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1964 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1965 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1966 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1967 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1968 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_KEYBOARD) },
1969 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1970 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1971 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K_JP) },
1972 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE7K) },
1973 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1974 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1975 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1976 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1977 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_OFFICE_KB) },
1978 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3) },
1979 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_2) },
1980 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_PRO_3_JP) },
1981 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_TYPE_COVER_3) },
1982 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_7K) },
1983 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_600) },
1984 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3KV1) },
1985 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_POWER_COVER) },
1986 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1987 { HID_USB_DEVICE(USB_VENDOR_ID_MSI, USB_DEVICE_ID_MSI_GT683R_LED_PANEL) },
1988 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1989 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1990 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1991 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1992 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1993 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1994 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1995 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1996 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1997 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1998 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1999 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
2000 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
2001 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
2002 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
2003 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
2004 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
2005 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
2006 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
2007 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
2008 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
2009 { HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_6000) },
2010 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
2011 { HID_USB_DEVICE(USB_VENDOR_ID_PLANTRONICS, HID_ANY_ID) },
2012 { HID_USB_DEVICE(USB_VENDOR_ID_PRIMAX, USB_DEVICE_ID_PRIMAX_KEYBOARD) },
2013#if IS_ENABLED(CONFIG_HID_ROCCAT)
2014 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
2015 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKU) },
2016 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ISKUFX) },
2017 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
2018 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
2019 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE) },
2020 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPURE_OPTICAL) },
2021 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEXTD) },
2022 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
2023 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_LUA) },
2024 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
2025 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
2026 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK) },
2027 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_GLOW) },
2028 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_RYOS_MK_PRO) },
2029 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_SAVU) },
2030#endif
2031#if IS_ENABLED(CONFIG_HID_SAITEK)
2032 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_PS1000) },
2033 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RAT7_OLD) },
2034 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RAT7) },
2035 { HID_USB_DEVICE(USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_MMO7) },
2036 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_RAT5) },
2037 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_RAT9) },
2038#endif
2039 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
2040 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
2041 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
2042 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SMK, USB_DEVICE_ID_SMK_PS3_BDREMOTE) },
2043 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_BUZZ_CONTROLLER) },
2044 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_WIRELESS_BUZZ_CONTROLLER) },
2045 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER) },
2046 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_MOTION_CONTROLLER) },
2047 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
2048 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
2049 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_BDREMOTE) },
2050 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
2051 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
2052 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2053 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2054 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
2055 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGP_MOUSE) },
2056 { HID_USB_DEVICE(USB_VENDOR_ID_SINO_LITE, USB_DEVICE_ID_SINO_LITE_CONTROLLER) },
2057 { HID_USB_DEVICE(USB_VENDOR_ID_STEELSERIES, USB_DEVICE_ID_STEELSERIES_SRWS1) },
2058 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
2059 { HID_USB_DEVICE(USB_VENDOR_ID_THINGM, USB_DEVICE_ID_BLINK1) },
2060 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
2061 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
2062 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
2063 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
2064 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
2065 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
2066 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
2067 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
2068 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_BT) },
2069 { HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE) },
2070 { HID_USB_DEVICE(USB_VENDOR_ID_TIVO, USB_DEVICE_ID_TIVO_SLIDE_PRO) },
2071 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
2072 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
2073 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
2074 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
2075 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
2076 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
2077 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
2078 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
2079 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_WIRELESS_TABLET_TWHL850) },
2080 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_TWHA60) },
2081 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
2082 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SUPER_JOY_BOX_3) },
2083 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_DUAL_USB_JOYPAD) },
2084 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_3_PRO) },
2085 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_DUAL_BOX_PRO) },
2086 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP_LTD, USB_DEVICE_ID_SUPER_JOY_BOX_5_PRO) },
2087 { HID_USB_DEVICE(USB_VENDOR_ID_PLAYDOTCOM, USB_DEVICE_ID_PLAYDOTCOM_EMS_USBII) },
2088 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
2089 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
2090 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_Q_PAD) },
2091 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_PID_0038) },
2092 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
2093 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
2094 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SIRIUS_BATTERY_FREE_TABLET) },
2095 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
2096 { HID_USB_DEVICE(USB_VENDOR_ID_XIN_MO, USB_DEVICE_ID_XIN_MO_DUAL_ARCADE) },
2097 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
2098 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
2099 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
2100
2101 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
2102 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
2103 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE2) },
2104 { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14) },
2105 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM6533) },
2106 { }
2107};
2108
2109struct hid_dynid {
2110 struct list_head list;
2111 struct hid_device_id id;
2112};
2113
2114/**
2115 * store_new_id - add a new HID device ID to this driver and re-probe devices
2116 * @driver: target device driver
2117 * @buf: buffer for scanning device ID data
2118 * @count: input size
2119 *
2120 * Adds a new dynamic hid device ID to this driver,
2121 * and causes the driver to probe for all devices again.
2122 */
2123static ssize_t store_new_id(struct device_driver *drv, const char *buf,
2124 size_t count)
2125{
2126 struct hid_driver *hdrv = to_hid_driver(drv);
2127 struct hid_dynid *dynid;
2128 __u32 bus, vendor, product;
2129 unsigned long driver_data = 0;
2130 int ret;
2131
2132 ret = sscanf(buf, "%x %x %x %lx",
2133 &bus, &vendor, &product, &driver_data);
2134 if (ret < 3)
2135 return -EINVAL;
2136
2137 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2138 if (!dynid)
2139 return -ENOMEM;
2140
2141 dynid->id.bus = bus;
2142 dynid->id.group = HID_GROUP_ANY;
2143 dynid->id.vendor = vendor;
2144 dynid->id.product = product;
2145 dynid->id.driver_data = driver_data;
2146
2147 spin_lock(&hdrv->dyn_lock);
2148 list_add_tail(&dynid->list, &hdrv->dyn_list);
2149 spin_unlock(&hdrv->dyn_lock);
2150
2151 ret = driver_attach(&hdrv->driver);
2152
2153 return ret ? : count;
2154}
2155static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
2156
2157static void hid_free_dynids(struct hid_driver *hdrv)
2158{
2159 struct hid_dynid *dynid, *n;
2160
2161 spin_lock(&hdrv->dyn_lock);
2162 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2163 list_del(&dynid->list);
2164 kfree(dynid);
2165 }
2166 spin_unlock(&hdrv->dyn_lock);
2167}
2168
2169static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2170 struct hid_driver *hdrv)
2171{
2172 struct hid_dynid *dynid;
2173
2174 spin_lock(&hdrv->dyn_lock);
2175 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2176 if (hid_match_one_id(hdev, &dynid->id)) {
2177 spin_unlock(&hdrv->dyn_lock);
2178 return &dynid->id;
2179 }
2180 }
2181 spin_unlock(&hdrv->dyn_lock);
2182
2183 return hid_match_id(hdev, hdrv->id_table);
2184}
2185
2186static int hid_bus_match(struct device *dev, struct device_driver *drv)
2187{
2188 struct hid_driver *hdrv = to_hid_driver(drv);
2189 struct hid_device *hdev = to_hid_device(dev);
2190
2191 return hid_match_device(hdev, hdrv) != NULL;
2192}
2193
2194static int hid_device_probe(struct device *dev)
2195{
2196 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2197 struct hid_device *hdev = to_hid_device(dev);
2198 const struct hid_device_id *id;
2199 int ret = 0;
2200
2201 if (down_interruptible(&hdev->driver_lock))
2202 return -EINTR;
2203 if (down_interruptible(&hdev->driver_input_lock)) {
2204 ret = -EINTR;
2205 goto unlock_driver_lock;
2206 }
2207 hdev->io_started = false;
2208
2209 if (!hdev->driver) {
2210 id = hid_match_device(hdev, hdrv);
2211 if (id == NULL) {
2212 ret = -ENODEV;
2213 goto unlock;
2214 }
2215
2216 hdev->driver = hdrv;
2217 if (hdrv->probe) {
2218 ret = hdrv->probe(hdev, id);
2219 } else { /* default probe */
2220 ret = hid_open_report(hdev);
2221 if (!ret)
2222 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2223 }
2224 if (ret) {
2225 hid_close_report(hdev);
2226 hdev->driver = NULL;
2227 }
2228 }
2229unlock:
2230 if (!hdev->io_started)
2231 up(&hdev->driver_input_lock);
2232unlock_driver_lock:
2233 up(&hdev->driver_lock);
2234 return ret;
2235}
2236
2237static int hid_device_remove(struct device *dev)
2238{
2239 struct hid_device *hdev = to_hid_device(dev);
2240 struct hid_driver *hdrv;
2241 int ret = 0;
2242
2243 if (down_interruptible(&hdev->driver_lock))
2244 return -EINTR;
2245 if (down_interruptible(&hdev->driver_input_lock)) {
2246 ret = -EINTR;
2247 goto unlock_driver_lock;
2248 }
2249 hdev->io_started = false;
2250
2251 hdrv = hdev->driver;
2252 if (hdrv) {
2253 if (hdrv->remove)
2254 hdrv->remove(hdev);
2255 else /* default remove */
2256 hid_hw_stop(hdev);
2257 hid_close_report(hdev);
2258 hdev->driver = NULL;
2259 }
2260
2261 if (!hdev->io_started)
2262 up(&hdev->driver_input_lock);
2263unlock_driver_lock:
2264 up(&hdev->driver_lock);
2265 return ret;
2266}
2267
2268static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2269 char *buf)
2270{
2271 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2272
2273 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2274 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2275}
2276static DEVICE_ATTR_RO(modalias);
2277
2278static struct attribute *hid_dev_attrs[] = {
2279 &dev_attr_modalias.attr,
2280 NULL,
2281};
2282static struct bin_attribute *hid_dev_bin_attrs[] = {
2283 &dev_bin_attr_report_desc,
2284 NULL
2285};
2286static const struct attribute_group hid_dev_group = {
2287 .attrs = hid_dev_attrs,
2288 .bin_attrs = hid_dev_bin_attrs,
2289};
2290__ATTRIBUTE_GROUPS(hid_dev);
2291
2292static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2293{
2294 struct hid_device *hdev = to_hid_device(dev);
2295
2296 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2297 hdev->bus, hdev->vendor, hdev->product))
2298 return -ENOMEM;
2299
2300 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2301 return -ENOMEM;
2302
2303 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2304 return -ENOMEM;
2305
2306 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2307 return -ENOMEM;
2308
2309 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2310 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2311 return -ENOMEM;
2312
2313 return 0;
2314}
2315
2316static struct bus_type hid_bus_type = {
2317 .name = "hid",
2318 .dev_groups = hid_dev_groups,
2319 .match = hid_bus_match,
2320 .probe = hid_device_probe,
2321 .remove = hid_device_remove,
2322 .uevent = hid_uevent,
2323};
2324
2325/* a list of devices that shouldn't be handled by HID core at all */
2326static const struct hid_device_id hid_ignore_list[] = {
2327 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
2328 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
2329 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
2330 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
2331 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
2332 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
2333 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
2334 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
2335 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
2336 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
2337 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
2338 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
2339 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
2340 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
2341 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
2342 { HID_USB_DEVICE(USB_VENDOR_ID_AXENTIA, USB_DEVICE_ID_AXENTIA_FM_RADIO) },
2343 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
2344 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
2345 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
2346 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI4713) },
2347 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
2348 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
2349 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
2350 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
2351 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
2352 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
2353 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
2354 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x000a) },
2355 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, 0x0400) },
2356 { HID_I2C_DEVICE(USB_VENDOR_ID_ELAN, 0x0401) },
2357 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
2358 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
2359 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
2360 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
2361 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
2362 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
2363 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
2364 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
2365 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
2366 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
2367 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
2368 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
2369 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_RADIOSHARK) },
2370 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
2371 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
2372 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
2373 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
2374 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
2375 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
2376 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
2377 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
2378 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
2379 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
2380 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
2381 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
2382 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
2383 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
2384 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
2385 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
2386 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
2387 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
2388 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
2389 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
2390 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
2391 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
2392 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
2393 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
2394 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
2395 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
2396 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
2397 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
2398 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
2399 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
2400 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
2401 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
2402 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
2403 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
2404 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
2405 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
2406 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
2407 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
2408 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
2409 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
2410 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
2411 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
2412 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
2413 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
2414 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
2415 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
2416 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
2417 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_410) },
2418 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_SPEAK_510) },
2419 { HID_USB_DEVICE(USB_VENDOR_ID_JABRA, USB_DEVICE_ID_JABRA_GN9350E) },
2420 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
2421 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
2422 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
2423 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
2424 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
2425 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
2426 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
2427 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
2428 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
2429 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
2430 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
2431 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
2432 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
2433 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
2434 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
2435 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
2436 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
2437 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
2438 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
2439 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
2440 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
2441 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
2442 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
2443 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
2444 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
2445 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
2446 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
2447 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
2448 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
2449 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
2450 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
2451 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
2452 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
2453 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
2454 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
2455 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
2456 { HID_USB_DEVICE(USB_VENDOR_ID_MADCATZ, USB_DEVICE_ID_MADCATZ_BEATPAD) },
2457 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
2458 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
2459 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
2460 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
2461 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICK16F1454) },
2462 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICK16F1454_V2) },
2463 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
2464 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
2465 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
2466 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
2467 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
2468 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
2469 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
2470 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
2471 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
2472 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
2473 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
2474 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
2475 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
2476 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
2477 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
2478 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
2479 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
2480#if defined(CONFIG_MOUSE_SYNAPTICS_USB) || defined(CONFIG_MOUSE_SYNAPTICS_USB_MODULE)
2481 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_TP) },
2482 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_INT_TP) },
2483 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_CPAD) },
2484 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_STICK) },
2485 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WP) },
2486 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_COMP_TP) },
2487 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_WTP) },
2488 { HID_USB_DEVICE(USB_VENDOR_ID_SYNAPTICS, USB_DEVICE_ID_SYNAPTICS_DPAD) },
2489#endif
2490 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
2491 { HID_USB_DEVICE(USB_VENDOR_ID_RISO_KAGAKU, USB_DEVICE_ID_RI_KA_WEBMAIL) },
2492 { }
2493};
2494
2495/**
2496 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
2497 *
2498 * There are composite devices for which we want to ignore only a certain
2499 * interface. This is a list of devices for which only the mouse interface will
2500 * be ignored. This allows a dedicated driver to take care of the interface.
2501 */
2502static const struct hid_device_id hid_mouse_ignore_list[] = {
2503 /* appletouch driver */
2504 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
2505 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
2506 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
2507 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
2508 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
2509 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
2510 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
2511 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
2512 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
2513 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
2514 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
2515 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
2516 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
2517 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
2518 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
2519 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
2520 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
2521 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
2522 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
2523 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
2524 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
2525 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
2526 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
2527 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
2528 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
2529 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
2530 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
2531 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
2532 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
2533 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
2534 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
2535 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
2536 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ANSI) },
2537 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_ISO) },
2538 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5A_JIS) },
2539 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ANSI) },
2540 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_ISO) },
2541 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6_JIS) },
2542 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ANSI) },
2543 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_ISO) },
2544 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING6A_JIS) },
2545 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ANSI) },
2546 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_ISO) },
2547 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7_JIS) },
2548 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ANSI) },
2549 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_ISO) },
2550 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING7A_JIS) },
2551 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ANSI) },
2552 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_ISO) },
2553 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING8_JIS) },
2554 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ANSI) },
2555 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_ISO) },
2556 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING9_JIS) },
2557 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
2558 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
2559 { }
2560};
2561
2562bool hid_ignore(struct hid_device *hdev)
2563{
2564 if (hdev->quirks & HID_QUIRK_NO_IGNORE)
2565 return false;
2566 if (hdev->quirks & HID_QUIRK_IGNORE)
2567 return true;
2568
2569 switch (hdev->vendor) {
2570 case USB_VENDOR_ID_CODEMERCS:
2571 /* ignore all Code Mercenaries IOWarrior devices */
2572 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
2573 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
2574 return true;
2575 break;
2576 case USB_VENDOR_ID_LOGITECH:
2577 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
2578 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
2579 return true;
2580 /*
2581 * The Keene FM transmitter USB device has the same USB ID as
2582 * the Logitech AudioHub Speaker, but it should ignore the hid.
2583 * Check if the name is that of the Keene device.
2584 * For reference: the name of the AudioHub is
2585 * "HOLTEK AudioHub Speaker".
2586 */
2587 if (hdev->product == USB_DEVICE_ID_LOGITECH_AUDIOHUB &&
2588 !strcmp(hdev->name, "HOLTEK B-LINK USB Audio "))
2589 return true;
2590 break;
2591 case USB_VENDOR_ID_SOUNDGRAPH:
2592 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
2593 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
2594 return true;
2595 break;
2596 case USB_VENDOR_ID_HANWANG:
2597 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
2598 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
2599 return true;
2600 break;
2601 case USB_VENDOR_ID_JESS:
2602 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
2603 hdev->type == HID_TYPE_USBNONE)
2604 return true;
2605 break;
2606 case USB_VENDOR_ID_VELLEMAN:
2607 /* These are not HID devices. They are handled by comedi. */
2608 if ((hdev->product >= USB_DEVICE_ID_VELLEMAN_K8055_FIRST &&
2609 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8055_LAST) ||
2610 (hdev->product >= USB_DEVICE_ID_VELLEMAN_K8061_FIRST &&
2611 hdev->product <= USB_DEVICE_ID_VELLEMAN_K8061_LAST))
2612 return true;
2613 break;
2614 case USB_VENDOR_ID_ATMEL_V_USB:
2615 /* Masterkit MA901 usb radio based on Atmel tiny85 chip and
2616 * it has the same USB ID as many Atmel V-USB devices. This
2617 * usb radio is handled by radio-ma901.c driver so we want
2618 * ignore the hid. Check the name, bus, product and ignore
2619 * if we have MA901 usb radio.
2620 */
2621 if (hdev->product == USB_DEVICE_ID_ATMEL_V_USB &&
2622 hdev->bus == BUS_USB &&
2623 strncmp(hdev->name, "www.masterkit.ru MA901", 22) == 0)
2624 return true;
2625 break;
2626 }
2627
2628 if (hdev->type == HID_TYPE_USBMOUSE &&
2629 hid_match_id(hdev, hid_mouse_ignore_list))
2630 return true;
2631
2632 return !!hid_match_id(hdev, hid_ignore_list);
2633}
2634EXPORT_SYMBOL_GPL(hid_ignore);
2635
2636int hid_add_device(struct hid_device *hdev)
2637{
2638 static atomic_t id = ATOMIC_INIT(0);
2639 int ret;
2640
2641 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2642 return -EBUSY;
2643
2644 /* we need to kill them here, otherwise they will stay allocated to
2645 * wait for coming driver */
2646 if (hid_ignore(hdev))
2647 return -ENODEV;
2648
2649 /*
2650 * Check for the mandatory transport channel.
2651 */
2652 if (!hdev->ll_driver->raw_request) {
2653 hid_err(hdev, "transport driver missing .raw_request()\n");
2654 return -EINVAL;
2655 }
2656
2657 /*
2658 * Read the device report descriptor once and use as template
2659 * for the driver-specific modifications.
2660 */
2661 ret = hdev->ll_driver->parse(hdev);
2662 if (ret)
2663 return ret;
2664 if (!hdev->dev_rdesc)
2665 return -ENODEV;
2666
2667 /*
2668 * Scan generic devices for group information
2669 */
2670 if (hid_ignore_special_drivers) {
2671 hdev->group = HID_GROUP_GENERIC;
2672 } else if (!hdev->group &&
2673 !hid_match_id(hdev, hid_have_special_driver)) {
2674 ret = hid_scan_report(hdev);
2675 if (ret)
2676 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2677 }
2678
2679 /* XXX hack, any other cleaner solution after the driver core
2680 * is converted to allow more than 20 bytes as the device name? */
2681 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2682 hdev->vendor, hdev->product, atomic_inc_return(&id));
2683
2684 hid_debug_register(hdev, dev_name(&hdev->dev));
2685 ret = device_add(&hdev->dev);
2686 if (!ret)
2687 hdev->status |= HID_STAT_ADDED;
2688 else
2689 hid_debug_unregister(hdev);
2690
2691 return ret;
2692}
2693EXPORT_SYMBOL_GPL(hid_add_device);
2694
2695/**
2696 * hid_allocate_device - allocate new hid device descriptor
2697 *
2698 * Allocate and initialize hid device, so that hid_destroy_device might be
2699 * used to free it.
2700 *
2701 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2702 * error value.
2703 */
2704struct hid_device *hid_allocate_device(void)
2705{
2706 struct hid_device *hdev;
2707 int ret = -ENOMEM;
2708
2709 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2710 if (hdev == NULL)
2711 return ERR_PTR(ret);
2712
2713 device_initialize(&hdev->dev);
2714 hdev->dev.release = hid_device_release;
2715 hdev->dev.bus = &hid_bus_type;
2716 device_enable_async_suspend(&hdev->dev);
2717
2718 hid_close_report(hdev);
2719
2720 init_waitqueue_head(&hdev->debug_wait);
2721 INIT_LIST_HEAD(&hdev->debug_list);
2722 spin_lock_init(&hdev->debug_list_lock);
2723 sema_init(&hdev->driver_lock, 1);
2724 sema_init(&hdev->driver_input_lock, 1);
2725
2726 return hdev;
2727}
2728EXPORT_SYMBOL_GPL(hid_allocate_device);
2729
2730static void hid_remove_device(struct hid_device *hdev)
2731{
2732 if (hdev->status & HID_STAT_ADDED) {
2733 device_del(&hdev->dev);
2734 hid_debug_unregister(hdev);
2735 hdev->status &= ~HID_STAT_ADDED;
2736 }
2737 kfree(hdev->dev_rdesc);
2738 hdev->dev_rdesc = NULL;
2739 hdev->dev_rsize = 0;
2740}
2741
2742/**
2743 * hid_destroy_device - free previously allocated device
2744 *
2745 * @hdev: hid device
2746 *
2747 * If you allocate hid_device through hid_allocate_device, you should ever
2748 * free by this function.
2749 */
2750void hid_destroy_device(struct hid_device *hdev)
2751{
2752 hid_remove_device(hdev);
2753 put_device(&hdev->dev);
2754}
2755EXPORT_SYMBOL_GPL(hid_destroy_device);
2756
2757int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2758 const char *mod_name)
2759{
2760 int ret;
2761
2762 hdrv->driver.name = hdrv->name;
2763 hdrv->driver.bus = &hid_bus_type;
2764 hdrv->driver.owner = owner;
2765 hdrv->driver.mod_name = mod_name;
2766
2767 INIT_LIST_HEAD(&hdrv->dyn_list);
2768 spin_lock_init(&hdrv->dyn_lock);
2769
2770 ret = driver_register(&hdrv->driver);
2771 if (ret)
2772 return ret;
2773
2774 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2775 if (ret)
2776 driver_unregister(&hdrv->driver);
2777
2778 return ret;
2779}
2780EXPORT_SYMBOL_GPL(__hid_register_driver);
2781
2782void hid_unregister_driver(struct hid_driver *hdrv)
2783{
2784 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2785 driver_unregister(&hdrv->driver);
2786 hid_free_dynids(hdrv);
2787}
2788EXPORT_SYMBOL_GPL(hid_unregister_driver);
2789
2790int hid_check_keys_pressed(struct hid_device *hid)
2791{
2792 struct hid_input *hidinput;
2793 int i;
2794
2795 if (!(hid->claimed & HID_CLAIMED_INPUT))
2796 return 0;
2797
2798 list_for_each_entry(hidinput, &hid->inputs, list) {
2799 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2800 if (hidinput->input->key[i])
2801 return 1;
2802 }
2803
2804 return 0;
2805}
2806
2807EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2808
2809static int __init hid_init(void)
2810{
2811 int ret;
2812
2813 if (hid_debug)
2814 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2815 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2816
2817 ret = bus_register(&hid_bus_type);
2818 if (ret) {
2819 pr_err("can't register hid bus\n");
2820 goto err;
2821 }
2822
2823 ret = hidraw_init();
2824 if (ret)
2825 goto err_bus;
2826
2827 hid_debug_init();
2828
2829 return 0;
2830err_bus:
2831 bus_unregister(&hid_bus_type);
2832err:
2833 return ret;
2834}
2835
2836static void __exit hid_exit(void)
2837{
2838 hid_debug_exit();
2839 hidraw_exit();
2840 bus_unregister(&hid_bus_type);
2841}
2842
2843module_init(hid_init);
2844module_exit(hid_exit);
2845
2846MODULE_AUTHOR("Andreas Gal");
2847MODULE_AUTHOR("Vojtech Pavlik");
2848MODULE_AUTHOR("Jiri Kosina");
2849MODULE_LICENSE(DRIVER_LICENSE);
2850